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ABSTRACT: Engineering mathematics is traditionally conceived as a set of unambiguous 

mathematical tools applied to solving engineering problems, and it would seem that modern 

mathematical software is making the toolbox metaphor ever more appropriate. We question 

the validity of this metaphor, and make the case that engineers do in fact use mathematics as 

more than a set of passive tools—that mathematical models for phenomena depend critically 

on the settings in which they are used, and the tools with which they are expressed. The 

perennial debate over whether mathematics should be taught by mathematicians or by 

engineers looks increasingly anachronistic in the light of technological change, and we think 

it is more instructive to examine the potential of technology for changing the relationships 

between mathematicians and engineers, and for connecting their respective knowledge 

domains in new ways. 
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Introduction 

The statement that mathematics plays a central role in engineering and science is 

certainly true, and—in its bare bones formulation—certainly a truism. “Mathematical 

models” are everywhere, “modelling” is a central activity. However, in this paper we 

would like to ask in what ways is a model “mathematical”, and, at the same time, in 

what ways is it scientific, or part of engineering? How might these different aspects 

be connected in the minds of learners and experts?  

Traditionally, these questions have unproblematic answers. If “service” mathematics 

is essentially a set of tools whose workings need not be visible to the user, then the 

difficulty is simply one of teaching “the mathematics” and learning to apply it later. 

The metaphor of application is ubiquitous. But what is it that is applied? And what, 

exactly, is it applied to? Further, if the toolbox metaphor is to be helpful, we need to 

have some idea of what different people will see when they look inside the box. Will 

they see the same thing, will it have the same structure? Will it have the same 

function? 

The experience of engineering students entails more and more contact with 

sophisticated pieces of technology. For example, with the latest computer-aided 

design software for civil engineering it is possible not only to “build” structures such 

as bridges in the virtual space inside the computer, but also to test the integrity of a 

design against the effects of an earthquake. Underlying this computational power is a 

huge amount of invisible mathematics, and it is clear that technology is allowing 

students to use mathematics to an unprecedented degree—in the case of computer-

aided structural design, the most advanced numerical techniques for solving nonlinear 

equations become available at the press of a button, and with barely a mathematical 
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equation in sight. In these circumstances, the future role of mathematics teaching for 

engineers is uncertain, especially since most of the mathematical methods which form 

the staple diet of traditional mathematics service courses are now themselves 

available effortlessly in a computer mathematics system such as Mathematica [1]. 

In this respect, it seems that the computer is, if anything, making the toolbox 

metaphor ever more appropriate. If solving a nonlinear equation is a question of 

pressing the right buttons, it is not inappropriate to think of it as similar to selecting 

the right spanners — and we don’t seem to need much instruction about how spanners 

work (or are designed) to use one. On the contrary, we might be forgiven for asking 

how the connections between mathematics and its applications in engineering can be 

made more visible by using computer mathematics software, which, it is commonly 

acknowledged, hides mathematics inside general-purpose, black box functions for 

doing integration, equation solving and the like?  

This role of technology, together with (in the UK at least) the well-documented 

decline in mathematical preparation of incoming students (e.g. [2], [3]), has led some 

to make a reasonable case for the downplaying of the role of mathematics in 

engineering (see, for example, [4, p. 264]). There is, undoubtedly, an argument that 

significant kinds of engineering can be done with mathematics which has already 

been done by someone else, and wrapped up into computational tools which the 

engineer needs only to use. 

In fact, it seems that this is a very partial view. There remains a strong case for the 

inclusion of mathematics as more than a set of passive tools, catalysed by the 

computer in new ways (see, for example, [5]). In this paper, we will outline our case 

that the computer, if appropriately conceived, affords an opportunity to make visible 
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important parts of the mathematical agenda, rather than to relegate mathematics into a 

set of tools whose workings remain opaque. 

Our position demands attention to epistemology rather than merely technology and its 

application. Of course, we will need to consider technology-focussed issues, such as 

what is possible with a piece of software such as Mathematica—what can be done 

with it in the context of a given mathematical or engineering topic. But we want to 

focus on issues to do with the basic relationships between mathematical and 

engineering knowledge. These are fundamental in our attempt to rise to the challenge 

of designing and structuring activities which simultaneously lead students to use and 

understand the mathematics they are deploying in their computationally-based 

activities. 

In the UK, students specialise in their degree subject from the start. For this reason, if 

no other, they meet some demanding mathematics as soon as they enter university, 

and are called upon to “apply” it almost immediately. The example student activities 

in this paper are drawn from a short (6 hour) introductory course in Mathematica, for 

first year undergraduates in the Civil Engineering department at Imperial College, 

which was designed and delivered, for the first time, by the METRIC Project
1
 in early 

1998. 

Developing a “structural feel” for beams and bridges 

An introductory Mathematica course for undergraduates can easily fall into the class 

of generic software training; there is so much that seems to need to be discussed 

                                                 
1
  The project team is Phillip Kent and Phil Ramsden. See 

http://metric.ma.ic.ac.uk/ . 



 

5 

(symbolic calculations, numerics, graphics, programming, using the document 

interface), that it is easy to spend the whole time exhibiting the functionality of the 

software. With the Civil Engineers, however, we wanted to use the course to present 

activities to the students where Mathematica is being applied in specific engineering 

contexts, and we enlisted the help of a colleague from Civil Engineering
2
 to develop 

these contextual examples
3
. At the very least, seeing Mathematica applied to relevant 

situations in engineering is likely to be good motivation for students, but our hope is 

that the “bridging” effects can be more significant than this. 

The two contexts we chose were both to do with structures. The idea of the engineers 

was that, by letting Mathematica take the mathematical strain, we could help students 

begin to get a “structural feel” for how structures behave (something that their present 

courses seem to be deficient on). After the first run, we can claim to have existence 

theorems for this; we will be seeking more substantial evidence when the course runs 

again in the current academic year.  

The first Mathematica session for the students was a quick overview of the numeric, 

symbolic and graphical capabilities of the software. As a final exercise, the students 

were invited to “apply” their fresh knowledge to a typical loaded beam problem, such 

as they meet in their initial engineering course on structures. The “structural feel” 

idea prompted an emphasis not on the mathematics of the problem—which is given to 

them in full—but on estimating important structural quantities as a load (W, below) is 

varied, using whatever combination of graphical, numerical and symbolic methods 

                                                 
2
  Dr David Lloyd-Smith, to whom we express our thanks. 

3
  METRIC has developed a similarly “contextualised” approach for Chemical and Mechanical 

Engineers, and for Chemistry students; for details, see the web site already mentioned. 
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they choose. These quantities include the point of maximum displacement along the 

beam, and the point of “contraflexure” (i.e. where the curvature changes sign).  

The students were presented with the situation shown in Figure 1, where the up-

arrows denote fixed supports, there is a distributed load between x = 3 and x =6, and 

W is a variable point load: 

 y

          x                                             W

               2 kN/m

       3m        3m           4m             4m  

Figure 1: The loaded beam problem in Civil Engineering. 

The students were given the solution for small deflections of the beam. This is 

conventionally written by engineers in the form: 
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The “flexural stiffness” constant EI is typically around 107
 so the deflections are very 

small, of order mm for y when x is of order m (Figure 2). 

The y-vs-x equation is not quite as it seems, because the polynomial terms ( )x  3 4
, 

etc, are written in the normal way, but in fact represent piecewise-defined ramp 

functions, defined to be zero when x  3  and to be ( )x  3 4
 when x  3 , etc. (Figure 

3). 
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Figure 2: Graphs of beam displacement (for W ranging from 0 to 4 kN). 

 

Figure 3: The ramp function “ ( )x10 3

”. 

While this notational shift is implicit in much of the spoken and written language 

used with the students, it is made explicit, indeed it must be made explicit, in the 

Mathematica expression for y which the students are given: 

y = (1/EI)*(5(-22275+4W)x/3 + (33000-4W)x
3
/60 - 

  (250/3)*If[x<3,0,(x-3)
4
] + (250/3)*If[x<6,0,(x-6)

4
] + 

  (27000+14W)*If[x<10,0,(x-10)
3

]/60) 

From the engineer’s point of view, there is nothing strange; as our colleague put it: 

“of course, these terms here are ramp functions...”. But for us it was surprising to 

discover something new about polynomials: basic and boring mathematical objects, 

but when looked at in a certain (engineer’s) way, they are “ramps”. Moreover, this is 

true in a dual sense, both as a visual metaphor, and as an expression of the role that 
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the functions serve in the structural analysis: that the terms containing ramp functions 

have zero effect on the beam displacement until x reaches a threshold value. 

We don’t want to overstate the importance of a small episode, but it does point up the 

fact that mathematics is not a passive agent. In use, mathematics becomes a means of 

making sense of the underlying engineering principles. But reciprocally, the 

mathematics itself is shaped by its application—it takes on meanings which are 

derived from the setting in which it is used. 

Incidentally, we discovered one other curious (to us) phenomenon: in situations like 

this, the beam’s weight is often negligible in magnitude relative to the other forces in 

the problem. So the weight is abstracted into the form of a distributed load (pressure). 

In effect, the beam is abstracted to an “ideal structure” defined only by its geometry, 

flexibility and material strength. 

The Rainbow Bridge 

The second Mathematica activity for the Civil Engineers is based on second-year 

mathematics material, and it represents an instance of didactical inversion: using the 

capability of the technology to allow students to carry out some task using 

mathematics which the students don’t know yet in order that they can focus on some 

conceptual points which the mathematics makes accessible. Two pre-written 

Mathematica functions generate animations of a test load moving across two different 

simple bridge structures; at each step in the animation, the colour of each of the struts 

in a bridge represents the magnitude of the force in that strut induced by the test load 

(Figure 4). 
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Figure 4: Frame from a “bridge movie”; a test load (black disc) moves across a 

(2-D) bridge, whose struts change colour according to the magnitude of the force 

caused by the test load (the numbers just index the struts for reference). 

Again in the interests of “structural feel”, the students are not required to understand 

the Mathematica details of how the animation is generated, nor the mathematical 

details of how the strut forces are calculated (which involves the solution of systems 

of linear equations). What they do have control over are the magnitude of the test load 

and the “colour function” which maps a numerical force value onto a range of output 

colours. They are asked to consider how to design a colour function which yields the 

most useful information about what is going on in the bridge as the test load moves 

across it, and to design a function which would allow them to detect the maximum 

safe load that can cross a bridge given a maximum safe force for any strut. 

It should be clear what are the engineering lessons from this activity: the students can 

get experience in how the patterns of forces vary in a loaded structure, and they are 

invited to consider, albeit for a toy example, a central engineering design question of 

determining what loads a given structure can safely support. The mathematical 

lessons may not be so obvious. Indeed, one might ask, where is the mathematics at 

all? Haven’t we hidden all the relevant mathematics inside the Mathematica 

functions? In the most obvious sense, we have hidden the mathematics of the 

problem—the solving of systems of linear equations. But in fact, the mathematics can 

be made visible in two ways. First, the didactic inversion allows us to hide the details 
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of the mathematical processes whilst keeping visible the very useful results of that 

process. Second, the students are invited to engage in an interplay between bottom-

level Mathematica programming—defining colour functions—and high-level 

visualisation. For example, the “maximum safe load” question demands some kind of 

piecewise-defined function along the lines of (taking 35000 N as the max. safe force 

in a strut): 

overloadFun[force_]:=If[Abs[force]>35000, 

  GrayLevel[1], (*safe load exceeded – output white*) 

  Hue[0.8*Abs[force]/35000] (*else output a colour spectrum*) 

] 

This process of making and criticising representations (i.e. the colour function 

mappings) is not conventionally recognised as mathematical work, at least not for 

non-expert, beginning students. But, we think that it reflects a kind of mathematical 

thinking that has a great deal to do with having a good structural feel. (And we think 

that it has a strong relationship with diSessa et al’s [6] idea of “meta-representational 

competence”). 

These structures activities highlight a problem of visibility in design. They illustrate 

the complexity of the questions we asked at the outset: for now it should be clear that 

the question is not only whether or not to make the mathematics visible, but what 

mathematics, and in what form, to make visible? Designers must choose to make 

certain pieces of the mathematics visible and functional, and it is functionality which 

is the very real contribution of the technology. At the same time, students have to map 

the expression of the mathematics (in whatever form) into the results they see—and to 

try to re-represent those results in terms of the (Mathematica-based) mathematics. 

This is not simply a matter of multiple representation, it is a matter of construction. 
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Discussion: Designing for visibility in a mathematical 

software environment 

In this section, we want to consider the visibility of mathematical calculations in three 

different software packages—Mathcad, Mathematica and Maple—as well as how, 

and to what degree, different teachers of engineering mathematics are choosing to 

make mathematics visible whilst using those packages with students. Insight into the 

latter was gained from the proceedings of a recent workshop on the use of 

mathematical software packages in undergraduate engineering education
4
. This 

happened to allow us some rather intriguing views on the relationship between 

epistemology and visibility—in other words, how the intentions of the designer are 

translated into the conceptual mathematical models developed by the user/learner. As 

we shall see, the relationship is not straightforward. 

Clearly, all the various software manufacturers are interested in appealing to as large 

an audience of mathematics users as possible, and their “box top” slogans express 

this: Mathcad—“the worldwide standard for technical calculations”; Mathematica—

“the world’s only fully integrated technical computing system”; Maple—“complete 

mathematics and visualisation system”. But if one looks inside the box, we think that 

the different epistemologies of engineers and (applied) mathematicians can be made 

out in the software designs. 

Mathematica and Maple are examples of “computer algebra systems”, and represent 

what an applied mathematician might expect of “computer mathematics”: 

                                                 
4
  Organised by METRIC at Imperial College, June 1998. Proceedings are available from 

http://metric.ma.ic.ac.uk/symposium/ . 
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comprehensive sets of symbolic, numerical and graphical functions, expressed in a 

precise, extensible mathematics-like programming language. 

Mathcad is a package very much designed for, and commercially targeted at, 

engineers. It works rather like a “sketchpad” combination of word processor, 

spreadsheet and mathematical (mostly numerical) toolbox: inputs and results can be 

placed quite freely on the screen/page, but they are causally connected behind the 

scenes. It is interesting to trace the evolution of Mathcad over its past three or four 

versions. As usual, more functions, menus and palettes have appeared, but a couple of 

developments seem more indicative of a particular design philosophy: the first is the 

way that Mathcad’s developers are acquiring the electronic rights to many of the 

standard engineering data books, and making them available as $200 “electronic 

library” add-ons to the basic system. Mathcad is data-oriented, and proud of it. 

Second, there is a “symbolic toolbox”, that performs a selection of symbolic 

algorithms, which has grown in mathematical coverage with each new version (in 

fact, it is a portion of the Maple “mathematics engine” running in the background). 

We presume that this growth depends not least on the fact that enough users have 

requested a particular symbolic function to be added. Also, presumably, the 

developers of Mathcad have to pay the developers of Maple more to use more 

symbolic functions, which implies a certain conservatism on the part of the former. 

Now, from the point of view of a typical Mathcad user, this growth process must 

seem quite natural. An engineer is faced with a problem to solve, and needs to apply 

mathematical techniques to solve it; chances are it won’t yield to a symbolic 

technique anyway (few mathematical equations of practical use do possess exact 

analytic solutions outside of special cases), but having an improved package of 

symbolic techniques to hand is going to turn out to be useful some of the time. 
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However, from the viewpoint of a mathematician, this haphazard growth process 

could seem pretty worrying. Mathematicians make strong distinctions between 

symbolic and numerical procedures, so much so that the latter are often treated as a 

separate field of the discipline (i.e. numerical analysis). This is natural, too; surely it’s 

the business of mathematicians to make such distinctions? 

The message that we take from this comparison of perspectives is that visibility is not 

a simple issue: it depends on what designers, and users, think “mathematics” is. 

While it is no surprise that engineers and mathematicians see the function of 

mathematics differently, it is perhaps more surprising that they may not be thinking 

about the same mathematics: if that is true, it raises some difficult questions about the 

nature of applied mathematics itself, and surely indicates that the metaphor of 

application is, at best, limited. 

Should it be the business of engineers to make the same distinctions as 

mathematicians—to work with the same mathematical epistemology? In particular, 

do engineering students get the most appropriate mathematical training by following 

traditional mathematics courses which give pride of place to symbolic techniques, and 

relegate numerical methods to second place? For example, a speaker at the workshop, 

a teacher of civil engineering students, declared that a particular bugbear of his is 

having to re-orientate students who have been taught in school that integration is 

primarily about backward differentiation (a symbol-oriented view), and secondly 

about the practical, often numerical, process of determining areas under curves. 

In principle (institutional finances and academic politics notwithstanding), a lecturer 

in engineering mathematics can choose between offering students a package like 

Mathcad, or a package like Mathematica (or Maple). Mathcad has the advantage of 

being a tool tuned for engineers, whilst Mathematica may be less so—it is certainly 
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difficult to get to grips with it if you’re not willing to think in explicit mathematical 

terms. Either way, the educator has to come to terms with the design choices that the 

software developers have made: which mathematical aspects are visible enough, 

which need to be made more visible, or indeed less visible (as in our rainbow bridge 

example above).  

Summing up, it is clear that the epistemological decisions built into software design 

far from determine the user’s activities. Epistemological structures shape and are 

shaped by what the user does, but these are not straightforwardly linked. 

Conclusions 

We have presented our examples of mathematics teaching and educators’ discussion 

with the aim of challenging the traditional view of mathematics: that it is either 

studied in its own right or must inevitably be viewed as a succession of recipes, 

preferably wrapped in computational dressing. The former view may be attractive to 

mathematicians, but it has consistently failed engineering and science students. On 

the other hand, it seems increasingly likely that the latter view will render invisible 

crucial parts of the scientific and technological endeavour, in ways which relegate 

mathematics only to the privileged few who design the programs. This is, we think, 

an increasingly problematic issue, and one which is facing all those whose work 

involves—implicitly or explicitly—mathematical knowledge and techniques. 

Michael Clayton [7], a mathematician working in the multidisciplinary environment 

of the telecommunications industry, has pointed to the “bridging” effects of 

technology on the relationships between mathematicians and engineers in industrial 
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practice, overturning the traditional roles of mathematicians as makers of models, and 

other people in the design and production process as consumers of models: 

General-purpose IT tools such as spreadsheets, and mathematically based 

environments and workbenches such as Mathcad and Matlab have made it easier 

for engineers, dealers, salesmen, managers and others to construct their own 

models and refine them for specific applications. When time is of the essence, 

the value of these tools lies in the rapid prototyping they allow: initial modelling 

ideas can be investigated by the potential users, and the resulting interaction 

often leads to an improved match between the model and the users’ 

requirements. Modern graphical user interfaces … can be designed to make even 

the most sophisticated special-purpose models accessible to the people who need 

to use them, helping to remove the “ivory tower” and “back room” images that 

have sometimes been attached to mathematicians in the past.           [7, p. 25] 

Clayton’s insight may be crucial for effective university mathematics teaching in the 

future. The perennial debate over whether mathematics should be taught by 

mathematicians or by engineers looks increasingly anachronistic in the light of 

technological change, and modern industrial working practice. We think it is more 

instructive to examine the potential of mathematical technology to change the 

relationships between mathematicians and engineers, and to connect both people, and 

the knowledge domains in which they work, in new ways. 

The tools we use, as much as the activities we design, shape the kinds of 

understandings our students construct. Moreover, the mathematical models for 

phenomena—however straightforward they are to mathematicians—are not 

straightforward at all: they depend critically on the settings in which they are used, 

and the tools with which they are expressed. Provided we are explicit (at least to each 
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other, and perhaps to our students) we see this as a mathematical opportunity: in 

contrast, leaving this issue (and the mathematics) invisible must, we think, be a 

source of difficulty. 
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