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Abstract: 

Although diagrams are considered part and parcel of mathematics, mainstream 

mathematicians exhibit prejudice against the use of diagrams in public. Adopting a 

multimodality social semiotics approach, I consider diagrams as a semiotic mode of 

representation and communication which enable us to construct mathematical 

meaning. Mathematics is a multimodal discourse, where different modes of 

representation and communication are used, such as (spoken and written) language, 

algebraic notations, visual forms and gestures. These different modes have different 

meaning potentials. I suggest an analytic framework that can be used as a tool to 

analyse the kinds of meanings afforded by diagrams in mathematical discourse, 

focusing on geometry. 

Starting from characteristics of diagrams identified in the literature, I construct the 

framework using an iterative methodology tested with data from classrooms in the 

UK and the Occupied Palestinian territories and from textbooks. The classroom data 

consist of approximately 350 written mathematical texts in English and Arabic 

produced by 13- and 14-year-old students as a response to two geometrical problems, 

accompanied by audio and video records of their verbal and gestural interactions 

with each other while solving the problems. 

I then present the critical aspects of the development journey of the framework 

followed by a discussion of each of the three (meta)functions: ideational, 

interpersonal and textual. Each of these functions is illustrated by examples of 

diagrams from mathematical texts collected from the empirical data, textbooks and 

the Internet. Because I consider mathematics to be a social and cultural practice, I 

discuss the issue of culture and language in relation to the meanings of diagrams. 

Lastly, I discuss the implications of the study on representation and communication 

in mathematical discourse, with possible applications for the framework in learning 

and teaching mathematics. 
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Here, where the hills slope before the sunset and the chasm of time 
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we do what prisoners do 
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1 Introduction 

The study of mathematics went through many historical changes and developments 

before scholars reached the current dominant view that mathematics is formal, 

abstract and symbolic. In its early development, research in mathematics education 

tried to answer questions about mathematics such as what mathematics is and how it 

should be taught or learned (Kilpatrick, 1992). Being influenced by psychology over 

many years, research in mathematics education focused mainly on the study of the 

behaviour of mathematicians, mathematical thinking, transfer, and other aspects. By 

the end of the 1970s and beginning of the 1980s, research in mathematics education 

evolved to focus on language and the relationship between language and learning and 

teaching mathematics. One of the main influential works in this area is the work of 

the linguist Michael Halliday, his Systemic Functional Linguistics (SFL) and the 

notion of register. This movement was extended in two directions: research about 

language as a social semiotic system and research about discourse. Both have been 

influenced by the notion of communication. 

Communication is a social process (Halliday, 1985; Kress, Jewitt, Ogborn, & 

Tsatsarelis, 2001; Lemke, 1990) in which humans make use of different semiotic 

resources (modes) available to make meaning. Halliday (1985) argues in his systemic 

functional linguistics approach that in these human communicational acts, any 

human act fulfils three essential functions: ideational, interpersonal and textual. Our 

ideas (states of affairs) about the world are represented and communicated in the 

ideational function. The interpersonal function is realised by the social relations 

constructed by participants in the act of communication. The textual meaning is 

realised as these representations get presented in a coherent way. 

The recognition of the importance of communication to mathematics learning and 

teaching was prompted by the seminal work of Pimm (1987) and the publication of 

the Curriculum and Evaluation Standards for School Mathematics, and later the 

Principles and Standards for School Mathematics (National Council of Teachers of 

Mathematics, 1989, 2000a). This view was extended to the study of the discourse of 

classroom and of learning, drawing on different approaches from disciplines such as 

sociology, sociolinguistic and social semiotics (Barwell, 2008). The work of Morgan 
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(1996b) and O'Halloran (2005) has opened research in mathematics education to the 

SFL approach. The dominant view, however, was that language is the 'only' means 

(mode) to communicate, the mono-mode of communication. 

The notion of the monomodality of language was challenged and extended by the 

work of Kress and his colleagues (e.g. Jewitt & Kress, 2003; Kress & Van Leeuwen, 

2001, 2006). Adopting the Hallidayan SFL, they argue that communication is (and 

always has been) multimodal, where multi-modes such as images, diagrams and 

gestures are used to convey meaning. Furthermore, they use the term 'multimodality' 

to describe communication as a multimodal act where multiple modes of 

communication occur simultaneously, and each of them contributes to the 

construction of an 'overall' or a 'unified' meaning (Kress et al., 2001; Lemke, 1999; 

O'Halloran, 2004a). Thus, for a better understanding of the construction of meaning, 

of the meaning-making process, all modes should be considered. 

Mathematics discourse is a form of communication (Pimm, 1987; Sfard, 2008), and, 

thus, it is multimodal, where different modes of communication take place, such as 

verbal language, algebraic notations, visual forms and gesture (Morgan, 1996b; 

O'Halloran, 2005; Radford, Bardini, & Sabena, 2007). These different modes may 

offer different meanings, or they may convey one set of meanings (Kress & Van 

Leeuwen, 2006). The verbal language in (mathematical) texts, for instance, despite 

its power, has limited ability 'to represent spatial relations such as the angles of a 

triangle (..) or irrational ratios' (Lemke, 1999, p. 174). Thus we need diagrams or 

algebraic notations to represent these qualities or quantities. In the same manner, 

gestures help in representing dynamic acts, which both language and visual 

representations are limited in their ability to represent. It is the deployment of all 

these (and other) modes which carries the 'unified' meaning (Lemke, 1999). 

Morgan's linguistic approach to mathematical texts (Morgan, 1996b) offers 

descriptive tools to describe and interpret features of the verbal mode in the 

written/spoken mathematical texts based on Halliday's SFL. Tools for the description 

of the other modes, such as the diagrammatic and the gestural, 'are less fully 

developed from the systemic functional perspective' (Morgan, 2006, p. 226). 

Therefore, what I set out to do in this study is to offer such tools. In other words, I 

extend Morgan's linguistic framework for analysing mathematical discourse to 
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include diagrams and gestures. In doing so, I adopt Kress's multimodality approach 

to complement Morgan's framework. 

This study, thus, takes the multimodal nature of mathematics discourse and examines 

geometric diagrams and the potential mathematical meaning they may offer. To a 

lesser extent, it also looks (or begins to look) at gestures and their contribution to 

mathematical meaning. In other words, this study is about communication in general 

and communication in mathematics in particular. It attempts to construct a 

framework to describe geometrical diagrams and to analyse their role in constructing 

mathematical meaning. It offers a 'visual grammar' (Kress & Van Leeuwen, 2006) 

that will allow us to read geometric diagrams. 

To build the framework, a method of visual analysis has been developed, using tools 

derived from the visual grammar of Kress and Van Leeuwen (2006), together with 

interpretative techniques derived from Morgan's linguistic approach to mathematical 

texts (Morgan, 1996b). In other words, informed by the visual grammar, in some 

instances, I try to derive the potential mathematical meaning from the diagram, and, 

in other cases, I start from the possible mathematical meaning and see what visual 

indicators could be used to convey it. The main challenge from the visual grammar 

point of view was to find visual indicators presented in the diagram. Using the 

interpretative techniques derived from Morgan's work, on the other hand, raised a 

number of questions: 

• How is mathematical activity represented in the diagram? 

• What relationships are constructed in the diagram between the producer of 

the diagram and the viewer? 

• How is the mathematical text organised, and what is the relationship between 

the visual (the diagram) and the verbal modes? 

This framework was developed through an iterative approach in which an early 

version of the framework was informed by the literature and then was tested through 

application to the data collected in schools in the UK and in the Occupied Palestinian 

Territories (OPT). A refined version of the framework emerged, which in turn was 

developed through the 'same' process. In all, four versions were developed, where 

each of them lent itself to the development of the next version (the journey of the 
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development of the framework is described in Chapter 4). The validity and the 

generalisability of the framework were investigated through different types of data. 

In addition to my personal motive to conduct this study in two different languages 

and cultures, two other motives led me to that decision. First, the theoretical 

approach I adopt toward mathematics and diagrams is that doing mathematics is a 

social and cultural practice (Morgan, 1996b; Pimm, 1991a), and, hence, there is a 

need to understand the cultural context of each group to inform the process of 

analysis. The second motive is to offer a different context for the generalisability of 

the framework. 

Thus, sources of data were varied in order to achieve the validity and generalisability 

of the framework and to understand the context of situation and the context of 

culture. The data collected were textbooks, students' mathematical texts, the Internet, 

group problem solving and observation. The classroom data consisted of 

approximately 350 written mathematical texts in English and Arabic produced by 13-

and 14-year-old students as a response to two geometrical problems (tasks) and 

audio-video records of their verbal interactions with each other while solving the 

problems. 

While the main focus of this study is the diagrammatic mode, gestures were present. 

During the iterative watching of the video records of students' communication about 

the geometric problems, I noticed their frequent use of gestures. This led me to look 

at the gestural mode as well. An early version of a framework to read gestures is also 

offered. 

The construction of the diagrammatic framework contributes to a more thorough 

understanding of the social character of doing mathematics. It suggests a way to look 

at how mathematical activity (and the picture of mathematics) is presented in 

diagrams and the role of human beings in doing mathematics. It also attempts to read 

the social relationship between the author of the diagram and the viewer/reader 

through the visual marks presented in geometric diagrams. Moreover, the framework 

might be used to look at the overall arrangement of mathematical texts, including the 

visual, the gestural and the verbal and the interaction between them. 
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The two suggested frameworks, together with Morgan's linguistic framework, thus 

offer analytic tools to look at the multimodal modes of communication and 

representation of mathematical discourse. 

While these two frameworks were confined to school mathematics, some of the 

suggested features (visual or gestural marks), however, might be used to look at 

geometric diagrams and gestures beyond that context. All of these aspects will be 

dealt with through the different chapters of this study. 

The order of the thesis: 

This study may be seen, on one hand, as another attempt, in addition to the existing 

research (Morgan, 1996a; O'Halloran, 1999), to extend Halliday's SFL framework in 

mathematics. On the other hand, it may be see as one of the first attempts to extend 

the multimodality approach in mathematics. I have tried, therefore, to arrange the 

study to highlight its multimodal nature (see Figure 1-1). 

In Chapters 2 and 3, I engage the literature which presents a background for the 

study. The aim is to establish the context of the relevant literature in which the study 

claims its position and significance. The main argument here is that language alone 

gives only a partial picture of mathematical communication, and that there is a need 

to include other modes of communication, such as diagrams and gesture. Geometric 

diagrams, for example, have been a significant feature of mathematical texts (in 

Greek mathematics, diagram was synonymous to mathematics itself (Netz, 1999)) 

until mathematicians started to exhibit prejudice against the use of diagrams in 

mathematical texts as part of a philosophical development in 'Western' culture in the 

mid-seventeenth century. 

Because of the nature of the study, an iterative approach, as a methodology, has been 

used for the development of the intended framework(s), and it informs the data 

sources and the data collection. The iterative approach facilitated interaction between 

the suggested framework and the collected data. This approach includes suggesting a 

framework, applying it to the collected data to check its applicability, and then 

culling feedback to be used in developing subsequent versions. A detailed account of 

this methodology is presented in Chapter 4. Afterward, the thesis may be read in two 
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parallel but complementary routes; the reading of the diagrammatic mode which is 

the main focus of the thesis and the reading of the gestural mode. 

Before presenting the suggested framework to read diagrams, I present a general 

description of how that framework has been developed in Chapter 5, in which I 

describe some of the major steps which led to the developed diagrammatic 

framework. This is followed by four chapters (6-9) that describe in detail the 

suggested framework according to the potential mathematical meanings conveyed by 

the diagrams. 

The ideational meaning is delivered in two chapters, 6 & 7. While Chapter 6 focuses 

on narrative diagrams which are distinguished by the presence of action, Chapter 7 

describes conceptual diagrams which are distinguished by the absence of action, 

presenting mathematical objects. The interpersonal function of diagrams is presented 

in Chapter 8 in which I mainly look at diagrams as a communicative act in which a 

social relationship is established between the producer of the diagram and the 

viewer/reader of it (a teacher, for instance). In contrast to the discussion of the 

ideational and the interpersonal meanings, in which the focus is diagrams, the 

discussion of the textual function in Chapter 9 extends the scene to include the whole 

mathematical text, including other modes of representation such as the verbal 

(written) mode. 

The parallel framework, the gestural, is presented in Chapter 10 at an early stage of 

development, addressing only the ideational meaning. Having offered two 

frameworks to read diagrams and gestures, I then attempt to analyse students' 

communication during their solution to one of the two geometric problems offered in 

this thesis. This analysis takes into consideration the three modes of communication 

together — the diagrammatic, the gestural and the verbal (spoken and written). 

Finally, the conclusion and the implications of the study are presented in Chapter 11. 
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Conclusion and implications of 
the study (11) 

Diagrammatic mode 
From directionality to 

temporality: Development of the 
diagrammatic framework (5) 

Ideational meaning 
• Narrative diagrams (6) 
• Conceptual diagrams (7) 

Interpersonal meaning (8) 
Textual meaning (9) 

Gestural mode 
(part of ch.10) 

Ideational meaning 
• Narrative gestures 
• Conceptual gestures 

Multimodal analysis (10) 

Introduction (1*) 

Communication and language in 
mathematics (2) 

Extending the semiotic 
landscape of mathematics: 
Diagrams and gestures (3) 

Methodology (4) 

Figure 1-1 : A summary of the thesis 

* Numbers in parentheses refer to the numbers of the corresponding chapters. 
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2 Communication and language in mathematics 

1. 	Introduction and plan of the chapter: 

The basic argument of this thesis is that doing mathematics is a social practice 

(Morgan, 1996b; Pimm, 1987). Social practices are practices in which people 

represent their experiences about the world in order to understand it, and, in doing so, 

they interact with others or with themselves and ultimately present a coherent 

account of that interaction (Halliday, 1985). Moreover, these practices 'are 

established patterns of activity and interaction' (Morgan, 2010, Personal 

Communication). This means that a social practice entails not only communication 

among the participants but also representation and the modes of communication and 

representation they use. 

This chapter is about communication and language in mathematics, in which I intend 

to set the background of this study. I start by presenting the concept of 

communication in general, focusing on the Hallidayan SFL, which emphasises the 

use of language as a dominant mode of communication, and on the multimodality 

social semiotics approach, which extends that view to include other modes of 

communication such as visual representation and gestures. Then I move to the 

mathematical discourse and (re)visit the communicative acts in it, focusing on 

language. 

In the development of this chapter, I move toward establishing the need for a 

multimodal approach with its basic argument that language alone presents only a part 

of the communicative act in mathematics (or in other discourses) and that in order to 

more fully understand it, we must take into consideration the other modes of 

communication such as the diagrammatic and the gestural modes, which will be the 

focus of the next chapter. 

At the end of this chapter, I introduce a shortcut-list to the most salient relevant 

concepts used in this chapter, which will be used throughout the thesis. 
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2. 	Communication and language 

First, I want to agree with Kress's (1997, p. xv) opinion that: 

[t]he first and real question for education, and for schools, concerns 
human dispositions (...) which will be required by young people for 
productive engagement with the world (...). 

That 'productive engagement' requires people to communicate in order to understand 

their environments and change them. 

Communication involves interaction and representation (Halliday, 1985; Kress & 

Van Leeuwen, 2001). Interaction is about doing something to others or for them or 

acting upon them, such as doing favours, telling stories, arguing, etc. When people 

interact with each other, they have to have something to interact 'about': content or 

meaning, for example, as in what the favour or the story is about or the subject and 

claims of the argument. They (re)present their experiences or stories or arguments in 

specific forms which they consider 'as the most apt and plausible in the given 

context' (Kress & Van Leeuwen, 2006, p. 13). Furthermore, when people 

communicate, they communicate 'about meaning rather than about information' 

(Kress, 1988a, p. 4). In other words, to communicate is to make meaning (Kress, 

2003). 

In that sense, communication is a social and cultural activity (Kress, 1988b; Lemke, 

1990; Morgan, 2009; Pimm, 1987) embedded in a form of social engagement in a 

'wider social environment'. This engagement involves others (or oneself), an 

audience or a community; '[c]ommunication is always the creation of community' 

(Lemke, 1990, p. x). It may also involve rhetoric (Kress et al., 2001). When people 

communicate, they make use of different semiotic resources (modes) available to 

make meaning. Modes are resources shaped and offered by a culture for 

representation and meaning-making (Kress et al., 2001), such as language, images 

and gestures. 

For a long time, language has been viewed as the central mode of communication 

and representation. Parenthetically, I note that this view is changing — see the 

discussion about the other modes of representation and communication at the end of 

this chapter and in Chapter 3. There are many studies about the relationship between 

the structure of language as a meaning-making system and the social structure (e.g. 

Fairclough, 2003; Halliday, 1978; Hodge & Kress, 1993). A seminal work is the 
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Systemic Functional Linguistics (SFL) approach suggested by the linguist Halliday 

(e.g. 1978; 1985; 2002; 2003) from the social semiotics point of view. He (1985) 

argues that any text fulfils three essential (meta)functions: ideational, interpersonal 

and textual. While the ideational function represents our ideas about the world, the 

interpersonal function represents the social relationships constructed by the 

participants in the act of communication. The textual function is concerned with the 

coherence of the text. 

Text is a form of social exchange of meanings in a particular context that takes place 

in an interactive event, i.e. a communicative act using language and other meaning-

making systems (Halliday & Hasan, 1985, p. 11). In other words, as Morgan (2006) 

considers, a text is any coherent unit of meaning that 'may be written or spoken, 

formal or informal, long or short, produced monologically by a single writer/speaker 

or dialogically by several in interaction' (p. 225). Thus, a piece of writing could be a 

text, a record of a meeting might be a text, and an image also could be a text. 

Influenced by the SFL approach (among other theoretical approaches), Fairclough's 

(2003) work, Critical Discourse Analysis (CDA), focuses, on one hand, on the text 

itself (linguistic analysis level) and, on the other hand, moves beyond that, to the 

discourse level, meaning an analysis of the relationship between the text and the 

social context in which that text was produced. 

A 'similar' starting point was established by Kress's work. Kress, together with 

Hodge, focused on the linguistic level (Hodge & Kress, 1993) as the departure point 

for their analysis, and then moved to the discourse level, to the field of social 

semiotics, in which they consider the social structures and the meaning-making 

process 'as the proper standpoint from which to attempt the analysis of [the 

multiplicity of] meaning systems' (Hodge & Kress, 1988, p. vii). That multiplicity of 

meaning systems is the focus of Kress's later work (Kress, 1997; Kress et al., 2001; 

Kress & Van Leeuwen, 2001, 2006) in which he, and others, have developed the 

notion of multimodality. 

The main argument of multimodality is that language is no longer the central mode 

of communication and representation, and, furthermore, there is a need to look at the 

contribution of other modes, such as images and gestures, in the meaning making 

process (Kress et al., 2001). The mode in which something is expressed or 
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represented makes a difference and contributes to the meaning (Kress & Van 

Leeuwen, 2006). Hence, there is a need to develop distinctive frameworks to 'read' 

the different modes. These frameworks must be derived from the specific 

characteristics of the modes themselves (Kress et al., 2001). 

In the rest of this chapter, I look at how these notions — communication, language, 

and multimodality — were adopted in mathematics and mathematics education, 

focusing on communication and language. The other modes of communication, 

namely diagrams and gestures, will be the focus of the next chapter. 

3. 	Communication, language and mathematics 

Seeing mathematics as a social activity entails the consideration of communication in 

it. As Pimm (1987, p. xvii) puts it: 'Mathematics is, among other things, a social 

activity, deeply concerned with communication'. As with any other form of 

communication, the focus was on language and its role in teaching and learning 

mathematics. 

Research about the relationship between mathematics and language has developed 

over the last three decades (e.g. Austin & Howson, 1979; Halliday, 1975). The 

follower of that research and development (especially the work of Morgan in: 

Morgan, 1996b, 2000; Morgan, Ferrari, Duval, & Hoines, 2005) may notice how the 

view of that relationship has changed from the view that mathematics has its own 

language, namely a mathematical language of symbols and special technical 

vocabulary, to the notion of a 'mathematics register' (Halliday, 1975). Later, the 

research also developed to talk about mathematics as a discourse having distinctive 

features, including language (e.g. Sfard, 2008). More recently, scholars study 

mathematics as a multimodal discourse that uses multisemiotic modes, such as 

language, diagrams and gestures (e.g. Lemke, 2003; Morgan, 2006; Morgan & 

Alshwaikh, 2009; O'Halloran, 2005; Radford et al., 2007). 

Mathematics as a language 

The dominant view of mathematics used to be, and may be still, that mathematics has 

its own specialised language: the mathematical language, which is basically symbols 
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alongside numbers and other specialist mathematical vocabulary and notations 

(Morgan, 2000, 2009). Alongside this view, mathematicians and mathematics 

educators considered verbal language as an 'imperfect, imprecise and ambiguous 

version of the symbolic systems of mathematics' (Morgan et al., 2005, p. 789). 

Learning mathematics, according to this view, is the 'acquisition' of that 

mathematical language and the ability to read and speak it (Aiken, 1971, 1972). This 

view can be noticed in the titles of some studies or exams such as Mathematical 

Vocabulary Test (e.g. Olander & Ehmer, 1971) which presume that mathematics is a 

language that students need to 'acquire' in order to understand mathematical meaning. 

Students' mathematics-learning problems or difficulties were attributed to their lack 

of understanding of the mathematical terms and vocabulary (Austin & Howson, 

1979). In their detailed review about language and mathematics education, Austin & 

Howson (1979) raised many issues and questions. One of the issues they referred to 

was the 'movement' between mathematical symbolism and natural language, as in 

6+2=8 and 8-2=6. While in the first term, the equal sign means 'makes', in the second 

term it means 'leaves' (p. 177). The relationship between natural language and 

mathematical symbolism and specialist vocabulary was investigated by Halliday 

(1975), who introduced the notion of a register. 

Mathematics register 

Rather than seeing mathematics itself as a language focusing on vocabularies, 

Halliday (1975), at a 1974 conference held in Kenya for linguists and mathematics 

educators, introduced the notion of a register, which he defines as: 

a set of meanings that is appropriate to a particular function of 
language, together with the words and structures which express these 
meanings. (...) It is the meanings, including the styles of meaning and 
modes of argument, that constitute a register, rather than the words and 
structures as such. (p. 65) 

Halliday continues in the same page 

We can refer to a 'mathematics register', in the sense of the meanings 
that belongs to the language of mathematics (the mathematical use of 
natural language, that is: not mathematics itself), and that a language 
must express if it used for mathematical purposes. 
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In order to develop the register of mathematics in a specific language, new words or 

structures have to be created. In English, Halliday mentioned several examples of 

words which have been reinterpreted or borrowed from other languages such as: set, 

point, sum, series, exceed, multiply, right-angled triangle, lowest common multiple, 

and permutation (Halliday, 1975, pp. 65-66). He also referred to structure, such as 

'the sum of the series to n terms' and 'each term is one greater than the term which 

precedes it' (p. 67). 

The notion of a mathematics register has been brought into mathematics education 

by various studies (Chapman, 2003a; Morgan, 1995; Pimm, 1987). Pimm's (1987) 

seminal work utilises the metaphor of 'mathematics as language' to look at teaching 

mathematics in the classroom. This is a metaphor, meaning that Pimm does not 

consider mathematics as a natural language 'in the sense that French and Arabic are' 

(Pimm, 1991a, p. 17) but rather uses linguistic terms as an alternative way to look at 

mathematics. As he states: 

to structure the concept of mathematics in terms of that of language, 
but with the primary intention of illuminating mathematics teaching and 
learning. (Pimm, 1987, p. xiv, italics in original) 

Looking at mathematics in terms of language entails bringing some linguistic 

features to mathematics, such as metaphor. See Chapter 7 in the present study for 

Pimm's distinction between extra-mathematical metaphors — e.g., a diagram is a 

picture — and structural metaphors — e.g., spherical triangles. Metaphor may be one 

of the reasons that some find it difficult to learn and teach mathematics. As Halliday 

(1975, pp. 71-72) suggests: 

it [mathematics] has a great deal of metaphor and even poetry in it, and 
it is precisely here the difficulties often reside. 

Ambiguity, among other things (see for example, Aiken, 1972; Chapman, 2003a; 

Durkin & Shire, 1991b; Sfard & Lavie, 2005), is one of the difficulties which has 

been investigated. Durkin & Shire (1991a), for instance, list many words commonly 

used in school mathematics such as: as great as, difference, differentiation, figure, 

integration, rational, square, etc. Pimm (1987, p. 8) mentions, as one among many 

examples of difficulties, the response of a nine-year-old to the written question, 

'What is the difference between 24 and 9?' The child replied, 'One has two numbers 

in it and the other has one.' I provide another example, in the field of geometry, from 

an interview with an 11-year-old exploring how students know to recognise 
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geometric figure such as rectangle, square and rhombus (Alshwaikh, 2005). In 

Arabic, the word rhombus is ma'een or mo'ayyan (a4--.), but this word has other 

meanings such as assist or help. Here is the excerpt, where JA is the researcher, and 

S is the student: 

JA: How do you recognise the rhombus? 

S: 	It assists (helps) the square and the rectangle. 

Polysemy, the study of words with multiple possible meanings, is a branch of 

linguistics that explored the relationship between vocabulary and mathematics 

learning (e.g. Forrester & Pike, 1997). Actually the work of Halliday is not the only 

source for investigating the relationship between language and mathematics 

education. For example, there are strands that are concerned with metaphor and 

metonymy (e.g. Pimm, 1991b; Presmeg, 1998), which draw on Jakobson (structural 

linguistics) or Lakoff (cognitive linguistics) and strands that take post-structuralist or 

post-modern perspectives, drawing on Derrida and Barthes (e.g. Brown, 1996, 2001). 

Other theoretical sources used in mathematics education include Peircean semiotics, 

discursive psychology and work in second language learning. 

The ambiguity aspect, moreover, has been investigated in the research about the 

relationship between mathematics education and language. Barwell (2005, p. 125), 

for instance, argues that 'ambiguity can be seen as a resource for participants' if the 

social and the discursive perspective is considered. In other words, according to 

Barwell, learning mathematics is not just learning mathematical vocabulary, but 

rather an act that involves mathematical communication and interaction, in which 

ambiguity plays an important role in articulating mathematical thinking and 

mathematical discourse. 

Mathematics as discourse 

'[C]ommunication [is] one of the central concerns of anyone interested in 

mathematics education' (Pimm, 1987, p. xvii). Indeed, researchers of the relationship 

between mathematics and language began, in the 1980's to focus on communication, 

representation and the concept of discourse. Communication and representation have 

been addressed in the Standards for mathematics teaching and learning suggested by 
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the National Council of Teachers of Mathematics (National Council of Teachers of 

Mathematics, 2000a). 

Morgan's (2009, p. 4) comment about the title of Pimm's book addresses the way in 

which language can be seen as communication: 

[the title] pointed to three important characteristics of the language in 
which I was interested: it is mathematical in some sense; it is for 
communication, so involves some form of social engagement; and it is 
situated within a particular context. It is thus not only the form of the 
language that is significant but also the role that it plays in interactions 
between individuals and in the broader social context. 

Moreover, the concept of a mathematics register and the concept of discourse were 

'enormously useful' in providing Morgan (1996b, p. 3) 'with ways of thinking (and 

writing) about language.' The social engagement within a particular context refers to 

the notion of conceiving mathematics as a social practice (e.g. Morgan, 2001; Pimm, 

1987; Sfard, 2008). This view, according to Barwell (2008), emerges in viewing and 

studying language as discourse based on sociological perspectives. He reviews the 

major perspectives that affect research on the role of discourse in mathematics and 

mathematics education: sociological and socio-cultural, social semiotics and post-

structuralism. 

In her detailed research review, Schleppegrell (2007) revisits different theoretical 

approaches which consider the relationship between language and mathematics 

education such as constructivism, sociocultural perspective and social semiotics. 

While the first emphasises the role of the individual in constructing mathematical 

knowledge, the sociocultural perspective stresses the role of the social and cultural 

context. While Schleppegrell (2007) considers the role of social semiotics in 

synthesising these two views, she adopts O'Halloran's (2005) approach which 

considers only three semiotics systems in mathematical discourse (natural language, 

mathematics symbolism and visual displays), leaving out other modes such as 

gestures which, as I will show in the next chapter, constitute an evolving area of 

mathematics education research. Furthermore, Schleppegrell (2007) also points out 

the increasing interest of mathematics education research in the notion of discourse 

and communication. Sfard's (2008) commognitive (communicational approach to 

cognition) approach to mathematics discourse, in which she considers thinking to be 

communication, is an example of this research interest. However, communication is 

28 



always associated with another term, representation. Communication and 

representation are inseparable (Kress et al., 2001), and what is represented is 

communicated. 

Representation is also an issue that accompanied the development of language not 

only from the 'social engagement' point of view, but also from the cognitive point of 

view. 'The concept of representation has been one of the most talked about concepts 

over the last two decades in mathematics education' (Radford, 2003, p. 40). For 

example, the Journal of Mathematical Behavior had two consecutive Special Issues 

in 1998 (Volume 17, numbers 1 and 2) edited by Claude Janvier and Gerald Goldin 

which were devoted to the discussion about representations. I consider this issue in 

my discussion of diagrams in the next chapter. 

Mathematics as a multimodal (multi-semiotic) discourse 

Communication, representation and discourse are concepts within the focus of the 

social semiotics and multimodality perspective that this study adopts (see, at the end 

of this chapter, the definitions I use for all these concepts). The basic relevant aspect 

of this discussion is that doing mathematics involves making use of not only 

language but also other modes of communication such as diagrams and gestures 

(Morgan & Alshwaikh, 2009; Morgan et al., 2005). 

The interaction between mathematics and other disciplines such as sociology and 

sociolinguistics (recontextualization, in Bernstein's terms as presented by Lerman 

(2000)) led to different perspectives in the field of research in mathematics 

education. Conceiving of mathematics as a social practice advanced the research 

about language and mathematics education further toward the concept of language 'in 

use' in communication and discourse. 

The multimodal social semiotics (Jewitt & Kress, 2003; Kress et al., 2001; Kress & 

Van Leeuwen, 2001, 2006), furthermore, considers communication to be inevitably 

multimodal, where different modes of communication take place such as verbal 

language, algebraic notations, visual forms and gesture (Morgan & Alshwaikh, 2009; 

O'Halloran, 2005; Radford, Edwards, & Arzarello, 2009). Figure 2-1, taken from 

McInnes & Murison (1992) as presented in Veel (1999, p. 188), is an example of a 

mathematical text which is multimodal, using words, image, action and symbols. It is 
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reasonable to ask about the role visual forms may play or what meaning they offer —

different, complementary or new to mathematical texts. 

Figure 2-1 : Multimodal mathematical text 

(taken from McInnes & Murison (1992) as presented in (Veel, 1999, p. 188)) 

While mathematical texts deploy different modes of communication and 

representation, it may be argued that a generic type of framework provided by Kress 

(e.g. Kress & Van Leeuwen, 2006) would be sufficient to read 

mathematical/geometrical diagrams. However, mathematical texts, practices and 

discourse have distinctive features which are different from other discourses (e.g. 

Halliday & Martin, 1993; Sfard, 2008), especially in meaning potential. The 

mainstream thinking among mathematicians is that mathematics is abstract, formal 

and timeless (Morgan, 2001). There are, however, different views about mathematics 

among mathematicians and mathematics education researchers and among each of 
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these two groups. Sfard (2008) argues that word use, visual mediators and discursive 

routines are distinctive features of mathematical discourse. 

Radford et al. (2007), moreover, offered a detailed analysis to show how gestures can 

contribute to the way in which students solve mathematical problems and to 

demonstrate the need to consider modes other than language, which alone does not 

present that unified meaning. 

The role of diagram, or the diagrammatic mode, and of gestures, or the gestural 

mode, are the focus of the next chapter. Before moving to the next chapter, I 

summarise the main concepts mentioned in the current chapter, which will recur 

throughout the current study. 

4. 	Definitions 

Social practice: Social practice is an established pattern of activity and interaction in 

which people represent their experiences about the world in order to understand 

it, and in doing so, they interact with others or with themselves and ultimately 

present a coherent account of these experiences. 

Communication: 'Communication is about meaning rather than about information.' 

(Kress, 1988a, p. 4). In other words, to communicate is to make meaning 

(Kress, 2003). Moreover, communication entails an audience and creates 

community (Lemke, 1990). '[I]t is impossible to think about communication 

without thinking about cultural contexts and meanings' (Kress, 1988a, p. 13). 

Culture provides, or individuals in a specific culture develop, resources and 

systems (modes) to make meaning. 

While representation 'focuses on what the individual wishes to represent about 

the thing represented', communication 'focuses on how that is done in the 

environment of making that representation suitable for a specific other, a 

particular audience'. Hence, communication and representation 'are inseparable 

— representation is always communicated' (Kress et al., 2001, p. 4). 
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Representation: Representation is a motivated sign in which the sign-makers present 

their interest of the thing represented. Representation, in that sense, has a form 

or signifier coupled with a carrier of meaning which is signified. 

Sign: Sign, in social semiotics, is a semiotic object, a 'product of a social process' 

(Jewitt, 2003a, p. 46) or 'the carrier of a meaning' (Kress et al., 2001) that 

consists of (or is materially realised by). a form (signifier) and a meaning 

(signified). Sign is motivated by the interest of the sign-maker. A geometric 

diagram is an example of a sign in which drawing is the form that conveys a 

mathematical meaning. 

Text: Text is a form of social exchange of meanings in a particular context that takes 

place in an interactive event: a communicative act using language and other 

meaning-making systems (Halliday & Hasan, 1985, p. 11). For instance, a 

mathematical piece of writing, a record of a meeting and an image (diagram, 

for example) could be texts. 

Diagram: A diagram (in geometry) is a motivated sign realised by a material 

form/signifier which is a set or a system of interacting geometric objects: 

points, lines and planes (Hilbert, 1894 as quoted in Mancosu, 2005, p. 14; Netz, 

1999). Moreover, it conveys a (mathematical) meaning/signified. See Chapter 

3. 

Gesture: A gesture is a mode of representation and communication for a meaning-

making process that is materialised by the movement of hands and fingers. 

Meaning: Meaning is a social (and cultural) construct formed during a 

communicative act, i.e. a meaning-making process. As a result of that 

conceptualisation, Kress and Ogborn write, there is a need to conceive of: 

meaning not as simply and solely inherent in the system; meaning 
not as stable; not as a matter of correspondence; but meaning as the 
result of action and work; as dynamic; and meaning as the result of 
transformative work of socially formed and socially located 
individuals. (Kress & Ogborn, 1998, p. 7) 

Meaning-making: Meaning-making is a social activity which occurs in social 

practices using different semiotic resources such as language, visual 

representations and gestures (Evans, Morgan, & Tsatsaroni, 2006; Kress & Van 

Leeuwen, 2001; Lemke, 2003). In other words: 
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Meaning making can be understood as the interaction between the 
socially situated interest of the sign maker and the potentials for 
meaning (what it is possible to mean) with the resources available 
to them and their realization in specific representational and 
communicational acts (signs). (Jewitt, 2003a, p. 39) 

Mode: 'A mode is a socially and culturally shaped resource for making meaning.' 

(Bezemer & Kress, 2008, p. 171). Image, writing and gestures are examples of 

modes or semiotic resources for representation and making meaning. These 

modes/resources are regularised and organised through cultural and social 

practices and 'are what have been called 'grammars' traditionally' (Jewitt, 

2003a, p. 40). In communication, people use different modes to make meaning 

(Bezemer & Kress, 2008; Jewitt & Kress, 2003; Kress & Van Leeuwen, 2001). 

This notion has been termed multimodality or the multimodal meaning making 

approach. 

Multimodality (or multimodal approach): Because this concept is used widely and 

with different potential meanings (e.g. Arzarello, Paola, Robutti, & Sabena, 

2009; O'Halloran, 2005, 2004c; Radford, 2009; Radford et al., 2009), I want to 

make it clear that I adopt the approach of Gunther Kress and his colleagues 

(Bezemer & Kress, 2008; Jewitt, 2006; Jewitt & Kress, 2003; Kress, 2003; 

Kress et al., 2005; Kress et al., 2001; Kress & Van Leeuwen, 2001, 2006; 

Mayers, 2009). Kress's approach takes into consideration all the different 

modes involved in representation and communication and 'treats [them] as 

equally significant for meaning and communication' (Kress & Jewitt, 2003, p. 

2). One result, among many others, is that language is no longer considered the 

only or the central mode, monomodal (Kress et al., 2001), but rather is just one 

part of multiple modes in the act of communication and representation. 

Discourse: Discourse is the socially and culturally constructed knowledge about 

reality. Kress & Van Leeuwen (2001) describe it as such: 

People often have several alternative discourses available with 
respect to particular aspect of reality. They will then use the one 
that is most appropriate to the interests of the communication 
situation in which they find themselves. (p. 21) 
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7. 	Summary: 

This current chapter set up a general background for communication and language 

and then explored the relationship between them and mathematics and mathematics 

education. I paid a lot of attention to the relationship between language and 

mathematics, and I explored various aspects of that relationship, starting from 

mathematics as language. I addressed the shortcomings of that approach, especially 

the way it avoids considering natural language in mathematics learning, focusing 

exclusively on the mathematical symbolism and specialist vocabulary. Then I 

revisited the notion of a mathematical register introduced by Halliday (1975), who 

highlighted the mathematical use of natural language. This notion has been further 

developed by Pimm (1987) and Morgan (1996b), who move to the concept of the 

discourse by conceiving of (doing) mathematics as social practice. 

However, language alone, it was argued (e.g. Kress & Van Leeuwen, 2006), can only 

express part of the communicative act. The unified meaning may be expressed in the 

ensemble modes of communication and representation. Influenced by other 

disciplines such as multimodality social semiotics, research in mathematics 

education moved beyond the notion of discourse to the notion of multimodal 

discourse in which research about mathematics started to consider, in addition to 

language, other modes of communication and meaning-making such as diagrams and 

gestures. In the next chapter I present a review of these two modes as a justification 

for the current study. 
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3 Extending the semiotic landscape of mathematics: 

Diagrams and gestures 

1. 	Plan of the chapter: 

As we see from the discussion about communication and representation in the 

previous chapter, a multimodal account is needed to examine mathematical 

discourse. While the previous chapter focused on the use of language in 

mathematical discourse, this chapter addresses additional modes that occur in that 

discourse, focusing on the diagrammatic and the gestural modes. In doing so, I intend 

to set the background for the use of diagrams in mathematics, mainly in geometry. I 

start with a historical account of the developmental use of diagrams, in which I 

present an overview of three eras: Babylonian-and-Egyptian mathematics, Greek 

mathematics and 'Modern Western mathematics'. At the end of the chapter I consider 

a third mode of representation and communication which has recently been the focus 

of research into teaching and learning mathematics, that is, gestures. 

2. Diagrams: from privilege to prejudice 

The conclusion drawn from my review of the relationship between language and 

mathematics in the previous chapter is that mathematics is a multimodal discourse. 

The main argument in that claim is that language (spoken and written) is not the only 

mode to make meaning, that it expresses only part of the meaning-making process 

and that there are other modes of communication such as images (visual 

representations) and gestures (Kress & Van Leeuwen, 1996, 2006; Lemke, 1998a). In 

order to achieve successful communication, people use what they think is the apt 

mode to communicate (Kress & Ogborn, 1998). As a result, visual representations or 

gestures, for instance, contribute to the construction of the meaning together with 

language (written or spoken) and other modes, and, therefore, they should be taken 

into consideration when analysing any communicative act or text. Any mathematical 

text, within the lens of the multimodal social semiotic approach, is multimodal and 

has verbal and visual modes (Morgan, 2006; Veel, 1999). 
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Mathematics educators and semioticians (e.g. Duval, 2000; Morgan, 2006; 

O'Halloran, 2005) view mathematics as a multisemiotic (or multimodal) system, 

meaning that its discourse is formed or constructed through different semiotic 

systems: verbal language, algebraic notations% visual forms (diagrams, tables and 

graphs) and gestures. See Figure 2-1 for an illustrative example. Morgan (1995; 

1996a; 1996b; 2006) has developed a linguistic approach to analyse the verbal mode 

of mathematical texts using Halliday's Systemic Functional Linguistics or Grammar, 

SFL (1985) (see below). She, moreover, argues that algebraic notations may be 

translated into words and analysed according to her approach. However, O'Halloran 

(1999) argues that algebraic notations, or, using her words, mathematical symbolism, 

have a different meaning potential, and she used SFL to develop a descriptive 

framework for them (as well as for visual forms). Since my interest is in visual 

representations, I will focus on diagrams in geometry.2  Although Morgan (1996a; 

2006) makes some notes about the role of visual representations in mathematical 

texts and provides some analysis, she comments that the analysis is not fully 

developed, and that more research and exploration are needed. 

Seeing mathematics as a social practice, I think that there is a need for further 

investigation beyond the direct aspect of mathematics (teaching and learning, for 

example), to explore the (social) mathematical practice itself, in order to make 

meaning of, for instance, what the practice of mathematics is and how 

mathematicians conceive of mathematics. One aspect that is directly related to this 

inquiry is the use of diagrams. In the current study, I try to contribute to that 

endeavour by suggesting a descriptive framework for reading diagrams; I offer a 

grammar of diagrams. 

In order to do that, I examine the status of diagrams in mathematics, taking geometry 

as a case study. My focus is limited to geometric diagrams rather than all the other 

visual forms such as graphs, charts, Venn diagrams or tables. I do this for two main 

reasons: first, because of the historical role of geometric diagrams in the history of 

mathematics, as I will show below, in which diagrams were considered at some point 

the 'hallmark' of mathematics (Netz, 1999); and, second, because of the significant 

1  O'Halloran (2003) uses the term 'mathematical symbolism' to describe the same feature, while 
Morgan (2006 and in personal meetings) uses the term algebraic notations, which I will use also, to 
avoid confusion with the term 'symbol' used within semiotics. 

2  The other kinds of visual forms (such as the presentation of the texts: format, titles, labels, colours, 
etc.) will not be addressed in this study. 
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role diagrams play in doing mathematics (Maanen, 2006; Sfard, 1994) and in 

learning and teaching mathematics (Arcavi, 2003; Martin, 1971; Stylianou & Silver, 

2004). O'Halloran (2005) has suggested descriptive tools for visual forms in 

mathematical texts including titles of tables and graphs. 

In the following, I consider the history of changes in the use of geometric diagrams 

in mathematicians' practices, in which diagrams moved from a privileged status as a 

core element in mathematical texts to a position of disfavour. In parallel, I look at 

how research into mathematics education focuses on diagrams from a different 

viewpoint, namely the perspective of visualisation. 

2.1 	Diagrams in mathematical discourse: 

... nothing must be assumed from this picture, every thing stated must 
be deduced from the Axioms laid down. ... If we illustrate our argument 
by figures, nothing save what is explicitly stated and deduced may be 
used from these figures. Theoretically, figures are unnecessary; actually 
they are needed as a prop to human infirmity. Their sole function is to 
help the reader to follow the reasoning; in the reasoning itself they must 
play no part. (Forder, 1927, pp. 42-43) 

Their [geometric diagrams'] function is merely to bring home my 
meaning to my hearers, and, if I can do that, there would be no gain in 
having them redrawn by the most skilful draughtsman. They are 
pedagogical illustrations, not part of the real subject matter of the 
lecture. (Hardy, 2004, p. 125) 

Stated by two well-known mathematicians, these quotations, among many others 

(see below the quotations Mancosu (2005) derives from Hilbert and Pasch), represent 

the hitherto status of diagrams in mathematics. Both quotes view the role of diagrams 

as assistance or pedagogical illustration, not part of mathematics itself or not 'real' 

mathematics. Below, I discuss this view in more detail. This view is still valid today. 

In a personal communication (2008) about the current study, a mathematician 

commented on a written piece of mine which I sent to him, at his request: 

I only went through your pages quickly and see that you are working 
with a literature that I did not know and from a point of view that is 
quite different from mine and that of the other scholars working on 
Euclidean diagrams that I know. This makes your approach very 
interesting for me, though it seems to me, at first glance, that it should 
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be substantiated with a closer connection with real mathematical 
theories, practice, etc. (My emphasis.) 

These quotes may offer a window into how mathematicians view the use of diagrams 

in mathematics and in solving mathematical problems. Dreyfus (1991), a 

mathematics educator, claims that mathematicians (and mathematics educators, see 

below) are to blame for the low status of diagram in mathematics: 

Mathematicians are not innocent of the fact that visual reasoning has a 
low status. Many indicators point to the fact that most mathematicians 
rely very heavily on visual reasoning in their work. But with few 
exceptions (...) these same mathematicians do their utmost to hide this 
fact. (p. 36) 

This view has been shared among other studies in mathematics and mathematics 

education (e.g. Davis & Hersh, 1981; Sfard, 1994). Moreover, these studies consider 

diagrams to be part and parcel of mathematics and note that diagrams have been used 

heavily, historically and currently, in (teaching and learning) mathematics (e.g. 

Hadamard, 1945; Netz, 1998; Presmeg, 2006). The main questions are why and 

when the practice of hiding the use of diagrams or exhibiting prejudice against the 

visual part of mathematics developed. Was this practice common in the history of 

mathematics? If yes, why do mathematicians throughout history refrain from 

acknowledging their use of diagrams? And if no, when (and perhaps why) did this 

denial begin to manifest? 

Although there are studies about the history of mathematics which show that 

diagrams have been used in ancient civilisations such as Old Babylon 4,000 years 

ago (e.g. Robson, 2008a) these questions remain unanswered. In a personal 

communication, De Young (personal communication, November 26, 2008) 

commented that the 'full history of diagrams (...) is far from being written yet'. 

Detailed answers to those questions are beyond the scope of the current study, and I 

will try to provide only general answers to these questions. In this section, I present a 

very broad historical overview of the use of geometric diagrams from the oldest-

known mathematics, Babylonian and Egyptian, to Greek mathematics to 'modern 

Western mathematics' which is still dominant. I then move to look at the research 

about diagrams in mathematics education. 
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2.1.1 Geometric diagrams in Babylonian and Egyptian mathematics:  

The Old Babylonian mathematics, dated around 2000 BCE, is considered the world's 

first 'pure' mathematics' (Robson, 2001, 2008b). There is much evidence that the Old 

Babylonian mathematics used diagrams (Friberg, 2007; Robson, 2008b). Robson 

(2008b, p. 45) claims that around a third of the available corpus of the Old 

Babylonian mathematical word problems centres around 2D or 3D diagrams, and 

that some of these problems are illustrated by diagrams. Neugebauer & Sachs (1945) 

and Friberg (2007) mention many examples of these diagrams such as triangles, 

trapeziums, circles, squares, etc.3  'YBC 7289, from the Yale Babylonian Collection, 

is one of the best-known Old Babylonian mathematical clay tablets' (Fowler & 

Robson, 1998, p. 366), and it may be used to illustrate how diagrams were used. The 

YBC 7289 (Figure 3-1, the diagram on the left is written in sexagesimal digits which 

are translated in the diagram on the right) shows a square with an approximation to 

the square root of 2. Three numbers are shown in the diagram: 30 on the side of the 

square and two numbers on the diagonals (1,24,51,10 and 42,25,35). If 1,24,51,10 is 

multiplied by 30, the result is 42,25,35. Thus, the number 1,24,51,10 is the 

approximation to the square root of 2.4  

Figure 3-1 : YBC 7289 (The Yale tablet) - an approximation to the square root of 2 

3  Friberg (2007) has commented on the translation issue from Old Babylonian mathematics and Greek 
and Latin mathematics. The Old Babylonian 'triangle', for example, 'was always specified in terms of 
the lengths of two or three of its sides' (p. 1) and not in terms of the vertices or angles as in Greek 
mathematics. Angle is a Greek concept lacking in Old Babylonian mathematics. 
4  These numbers are written in sexagesimal (base 60). For example, the number 30 here is 1/2 in the 
decimal system. Zero is represented by a space in the Babylon numeral system, a system that had no 
notation for zero. So 42;25 35 is 1/root(2) and 1;24 51 10 is root(2). For more details, see Fowler, D., 
& Robson (1998) and O'Connor & Robertson (2000). 
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Another example is the tablet, now in the British Museum, BM 15285 (Figure 3-2), 

which is a compilation of forty geometric problems or exercises, similar to a 

'textbook' (Robson, 2008a). The tablet seeks to find the areas of diagrams within 

squares such as triangles and circles, drawn in a 30x50 cm tablet (Robson, 1999, 

2008a, 2008b). Robson (2008b, p. 48) argues that '[n]one of the textual description 

[in this compilation] is complete in itself, in that the problems cannot be solved 

without reference to the image.' (See Robson, 2008a for more details.) 

Figure 3-2: BM 15285: An Old Babylonian 'textbook' (Robson, 2008a) 

Ancient Egyptian mathematics also used diagrams. The Moscow papyrus, around 

1850 BCE, and the Ahmes (or Rhind) Papyrus, around 1650 BCE, are two famous 

examples of that mathematics (Boyer & Merzbach, 1989; Eves, 1969). While the 

former consists of 25 problems about volume, the latter contains 85 problems about 

fractions and areas and other mathematical elements. 'Twenty-six of the 110 

problems in the Moscow and Rhind papyri are geometric' (Eves, 1969, p. 40). For 

example, a diagram (Figure 3-3) appears in Problem 14 in the Moscow papyrus, 

which looks an isosceles trapezium to calculate 'the volume of a frustum of a square 

pyramid six units high if the edges of the upper and the lower bases are two and four 

units respectively' (Boyer & Merzbach, 1989, p. 22). 
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Figure 3-3: Problem 14 in the Moscow Papyrus 

(from Boyer & Merzbach, 1989, p. 22) 

There also are some geometric problems in the Ahmes Papyrus, as Boyer & 

Merzbach (1989, p. 20) state: 

Problem 51 of Ahmes shows that the area of an isosceles triangle was 
found by taking the half of what we would call the base and multiplying 
this by the altitude. Ahmes justified this method of finding the area by 
suggesting that the isosceles triangle can be thought of as two right 
triangles, one of which can be shifted in position, so that together the 
two triangles form a rectangle (...) "so as to make a rectangle". (...) In 
transformation such as these, in which isosceles triangles and trapezoids 
are converted into rectangles, we see the beginnings of a theory of 
congruence and the idea of proof in geometry, but the Egyptians did not 
carry this work further. 

The Greeks, however, carried the 'work further', especially regarding the notion of 

proof. In the next section, I demonstrate how diagrams play an influential role in 

shaping that notion. 

2.1.2 Diagrams in Greek mathematics 

Geometric diagrams have had a unique status in Greek mathematics. The word 

'diagram' itself was the symbol of mathematics, the metonym of mathematics, the 

hallmark of mathematical activity or of the mathematics itself (Netz, 1999). The 

modern word 'diagram' is derived from the Greek word diagramma which means 

'figure marked by lines', but, Netz (1999, p. 35) continues, the Greek use of it is more 

complex. Plato, for example, used the word for mathematical activity, while Aristotle 

used it to mean mathematics. A third meaning for 'diagram' is 'a mathematical 

proposition'. 
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Due to the limitations of communication, long distances, the need to write letters, 

and the limitation of the available media (dusted surface, wax tablets, etc.), Netz 

(1999) argues that diagrams had to be drawn first and that Greek mathematicians 

would start doing mathematics by drawing a diagram. One main argument that Netz 

(1999) makes is that Greek mathematics relies heavily on diagrams or, more 

strongly, 'is visual rather than verbal' (p. 49) and, he continues, the 'argumentation 

[is] based on the diagram' (p. 57) and that the point of departure for the mathematical 

activity is the diagram. 

If diagrams were so central to mathematics, what changed and when did it change, or 

when did mathematicians start denying the importance of diagrams? One direction to 

explore in order to find an answer is the way in which mathematicians conceive of 

mathematics and its nature. In his introduction about the nature of mathematics, 

Kline (1968) suggests that the interpretation that mathematicians made of the 

Elements (300 BCE) may be one of the reasons for such denial. Kline argues that 

mathematicians' interpretation of the Elements shaped their (and perhaps our) view 

of mathematics as an axiomatic and logical body of knowledge and led them to 

discard other views such as conjecture, intuition and creativity, a phenomenon which 

made the Elements, notwithstanding its value as 'an intellectual triumph' — 'a 

pedagogical misfortune'. Kline writes: 

The world did derive from this book the notion of mathematical proof, 
the logical organization of a body of mathematical knowledge, and, of 
course, invaluable information. But far too many intellectuals, 
including mathematicians, mistook the import of Euclid's work and 
formed a concept of mathematics that is too narrow. Mathematics, they 
concluded, was a purely logical development. It starts with axioms and 
definitions, which are explicitly stated at the outset, and proves 
deductively results about the mathematical concepts delineated in 
definitions. (p. 2) 

The discussion about the nature of mathematics, 'ranging from axiomatic systems or 

heuristics for solving problems' (Dossey, 1992, p. 2) has relevance to philosophy 

mainly in the dialogue between Plato and Aristotle or Idealism and Realism in the 

fourth century BCE. Plato argued that mathematical objects 'exist' on their own, 

beyond the mind, in the Ideal world, and that the way to 'discover' those objects is 

through mental activity on their representations in the sensual world (Davis & Hersh, 

1981; Dossey, 1992). In other words, the idealised mathematical objects exist in the 

ideal world, and what we deal with is their representations, including diagrams: 

42 



The relationship between the real and the ideal is illustrated by the 
accompanying diagram (though, strictly speaking, we cannot draw the 
ideal objects on the right side of the diagram). (Davis & Hersh, 1981, p. 
128) 

In other words, diagrams or any sensual activity are not a trusted source for 

knowledge and, thus, have to be abandoned, or 'stripped away' as Aristotle described 

the process of idealisation of the abstraction (Davis & Hersh, 1981). See Chapters 5 

and 7 in the current study for a more detailed discussion of mathematical objects. 

Aristotle took a different position from his teacher Plato when he emphasised the role 

of senses, experimentation, observation and abstraction (Dossey, 1992, p. 40): 

Aristotle attempted to understand mathematical relationships through 
the collection and classification of empirical results derived from 
experiments and observations and then by deduction of a system to 
explain the inherent relationships in the data. 

This distinction between the two ways of thinking about mathematics and 

mathematical objects is manifested in the work of other philosophers such as Francis 

Bacon and the French salon circle (Dossey, 1992). The work of Descartes, however, 

was a critical development that had a remarkable effect on 'Modern Western' 

mathematics. 

2.1.3 Geometric diagrams in 'Modern Western' mathematics:  

Descartes's philosophical project is based on the notion of Plato that senses are not a 

reliable source of knowledge, since they may deceive or mislead the perceiver. 

Mathematics, for example, has to be obtained by deduction from accepted axioms 

and not from experimentation. As a result, any trace of experimentation or human 

activity has to be removed from mathematical matters (Dossey, 1992; O'Halloran, 

2005). In diagrams, for example, all human figures or physical contexts started to 

disappear with Descartes and Newton, beginning in the seventeenth century 

(O'Halloran, 2005). See Chapter 6 for a more detailed discussion of nominalisation in 

language and diagrams and the role of human beings. O'Halloran (2005) 

demonstrates this idea by presenting the evolution of the use of diagrams beginning 

in the sixteenth century which at first include human figures and then later only part 

of the human figure and finally no human figure at all (Figure 6-17). Descartes 

started to draw diagrams that include line segments, circles and curves focusing on 
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the spatial and temporal relationships between these entities. In order to explain these 

relationships and to solve the mathematical problems, he, and Newton and other 

mathematicians following him emphasised the mathematical symbolism (O'Halloran, 

2005). Cartesian Geometry is a realisation of that approach. 

This approach and the later development of different mathematical views in the 19th  

and the early 20th  century such as logicism, intuitionism and formalism conceived of 

mathematics as abstract, formal, impersonal and symbolic (Morgan, 2001). As a 

result, the use of diagrams, or any other mode rather than the symbolic, has been 

resisted. Mancosu (2005, pp. 14-15) quotes Hilbert and Pasch respectively in 

commenting on this issue: 

A theorem is only proved when proof is completely independent of the 
diagram. The proof must call step by step on the preceding axioms. 
(Hilbert, 1894, 11) 

For the appeal to a figure is, in general, not at all necessary. It does 
facilitate essentially the grasp of the relation stated in the theorem and 
the construction applied in the proof. Moreover, it is a fruitful tool to 
discover such relationships and constructions. However, if one is not 
afraid of the sacrifice of time and effort involved, then one can omit the 
figure in the proof of any theorem; indeed, the theorem is only truly 
demonstrated if the proof is completely independent of the figure. 
(Pasch, 1882/1926, 43) 

The main argument against the use of diagrams is that diagrams (or visual 

representations in general) are a) limited in representing knowledge and may be 

vulnerable to misuse (Shin, 1994); b) of an 'informal and personal nature' (Misfeldt, 

2007); and c) unreliable and lack rigour (Kulpa, 2008). The reactions to the 

'informality' of diagrams approach were varied in mathematics and mathematics 

education. Some tried to challenge the idea by showing that diagrams can be 'formal' 

systems and provide 'formal' or 'logical' proof, and they make it clear in their titles, 

for example: 'A formal system for Euclid's Elements' (Avigad, Dean, & Mumma, 

2008), 'A diagrammatic formal system for Euclidean geometry' (Miller, 2001), and 

'The logical status of diagrams' (Shin, 1994). It is not surprising to notice that these 

studies make use of algebraic notation or symbols to demonstrate the formality of 

diagrams. Some of these studies and others tried to construct computerised, 

computational or automated reasoning systems to prove that diagrams can be formal 

and can be used for reasoning (e.g. Barker-Plummer & Bailin, 1997; Barker-

Plummer, Bailin, & Ehrlichman, 1996; Furnas, 1992). 
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To conclude, mathematicians appear to use diagrams to talk to themselves (i.e. 

thinking), and they sometimes use them for pedagogic purposes. They shy away 

from using them in proof. The distinction between mathematics and mathematics 

education with respect to the use of diagrams has widened so that now there is a 

discontinuity between the two disciplines, especially because mathematics educators 

consider communicating mathematics to be an essential part of mathematics. So 

diagrams might be assumed by mathematics educators to be essential in 

mathematics, even if they are not used in proof. 

2.1.4 Geometric diagrams in mathematics education:  

Research in mathematics education treats the use of diagrams or visual 

representations differently from the research in mathematics. Two aspects of that 

research are relevant to this discussion: visualisation and representation. The 

scholarship about visualisation and representation is informed by the cognitive 

approach which focuses on the individual's activity in constructing 'images' of 

mathematical objects. A third aspect which has been the focus of the recent research, 

as we shall see in reviewing the studies about the previous two aspects, is the view of 

mathematics as a cultural and social practice. This view is especially prominent in 

the social semiotics approach (Morgan, 1996b; Pimm, 1987; Radford, 2003) where 

representation (and communication) is the focus. In the following, I shall describe 

how research in mathematics education addresses visualisation and representation. 

Visualisation in mathematics education. Researchers of mathematics education 

began to take an interest in the issue of visualisation during the 1970s and 80s, when 

constructivism started to arise as a new approach, in opposition to behaviourism. 

Two main reviews about visualisation and mathematics education have been 

conducted: Bishop's (1988) and Presmeg's (2006). While Bishop's (1988) review was 

limited because of the limited number of studies that had been conducted at that time, 

Presmeg (2006) analyses a 30-year history of research on visualisation and 

mathematics education from 1976 to 2006. She traces the development of the interest 

of the mathematics education community in visualisation through the proceedings of 

the Annual Conferences of the International Group for the Psychology of 
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Mathematics Education (PME). The beginning of that interest in visualisation can be 

traced to the 12th  PME in 1988, when Bishop presented his review. In the following I 

look at Presmeg' review of visualisation in general and, where appropriate, refer to 

the review of geometry conducted by Owens & Outhred (2006). 

While her extensive review is chronological, the areas that Presmeg tries to articulate 

may be categorised by themes such as: visual imagery (and its relationship to visual 

thinking/reasoning), students' interaction with the visual representations, the role of 

technology/computer, curriculum and recent evolving aspects (such as gesture). 

Before I examine each of these aspects in a broad sense, I note that the term 

visualisation in Presmeg's review refers to the 'visual image in the person's mind' 

(Presmeg, 2006, p. 206), which is based on Piaget's work. 

Visual imagery is a notion associated with visualisation, especially in geometry, as 

reviewed by Presmeg (2006) and others (e.g. Owens & Outhred, 2006), with a focus 

on reasoning and thinking, terms which have been linked to the category of visual 

imagery and are used interchangeably. In this category, the main interest was the 

visual reasoning/thinking in which studies focused on students' geometric or 

mathematical reasoning and on the stages (or levels) of the development of such 

thinking among students, using the cognitive approach mainly informed by the work 

of Piaget. For example, Van Hiele's theory was and still is a dominant framework for 

studying students' geometric reasoning (Owens & Outhred, 2006). Visual imagery 

was dominant in the 1970s and 80s. 

Students' interaction with visual representations was investigated by other 

researchers. Presmeg focuses on Dreyfus's (1991) plenary session in PME 1991, 'On 

the status of visual reasoning in mathematics and mathematics education' (I revisit 

this issue below in more detail). Dreyfus's main argument is that, as the title 

suggests, students are reluctant to use visual representation in problem solving, 

which Presmeg challenges through her own research and others and suggests that 

there are other aspects which may influence that use such as the mathematical task 

itself or the sociocultural context. 

Technology has a strong effect on teaching and learning in geometry and on 

visualisation. There is good evidence in studies about this issue, especially those of 

Presmeg (2006) and Owens & Outhred (2006) who analysed the use of Logo and 

46 



Cabri in developing visual imagery and learning geometry. The role of visualisation 

in curriculum development was an additional area of research. The last category to 

be explored is gestures, which Presmeg highlights as a new area in research about 

mathematics education, connected to visual imagery (e.g., the work of F. Arzarello 

and his colleagues). The issue of semiotic systems in visualisation was not 

considered in Presmeg's or in Owens & Outhred's review, since they only refer to 

two studies (Arzarello's work on gesture and Duval's paper in PME-24). This is 

understandable for two reasons: first, the research interest of both reviews; second, 

the field of research on semiotics in mathematics education is still 'young' (not to 

mention the research on visual representation). I will revisit this issue when 

considering representation and social semiotics below. In the meantime, a discussion 

relevant to my study is the work of Dreyfus and Eisenberg on visual representation. 

Dreyfus and Eisenberg (Dreyfus, 1991; Eisenberg & Dreyfus, 1991) called attention 

to the avoidance of visualisation among students. They (1991) reviewed some studies 

(e.g. Vinner, 1989) about students' reluctance to use visual representations in solving 

mathematical problems. Some of the assumptions, Eisenberg and Dreyfus (1991) 

argue, about using visual representations are that 'thinking visually makes higher 

cognitive demands than thinking algorithmically' (p. 25). Moreover, they argue (pp. 

30-31) that mathematicians and mathematics educators are to blame for the belief 

that mathematics is 'nonvisual': 

We in the academic community have only ourselves to blame for 
perpetuating this view of mathematics. ... This belief is deeply 
grounded in us, even among many who advocate visualisation. 

This attitude among mathematicians, the anti-diagram attitude (Kulpa, 2008), was 

revisited by some studies. Although there is near consensus among mathematics 

educators that visual representation plays an important role in learning and teaching 

mathematics and problem solving (see for example, Elia & Philippou, 2004; 

Guzman, 2002; Presmeg & Balderas-Canas, 2001), mathematicians still deny their 

use of visual representations. A number of studies show that mathematicians use 

diagrams in their 'private' work, but they would 'hide this fact' (Dreyfus, 1991, p. 36), 

believing that 'diagrams must be swept to the side', especially when the work is to be 

'formally' proven (Mann, 2007, p. 137) or published (Misfeldt, 2007). 
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Hadamard (1945), in his inquiry into the practice of mathematicians and their daily 

habits, asked many mathematicians about the kind of 'mental pictures' they use, 

including whether they use visual (images) or rely on other representations, such as 

auditory representations. Most described their daily habits in terms of visual images. 

Einstein, for instance, replied: 

The words or the language, as they are written or spoken do not seem to 
play any role in my mechanism of thought. The psychical entities which 
seem to serve as elements of thought are certain signs and more or less 
clear images which can 'voluntarily' reproduced and combined. 
(Hadamard, 1945, p. 142) 

Hadamard (1945, p. 74) himself states: 

I insist that words are totally absent from my mind when I really think 
and I shall align my case with Galton's in the sense that even after 
reading or hearing a question, every word disappears at the very 
moment I am beginning to think it over; words do not reappear in my 
consciousness before I have accomplished or given up the research ... I 
behave in this way not only about words, but even about algebraic 
signs. 

Moreover, Halmos (1985, p. 400) recognised the importance of images and visual 

representation when he states: 'To be a scholar of mathematics you must be born with 

... the ability to visualize'. 

To summarise, visual imagery, or 'image in the mind', is tantamount to visualisation 

which has been investigated in different aspects of mathematics learning and 

teaching such as mathematical (and geometric) thinking, proof and problem solving. 

Visualisation research in mathematics education has grown gradually from the 

psychological basis in the 1970s and 1980s that focused on mathematical thinking. In 

the 1990s, visualisation became a recognised field of research in mathematics 

education, where studies in students' learning, curriculum development and the role 

of technology have investigated mathematical visualisation. 

Mainstream mathematicians, however, reject the use of visual reasoning, distancing 

images or diagrams from their work. This theoretical stance is the cause of students' 

reluctance to visualise, as argued by some researchers (Eisenberg & Dreyfus, 1991). 

So far, I have not yet considered the concept of representation. One reason for the 

delay is the 'various meaning and connotations' which have been associated with 

representation, making it difficult to maintain 'an accurate definition' (Presmeg, 
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2006, p. 206). Indeed, Presmeg herself used the term 'inscriptions' instead of the term 

'representations', but I choose the latter term for my upcoming discussion. 

Representations and social semiotics. Instead of seeing 'meaning' as a pre-existing 

entity, social semiotics considers it as a social construct that is created during the act 

of communication and representation in meaning-making process (Evans et al., 2006; 

Kress, 1988b). Thus, studying communication and representation would enable us to 

analyse what meanings people are trying to make. There are a good number of 

studies about representation in mathematics education, which is why Radford (2003, 

p. 40) announced that the 'concept of representation has been one of the most talked 

about concepts over the last two decades in mathematics education'. Thus, it is not 

surprising that the National Council of Teachers of Mathematics (NCTM) included 

the concept of representation in its Standards for school mathematics and 

recommended that instructional programmes should (quoted from National Council 

of Teachers of Mathematics, 2000b): 

• create and use representations to organize, record, and communicate 
mathematical ideas; 

• select, apply, and translate among mathematical representations to 
solve problems; 

• use representations to model and interpret physical, social, and 
mathematical phenomena. 

Furthermore, two consecutive Special Issues of the Journal of Mathematical 

Behavior, Numbers 1 and 2 of Volume 17, 1998, were devoted to exploring the 

concept of representation. Goldin & Janvier (1998) and Goldin (1998) summarise 

various interpretations and meanings of the concept of representation to include: 

a. External physical embodiments which embody mathematical concepts such 

as number line, diagram, calculator or computer-based environment. 

b. External linguistic embodiment that is represented verbally and semantically 

'of the commonly shared language in which mathematical problems are posed 

and mathematics is discussed.' (Goldin, 1998, p. 285) 

c. Formal mathematical constructs that can be represented through symbols but 

are still external to the individual. This includes games which can be related 
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to mathematical concepts, like the Tower of Hanoi, or can be represented by 

mathematical entities. 

d. Internal cognitive representations, such as students' internal representation(s) 

of mathematical concepts such as area and function. These representations are 

inferred from behavior or introspection, describing some aspects of the 

processes of mathematical thinking and problem solving. (Goldin & Janvier, 

1998, p. 2) 

While these various meanings illustrate the previous comment made by Presmeg 

(2006) about representation, they can be categorised, as they are in some studies (e.g. 

Mesquita, 1998), into two broad categories: external and internal representations. 

However, some scholars argue that representations have pre-existing meanings, 

which students should uncover in order to 'get the full message', as suggested by this 

quote: 

the pictures and the diagrams used in mathematical text have their own 
conventions, which pupils need to learn to read. ... However, if he [the 
pupil] cannot read the graphic language of his mathematics book as the 
words and symbols, he will not be able to get the full message from the 
page. (Shuard & Rothery, 1984, p. 65) 

There are other perspectives which challenged this 'decoding' notion such as 

constructivist perspectives (Cobb, Yackel, & Wood, 1992; Glasersfeld, 1991) and the 

social practice perspectives (social semiotics, for example) that conceive of 

mathematics as a social practice. Rather than considering that a reader/viewer is 

'encoding-decoding' the message made by a producer, Kress (1997; 2003) argues that 

reading consists of making new signs, rather than trying to decode the original sign 

made by the author. The issue of meaning-making, together with communication and 

representation, have become the focus of the research in mathematics education, 

especially after social semiotics was adopted by some researchers in mathematics 

education (e.g. Chapman, 2003b; Morgan, 1996b; O'Halloran, 2005; Pimm, 1992; 

Radford, 2003). 

Moreover, social semiotics would bring the 'representers and their intentions' (Pimm, 

1990) or their interest back to the communicative act. Representation in social 

semiotics is a sign that 'focuses on what the individual wishes to represent about the 

thing represented' (Kress et al., 2001, p. 4). In other words, the sign-makers 

(re)present their interests about the thing represented, and they try to make those 
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representations, as closely as possible, match their 'intentions' or their experiences in 

a communicative act (Kress et al., 2001). Thus, representations are not merely 

encoding information but rather they are semiotic signs available for meaning-

making. A geometric diagram, for example, is a representation of a mathematical 

activity or an object that its maker chooses to be the carrier of meaning. 

Representations move beyond the linguistic monomodal approach, in which 

language is the dominant form of communication, to a multimodal approach which 

considers other modes of communication and representations (Jewitt, 2003a; Kress et 

al., 2001; Kress & Van Leeuwen, 2001). The multimodal approach, or 

multimodality, takes into consideration the different modes of representation in a 

communicative act such as visual representations, language and gestures (see Figure 

2-1 for an example). In mathematics, for instance, Morgan (1996a; 1996b) considers 

the language aspects of mathematics texts and offers an analytic tool to read and 

analyse mathematical texts as signs. She (2001) conceives of mathematics as a social 

practice, a 'human activity', a sign which may be interpreted from the social semiotic 

point of view. O'Halloran (2005), moreover, offers other frameworks for reading 

other modes of communication in mathematics such as visual representations and 

symbolism. 

Both Morgan and O'Halloran agree that, still, there is room to investigate other 

modes of representation and communication of mathematical discourse (Alshwaikh, 

2009). Morgan (2006, p. 226) states that: 

[m]any mathematical texts also contain significant non-verbal 
components, including algebraic notation, diagrams, tables and graphs. 
Tools for the description of these components are less fully developed 
from a systemic functional perspective. 

The current study is, therefore, another endeavour which focuses, to a large extent, 

on the geometric diagrams and, to a lesser extent, on gesture, offering a (sort of) 

grammar to read these diagrams and gestures. Grammar in social semiotics 'goes 

beyond formal rules of correctness', Halliday (1985, p. 101 as quoted in Kress & Van 

Leeuwen, 2006, p. 2) argues, and he continues: 

It is a means of representing patterns of experience ... It enables human 
beings to build a mental picture of reality, to make sense of their 
experience of what goes around them and inside them. 
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In other words, there is a relationship between the grammatical structure of a 

semiotic mode (language, diagrams or gestures) and the social experience or 

interaction with which human beings are involved, which is expressed linguistically 

(or visually or gesturally). Thus I seek a framework (or frameworks) to describe that 

relationship or, in other words, to construct a grammar which will enable me to 

articulate that description. Using the SFL, that grammar would include three 

functions: ideational (the way people describe their experience), interpersonal (the 

interaction between people) and textual (the ways that people arrange their 

description into coherent text). 

To summarise, although mathematical diagrams are part and parcel of mathematics 

and were used in ancient civilisations such as Old Babylon four thousand years ago 

(Robson, 2008b) and Greek mathematics (Netz, 1999) and although there is near-

consensus that diagrams are important in doing, learning and teaching mathematics 

and in visualisation, mathematical thinking and problem solving — the current 

mainstream trend among mathematicians is prejudiced against the use of diagrams 

or, more precisely, mathematicians 'deny' and hide their use of diagrams in their 

work (Dreyfus, 1991; Morgan, 2001). Mann (2007, 137) also states: 

When a mathematician explores new ideas or explains concepts to 
others, diagrams are useful, even essential. When she instead wishes to 
formally prove a theorem, diagrams must be swept to the side. 

The traditional approach to diagrams or to visual representation within mathematics 

education, moreover, is that they encode information that students need to uncover in 

order to solve problems. In my study, however, I consider (geometric) diagrams as 

available resources for meaning-making and as a means for representation for 

students to communicate with each other or with themselves in order to convey 

specific meanings. 

Furthermore, the multimodality approach focuses on the different modes of 

representation in constructing (mathematical) meaning which entails the need to look 

beyond language and diagrams to include other modes such as gestures. Thus, in the 

current study, I suggest a preliminary framework for the gestural mode. In the 

following section, I give a broad overview of recent studies which have considered 

gestures in learning and teaching mathematics. 
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5. 	Gestures 

In her commentary, 'What's all the fuss about gestures?', on the research on gestures 

in Educational Studies in Mathematics, Sfard (2009) asks some questions: 

While reading the articles assembled in this volume, one cannot help 
asking Why gestures? What's all the fuss about them? In the last few 
years, the fuss is, indeed, considerable, and not just here, in this special 
issue, but also in research on learning and teaching at large. What 
changed? After all, gestures have been around ever since the birth of 
humanity, if not much longer, but until recently, not many students of 
human cognition seemed to care. (pp. 191, her emphasis) 

Kress & Van Leeuwen (2001) answer that such questions were not being asked 

because: 

Language was (seen as) the central and only full means for 
representation and communication, and the resources of language were 
available for such representation. (...) And of course there were other 
modes of representation, though they were usually seen as ancillary to 
the central mode of communication. (2001, pp. 45, their emphasis) 

In other words, what changed is our way of viewing and interpreting the act of 

communication and representation from monomodality to multimodality. However, 

although Kress & Van Leeuwen (2001; 2006) stress that language is no longer the 

dominant or the central mode and that 'language may now be 'extravisual" (2001, p. 

46), many researchers (in mathematics education and other domains) who are 

interested in different modes still look at these modes from a linguistic point of view. 

Arzarello, Paola, Robutti, & Sabena (2009), for instances, consider gestures to be an 

'extra-linguistic' mode of expression, Sfard (2009) considers gestures to have a 

linguistic counterpart that is utterance and addresses the relationship between the 

gesture and utterance, and McNeill (1985, p. 350) argues that gestures and speech are 

'overt products of the same internal processes.' 

One main challenge for the research about gesture is to investigate its role in learning 

and teaching mathematics (Radford, 2009): how to connect mathematics, which has 

been viewed for centuries as a 'mind-based' (Lakoff & Nirfiez, 1997) enterprise, with 

the movement of body, namely hands and fingers. Philosophically, seeing 

mathematics as a mental activity synchronises with Idealism, which perceives 

thinking as a purely mental activity, occurring in the mind and not in the physical 

experience. Mathematical thinking is no exception. 
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Radford (2009) presents a short account of the considerations of gestures, starting in 

the nineteenth century, when some studies (e.g. Cushing, 1892) argued that gesture 

precedes language, and continuing to the twentieth century, through the studies about 

the origin of language and its relationship to thinking. Since then, this relationship 

has dominated the research on about gesture. Some studies, Radford (2009) 

continues, suggest that gesture facilitates or can express what an individual cannot 

say verbally. Others consider gesture to be a 'window' for accessing thinking. 

As an alternative to the-immateriality-of-thinking approach, Radford (2009) suggests 

a 'sensuous cognition' in which gestures are 'genuine constituents of thinking' (p. 113, 

his emphasis), not windows or facilitators. However, as Radford himself states, there 

remain unresolved problems in the relationship between gesture and its role in 

learning and teaching mathematics, because the research about gestures in 

mathematics education is still in its infancy (Radford et al., 2009). The Special Issue 

of the Educational Studies in Mathematics-ESM Journal (2009) volume 70, took the 

initiative to explore that role. 

Some studies investigated the contribution of gestures, together with other semiotic 

systems (verbal and visual), to mathematics learning and teaching. Adopting the 

Peircean approach, Arzarello et al. (2009), for example, present the notion of 

'semiotic bundle', 'speech, gestures, and inscriptions and their relationships' (p. 100), 

in order to explore how students make use of those systems in learning mathematics. 

They conclude that gesture may play two different roles; it supports students' 

thinking processes and, as a communicative act, constitutes an alternative way to 

express what students are unable to articulate in 'purely verbal or formal ways' (p. 

107, my emphasis). The view taken in this study is that gesture is a part of an 

ensemble or a bundle of semiotic systems which together 'grasp' the 'mathematical 

ideas' or the 'correct scientific meaning' (p. 106). 

Arzarello et al. also consider the relationship between the teacher's and students' use 

of gestures and claim that 'students are reactive to the teacher's gestures' (p. 107) and 

that: 

the teacher uses the same gestures as the students and rephrases their 
sentences using precise mathematical language. Doing so, he supports 
the students towards a correct scientific meaning. (p. 106) 
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This assumption that students and teachers make use of the same gestures was 

initially made by Morgan & Alshwaikh (2008) in a learning geometry experiment 

using a three-dimensional 'turtle world' (MaLT). They noticed, however, that 

students' meanings were different from those used by teachers. They distinguish 

between two types of gestures, imaging and imagining. While an imaging gesture is a 

construction of an image of the turtle path, imagining refers to the 'mental image of 

the desired outcome of turtle drawing' (p. 140). In other words, imaging and 

imagining may be seen as gestural realisations of the famous dichotomy in 

mathematics: process and product (Gray & Tall, 1994; Hersh, 1999; Sfard, 1994) or 

operational and structural (Sfard, 1991). Moreover, students used 'pointing' in 

referring to the position of the turtle but made use of the everyday discourse of 

pointing rather than the specialised directional pointing of MaLT. 

The notion of pointing and sliding in gestures has been noticed by Bjuland, Cestari, 

& Borgersen (2007). They consider that students' mathematical reasoning may be 

realised through the gestural strategies of pointing and sliding in solving problems. 

However, Bjuland et al. (2007) and most of the studies to which they refer (e.g. 

Bartolini Bussi, 1998; Edwards, 2005; Nunes, 2004) deal with gesture as dependent 

on the verbal mode. 

While it is true that the research about gesture in teaching and learning is still very 

young, there is a need to look at gesture as a distinctive mode on its own, which 

contributes to the construction of (mathematical) meaning (Morgan & Alshwaikh, 

2008). This is in contrast to considering it as an accompaniment to the verbal, or any 

other mode, as do the studies in the Special Issue of ESM (2009) volume 70 (e.g. 

Arzarello et al., 2009; Sfard, 2009), and in contrast to considering it as a 'connection' 

or 'passage' between systems of representation, such as figure and Cartesian diagram 

(Bjuland et al., 2007). 

A seminal work about gesture as a distinctive mode and about the relationship 

between gesture, language and problem solving is the work of Luis Radford (e.g. 

Radford, 2003, 2009; Radford et al., 2007). Radford et al. (2007), for example, 

conducted a careful analysis of students' interaction in solving a mathematical 

problem using different sources of data such as videotapes and written texts 

produced by the students. Adopting a semiotic-cultural theoretical framework (see 

Radford, 2003), they considered a 'multisemiotic data analysis' to analyse in detail 
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how the students solve that problem focusing on students' modes of communication 

(verbal and written words, gestures and rhythm) separately and simultaneously. 

Indexical gestures, for instance, were dominant in students' interactions, where 

students used their fingers to point to mathematical objects. 

In analysing the rhythm, Radford et al. (2007) used a voice analysis software to 

follow the stress and intonation patterns of the utterances students made, and they 

integrated that analysis with analysis of the words and gestures students used. The 

fundamental conclusion from Radford's et al. (2007) experiment is three-fold: First, 

to understand students' mathematical thinking, there is a need for more attention to 

semiotic modes other than language. Second, gesture, as a semiotic mode, is a key 

element in students' mathematical experience that should be considered. Third, the 

ensemble of modes is crucial in understanding the way in which students experience 

mathematics. 

While the above-mentioned studies used different theoretical accounts (for example, 

Radford's work uses a semiotic-cultural theoretical framework), in the current study, 

I adopt the multimodality social semiotics approach in which I try to look at gestures 

as a mode of representation and communication which needs, as do the diagrammatic 

and the verbal modes, a 'grammar' to read it. Gesture, in this sense, is a mode of 

representation and communication for meaning-making process that is materialised 

by the movement of hands and fingers. 

7. 	Summary 

A background for the scene of communication and representation has been set up in 

the previous and the current chapters. While the previous chapter presented a general 

view about the verbal mode of communication and the relationship between language 

and mathematics, the current chapter extends the 'semiotic landscape' (Kress & Van 

Leeuwen, 2006) to include visual communication, namely the diagrammatic mode in 

mathematics. I presented in a detailed manner the status of diagrams in mathematics 

and the prejudice against the use of diagrams as a mode of communication and 

representation. The extension of the scope of communication, the multimodality 

social semiotics approach, led me to look at a third mode of representation and 

communication, namely gestures in mathematics teaching and learning. 

56 



A key finding so far from this review, which may be seen as a justification and a 

motivation for this study, is that I deal with diagrams (and visual representations) as 

social products, not as cognitive products or coding systems containing pre-existing 

meanings. In other words, a diagram is an essential part of mathematical discourse 

which needs to be considered in the construction of mathematical meaning. The same 

principle applies to gestures. 

The main conclusion I would say in these two chapters (2 and 3) is that there is a 

need to investigate and to study the diagrammatic and gestural modes in mathematics 

discourse. That is what the current study attempts to do. 

In the following chapters, I focus on the diagrammatic mode, followed by the 

gestural mode. The separation between diagrams and gestures is a pragmatic one, 

since I need to provide a detailed account of each of them before considering them 

together with the verbal mode in the multimodal analysis chapter. 
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4 Methodology - Aim and design of the study: An iterative 

approach 

1. 	Aim of the study: 

The primary aim of this study is to develop a descriptive framework that can be used 

as a tool to analyse the role of diagrams in constructing mathematical meaning and, 

to a lesser extent, to develop a framework to analyse the role of gestures and the 

multimodal interaction between the verbal, diagrammatic and gestural. The previous 

chapters show that there is a need to create such tools. This endeavour is a 

contribution toward broadening the scope of understanding of mathematical 

communication by considering modes of communication other than the linguistic, 

namely the visual and the gestural. 

A primary question arises: What do diagrams contribute to the construction of 

mathematical meaning? As shown in the literature, this question has been raised in 

different studies and in different contexts (Kress & Van Leeuwen, 2006; Lemke, 

1998b), including in mathematics education (Morgan, 1996b; O'Halloran, 2005).5  

In this chapter I set up the methodology I used (and developed) toward that aim. I 

start by presenting the iterative approach to develop the desired framework. The 

iterative process/approach is not unique to this study but is an accepted methodology 

within social science research, especially as a means of developing a theory. I 

explore the similarities and differences between the different methodological 

approaches that informed the current study, including grounded theory, action 

research and design research. Then, I address the data of the study, explaining the 

different types and how they were collected, exploring cultural and linguistic issues 

that arose and outlining the tasks of the study. I also address the sampling process 

used in this study and comment on the robustness of the suggested framework. In 

order to illustrate the iterative process used in this study, I then present briefly the 

story of the development of the overall framework, although I provide more details 

about the development of one version of the framework. I end the chapter with a 

discussion of ethical considerations and of the sampling process. 

5 While the focus of this study is the visual form in mathematics and its role in constructing 
mathematical meaning, this study also considers gestures and offers a preliminary descriptive 
framework to 'read' these gestures in mathematical context. 
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2. 	The iterative methodology 

In order to answer the question, what do diagrams contribute to the construction of 

mathematical meaning, I want to develop a framework to analyse the role of 

diagrams in geometry — an analytical tool not only to describe the features of 

mathematical diagrammatic representations but also to offer possible reading(s) for 

these representations in mathematical discourse. The word 'develop' suggests change, 

trial and re-trial, or in other words — iterations. Iteration is a process of design, 

testing, revision and modification (Hjalmarson & Lesh, 2008; Pratt, 1998) — making 

it well-suited for developing a framework. Examples of the iterative methodology 

include the grounded theory method (Bryant & Charmaz, 2007; Glaser & Strauss, 

1967/2006), action research (Kemmis & McTaggart, 1990; McNiff, 1997), and 

design research (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; Kelly, 2004; 

Pratt, 1998), all of which informed the current study.6  

Glaser & Strauss helped launch the Grounded Theory Method (GTM) in the 1960s 

with the publication of their seminal book, 'The Discovery of Grounded Theory' 

(Bryant & Charmaz, 2007), which challenged the practices then dominant in the 

social sciences within the United States. Later, each of the two sociologists worked 

individually to develop distinct approaches to GTM (Denzin, 2007). Despite the 

divergence, grounded theories continue to be defined as qualitative research methods 

to generate a theory from data (Glaser & Strauss, 1967/2006). Grounded theories are 

based on the interaction between the researcher and the data, in which theories are 

generated using an iterative process (Bryant & Charmaz, 2007). The process of 

generating a theory is summarised in the following steps: collecting data; finding 

accurate evidence using comparative analysis and coding to create categories and 

concepts until saturation is achieved; and verifying and generating the theory (Glaser 

& Strauss, 1967/2006). Dick (2005) provides an overview of this process as does the 

web site, Grounded Theory Online, http://www.groundedtheoryonline.com. 

Glaser & Strauss (1967/2006) developed the iterative nature of the process of 

generating theory by drawing attention to the need to revisit the collected data or to 

collect new data in order to test or create categories. The iterative process is also 

apparent in the sampling aspect of grounded theory, described by Glaser and Strauss 

6  There are other resarch methodologies/approaches in social science in which iterative processes are 
considered to be vital, such as the case study (Eisenhardt, 1989). 
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as aspiring to a point of 'theoretical saturation' in which a researcher will 'continually 

judge how many groups [of data] he should sample for each theoretical point' (Glaser 

& Strauss, 1967/2006, p. 61). Bryant & Charmaz (2007, p. 25) explain that 

'[t]heoretical concepts in GTM result from iterative processes of going back and forth 

between progressively more focused data and successively more abstract 

categorizations of them.' 

Iterative process is also a feature of action research. 'Action research is an iterative 

process involving researchers and practitioners acting together on a particular cycle 

of activities, including problem diagnosis, action intervention, and reflective 

learning' (Avison, Lau, Myers, & Nielsen, 1999, p. 94). McNiff (1997) reviews the 

main approaches in action research starting from the seminal work of Kurt Lewin 

and the works of Lawrence Stenhouse, Stephen Kemmis, John Elliott, Dave Ebbutt 

and Jack Whitehead, as well as more recent developments of the theory. Lewin 

defined action research as an action-reflection cycle or spiral of steps, each of which 

has four stages or moments: planning, acting, observing, and reflecting. Kemmis & 

McTaggart (1990) applied action research in educational practice, focusing on 

learning, teaching and systems of the school. Action research in that sense uses 

action to reflect on one's own practice (i.e. that of a teacher or student) by first 

identifying 'thematic concerns' or 'defining the field of action', suggesting a plan, 

acting, reflecting through communication with the action research group and then 

suggesting a revised plan or re-plan (Kemmis & McTaggart, 1990). 

In other words, in action research, the whole action-reflection cycle is iterated 

through reflection and re-planning conducted by the research group in order to 

improve the desired product of the research, namely the action intervention which 

has been determined as the goal at the beginning of the research. Recent 

advancement of the theory has moved to the notion of 'spiral of spirals' or 'generative 

action research' (McNiff, 1997, p. 45) which enable a teacher-researcher to use action 

research to consider a number of problems at the same time. 

Some studies (e.g. Dick, 2007) have examined the similarities and differences 

between grounded theory method and action research. Although action research is 

concerned with action and change, both approaches, for example, seek to develop 

theory from specific evidence using iterative processes. One main difference is that 

action research is participatory (Kemmis & McTaggart, 1990), while participants in 
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grounded theory are informants and only rarely act as agents in developing the theory 

(Dick, 2007). 

Like Kemmis's work in action research in educational settings, design or design-

based research methods focus on designing learning environments and conducting 

educational research by continuous cycles of designing, applying, studying, refining 

and re-designing in classroom environments in order to link theoretical research with 

educational practice (Collins, Joseph, & Bielaczyc, 2004; The Design-Based 

Research Collective, 2003). In fact, Kelly (2004, p. 118) refers to design research as 

a 'new form of action research'. The term 'design experiments', introduced in 1992 by 

Ann Brown and by Allan Collins (Collins et al., 2004), emphasises the relationship 

between design-based research and action research by applying innovation, usually 

in a teaching/learning situation. The main feature of design research is the presence 

of a designed artifact, for example a concrete artifact such as a computer programme 

(Kelly, 2004) 'as well as less concrete aspects such as activity structures, institutions, 

scaffolds, and curricula' (The Design-Based Research Collective, 2003, pp. 5-6). 

Cobb et al (2003) identify five 'crosscutting features' which are characteristic of 

design research or design experiments: developing theories about the learning 

environment; exploring possibilities for improving the educational environment; 

using prospective and reflective process; using iterative design; and making the 

developed theory practical for the purpose for which it was designed. The current 

study differs from design research in that it does not, for example, seek to develop 

theories about the learning environment, but it shares the iterative design feature 

identified by Cobb et al (2003). 

These three approaches — grounded theory, action research and design research —

informed the current study's development of the desired framework and also 

contributed to my own reflections as a researcher. The former is the aim of this 

study, while the latter is not, although my reflections on each iteration contributed to 

the development of its successor. 

To achieve their aim of developing a theoretical framework to understand 

mathematical meaning-making processes, Noss & Hoyles (1996) suggest the notion 

of 'thinking-in-change'. They argue that researchers get to know 'things' (ideas, or 

mathematical objects such as integers) by 'acting on' them, in other words, by setting 
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Framework ..... 

them in motion and studying the change that happens. My journey in developing the 

framework underwent a similar process (Figure 4-1 shows a sketch of the iterative 

design in this study). After suggesting each version of the framework, a validation 

process was followed by applying the suggested framework to mathematical 

diagrams in textbooks or students' texts. Feedback from the application process was 

incorporated into amendments, creating a refined version of the framework. This 

process was repeated iteratively. 

Figure 4-1: A sketch of the iterative design of the study 

In other words, the iterated aspects in the current study were the suggestion of 

framework and the application of that suggested framework to the collected data. 

Interaction with the data was a central aspect in the iterative methodology of the 

current study. I collected new data based on the feedback produced from each cycle 

(see Figure 4-2) and then applied the suggested framework to the new (and old) data. 

The iterative process in the current study has similarities to the other three 

approaches: namely revisiting the collected data or collecting new data in light of 

feedback from each iteration as in grounded theory and iterating the whole cycle of 

investigation as in action research and design research. Moreover, as is the case for 

these three approaches, the purpose of iteration in the current study was to test the 

applicablity of the object of the research, which would be the suggested framework 

or categories in grounded theory; the action plan in action research; and the designed 

artifact in design research. Table 4-1 offers a comparison of the four methods. 

The current study, however, differs from the other methods in that its output is a 

descriptive tool rather than a theory, as is the case in grounded theory and design 

research (see the discussion in Strauss & Corbin, 1998, pp. 18-19), or an action plan, 

as is the case in action research. I should also note that while in grounded theory and 
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the current study, researchers work on their own, action research adopts a 

participatory approach in which researchers and participants work together, and in 

design research, educators and designers work collaboratively. 

Table 4-1: Comparison/contrast between grounded theory, action research, design research and 
the current study 

What is iterated Purpose of 
iteration 

Output/goal of the 
research 

Relationship with 
participants 

Grounded 
theory 

Suggested 
categories: apply 
and revisit the 
collected data or 
collect new data. 

Test or create 
categories, 
generate 
theory 

Theory Researchers work 
on their own 

Action 
research 

Action-reflection 
cycle: plan, act, 
observe, reflect, 
re-plan 

Test the plan Action 
intervention to 
improve 
educational 
practice (teaching/ 
learning situation) 

Participatory: 
researchers and 
participants work 
together 

Design 
research 

The whole cycle: 
design an 
artifact, test the 
artifact, reflect, 
re-design 

Test the 
designed 
artefact 

Theories about the 
learning 
environment 

Educators and 
designers work 
together 

Current 
study 

The whole cycle: 
new suggested 
framework, 
apply it to data, 
evaluate and get 
feedback 

Test the 
applicability 
of the 
suggested 
framework in 
each cycle, re-
suggest new 
version 

Descriptive 
framework 

Participants were 
source of data, 
they generated 
texts upon which I 
acted 

Iterative design research, moreover, offers a suitable environment to explore 

thinking-in-change notions and conjectures (Cobb et al., 2003; Mor & Noss, 2008). It 

is particularly suited for the exploratory nature of my study, which brings a 

multimodal social semiotics account (Kress & Van Leeuwen, 2006) into mathematics 

education, in a context in which there is a lack of research about learning 

mathematics from a semiotic point of view (Morgan, 1996b; cf. Rotman, 1988). 

Furthermore, this study is exploratory, since it deals with two different cultures (in 

the UK and the OPT), two different languages and different scripts and writing 
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systems (English and Arabic). It explores how all these factors contribute to the 

construction of mathematical meaning — again in a context of a lack of research. 

2.1 	Iterations and cycles of the current study: 

Pratt (1998) suggests a four-iteration framework to develop a computer-based tool to 

study young children's intuitive knowledge of randomness. Iteration 0 

(Bootstrapping) is a 'guess' stage that aims to initiate the iterative design process. 

This guessing is indeed based on previous knowledge. However, Iteration 1 

(Exploratory) is considered as a revised and refuted version of the previous 

Bootstrapping iteration, focusing more on the tool itself rather than its use. The main 

feature in Iteration 2 (Developmental) is that the tool is advanced enough to give 

researchers an understanding of its effect on children's use of it. In the final iteration, 

Iteration 3 (Analytical), no major modifications are needed, allowing researchers to 

focus on its impact on children's engagements. 

Pratt's study has a different approach from mine. His study has two aims, namely 

developing a computer-based tool and in parallel studying the development of 

children's thinking. Moreover, his iteration is based on testing the tool with children. 

In contrast, my study focuses on developing a conceptual framework, and the 

iteration is based on testing the framework on mathematical texts. In my study, 

Bootstrapping was not iterative since it happened, as Pratt himself suggested, to 

initiate the process. Actually, the first two iterations, Bootstrapping and Exploratory, 

suggest exploration, which is exactly the case in my study. Thus I consider the four 

iterations in three cycles (see Figure 4-2). 

• Iteration 0 — Bootstrapping: I suggested the first framework (Framework 0) based 

on my engagement with the literature. The idea was to make a start of the 

process, and thus this iteration was not tested on mathematical texts. 

• Iteration 1 — Exploratory: After engaging with the literature (mainly Kress & Van 

Leeuwen, 2006; Morgan, 1996b; O'Halloran, 2005) and looking at many 

mathematics textbooks, I suggested an ad hoc outline of my expectation for the 

framework (Framework 0). This framework was applied to two mathematical 

texts (see Figure 4-6 and Figure 4-7). My aims were to explore the applicability 

of Framework 0 and, indeed, to get feedback for the next version of the 

64 



2 examples-CI, 
students' texts-C2 
Internet diagrams 

Iteration 0 	Iteration 1 	 Iteration 2 	 Iteration 3 
(Bootstrapping) 	(Exploratory) 	 (Developmental) t 	 (Analytical) 

Cycle 1 	 Cycle 2 	 Cycle 3 

Suggested 	Apply 
framework-0 —> framework-0 

2 examples- Cl 

Literature 

Suggested 
framework-1 

Lite ature 

H Suggested h Apply 
framework-2 	framework 2 

rxamples-CI, 
students' texts-C2 
students' texts-C3 
Internet diagrams 

Apply 
—> framework-1 

t 

Literature 

Suggested 
framework-3 

framework. As a result of the Exploratory iteration, the general characteristics of 

the framework started to become apparent (Framework 1). 

• Iteration 2 — Developmental: This iteration was the fundamental and most 

significant and 'time-demanding' stage in the development of the framework 

where I started to see not just the 'outer shell' but the details of the framework as 

well. Having developed a new version of the framework (from Cycle 1), Cycle 2 

began with thought, reflection and more engagement with the literature regarding 

Framework 1. In the Developmental iteration, I applied the framework to the 

previous two mathematical texts, student's texts from Cycle 2 (see section 3.3.2 

& 3.3.3 below) and many different diagrams from different sources especially the 

Internet (see section 3.3.1 & 3.3.5 below). Framework 2 was the product of this 

iteration and Cycle 2. 

• Iteration 3 — Analytical: I applied Framework 2 to the final data of the study in 

order to validate it (to test its applicability — see the following section) on one 

hand and, on the other hand, to get feedback for further development 

(refinement). As a result, Framework 3 appeared. The validation and refinement 

process showed that no further changes were needed, at least not in order to 

address satisfactorily the present data set. 

Figure 4-2: Cycles and iterations in the methodology 

The main source of data for this iteration was the mathematical texts that students 

produced (see section 3.3.2 & 3.3.3 below) in response to the tasks of this study (see 

section 3.6 below). This iteration, moreover, was tested by the same two 
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mathematical texts from Cycle 1 in addition to diagrams from textbooks and the 

Internet (see section 3.3.1 & 3.3.5 below). 

Although the process in Figure 4-2 is shown as linear, it is not. Another possible 

representation of the process would be a 'spiral' diagram that shrinks as the process 

advances toward other versions of the framework. In other words, Cycle 1 would 

have a wide base, reflecting the nature of exploring, while Cycle 2, as the next loop, 

would be narrower, and Cycle 3 would be still narrower but more focused as well. 

Each cycle ended with a new and refined version of the framework. For example, 

Cycle 1 ended when Framework 1 had been established. The same applies to Cycles 

2 and 3. The 'final' suggested Framework 3 would need to be tested in the 'field,' 

perhaps with students, textbooks, teachers and the method of teaching, although such 

test is outside the scope of this study, as explained in section 4 of this chapter. 

My engagement with the literature was continuous (see Figure 4-2), where I moved 

between the literature, frameworks and the applications of these frameworks. 

Obviously there should be a 'limit' or an end to this process for various reasons such 

as the aim of the study (as a doctoral thesis) and the time constraints. However, there 

were primary crucial 'events' in the process that 'pushed' the process and study 

toward that end. These are the iterations of the frameworks on specific data. 

2.2 	Validation of the framework: 

Part of the iterative design methodology is to validate the tool/framework in order to 

test it and to get feedback for the next iteration (Pratt, 1998). Although the iterative 

design methodology and the notion of thinking-in-change have been used in 

designing computer-based tools/environment and students' learning (Noss & Hoyles, 

1996; Pratt, 1998), my use of these notions was in a 'different' context and reflected a 

different approach. While I did not seek to develop a computer-based tool, I made 

use of the iteration notion focusing on the framework itself, rather than on another 

notion such as students' learning. Actually, the aim of the study informs the way in 

which a researcher makes decisions about the validation and refinement process. 

In Pratt (1998), where the aim was twofold, namely designing a computer-based tool 

as well as students' use of that tool, the validation process of the tool took place with 

students and is evaluated based on their engagement with the tool. The students were 
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observed and were interviewed during and after their engagement with the tool. Each 

suggested version of the tool was tested with students in order to validate and refine 

it. In each iteration, 'opportunities and weaknesses' emerged as a result of students' 

engagement with the tool. Then, the following iteration took into consideration these 

opportunities and weaknesses and redesigned the tool for the next iteration. 

In my study, on the other hand, my aim and focus was on the framework itself and its 

development. Consequently, I needed to validate the frameworks with texts rather 

than students. Each cycle in my study (where the suggested framework had been 

applied to various diagrams in textbooks and in the empirical data and diagrams 

available on the Internet, see Figure 4-2) underwent a careful process of validation in 

the journey through which the framework was developed. 

Validation: this process has two primary aims: to check the applicability of the 

framework and to get feedback that leads to a new refined version of the framework. 

The validation process occurred by applying the new version of the framework to 

mathematical texts either from textbooks or empirical data collected in schools. 

While the application process is 'straightforward', the resulting feedback played a 

crucial role in refining and developing the desired framework. During and after the 

application process, I focused on the weaknesses or mismatches between the 

framework and diagrams in the data which indicated that the framework is not valid 

yet. Three criteria were considered in the validation process: accuracy, delicacy and 

inclusiveness. The first two criteria deal with specific examples of diagrams, looking 

carefully for the details. The other criterion, in contrast, considers a horizontal view 

of diagrams, i.e. a variety of diagrams across Euclidian geometry school (trying to 

include all diagrams in the framework). As a consequence, three different kinds of 

feedback were offered which suggest the need to refine/change the framework. 

a. 1. Accuracy: by this criterion I was seeking a framework that can describe a 

diagram accurately. By accuracy I mean that there is a clear match between the 

suggested categories in the framework and their physical realisations in the diagram. 

During my interaction with the diagrams, I studied the diagram itself and its potential 

mathematical meaning. At the diagram level, an accurate framework means that any 

suggested category in the framework describes exactly what it is intended to describe 

67 



in the diagram. If I want to call a diagram narrative, for example, it should clearly 

contain a physical realisation of the indicators that I identify as being determinative 

of the narrative category of diagram. Here I can recall a good number of examples in 

my first trials to develop the framework. For example, in Framework 1, I suggested, 

following Kress & Van Leeuwen (2006) that the presence of vector, or arrows, is the 

distinguishing feature between narrative and conceptual diagrams. However, in one 

of my engagements with the analysis of data, I considered dotted lines to be vectors. 

Later I decided that this was not accurate simply because dotted lines do not always 

tell the direction, the starting position or the final position. 

Another two issues of accuracy were raised after I engaged with the data analytically: 

the presence of human agency and the classification and analytical structures in 

conceptual diagrams. 

At the meaning potential level, the potential mathematical meaning should have its 

material realisations in the diagram and not be initiated (although it will be 

influenced) by prior knowledge of the context or the subject matter (school 

geometry). Again, here I can recall examples during the development journey. First 

of all, I recall the confusion between the different kinds of functions in the SFL 

approach, namely the ideational, interpersonal and textual functions in the first two 

versions of the framework. For instance, in Framework 0, the very first version, I 

wrote under the ideational function: 

'The right angle sign ... raises the issue of using Pythagoras theorem' 

This statement is inaccurate. The little square mark (or the right angle sign) does not 

necessarily urge the use of Pythagoras theorem. The statement proposes a link 

between labels presented in the diagram and prior knowledge of the field, without 

supporting such link by any visual structure of the diagram. Furthermore, while this 

statement was presented within the ideational meaning in the first framework, labels 

(such as this sign) in the final version are considered within the interpersonal 

meaning in the 'contact' category, where they — labels — either offer or demand 

'something' from the viewer of the diagram. 

a.2. Delicacy: In addition to establishing an accurate framework, I tried to offer a 

subtle, delicate one that would be able to distinguish carefully between different 

kinds of the same category, where they exist. Here I refer to the presence of vectors, 
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which have been suggested by Kress & Van Leeuwen (2006) to distinguish narrative 

images from conceptual images, where vectors express narrative. I adopted this 

approach at the beginning of the development journey of the desired framework. The 

use of arrows in mathematical texts is highly conventionalised, and it required a 

different interpretation than what Kress & Van Leeuwen have suggested. Therefore, I 

soon faced many examples of different kinds of arrows in mathematical texts that do 

not comply with this directionality feature. There are many different kinds of uses of 

arrows in geometry such as parallelism, Lines, Rays, and others, in addition to 

arrows that refer to mathematical action such as transformations (Figure 5-1). 

For example, the arrow in Figure 4-8 expresses a directional feature with a potential 

meaning as an extraction of a triangle in order to apply Pythagoras theorem. 

However, a bidirectional arrow next to a side of a triangle (Figure 4-3a) may suggest 

a process of measuring the size of that side. These two kinds of arrows are also 

different from arrows that express geometrical characteristics such as parallel lines 

and a secant, as in Figure 4-3b. 

Figure 4-3: Different types of arrows in geometry 
Diagram a is taken from http://wvvw.mathsisfun.com/triangle.html   

Diagram b is taken from http://www.tutomext.com/help/paraliel-lines-cut-by-a-transversal-worksheet  7  

This extensive engagement with diagrams has led me to rethink the directionality 

feature. As a result of that rethinking process, I have suggested temporality as a 

feature that distinguishes narrative from conceptual diagrams. Rather than 

considering the spatial features in diagrams (the presence of arrows as a directional 

7 Instead of referencing every diagram in every figure separately, I present a list of references of all 
diagrams in all figures before the bibliography list. The references include the source of the diagrams 
(e.g. URL, 'Grade 7/Year 8', UK or OPT student textbook, 'name of student' which is a pseudonym). 
However, I may mention the reference in the same figure where appropriate. Where a diagram comes 
from student's work, I indicate whether it is typical (common) or unique. Typicality refers to the fact 
that the majority of students drew similar features of the diagram. See section 6 of this chapter 
'Iterative sampling of data'. 
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feature), I suggest looking at the temporal feature of diagrams or, in other words, the 

sequence of time represented in diagrams through different visual marks. The 

presence of visual marks which convey sequence of time refers to the temporal factor 

which distinguishes narrative from conceptual diagrams. This development is 

discussed further in Chapter 5. 

The case of arrows provides an example of the accuracy feedback discussed above 

and also raises the issue of delicacy, namely whether the framework is subtle enough 

to distinguish between different kinds of arrows. 

a.3. Inclusiveness: Accuracy and delicacy feedback were related to the description 

of specific diagrams, to make sure that the framework is settled and valid. But what 

about inclusiveness; would the suggested framework be able to describe any 

diagram? I faced this question when I tried to apply the suggested versions of the 

framework to the empirical data and mathematical texts in textbooks, which showed 

me a range of examples that the initially suggested framework did not include. The 

shading aspect in narrative diagrams, for instance, was raised during my interaction 

with students' texts in the feedback phase, when I noticed that some students shaded 

their diagrams, while others did not. The framework I initially suggested was unable 

to describe this difference. Another example that demonstrates the inability of the 

initially suggested framework to include all examples was construction diagrams, 

meaning diagrams bearing the physical marks showing the construction process. I 

considered construction diagrams to be narrative diagrams, something I developed 

only in later iterations of the framework, as a result of my interaction with different 

mathematical texts in textbooks in order to address the inclusiveness issue. The first 

version of the framework did not include such diagrams, because construction 

diagrams did not appear in students' texts. 

To sum up, as soon as I began applying the framework, I received different kinds of 

feedback that needed to be considered in the subsequent cycle of development. As a 

result, a 'refined' version of the framework emerged and was used in the following 

cycle/iteration. In that sense, iteration is a process of investigation, construction, 

validation, feedback and refinement. 

I must say that the process of validation played not only a crucial role in developing 

the framework but also in the development of the whole study, especially the 
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consideration of arrows as expressing temporality instead of directionality. It is 

because of these kinds of feedback that I re-thought, re-tested, re-applied and re-

suggested new versions and, thus, managed to develop the desired framework. All of 

these processes — thinking, testing, application and suggestion — needed data to 

address, and this is what I consider in the following section. 

	

3. 	Data of the study: 

Data is the main focus in this section. I start with the reasons to collect data in order 

to validate the framework and, consequently, what types of data were needed to 

achieve that goal and others (see below). I then discuss the various sources of the 

data used in my study, how I collected them, the tasks of the study (as a means of 

collecting data) and sampling strategies. 

	

3.1 	Rationale: 

Both the aim of this study and the theoretical orientation informed my choice of data. 

My aspiration is to construct a framework that is able to describe geometrical 

diagrams and analyse their role in constructing mathematical meaning. Thus different 

geometrical diagrams were needed from different sources such as textbooks, 

students' texts and the Internet to validate the suggested versions of the framework. 

Textbooks and the Internet are 'easily' available. The question thus became how to 

get students' texts about diagrams. This led me to the idea of having students work on 

specific tasks. 

The theoretical orientation (from mathematics education and multimodal social 

semiotics) also contributed to my choice of data. I position myself among those who 

believe that mathematics is a social activity in which people communicate with each 

other, and that the meaning-making process is also a (social and cultural) 

communicative act. Understanding this communication and meaning-making 

exchange must take into consideration the need to understand the immediate situation 

of production of texts, the context of that situation, (i.e., in the current study, the 

context of learning, where students produce their mathematical texts for the aim of 

the study as discussed) and the broader context of culture (Morgan, 2006). This 

theoretical orientation thus contributed to the development of the framework in 
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offering potential interpretations of the framework either from a mathematical point 

of view or a social semiotics account. The straightforward example is the 

development of the ideational function in the framework, where mathematical 

activity and mathematical objects are the focus. 

Furthermore, the issue of generalisability was also raised. Traditionally, 

generalisability 'is interpreted as comparability and transferability' (Cohen, Manion, 

& Morrison, 2007, p. 137), or, in other words, the ability to generalise findings to 

various populations, settings and cultures in order to achieve the 'scientific-ness' of 

research. As Smith (1975, p. 88) claimed, 'the goal of science is to be able to 

generalize findings to diverse populations and times' (quoted in Schofield, 2007, p. 

182). The typical method to deal with generalisability used to be quantitative, in a 

statistical sense, where statistical tests or measures will be applied to data. Schofield 

(2007) claims that the generalisability issue is a goal in quantitative research, while, 

in contrast, qualitative researchers either reject this stance or give little attention to 

the generalisation issue, arguing that it is irrelevant to their goals. This stance 

changed in the 1970s. 

Following (Schofield, 2007), Pratt (1998) suggested reconceptualisation of the term 

based on the research aims, methodology and context: 

Generalisability needs to be reconceptualised as 'fittingness', or 
'translatability and 'comparability', or 'naturalistic generalisation'. By 
giving thick descriptions of the situation observed, it is possible to 
determine intuitively whether the description fits another situation or 
not. (Pratt, 1998, p. 110) 

The term 'thick description' has been dealt with in research methods in many studies 

(see for example: Hammersley, 2008; Hammersley & Atkinson, 2007; Schofield, 

2007). Schofield (2007) discusses the issue of thick description in the context of 

redefining generalisability and the need for thick description. 

In his critical review of Geertz's notion of 'thick description', Hammersley (2008) 

allocated a chapter, 'On thick description: Interpreting Clifford Geertz', to discussing 

this term and the contribution of Geertz in developing the term, which he borrowed 

from the philosopher Gilbert Ryle. Thick description is a description of an act which 

'does not just tell us what was done but how it was done. [In this sense, it is] a 

description of an action that involves at least one adverb' (Hammersley, 2008, p. 53, 

emphasis is in original). Geertz pointed out the role of context and background in 
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providing insight to researchers/ethnographers and enabling them to achieve thick 

description and, consequently, to be able to judge the issue of 'fit', which Schofield 

(2007) considers as generalisability. 

Thus, we need to understand the context of research and consider background 

information which has implications for the required data of the study. Moreover, in 

my study, applying the suggested framework in different situations or contexts 

(either by conducting the study in different classes or schools or even different 

cultures and languages) will contribute to the generalisability of the study. I feel 

'fortunate' to be able to do that in the Occupied Palestinian Territories (OPT) with 

some Palestinian students in the Arabic language and also with some British students 

in the UK, in the English language. 

3.2 What are the needed data? 

These three factors, the aim of the study, the theoretical orientation and the 

generalisation issue, have affected the type of data needed in order to meet these 

demands. The necessary data have to achieve three intertwined goals (see Table 4-2): 

a. Validation of the framework: The idea is to apply the framework to different sets 

of data to test the applicability of the framework and to get feedback for the next 

iteration. As shown in Table 4-2, the source of data to achieve this purpose is 

mathematical texts to which different suggested versions were applied. Since the 

scope of my study is within school mathematics, the 'natural' way is to look at 

textbooks and students' texts. The Internet offers a wide range of geometrical 

diagrams which I needed to see and to which I needed to apply the framework. This 

is related to the issue of generalisability as discussed below. 

b. Understanding the context of production of mathematical texts (context of 

situation and context of culture): Most of the data were intended to be collected in 

schools in the UK. I was not familiar with the UK context, including the classroom 

environment, students' interaction, modes of teaching, textbooks and the like. I 

needed to understand the context of production of mathematical texts in order to 

deepen my engagement with the data collected. To attain this purpose, I observed the 

whole class in 'normal' teaching/learning lessons, preferably, but not obligatorily, 

about geometry. I also video- or audio-recorded these lessons. In addition to the 
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observation, I collected students' texts after they solved the problems (see the tasks 

section in this chapter). 

As for the OPT, I wanted, to some extent, to understand the immediate context of 

production of students' mathematical texts (the context of situation), although I 

undertook that inquiry differently from the inquiry in the UK, because I live within 

the broader Palestinian culture and therefore am more familiar with the context. This 

difference is reflected in the data collected in the OPT in comparison to the UK (see 

Table 4-3 in this chapter). 

c. Generalisation: Collecting data in two different contexts (linguistically, socially 

and culturally) — in the UK (in English) and in the OPT (in Arabic) — offers a rich 

opportunity for the issue of generalisation in the sense that Pratt (1998) and Schofield 

(2007) discussed, especially the issue of thick description and fittingness. Besides the 

issue of generalisability, students' mathematical texts produced in this study (in two 

different languages and cultures) offered a chance for more insights into 

mathematical communication and discourse. These texts offer, for example, a chance 

to understand how mathematics is produced in different languages (English and 

Arabic), where each of them has its own tradition and writing systems (see the 

discussion of information value in Kress & Van Leeuwen, 2006). I discuss this issue 

in a separate section in this chapter (see below) and in more detail in Chapter 9. 

Table 4-2: Purposes, sources and nature of data of the study 

Purpose of data Source of data Nature/type of data 

Validation of the 
framework 

• Textbooks 
• Students' texts 
• Internet 

Mathematical texts 
(written and visual) 

Understanding the 
context 

• Observation the whole class 
• Students' work in group problem 

solving 

• Video and audio 
records 

• Field notes 

Generalisation 

• Different contexts, languages and 
cultures: applying the study in two 
different countries. 

• Different texts (textbooks, students' 
texts and texts in the Internet) 

Mathematical texts 
in English and 
Arabic 
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3.3 	Sources of data: 

The sources of the data needed to be responsive to the above-mentioned purposes 

and to be available within the context of the study (diagrams in geometry school in 

two different situations and languages). Thus, data in these sources could be divided 

into three categories based on the purpose they meet: 

a) Data for validation of the framework. Since the validation needs to be applied to 

as many diagrams as possible (and to be generalised as well); textbooks, students' 

mathematical texts and Internet were good sources to get data which achieved 

this purpose. The second source, students' mathematical texts, was obtained by 

asking students to solve two geometrical problems (see tasks of the study). 

b) Data for understanding the context of situation and the context of culture. This 

type of data could be gained from observation and field notes in the classroom 

while students learn in a 'normal' class and from observing students while they 

solved geometrical problems (Group problem solving). 

c) Data for generalising the framework. This was achieved by examining a large 

number of texts and by applying the study in two countries with different cultures 

and languages. In other words, the need for generalisation justified collecting 

data in the UK and the OPT. 

These categories are not distinct completely; they have common data which belong 

to both, such as students' mathematical texts which meet the need for validation and 

also for the generalisability of the framework. At the same time, the development of 

the framework created a need to have tasks for the study that students needed to 

complete while I observed them. Therefore, I describe these sources individually 

based on their connection with each other rather than the categories to which they 

belong. 

3.3.1 Textbooks: this study focuses on geometrical diagrams within the context of 

school mathematics in order to suggest a framework to analyse the kind of meaning 

that these diagrams might offer in the construction of mathematical meaning. Hence, 

textbooks were a source for looking at how geometrical diagrams are (re)presented in 

mathematical texts and, consequently, to inform the development of the framework. 

On the other hand, these textbook were also texts to which to apply the framework. 
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The iterative design of the study made it possible for the textbooks to play these two 

roles. In the developmental role, textbooks offer a wide variety of representations of 

diagrams that helped in the construction of the suggested framework. For example, I 

noticed the construction structure of diagrams only in textbooks (and not in the tasks 

of the study). At the same time, textbooks played a role in the validity process of the 

framework, namely in the application process, where the framework was applied to 

different diagrams which in turn offered feedback for the development of the 

framework. 

One difference between the two places in which this study took place (The UK and 

the OPT) is that in the OPT, one textbook is used for each grade throughout the 

'territories', while in the UK various alternative 'textbooks' are available for schools 

to use. Most, if not all, of these textbooks are available on the Internet. 

3.3.2 Students' mathematical texts: While textbooks 'represent' the 'official' 

discourse of mathematics, I wanted to see how students (re)present (and 

communicate) geometrical diagrams in their problem solving. Students' own 

mathematical texts play a different role from that of textbooks, though students are 

influenced by, and may adopt, to some extent, the 'official' discourse of school 

mathematics (see Morgan, 1996). In order to achieve this goal, i.e. to create students' 

texts, two geometrical problems (see section 3.6) were introduced for the students to 

solve in small groups (see section 3.3.3 below). After arriving at a solution as a 

group, students produced their individual solutions to the two tasks in written form. 

Approximately 350 texts were collected. 

The large number of texts played a tri-fold role in the study, namely in the 

development of the framework, in its application, and in the analysis process. As 

with other texts, students' texts were a source of various kinds of diagrams 

addressing the same problems. This variety informed the development of different 

versions of the framework and also provided diverse material for applying the 

different versions of the framework. The third important role was in the analysis 

process, in which I applied the suggested framework in order to construct the 

potential meanings of these texts, both in the textual function of the framework as 
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well as in analysing the communication process and taking into consideration 

different modes of communication (language, diagrams and gestures). 

3.3.3 Group problem solving: This source contributed to the purpose of creating 

mathematical texts as well as understanding the context of learning (contexts of 

situation). The idea here was to get three students to work together in solving two 

geometrical problems and to produce their individual solutions as described in the 

previous section 3.3.2. Because some research shows that heterogeneous students' 

abilities play an important role in creating effective communication of small groups 

of students (Curcio & Artzt, 1998), I consulted teachers for the selection of the 

groups to have the most effective communication. Consulting teachers also helped in 

obtaining a range of students' involvement and attitudes while they solved the tasks 

in small groups. 

As in the observation (see section 3.3.4 below), this stage of data collection included 

a video-record of the small groups working and the collection of students' written 

texts produced after solving the two problems. Where allowed, I video8- or audio-

recorded students' work in the small groups. Besides understanding the contexts of 

situation, video offers a chance to 'capture' all modes of representation and 

communication (such as the verbal, the diagrammatic and the gestural) that students 

use to solve the task. It enables us to view the data whenever we want and also to 

transcribe it for the analysis process (Jewitt, 2006). 

3.3.4 Observation: As part of understanding the context (situation) within which 

students learn and do mathematics, observation of the class was conducted before the 

group problem solving took place. Where permitted, I video- or audio-recorded the 

whole class, especially in the early cycles (1&2). Another reason for the observation 

is to 'eliminate' the effect of my presence as an external factor by getting students to 

become familiar with it. 

Field notes were taken as a result of this observation. These notes were very helpful, 

especially when the video camera was focused on specific events and could not 

'capture' everything that happened or when I was not allowed to video record the 

8  One school refused to allow use of the video camera to record students. I therefore audio-recorded 
the whole class and the groups' discussions. 
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class. Most of the field notes were written after the class, during my reflection on 

each event of data collection. 

3.3.5 Internet or diagrams-on-screen: Another source of different geometrical 

diagrams was the Internet. This source contributed, as did other sources, to the 

development of the framework especially in suggesting different kinds of diagrams. 

At the same time, the diagrams on the screen provided an area for the application and 

testing of the framework (validation process). 

Here I distinguish between two types of diagrams on the Internet (or diagrams on the 

screen): static and dynamic diagrams. Static diagrams-on-screen are similar to those 

on the page (paper, book, etc.) in the sense that they do not move physically and, 

thus, the suggested framework is applicable to these diagrams as well. In other 

words, this framework is applicable to 'any' 2D geometrical diagram, whether it is 

drawn on the page or on the screen, so long as these diagrams are not in motion. 

Dynamic diagrams, on the other hand, are diagrams-in-motion in the material sense 

that we see them moving. Dynamic diagrams are beyond the scope of this study and, 

hence, I do not claim that the suggested framework is applicable to this type of 

diagram. More investigation is needed to explore this question. 

3.4 	Data collection: 

Before collecting any data, the necessary preparations had been done, such as 

addressing ethical considerations (academic and legal aspects, including obtaining 

approval and signed consent — see section 4 in this chapter), contacting the schools 

and teachers and later conducting the study. However, there was a difference 

between my collection of data in the UK and in the OPT, because I was not able to 

travel to the OPT freely. Thus, I describe here the methods of data collection 

separately. Table 4-3 shows a detailed picture of the study's collected data in terms of 

type of data (Cycle 2 or Cycle 3), students' year or grade in school, place and date. 

3.4.1 Data collection in the UK 

Collecting data took place at different times (see Table 4-3). I will not refer to 

particular sets of data during my description, because the same procedures were 
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followed in each of the schools where I collected data. I observed and video-recorded 

the whole class, with the exception of one school which did not allow video 

recording but rather only audio recording. I recorded the classes for one to three 

lessons. Usually, I sat behind pupils at the back of the class, to minimise the effect of 

my presence and the camera. After the lesson, I wrote my notes, comments and 

impressions about the lesson, teacher and students. In general, and based on school 

demands, the teacher took responsibility for talking to the students and arranged any 

contact, needed documents or papers for my data, meaning that I rarely talked 

directly to students unless they asked me questions about the problems/tasks. The 

students were informed in advance about problem solving and group work, which 

took place in a lesson dedicated to that purpose. The teacher distributed pupils into 

different groups. Ideally, there were three students in each group to work on the 

problems, however, and because of the space available, we (the teacher and I) agreed 

to have three students in the group that was to be video- (or audio-) recorded and to 

have more than three students in the other groups. 

I assigned a number for each group and asked the students to write the group number 

on their texts. The reasons were that, on one hand, I wanted to see the whole group 

work and, on the other hand, I needed an administrative tool to organise the 

collection of the texts. Each problem was addressed separately. The first problem 

was distributed, and students were asked to work together and then to write their 

individual solutions on separate plain paper, which were then collected. Only after 

that process was completed was the second problem distributed. The students were 

told that ten minutes were expected to be sufficient to discuss the problem, and five 

minutes were expected to be sufficient to write their own solutions, but students were 

allowed to take more time if they needed it. The students were allowed to ask me any 

questions while solving the problems. 

Where it was possible, and in order to understand the context of learning and 

teaching in the UK, I observed many different lessons in different classes with the 

same teacher (not necessarily mentioned in Table 4-3). For example, in KNT School 

I observed lessons for Y10 (14 year-old) and Y11 (15 year-old), and Y10 in LON 

School as well. 
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3.4.2 Data collection in the OPT 

Because of the political situation and the Israeli restrictions on our movement (as 

Palestinians), I could not conduct the data collection myself. Thus, with agreement of 

my supervisor, I asked a colleague/researcher to collect the data in the OPT. Every 

possible arrangement had been made to make sure that the same procedures were 

applied in schools in the OPT. I take full responsibility for the data collection in the 

OPT mentioned in this study. 

The researcher in the OPT holds a Masters Degree in social science. She collected 

the data in the OPT in Cycles 2 and 3. In Cycle 2, I sent her the two problems (in 

Arabic) and a general letter about my research and its aim to the students whom she 

contacted and who agreed to participate in the study. The researcher in turn contacted 

the participants and arranged with them a location to conduct the data collection. 

Since the purpose of that data was to explore how the framework might be applied to 

some mathematical texts and to obtain students' mathematical texts, the collection of 

data took place in informal settings (students' houses and not classrooms). Five 

students in Grade 8 (13 year-old) participated in the study: two males working 

together and three females working together in different places and at different times. 

The researcher sent me all their solutions and the video record. 

After applying the framework to the data from Cycle 2, I made slight amendments to 

one problem. In Cycle 3, my purpose was to apply the suggested framework to 

students' mathematical texts in a classroom. I contacted the school (a private one) 

and made the necessary arrangements with the principal of the school, explaining the 

aim of the study, determining in which grade to collect data and writing a letter to the 

parents. After that, the colleague researcher (the same one in Cycle 2) contacted the 

school and arranged a date to conduct the observation and the group work, while 

another colleague did the video record. 

Here I must comment about students' texts produced in students' home and in the 

classroom. Although I think that that there was no difference between these two data 

in relation to the research aim in this study, I prefer to have data from the context of 

classroom, where students learn school mathematics and discuss it with each other, 

rather than students' houses. I collected data in students' homes to test if the tasks 
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were good tools for collecting data and if the translation (from English to Arabic) 

was appropriate. 

The same procedures in collecting data in the classroom in the UK were conducted in 

the Palestinian school (observation, students' work in groups, the number of students 

in one group, the time needed, how to collect the texts, etc.). For the class 

observation, a video record of one of the sessions was sent to me. 

All the arrangements had been done through intensive communication by all possible 

means such as phone, e-mail and mail. 

Table 4-3: An overview of data of the study 

Cycle Date(s) Class code 
Observation Group work Number of  

students' 
texts* 

General comments 
record (min) record (min) 
video audio video audio 

Cycle 1 Not applicable 2 mathematical texts (English 
and Arabic) 

Cycle 2 

13,14,19,20 
June 2007 LON1Y8 180 60 57 

2 groups were recorded. The 
rest of the class worked in 

groups as well. 

21 March 
2007 

PALI G8 60 10 
Individuals and not class 
members. Recording took 
place in students' homes. 

Cycle 3 

27 February 
2008 PAL2G8 45 30 37 

20 Nov — 6 
Dec 2007 

LON2Y8 480 31 32 ReMath data.9  
same teacher in Cycle 1 

LON3Y7 19 54 2 hours observation 

LON4Y9 0 1 hour observation 

10-12 Dec 
2007 

KNT5Y7 100 26 55 
Y7&Y9 have the same 

teacher KNT5Y8 50 21 56 

KNT5Y9 100 29 53 

Total (recordings in minutes) 705 250 200 76 
354 

1231 

Total (recordings in hours) 11.75 4.17 3.33 1.27 20.5 

9  ReMath (Representing Mathematics with Digital Technologies) funded by the European 
Commission FP6, project no. IST4-26751. For more details see http://remath.cti.gr. 
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The codes in the tables are as follows 

LON, KNT Schools in the UK Y8 12-13 years old 

OPT 
School/students in the Occupied 

Palestinian Territories 
G8 13-14 years old 

Comments on Table 4-3: 

• The use of web-based geometrical diagrams is not mentioned in the table because 

it was continuous and not specified in time. I made use of the two texts 

mentioned in Cycle 1 throughout the study, therefore I do not specify a date. 

• The teacher for LON School was the same in Cycle 2 and Cycle 3. 

• KNT school did not allow the video record, and therefore all the data are audio 

recorded. 

• The long duration of observation (480 minutes) is due to the fact that I observed 

that class as part of ReMath project. This data was used as background 

information to understand the context of learning for the group of students who 

participated in my study. 

3.5 	Two cultures and two languages: Students and schools in the study 

As mentioned earlier in my discussion of generalisability as one motivation for 

collecting data (sections 3.1-3.3 and Table 4-2), I wanted to apply the framework to 

different contexts, and I chose to apply it in the UK and in the OPT. The data was 

collected in three different schools: two in the UK and one in the OPT. That means 

that my study includes two cultures and two languages, with many differences in 

writing system, traditions and practice. I deal with this issue in Chapter 9, but here I 

want to give a general description of the participants of the study and their schools. 

3.5.1 Education in the UK: 

Schools in the UK are either run by the state or are independent, depending on 

whether they are funded by the state. Their status affects the extent to which they are 

bound by legislation concerning curriculum. However, there are many different types 
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of state schools and independent schools (see www.direct.gov.uk  for more details). 

State schools, funded by the government and following the National Curriculum, are 

either Mainstream (which, in turn, includes different types such as: Community 

schools, Foundation and Trust schools, Specialist schools, etc.) or State schools with 

particular characteristics (which, again, include different types of schools such as: 

Academies, Faith schools, Grammar schools, etc.). Independent schools, on the other 

hand, receive no funding from the government, and they are either public or private 

(though they are called private schools in general). Sometimes, the term 'private' is 

used to distinguish, among independent schools, between 'private' and 'public'. The 

name 'Public' schools is a remnant of the historical willingness of these schools to 

accept students from any background, if they can pass an entrance exam and pay the 

fees or are supported by a scholarship. Public schools are generally old and 

established, enjoy a high status and high academic standards, and are expensive. This 

is a closed and privileged group. On the other hand, anyone can set up a 'private' 

independent school, and the quality of these schools varies (Morgan, 2009, personal 

communication). See www.publicschools.co.uk  for more details. 

All state schools have to follow the National Curriculum which is organised in 'key 

stages'. There are five key stages (KS): Early Years Foundation Stage (for students 

under the age of five - 3&4 years old — which is the compulsory school age), KS1 (5-

7 years-old or Year 1-Year 2), KS2 (7-11 years-old, Y3-Y6), KS3 (11-14 years-old, 

Y7-Y9), and KS4 (14-16 years-old, Y10-Y11). Students in the National Curriculum 

are assessed based on 'attainment targets' that they are 'expected' to reach in subjects. 

These targets are divided into eight levels (1 to 8). Each of these levels is described, 

as is 'exceptional performance' above level 8 for each subject in each key stage. 'For 

example, by the end of Key Stage 1, most children will have reached level 2, and by 

the end of Key Stage 2, most will be at level 4' (www.direct.gov.uk). Starting from 

Level 4, mathematics, in KS3, is designed around four categories: mathematical 

processes and applications, numbers and algebra, geometry and measures and 

handling data. For more details about the National Curriculum, see the website of 

Qualifications and Curriculum Authority, http://curriculum.qca.org.uldindex.aspx. 

The students who participated in this study were in KS3, 11-13 years-old in 

secondary schools. School 1 (LON) is a state secondary school, 'a co-educational 

voluntary-aided comprehensive school for pupils aged 11-18 years', located in a 
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middle class area in London. The number of students is around 900. In this school, I 

collected data from three classes: two classes from Year 8 (LON1Y8 & LON2Y8) in 

different academic years and one class from Year 7 (LON3Y7). School 2 (KNT) is a 

selective grammar school outside London. In this school, I collected data from three 

classes: Year 7 (KNT5Y7), Year 8 (KNT5Y8) and Year 9 (KNT5Y9). This school 

specialises in mathematics and computing and was rated as 'Outstanding' in the 

Ofsted (Office for Standards in Education) inspection report in 2007. It is an average 

size school, teaching approximately 700 British girls, predominately White, from the 

top 25% of the ability range and coming from a wide geographical area. All the 

classes had different levels of attainment. 

A typical mathematics lesson in schools is described by the UK Department for 

Education and Skills (Department for Education and Skills (DfES), 2001, p. 28) as 

follows: An oral and mental starter (about 5 to 10 minutes), the main teaching 

activity (25-40 minutes) and a final plenary to round off the lesson (5-15 minutes). 

3.5.2 Education in the OPT: 

Education for Palestinians was not designed and implemented by Palestinians until 

1994, when the Palestinian National Authority was established (for more 

information, see Jerusalem Media & Communication Center, 2001; Palestinian 

Ministry of Education and Higher Education, 1996; Shakhshir Sabri, 1992). There 

are three types of schools in the OPT: Governmental (75%), UNRWA (United 

Nations, 13%) and Private (12%). The majority of students enroll in the 

governmental schools (70%) while around 11% of the total students enroll in the 

private sector (Palestinian Ministry of Education and Higher Education, 2007/2008), 

and the remainder study in UNRWA schools. There are two main cycles in the 

Palestinian educational system: Basic Cycle (which is divided into lower stage —

Grades 1 to 4 — and upper stage — Grades 5 to 10 —) and Secondary Cycle (Grades 

11-12, 17-18 year-old). Governmental schools provide education free of charge to all 

students up to Grade 12. UNRWA provides education up to Grade 9 free of charge as 

well, after which students have to move either to Governmental or Private schools. 

The Private schools charge fees, and although they have their own regulations, they 
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have to follow the general guidelines and teach the textbooks suggested by the 

Ministry of Education and Higher Education (MoEHE). 

The participating students were in Grade 8: 13 year-olds in a middle-class Private 

school in the West Bank that charges a fee. The school provides classes for 

Kindergarten up to the final year of school (Grade 12) in two separate buildings: one 

for young children (KG-4, 188 children) and another for Grade 5 to Grade 12 (463 

students). It has its own regulation for accepting new students and setting the school 

year calendar. This school adopted the British system for the year studied (08/09), 

dividing the school year into three terms. The school offers students the possibility of 

studying science and mathematics in English in addition studying these topics in 

Arabic from the National Curriculum. Beginning at Grade 9, for two years, the 

school offers the International General Certificate of Secondary Education (IGCSE) 

programme for its students, followed by A Level for another two years (Grades 11 & 

12), which is equivalent to the Palestinian general certificate for secondary education 

(Tawjihi). 

In the Palestinian education system, students learn together regardless of their 

achievement and assessment. The main mode of assessment is based on written 

exams that take place at the end of the school year. Because it is a private school, this 

school enjoyed a certain 'freedom' to assess its students based on its own criteria 

which include tests, quizzes, 'behaviour', participation in the classroom, etc. These 

criteria, however, cannot compete for significance with the 'official' assessment, the 

high school final exam given by the government — Tawjihi — which is required by 

universities in the OPT and abroad. 

In a meeting I conducted with the head of the mathematics department in the school, 

he told me that the department had agreed on how to proceed in an ordinary class of 

45 minutes duration: Preparation for the class (about 5-10 minutes) consisting of 

reminding the students of a previous lesson or prior knowledge in order to get them 

into the main lesson, lasting about 25-35 minutes. The lesson is concluded by general 

questions for assessment or feedback (5-10 minutes). 
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3.6 	Tasks of the study 

In order to have students' mathematical texts validate and refine the suggested 

framework, I selected two geometrical problems for the students to solve. The 

selection process was based on the following criteria: 

1. The solution of each task should require drawing diagrams in order to solve 

the task. This criterion is essential since the framework needed to be applied 

to diagrams at the first instance. 

2. Each task should address a different geometrical subject (for example, proof, 

measurement, construction, etc.). This criterion allows a variety of solutions 

and, hence, a rich opportunity for the validation and refinement of the 

framework. 

3. The task should not be trivial, so that students would need to communicate 

and discuss it. The task should encourage communication and discussion 

among students. 

I chose two problems that have been used in other studies: the Trapezoidal Field task 

and the Proof problem. In the following I describe each of them separately. 

Task 1 - the Trapezoidal Field task (TF): Evans, Morgan & Tsatsaroni (2006) used a 

mathematical problem (Figure 4-4) to explore emotions in learning mathematics and 

power relationships among school students. The source of this problem is Santos & 

Matos (1998, p.111), as they mentioned. The problem says: 

Mr. Antonio's lawn is shaped like a rectangular trapezium: the bases are 
16 and 24 meters long and the height (PL) is 10 meters (..). To water 
the lawn, Mr Antonio has two water 'sprinklers', one next to P, and one 
beside E. (..) How far must the sprinklers throw the water to irrigate the 
whole lawn? (Evans et al., 2006, p. 216) 

E 

Figure 4-4: The Trapezoid Field task (TF) 
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Here are the reasons that selecting this task meets my criteria: 

1. The description in Evans et al. (2006, p. 216) shows that this task meets 

criterion no. 1; students chose 'to use measurement rather than (Pythagorean) 

calculation.' In other words, students tried many drawings to determine the 

positions of the needed two points. 

2. This task is different from task 2 (see below, the Proof task) in the purpose or 

the needed mathematical solution or activity. Solving the problem is expected 

to require the use of Pythagoras theorem or measurement. This meets 

criterion number 2. 

3. The discussion described by Evans et al. (2006) and a look at the video (in 

Cycle 1) showed how students struggle to solve this problem. They discuss 

their solutions with each other and sometimes ask their teachers or even their 

colleagues in other groups. This meets criterion number 3. 

This task (TF) is presented as a 'real-life' problem-type that asks students to find two 

distances or the value of the length of two segments. One possible solution is to find 

the radii of two circles constructed at E and P. The first one will be the radius EM. 

The circle with its centre at E and radius EM, will cross LM with a point, say N. The 

second needed radius will be PN. In order to find the length of each of these sides, 

Pythagoras theorem is an option. Alternative solutions might include measurement 

and construction using the notion of scale. One may construct an exact diagram with 

exact circles at E and P and then measure the needed lengths. 

Task 2- the Proof problem (Pf): The second task (Figure 4-5) has been used in the 

Longitudinal Proof Project that aimed 'to understand further how students develop 

their competencies in mathematical reasoning over time, and how schools and 

teachers promote this development' (www.ioe.ac.uk/proof). This task was presented 

as a part of other problems that students need to solve on their own within a time 

limitation. It asks students to decide if they agree with the claim presented and to 

explain their decision. 

This task also meets the criteria as follows: 
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1. The coding scheme and the results in Kuchemann & Hoyles (2006, pp. 588-

589) suggest various students' responses to this task, especially drawing 

counter examples (Kuchemann & Hoyles, 2006, p. 590). This meets criterion 

number 1. 

2. This task was different from task 1 (measurements, using Pythagoras 

theorem) because it asks for proof or investigation of a proffered claim. 

Therefore, it meets criterion number 2. 

3. Kuchemann, the Project Research Officer in the Proof project, in a personal 

communication (23 February 2007) agrees that this problem does create 

communication and discussion between students. He himself used it with 

groups of students who interacted with each other trying to solve this 

problem. Moreover, the results of the Proof project show that this task was 

not trivial for students: almost half (46%) of Year 8 students answered this 

problem incorrectly or correctly but without explanation. Thus this task meets 

criterion number 3. 

GI 	Darren sketches a circle. 	He then draws a quadrilateral 	He then draws the diagonals 

He calls the centre C. 	PQRS, whose corners lie on 	of the quadrilateral. 

the circle. 

P ,„iiii 

r t) 
R 

Darren says 

"Whatever quadrilateral I draw with corners on a circle. 

the diagonals will always cross at the centre of the circle". 

Is Darren right? 

Explain your answer. 

Figure 4-5: The Proof task (Pt) 

In comparison to task 1, this task is presented as a 'pure' mathematical one that asks 

students to decide if they agree with the claim presented or not and to explain their 
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answer. Again, there are different approaches to solving this problem. One possible 

idea is to try drawing different diagrams and to see if the claim works or not (trial 

and error or investigation process). Another approach is to find only one diagram 

where the claim does not work (proof by counter example). Actually, the latter 

solution to some extent also requires an investigation process in order to find the 

counter example. A third possible approach is to prove that the only quadrilateral that 

works in Darren's claim is a rectangle. 

	

4. 	The development of the diagrammatic framework: A story inside a story 

In this section, I present a general account of the story of the development of the 

diagrammatic framework. The first subsection (4.1) presents a brief story of the 

development of Framework 0 and Framework 1 followed by a detailed story about 

Framework 1 (section 4.2). Section 4.3 describes the movement from Framework 1 

to Framework 2 and, finally, section 4.4 provides a brief story of the movement to 

Framework 3, the ultimate aim of the current study. At the end of each section, I 

reflect on how my thinking evolved and changed. In doing so, I try to summarize my 

thinking at each version of the framework while at the same time highlighting the 

main features which were the focus of the next developed version of the framework. 

	

4.1 	The beginning: Framework 0 and Framework 1 

I started to develop the framework by reading and making some conjectures about 

the structure of the expected framework through the interaction with the literature. 

This is the Iteration 0 in Figure 4-2, or what Pratt (1998) called Bootstrapping 

iteration in order to initiate the process. Then I applied that framework to two 

mathematical examples in English and Arabic (Figure 4-6 and Figure 4-7), the '2 

examples-C1' in Figure 4-2. Table 4-4 shows the application of Framework 0 to these 

mathematical texts. This interaction is Iteration 1, Exloratory, in Figure 4-2. The 

following two paragraphs are what I wrote at this beginning of the journey (lightly 

edited). 

The diagram [in Figure 4-6] shows an equation of the circle when the 

origin is the centre of a circle, using Pythagoras theorem. Presenting the 

diagram in the centre of the page suggests the importance of this diagram 
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and the demand of interaction. At the same time, students need to look at 

this diagram while they read the written text in order to follow what is being 

written and drawn. 

[In Figure 4-7,J two types of visual representations are offered: a rhombus 

(two with different features) and a Venn diagram. The two rhombuses are 

presented to show the characteristics of the rhombus: the upper one 

accompanies the definition and the lower one is to be used for the proof of a 

theorem: 'the diagonals of a rhombus are perpendicular and they bisect 

each other'. Venn diagram is used here to indicate the relationships among 

geometrical shapes. 

Figure 4-6: A mathematical text in English 
(http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-circles-2009-I.pdf,  p. 3) 
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Table 4-4: Preliminary framework: Framework 0 (an overview) 
Applying the frameworks of Morgan (2006) and Kress & Van Leeuwen (2006) to specific examples 

Representational/ideational Interactive/interpersonal Compositional/textual 

Nature of mathematics 
(image of mathematical 
activity) 

The roles of the participants 
(relationships to each other 
and to the subject matter) 

The role of diagrams/ 
shapes within the context 
of situation 

Figure • Generalisation: symbols -and • Participants as specialists: • Relationship to the 
4-6 not numbers- suggest using general (not page: The diagram is 

generalisation and not a specific) diagrams presented in the centre 
specific example. suggests speciality among of the page, suggesting 

• Subject matter: the origin is the participants. importance. 
the centre of a circle suggests • Authority/membership/sol • Relationship to the 
the equation of circle. idarity: although the written text: the written 

• Proof/human agent: the written texts use 'we', the text and the diagram 
dotted segment (PN) suggests diagram suggests the together provide a 
'action' done by people 
towards proof. 

• The right angle sign (the 
angle PNO) raises using 
Pythagoras theorem. 

authority between the 
producer and the reader in 
presenting the details and 
highlights the 
perpendicular line. 

proof. 

Reader/viewer's roles: 
students are expected to read 
and accept the generated 
('proved') equation (passive 
role). 

Figure • The object: the upper • Participants as specialists: • Relationship to the 
4-7 rhombus by itself is presented the absence of symbols or page: The diagrams are 

without symbols or numbers numbers in the upper presented in the left- 
which emphasises the general rhombus suggests hand side of the page 
image about mathematics speciality among the (Arabic) that suggests 
(timeless and non-human participants. presenting new 
(Morgan, 2001)). • Authority/membership/sol information. 

• Generalisation: The signs on idarity: the use of colour • Relationship to the 
sides and angles suggest to show the characters tics written text: there is no 
general characteristics of of rhombuses (and the reference to the upper 
rhombus (equal sides and presenting example in the rhombus in the text 
opposite angles are equal) lower rhombus) suggest when presenting a 
(not a specific example as the relationship of authority definition, while the 
lower rhombus). between the producer of other two 

• Subject matter: The absence the text and the reader. diagrams/shapes are 
of parallel signs on sides 
suggests that rhombuses are 
mentioned here as special 
cases of parallelograms (such 
as rectangles and squares) 

• Reader's/viewer's roles: 
students are expected to 
read and solve the 
problems based on what is 
presented for them 

mentioned in the text. 

(see Venn diagram). (passive role). 
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Figure 4-7: A mathematical text in Arabic 
(http://www.pede.edu.ps/textbooks/math  G8 p2.pdf,  p. 43) 
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A reflection: The first thing I can say is that social semiotics as a theoretical 

approach was not sufficiently clear for me, and, consequently, there was no clear 

distinction between the three functions (ideational, interpersonal and textual). 

Reading Table 4-4 and looking back now reveals an immature understanding of the 

role of each meaning in meaning-making process. Ideational meaning, for instance, 

includes different aspects, and even some (later identified) interpersonal aspects such 

as the right angle sign. My textual analysis focused on the position of diagrams in a 

mathematical text rather than the whole text and the internal relationships between its 

elements. Moreover, my thinking did not properly distinguish diagrams from the 

verbal text. In conclusion, I was looking at the surface of a mathematical text 

unequipped theoretically. I was at the beginning of the journey — on the periphery of 

the discourse. That meant more readings. 

4.2 Framework 1 

As a response to the feedback from the application process of Framework 0 to the 

two mathematical texts, I focused more on the literature of social semiotics 

especially on 'Reading Images' (Kress & Van Leeuwen, 2006) and 'Writing 

Mathematically' (Morgan, 1996b). Furthermore, and as a result of Cycle 1, I 

constructed a new version of the framework, Framework 1 (shown in Table 4-5) in 

which I made distinction between two types of diagrams, narrative and conceptual. 

Moreover, I suggested that the presence of a vector is the distinguishing feature 

between them. Here is what I wrote: 

Since my focus is on the visual forms in the mathematical texts, my analysis 

will start by looking at these forms. The representational (ideational) 

meaning in diagrams is realised by determining the nature of the diagram: 

whether it is a narrative structure or conceptual structure. The main 

distinguishing feature is the presence of an action or not, that is, following 

Kress & Van Leeuwen (2006), the presence of a vector. Vectors might be a 

curved arrow, 'attenuated' vectors (dotted or solid line) or 'amplified' 

vectors. In both structures, we need to look at the types of processes and 

participants active in them. Based on the Hallidayan SFL, Kress & Leeuwen 

state that in narrative structure, the type of processes is that of 'happening, 
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'doing' or 'going on, and the participants are active; they are carrying out 

the identified process. In mathematical discourse, these processes might be 

generalisation, measurement, naming, etc. In conceptual structures, no 

actions are being carried out; the participants are, thus, not active. There 

are three types of processes that represent participants 'in terms of their 

class, structure or meaning' (Kress & Van Leeuwen, 2006, p. 59): 

classificational, analytical and symbolic. 

The distinction between narrative and conceptual structure of diagrams was made as 

a result of my interaction with the work of Kress in reading images and the work of 

Morgan in anaylysing the verbal mode in mathematical texts especially the notion of 

the represention of mathematics and mathematical activity/process. In the interaction 

with the data, I first applied this framework to the same previous two mathematical 

texts (Figure 4-6 and Figure 4-7), the '2 examples-C1' in Figure 4-2. This is Iteration 

2 in Figure 4-2. The following paragraph is a sample of what I wrote at that stage of 

the study: 

In her linguistics approach, Morgan (1996b) uses the transitivity system, 

based on Hallidayan's SFL, to examine the picture of the nature of 

mathematics and the mathematical activity presented in a mathematical 

text. That could be done by identifying the ongoing processes which are 

represented in a verbal text (or diagram). Example 1 (Figure 4-6) is an 

illustration of a narrative structure because of the presence of the dotted 

line PN which I considered as a vector. The dotted line is used, in geometry, 

to represent an action that has been done (or needs to be done) to solve a 

problem or to show how a problem is being solved. The PN line constructs a 

triangle with the x-axis, and this triangle is a right one (indicated by a small 

square at N). This right triangle suggests the use of Pythagoras theory. Thus 

a proof activity is going on. The participants in this activity are the points P, 

N, 0 and the right-angled triangle formed as a result of drawing the line 

PN. The ongoing mathematical activity presented in the diagram is showing 

or proving by Pythagoras theorem that r2  = x2  + y2  which is the equation of 

a circle of radius r, and its centre is the origin. 
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Table 4-5: A preliminary suggested framework: Framework 1 (an overview) 
Based on the frameworks of Morgan (2006) and Kress & Van Leeuwen (2006) 

Representational/Ideational 
meaning 

Designing social actions & 
constructs 

Interactive/Interpersonal 
meaning 

Designing the position of 
the viewer' 

Compositional/Textual 
meaning 

Unity & Coherence 

• Nature/image of 
mathematics and 

mathematical activity 

The picture of mathematics 
might be represented through 
the examination of types of 
processes and participants 
acting in them. This meaning 
(ideational) is realised by 
determining the nature of the 
diagram; whether it is a 
narrative structure or 
conceptual structure: 

* Narrative structures: 
(designing social actions) 

'goings-on'- 'doing', 
'happening', 'sensing', 
'meaning' (vector: action) 

Processes: generalisations, 
measurements, naming, .. 

participants: active 

Participants: not active 

• Roles and 
relationships between 
author/ producer and 

viewer 

There are two kinds of 
participants in the 
(re)production of diagram: 
represented participants 
('things' depicted) and 
interactive participants 
(real people, the producers 
and the viewers). Hence, 
there are three kinds of 
relations between these 
participants. These 
relations are realised by: 

* Contact: Does the 
diagram offer information 
not mentioned in the co-
text? Is the diagram drawn 
'differently' in a way that 
involves the viewer's 
attention? 

* (Social) Distance: 
personal, impersonal. 

(drawing the diagram 
neatly vs. roughly) 

* Attitude/point of view: 
involvement vs. 
detachment, relationships 
(power, equality). 

(specialty, certainty and 
authority) 

* Modality (design the 
reality/truth) (naturalistic 
vs. scientific modality). 
'shared truths', 'imaginary 
we'— mathematical 
community. 

• Unity & Coherence 

The way that elements 
are presented/ placed in 
a text contributes to its 
meaning. This textual 
meaning relates the 
ideational and 
interpersonal meanings 
together into a 
'meaningful whole' or a 
message by: 

* Information value:  
'placement of the 
elements': left-right, 
top-bottom, centre-
margin. 

* Salience: 'eye-
catching' or 'attract the 
viewer's attention': 
colour, size, perspective 
(foreground, 
background, overlap, 
appearance of human 
figure) 

* Framing: separation 
such as frame lines, 
white space, colour, etc. 

What message(s) does 
the whole/integrated 
mathematical text 
present? Examples: 

'instructions for a 
calculation, argument, 
new mathematical 
concept or procedure, 
proof or a solution to a 
problem, story', etc. 

* Conceptual structures: 
(designing social constructs) 

Processes: 

• Classificational: classify 

• Analytical: part-whole 

• Symbolic: 
meaning/identity of 
participants 
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However, I did not elaborate more on what meaning a vector conveys or how its 

presence may help me to 'read' the mathematical process that is going on. Instead, I 

considered the presence of the dotted line as a demand of the viewer to draw it in 

order to prove the equation. I recall, here, what I wrote about the presence of the 

dotted line: 

The dotted line (PN) needs to be drawn in order to prove the equation. This 

suggests that a human agent exists, and, consequently, the image of 

mathematics is as a human practice rather than impersonal. The labelling 

process also emphasises this image; different kinds of labels are presented: 

measurements (r, x, y), names (0, N), variable (P(x, y)), or property (the 

right angle symbol at N). 

Looking now at this analysis reveals that there is confusion about the relationship 

between the engagement with the diagram and the presence of the human agent. It 

seemed to me that at that time, I thought that if there is a need to draw a diagram, and 

that a student or a mathematician is asked to draw it, then this means human agency. 

Later, I realised that this is not the case. Human agency must be presented within the 

diagram in order for us to say that there is human agency. This presentation needs to 

be explicitly represented, such as by a hand drawing a line or measuring an angle 

using a protractor, etc. In linguistic texts, the human agency is exhibited by using 

pronouns such as 'we', as in Figure 4-6. 

Furthermore, at that stage of analysis I looked at the use of symbols on the diagram 

instead of specific numbers to express the length of sides or points. I considered the 

use of symbols (such as x, y, r) instead of specific numbers to name the points and 

the sides to suggest a general principle, such as representing the equation of a circle 

where the centre is the origin, as opposed to a specific example. 

In example 2, [Figure 4-7] , there are three shapes; two rhombuses and a 

Venn diagram. The upper rhombus and Venn diagram are conceptual 

structures (not narrative) since no vector or directional component is 

presented in them. They are, respectively, symbolic and classificatory 

structures. 'Symbolic processes are about what a participant means or is' 

(Kress & Van Leeuwen, 2006, p. 105) and they are either attributive 

(showing 'a property or attribute of an object) or identifying/suggestive 

96 



(showing 'an identity between two objects) (Morgan, 1996b, p. 81). The 

upper rhombus is an example of identifying symbolic structure. The diagram 

has only labels, and it might be replaced by a statement such as: this 

diagram is a rhombus. This statement, following Hallidayan SFL, is an 

identifying relational process. Actually the written text beside the diagram is 

a definition of the rhombus (I translate): 'it is a parallelogram in which two 

adjacent sides are equal (and this means that all sides of the rhombus are 

equal)'. That written text includes identifying and attributive relational 

processes. The Venn diagram is a classificatory structure presenting 

relationships between rhombuses, parallelograms and quadrilaterals. 

As for the lower rhombus, here what I wrote at an earlier stage: 

The lower rhombus, on the other hand, is a narrative structure with dotted 

lines (which represent its diameters) that need to be formed in order to solve 

the problem. In this case, human agency is clearly needed; therefore, the 

mathematical activity is portrayed as human-made. 

Again, looking at this analysis now, I can observe the same approach mentioned in 

example 1. There is no elaboration regarding the existence of the dotted line and 

what type of (mathematical) process it represents. Moreover, there is confusion 

between the ideational and the interpersonal meanings regarding the issue of the 

demanded action of drawing the line from the viewer. 

Later, I applied this version of the framework to students' mathematical texts from 

the first cycle data collection, the 'students' texts-C2' in Figure 4-2, and here is an 

extract of what I wrote: 

Following Morgan (2006, p. 231), the first step in analysing the 

representation of the nature of mathematics 'is to look at the objects 

represented in the text and the processes they are involved in and to identify 

who are the actors in those processes.' The main mathematical activity and 

processes used in students' communication are measurements, where 

students use compasses and rulers to draw diagrams and to write 

'scale= 1 cm:2m'. This type of processes suggests that mathematics is 

constructed by doing. 
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I also applied the suggested framework to some diagrams from the Internet as shown 

in Iteration 2 in Figure 4-2. 

A reflection: 

The first idea that comes to me in reading this table is that the use of the conventional 

terms of social semiotics started to emerge, though in a very naïve way. Now I 

identify unsettled elements which needed further investigation. 

One of the main improvements was the use of directionality, the presence of a vector, 

as the distinguishing feature between narrative and conceptual structures of 

diagrams. Although the use of directionality was very naïve and 'straightforward', it 

contributed effectively to the development of the framework and to my personal 

development as a researcher. It helped me to 'dig in' and to work closely with 

mathematical diagrams and written texts. 

For instance, although I had identified the rhombus in the Arabic text as a narrative 

structure because of the dotted lines in it, I could not answer my question to myself: 

so what? What is the narrative or the story behind it? In other words, there was a 

need for interpretation and meaning making of that story, and that meaning has to be 

mathematical. As I will present in the following stage of development, my notion of 

directionality was challenged when applied in geometry. The main challenge to that 

notion was the different mathematical meanings of arrows as they appear in 

geometry. 

4.3 Framework 1 4 Framework 2 

As a result of the interactions with the collected data in Cycle 2, the main challenge I 

faced was the different meaning of arrows in the geometry context. While Kress & 

Van Leeuwen (2006) suggest that the presence of an arrow indicates the 

directionality feature, and hence the structure of a diagram will be narrative, arrows 

in geometry have different mathematical meanings, such as parallelism. For example, 

looking at the accompanying diagrams to the definitions of line or angle in geometry 

such as diagrams in Figure 5-2a&b raised questions, such as what action is 

happening here? Such questions led me to see the different uses of arrows in 
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geometry. I present them in Figure 5-2, as taken from the different sources of data 

used in the current study: Internet, mathematics textbook and mathematical students' 

texts collected for this study. 

As a result, there was a need to look for a different distinguishing feature between 

the narrative and conceptual structures of diagrams. This led me to suggest the 

temporal factor as a distinguishing feature. See Chapters 5 and 6 for more details. 

By temporal factor I mean that there is a representation, within the diagram, of the 

time sequence in drawing the diagram, or there is a timeline one can follow to 'read' 

or to make sense of that sequence. In other words, time has elapsed (and sometimes 

is still elapsing) and this 'time' is seen or observed in the diagram in different ways. 

In this sense I distinguish four structures of narrative diagrams: directional, dotted, 

shaded and construction. These structures have been modified and extended to five 

structures as in the following stage. Table 4-6 shows an overview of the new version 

of the framework. 

Table 4-6: Reading geometrical shapes: Framework 2 (an overview) 

Representational/Ideational 
meaning 

Designing mathematical 
activities & objects 

Interactive/Interpersonal 
meaning 

Designing the position of 
the viewer' 

Compositional/Textu 
al meaning 

Unity & Coherence 

• Nature/image of • Roles and • Unity & 
mathematics and relationships between Coherence 

mathematical activity author and viewer 
There are two levels to 

This meaning (ideational) is The realisations are: look at this meaning: 
realised by determining the 
nature of the diagram; * Contact: 1) design/organisation 
whether it is a narrative • Labelling (notations, of the text: 
structure or conceptual specific quantities or • Information value 
structure: measurements, variable • Salience 

names) • Framing 
* Narrative structures: • Dotted line 

• Directional structure • Shading 2) the relationship 
• Dotted structure * (Social) Distance: between the visual and 
• Shaded structure neat vs. rough diagrams the verbal: 
• Construction structures * Attitude/point of view: • Inclusion structures 

* Conceptual (Symbolic) involvement vs. • Distinct structures 
structures: detachment, relationships 

* Modality (design the 
(Linked-distinct, 
Implicit-link • Symbolic Suggestive 

• Symbolic Attributive reality/truth) (naturalistic 
vs. scientific modality). 

distinct) 
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4.4 Framework 2 -3 Framework 3 

My switch to the temporality feature, rather than directionality, had to be tested on 

different diagrams, including the first two examples (Figure 4-6 and Figure 4-7), 

students' texts, textbooks and the Internet. (This is Iteration 3 in Figure 4-2 where 

different sources of data were tested: 2 examples-C1, students' texts-C2, students' 

texts-C3 and Internet diagrams respectively.) I also identified a new category within 

the narrative structure, the sequence of diagrams in which I noticed the temporal 

factor as an indicator of narrative. One reason which led to this identification is the 

way in which the participant British students worked on Task 2 of the study. The 

common practice among them was to draw at least two diarams showing their 

process of investigating the claim presented in the task. Figure 6-12 and Figure 9-7 

show some examples of such investigation which required rethinking of Framework 

2 that could analyse each diagram but not the sequence of diagrams. 

The switch, moreover, encouraged me to move forward with the framework in which 

I suggested other aspects of interpretation within the interpersonal and the textual. I 

have to mention here that the communication I made with mathematicians, 

mathematics educators and colleagues from different areas, through personal 

meetings and professional discussions, enriched my research and widened the scope 

of it. Table 4-7 shows the 'final' product of this development journey. 

A reflection:  The main achievement in this last stage is the synthesis I had made and 

the construction of my own terms. I refer here to the temporality feature. After 

applying the directionality feature as in 'Reading Images', I realised the significance 

of the different use of directionality in geometry, in which arrows have different and 

domain-specific meanings, such as parallelism. I also realised the significance of the 

abstract nature of geometric diagrams, as distinct from the images for which Kress 

and Van Leeuwen (2006) developed their framework. Actually, one of the main 

reasons I looked at the temporal issue is my understanding of the narrative term. I 

understand narrative in relation to storytelling or as a sequence of events happening 

in time. These stories or events are about social practices. My argument here is that 

time is represented in geometric diagrams, and that this temporality phenomenon is 

the distinguishing feature between narrative and conceptual diagrams. 
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Another consequent development was the need to suggest subcategories within the 

narrative and the conceptual, because I found different styles of practices such as 

dotted lines, arrows which do not signify parallelism, shading, etc. 

Two issues arose which I would like to mention here. The first is my observation of 

the extensive use of gestures among students while they were solving the tasks of the 

study. This led me to consider the gestural mode of representation and 

communication and, later, to develop a preliminary framework to read gestures. The 

framework was limited to ideational meaning because of time constraints. The 

second issue is my struggle with the notion of modality. It took me a long time to 

make sense of it and to suggest modality markers/cues for diagrams (Chapter 8). 

Table 4-7: A 'final' version of the suggested framework for reading diagrams 

Ideational 
(Representational) meaning 

designing mathematical 
activities & objects 

Interpersonal 
(Interactive) meaning 

designing the position of 
the viewer 

Textual 
(Compositional) 

meaning 

Unity & Coherence 
• Roles and relationships 

between author and 
viewer 

The realisations of this 
meaning are: 

* Contact: 
• Demand diagrams 
• Offer diagrams (labels & 

colour) 

* (Social) Distance: 
• Neatness (neat vs. rough 

diagrams) 
• Labels (general vs. 

specific) 
• Colour and arrows and 

words 

* Modality 
• Diagrammatic modality 
markers (abstractness, 
natural or contextual, label, 
additional information, 
neatness).  

• Unity & Coherence 

This meaning takes into 
consideration the whole 
text (mainly the visual 
and the written). The 
realisations of this 
meaning are 

* Information value  
• Left and right (given 

and new) 
• Top and bottom (ideal 

and real) 
• Centre and margin 

* Salience  
• Colour, size, 

perspective, position 

* Framing 
• separation (frame 
lines, white space, 
colour) vs. connection 
(visual links, lack of 
framing) 

• Nature/image of 
mathematical activity 

This meaning is realised by 
determining the structure of 
the diagram; whether it is 
narrative or conceptual: 

* Narrative structures: 
• Arrowed 
• Dotted 
• Shaded 
• Sequence of diagrams 
• Construction 

* Conceptual structures: 
• Classificational 
• Identifying (indexical & 

symbolic) 
• Spatial (positional & size) 
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5. Ethical considerations 

Ethical issues should be taken into consideration in all stages of any educational 

research (and of course in other types of research): the design, data collection, 

analysis and publication (Jewitt, 2006). This study follows the British Educational 

Research Association (BERA, 2004) guidelines for educational research, imposing 

three main responsibilities on any researcher: responsibility to participants, 

responsibility to sponsors and responsibility to the community of educational 

researchers. All ethical requirements and regulations of the Institute of 

Education/University of London have been met by this study, including an outline of 

the proposal and the Ethics Approval for Student Research Projects in IoE. 

Special attention to ethical considerations has been paid in my research because it 

included video recording in schools. Therefore, I went through the process, governed 

by BERA and by law, to fulfil ethical and legal requirements. A consent form was 

sent to the teacher who contacted students' parents or guardians via the school, 

informing them about the study and requesting consent for participation. In schools 

where video recording took place, all parents gave permission for their children to 

participate in the study and to be observed. A few parents asked that the identity of 

their students remain anonymous during any screening of the video or use of the 

images in academic contexts (conferences, presentations, papers, etc.). There is only 

one parent who asked not to use any still images of the child in academic contexts. 

As I mentioned earlier, data collection was different in the UK and the OPT. 

Although there are no 'regulations' to conduct research in the OPT, I decided to 

follow the same BERA guidelines there. In the two occasions of collecting data, I 

sent a letter to the parents or guardians of participants, asking their permission to use 

the data and explaining the aims of the study. In Cycle 3 of collecting data, I sent the 

letter to the principal of the school who told me that she informed the parents of the 

students and that there is no need to sign any consent letters. 

6. Iterative sampling of data: Robustness of the framework 

The nature of the aim of the study (developing a framework) and the iterative 

methodology used in the study required a non-traditional approach to looking at the 

data and making use of it for a number of reasons. First, the process of collecting 
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data was continuous. The continuity of collecting data demanded continuity of 

looking at the data while validating and refining the framework rather than 

considering a representative sample (in a statistical sense). Second, the data was 

collected from different sources that offered different types of data, mainly data from 

two different languages. Third, the corpus of the data was open and growing 

throughout the study. I started the validation and the refinement with two 

mathematical texts in Cycle 1, followed by students' texts in Cycle 2 and, later, by 

extra students' texts in Cycle 3. In addition, I drew on web-based diagrams or 

diagrams on screen. Thus, and in order not to miss any 'different' or 'unusual' texts, I 

needed to develop a 'new' way to deal with this data in order to achieve the goal of 

the study. 

I collected 354 students' texts in three different schools and in two languages and 

with two different tasks. Because the large number of texts makes it difficult to 

analyse each one in depth, I chose to sample the texts. Rather than using 

representative-statistical sampling methods, I selected the examples I use in this 

study as illustration based on a scale consists of two points: typical (or common) and 

unique (or uncommon). By typical/common (see the 'commonness' sampling strategy 

below) I mean that the majority (more than 50%) of students' mathematical texts 

included features similar to the feature that I highlight in the specific figure. Figure 

6-14, for instance, is a typical example of how students included the (bidirectional) 

arrows in their diagrams. Unique or uncommon, in contrast, means that a very small 

number of students' mathematical texts included the feature discussed. See the 

'uniqueness' sampling strategy below and Figure 4-8 which shows how a student uses 

an arrow to show a process of happening. 

I used an iterative sampling strategy which consisted of three interrelated strategies: 

a. 	Screening: the idea behind this sampling strategy is to enable me to look at as 

many texts as possible and, thus, it enabled me look through all the texts in the 

collected data regardless of language, task, year of study, class or groups of students. 

In general, this strategy used 'bootstrapping' and exploration (Pratt, 1998) aiming to 

initiate the sampling process and to make sense of the data. This screening strategy 

was a foothold for the subsequent two strategies as part of the sampling process. 

Moreover, in the screening strategy, I applied the suggested framework in a 

scanning-like way, and, at the same time, I was open to seeing 'different' examples. 
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b. Commonness: As a result of the screening strategy, I identified some general 

commonalities among diagrams/texts. This strategy aimed to establish general 

categories of data by engaging more closely with the data to identify common 

characteristics among texts. This strategy is akin to the developmental iteration in 

Pratt (1998) and in this study's application of the suggested version of the framework 

applied to mathematical texts. I tried to sample students' texts based on language, 

year of study and task, in order to identify some patterns or common characteristics. 

For example, in their solution of the tasks, students started their solutions by writing, 

and they separated diagrams from writing. I could identify types of diagrams as 

narrative or conceptual. 

c. Uniqueness: The idea here was not to miss any significant or different text 

(diagram) that would contribute to the development of the framework. While 

identifying general common properties among the categories in the previous strategy, 

I identified some texts which I could not locate among these general categories 

which raised the issue of uniqueness. For example, the vast majority of students drew 

only one diagram to solve the TF-task, and that diagram was either narrative or 

conceptual, depending on the presence of any of the identified indicators. However, 

one student, Carly, took a different approach to solving the task (Figure 4-8): she 

drew two diagrams with an arrow between them. 

Figure 4-8: Carly's TF diagram (Year 9, unique) 

This iterative sampling strategy, I argue, is more comprehensive than representative 

sampling in which the researcher adopts either a quantitative approach, collecting a 

number of data and using statistical methods in order to generalise from them, or a 

qualitative approach, determining 'critical' or 'interesting' events and building the 

conclusion from them. The contribution of iterative sampling is twofold. First, it 

enabled me to screen all data and students' mathematical texts and, consequently, to 
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identify common properties among them while at the same time identifying unique 

texts. Second, while proceeding through this iterative sampling process, I applied the 

suggested framework and got feedback at the same time. In other words, applying the 

three strategies (screening, commonness, and uniqueness) minimised the risk of 

'missing' some texts that would contribute to the development of the framework. 

These twofold aims contributed to the robustness of the framework, which, I claim, 

has been tested with sufficient examples and is appropriate for analysing any 

example from within Euclidean geometry. I note two central aspects of the 

framework which support my claim of robustness: first, the way in which I used the 

data to derive and test the framework; second, the fact that the framework withstands 

the diverse examples I have selected to illustrate it. For instance, screening students' 

texts, I noticed a common practice, namely that most of the students drew three 

examples with a circle in each to argue against Darren's claim. A different example 

(uniqueness) was drawn by a student who drew only one circle, including three 

examples. 

The iterative sampling, thus, is a powerful strategy. The applicability strategy I used 

in this study was an added value to the robustness of the framework. In order to 

select examples to illustrate the framework, I had to go beyond the collected data 

(students' mathematical texts) and move to the textbooks and web-based diagrams. 

For example, the issue of 'sequence of diagrams' (in narrative diagrams discussed in 

chapter 6) was a result of the interaction between iterative sampling and application 

processes used in this study. 

6.1 	Why sample at all? Comments on the analysis in the study 

This study is methodological and theoretical, in which I seek to develop a 

framework. As I have shown in various sections of this chapter, it required iteration, 

validation, refinement, and the sampling strategy for treating its data. I do not intend 

to write an analysis in a separate chapter in a 'traditional' way, but rather, following 

Kress & Van Leeuwen (2006), I incorporate the analysis into the chapters of the 

study. 

The point I want to make here is that while I use a wide range of diagrams and texts, 

I could not include all the diagrams and texts that I screened. That is a primary 
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reason for using a sample of diagrams and texts. In addition to the iterative sampling 

strategy, the (iterative) analysis was based on group work in which students were 

video-/audio-recorded; the 'significant different' texts; and the framework itself. In 

other words, I examined all the students' texts from the viewpoint of the framework, 

focusing on features relevant to the three aspects (ideational, interpersonal and 

textual) such as: the presence of vector(s), dotted lines or shading; rough or neat 

diagrams; the notations in the diagram; the position of the diagram; and its relation to 

the text. 

To sum up, in this chapter, I set up the methodology used and developed in this study 

as well as the context and data collected in the study. I also mentioned the sampling 

strategies used in the study for the purpose of analysis, which will be explored 

further in subsequent chapters analysing the suggested framework and its main 

categories, the functions of diagrams. Before introducing each of those functions, I 

want to tell the story, in a concise way, of how I developed the framework. That 

story is the subject of the next chapter. 
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5 From directionality to temporality: Development of the 

diagrammatic framework 

1. 	Plan of the chapter: 

In this chapter I highlight the critical events and issues in developing the framework: 

the distinction between narrative and conceptual in general and in mathematics and 

mathematics education in particular, the transition from directionality to temporality 

(as the feature distinguishing between narrative and conceptual) and the analysis 

stage in which I applied the framework to students' mathematical texts. In doing so,1°  

I recall some general points from relevant literature, especially from the field of 

multimodality (Kress & Van Leeuwen, 2006) and mathematics education (Morgan, 

1996b; Sfard, 2008). The intention behind this summary is to establish the landscape 

for the rest of the study, especially the four coming chapters where I address each of 

the main aspects (functions) of the suggested diagrammatic framework separately. 

2. Narrative versus conceptual: 

Mathematical activities and mathematical objects in mathematical discourse 

In their interaction with their environment (and with each other), people create 

different means (modes) to represent their experience in the world, in order to make 

sense of their environments and to act on them and on others (Halliday, 1985). 

Acting on environments and other people involves, beside representation, 

communication. Moreover, the resulting objects of these actions are part and parcel 

of all these processes (actions, representation and communication). As people 

represent and communicate, they make use of the resources available in different 

ways based on their culture or the shared meanings among specific communities of 

practice. This difference is realised in people's texts, whether these texts are written, 

verbal, visual or gestural. The 'common' activity is that people tell stories, or 

narratives, about their experiences in order to organise and make sense of them (Mor 

10 While presenting these three critical events/aspect, I do not arrange them in any particular order 
(chronologically or order of importance). They have been developed in interrelated activities 
(communication with others and engagement with the data). 
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& Noss, 2008). 'We live in a sea of stories,' as Bruner (1996, p. 147) states. He 

continues: 

... it is very likely the case that the most natural and the earliest way in 
which we organize our experience and our knowledge is in terms of the 
narrative form. (p. 121) 

As Young & Saver state, 'narrative is the inescapable frame of human experience' 

(quoted in Healy & Sinclair, 2007, p. 5). For Bruner, a story has two sides: a 

sequence of events that convey the meaning and the narrator's 'implied evaluation of 

the events recounted' (p. 121). In other words, a 'narrative is the coherent sequencing 

of events across time and space' (Boles, 1994), where the narrator tries to present the 

story in a coherent way to convey the meaning of the experience. This presentation 

or organisation of the events, whether it is written or verbal or gestural, involves the 

use of multiple modes of representation and communication. In this sense, 'narratives 

are central to meaning-making' process (Healy & Sinclair, 2007, p. 5). 

However, people tell their stories in different ways. Mathematicians, for example, 

tell their stories differently than historians do. Mainstream mathematicians conceive 

of mathematics as 'abstract, formal, impersonal and symbolic' (Morgan, 2001, p. 

169). Moreover, some studies reject the whole idea of mathematics as narrative. 

Solomon & O'Neill (1998), for example, state that 'mathematics cannot be narrative 

for it is structured around logical and not temporal relations' (p. 217). The studies 

about mathematicians' narratives about their practice in mathematics, however, 

revealed other accounts of how mathematicians do mathematics (Burton, 2007; 

Burton & Morgan, 2000; Misfeldt, 2007; Sfard, 1994). There is one common activity 

among these narratives: mathematicians' personal or private work becomes a 

different story when it gets to be published or public. All the 'private' processes 

(thinking, scribbling, visualising, imagining, drawing, gesturing and the like), which 

would reveal the 'human' nature of doing mathematics, should not be presented or 

shown to the public and, somehow, must 'disappear' (see Chapter 2). Not only the 

author herself/himself but also the imagined reader must be hidden. Davis & Hersh 

(1981, p. 36), in 'The Ideal Mathematician', describe this trend among 

mathematicians: 'His writing follows an unbreakable convention: to conceal any sign 

that the author or the intended reader is a human being.' 
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Mathematicians achieve this goal of obscuring the human agency linguistically, by 

nominalisation, namely transforming the verb (action/process) into a noun (object) 

and visually, by drawing abstract diagrams without any human figures (see Kress & 

Van Leeuwen, 2006; Morgan, 1996b). Sfard (1994; 2008) calls this the reification 

process — transition of process into object. It might be reasonable to say that this 

process is one reason for the 'stereotype', common among laypersons and learners, 

that mathematics is irrelevant to reality. The reification process has been studied in 

mathematics education from different perspectives (for example, Morgan, 1996b; 

O'Halloran, 2005; Sfard & Lavie, 2005) but with the common goal of answering key 

questions: how do students learn mathematics, and how should we teach 

mathematics? 

Research in mathematics education reveals that mathematicians adopt two prevailing 

approaches to conceive of mathematics: the narrative approach, which tends to 

expose the personal aspects of mathematicians' work, and the conceptual approach, 

which presents mathematics as a set of concepts and 'hides' the personal aspects of 

mathematicians' work (cf. Burton, 2007; Healy & Sinclair, 2007; Schiralli & 

Sinclair, 2003). It is the latter that is the dominant approach among mathematicians 

(and possibly among most teachers and learners). However, researchers who 

conceive of mathematics as a social practice, and the present study adopts this stance, 

have a duty to reveal the social (and, consequently, the narrative) aspects of 

mathematicians' practice and of mathematical activities in general (see for example 

Burton & Morgan, 2000). Morgan (1996b; 2001) shows that spoken and written 

language in mathematical texts carries social meanings, and she offers an analytical 

framework to analyse these texts. In particular, Morgan (2001) challenges the 

conceptual approach which denies the personal narrative and asks whether the 

personal narrative could: 

... rather than being seen as less mathematical, be seen as examples of 
different mathematical genres, expressing different aspects of 
mathematics for different purposes, for example, to instruct a student or 
to display the way in which the mathematician discovered the 
phenomenon. Why should we privilege the formal (non-redundant, 
timeless, non-human, context-independent) text as more mathematical? 
(p. 171) 
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She provides an example to show that there is a story even behind the very symbolic 

mathematical form. The product (a+ib+jc)(x+iy+jz) did not equal ax-by-

cz+i(ay+bx)+j(az+cx)+ij(bz+cy) before Hamilton. 

Furthermore, Sfard (2008) shows that there are always stories behind any 

mathematical object. She offers many examples to demonstrate her claim, including 

the following: 

... the object we use to refer to as "number five" arises from sets of 
objects which, when counted, lead to the final number word five. This 
happens in two steps. First, the term five fingers is used to reify the 
process of counting the fingers of one's hand, the phrase five apples 
comes to replace the discursive process of counting apples up to five, 
etc. This assignment reifies the process of counting in that noun phrase 
five apples replaces the processual description which says, "When I 
count these apples, I invariably end with the wordfive." At a later point, 
the discursive object "number five" arises when we decide to use the 
common name five to name all the instances of "five somethings". (p. 
171, italics in origin) 

Other studies go beyond the language in mathematical texts and analyse other modes 

of communication such as the symbolic, visual and gestural modes. O'Halloran 

(2005) offers two descriptive frameworks for the symbolic and the graphical 

representations. Educational Studies in Mathematics has dedicated a special issue to 

gestures in mathematics (2009, vol. 70, issue 2). This current study, focusing on the 

diagrammatic mode, is an additional endeavour toward creating more constructions 

about the social aspects of mathematical activities and practice. In this study, I 

consider the duality of (re)presenting mathematical activities and distinguish between 

narrative diagrams (which 'expose' the mathematical activity) and conceptual 

diagrams (which present the mathematical objects). 

	

3. 	From directionality to temporality: 

	

3.1 	Directionality: the presence of vectors or arrows: 

In Reading Images, Kress & Van Leeuwen (2006) consider the presence of arrows as 

the distinguishing feature between narrative representations and conceptual 

representations: 

The hallmark of a narrative visual 'proposition' is the presence of a 
vector: narrative structures always have one, conceptual structures 
never do.' (p. 59) 
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Two aspects here establish my departure point in looking at geometric diagrams: the 

narrative/conceptual dichotomy (which I dealt with in the previous section) and the 

presence of vector (directionality) as a distinguishing feature between the two 

representations. Thus I started the journey by focusing on the ideational 

(representational) function of diagrams as suggested in Reading Images without 

considering the 'unique' status of mathematics as a special (social) practice which has 

its own traditions and conventions. This approach worked well when the distinction 

between diagrams was 'straightforward' as in the following examples (Figure 5-1) 

where one 'easily' notices the presence of the arrow: 

Figure 5-1: Narrative and conceptual diagrams based on the directionality characteristic 

However, arrows have special meanings in mathematics, particularly in geometry, 

such as parallelism. Figure 5-2 provides examples of different uses of arrows in 

geometry. 

Figure 5-2: Different possible uses of arrows in geometry 
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Arrows in geometry are used to define some basic geometric entities such as lines 

(Figure 5-2a) and angles (Figure 5-2b). There are other conventional uses of arrows 

such as labeling the sides of a diagram with small, similar arrows to show the 

parallelism property (Figure 5-2c) or using numbers to indicate specific quantities 

that give the measurements of the sides of the diagram (Figure 5-2d). See Chapter 8 

for more details. 

Although there were examples that confirmed my thoughts about the suggested 

criterion (the presence of arrows) as in Figure 5-2a&b, others, such as Figure 5-2c&d 

forced me to revise and think more. Figure 5-2d adds a different challenge, since it 

has arrows, but they are not used to show direction in the sense of the suggested 

distinguishing feature (starting and ending points) but rather they denote a measuring 

process. I had to revise and think more and, hence, one of the most exciting and 

enjoyable parts of the journey had started! 

3.2 	Temporality: the story behind dotted lines in mathematics 

Why do mathematicians draw dotted lines? See examples in Figure 5-3. This 

question guided my inquiry in this journey. When I asked this question to colleagues 

or mathematicians, the answers included the use of dotted lines for highlighting and 

for expressing uncertainty ('not sure yet'), in addition to the other conventional uses 

in mathematics such as the symmetry line or line of reflection". I still remember the 

use my mathematics teacher in primary school made of dotted lines in geometry 

lessons. He would first write the 'template' for solving problems in geometry: the 

given information, the problem or the definition of the goal (what we need to 

prove/calculate, etc) and the proof in a style very similar to Greek mathematics (see 

Netz, 1999). Most of the time, he would leave a space between the definition of the 

goal and the proof. This space, as I later learned, was left for needed actions 

(constructions) to do the proof Alternatively, my mathematics teacher's question 

would mention that an action has been done in order to prove something (geometric 

relations, or finding the value of a side or an angle, etc.). Most of these constructions 

were represented by dotted lines and were completed later. In other words, these 

11  Another use is to show 'unseen' parts of a three-dimensional shape. However, I don't consider 3D 
shapes in my study, which is limited to two-dimensional Euclidean geometry. 
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actions are time-dependent; they occur in a sequence of time. Thus, the notion of 

temporality emerged. 

For example, AM and BC, in Figure 5-3d, have been extended so that they meet at 

the point H and constitute a triangle HMC. From this action (extension) it is expected 

that one needs to prove geometrical relations between the 'new' entity or any of its 

elements and the 'original' diagram or any of its elements. Actually this diagram is 

taken from a Palestinian mathematics textbook for Grade 8 (Part 2, p. 42) and it asks 

students to prove that BC=CH. It also may ask students to prove that AM=MH or 

that the two triangles are congruent, etc. 

Figure 5-3: Different uses for dotted lines in 2D geometry 

This story on its own did not help me at the beginning of my journey (it is 

reasonable, however, that there would be a delay, since I had been looking at dotted 

lines in diagrams for many years without recognizing their significance!). What 

made the difference was my communication with others during formal and informal 

meetings and discussions. This interaction between my experience (as a learner and 

as a researcher) and communication led to the notion of temporality. Diagrams either 

have temporal aspects, or they do not. If they have a temporal aspect, then one can 

'unpack' events within the diagrams and possibly reconstruct the events in a time 

sequence. In other words, these diagrams tell stories! Stories include participants and 

activities or actions. Participants and activities in mathematics should be 

mathematical! If diagrams have no temporality, they present a 'thing' or an 'object' 

that has no action. This object, in mathematics, should, again, be mathematical. 

Having established the notion of temporality in diagrams that include dotted lines, I 

began to ask many questions: what about diagrams which don't have dotted lines, is 
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it possible to identify the temporal aspect in them? Could elements other than dotted 

lines be identified as narrative structured-diagrams? 

The reasonable next step is to revisit the diagrams with arrows (vectors). The arrow 

in Figure 5-la shows starting and end positions. It shows an action in which a 

triangle moves around a point from left to right with a right angle (90°). This 

movement is represented by an arrow. In the mathematical context, this action is a 

mathematical activity called rotation (it would occur in geometry lessons about 

Transformations). Figure 5-lb has no actions since no indicator of temporality is 

represented, and hence it represents a geometrical object (triangle) on its own. 

After that, I looked for other indicators in diagrams and activities in geometry in 

textbooks, the Internet and students' texts. I identified another three indicators 

(beside the previous two described, directional and dotted): shading, sequence of 

diagrams, and construction. In short, shading is an indicator for temporality since the 

shading process will take place only after one part of the diagram has been drawn. 

The temporality, in sequence of diagrams, is represented by the arrangement of 

diagrams in time sequence. Construction activity has a long history in geometry and 

in teaching and learning geometry, and the main indicators or traces that 'tell' about 

construction activity are the construction signs, the most common of which are small 

arcs drawn by the compass or the 'extra' segments resulting after connecting different 

points. These indicators will be discussed in more detail in Chapter 6. 

Looking back now at this stage of development, I think that my identifying the 

presence of temporal factors in diagrams evidences the originality of this study, as is 

expected for a PhD thesis (see Dunleavy, 2003), as well as my critical engagement 

with the literature in the field of study. 

4. 	Mathematics as a form of communication: 

So far, I have focused on the ideational function of diagrams as visual 

representations. But there are additional functions that diagrams, as visual 

representations, play, including the interpersonal and the textual, or, in the terms 

used by Kress & Van Leeuwen (2006), the interactive and the compositional, 

respectively. In order to avoid burdening this study with a long story, I now give just 

a 'flavour' of the challenges posed by the multiple functions and how I tackled them. 
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In the interpersonal function, I focused on how the social relationship between the 

author and the viewer is constructed in geometric diagrams. Specifically, I focused 

on contact (labels), social distance (the type of diagrams, neat or rough) and modality 

(abstract diagrams versus naturalistic diagrams). Labels, for example, are one way to 

make a connection with the viewer by offering information to the viewer or 

demanding something from her or him. Considering the textual function posed a 

different challenge, because it invites the written part (and possibly other parts) of 

the text into the analysis. Thus, one feature of the textual function is the relationship 

between the diagrammatic and the verbal modes in the text. 

As was the case for most of the events in this study, and consistent with its 

methodology, I addressed the challenge of the multiple functions of diagram by 

considering the work of other researchers, engaging in direct communication with 

colleagues, and developing my own thinking. The notion of communication and 

representation as social activities, in addition to the notion of mathematics as a form 

of communication (Pimm, 1987; Rotman, 1988; Sfard, 2008), and similar studies that 

adopted social semiotics in mathematics, namely those of Morgan (1996b) and 

O'Halloran (2005), suggested possible directions. 

Figure 5-4 shows a few examples of the interpersonal and the textual. I address these 

issues more fully in Chapters 8 & 9 respectively. This study has developed a 

framework to analyse the role of diagrams in the construction of mathematical 

meaning, which I will present in the following section. 

Furthermore, I considered the gestural mode of communication where I argue that 

gestures, like language and diagrams, contribute to the construction of mathematical 

meaning. This argument is presented in Chapter 10, where I offer a preliminary 

framework to analyse the role that gestures play. 

I have already presented in brief a final version of the suggested framework to 

analyse the diagrammatic mode in Table 4-7 (Chapter 4). Applying this framework 

more widely, to additional texts and by additional researchers, may (or may not) 

result in adding more features to it and, I hope, to refining it. The following four 

chapters are dedicated to delivering the details of this framework. I present each 

function separately and devote two separate chapters (6 & 7) to the ideational 

(representational) function. 
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Figure 5-4: Interpersonal and textual functions 
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6 Narrative diagrams: Designing mathematical activity 

1. Plan of the chapter: 

Having identified temporality as a distinguishing feature of narratives in diagrams in 

the previous chapter, I try in the introduction to this chapter to characterise the 

difference between images and geometric diagrams, moving to the notion of 

narrative structure in geometric diagrams as the first aspect of the ideational function 

of the suggested framework. I identify five types of structures and provide examples 

to illustrate them: arrow, dotted, shaded, sequence of diagrams and construction. 

At the end of the chapter, I discuss the issue of the human role in mathematics as 

presented by diagrams. I argue that this role has traditionally been eliminated in 

service of philosophical stances. Descartes, for instance, claimed that mathematics or 

mathematical facts have their own pre-existence, a claim that led people to 

conceptualise mathematics or mathematical objects as independent entities, as 

discussed in the next chapter. 

2. Introduction: 

The picture shown in Figure 6-1 was taken in the Occupied Palestinian Territories 

(OPT) in 2005 (reproduced from the British Broadcasting Corporation - BBC 

website). It shows two Israeli soldiers stopping Palestinian school children trying to 

reach their school. The written caption suggested by the BBC does not reflect the 

details of the picture but rather reads: 'Dozens of the schoolchildren tried to burst 

through the checkpoint, but soldiers warned them to stop'. First of all, the caption 

says 'Dozens of the schoolchildren' which suggests many children as if there is a 

'threat' in some way or another, and we read that these children 'tried to burst through 

the checkpoint'. But the picture discloses that the school children are few, five or six 

students (at least that is the number shown in this picture, while there may be more 

out of shot). The caption says 'through the check point', but the picture does not show 

a checkpoint where one would expect a process of checking, but rather a barrier, a 

kind of blockade which prevents schoolchildren from going to their school. 
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Figure 6-1: Israeli soldiers threatening Palestinian schoolchildren 
'Dozens of the schoolchildren tried to burst through the checkpoint, but 

soldiers warned them to stop.' 
(httn : //n ews.bbc . co  . uk/2/hi/in pictures/4464332. stm) 

Moreover, the caption also says '...but soldiers warned them to stop' without saying 

how. The picture does. The soldiers hold guns and point them at the students. The 

caption does not say how the school children look (angry, afraid, etc.) or how the 

soldiers behave. In the picture, one can see that some children are afraid, and even 

raise their hands as a sign of 'surrender', while others are challenging the soldiers. 

The soldiers, on the other hand, are not 'warning' the school children using their 

hands or bodies, but rather aim guns at the children, which the caption does not 

mention. 

While it is not my purpose to discuss how the BBC adopts a stance in its written 

caption, I want to discuss how pictures or images can show 'actions'. In Reading 

Images (2006), Kress & Van Leeuwen discuss the issue of visual (narrative) 

representation as ideological, when they analyse the 'The British used guns' picture 

according to processes and participants. This picture, originally taken from 'Our 

Society and Others' by Oakley, M. et al. (1985) (as quoted in Kress & Van Leeuwen, 

2006), shows the technology used by the British, as the original source called them, 

against the Aboriginal people in which two British soldiers with guns 'stalk' a group 

of Aboriginal people sitting around a fire. To demonstrate their idea, Kress & Van 

Leeuwen (2006) use a schematic diagram Figure 6-2 for that picture (p. 49) and state 

that: 
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the two men (the participants from which the vector emanates) have the 
role of Actor, and the Aborigines (the participants at which the vector 
points) have the role of Goal in a structure (...) as something done by 
an Actor to a Goal. (pp. 50, italic in origin) 

Figure 6-2: Schematic figure for 'The British used guns' picture (Kress 
& Van Leeuwen, 2006, p. 49) 

In other words, the meaning that Kress & Van Leeuwen constructed in Figure 6-2 is 

that of an action by one set of participants upon other participants, referring to the 

vector as process and the people as participants — borrowing terms (Actor, Goal, etc.) 

from Halliday's functional linguistics. 

In a similar way, the schematic figure for the 'Israeli soldiers threatening Palestinian 

schoolchildren' (Figure 6-3) shows a process with participants, Actor and Goal. The 

arrow originates from the side of the Israeli soldiers, suggesting that they are the 

Actor and, in contrast, the Palestinian schoolchildren are the Goal to which the arrow 

points. 

Figure 6-3: Schematic figure for the 'Israeli soldiers threatening 
Palestinian schoolchildren' picture 
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What happens if the participants are replaced, as in Figure 6-4, which is taken from a 

Year 9-student's mathematical text (Carly) responding to the Trapezium Field (TF) 

problem in this study (see Chapter 4 for more details)? The arrow here is different 

from the ones in Figure 6-2 and Figure 6-3, although it still suggests an action. 

While Kress & Van Leeuwen (2006) focus on actions distinguished by directionality, 

my focus is on actions distinguished by temporality re-presented in diagrams. The 

arrows in Figure 6-2 and Figure 6-3, for example, depict the action as a directional 

spatial relationship from actor to goal. However, the arrow in Figure 6-4 indicates a 

'before — after' temporal relationship between the original figure and the part of the 

figure that results from the action — possibly the action of 'extraction' in this case. 

Figure 6-4: Carly's TF diagram (Year 9, unique) 

As I argued in the previous chapter, there is a temporal order in any narrative (by 

definition), and any action takes place in time. In other words, the participants in 

Figure 6-2 and Figure 6-3 are not temporally arranged but rather co-exist throughout 

the action (or at least until actually shot), and the image 'freezes' a single instant. On 

the other hand, in Figure 6-4 the passage of time is actually represented in the 

diagram. The triangle is only brought into existence (or at least discovered) by the 

action. The diagram as a whole thus depicts the action in terms of a relationship 

between 'before' and 'after' states rather than between co-temporal participants. 

3. 	Narrative Diagrams: 

In Chapter 4, I presented an overview of the suggested framework to analyse 

potential role(s) of geometric diagrams in constructing mathematical meaning. In the 
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rest of this chapter, I consider the ideational function of the suggested framework, 

focusing on the narrative structure of diagrams. In the next chapter I contrast this 

narrative structure of diagrams with conceptually-structured diagrams. 

Kress & Van Leeuwen (2006) determine the presence of a vector to be that feature 

representing an action or directionality. They consider directionality to be the 

distinguishing feature of the narrative structure of images or pictures. These vectors 

could be represented by: 

depicted elements that form an oblique line, often a quite strong, 
diagonal line, as in 'The British used guns' [Figure 6-2], where the guns 
... form such a line. The vectors may be formed by bodies or limbs or 
tools 'in action' ... . A road running diagonally across the picture space, 
for instance, is also a vector, and the car driving on it an 'Actor' in the 
process of 'driving'. (Kress & Van Leeuwen, 2006, p. 59) 

They extend their argument to include diagrams and state, on the same page, that: 

[i]n abstract images such as diagrams, narrative processes are realized 
by abstract graphic elements — for instance, lines with an explicit 
indicator of directionality, usually an arrowhead. 

In mathematical (geometrical) discourse, however, arrows have conventional 

meanings such as parallelism, defining geometric entities or the value of lengths of 

sides (see Figure 5-2). This means, as a consequence, that there is a need for a 

'different' distinguishing feature of arrows, which led me to think about temporality. 

In narratives, people organise their actions or stories in spatial arrangements and/or 

in time sequences. Since directionality as defined by Kress and Van Leeuwen (2006) 

refers to the spatial arrangements, my thought went to time arrangements, i.e. a 

diagram representing a time sequence. 

Why did Kress and Van Leeuwen choose directionality rather than temporality? 

Directionality has the advantage (at least in non-mathematical images) of being 

unambiguously present in the image, while temporality is more difficult to detect. 

Indeed, I have had to identify a range of indicators showing temporality. Moreover, 

the directionality indicator focuses on the relationship between the participants in the 

narrative (one acting upon the other) rather than on the temporal nature of the action. 

Narratives involve participants but also involve actions that take place in time. Kress 

and Van Leeuwen's framework focuses on the agent-object relationship between the 

participants, while the suggested framework in the current study focuses on the 

action. It is thus different but equally valid in terms of the nature of narrative. 
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Furthermore, I argue that temporality is more relevant to analysing mathematical 

diagrams. 

Figure 6-5, for example, shows a diagram being moved five units to the right and 

three units downward. The movement of the shape is indicated by arrows, i.e. arrows 

have been used to represent movement or change in position. Moreover, arrows 

represent an order in which sub-actions were performed — to the right before down. 

In other words, this action takes place not only in space but also in time, and time is 

represented in a before-after relationship. This action is a mathematical one known as 

translation (one type of geometrical transformation). 

Figure 6-5: Translation process 
(Allan, Williams, & Perry, 2005a, p. 130) 

Figure 6-6 illustrates a different way of representing temporality. In mathematics, 

and geometry specifically, one conventional use of dotted lines is to indicate 

lines/features be added afterwards — after drawing the given information (see 

Chapter 5). In other words, dotted lines are added to enable someone to do a 

mathematical activity, e.g. prove a theorem (see for example the proof of 

propositions XVI & XVII in Loomis, 1861). The afterwards suggests that time has 

passed after drawing the original shape (the star in this example) and before drawing 

the dotted lines. Hence there is a representation of time in the diagram realised by the 

dotted lines and, as in the previous example, there is a representation of a 

mathematical activity that is ongoing. Actually this diagram demonstrates a proof 

that the vertex angles of a pentagram sum to 180°. 
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Figure 6-6: The vertex angles of a pentagram sum to 180° (Nelson, 1993, p. 14) 

The last two examples prompt the notion of temporality as a distinguishing feature of 

the narrative structure of geometric diagrams. By temporality I mean that there is a 

representation, in the diagram, of the time sequence followed in drawing the diagram 

and in doing mathematics, or, in other words, there is a timeline one can follow in 

order to 'read', to make sense of or to unfold that sequence. This timeline is 

represented or can be observed in the diagram in various ways. I distinguish five 

structures of narrative diagrams: arrowed, dotted, shaded, sequence of diagrams and 

construction. 

3.1. 	Arrowed diagrams 

In Figure 6-5, arrows show what precedes what in terms of time, and, hence, an 

action meaning is realised (translation in this example). In geometry, arrows are 

either conventional non-action arrows such as parallel lines or arrows with action 

meaning such as transformation. The focus of the current study is on the latter, where 

I identify two types of structures of diagrams in which arrows carry an action 

meaning and show the temporal order in which this action occurs: 

3.1.1. Movement/change of position: the arrows here represent an action 

(mathematical activity) such as transformation (translation, rotation, reflection and 

enlargement), folding, etc. In Figure 6-7, the arrows show a temporal sequence in 

each diagram where the starting and ending positions are clear. 
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Figure 6-7: Arrowed diagrams 

3.1.2 Measurement: The temporal order is represented by arrows added close to the 

sides or angles of a diagram to specify their size (Figure 6-8). This temporal order 

suggests that an action is happening, or a mathematical activity is going on, such as 

measuring the length of a side or the value of angle, which could be compared with a 

simple line indicating the size of a side or an angle. If one wants to describe this 

action in language, one possible way is to say: if you measure the side PL, you will 

find that its length is 10m. This is similar to measuring the length of a guitar in 

Figure 6-9. 

Figure 6-8: Measurement diagrams 
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(a) dotted line follows drawing the trapezium 

(c) 

• 
(b) dotted lines show reflection process 

401#  

soslasumer.0....a. 

(d) Proof of the Exterior Angle Theorem 
(the exterior angle of a triangle is equal to the 

sum of the two interior opposite angles) 

Figure 6-9: Measuring the length of a guitar 
(httu://wvvw.mathsisfun.com/geometry/transformations.html)  

3.2 	Dotted (dashed) diagrams: 

In these diagrams, the temporality is presented by dotted lines which suggest an 

action has been performed on the diagram to solve the problem. Again, in the 

geometry context, dotted lines which imply a timeline are used in different forms. 

The focus of the study is on diagrams that represent actions where a dotted line 

shows additional action such as constructing a perpendicular line from a vertex of a 

trapezium to its base to calculate the area or to find the value of another side (Figure 

6-10a) or drawing a reflected image (Figure 6-10b). 

Figure 6-10: Dotted diagrams 

3.3 	Shaded diagrams: 

In geometry some structures include shaded areas in order to: i) distinguish between 

original objects and images (or between the original position of an object and the 

new position as in the case of translation); ii) show a plane of symmetry; or iii) show 
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b) the colour shows translation action 
mirror line 

a) colouring (shading) the image of the 
triangle follows drawing the original triangle 

the intersection between two planes (the last two cases are in 3D geometry which is 

beyond the scope of the current study). In the case of the reflection example, Figure 

6-11b, the shading (colour in this example) is used to distinguish between the 

original triangle and its image. There is thus a sequence in drawing the diagram 

which suggests the temporality. A colour might be used to distinguish the object and 

image instead of shading. 

Figure 6-11: Shaded diagrams 

3.4 	Sequence of diagrams: 

The temporality, here, is represented by the spatial arrangement (left-to-right, top-to-

bottom) of diagrams in a time sequence. These diagrams are mostly used in proof in 

geometry as in Figure 6-12. Figure 6-12a shows a solution given to Task 2 in this 

study, in which the student presented three diagrams to show her proof, starting with 

two examples which do not agree with the claim and ending with the third diagram 

which agrees with the claim. The sequence of the three diagrams (from top to 

bottom) suggests temporality. Figure 6-12b shows a proof of the area of triangle 

where the sequence is realised by arrows, while Figure 6-12c presents a proof from 

left to right. 
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(a) 	Sequence 	of 
diagrams (from top to 
bottom) 	shows 	a 
student's response to a 
claim: 	Whatever 
quadrilateral 	I 	draw 
with 	corners 	on 	a 
circle, 	the 	diagonals 
will always cross the 

^-...,,, 
centre of the circle.' 
(Year 9, Sara, typical) 

, L  2 \ ....4,  \ 	r} 	' 

11 

7"-- 

Y\ 
(b) 'Why the area of a triangle equals half of bh 
(A= Y2bxh)?' 
(http://www.mathsisfun.com/triangle.html)  

7 
7 

(c) 'A square is equal to a parallelogram of equal base and height' (Maanen, 2006) 

Figure 6-12: Sequence of diagrams 

3.5 Construction diagrams: 

In construction diagrams, temporality is realised by construction marks; the common 

signs are small arcs drawn by the compass or 'extra' segments resulting from 

connecting different points (as at the point C & 0 in Figure 6-13a&d). The 

mathematical activity here, as the name suggests, is construction. What is unique 

about this type of diagram is that the process or the mathematical activity is still 

ongoing; the diagram (or the mathematical object) is not ready yet but rather is 'under 

construction', as is indicated or realised by the construction 'traces' in the diagram. 

Figure 6-13c is a solution to the problem: Construct a triangle ABC in which BC = 

3.5cm, CA + AB = 10cm and ZB=60°. 

In the following section, I elaborate on the analysis of the role of these diagrams in 

constructing mathematical meaning. Specifically, I want to look at these diagrams as 

semiotic representation of mathematical activity and at the role of humans in doing 

mathematics based on the suggested framework. 
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0 

(a) Constructing a 30°- 60°- 90° triangle given the 
hypotenuse 

X B 	cmCY 

(c) Constructing a triangle with specific properties (d) Constructing a circle through 3 points 

(b) Bisecting an angle 

Figure 6-13: Construction diagrams 

4. 	Narrative diagrams as representation of mathematics and mathematical 

activity: Three examples 

In order to look at narrative geometric diagrams, one has to consider a few questions 

based on Halliday's social theory of communication (Halliday, 1985) and Morgan's 

linguistic approach to mathematical texts (Morgan, 1995). Halliday argues that in 

verbal interaction (written or spoken), the three interrelated meanings we try to make 

(ideational, interpersonal and textual) are realised through the means of 

representation. Morgan (1995; 1996a; 2006) suggested a linguistic approach to look 

at mathematical texts, using specific questions whose answers would offer potential 

mathematical meaning. With respect to the ideational meaning, Morgan focused on 

the representation of mathematics and mathematical activity on one hand, and the 

role of human beings in mathematics on the other hand. Or, as Burton & Morgan 

(2000, p. 435) put it, 'is the focus on mathematics as a product of human 

mathematicians or an autonomous mathematical system, or is it on the process of 

doing mathematics?' Thus my focus within the ideational function will be on the type 

of processes that are going on (happening), i.e. the mathematical activity, the 

participants (actors) in those processes, and human agency. 

In diagrams, the structure of the diagram realises the ideational meaning in Halliday's 

SFL in which there is representation of doing, where people/participants who do 
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mathematics (mathematicians, teachers, students, etc.) represent their (mathematical) 

experiences, which I call narrative diagrams. These can be contrasted with 

conceptual diagrams in which the representation presents participants in 'timeless 

essence' (Kress & Van Leeuwen, 2006). 

Narrative diagrams, I argue, represent the mathematical activity that is happening at 

the point of producing the diagram and/or when a reader makes sense of the diagram 

by reconstructing the reasoning. I present now three examples from the data collected 

in the current study to illustrate how the previous categories are helpful in presenting 

a picture of the mathematical activity represented in geometric diagrams. The first 

two examples present generally the typical answers students provided for the solution 

of the two tasks of the study (Chapter 4): Trapezium Field (TF) and Proof (Pf). The 

third example is presented to illustrate how the suggested framework may be used to 

analyse 'different' or unique answers. 

The diagram in Figure 6-14 is taken from a text by Claire, a Year 9 student, 

responding to task TF in the current study. The bi-directional arrows next to the sides 

and the dotted lines are all indicators of narrative structure. These bidirectional 

arrows suggest mathematical actions of measuring (16 cm, 10 cm, etc.) lengths of 

sides (if you measure the side PE, you will find it is 16 cm). The dotted lines 

(produced from E, first, and then from P to the lower base) were drawn to achieve a 

conventional situation, namely to use Pythagoras theorem, to find the length of the 

hypotenuses (labelled x) or to calculate the area of the triangles labelled A & B. 

1.1 
Figure 6-14: Claire's TF solution text (Year 9, typical) 

In the second task (Pf), Sarah, Year 9, drew three diagrams, Figure 6-15, in 

sequence, to show her proof. The sequence indicates the temporal order (from top to 

bottom) and the mathematical activity is an investigation process to check whether 
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Darren's claim (whatever quadrilateral I draw with corners on a circle, the diagonals 

will always cross the centre of the circle) is right or wrong by giving three different 

examples. Each example shows whether or not the diagonals of a quadrilateral cross 

the centre of the circle, provided that the presumed conditions are valid. Sarah 

highlighted the cross point of the diagonals and the centre of the circle, so her 

challenge has thus become to show whether these two points meet or not in order to 

show her agreement (or disagreement) with Darren. 

Figure 6-15: Sarah's solution to task 2 (Year 9, typical) 

Instead of drawing three distinct diagrams in response to the same task (Pt), Mandy, 

a Year 8 student, drew one diagram showing her investigation process using colours: 

one circle and three coloured quadrilaterals (Figure 6-16). Actually this is similar to 

what Sarah did in her investigation process in the previous example. The temporal 

order is presented by the use of colour (though Mandy could have drawn her diagram 

using dotted lines or shading). As did Sarah, Mandy wanted to show whether the 

crossing point of the diagonals meets the centre of the circle or not. I wonder if this 

diagram would be considered as an investigation without the suggested framework. 
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Figure 6-16: Mandy's diagram for task 2 (Year 8, unique) 

5. 	Mathematics: a product of human mathematicians or an autonomous 

mathematical system? - The role of human agency 

In the previous section I discussed the type of processes that are going on, i.e. the 

mathematical activity represented in diagrams and the participants (actors) in those 

processes. In this section I deal with these two categories from another point of view: 

how these processes are expressed in diagrams indicating the role of human agency 

in doing mathematics. 

In English, perhaps in other European languages, and certainly in Arabic, verbs are 

used to express processes or actions, while nouns tend to express the participants 

(people, objects, abstract notions and concepts) that take part in processes (Halliday 

& Martin, 1993; Hodge & Kress, 1993). For instance: 

If we add all three angles in any triangle we get 180°. 

or 

This shape rotates 1/2 turn. 

The study of scientific writing in Western culture, however, reveals that other modes 

of expression occur in the scientific discourse (e.g. Halliday, 2004; Halliday & 

Martin, 1993; Martin & Veel, 1998). Influenced by the ancient Greek scientists, and 

starting from Isaac Newton onwards, Halliday & Martin (1993) argue that scientific 

writers extensively make use of nominalisation, especially in mathematics and 

science. Nominalisation is a grammatical metaphor in which verbs are turned into 

nouns, or actions are transformed into objects such as: 

The sum of the angles of a triangle is 180°. 

or 
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The rotation is a turn. 

However, we don't simply change words or vocabularies (add to sum; rotates to 

rotation); instead, we change the grammar (this is the reason for calling this process 

a grammatical metaphor): the processes add and rotates have been turned into nouns, 

sum and rotation. Since we are accustomed to seeing the world using verbs for 

actions and nouns for people, this change of grammar presents a different view of the 

world and also creates new objects, and, consequently, we have to reconstruct our 

image of the world. This happened with Newton and other scientists when they tried 

to construct and present new knowledge as a cause or effect — 'this event caused that 

event' (Halliday & Martin, 1993, p. 81). For specific examples of how Newton used 

nominalisation, see Gerstberger (2008). In mathematics, for instance, Morgan 

(1996b, p. 82) derives an example of the use of nominalisation in how a GCSE 

student describes a number pattern ended by the creation of a new object which may 

'have properties of its own and be seen to change.' 

Another important effect of nominalisation is to obscure the human agency in the 

process. The participants we and shape, in the previous two examples, have been 

removed. Morgan (1996b) discussed nominalisation and its role in analysing 

mathematical texts in relation to the picture of the nature of mathematics and 

mathematical activity: 

the use of, for example, rotation or permutation without any indication 
that these processes are actually performed by anyone fits in with an 
absolutist image of mathematics as a system that exists independently 
of human action. (p. 82, her emphasis) 

In other words, scientific and mathematical writing have concealed the role of human 

beings as agents in doing science and mathematics, as if this knowledge is 'objective'. 

What about diagrams, do they also obscure human agency? 

5.1 	Geometrical diagrams and the role of human beings: 

As in written scientific texts where nominalisation is common, diagrams 'do 

something similar ... [they] turn 'process' into 'system' — or something ambiguously 

between' (Kress & Van Leeuwen, 2006, p. 62). Unlike natural images or pictures 

where human participants appear, abstract diagrams are like nominalised writing 
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where the human agency is concealed. But what is the history of this practice, and is 

it 'similar' to that of written scientific texts? 

O'Halloran (2004b; 2005) presents an historical account of, among other things, the 

presence of human figures in mathematical texts, marking the appearance of La Nova 

Scientia (The New Science) in 1537, written by Tartaglia, as the beginning of the 

Renaissance and moving forward in time. In the past, human figures, physical objects 

and the contexts of doing mathematics were depicted in mathematical texts. 

However, this depiction changed as the human body and the physical context began 

to be eliminated (to the point where only parts of the human body were participating, 

e.g. hands and eyes), eventually disappearing entirely and leaving only the 

mathematical objects (circles and lines) remained. Figure 6-17 shows this historical 

development. 

Figure 6-17: Elimination of the human figure in mathematical discourse (O'Halloran, 2005, 43- 
45) 

Interestingly, this change occurred, again, with Descartes and Newton (see the 

previous discussion about nominalisation in language). In short, Descartes' 

philosophical project is known by the separation (or distinction) between mind and 

body (Cogito, ergo sum or 'I think, therefore I am') and by the assertion that true 

knowledge can only be reached by 'geometrical-style' reasoning where conclusions 

can be drawn based on simple and indubitable truths, like axioms in geometry 

(Skirry, 2008). In other words, the realm of mind (the immaterial) is where the true 

knowledge resides and the realm of body (the material), in contrast, is where senses 

operate. Descartes believed that because our senses sometimes deceive us, they 

cannot be a reliable source of knowledge and, hence, any sensual form of knowledge 

has to be rejected. And since he considered that the presence of human bodies and 

physical contexts belonged to that sensual realm, he removed them from 

mathematical texts, together with language, which, he believed, belongs to the 

133 

Image redacted due to third party rights or other legal issues



common-sense and material world (O'Halloran, 2005). Symbols (and diagrams), in 

contrast, belong to the realm of the mind. This separation and distinction mark a 

critical stage in the development of (all) modern Western sciences that continues 

until now, as O'Halloran argues. 

Further Descartes' philosophical project, the 'growing significance of the role of 

mathematical symbolism' at that time enabled Descartes to advance his geometrical 

project: constructing geometry from segments of lines, circles and curves using 

algebraic notations or, in other words, the algebraisation of geometry (O'Halloran, 

2005) (For more details about the process of algebraisation of geometry, see 

(Mancosu, 1996). The argument behind this project is that symbols have some 

advantages over language. They are more economical than words; the symbolic 

relationship is dynamic, whereas the linguistic is static. Also, symbols have no 

ambiguity or confusion (see Descartes' example comparing the word 'cube' and 2a3  

(O'Halloran, 2005, pp. 53-54)). As a result of these advantages, symbols — as a 

semiotic tool — became the centre of mathematics, and diagrams became a 

companion and an aid to symbols. 

Although O'Halloran's discussion is to some extent detailed, it does not exhaust the 

story of the presence and removal of human figures and physical context from 

mathematical diagrams. Diagrams have always been part and parcel of mathematics, 

and they have a history which warrants further investigation, especially from the 

social semiotics point of view, although some research efforts have been made from 

other perspectives (e.g. Maanen, 2006; Miller, 2001; Netz, 1999; Robson, 2008b; 

Shin, 1994). 

One point that O'Halloran's discussion misses is that even though mathematicians did 

their best to remove the traces of human beings and/or physical context, I would 

argue that they still represent their mathematical activities in the diagrams they 

present (as I already presented in this chapter), simply because these diagrams are 

social and cultural activities! However, they sometimes 'succeed' in their attempts not 

to 'leave' any traces or representations of these activities (see the next chapter). 

While it is hard to find human figures and physical contexts depicted in 

contemporary mathematical texts, some texts continue to use them. Figure 6-18 is 

taken from the Palestinian textbook for Grade 7 (12-13 year-olds) in applications 
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(a) 

angle of elevation 

(b) 

about congruent triangles, similar triangles and Pythagoras theorem in the geometry 

unit. 

Figure 6-18: Applications (of congruent triangles, similar triangles and Pythagoras theorem) 
show human figures, physical objects and context in a Palestinian textbook (Grade 7, part 2) 

Figure 6-19 shows other examples where human figures, physical objects and 

context are depicted together with geometrical diagrams. 

Figure 6-19: Human figure, physical objects and context represented in diagrams 

However, it seems that this use is limited to problems which require the use of 

specific geometric concepts as congruent triangles, similar triangles and Pythagoras 

theorem. One reason might be the practical nature of problems which involve people 

or the physical contexts in trigonometry in order to measure the angles and sides of 

triangles in practical contexts. It is not common to draw human figures or physical 

contexts in mathematical texts. None of the student participants in the current study 

included any human figure in their texts in response to the two tasks, although the 

context of Task 1 (TP) relates to the 'real world' and does not include even a single 
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diagram! This may be because of the way that mathematics is perceived in general as 

impersonal and formal (Morgan, 2001). 

However, in their solution of task 1, students drew diagrams which included 'traces' 

of physical objects (sprinklers) — shown either by a small circle at the top of two 

vertices of the trapezium (all diagrams in Figure 6-20) or by words (Figure 6-20d) or 

both (Figure 6-20d). More interesting is that some students did depict the water 

traces during their discussion of the task (Figure 6-20a&c) using lines or arrows12, 

but these traces were either totally removed from their final diagrams (Figure 6-20b, 

same group) or changed to geometrical lines (Figure 6-20d, same group). Again, one 

possible reason for such practice is the perception (on the part of the students) that 

mathematical activity (and mathematics itself) should be presented as formal and 

abstract (Morgan, 2001). 

Figure 6-20: The draft and the final diagram for two students 

This should not be surprising! There is consensus among researchers in mathematics 

education and mathematics that mathematicians 'deny' .their use of diagrams 

(Dreyfus, 1991). For instance, Pimm (1990) quotes P. Hammer's aphorism that 'the 

12  These arrows raise an issue about the activities happening within mathematical representation and 
communication: whether they are 'mathematical' or not. One possible way of looking at this issue is to 
consider that 'anything' that happens within a mathematical discourse or practice becomes an object of 
mathematics, meaning that the sprinklers are mathematical objects, and therefore they participate in 
mathematical activity. In that sense, for that student, the mathematical activity includes the context of 
the problem or, in other words, the context is part of the activity, and it is modelled by these arrows. 
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most neglected existence theorem in mathematics is the existence of people'. Davis 

& Hersh (1981) share this attitude in their construction of a portrait of 'The Ideal 

Mathematician' who should follow 'an unbreakable convention: to conceal any sign 

that the author or the intended reader is a human being' (p. 36). This practice indeed 

has consequences. Morgan (1996b, p. 15), for instance, argues that nominalisation in 

mathematical texts 'increases the impersonal effect, strengthening the impression that 

it is these process-objects that are the active participants in mathematics rather than 

the human mathematicians'. The implications of this practice for the processes of 

learning, teaching and doing mathematics in the classrooms and for the design of 

textbooks are addressed in Chapter 11. 

As a result of such practice and of the success of not leaving any traces of human 

agency in doing mathematics, mathematical objects come to life. These objects are 

the focus of the following chapter, where I present conceptual diagrams in contrast to 

narrative diagrams. 
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7 Conceptual diagrams: Designing mathematical objects 

1. 	Introduction: 

The two diagrams in Figure 7-1 represent the Proof of the Exterior Angle Theorem 

(the exterior angle of a triangle is equal to the sum of the two interior opposite 

angles).13  They look 'similar' from that point of view! However, I argue, they are 

different in their representation and communication. 

Figure 7-1: Two different diagrams represent the 'same' theorem 

Beside the words 'Parallel to side AB' in Figure 7-1a, the extended lines are 

expressed in dots, while they are solid lines in Figure 7-1b. This difference (dots 

instead of solid or vice verse) is not an arbitrary or a random change. Rather it is 

motivated by the diagram-maker's interest at the point of representing the diagram 

(Kress et al., 2001). Figure 7-la (which is the same as Figure 6-10d) represents an 

action, a mathematical activity that is happening (Proof of the Exterior Angle 

Theorem). Figure 7-1b, in contrast, shows a product of that action, an object — a 

mathematical one. In other words, if we want to put Figure 7-la in words, we may 

say: 

If you want to prove the Exterior Angle Theorem, you need to extend the base 

AC of the triangle and then from C construct a parallel side to AB (Then 

move on the symbolic proof, see below.) 

But if we want to say the 'same' thing about Figure 7-1b, we can say: 

Since Zc = Za 	 (Corresponding angles) 

And Zd = Zb ............................................. (Alternate angles) 

13 The diagram a in Figure 7-1 is also used to prove that the sum of the three angles of any triangle is 
180°. 
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Then, Lc + Ld = La + L b........................... (Adding the two equations) 

Or, after naming the third angle in the triangle — say f — we can use the-notion-of-the-

sum-of-the-angles of a triangle and the measure of the straight angle (see 

http://en.wikipedia.org/wiki/Exterior  angle theorem): 

180° = La + Lb + 4= zc + Zd + .4 

And hence, Lc + Ld = La + Lb 

Or, the measure of an exterior angle of a triangle is equal to the sum of two 

angles of that triangle that are not adjacent to the exterior. 

In the first linguistic instance concerning Figure 7-la, the verbs (prove, extend, 

construct) refer to (mathematical) actions, while the second instance concerning 

Figure 7-lb does not mention any action but rather a relational process — see below. 

In contrast to the narrative diagram in Figure 7-la (see the Chapter 6), the diagram in 

Figure 7-lb is conceptual, i.e. it represents an object — a mathematical object. 

2. 	But how do mathematical objects come into being, and where do they 

come from? 

Talking about mathematical objects necessitates a visit to the field of philosophy of 

mathematics especially concerning the 'existence' of these objects such as Platonism, 

Formalism, constructivism, postmodernism and semiotics. Mathematical objects 

were one of the topics discussed in the philosophy of mathematics along with the 

nature of mathematics, mathematical knowledge, history of mathematics, 

mathematical practice and mathematical discourse, and they are also of interest to 

those who care about mathematics education because of their link to learning, 

teaching and doing mathematics. In other words, mathematical objects and the other 

topics listed above lie in an area which links mathematics and mathematics education 

(see for example, Davis & Hersh, 1981; Ernest, 1994; Hersh, 1999; Sfard, 1998; 

Tymoczko, 1998). 

One each extreme of this issue are Platonists and Formalists. Platonists argue that 

mathematical objects exist (live?) in a separate realm, and some of these Platonists 

even call this realm 'mathematical reality', as Hardy, for example, states: 
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I believe that mathematical reality lies outside us, that our function is to 
discover or observe it, and that the theorems which we prove, and 
which we describe grandiloquently as our 'creations', are simply our 
notes of our observation. (Hardy, 2004, pp. 123-124) 

Formalists, on the other hand, argue that such objects do not exist, and that 

mathematics is about axioms, definitions and theorems (i.e. formulae) which consist 

of nothing but symbols (Davis & Hersh, 1981). 

A sociolinguistic and social semiotics point of view conceives of mathematical 

objects as a creation of the human activity of doing mathematics and communicating 

in language. Halliday (2003, p. 140) expresses that: 

The 'content' of mathematics does not exist in the material world; it is 
created by the activity of mathematics itself and consists of ideal 
objects like numbers, square roots and triangles. 

Most of the recent studies which dealt with mathematical objects faced this sort of 

question about the nature of mathematical objects and their role and relationships to 

each other (e.g. Confrey & Costa, 1996; Dorfler, 2002; Dubinsky, 1997; Godino & 

Batanero, 1998; Sfard, 1994). Although the authors of these studies adopt a range of 

theoretical perspectives on what this role is, they focus on the role of language in 

constructing mathematical objects. Conceiving of mathematics as a social practice 

entails that mathematical objects are products of this practice. Thus, mathematical 

objects are constructs of the communication among mathematical communities, 

where mathematicians communicate mathematics. And since communication is 

inevitably multimodal (Kress & Van Leeuwen, 2001), mathematical objects are 

(re)presented in the different modes of communication. My plan is to demonstrate 

how mathematical objects come to being in the language of mathematics and in 

diagrams and to analyse the difference between these two modes in representing 

mathematical objects. 

Before moving on, I must say that my interest is in the representation of these objects 

and in the way mathematicians communicate about (with) them. Thus, my discussion 

is not about whether these objects exist or not but rather how mathematicians 

represent mathematical objects when they practice mathematics (learn, teach, do, 

write, etc.). In saying so, I hope that my position is already clear regarding the issue 

of the 'existence' of mathematical objects when I state that mathematics is a social 

activity. 
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2.1 	Mathematical objects as discursive constructs: the role of metaphor 

In his discussion about the relationship between mathematics and language, Halliday 

(1975) introduces the notion of a register and a 'mathematics register' (see Chapter 

2). He describes the ways in which this mathematics register is developed using 

language, such as reinterpreting existing words, creating/inventing new words, 

borrowing from another language or creating 'locutions' (technical terms such as 

right-angled triangle). In other words, developing a register entails developing new 

meanings, new words, new objects and new structures. Halliday (1975) explains: 

the development of a new register of mathematics will involve the 
introduction of new 'things-names': ways of referring to new objects or 
new processes, properties, functions and relations.' (p. 65) 

Analogy and metaphor are 'powerful linguistic' tools in 'creating new meanings' 

(Pimm, 1987, p. 93). The notion of metaphor and its role in the creation of a 

mathematics register is investigated by Pimm (1987). Taking the stance that 

'mathematics is a language' in a metaphoric way, he distinguishes between two types 

of metaphors: extra-mathematical metaphors and structural metaphors. Extra-

mathematical metaphors borrow words from everyday life in order to explain 

mathematical objects or processes, e.g. a diagram is a picture. Structural metaphors, 

in contrast, occur within mathematics itself, e.g. spherical triangles. These two 

metaphors play a crucial role in developing the mathematics register, since new 

words and, hence, new meanings are being added to the register. As a result of extra-

mathematical metaphors, mathematical concepts become objectified, and 

mathematicians deal with them as objects. For instance, the metaphor 'a diagram is a 

picture' may lead to talk about the diagram as a picture by describing it (e.g. large, 

nice) and the depicted 'things' in it (e.g. longest). Moreover, and as a result of the 

structural metaphors, the notion of triangle, as in spherical triangles, needs to be 

reconstructed or extended based on the 'new' analogy between the planer and the 

spherical context to enable mathematicians to talk about congruent spherical 

triangles, for instance. 

Another major linguistic means for objectification is nominalisation. Halliday (1975; 

1985) refers to nominalisation as a 'grammatical metaphor' in which a transformation 

of the verb (action/process) into a noun (object) occurs. I have already shown in 

Chapters 5 & 6 how the nominalisation process is responsible for the creation of 
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objects. In the context of mathematics, nominalisation creates mathematical objects 

(see the example about number five in Sfard, 2008, p. 171). There is a considerable 

number of studies showing that mathematicians talk about mathematical objects as if 

they exist independently (e.g. Charles, 2009; Hersh, 1999; Sfard, 1994, 2008; 

Sierpinska, 1996). The language of mathematics, or the mathematics register 

according to Halliday (1975; 1978), makes extensive use of nominalisation. This 

nominalisation feature, or reification, Sfard (1994; 2008) argues, is what makes the 

metaphor comes to life. 

Furthermore, Sfard (1994) claims that 'mathematical objects' is not just a metaphor 

but a 'leading' one in mathematics14: 

If the meaning of abstract concepts is created through the construction 
of appropriate metaphors, then metaphors, or the figurative projections 
from the tangible world onto the universe of ideas, are the basis of 
understanding. ... [Moreover,] the leading type of sense-rendering 
metaphor in mathematics is the metaphor of an ontological object. (p. 
52) 

For mathematical objects to be created, the reification process needs another process, 

alienation, which removes any traces of any human agency, i.e. obscuring the 

agency, and presents the object in an impersonal way (Morgan, 1996b; Sfard, 2008). 

Another powerful feature of nominalisation is the ability to create new objects which 

may have properties of their own and become the focus of the author (Morgan, 

1996b). As a result of nominalisation and metaphor as linguistic features, the 

mathematics register is extended, and mathematical objects are constructed. 

2.2 	Geometric (mathematical) objects in diagrams: 

The notion of metaphor entails analogy (Kress & Van Leeuwen, 2006; Pimm, 1987; 

Sfard, 1997) where we use objects from everyday life and from mathematics to 

(re)present mathematical objects. Language has been established over time as the 

central mode of communication, but this will not last forever (Kress et al., 2001) 

because of the 'new media age' (Kress, 2003) which makes other modes, such as 

images, available for communication. It is true that we still describe images and 

diagrams or any action using language, but sometimes the order of importance is 

14  See the critique (Confrey & Costa, 1996) of the notion of 'object as a central metaphor in advanced 
mathematical thinking' and the responses to this critique (Dubinsky, 1997; Tall, 1997). 

142 



reversed, and a diagram may be 'worth ten thousand words' (Larkin & Simon, 1987). 

One main difference between language and diagrams is that language has a specific 

reading path that is temporal, while diagrams have spatial arrangements with no 

specific reading paths (Kress, 2003), although the presence of an arrow in narrative 

diagrams does direct the reader to one potential reading path among others. 

Geometric (mathematical) diagrams, like any other diagram or image, show the 

'whole' scene, and the viewer/reader is free to choose what to look at and where to 

start from. Thus any transformation or transduction (Kress, 2003) between modes of 

communication is not possible without changing or losing meanings. Nevertheless, 

we try our best to convey the meanings we want to make. One way to do so is using 

analogy and metaphor when we talk about diagrams and objects, using language. 

The situation becomes very different if we, in contrast to using language, only look at 

these objects in diagrams. We see objects and, therefore, we need not use the 

metaphor or analogy to objectify them. They are already objects. They are totally 

human made and human invention, as Netz (1999, p. 60) puts it when he describes 

the diagram as a metonym of Greek mathematics: 

The mathematical diagram did not evolve as a modification of other 
practical diagrams, becoming more and more theoretical until finally 
the abstract geometrical diagram was drawn. Mathematical diagrams 
may well have been the first diagrams. The diagram is not a 
representation of something else; it is the thing itself. It is not like a 
representation of a building, it is like a building, acted upon and 
constructed. 

The above mentioned sentence -'They are already objects'- is a metaphor at the 

linguistic level, but not so at the visual level. While I agree that images convey 

metaphor, and we interpret them in language or other modes15, I think that geometric 

diagrams are different. Geometric diagrams do not represent anything but 

themselves, as Netz (1999) above argues. Moreover, geometric objects themselves 

became a source of metaphor within mathematics itself and beyond. Pimm (1987), as 

presented earlier, identifies metaphors within mathematics itself, namely structural 

metaphors such as spherical triangles or a complex number is a vector. 'Squaring the 

circle' is a metaphor within mathematics but is also used metaphorically beyond 

15  See for example Forceville (1996, p. 109) in which a visual metaphor is discussed, such as an image 
of a man wearing a suit with a shoe instead of a tie: 'the metaphor can be verbalised as SHOE IS TIE'. 
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mathematics to denote 'hopelessness', 'meaninglessness' or 'trying to solve the 

unsolvable' in reference to impossibility. 

As in language, the human agency in doing mathematics is also suppressed in 

diagrams. Mathematicians suppress human agency by using nominalisation or 

passive voice in language (Morgan, 1996b), on the one hand, and by eliminating 

human figures, physical objects and context from mathematical diagrams, on the 

other (O'Halloran, 2005). 

Having established mathematical objects, I now explore the main issues they raise: 

identity, which is related to the existence issue; attributes; and relationships between 

objects. I now turn back to the conceptual diagrams which represent mathematical 

objects, illustrated by examples. I end this chapter with some thoughts about 

narrative and conceptual diagrams and the relationship between them. 

Conceptual diagrams: 

In this section I present how objects and the relationships between them are 

identified using the language of Halliday's Systemic Functional Grammar 

supplemented by the visual grammar of Kress & Van Leeuwen (2006). Applying 

these two approaches, together with the linguistic approach to mathematical texts 

(Morgan, 1996b), to geometric diagrams guided my thinking in proposing relational 

processes in identifying geometric objects and the relationships between them. 

Rather than showing actions, geometric conceptual diagrams show the products of 

actions, geometric objects. These diagrams often 'show' information about the 

geometric objects such as identity and/or attributes and relationships between these 

objects (or, using geometry terms, axioms, definitions and theorems). In contrast to 

Figure 7-1a which depicts action, Figure 7-lb shows two parallel segments and four 

labelled angles that signal the Exterior Angle Theorem. 

Halliday (1985) contrasts material processes, as processes of doing and actions, with 

relational processes, which are processes of being. Taking, for example, the phrase, 

'Sarah is wise', the 'central meaning of clauses of this type is that something is' 

(Halliday, 1985, p. 112). Furthermore, he claims that relational processes tend to be 

the major processes found in mathematical and scientific writing (Halliday, 2004). 

Halliday distinguishes three categories of relational processes: intensive, 
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circumstantial and possessive, each of which has two modes, attributive and 

identifying. In the attributive mode, an attribute is qualified to an entity while in the 

identifying mode, in contrast, 'one entity is used to identify another' (Halliday, 1985, 

p. 113). The distinction between attributive and identifying processes is based on 

reversibility; identifying processes are reversible, while attributive processes are not. 

This is one main reason to refer to the identifying process by the equal sign '=' (cf. 

Morgan, 1996b). 

In general, attributive processes are about the attributes of objects. In the phrase, 'a is 

an attribute of x', 'a' is the Attribute, and 'x' is the Carrier. In 'a rectangle is a 

parallelogram', for instance (see Table 7-1), rectangle is the Carrier, is is the 

relational (attributive) process, and parallelogram is the Attribute. This relational 

attributive process is intensive or qualitative ('x is a'), while other types may be 

circumstantial ('x is at a' in terms of time or place, as in a triangle inside a circle) or 

possessive ('x has a', as in .ABC has two equal sides). 

The other mode of relational processes is identifying, for example 'stating an identity 

between two objects' (Morgan, 1996b, p. 81). The function of this mode is to identify 

one object by another, as in, 'a is the identity of x', where 'a' is called identifier and 'x' 

is the identified. The phrase, 'Any four-sided polygon is a quadrilateral', for instance 

(see Table 7-1), is an intensive relational process where Any four-sided polygon is 

the identifier, is is the identifying relational process, and quadrilateral is the 

identified. Table 7-1 summarises these relational processes with examples from 

geometry. 

Table 7-1: Relational processes suggested by Halliday (1985) 

mode 
type 

Attributive 
'a is an attribute of x' 
or 'x has attribute a' 

Identifying 
'a is the identity of x' 

Intensive 
('x is a') 

a rectangle is a parallelogram any 	four-sided 	polygon 	is 	a 
quadrilateral 

Circumstantial 
('x is at a') 

A triangle inside a circle The orthocentre of a triangle is the 
point where the three altitudes of a 
triangle intersect 

Possessive 
('x has a') 

AABC has two equal sides A triangle with two equal sides is 
an isosceles 
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What about relational processes in images and diagrams? 

While narrative diagrams are distinguished by the presence of temporality, where 

narrative processes are happening in time sequence, and participants are represented 

as actively engaging in that process as doers (see Chapters 5 & 6), conceptual 

diagrams are distinguished by the absence of any temporal feature; they represent 

participants in a 'timeless essence'. As discussed in the previous chapter, the 

elimination of human figures, physical objects and context in mathematical diagrams 

plays the 'same' role in concealing human agency as nominalisation plays in language 

(see for example, O'Halloran, 2005). The suppression of human agency in doing and 

constructing mathematics (Morgan, 1996b) eliminates the mathematical doing itself. 

When diagrams do not show (narrative) actions, they show mathematical objects. 

Kress & Van Leeuwen (2006), adopting Halliday's social semiotics theory, contrast 

narrative processes, 'presenting actions and events, processes of change, transitory 

spatial arrangements', with conceptual processes which represent participants in 

'more generalized and more or less stable and timeless essence, in terms of class, or 

structure or meaning' (p. 79). They consequently distinguish between three types of 

conceptual processes: classificational, analytical and symbolic. 

In classificational processes, participants are connected to each other in a taxonomy 

'kind of relation. This can be a covert taxonomy, in which participants are 

represented in a compositional symmetry, or an overt taxonomy, such as tree 

structures (e.g. family tree) in which participants are represented in a hierarchical 

order. Analytical processes represent participants in terms of a part-whole, 'part of, 

and relation. 'Symbolic processes are about what a participant means or is' (Kress & 

Van Leeuwen, 2006, p. 105 italic in origin). This distinction is based on the 

participants (Carrier and Symbolic Attributes). Either there are the two kinds of 

participants, where one (the Attribute) 'defines' the identity of the other (the Carrier), 

or there is only one participant, the Carrier, who possesses self-contained qualities or 

identity. 

Kress & Van Leeuwen compare their categories to those of Halliday's in language. 

Visual classification and analytical processes are akin to, respectively, linguistic 

intensive and possessive attributive processes; symbolic attributive is akin to the 
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identifying process; and the symbolic suggestive would be akin to Existential 

processes. For more details, see (Kress & Van Leeuwen, 2006, Chapter 3). 

3. 	Relational processes in diagrams 

While in language we speak about mathematical objects, give them identities, and 

talk about their attributes, features and relationships, in diagrams we 'see' all of these 

and, hence, I argue, many things change. Besides the processes of metaphor, analogy 

and nominalisation on which I commented above, geometric objects are seen in 

'specific' positions with specific sizes and, hence, relations between them are also 

identified. We no longer talk about a point or a segment inside a triangle (e.g. the 

orthocentre or altitude), but we see its position (and its size, if given, and if not, we 

can compute it). In other words, relations between geometric objects are structured 

by the discourse itself. I refer here to the fact that relations between geometric object 

have to involve what the discourse of geometry is about, such as spatial relations 

(position and size). Axioms, definitions and theorem are also mathematical relations 

between geometric objects and should therefore also be considered. This is one 

reason that we need to search for other categories of relational processes in diagrams. 

I noted additional reasons in my discussion of the difference between language and 

visual representations. 

While I borrow many of the categories of relational processes from Halliday and 

Kress & Van Leeuwen, in analysing geometric diagrams, I again borrow Morgan's 

(1996b) linguistic tool to analyse mathematical texts. The key questions to determine 

whether the diagram is conceptual are: what are the mathematical objects represented 

within the diagram and what are the characteristics/features of these objects? A 

further question that should be added concerns the relations between these objects. 

Furthermore, there is a need for constructing relational categories for geometric 

diagrams which is informed by the work of Halliday and Kress & Van Leeuwen. 

Although both Halliday's categorisation of relational processes and Kress & Van 

Leeuwen's approach inform my thinking about relational processes in conceptual 

diagrams, they cannot offer a sufficient account of relations between geometric 

objects in diagrams. Halliday's SFG is about language, while the visual grammar 

suggested by Kress & Van Leeuwen needs to be contextualised in geometry. The 
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issue of identity and attributes is an illustrative example of the need for such 

categorisation. 

Every (mathematical) object has two aspects: a carrier and a number of attributes. In 

language, these aspects are presented in statement about object. For example, in an 

equilateral triangle has three equal sides, 'equilateral triangle' is the carrier and 

'equal sides' is an attribute. This distinction is possible because the grammatical 

components are discrete and combined linearly; one component precedes the other in 

a temporal sense. In diagrams, however, components are arranged spatially and are 

seen together, i.e. carrier and attributes are shown at the same time. In addition, the 

carrier is the object itself that we see (Netz, 1999), and its attributes are its properties 

which may be highlighted through different means, including labels, colours, words 

and arrows. 

Furthermore, the relations between a geometric object and its attributes are so 

interrelated and intricate, that it becomes difficult to separate them. Sometimes the 

attributes of an object may be used to identify the object itself (Pimm, 1987) or the 

reverse. For instance, labelling one angle in a triangle as a right angle suggests the 

identity of that triangle as a right triangle, or identifying a diagram as an equilateral 

(or isosceles) triangle suggests its attribute as having three (or two) equal sides. In 

other words, labels identify components of diagram, and the identified nature of these 

components comprises the attributes of the whole diagram. 

As a result of the need for a contextualised categorisation of relations in geometric 

diagrams, I have identified three kinds of relations in geometric diagrams. They are: 

classificational processes, identifying processes (which are of two types; indexical 

and symbolic); and spatial processes (which are of two types; positional and size 

processes).16 These processes will be the focus of the rest of this chapter. 

3.1. 	Classificational processes: 

These processes relate participants to each other in an 'of the same kind' relationship, 

a taxonomy where one participant, or sets of participants, will play the role of 

Subordinate with respect to the other participant, the Superordinate (Kress & Van 

16  The analytical processes suggested by (Kress & Van Leeuwen, 2006) could also occur in 
mathematical diagrams such as pie diagrams or statistical graphs, although they do not occur often 
within the scope of my research — (2D) geometry in school. 
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Polygons 

Quadrilaterals 

Parallelograms 

Rectangles Squares 	Rhombuses 

—''' 
Trapezia 

Leeuwen, 2006, p. 79). They are akin to intensive processes in language, such as 'x is 

a member of the class a'. The visual classificational processes in geometric diagrams 

may be realised in sets or class structures, such as in Figure 7-2, showing the 

relationships between different polygons. The information in the diagram may be 

expressed verbally as, 'squares are rhombuses', meaning that 'squares are members of 

the class of rhombuses', or 'trapezia are members of the class of quadrilaterals'. 

Figure 7-2: The relationships between different polygons 
(Palestinian textbook, Grade 8-part 2, p. 30, translated and redrawn by the author) 

Other classificational processes may be realised in vertical hierarchical tree 

structures in which participants at the same level, the Subordinates, represent the 

same kind of relation with respect to the previous vertical category, the 

Superordinate. Figure 7-3, for instance, shows the relationship between different 

quadrilaterals, where parallelograms and isosceles trapezia are in the same level 

representing the Superordinate Trapezium in the upper level. The arrows in this 

figure are of 'the same kind of relation, and hence they designate a conceptual 

structure, rather than a temporal narrative structure. 
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Figure 7-3: The relationships between different quadrilaterals 
(http://www.mathsisfun.com/Quadrilaterals.html)  

3.2. 	Identifying processes 

As mentioned earlier, conceptual diagrams are about mathematical objects and their 

identities and attributes. In such diagrams, identity and attributes of mathematical 

objects are derived from the object itself or from relations with other objects. In 

geometry, we identify these qualities/attributes using two different 'visual' tools: 

indexical and symbolic. 

Before moving on, I want to clarify a few points about these visual tools. The 

Peircean (Peirce & Buchler, 1955) distinction between three kinds of signs, based on 

the relations to their object, is well-known. An icon is a sign which has its own 

characteristics or properties and signifies its object by virtue of similarity to (one of) 

these properties. In other words, the iconic sign is not influenced by the objects it 

represents, but rather it shares some common properties with these objects. 

Illustrative examples are portraits, images and diagrams. Index, on the other hand, is 

a sign that has a direct relationship with (and is affected by) its object. Good 

examples of this kind are: the index finger, the barometer and letters on geometric 

diagrams. Finally, symbols are related to their objects by conventions. 'All words, 

sentences, books, and other conventional signs are Symbols' (Peirce & Buchler, 

1955, p. 112). 
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Iconic signs in relational processes are not relevant to this study, because I look at 

relations between parts of the diagram and not at the diagram as a sign. In other 

words, I do not look at the diagram as an icon and then use that icon in another 

relationship. A diagram, in the sense it is used in this study, is an icon of geometry in 

the same sense that algebraic notations/expressions are icons of algebra. Thus, I 

exclude iconic signs, leaving two kinds of identifying processes: indexical and 

symbolic. 

Indexical processes:  

Indexical processes refer to the use of indices in identifying a geometric object or 

(one of) its attributes. Peirce identifies three distinguishing features of indices: 

first, that they have no significant resemblance to their objects; second, 
that they refer to individuals, single units, single collection of units, or 
single continua; third, that they direct the attention to their objects by 
blind compulsion. (Peirce & Buchler, 1955, p. 108) 

In geometric diagrams, the use of letters and arrows represents indexical processes, 

since each of them meets Peirce's distinguishing features (see below). Letters, for 

instance, refer to points or lines in Figure 7-4 and, similarly, an arrow points to a 

specific component of a diagram in Figure 7-8. 

a. Lettered diagrams: Peirce himself uses letters in geometrical diagrams as an 

example of indices. Lettering diagrams is one of the most common features in 

geometry. Netz (1999) considers 'lettered diagrams' to be one of two tools, beside 

language, which shaped Greek mathematical deduction. Letters on Greek 

geometrical diagrams are not merely letters, they are also the objects. Usually, capital 

letters are used to denote points, and, hence, lines, angles, shapes and planes could be 

identified (named) by those letters, as in Figure 7-4. In terms of relational processes, 

these letters identify objects. For instance, AB represents a line AB, or ABC 

represents a triangle. Letters are also used to refer to these objects in the written text, 

but this is a textual function to be discussed in a separate chapter. 
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Figure 7-4: Lettered diagrams with capital letters 

Indexical letters may sometimes be small letters used to identify attributes of a 

diagram such as the size or value of lines, angles and areas (see Figure 7-5 for 

different examples). These small letters are also indices used to refer to size 

relationships (see below). 
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Figure 7-5: Lettered diagrams with small letters 

b. Arrows: Arrows (or lines) may also be indexical signs in geometrical diagrams. 

They are usually joined either with words or with numbers to refer to the object they 

identify. Unlike the arrows discussed in Chapter 6, these arrows do not represent 

action or narrative because they in some way come from 'outside' the diagram, 

referring to a specific part of the diagram in order to identify it with words. 

Moreover, the presence of the arrow is the reason we consider these diagrams to 

represent indexical processes. Indexical arrows come in two modes: attributive, when 

they refer to specific parts of the diagram (Figure 7-6) or identifying when they refer 

to the whole diagram (parallelogram and DABC in Figure 7-7), although the 

identifying mode has fewer examples than the attributive. 
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Figure 7-7: Indexical identifying arrows 

- Right ti  n& /CB 
h. altitude 
nr prqeclion of a on c 
a prop/than of 0 on c 

Figure 7-6: Indexical attributive arrows 

Some geometric diagrams present different types of arrows simultaneously, 

including narrative type arrows (indicating measurement of length) as well as 

indexical ones. Figure 7-8, for instance shows a diagram presented by a participant 

student in the current study using a narrative type arrow to indicate the measurement 

of the side LM and two indexical attributive arrows indicating the measure of two 

angles. The other diagram is taken from the Internet indicating the measurement of 

the side AB and two indexical attributive arrows, one of which indicates some 

feature of the triangle ACB, while the other indicates the name of the side AB as 

Hypotenuse. 

Figure 7-8: Narrative and indexical arrows 
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Symbolic processes:  

Symbolic signs have convention-based relationships with their objects. According to 

Peirce, words are the first thing to consider as symbolic signs. The word itself is a 

signifier, and its meaning is the signified (Hodge & Kress, 1988). In other words, 

symbolic process makes a statement about what the object means or is (Kress & Van 

Leeuwen, 2006). I have introduced how letters and arrows, as indexical processes, 

are used to identify some parts of the diagram or the entire diagram. In symbolic 

processes, the identification is done by words.17  Words can identify parts of the 

diagram, through attribution (Figure 7-9) or the whole diagram through identification 

(Figure 7-10). 

(a) 	 (b) 
Figure 7-9: Symbolic attributive 

    

 

obtuse 

(a) 
	

(b) 
	

(c) 

Figure 7-10: Symbolic Identifying 

As mentioned in the indexical processes, if arrows are joined by words (Figure 7-6 

and Figure 7-7), or the other way around, I consider them to be indexical, because of 

the role of the arrow. While arrows with words can also be used to identify the whole 

diagram, there are fewer examples of this practice. 

17  Labels and colour could also be used here as symbolic processes. The main reason not to include 
them here is that both refer to the size (value) of parts of diagrams. Therefore, I consider them in the 
size relationship within the spatial relation (see below). 
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3.3 	Spatial relations 

The previous two kinds of processes may be categorised as 'naming' processes, 

whether the whole diagram is classified or named, as, for example, whether or not it 

is a parallelogram, or whether a specific name or feature is attributed to parts of the 

diagram. In spatial processes, on the other hand, we focus more on the details of the 

diagram and how they express relations between geometric objects. Generally 

speaking, mathematical objects in Euclidean geometry are: points, lines (segments), 

angles and shapes (actually angles and shapes are inherently relations between points 

and lines or segments). Table 7-2 summarises these relations (represented by *): 

Table 7-2: Relations considered among geometric objects 

Point line angle shape 

point * * * * 

line * * * 

angle 
, 

* * 

shape -, * 

Relations in the shaded cells are of the same type of the other corresponding cells 

(reflexive relations). For example, the relation between points and lines is the same 

as the relation between lines and points, so I don't put a star (*) in the latter 

corresponding cell. Thus, ten relations are identified in spatial processes. These types 

of relations are of two types: positional and size (measuring). The claim here is that 

an object has two parameters (position and size) that are necessary to see its details 

and its relationships with other objects. In the following section, I address each 

parameter, illustrated by several examples. 

3.3.1 Positional relations 

The spatial relations are based on the position of objects. In language, words which 

describe these relations are coincide, lie on, distinct, interior, exterior, inside, 

outside, parallel, perpendicular, intersect, tangent, touches, pass, contain and the 
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Visual examples 

Q 

• 

\Z_ 

like. They may be akin to circumstantial relational processes in language. There are 

ten types of positional relations, which are summarised in Table 7-3. 

Table 7-3: Positional relations in diagrams 

Name of relation 

(P1) Point & Point 
relations (PP):  

(P2) Point & Line 
relations (PL):  

(P3) Point & Angle 
relations (PA):  

(P4) Point & Shape 
relations (PS):  

(P5) Line & Line 
relations (LL):18  

(P6) Line & Angle 
relations (LA):  

Verbal description 

a. Coincident (same point) 

b. Distinct (not coincident) 

a. Lies on it (collinear) 
b. Does not lie (distinct) 
a. Lies on one of its sides 
(collinear) 
b. Does not lie on any side 
(interior & exterior) 
c. Vertex 

a. Lies on one of its 
sides/circumference 

b. On/at vertex 

c. Inside the shape (e.g. centroid, 
orthocentre, incentre) 
d. outside the shape (e.g. 
circumcentre) 
a. Coincident 

b. Parallel 

c. Concurrent (touch on one point) 

d. Perpendicular (orthogonal) 

e. Intersect (not perpendicular) 

a. One of its sides (or extensions) 
b. Intersect with one of its sides (or 
extensions) 

c. Parallel to one of its sides 

d. Touches its vertex through the 
vertex but outside the angle 
e. Passes through the vertex (e.g. 
bisector) through the vertex and 
inside the angle 

18  Because the focus of the current study is 2D Euclidean geometry, skew lines are not considered. 
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a. One of its sides (or extensions) 

b. Intersect with (at least) one of 
its sides (or extensions) 

c. Parallel to (at least) one of its 
sides 

d. Touches one of its vertices 
'outside' (e.g. tangent) 
e. Passes through one of the 
vertices (e.g. bisector, altitude, 
median) 'inside the angle' 

a. Share a vertex 

b. Share a side 

c. Share both a vertex and a side 

a. One of its angles (inside) 

b. Outside (e.g. exterior angle, 
equal one of its angles) 

a. Distinct 

b. Intersect (share points or sides) 

c. Contains (inclusion, inscribed) 

(P7) Line & Shape 
relations (LS):  

(P8) Angle & Angle 
relations (AA):  

(P9) Angle & Shape 
relations (AS):  

(P 10) Shape & Shape 
relations (SS):  

There are, indeed, diagrams which may include different relations, such as a point 

lying on a line, an angle and a shape (PLa, PAa, Pac, PSa, PSb). Moreover, it is 

possible for more than one relation to coexist between the same pair of objects in 

some cases, such as SSb and SSc. 

An example•  

The diagram in Figure 7-11 contains many geometric objects such as points (A, B, C, 

0), lines (radii, AB, AC, CB, OC, etc.), angles (e.g. AOB) and shapes (circle, 

pentagon, triangles). 
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Figure 7-11: Positional relations: An illustrative example 
http://etc.ustiedu/clipart/36700/36715/pentcirc  36715.htm  

The following relations may be identified in this diagram: 

Name of relation 

(P lb) Point & Point (PP): 

(P2a) Point & Line (PL): 
(P3c) Point & Angle (PA): 

(P4a) Point & Shape (PS): 

(P5d) Line & Line (LL): 
(P6a) Line & Angle (LA): 

(P7a&d) Line & Shape (LS): 

(P8a) Angle & Angle (AA): 

(P9a) Angle & Shape (AS): 

(P10c) Shape & Shape (SS): 

Examples in the diagram 

0 & A are distinct 

B & C lie on the same line 

0 is the vertex of LAOB 
C lies on the side AB, and it is a tangent point 
to the circle 
OCIAB 
OA & AB are sides of ZOAB 
AB is a side in the pentagon (P7a) 
AB is a side in LOAB (P7a) 
AB is a tangent to the circle (P7d) 
LAOC &LBOC share the vertex 0 

LAOB is a central angle in the circle 

The circle is inscribed in the pentagon 

3.3.2 Size processes 

Spatial relations are also based on the size of objects. In language, words which 

describe these relations are equal, greater than, less than, congruent, similar, same 

as and the like. Not all the ten spatial relations mentioned earlier appear in size 

processes. It is expected that special relations that include points (PL, PA and PS) do 

not appear in size processes, because points have no size and, consequently, no size-

based comparison is applicable. The remaining seven spatial relations are divided 

into two categories: relations between the same types of objects (and, hence, a 

comparison relation between them is established) and relations between different 

types of objects (and, hence, a measurement-based relation between them is 

established). 
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Comparison-based size relation: 

This type of relation occurs between the same types of geometric object: line-line 

(LL), angle-angle (AA) and shape-shape (SS). In geometry, it most often takes the 

form of propositions such as definitions and theorems. For instance, the Triangle 

Inequality Theorem, 'the sum of the lengths of any two sides of a triangle is greater 

than the length of the third side', relates the three sides of a triangle together (LL). 

Pythagoras theorem is another example in which two types of relationships may be 

expressed (LL and SS). Moreover, the Exterior Angle Theorem in Figure 7-1 also 

shows a relationship between angles (AA). 

I consider all such relationships as 'special' in Table 7-4. This type of relationship is 

only possible to identify if one has specific forms of knowledge beyond the 

conventions. In other words, there are no indicators that can be applied objectively 

by anyone having knowledge of the conventions, like the equal length markers that 

indicate congruency (Sla or S3a&b in Table 7-4). One reason to consider them here 

is to illustrate that sometimes there is a need for some mathematical knowledge in 

order to read and analyse mathematical diagrams. 

Measurement-based size relation: 

This relation occurs between different types of geometric objects such as line-angle 

(LA), line-shape (LS) and angle-shape (AS). An additional relation, which is the 

relation between two points, is also considered, because the length of a line segment 

is defined by the distance between two points (see Table 7-5). As a result of the 

interaction between geometric objects in measurement-based size relation, a value 

(most often, numerical) is suggested for these objects. This value could be that the 

distance between two points is referred to as the length of a segment line, or that the 

area of a parallelogram is calculated by multiplying the lengths of its base and height. 

In general, these relationships are either (a) given in a problem in writing or visually, 

or (b) could be calculated by geometric formulae of measurements (similar to the 

'special relationships' mentioned in the comparison-based size relation). 

Measurements in Euclidean geometry take four forms based on the units of 

measurement: linear, angular, square (area), cubic (volume). As mentioned earlier in 

footnote number 18, the current study focuses on 2D Euclidean geometry; hence, 
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cubic measurement will not be considered in detail. Thus, I will consider the first 

three types of measurement which embody the four size relationships (PP, LA, LS, 

AS). 

Table 7-4: Comparison-based size relations in diagrams 

Verbal description 

a. Equal (e.g. square, isosceles, 
equilateral) 

b. Special relationships (e.g. 
Triangle Inequality Theorem, 
Pythagoras Theorem) 

c. None of the above 

a. Congruent (equal, same) 
(alternate -Z-, correspondence -F-, 
or just marked to be the same) 

b. Special relationships such as 
complement, supplement, the 
Exterior Angle Theorem 
c. None of the above (greater or 
smaller) 

a. Congruent 

b. Similar 

c. Special relationships such as 'a 
square is equal to a parallelogram 
of equal base and height', 
Pythagoras theorem. 
d. None of the above, e.g. the area 
of a polygon is equal to the sum of 
areas of its component shapes, or 
an area of a shape is greater 
(smaller) than another. 

Visual examples 

a 
a+b > c, a+c > b, b+c > a 

Name of relation 

(S1) Line & Line 
relations (LL):  

(S2) Angle & Angle 
relations (AA):  

(S3) Shape & Shape 
relations (SS):  
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Linear measurements: This type of measurement refers to the length of a line 

segment (PP relationships) or perimeter (LS) — Figure 7-12. Length is defined as the 

distance between two points, or an interaction between two points (PP), and as a 

result a (numerical) value is suggested for that length. 

The perimeter of a polygon is the total distance around the polygon, and it thus 

embodies relationships between lines and shapes (LS). Another name for perimeter is 

circumference, which is suggested by the geometry of a circle and may be defined as 

the total 'distance around a circle or a closed curve'. The circumference of a circle is 

calculated by the formula 2Tur (r: radius). 

Figure 7-12: Linear measurement-based size relation 

Pythagoras theorem has a special status here, since it embodies relationships between 

the sides of a triangle (LS) which indicate linear measurements, and, at the same 

time, it embodies relationships between shapes (SS) as mentioned in comparison-

based size relationships. Moreover, it indicates square measurements (see below) in 

which a relationship between shapes is established. 

Angular measurements: This type of measurement is found in the geometry of 

circles, where the main difference from linear measurement is the presence of arcs 

rather than line segments. Besides arc length, the most well-known object measured 

by this type is the angle. 

Arc length is measured by multiplying the length of the radius and the measure of 

angle which is measured in radians (Figure 7-13a). 'An angle is formed by two rays 

with a common endpoint' (http://www.icoachmath.com/SiteMap/Angle.html)  and is 

measured either by degrees (in which a circle is divided into 360 degrees) or radians. 

'One radian is the angle subtended at the center of a circle by an arc that is equal in 
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length to the radius of the circle' (http://en.wikipedia.org/wiki/Radian),  i.e. 1 radian = 

(180/70° or about 57.3° . 

11 

  

------- 22.5° 

  

(b) 

    

(c) 

      

Figure 7-13: Angular measurement-based size relation 

Area (square) measurements: This type of measurement focuses on 2D closed 

polygon and curves. For regular closed polygons (e.g. square or rectangle), area is 

defined as the number of square units that cover these diagrams. The area of irregular 

polygons can be found by dividing them into different standard polygons (Figure 

7-14). 
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Figure 7-14: Area measurement-based size relation 

All diagrams in Figure 7-14 are examples of relationships between (areas of) shapes 

and sides, i.e. Lines and Shapes (LS). However, these diagrams may also embody 

relationships between lines, angles and shapes (LA, AS). For instance, the area of a 

triangle may be calculated in terms of angles as follows: 

Area = (1/2)*b*c sinA = (1/2)*a*c sinB = (1/2)*a*b sinC 

A summary of measurement-based size relationships in diagrams is shown in Table 

7-5: 
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Table 7-5: Measurement-based size relations in diagrams 

Name of relation 	Verbal description Visual examples 

(S4) Pointl & Point2 The measure of a line is (equals) 
relations (distinct PP): the distance between two points. 8 cm 

 

(S5) Line & Angle The measure of an angle is Oppo ac HYPdl.asa 

relations (LA): computed by trigonometry ill 
Adjacent 

, 

a. The measure of the perimeter or 
circumference of any polygon 

(S6) Line & Shape 

(circle) has a formula that links to 
lengths of sides or radius 
b. Area has specific formula. 
There are several ways to compute 
the area using lengths of sides. 

. 

AL relations (LS): 

Note: Volume is also a measure-formula,  

though it is not considered in this study. 

a. The sum of angles in a polygon 

(S7) Angle & Shape 
(=180(n-2)) 

 
relations (AS): 

b. Area 
., 

4  

An example: According to the suggested measurement-based size relationships, the 

following relations may be identified in the diagram in Figure 7-15: 

A 

12 cm 

Figure 7-15: Measurement-based size relations: An illustrative example 
(Drawn by the author) 

Name of relation 
	

Examples in the diagram 
(1) Comparison-based size relation 
(Sib) Line & Line (LL) 
	

Pythagoras theorem, BC=AD, AB=DC 
(S2a) Angle & Angle (AA) 

	
LA=LC 

(S3a) Shape & Shape (SS) 	Pythagoras theorem, DABD EACBD 
(2) Measurement-based size relation 
(S4) Pointl & Point2 (distinct PP): CD=12 cm 
(S5) Line & Angle (LA) 

	
cosBDC=12/20 —> LBDC=53.1° 

(S6a) Line & Shape (LS) 
	

Perimeter of ABCD =AB+BC+CD+DA 
=12+16+12+16=56 cm 

[since BC=sqrt(400-144)=16 cm by Pythagoras 
Theorem] 

(S7b) Angle & Shape (AS) 	Area of ABCD=12*16=192 
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4. 	Labels and colour as relational (size) processes: 

Size relations are expressed in diagrams (not in the written texts) by conventional 

symbols which are labels (marks or numbers) or by colour. 

Labels: This is one of the most conventional forms in mathematics and geometry 

where specific visual 'marks' are used to denote size relational processes such as 

(in)equality or parallelism. The little square mark, for example, denotes the size of an 

angle (=90°). Labels which denote size relations come in different forms; special 

marks (e.g. /, //, II) letters or numbers (or a combination of letters and numbers). See 

Figure 7-16. Letters refer to the object (as a name or as a value) next to them: a point, 

a side, an angle or a part of the shape. Similarly, numbers come in two types: they 

can denote value or they can name an object. Most often, numbers present the value 

of the object, e.g. the length of a segment, the measure of an angle, the measure of a 

circumference or the area. Labels offer information about relations between parts of 

the diagram. See the next chapter on interpersonal function. 

Figure 7-16: Labels as size relational processes 
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LE7 
(a) 

3 

(b) 	 (c 

Figure 7-17: Colour as size relational processes 

I I 

Colour: Colour is also used to denote size relational processes in geometric diagrams, 

although written books, the traditional means of communication and representation, 

provide few examples in comparison to the screen, the new media of production (for 

more elaboration, see Kress, 2003). The data collected from students in schools are 

of the traditional type, and I found few examples in which students used colour. As 

mentioned in the discussion of methodology in Chapter 4, the web-based diagrams, 

or diagrams-on-screen, were one of the sources of the current study, and they made 

extensive use of colour. In other words, most of the coloured diagrams presented 

here are taken from the Internet. 

The common feature shown by colour in diagrams is equality: equal sides (e.g. the 

opposite sides of a parallelogram are of equal length), equal angles (e.g. alternate 

interior angles) or equal areas (e.g. Pythagoras Theorem). See Figure 7-17. 

5. 	Definitions and theorems as interaction between spatial relations: the 

discourse level 

Euclidean geometry is an axiomatic system based on axioms which are relationships 

defined between geometric objects that were agreed on 'without' a proof. One of the 

powerful features of axiomatic systems is the ability to create new objects based on 

'existing' ones using relations. In other words, Euclidean geometry is an autopoietic 

system, 'a system that produces the things it talks about' (Sfard, 2008, p. 161). 

Historically, the creation of the new objects is based on construction using tools 

(compass and edge) to execute the new relations on the 'old' objects. Thus, the story 

of any object is, to a certain extent, a creation and a proliferation of 'old' objects. 

Actually if one wants to follow how every object was created in EG (Euclidean 

Geometry), one will arrive at the basic objects (or more primitive ones), definitions 

and axioms. 
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When mathematicians construct a new object, they will apply new relations to it, 

and, again, new objects will appear. What may be confusing is the endless number of 

objects which can be created using relations and the need to distinguish between 

them or to refer to them during the creation of new objects. I refer here to the notion 

of naming and the need for it. In geometry, some objects have specific position 

and/or size properties that led mathematicians to give them names to identify and 

refer to them as a shortcut that eliminates the need to list their features. The 

following example illustrates how the new objects are constructed through/in/by a 

diagram where mathematicians give names and, moreover, how the process of 

construction and definition can be observed in this diagram by using the suggested 

system of analysis (Figure 7-18). 

I see the 'angle bisector' as a 'new' object created by the relations between other more 

'primitive' objects. A line (segment) is at the vertex and inside (P6e) one angle, 

which is one of the angles of (P9a) a triangle, such that the two angles formed at this 

vertex are equal (S2a). I refer to this line segment as 'angle bisector' [this name is not 

part of the diagram but introduced into the description for ease of reference]. There 

are three such angle bisectors inside (P7e) the triangle. A single point lies on (P2a) 

all three angle bisectors. This point is named 'incentre', which is part of the diagram, 

indicating a symbolic process. 

Figure 7-18: Angle bisector and incentre as new created objects 
(http://www.mathopenref.com/triangleincenter.html)  

Theorems and proofs may also be seen as instantiations of spatial relational 

processes. One of the famous theorems in geometry is Pythagoras Theorem ('in any 

right angled triangle, the square of the hypotenuse is equal to the sum of the squares 

of the other two sides', see www.pythagorastheorem.co.uk). Figure 7-19 shows a 
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diagrammatic or visual proof (know as proof without words) for that theorem which 

is based on positional and size-relational processes. The basic idea of the proof is that 

all the shapes in both sides of the bidirectional arrow are included (P10b) in one 

single universal square where all of these shapes share sides with each other (e.g. the 

yellow square in the left side diagram shares its sides with the surrounding triangles). 

This means that the two diagrams in both sides are congruent (S3a) or in other 

words, the total area of the left side is equal to the total area of the right side. 

Actually the size relational processes in this theorem are based on the congruence of 

triangles that is realised by the same colour and labels. As a result of the two 

relational processes and by removing the four congruent triangles, the yellow squares 

in both sides are equal. 

Figure 7-19: Proof without words of Pythagoras Theorem as relational processes 
(http://www-users.math.umd.edtil—gfleming/JINUPtPww/PtPwwFrame.html) 

6. 	Relational processes in students' mathematical texts: 

In the mathematics texts that students produced in response to the tasks of the current 

study, they used these different types of relational processes, with one main 

exception: the classificational. The absence of the classificational process is not a 

surprise, since this kind of relation has few examples in geometry and is most 

commonly used to 'show' students a wider view of relations between diagrams. 

The context of the tasks affects the way students present mathematical objects in 

their diagrams and the relationships between these objects (Morgan, 2006) (see 

Chapter 4). Each task belongs to a different mathematical genre which influences the 

way students approach it, as demonstrated in their texts. Students used identifying 

processes in both tasks in the suggested categories, indexical (Figure 7-20) and 

symbolic (Figure 7-21), to identify objects and to show their attributes. For instance, 
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in the two tasks, students commonly used identifying processes such as arrows (or 

lines without arrows) together with words to identify objects such as the crossing 

point in Figure 7-20a or arrows with numbers to identify the area of specific parts of 

the diagram as in Figure 7-20b. In their texts, students commonly used letters to 

identify objects in diagrams. 

Figure 7-20: Indexical relations in students' diagrams 

Using words was common as well in students' texts in identifying symbolic processes 

as suggested by the framework. This was especially prevalent in the solutions to task 

1 such as using the word 'sprinkler' in Figure 7-21a (written in Arabic at the top of 

left side of the diagram) and less common in task 2, although Figure 7-21 b provides 

an example of using the word 'Centre'. 

(a) 	 (b) 

Figure 7-21: Students' symbolic diagrams 

Furthermore, students also made use of spatial relationships, positional and size, in 

their texts. Task 1 (TF), for example, asks students to find distances, so students used 

measurements and, hence, size relational processes, especially the measurement-

based relations. These relations dominated many of the texts, such as the diagram in 

Figure 7-20b, which shows both linear measurements (e.g. the length of PE = 16m — 
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S4 in Table 7-5) as well as area measurements (two areas in the trapezium: one 

equals 160 metre squared and the other is 40 metre squared — S6b in Table 7-5). 

Task 2, in contrast, solicited investigation of a geometric proposition, asking students 

to agree or disagree or to (dis)prove, and, hence, positional and comparison processes 

were more dominant. For instance, in Figure 7-22, the quadrilateral is inscribed 

(P 10c in Table 7-3) by the circle and the centre of the circle, and the crossing point 

of the diagonals of the quadrilateral are coincident (Pla in Table 7-3). Comparison-

based relations were also found in students' diagrams, as in Figure 7-22 where the 

opposite sides of the quadrilateral are equal (S4a in Table 7-4). Finally, students used 

labels and colour in their investigation to solve Task 2 as shown in Figure 7-22, in 

which visual marks are used to signal the equality of the opposite sides of the 

quadrilateral. 

Figure 7-22: Labels in students' diagrams 
(Year 7, Gillian, not common) 

7. 	A summary: Reflective remarks on narrative and conceptual diagrams 

This chapter focuses on 'timeless' geometric diagrams in which no actions could be 

identified. It is presented in contrast to narrative diagrams where mathematical 

activities could be identified through the reading suggested by the framework. 

Conceptual mathematical diagrams (re)present objects and the relations between 

these objects. After summarising how mathematical objects are constructed verbally 

and visually, I have identified the kinds of relations between those objects as 

represented in diagrams. Following Halliday (1985), Kress & Van Leeuwen (2006) 

and (Morgan, 1996b), I have identified four types of relational processes: 

classificational, identifying, positional and size. I presented them in Figure 7-23. 
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	• Classificational 
Letters 

Indexical 
Arrows 

Symbolic _I, Words 

Positional 

Ralational 
Processes 
	■ Identifying 

—• Comparison 
Spatial 

Size 
• Measurement 

—• Labels and 
Colour 

	io• Linear 
	■ Angular 
	p„.. Area 

Figure 7-23: A summary of relational processes in geometric diagrams 

Before moving to the next metafunction of diagrams as a mode of communication in 

mathematical discourse, there are two issues I want to highlight in regard to the 

distinction between narrative and conceptual diagrams offered in the previous 

chapter and the present one. These are: mixed diagrams and ambiguity in diagrams. 

Mixed diagrams:  

Although I tried to distinguish (and I identified distinguishing features of) diagrams 

as either narrative or conceptual, geometric diagrams do not come as 'purely' 

narrative or 'purely' conceptual. Diagrams are often mixed; they have both narrative 

and conceptual features. As a general 'rule', diagrams with a temporal factor are 

narrative, and the others are conceptual. Diagrams in Figure 7-24 are narrative 

(dotted lines, bidirectional arrows) but they also have conceptual features: identifying 

processes (letters and arrows) and size relation (numbers as values). 

Figure 7-24: Mixed diagrams 
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This is not a defect in the suggested framework. Rather, it may be seen as another 

demonstration of the famous dichotomy in mathematics education research, namely 

the dichotomy between process and object in comparison to narrative vs. conceptual 

under different names such as 'operational vs. structural' (e.g. Sfard, 1991) or 

'process vs. object' (Hersh, 1999; Sfard, 1994) or 'procept' (Gray & Tall, 1994). 

This comment raises the issue of ambiguity, which is my next point in this reflection. 

Ambiguity in diagrams:  

The issue of 'mixed' diagrams (narrative with conceptual features or conceptual with 

narrative features) raises the notion of ambiguity. Are these diagrams ambiguous? 

While I think that I make it clear that there is no ambiguity in distinguishing between 

narrative and conceptual diagrams, ambiguity may be present in diagrams as in 

language. Ambiguity in mathematics education has been investigated in several 

studies in connection with language (Barwell, 2005; Barwell, Leung, Morgan, & 

Street, 2002; Pimm, 1987). Rather than conceiving of ambiguity as an obstacle to 

mathematics learning, some studies suggest that ambiguity in mathematics, or even 

in other disciplines, may contribute to students' understanding, argumentation and 

meaning-making process (Morgan, 2004; Street, 2005). To make it clearer, I am not 

saying that the determination of whether a diagram is narrative or conceptual is 

unambiguous. Rather, I tend to agree that diagrams, like any other form or mode of 

communication, contain ambiguities. Perhaps one of the justifications' offered by 

those who oppose the use of diagrams is that students would deduce 'wrong' 

information from diagrams because of these ambiguities. While a more detailed 

inquiry into ambiguity is outside the scope of this study, it indeed warrants further 

investigation. 
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8 Diagrams as interaction: Designing the position of the 

viewer 

1. 	Plan of the chapter: 

I have already introduced one function that any text would fulfil according to the 

systemic grammar model (Halliday, 1985), namely the ideational function. This 

function represents the way we experience the world or the way we construct the 

world according to our experiences. In geometry, this function is realised in two 

types of diagrams, narrative and conceptual, distinguished by the presence of 

temporality. Representation is interwoven with communication (Kress et al., 2001). 

In other words, when we start to represent, we immediately engage with other 

'imagined' people, such as the audience, readers or viewers. As a result, we enter into 

an 'imagined' relationship with that audience — a social relationship. 

A question struck me as I looked at the data: why do some students draw neat and 

accurate geometric diagrams, while others draw rough diagrams? This question 

guided my thinking about the interpersonal meaning in diagrams, as I will discuss in 

section 4 of this chapter. One way of thinking about this question is to think about 

viewers, or, to be precise, how the authors of the diagrams represent and construct 

the position of viewers and what possible social relations between authors and 

viewers may be read into the diagrams. 

This chapter will address the indicators of such relations in geometrical diagrams. I 

will explore not just the (social) relationship between the author and the viewer but 

also the roles of each as constructed in diagrams. This social relationship and the role 

of authors and viewers are, following Kress & Van Leeuwen (2006), realised by 

contact (section 3), social distance (section 4) and modality (section 5). 

This interpersonal meaning together with the ideational function will be combined in 

a specific way, according to the author's interests, to produce a text. The discussion 

about those texts will be the focus of the next chapter. 
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2. 	Introduction: 

The two images in Figure 8-1 present the same laundry detergent. A close look at the 

ad reveals that the same woman appears in both images. Indeed, the images 

themselves are identical, but one of them has been manipulated. But why does the 

woman dress, or more precisely, why has she been dressed, differently? This ad is a 

commercial one (laundry detergent) which aims to 'convince' customers to buy its 

product. But customers have different views and beliefs, and one way to persuade 

them to buy the product is to present the laundry detergent as if it belongs to them 

and to their beliefs. First of all, in both images, a woman, not a man, is doing the 

washing, which is consistent with mainstream social traditions in Palestinian society 

concerning the role of women as sisters, wives and mothers (e.g. Abu Ghazaleh, 

1998; WCLAC, 2001). The woman in the two images, furthermore, gazes at the 

viewer as if speaking to them, creating a kind of close social relationship with them 

(Kress & Van Leeuwen, 2006). The main difference is that in the left image, the 

woman is not veiled, while in the right image, she wears a veil. Actually, these two 

advertisements appeared in two different Palestinian cities in the West Bank in the 

OPT. 

Figure 8-1: Laundry detergent advertisment 

The point I want to make here concerns the relationship between producers of images 

and their audience. An image is a motivated sign in which the producers take into 

consideration their audience by engaging with them in an 'imaginary' social 

relationship (Kress & Van Leeuwen, 2006) through different realisations in images. 

The gaze of the represented participants, for instance, suggests a demand from 
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viewers, as in Figure 8-1, in which the woman may be saying 'trust me, I experienced 

it', and the presence of clean towels is, somehow, a proof.19  

The consideration of audience is, however, common in other modes of representation 

and communication. In his description of 'How to write mathematics', for instance, 

Halmos states: 

The basic problem in writing mathematics is the same as in writing 
biology, writing a novel, or writing directions for assembling a 
harpsichord: the problem is to communicate an idea. To do so, and to 
do it clearly, you must have something to say, and you must have 
someone to say it to, you must organize what you want to say, and you 
must arrange it in the order you want it said in, you must write it, 
rewrite it, and re—rewrite it several times, and you must be willing to 
think hard about and work hard on mechanical details such as diction, 
notation, and punctuation. (Halmos, 1970, p. 124, my emphasis) 

Halmos, here, refers to the interaction between the writer (author) of a text and 

imaginary readers whom the author takes into consideration in writing a text: who 

they are (students, colleagues, or general audience) and how I should approach them 

(should I provide information or ask questions, and if so, what type of information or 

questions?). In other words, authors enter into social relationships with their 

audience, and these relationships are represented in the produced text. This chapter 

seeks to show how authors or producers of different geometric diagrams approach 

that 'someone', the reader or the viewer, although not through words but rather 

visually. 

Something similar happens in diagrams. Consider the following two diagrams 

(Figure 8-2) focusing on the question mark (?):20  

19 The accompanying written text in Arabic reads (in rhymed colloquial): 'Where have you been all 
this time... others ruin the colours'. The word 'colour' is written in different colours. 
20 

I think that one need not understand Arabic to work out what the diagram in Figure 8-2a demands in 
general (not necessarily solving the problem). In any event, the Arabic text reads 'The area of the 
square [is] 36 cm2'. 
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(a) 

(b) 
Figure 8-2: Question marks in diagrams 

There are differences between the two diagrams (e.g. the information they provide, 

the number of shapes in each of them, the colour) but they share the presence of a 

question mark. As I will argue in this chapter, in the context of geometry, these 

question marks ask for something from an 'imagined' viewer, for example, the 

measure of the square's side in Figure 8-2a and of LEFB in Figure 8-2b. The 

imagined viewers in both diagrams, however, differ in the knowledge of geometry 

they presumably have to solve the problem. In diagram a, the geometry knowledge 

expected of the viewer (student?) is limited to knowing the formula for finding the 

area of the square and the characteristics of square, while in diagram b, the viewer is 

also expected to know facts about the isosceles triangle, that the sum of the internal 

angles of a triangle equals 180°, and the exterior angle formula. What I focus on here 

is the notion of the 'other' and its realisation in diagrams. 

In written language, as previously mentioned, Halliday (1985) developed his SFL 

account to read such relations by focusing on the clause. In the following, I present 

Halliday's account of 'clause as exchange' in written and spoken texts which has been 

adopted for visual forms by Kress & Van Leeuwen (2006) in Reading Images and for 

written mathematical texts by Morgan (1996b). The main argument is that in the act 

of representation and communication, the author produces an image, for example, to 

convey a meaning. While doing so, a social relationship is constructed between the 

author and the viewer, and this relation is realised by different indicators, namely 

contact, (social) distance and modality. 
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3. 	Diagrams as contact: 

In his SFL approach, Halliday (1985) suggests that the nature of dialogue, spoken or 

written, between speaker/writer and listener/reader takes two forms: giving and 

demanding. Either the author gives something to the reader (e.g. information) or 

demands something (e.g. answer a question). Halliday identifies four functions of a 

clause based on the commodity being exchanged and the form of exchange. Table 

8-1 presents these functions. 

Table 8-1: Giving or demanding, goods—&—services or information (taken from Halliday, 1985) 

Commodity exchange 

Role in exchange 
Goods—&—services Information 

Giving Offer Statement 
Demanding Command Question 

He termed the role of the clause in the exchange of information and goods—&— 

services as Proposition and Proposal, respectively. My interest will be in proposition, 

since this study is about geometrical diagrams, in which information is the only form 

of exchange that occurs. Proposition refers to the exchange of information, in which 

people can decide whether to accept or to challenge the statements and questions. 

These propositions are, in English and Arabic, realised by the linguistic system of 

mood and the order of its components, the subject (which is a nominal group) and the 

finite element (which is part of a verbal group). Thus the general grammatical 

category for exchanging information is the indicative mood. Within the indicative, 

information takes the form of a statement (subject before finite) and, hence, it is 

declarative, or it takes the question form (finite before subject) and, hence, it is 

interrogative. Furthermore, the interrogative mood is either a yes/no interrogative 

(polar questions) or a WH—interrogative (content question) (Halliday, 1985). Offer 

information is realised by declarative mood, while demand information, in contrast, 

is realised by interrogative mood. 
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indicative: 
exchange 

information 

declarative: 
offer 

information 

interrogative: 
demand 

information 

yes/no 

wh- 

Figure 8-3: Indicative exchange information 

In Reading Images, Kress & Van Leeuwen (2006), adopting the SFL approach, have 

suggested a similar approach. A Demand image 'wants something from the viewers —

wants them to do something' (p. 118) while an offer image, in contrast, "offers' the 

represented participants to the viewer as items of information, objects of 

contemplation, impersonally, as though they were specimens in a display case' (p. 

119). They distinguished between the two types of images by the presence of contact 

(a gaze) in demand images in which depicted participants look (gaze) at the viewers, 

as the woman does in Figure 8-1, while in offer images there is no such contact. 

Kress & Van Leeuwen were describing the represented participants, people or things, 

in images, while diagrams, in contrast, usually offer information. 'Demand diagrams' 

are less common. They also claim that there are contexts, such as school textbooks, 

which use a combined form of offer and demand. Geometric diagrams, I argue, most 

often use this combined form. But let me first introduce each form (demand and offer 

diagrams) separately. 

3.1 	Demand diagrams: 

Interpersonal contact in geometric diagrams is either of offer form or of demand 

form. Either the author of a diagram offers 'something' to the viewer, and in scientific 

texts the offer is primarily information, or the author demands 'something' from the 

viewer, for example to answer a question whose presence needs to be reinforced 

verbally or by a conventional visual sign such as a question mark (Kress & Van 

Leeuwen, 2006). 

In geometry, the main conventional means of contact between the author and the 

viewer is labelling, although contact can be made in different ways, such as by using 

colour. 'Geometric demand labels' are either realised directly by question mark or 
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indirectly by unknown quantities or variable names, both of which come as letters. 

Both diagrams in Figure 8-2, for instance, are direct demand diagrams with direct 

question marks. The viewer is expected to know that a specific mathematical action 

is needed to be done such as 'find the value of. Figure 8-2—a asks for the length of 

the side, while Figure 8-2—b asks for the measure of ZEFB. 

The reason to distinguish between direct and indirect demands is that in direct labels, 

the presence of a question mark suggests directly what the demand is, as in Figure 

8-2 and Figure 8-4. In indirect labels, on the other hand, no question mark is 

presented, and, instead, the diagram contains unknown quantities or variable names, 

most often in the form of letters. Viewers may find the value of the unknown 

quantity or the variable, however, they may not be sure if this is the problem or the 

question needed to be answered. 

3.1.1 Question mark —a direct demand 

Question mark is a conventional visual sign which carries the meaning of demanding 

something from the viewer. As said earlier, the viewer is expected to find the value 

of the marked part of the diagram as in Figure 8-4, in which the question mark 

suggests or demands solving a problem such as finding the value of a side of a 

triangle, the measure of an angle or the area of a shape. 

Figure 8-4: Question mark as demand 

3.1.2 Indirect demand 

Indirect demands take different forms such as unknown quantities or variables which 

may take the form of letters or (nominal) numbers to ask for the value of a specified 

side, angle or area. These diagrams present one unknown quantity or multiple 
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unknown quantities instead of a side, an angle or an area (or even without any label), 

and the viewer is expected to find the value of that unknown (see Figure 8-5). 

Figure 8-5: Indirect demand labels 

However, the demand is not necessarily direct or 'self—contained', especially if 

information is presented in unknown values. For instance, all the presented 

measurements of the diagram in Figure 8-6 are shown in letters except the size of the 

angle ACB and the angle AHC. While it is possible for a person who is familiar with 

geometry to infer some geometric relationships within the diagram (using Pythagoras 

theorem, for example), it is not clear what is required. The demand will be apparent 

when the diagram is situated within a text with accompanying verbal demands which 

is provided to the right of the diagram. 

Figure 8-6: Diagram and the accompanying verbal text pose the problem 
(htto://gogeometrv.com/problem/p266  right triangle altitude geometric mean.htm) 

3.2 	Offer diagrams 

In general, and as shown in the previous section, all geometric diagrams or visual 

representations offer information even when they demand something from the viewer 

(Kress & Van Leeuwen, 2006). In Figure 8-2a, for example, the shape is a square 
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whose area is given. Offer diagrams offer information to the viewer about geometric 

objects (properties and relationships between them) without asking that any action be 

taken. In other words, I consider any diagram that makes a demand to be a 'demand 

diagram' (even though it also makes an offer), while a diagram that does not make a 

demand is classified as an 'offer diagram'. 

In the previous chapter (on conceptual diagrams), I discussed the different types of 

relationships between mathematical objects (classification, identification and spatial 

relationships). While all of these relational processes do offer information about 

geometric objects, not all of them contribute to the interpersonal meaning, where the 

interaction happens between the author of the diagram and the viewer. 

Classificational processes, for instance, give information about a diagram in 

relationship with other diagrams. A square, for example, could be classified as a 

rectangle and as a rhombus. The interpersonal function of diagrams focuses on how 

the author takes the viewer into consideration in producing the diagram. A diagram 

itself shows the attributes and the identity of an object, and it highlights these 

qualities for the viewer in different ways, which have an interpersonal function. 

Labels, for example, establish relationships (identifying and spatial) between objects 

in diagrams and, at the same time, visually highlight these relationships to the 

viewer. Figure 8-7 shows two examples of how labels do that. The author of these 

diagrams has the choice either to mention these qualities (equality and parallelism) in 

written language or to show them visually. This choice has interpersonal meaning in 

which the author chooses how to present the information to a specific audience 

(colleagues, teachers, students, etc.). 

Figure 8-7: Labels as interpersonal aspects and relational processes 
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Authors of diagrams can also make choices about colour, arrows and words. 

Moreover, labels realise a social relationship between the producer and the viewer 

(see below). 

3.2.1 Labels as offer 

In geometry, labelling is one of the most conventional forms, where labels are given 

to the components of shapes or diagrams: the vertices, the sides, the angles and parts 

of the diagram. They express either a) geometric relationships such as equality, 

parallelism, similarity or b) specific quantities. Labels come in different forms such 

as special marks or symbols, letters and nominal numbers. I addressed these qualities 

of labels in section 4 of the previous chapter in my discussion of spatial relations 

(labels and colour as relational processes). Now I deal with the two types of labels. 

3.2.1.a Labels offer geometric relationships 

In Figure 8-8, all labels are presented to show properties and geometric relationships 

in diagrams. 

Figure 8-8: Labels as geometric relationships 

3.2.1.b Labels as specific quantities (as seen in Figure 8-9) 

Figure 8-9: Labels (numbers) as specific quantities 
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Figure 8-10: Colour as offer 

(b) 

3.2.2 Colour as offer 

Colour also is used to offer geometric relationships, though it is limited to equality: 

equal sides, equal angles or equal areas. I dealt with colour in the previous chapter in 

section 4. Figure 8-10 shows some examples. 

3.2.3 I also dealt with arrows and words in identifying processes in the relational 

processes in the previous chapter, where I distinguished between indexical processes 

and symbolic processes (section 3.2). Examples of arrows and words as offer are 

presented in Figure 8-11. 

hhemol huhle ♦ echunol eahlt 

(a) (b) 

Figure 8-11: Arrows and words as offer 

4. 	Social Distance 

Another aspect of the relationship between represented participants and viewers is 

the social distance and how it is represented in the image or diagram. Kress and Van 

Leeuwen (2006) argue that the distances that people keep from each other depend on 

their social relations. They identified five types of distance—based relations: close 
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personal, far personal, close social, far social and public. Each of these relations is 

defined based on how personal issues are discussed and how intimate or 'formal', or 

even strange, the relation would be. At a closer personal distance, for example, where 

people have an intimate relationship, the distance would be at which 'one can hold or 

grasp the other person' (Kress & Van Leeuwen, 2006, p. 124). At a public distance, 

in contrast, the distance would be such as to keep people in a formal relationship 

with each other. A similar practice occurs in television interviews. 'Close—up' frames 

of an interviewee convey an intimate relationship with the viewer, while the 'set—up' 

frame for an expert would keep him or her at a distance from viewers. 

Kress and Van Leeuwen (2006) use physical distance as an expression of social 

distance (close distance, middle distance and long distance), but this distinction is not 

relevant in geometric diagrams, because these diagrams are not physical objects to be 

seen, and hence it is not possible to determine physical distance. Instead, I suggest 

that social distance is realised by the degree of 'neatness' of the diagram (Morgan, 

1996b), labels, colour, arrows and words. 

4.1 	Neatness of diagrams 

4.1.1 Neat diagrams: 

In producing diagrams, authors (mathematicians, teachers, students, etc.) draw 

accurate (or rough) diagrams according to the interest of the author, the context and 

the audience. A neat diagram 'indicates that the text is formal and that there is some 

distance in the relationship between the author and the reader' (Morgan, 1996b, p. 

91), and may be considered as an expression of respect for the viewer. In a school 

context, students or authors may want to show their teachers or assessors that they 

care and are trying to solve a problem, within the context of an authority relationship 

(see below). Alternatively, the issue of neatness may be related to the attitude 

towards mathematics (see below), where mathematics is considered to be a discipline 

of accuracy. The distinction between neatness as respect or as precision depends on 

the context in which the diagram is produced. The first two diagrams in Figure 8-12 

show two typical neat diagrams drawn by participants in the current study. The third 

is taken from a textbook. 
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(a) 
	 (b) 	 (c) 

Figure 8-12: Neat diagrams 

4.1.2 Rough diagrams: 

Usually, when two colleagues are in informal geometric communication, participants 

would draw inaccurate and hand-drawn diagrams, or rough diagrams, to show their 

trials in solving problems. Such rough diagrams suggest a close personal distance, an 

intimate relation between the author and the viewer. These diagrams may be drawn 

for the authors themselves, as a 'private' drawing for personal use, while they work 

alone (Misfeldt, 2007; Morgan, 1996b). The first two diagrams in Figure 8-13 were 

drawn by students who participated in the current study, trying to solve the same 

problems addressed by the diagrams in Figure 8-12. The third is taken from the 

Internet. 

Figure 8-13: Rough diagrams 

4.2 	Labels: general vs. specific 

A further feature which may contribute to the social relationship is the type of labels 

(offer and demand) used in diagrams. The general—type, or variables, of these labels 

suggests that they are used to introduce definitions or qualities of these diagrams. 

This practice often occurs in school textbooks. In other words, presenting labels in a 

general form suggests an authority who says what is the definition of a 
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B 
Figure 8-14: Labels express specific quantities 

C 
C 

parallelogram, as in the parallelogram in Figure 8-7 where the characteristics of the 

parallelogram are presented in general—type. This approach is clearer in demand 

labels than in offer labels, because an author would explicitly present question marks 

or unknown quantities to be found or worked out by the viewer. This issue is related 

to the conventional view about mathematics as an abstract subject, and hence the 

author claims his or her membership in the mathematical community (Burton & 

Morgan, 2000) (see below). 

On the other hand, and because of the current mathematical mainstream 

understanding which privileges general, abstract and formal prepositions (e.g. Davis 

& Hersh, 1981) over specific examples, labels which specify values or quantities, as 

in Figure 8-14, suggest lower authority. 

Another possibility is that a student drew these diagrams in order to solve specific 

problems, and s/he is showing them to the teacher/assessor. 

4.3 	Colour, and arrows and words: 

A formal or an intimate relationship, however, is not the only type of social distance 

that can exist between an author and the viewer of a diagram. As is true between any 

two people, between the author and the viewer of a diagram there may exist a power 

relationship, in which either authors have power over viewers or the other way 

around. Kress & Van Leeuwen (2006) distinguish between power relationships in 

face—to—face communication and mediated communication. They derive the 

relationship between teachers and pupils as an illustrative example of the former, 

where the lack of reciprocity limits the choices available to each party in the verbal 
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interaction; teachers can demand 'goods—&—services' from the pupils using 

imperatives, while pupils, on the other hand, can demand only by asking questions 

'politely'. Mediated communication (e.g. writing) also reveals power relationships in 

a 'similar' way. The author is absent, and, hence, reciprocity is absent. Power 

relationship is realised by the use of the second—person pronoun you and imperatives 

such as calculate, show, prove, etc. (Kress & Van Leeuwen, 2006; Morgan, 1996b). 

In images, one way in which power relationships are realised is by the system of 

perspective; eye—level angle (equality), high angle (power of the viewers over the 

represented participants) and low angle (power of the represented participants over 

the viewers). Perspectives are not included in the current study, where the focus is on 

2D Euclidean geometry (and not 3D where perspectival images would be found) 

except for the eye—level angle. All 2D geometric diagrams are of the eye—level angle 

type. Does that mean that power relationships cannot be found in those diagrams? 

Not necessarily. Diagrams in Figure 8-11 may be seen as examples of power 

relationships between authors and viewers in which the author presents information 

to the viewer in a teacher—pupil—like relation; these are the 'Remote interior angles' 

or 'the altitude', or 'the interior point' of a triangle in Figure 8-11. 

In a similar way, students may use arrows and words to construct both kinds of 

relationships. Arrows in Figure 8-11, for instance, suggest an authority (e.g. teachers) 

showing these qualities to students. It is possible for students to use such forms in 

authoritative teacher—texts in order to make a power claim: "I am presenting this as 

the solution, and I am certain enough to make a claim that it is correct (by using 

colour or arrows and words). For example, Mandy, a participant student in the 

current study, showed her solution to task 2 using colours as in Figure 6-16. The 

common solution among the (English) participant students is to draw three examples, 

each of which includes a circle and an inscribed quadrilateral and shows whether the 

crossing point of the diagonals of the quadrilateral meets the centre of the circle or 

not (see Figure 6-15, as an example). Instead of showing her attempts in that 

common way, Mandy used colour to refer to each attempt. 
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5. 	Modality 

Modality refers to how reality and truth are represented in communication, or, in 

other words, what authors would use to show the degree of certainty and truth of 

their statements or propositions about the world. Such certainty or truth is social in 

nature, in that it is constructed by a specific social group in meaning—making 

processes, as Kress & Van Leeuwen (2006) put it: 

Reality is in the eye of the beholder; or rather, what is regarded as real 
depends on how reality is defined by a particular social group. (p. 158) 

In other words, certainty and reliability are social values and conventions set by a 

specific social group in order to judge or trust any given piece of information 

proposition or how people in that social group may or should give information. In 

mathematical discourse, abstraction is highly valued, and the 'more abstract approach 

is likely to be judged by teacher/assessor to demonstrate a higher level of 

mathematical thinking' (Morgan, 1996b, p. 92). Thus abstractness would be a 

distinctive feature of mathematical texts, a feature that participants in a social group 

would trust to some extent in order to act. Kress & Van Leeuwen (2006) refer to such 

features as modality markers or cues. 

	

5.1 	Modality markers: 

In language, modality markers are auxiliary verbs such as may and must and their 

adverbs such as possible and certain or adjectival phrases such as 'I am sure that ..' 

(Burton & Morgan, 2000; Kress & Van Leeuwen, 2006; Morgan, 1996b). Halliday 

(1985) suggests a sort of a scale to identify the degree of certainty, where the value 

of modality runs from low modality to high modality as in Table 8-2: 

Table 8-2: Modality values in propositions 

lue of modality 
Possibility Low modality Median modality High modality 

Probability Possible Probable Certain 
Frequency (usuality) Sometimes Usually Always 

Modal verbal operators 
can, may, 

could, might 
will, would, should, 

is to, was to 
must, ought to, 

need, has to, had to 

Kress and Van Leeuwen (2006) distinguish between two different points of view 

which represent reality. Naturalistic point of view (art, for example) suggests that 
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what we see with our 'naked eye' in reality is the reference point for considering a 

visual representation to be real (high modality) or not (lower modality). Scientific 

point of view (science or mathematics, for instance), in contrast, considers the 

naturalistic view to be superficial and considers reality to be too sophisticated for the 

naked eye to capture. Reality, thus, from a scientific view, has to be more 'general 

and regular', or, in other words, abstract. 

They (Kress & Van Leeuwen, 2006) suggest modality markers in visual 

representation according to naturalistic and scientific coding orientation. From the 

naturalistic point of view, they identified eight modality markers according to colour 

(three markers: saturation, differentiation, and modulation), context (absence of 

background vs. articulated and detailed background), representation (abstract vs. 

pictorial), depth (presence of perspective), illumination (presence vs. absence of 

light) and brightness (degree of black, white and grey). In scientific coding 

orientation, they identified four markers: technological (effectiveness of the visual 

representation), sensory (colour as a source of pleasure), abstract (personal vs. 

general, signalling 'eliteness') and common sense naturalistic (shared culture). 

In both naturalistic and scientific approaches, modality varies from lowest to highest 

degrees according to scales running from the degrees of the use (or the appearance) 

of these markers. In colour saturation, for instance, 'a scale running from full colour 

saturation to the absence of colour; that is, to black and white' (Kress & Van 

Leeuwen, 2006, p. 160), the highest modality would be at a point which is close to 

full saturation, while the lowest will be at the black and white point ('not natural'). 

However, at the full colour saturation point where the colour is 'more than real', 

modality will be low since it — the picture, for example — contains such heightened 

colours, that it does not look real. It is quite the opposite in the scientific coding 

orientation. The highest modality would be at full abstraction, while the lowest 

modality would be at no abstraction. 

Diagrammatic modality markers: 

I have already shown in a previous chapter (6) how the authors of geometric 

diagrams have eliminated human figures and physical context. In mathematics, it is 

not common to use naturalistic modality in (modem) texts, meaning that one rarely 
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uses photographs or draws pictures to solve a mathematical problem. Actually, the 

dominant values and beliefs among mathematicians are that mathematics is abstract, 

formal, impersonal and symbolic. School mathematics is no exception. Hence, 

schematic or abstract diagrams are considered 'more' mathematical within the 

discourse of mathematics. Taking this practice and the 'anti—diagram' attitude (see 

Chapter 3) into consideration, I suggest five modality cues/markers in geometric 

diagrams. See Figure 8-15 in which the high modality represents or closely 

approximates the mainstream stance towards mathematics among mathematicians 

and others: 

Lowest 	 Highest 
modality 	 modality 

0 	 ' 	• 

Low 	 High 
abstraction 	 abstraction 

Abstract 	 o 	 • 

Naturalistic and 
contextual 

Detailed 
context 

0 	 

No context 

 

• 

 

Labelling 

Additional features 
(colour, arrows, words) 

Specific 
quantities 

0 	 

Redundant 	 No add. 
features 	 features 

o • 

Variables 

• 

Neat and rough 

Rough 
diagrams 

0 	 

 

Neat/ 
Accurate 
diagrams 

• 

 

Exaggerated 
neatness 

' 	0 

Low(er) 
modality 

  

Figure 8-15: Modality markers and values in geometric diagrams 

(1) Abstract diagram: a scale with an end expresses 'low abstraction' (lowest 

modality), and another expresses 'high abstraction' (highest modality). Low 

abstract diagrams may show concrete or practical activity (e.g. 

personification, embodiment) while high abstract diagrams are distinguished 

by the absence of any practical activity or perspective and have only 

geometric objects (Morgan, 1996b). See diagram b in Figure 8-16. 

189 



(2) Naturalistic or contextual diagrams: a scale running from 'detailed context' 

(lowest modality) to 'no context' which is similar to full abstraction (highest 

modality). See diagram a in Figure 8-16. 

(3) Labelled diagrams: a scale running from labels denoting specific quantities 

(lowest modality) to variable labels (highest modality) with a middle point 

(lower modality), when a diagram has both kinds (see Morgan, 1996b, pp. 

91-92, 158). See Figure 8-17. In the personal use of diagrams, if no labels 

have been used in the solving problem process, then a node of 'no labels' 

should be added at the high modality end of the labelling spectrum. 

(4) Additional information in diagrams: some diagrams use/have complementary 

features such as colour, arrows and words to identify geometric objects and 

relationships between them. The criterion here is the effectiveness of these 

features: whether they add geometric information about the represented 

objects (identity or relationships) or not. The scale runs from redundant 

additional features (lowest modality) to 'no additional features' with the 

highest modality. In the middle of this scale, some of these features 

contribute to identifying geometric objects or indicating geometric 

relationship (e.g. equality) and, hence, the modality will be higher. See Figure 

8-10 and Figure 8-11. 

(5) Neat and rough diagrams: a scale runs from rough diagrams (lowest 

modality) to neat and accurate diagrams (highest modality). Morgan (1996b) 

claims that the extra care taken in drawing very neat and accurate diagrams 

may be assessed as a 'waste of time', thus according it a low(er) modality. 

This is akin to the colour saturation suggested by Kress & Van Leeuwen 

(2006), when a picture with exaggerated colours may look 'more than real'. 

See Figure 8-12 and Figure 8-13. In the personal use of diagrams, it seems 

that the 'neat and rough' visual marker may indicate the opposite of what I 

stated above; some mathematicians would use rough diagrams in their 

personal attempts in problem solving. Therefore, the scale may run from the 

use of neat diagrams as low modality to the use of rough diagrams as high 

modality. 
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Figure 8-16: Two diagrams of a pile of rods 

(a) 

  

Figure 8-17: Labels: Specific quantities and variables 

It is worth mentioning how these markers are relevant to the assessment process. 

Morgan & Watson (2002) identify six 'resources' available for teachers to assess 

students' mathematical texts, including teachers' beliefs about mathematics, their 

mathematical knowledge and how this knowledge can be communicated. Setting 

aside any predisposition against the use of diagrams in doing mathematics, 

teachers/assessors would mainly assess students' diagrams based on these cues, 

explicitly or implicitly. Morgan & Watson explore how this use of cues may affect 

the assessment of the students' mathematical texts in general. Morgan (1996b) 

derives an example of how a naturalistic diagram (lower modality) by a student 

named Sandra 'so strongly presents her work as being of a very concrete nature' (p. 

156), that it was assessed as 'low level' by some teachers. In other words, low 

modality diagrams may cause 'lower' assessment. However, assessment criteria are 

not always consistent. Concerning the case of neat diagrams (high modality), Morgan 

(1996b, p. 91) states: 

a very neat diagram or set of diagrams which is read as background 
'working out' may be judged to be a 'waste of time', while a very rough 
diagram which is read as forming part of an explanation may lead to 
judge the author to be lazy or careless. 

The issue of assessment brings back the issue of relationships between authors, 

viewers (or readers/assessors) and subject matter (or diagrams/texts) in the modality 
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of diagrams as interpersonal meaning. Authors (or students) who use mathematical 

conventions express their views of (attitudes towards) mathematics as well as their 

claim to be part of the mathematical community, i.e. their mathematical identity. 

Burton & Morgan (2000) studied, among other issues, how identity is constructed as 

an authority in mathematics and how claims to membership in the mathematical 

community are constructed through language. They claim that the naïve assumption 

that mathematics is about certainty led to the widespread use of some words in 

mathematicians' writings such as 'clearly' and 'obvious'. Such terms and other 

phrases, however, indicate authors' claims to positive authority. 

The claim to membership in the mathematical community may be found, moreover, 

in the use of imperatives (such as consider, suppose, define, let x be) and of specialist 

mathematical vocabulary (Morgan, 1996b). Citation of one's own work and that of 

others is also an indicator of membership in the mathematical community (Burton & 

Morgan, 2000). In diagrams, as in written language, there is 'conventional and 

specialist mathematical vocabulary' to be used, although such vocabulary is, or must 

be, visual. Diagrammatic modality markers offer 'similar' criteria to reading authors' 

claims to membership in the mathematical community. Using the higher modality 

markers, such as abstract markers, less additional information and more general type 

of labels in diagrams, is a realisation of that claim to membership in the 

mathematical community. 

6. 	Summary: 

I have discussed how relationships between the author, the viewer and geometric 

objects depicted in a diagram (represented participants) are realised in diagrams 

through contact, social distance and modality. In general, the 'not—geometric object' 

characteristics of any diagram (i.e. not points, lines, angles, shapes) contribute to the 

interpersonal meaning and may be organized into categories: (1) general reference 

refers to the appearance of the diagram (neat or rough), and (2) particular reference 

refers to specific characteristics of any geometric object in the diagram (namely 

labels, colour, and arrows and words). While the former contributes mainly to 

determining the social distance, the latter contributes to the three realisations 

(contact, social distance and modality). Other not-geometric object characteristics 
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such as titles of diagrams were not considered in the current study, although 

O'Halloran (2005) included them in her suggested framework for visual forms. 

Equal and power relationships were discussed in this chapter by offering some visual 

marks that realise these relationships, such as labels. I moreover identified 

diagrammatic modality markers in diagrams which refer to the mathematical 

practice, conventions and values in mathematical discourse and how assessment may 

take place. 

Having established how social relationships between the author and the viewer of 

geometric diagrams are realised (in this chapter) and how mathematical activity is 

represented in the previous two chapters, I turn now to look at the whole 

mathematical text, including diagrams and verbal content. In other words, I turn to 

consider the third meaning suggested by the SFL (Halliday, 1985), that is, the textual 

meaning. 
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9 Visual cohesion: The textual meaning 

1. The plan of the chapter: 

The previous three chapters discuss two main kinds of meaning in diagrams as 

representation and communication: the ideational (narrative and conceptual) and the 

interpersonal. There is a third meaning, the textual, which is a vehicle for expressing 

these two kinds of meaning and relates them to each other. This chapter is about this 

meaning and its realisations in geometric diagrams. 

As in the previous three chapters, and in order to set the context of diagrams, I start 

this discussion by giving a general background of how the textual function is realised 

in language and written texts as argued by Halliday (1985). According to Kress & 

Van Leeuwen (2006), the textual, or the compositional, meaning is realised through 

three systems: information value, salience and framing not only in images but also in 

composite or multimodal texts (written text and images). I will consider each of these 

systems in mathematical texts (Morgan, 1996b) followed by an illustrative analysis 

of two mathematical texts. 

2. Introduction: 

According to the Hallidayan SFL, the way in which a text is organised as a coherent 

and meaningful message contributes, in addition to the ideational and the 

interpersonal meanings, to the textual meaning of that text. 'The textual meaning is 

the internal organisation of this [the ideational and the interpersonal meanings] as a 

message with the focus on what is demanded, together with its relation to the 

preceding text through presuppositions' (Halliday, 2002, pp. 199-200). There are two 

types of features which contribute to the construction of this meaning: structural and 

cohesive. Thematic structures (themes) and information structure are the focus of the 

structural features, while cohesive devices are the focus of creating coherence. 

Theme refers to the concern of the message, and it is distinguished by different ways 

in different languages. In English (and in Arabic actually), for instance, theme is 

indicated by the position of the words in the clause — it comes first. Halliday (1985, 

p. 36) states, the theme 'is what the message is concerned with: the point of departure 
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for what the speaker is going to say.' The choice of information, what to put first and 

at the end, also contributes to the textual meaning. The Given-New informational 

structure presents the way in which an argument or a narrative proceeds. 

Cohesive devices also contribute to the textual coherence. They are of four types: 

reference, ellipsis, conjunction and lexical cohesion (Halliday, 1985). Briefly, 

reference refers to the grammatical way of repeating what has happened earlier or 

what is going to happen later in the text (Thompson, 2004). There are three main 

types of cohesive reference: the third-person personal pronoun (he, she, it, him, and 

her); demonstratives (this, that, these, those, here, there); comparative (the same, 

another, similar, likewise, differently, such, more). Ellipsis is also a cohesive device 

that may be used to avoid repetition of a clause. This can be done either by 'missing 

out' the repeated element, ellipse proper, or by substitution, by using a linguistic 

token instead of repeating. Conjunction is used to join or combine two textual 

elements into a coherent unit, and it may be realised by the presence of propositions: 

of, by, for, with; conjunctions: and, but, or, nor, although, because; and conjunctive 

adjunct: moreover, however, alternatively, therefore (Thompson, 2004). Lexical 

cohesion, finally, can be achieved through the selection of items to replace other 

related and preceding items by two means: repetition and synonymy (Halliday, 

1985). 

Adopting the SFL approach in her linguistic approach to mathematical texts, Morgan 

(1996b) suggests three tools for the textual analysis of a mathematical text. These 

are: thematic progression, the way in which reasoning is expressed and the overall 

structure of the text (p. 96). Since deductive reasoning is highly regarded in 

mathematics, it is expected to be thematised. The way in which the reasoning theme 

is expressed helps determine the type of mathematical texts. Logical reasoning 

themes (e.g. Hence, Therefore, etc.), for example, contribute to the coherence of the 

text and suggest text as a deductive argument. Temporal themes, such as First, Next, 

Then, etc., in contrast, construct a story (Morgan, 1996b, p. 87). 

The way in which reasoning is expressed in mathematical texts is realised through 

the use of different grammatical components such as conjunction (e.g. because, so); 

nouns (the reason is...); verbs (X causes Y) or prepositions (by, because of). 

Conjunctions and juxtaposition may also express causality among statements in 
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mathematical writing, and, because of the high regard enjoyed by deductive 

reasoning in mathematics, cause-result order is expected to be dominant. 

Finally, Morgan (1996b) considers the overall structure of the text as an important 

feature of the textual meaning of the mathematical text. Special attention is given to 

the lay-out methods such as labelling, paragraphing or any other devices which 

indicate a flow or a change in the content or the style and which require attention of 

reader. These styles of writing may (or may not) meet the conventional styles 

recognised by mathematical discourse, but they will affect the meanings that the 

reader constructs when reading the text. 

In other words, the position of textual elements in mathematical texts affects the 

meaning of a text. While that position is expressed temporally, in visual 

representation the composition is spatial. Kress & Van Leeuwen (2006) focus on this 

visual element, namely on the arrangements of components in the visual mode 

(images or diagrams) and in multimodal texts and on how cohesion is constructed 

(and realised) in visual or multimodal texts. 

3. 	The meaning of composition: 

Kress & Van Leeuwen (2006) suggest three interrelated systems in investigating how 

a text is organised or arranged in order to communicate a coherent and meaningful 

message. These are: 

1. Information value: the placement of elements in different 'zones' of a text (left-

right, top-bottom, centre-margin) suggests different information values (given-

new, ideal-real, centre and margins). 

2. Salience: making some elements more salient ('eye-catching' or 'attracting the 

viewer's attention') than others contributes to their importance in the text. This 

can be done in different ways such as: colour, size, perspective, position. 

3. Framing: separation (such as frame lines, white space, and colour) or connection 

(visual links and lack of framing) between elements in the text affects the unity 

of the message as a coherent unit of information. 

Geometric (and mathematical) texts are inherently multimodal, where different 

modes of representation and communication are used such as verbal language, 
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algebraic notations and visual forms. The way in which the elements of a text are 

placed or arranged as a coherent and meaningful unity contributes to its meaning or 

at least has a meaning potential. In the following, I look at the realisations of these 

'three principles of composition' in geometric texts in mathematics. Although I look 

separately at each principle, these principles are related and occur simultaneously. 

Given and New: the information value of horizontal structure 

In language, information is presented in a sequential or temporal structure in a way 

that signifies the interest of the author. In English, for example, 'before' and 'after' in 

speech are 'transcoded' as 'left' and 'right' in writing (Van Leeuwen, 2005). In Arabic, 

in contrast, this arrangement would be the other way around (right to left). The 

departure point of the message in English, thus, would be something common or 

known to the reader or agreed upon between authors and readers. That is the Given 

part of a message, while the end of the message, in contrast, would be what the 

author wants to prove or argue, i.e. the New part of the message which is not yet 

agreed upon by the reader. 'The exterior angle of a triangle' part of The Exterior 

Angle Theorem, for instance, is Given, meaning it contains common or shared 

knowledge between the author and the reader that would be used to prove the New 

part of the message, 'is equal to the sum of the two interior opposite angles'. Note that 

the Given here is the theme of the message or what the message is concerned with. 

The exterior angle of a triangle is equal to the sum of the two interior opposite angles 

Given —> 	 New 

The sequential information structure in language is akin to the horizontal structure in 

visual representation, images or diagrams (Kress & Van Leeuwen, 2006). The Given 

in Figure 9-1 is the triangle ABC with specific properties (AB=CD=BC, LA=a, 

LB=x, LC=20), and it is placed on the left side of the page. The New, in contrast, is 

placed on the right and poses the problem: prove that x=120°-2a. The given part of 

the problem, the message, is not questioned or problematised. It is a part common to 

the author and the viewer of the diagram, something agreed upon. The new part, in 

turn, is something questioned which needs to be proven. The arrow connects the 

given and the new parts of the message, serving as an integrating device. 
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x=120*-2ce. 
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Figure 9-1: Given and New in geometric problems 

In Arabic, where the writing is from right to left, the Given-New structure may be 

applied as well. Figure 9-2 is taken from a Palestinian geometry textbook, Grade 8, 

in which all the right parts are given and the left parts are new. The given part is 

verbal and offers information about the mathematical problem. The new part, on the 

other hand, is visual and may be problematised or debated; for instance, someone 

may draw it differently. I translated the first problem in Figure 9-3. 

Figure 9-2: Given and New in an Arabic geometric text (Grade 8, part 1, p. 54) 
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In the next equilateral triangle ABC, AB=6 
units. Find the following and justify: 

a) The length of AC, the length of BD 
b) LBAD, LCAD 

Figure 9-3: The first problem in Figure 9-2 (translated from Arabic) 

This is also the case in pictures as in Figure 8-1 in the previous chapter. The laundry 

detergent itself is given, and its result, the new part, is shown on the left side of the 

image. The message the producer of the image wants to convey is something like: 

this laundry detergent is efficient (given), and here is the evidence (new). 

In texts, Kress & Van Leeuwen (2006) argue, the New part can be Given for the next 

New in what they called 'cumulative Given-New structure' which may occur in 

language, in speech and writing, and in visual representations. Cumulative Given-

New structure in writing occurs in a sequential (horizontal and vertical) form as in 

Figure 9-4. 

Figure 9-4: Cumulative Given-New structure (Kress & Van Leeuwen, 2006, p. 185) 

In geometry, ongoing verbal, visual or multimodal texts often take the form of a 

proof of a theorem or a solution of a problem and are presented in a way similar to 

the cumulative Given-New structure. Figure 9-5 shows how the New part becomes 

the Given for the information in a visual geometric text through the use of arrows 

and repetition as an integrating and cohesive device. The arrow connects Given 1 and 

New 1 in the first line. The repetition of the light-yellow colour in every diagram 

connects Given 1 and New 1, and it connects the first and second lines. 
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Figure 9-5: Cumulative Given-New structure in diagrams 
(http://www.mathsisfun.com/triangle.html)  

Ideal and Real: the information value of vertical structure 

Again, in the left image of the 'laundry detergent advertisement' in Figure 8-1 in the 

previous chapter, the upper section has words that rhyme in Arabic ('what took you 

so long ... others ruin the colours') as if the woman in the picture is speaking to the 

liquid itself. The lower section of the advertisement contains images of the liquid 

itself, the woman and a word (the name of the liquid in Arabic). In comparison with 

the horizontal structure (Given-New), this structure is vertical and contains fewer 

connections or less ongoing movement, or as Kress & Van Leeuwen (2006, p. 186) 

state: 

there is a sense of contrast, of position between the two [sections]. The 
upper section tends to make some kind of emotive appeal and to show 
us 'what might be'; the lower section tends to be more informative and 
practical, showing us 'what is'. 

This structure is highly regarded in mathematics. Geometric theorems most often are 

placed at the top of mathematical texts, where they identify general attributes and 

relationships, something like an ideal situation, while their proofs are placed on the 
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lower section showing how these general statements 'come to earth' or become real 

by, for instance, presenting examples. In Palestinian geometric textbooks, a typical 

design of a subject or a lesson would present the theoretical section, the ideal, 

(definitions or theorems) on the top of the text, at the beginning of the lesson, 

followed by an illustrative example or more, then some practice-and-drill problems 

followed by exercises or homework (see Figure 9-6). 

Figure 9-6: 'Interesecting chords' lesson in a Palestinian textbook (Grade 9, part 1, pp. 70-71) 

This practice was also dominant in participant students' texts that responded to the 

second task (Pf), as in Figure 9-7. The students privileged the verbal mode of 

representation and communication. Their texts would begin with writing a definition, 

a theorem or a general statement (the Ideal) followed by evidence which 

demonstrates that general statement. 
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Figure 9-7: Verbal ideal in Ideal-Real structures in a participant's text (Year 8, Wendy, typical) 

However, this practice may be contested by other authors or producers. Figure 9-8 

shows a text that begins with visual examples and proceeds with the investigation of 

the argument towards a general statement, thus reversing the order of the Ideal and 

the Real sections. The author of that texts starts with diagrams, where the Ideal (or 

the theme, the concern of the message) is an investigation of the suggested geometric 

problem occupying half of the page, followed by a general verbal conclusion that is 

verified by a diagram. 

The authors of the last two examples present the text as a message in different ways 

in terms of the 'thematic progression', 'the way in which reasoning is expressed' and 

'the overall structure of the text', all of which together are realisations of the textual 

meaning and which construct a (verbal) mathematical text (Morgan, 1996b, p. 97). 

While I consider these issues in more detail in section 4 of this chapter in analysing 

two examples, the Ideal-Real structure presents the theme of the overall text when 

one reads or views it as a vertical structure. Moreover, authors of these two texts 
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express reasoning in different ways. In the text in Figure 9-7, reasoning takes the 

form of cause-result, while in Figure 9-8 it takes the form of result-cause. 

Figure 9-8: Visual ideal in Ideal-Real structures in a participant's text 
(Year 8, unknown name, unique) 

The information value of centre and margin 

Besides the horizontal and vertical structures, information may also be structured 

through use of the centre and margin in visual composition. As Kress & Van 

Leeuwen (2006) comment, this composition is uncommon in Western visualisation 

but is important in Asian designs. In an ancient Chinese geometric text (100 BCE), 

Zhoubi Suanjing (Arithmetical Classic of the Gnomon and the Circular Paths of 

Heaven), a proof of Pythagoras theorem, or Gougu theorem, is presented in Figure 

9-9 which is a reproduction of the original text that can be found in Swetz & Katz 

(2009, p. 38): 
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Figure 9-9: The Gougu theorem 
(htto://kaleidoseone.cultural-china.com/en/135Kaleidoseope5303.html)  

The centre-margin composition may also be seen in a late 14th century manuscript of 

Euclid's Elements in Latin translation (Swetz & Katz, 2009, p. 44) in Figure 9-10. 

Four propositions from Book I are shown in writing in the centre surrounded by 

diagrams in margins. The element of the text which is placed in the Centre 'is 

represented as the nucleus of the information to which all other elements are in some 

sense subservient' (Kress & Van Leeuwen, 2006, p. 196). In other words, the focus 

of the message would be the centre element, while the marginal elements would be 

dependents. 

This structure, furthermore, is similar to what Kress & Van Leeuwen (2006) referred 

to as triptych structure, where the page is divided into three sections. They show how 

triptychs combine Given-New, Ideal-Real and Centre-Margin structures. The 

structure of triptychs 'can be either a simple and symmetrical Margin-Centre-Margin 

structure [as in Figure 9-10] or a polarized structure in which the Centre acts as a 

Mediator between Given and New or between Ideal and Real' (p. 199) as in 

magazines and newspaper layouts. 
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Figure 9-10: Centre-Margin composition in Euclid's Element 
hap ://mathdl.maa. org/images/cms  upload/0800907 1 59 1 70. jpg 

In conclusion, Kress & Van Leeuwen (2006) summarise 'the dimensions of the visual 

space' in Figure 9-11 in which they present the different structure of the information 

value in visual representations. 

Figure 9-11: The dimensions of the visual space 
(Kress & Van Leeuwen, 2006, p. 197) 
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Salience: 

So far I have discussed how the position of elements in a text affects their 

information value in order to construct a coherent message. Salience may also 

suggest different values among the elements of the message, the value of importance 

and attention of the viewer. Thus making one element more salient than the others 

suggests that that element is more important and is worthy of more attention than 

others. An element may be more or less salient than another element, or both may be 

equally salient. In other words, the Given may be more important than the New, the 

New may be more important than the Given, or both may be equally important 

(Kress & Van Leeuwen, 2006). 

In visual representation, salience occurs as a result of 'complex interaction' between a 

number of factors such as: size, focus, tonal contrast, perspective (foreground, 

background) and placement in the visual space (Kress & Van Leeuwen, 2006, p. 

202). All these factors are related to the notion of visual weight and balance in visual 

art (Van Leeuwen, 2005), and, consequently, within the notion of salience, the 

'heavier' the element, the greater its salience. Kress & Van Leeuwen (2006) and Van 

Leeuwen (2005) claim that balance in composition, together with rhythm in 

temporally integrated texts, play the crucial role in the aesthetic pleasure of texts. 

Balance is achieved when all the aforementioned visual factors cooperate to create a 

balance point, irrespective of whether that point lies in the centre of the composition. 

Therefore, introducing a heavy element would affect that balance, making the heavy 

element more salient. 

Not all of these factors are relevant in geometric diagrams, but there are some 'visual 

cues' which are related to these factors and can distinguish salience in diagrams such 

as size, labels, colour, arrows, intensity of lines (dotted, thin or bold) and the 

placement of the visual space, as Kress & Van Leeuwen (2006) have suggested. 

Colours in Figure 9-1, for instance, draw attention to the figure itself and to the 

angles A, B and C. Arrows in Figure 9-1 & Figure 9-5 also attract viewers' attention. 

Furthermore, diagrams in the left side text in Figure 9-7 have salient features such as 

the thickness of lines in the first (upper) diagram and the size of the centre of the 

circle in the second (lower) diagram. 
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In multimodal mathematical texts, the placement of diagrams may be considered as a 

visual cue by which salience can be judged. Diagrams in Figure 9-6, for instance, 

occupy different positions in that text and, consequently, have different information 

value, which I have already discussed. 

It is worth commenting that although the balance notion as a salient cue is important 

in visual art, the composition of elements in a text is not just about aesthetic pleasure 

or attracting the viewer, but it also arranges these elements into a meaningful and 

coherent text in order to communicate. Together with the informational value 

discussed in the previous sections, salience can show what message a text is trying to 

communicate, or, in other words, what a textual meaning may be. However, there is a 

third aspect of how a compositional meaning may be realised: framing. 

Framing: 

Textual aspects are about information in a text: information value, which is related to 

the way information is positioned, and information importance, which is related to 

salience. Framing, as the term itself indicates, deals with the way in which 

information is disconnected or separated or, alternatively, connected or joined 

together as a unit. Like salience, visual framing is a matter of degree, i.e. elements of 

a text may be strongly or weakly framed (Kress & Van Leeuwen, 2006). There also 

are some visual cues that help us judge disconnected and connected framing. 

The framing of an element suggests a disconnected or a separated unit of information 

that is created through different visual cues such as: frame lines (thick or thin 

framing), empty or white space between elements, discontinuities in colour or any 

other form of perceptual discontinuity (Jewitt & Oyama, 2001; Kress & Van 

Leeuwen, 2006). The theorem in the right-side text in Figure 9-6, for instance, is 

framed and separated from the rest of elements. Similarly, texts in Figure 9-7 are 

divided into three different pieces or 'identities' of information through separation 

achieved by an empty space between them. 

The absence of framing signals a 'group identity', a unit of information or similarities 

between the elements. Connectedness can be realised by simply doing the opposite of 

what is done to realise discontinuity: through vectors that connect elements, through 

similarities of colour and forms and through the absence of frame lines or empty 
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space (Jewitt & Oyama, 2001; Kress & Van Leeuwen, 2006). Figure 9-5 is an 

example of connected information where vectors, colour and a similar form 

(triangles) contribute to the construction of a coherent text. First, there is no framing 

in it. Second, the arrows connect the first and the second diagram in the first line. 

Moreover, the use of the same colour connects the four diagrams as belonging to the 

same unit of information (proposition). 

4. 	The creation of mathematical texts 

The main focus in the previous part of the section was on visual cohesion in texts, 

meaning how a text is arranged spatially on different sections of a page. We saw that 

some elements will be on the left (Given in the Western culture) or on the right 

(New), or in reverse order in right-to-left languages such as Arabic, others will be on 

the top (Ideal) or the bottom (Real), and other elements will be in the Centre and/or 

in the Margins. We also saw that salience contributes to the information importance 

of the elements, while framing creates a sense of discontinuity or connectedness 

between elements of a text and constructs the separation or the unity of elements. 

The discussion so far has drawn on the work of Kress & Van Leeuwen (2006) which 

focuses on visual cohesion and visual representations. Halliday's SFL, in contrast, as 

presented in the introduction section above, focuses on verbal cohesion and verbal 

representation. In addition to the several examples that have been presented 

illustrating information value, this section focuses on how elements of information, 

whether visual or verbal, are linked to each other in (mathematical) composite or 

multimodal texts. In doing so, the two parts — the visual and the verbal — discussed so 

far will offer an analytic tool to analyse the textual meaning, which is the concern of 

this chapter. The analytic tool I will construct, moreover, will be used to analyse two 

examples at the end of this chapter. 

Information linking: the relationship between the visual and the verbal 

Adopting Halliday's SFL, Van Leeuwen (2005) suggests that there are two main 

relationships between two items of information: elaboration and extension. In 

elaboration, an item 'elaborates on the meaning of another by further specifying or 

describing it. ... [in other words, one] provides a further characterization of one is 
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already there, restating it, clarifying it, refining it, or adding a descriptive attribute or 

comment' (Halliday, 1985, p. 203). In other words, there can be different methods of 

elaboration such as reformulation, exemplification, specification, summary and 

correction (Van Leeuwen, 2005). In extension, an item 'extends the meaning of 

another by adding something new to it. What is added may be just an addition, or a 

replacement, or an alternative' (Halliday, 1985, p. 207). 

According to Kress & Van Leeuwen (2006), the approach of Roland Barthes 

represents the classic semiotic work in the relationship between the verbal and the 

visual, or the word and image. The two main types of relationships which Barthes 

considered are anchorage and relay (Table 9-1). He argued that anchorage is a 

specification relationship in which the image comes first, and the word comes to 

specify the image or to 'fix' it. Relay, in contrast, is a complementary relationship 

between the image and word in which each of them contributes to the meaning of the 

message. In other words, anchorage is akin to the elaboration relationship, while 

relay is akin to the extension relationship. 

There are other types of elaboration, such as illustration, in which the text comes first 

and the image makes it more specific, and explanation, in which the word 

paraphrases the image or vice versa. The extension relationship has other forms as 

well, such as similarity, in which a word is similar to the image or vice versa, and 

contrast, in which a word contrasts the image or vice versa. 

Table 9-1: Overview of visual-verbal relatioship (Van Leeuwen, 2005) 

Type of 
relation 

Subtypes Meanings 

Elaboration Specification The 	image 	makes 	the 	word 	more 	specific 
(illustration) 
The 	word 	makes 	the 	image 	more 	specific 
(anchorage) 

Explanation The word paraphrases the image (or vice versa) 
Extension Similarity The content of the verbal text is similar to that of 

the image 
Contrast The content of the verbal text contrasts with that of 

the image 
Complement The content of the image adds further information 

to that of the verbal text, and vice versa (relay) 
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Although Kress & Van Leeuwen (2006) draw on Barthes' notions of anchorage and 

relay and incorporate these into their scheme of verbal-visual relationships, they 

oppose his privileging of words over images. They make their theoretical position 

clear about the visual representation, the verbal representation and the relationship 

between them by stating in a number of places, including in the following quote, 

that: 

the visual component of a text is an independently organized and 
structured message, connected with the verbal text, but in no way 
dependent on it — and similarly the other way around. (p. 18) 

The relationships between the visual and the verbal will be illustrated in the 

following analysis of two mathematical texts that the participant students in the 

current study produced in response to Task 2 (Pf, see Chapter 4). The first one is in 

English produced by a student in Year 8. The second is an Arabic text produced by a 

student, Sami, in Grade 8. In each example I will look how a mathematical text is 

constructed through three interrelated analytic tools or on three levels: 1) the visual 

analysis suggested by Kress & Van Leeuwen (2006) as mentioned earlier in this 

chapter, namely, how information is arranged in the text (the value of information, 

salience and framing); 2) the verbal analysis suggested by Morgan (1996b) as 

presented in the beginning of this chapter, namely, thematic progression, the way in 

which reasoning is expressed and the overall structure of the written text; and 3) the 

interaction between the visual and the verbal as presented in this part of the chapter, 

namely, the relationship between diagrams and words. The analysis will consider all 

of these tools together, as interrelated tools toward the creation of a mathematical 

text. Before presenting the analysis, I would like to recall Task 2 of the current study 

(Pf) which asks the students to investigate the claim made by a student, Darren: 

'Whatever quadrilateral I draw with corners on a circle, the diagonals will always 

cross at the centre of the circle.' The two examples show how the participant students 

respond to this task focusing on the diagonals of the quadrilateral and the circle of 

the centre. 
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Example 1 (Figure 9-12): 

The verbal parts of the text in Figure 9-12 read as follows: 

I think that he is wrong because it says he sketched it and it could be any sized [size] 

or anywhere in the circel [circle]. it could not be a regular quadrilateral. 

eg [e.g.]: 

[diagram] 	it doesn't work as the quadrilateral is a nonregular shape and is not 

placed anywhere near the middle point. 

[diagram] 	if the sides are parallel and it is placed in the middle of the circle it 

does work. 

Looking at the overall structure of the text, we might note that it is divided into three 

horizontal equal sections; the upper section is verbal, and the second and third 

sections are multimodal, including a diagram on the left and writing on the right. 

Each of these sections is disconnected from the other by white space constructing a 

frame around each of them. The upper verbal section represents the Ideal part of the 

text, the theoretical part of it. The author of that text thematises her position towards 

Darren's claim: 'I think that he is wrong'. The use of because suggests that a 

reasoning-type text is (will be) presented. 

In the next student text to be considered, the author provides different examples to 

demonstrate the theoretical position expressed in the Ideal section. The second 

example is placed in the Real section, on the bottom of the page contrasting the Ideal 

position and showing that Darren's claim may work if some conditions are achieved. 

The first example, on the other hand, is in the centre of the text, playing the role of 

'Mediator' between the two stances of the Ideal and the Real. 

In the Ideal section, the author's position is thematised, or it takes the position of the 

Given in the statement, the departure point about which all agree, while the reason 

for that position (because ...) is presented as New that can be problematised and 

challenged. The New needs more investigation, and this is exactly what the author 

does by giving two examples to illustrate her point. 
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Figure 9-12: An English investigation text of Task 2 (Year 8, unknown name) 

The way in which the first example is presented suggests that this example is a 

meaningful message in itself; it is separated from the rest of the text by a white space 

(framing), but at the same time it is a coherent text and constructs a unit of 

information realised by the vector between the diagram and the verbal. The diagram, 

the Given element, shows that the diagonals of the quadrilateral do not cross the 

centre of the circle, which is salient in the circle. This situation is taken as granted, as 

a departure point from the diagram in order to present the content of the verbal. The 

verbal, the New element, 'paraphrases' the diagram. The entire content of the verbal 

text is presented in the diagram, establishing an (elaboration) explanation 
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relationship between the verbal text and the diagram. The author emphasises this 

relationship using the direction of the vector. 

In other words, the diagram and the verbal text construct a coherent message that 

says: here is an example which shows that the theoretical position presented in the 

previous paragraph (the Ideal), Darren's claim, does not work in this case, and that 

consequently — his claim is wrong. 

Similarly, the student uses white borders around the second example to present it as a 

separated message, but a coherent one as well, by drawing the vector which connects 

the diagram and the verbal text. However, it contrasts the theoretical position in the 

Ideal part and shows the status of Darren's claim if some conditions are realised. 

Therefore, the content of the diagram and the content of the verbal text in this 

example are presented differently. The salient part in the diagram (the Given 

element) is the thick lines representing diagonals of the quadrilateral which cross the 

centre of the circle. Moreover, the diagram together with the verbal text show some 

details of that quadrilateral, including equality labels and parallel signs which 

suggest a specific type of quadrilateral, a regular quadrilateral, which is used to 

contrast the statement in the Ideal section. 

In this example, to conclude, the analysis of this text shows how the arrangement or 

the composition of the elements of a text contributes to the textual meaning of a 

mathematical text through the progression of the theme or the expression of 

reasoning and 'the overall structure of the text' (Morgan, 1996b, p. 97). A final 

comment on the two examples presented here is about the direction of the arrows that 

connect the verbal and the visual parts. While it is expected that the reader/viewer 

would read the text from left to right, the vector in both examples emanates from the 

verbal toward the diagram, suggesting another direction for reading the text, in which 

the Given is the written text, and the New is the diagram. 
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Example 2 (Figure 9-13): 

The text in Figure 9-13 consists of two sections, a diagram and a verbal text reading 

(I translate from Arabic, which is written right to left): 

You conclude that the above diagram was quadrilateral and its vertices were 

on the circumference of the circle, but its diagonals have not crossed the 

centre, therefore what Reem [the Arabic substitute for Darren] said is wrong. 

The overall structure in which the text is presented may be seen as a triptych in 

which a diagram and a verbal text (with an arrow to the right) are presented in the 

central part of that triptych, and the other two parts are white spaces. This structure 

signals the coherence of the message presented in the text, as we will see below. The 

diagram, the Ideal part, is salient in position and size. It is the point of departure of 

the text; it is the concern of the message which shows the relationship between the 

quadrilateral and the circle. The diagram itself presents an example which meets the 

conditions suggested in the task but does not agree with the result that Darren/Reem 

concludes: the diagonals of the quadrilateral do not cross the centre of the circle. The 

author expresses this by emphasising the two points (the centre of the circle and the 

crossing/intersection point of the diagonals of the parallelogram) in the diagram, 

thereby making them salient. Moreover, the diagram occupies nearly two-thirds of 

the space of the text. This, again, signifies the important value of this information in 

comparison to the verbal, which occupies one-third of the text. 

The theme in the verbal reveals the concern of this piece of information, namely the 

conclusion which may be made according to the diagram (see the discussion about 

the arrow between the diagram and the verbal text below): 

The written text starts by saying: 

you conclude that [in Arabic it is one word, Tastantij] 

then paraphrases the content of the (above) diagram and present this content as Given 

the above diagram was quadrilateral and its vertices were on the 
circumference of the circle, but its diagonals have not crossed the 
centre, 
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in order to make the conclusion, the New 

therefore what Reem [Darren] said is wrong. 

The main message that the verbal text says, is, in other words, something like: 

because of what is given in the diagram, Reem's [Darren's] claim is wrong. 

The overall structure of the text contributes to the coherence of the message as a unit 

of information. The diagram and the verbal text are connected by an arrow and by 

the way in which the verbal is presented. The arrow emanates from the right as a 

continuation of the diagram, similar to an V .., then ...' statement, which suggests a 

causal relation between the diagram and the verbal text. Thus, the arrow connects the 

diagram and the verbal as a unit of information that should be considered together. 

Moreover, the way in which the verbal text is written contributes to the unity of the 

message as well. The verbal text is arranged in an arrow-like way, with wide lines at 

the bottom that become narrower, closer to the diagram. In other words, the verbal 

text itself is linked to the diagram. This, indeed, adds to the centrality of the diagram, 

as discussed earlier, in this text to presenting the solution of the task. 

Figure 9-13: An Arabic investigation text of Task 2 (Grade 8, Sami) 

It is worth comparing the two examples, since each of them is presented in a 

different language and comes from a different culture. In doing so, I present an 
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illustration of the difference rather than generalising, which would require further 

investigation and examination. Example 1 presents its argument in result-cause order 

from the beginning of the text, I think that he is wrong because, while Example 2 

presents its conclusion at the end of the text, in a cause-result order, thus what Reem 

[Darren] said is wrong. Because of the high status of deductive reasoning in 

mathematics, we would expect to see more emphasis on the cause-result order in 

mathematical texts realised through analysis of the textual meaning, especially 

regarding the expression of reasoning in the text. Morgan (1996b) argues that 

deductive reasoning has high status in mathematics, creating a tendency for doers of 

mathematics to privilege cause-result order. In a personal communication, however, 

she says that theoretical knowledge, in which result-cause order is privileged, is also 

highly regarded by mathematicians. Therefore, one may expect to see both orders but 

possibly in different contexts and, hence, possible differences between spoken and 

written responses, school versus research mathematics, or different kinds of school 

curriculums. This might be the basis for a hypothesis to account for differences in the 

balance between the two orders across cultures (Morgan, 2010, personal 

communication). 

This indeed has consequences for the way in which the texts would proceed. 

Example 1 presents its argument as an investigation process, using more words and 

more diagrams than Example 2, which presents its argument as a product. The 

former discusses two different possibilities to illustrate its stance and the latter 

presents one possibility that is a counter example. 

These two issues, the order of the argument and the way in which a text proceeds, 

may signal the way in which mathematics is perceived or constructed in different 

educational systems (or cultures). Most of the participant Palestinian students 

presented their texts as products in cause-result order with one diagram and few 

words, as in Example 2, while most of the English students presented their texts as 

investigation or trial and error processes with more diagrams and words. Does that 

mean that mathematics in the OPT, educationally and culturally, is perceived 

differently from the English context? The educational system in the UK began 

officially encouraging an investigation attitude toward mathematics twenty years ago 

'through the implantation of the curriculum development of 'coursework' as a 

component of the General Certificate of Secondary Education (GCSE) examination' 
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(Morgan, 1996b, p. 1). It is only in recent years (since 1999) that Palestinians started 

to write their own textbooks (see Chapter 4). Because Palestinians have lived under 

so many different foreign authorities, each of which had its own educational system 

(such as Ottoman, British, Jordanian, Egyptian, and Israeli occupation), the view of 

mathematics is isolated from the living reality in the OPT (Fasheh, 1997). Palestinian 

textbooks are content-focused, and there is little research about the social aspect of 

mathematics. Generally, the situation has not changed since 1999, and mathematics 

is still perceived as a formal, definite, impersonal and symbolic subject. 

5. 	Summary 

This chapter dealt with the third meaning a text may fulfil in order to construct a 

meaningful message, namely textual. The textual meaning is realised differently 

through visual representation and communication and verbal representation and 

communication, respectively. As was the case for the other meanings discussed in 

the previous chapter, I took as the departure point the Hallidayan SFL framework 

and then moved to the work of Kress and Van Leeuwen (2006) about visual 

representation, while at the same time considering Morgan's linguistic framework 

(1996b) to read mathematical texts. 

Two main issues were discussed in the chapter: the meaning of composition and the 

creation of mathematical text. The meaning of composition dealt with the 

information arranged in texts spatially: left to right, top to bottom, centre and margin, 

salience and framing. The discussion focused on how these arrangements contribute 

to the meaning potential of the elements of a text. 

I addressed the creation of mathematical texts in the last part of this chapter, in which 

I highlighted the relationship between the visual and the verbal followed by an 

analysis of two multimodal mathematical texts produced by participants in the 

current study. In this particular part, the work of Morgan (1996b) informed my 

attempts to construct an analysis of the two examples in the last section of this 

chapter. I have looked in detail at the elements which have been thematised, either 

the diagram or the verbal, and also where these elements are placed in the 'visual 

space' suggested by Kress and Van Leeuwen (2006). I also looked at the way in 

which reasoning is expressed in the two examples. One main difference I have 
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identified between the English text and the Arabic text is that the former used result-

cause order, while the latter used the cause-result order. In other words, the 

framework suggested by the current study enabled me to make distinctions between 

different kinds of multimodal mathematical texts that have significance beyond the 

texts themselves. 

This analysis, however, focuses only on the textual meaning of the diagrammatic 

mode, which does not occur in isolation from the other two meanings, the ideational 

and the interpersonal. The next chapter considers this challenge. 
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10 Multimodal communication and representation: An 

analysis 

1. Plan of the chapter: 

The last four chapters (6-9) discussed the role of the diagrammatic mode in 

constructing mathematical meanings. While Chapters 6-8 focused on the ideational 

and the interpersonal meanings realised in diagrams alone, the previous chapter, 

Chapter 9, dealt with the textual meaning in mathematical written texts, considering 

the verbal mode as well as the diagrammatic. Mathematical communication and 

representation, however, most often occur in a context wider than just the written 

text, such as oral discussion, for example, which involves more than two modes. In 

this chapter, therefore, I look at how three mathematical modes of communication 

and representation may interact to construct mathematical meanings. These modes 

are: the diagrammatic; the verbal; and the gestural. Since the first two modes have 

already been developed (the diagrammatic in this study and the verbal in Morgan 

(1996), both adopting SFL approach), there is a need to develop a framework for the 

gestural mode. This will be the first step of this chapter. 

The second step will be analysing an episode of the participant students in the current 

study. In doing so, I aim to achieve two goals: the direct one is to demonstrate how 

both of the frameworks suggested by this study, the diagrammatic and the gestural, 

may be applied in a wider context of communication and representation. The indirect 

goal is to show the complexity of mathematical communication which happens in a 

class and, consequently, to argue that more attention is needed to the way in which 

students interact in, and with, mathematics. 

2. Introduction: the multimodal nature of communication 

So far I have dealt with the diagrammatic mode through the previous chapters in 

order to develop a framework for reading geometric diagrams that is similar to the 

way in which other studies make use of the verbal mode to read mathematical texts 

using the SFL approach (e.g. Morgan, 1996b). However, 'communication is always 

and inevitably multimodal' (Kress, 2005, p. 5), where meaning is constructed through 
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different modes occurring simultaneously. In other words, the ensemble of modes 

(multimodality) of representations and communication, rather than one mode 

(usually the verbal, spoken or written), is actually the carrier of the unified meaning 

(Kress et al., 2001; Lemke, 1999). Thus, the way in which modes are combined or 

interact and their contribution to the unified meaning should be considered. 

Furthermore, because people communicate to effect change on their social worlds, 

these different modes of communication are also functional (Morgan, 2006). 

Mathematics, as a socio-communicative practice, is a multimodal discourse, as I 

argued in this study and elsewhere (see Chapter 2 in this study and Alshwaikh, 

2009), where different modes of communication take place including language, 

diagrams, gestures and algebraic notations. These different modes may offer 

different meanings, or they may convey one set of meanings (Kress & Van Leeuwen, 

2006). 

As a result, we must consider gestures in analysing the communicative act in 

mathematics discourse as well as in other contexts. That is what I intend to do in the 

following section. My plan is to develop a means of analysing the contribution that 

gesture makes to the overall meaning, just as we have a means of analysis for the 

verbal and diagrammatic forms. 

3. 	Gestures as a mode of communication 

During my iterative watching of the video records of students' communication about 

the two geometric tasks of this study, I noticed their extensive use of gestures, such 

as using their fingers to point to specific parts of a diagram (the length of a side, for 

instance), their hands to draw diagrams or to indicate some aspect of the problem or 

solution (showing the traces of the water in Task 1) and/or their use of artefacts 

(ruler, compass, pencil, etc.). This led me to try to develop a preliminary analytic 

framework (see Table 10-1) using a social semiotics approach, as I did with the 

diagrammatic mode. Because of the time constraints inherent in a PhD study, I have 

developed only one aspect of the intended framework for gestures, which is the 

ideational, hoping to pursue this endeavour more fully later. Furthermore, I must 

admit that I am including only a limited variety of gestures in the suggested 
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framework, which I consider to be only the first step in developing a more detailed 

framework. 

Similar to the diagrammatic framework developed in the previous chapters of the 

current study, the suggested gestural framework distinguishes between two types of 

gestures: narrative gesture and conceptual gesture. The main distinction is the 

movement of fingers or hands. If there is a movement, a dynamic motion in 

producing the gesture, then I consider the gesture to be narrative, in which a story is 

being told by showing the structure of a constructed product. Conceptual gestures, in 

contrast, lack that action or motion and appear static, in order to refer to a 

'presupposing' (Haviland, 2000) or pre-existing object. 

While the suggested framework is preliminary and limited, this distinction between 

narrative and conceptual is consistent with the suggested framework for the 

diagrammatic mode and may help offer a coherent analysis for multimodal 

communication. Other distinctions in the studies about gestures (see Chapter 4) adopt 

the Peircean classification of signs; iconic, indexical and symbolic (e.g. McNeill, 

1985; Streeck, 2008). Among these classifications, the indexical gesture is the most 

recognized type, discussed prominently in research about communicative practices in 

people's daily lives (e.g. Haviland, 2000) or in specialised communication such as 

mathematics learning (e.g. Radford et al., 2007). Streeck (2008) identifies 12 

methods or heuristics of depictive gestures, Bjuland, Cestari, & Borgersen (2007) 

found sliding and pointing are prominent in students' interactions while solving 

mathematical tasks, and Morgan & Alshwaikh (2008) distinguished between two 

strategies, imaging and imagining, that students used in the context of a teaching 

experiment to explore three-dimensional shapes. Wherever they were applicable to 

the set of data I collected, these studies informed the suggested distinction in the 

current study. 

In the following, I consider each of the gestures with illustrative examples, and then 

present a multimodal analysis for an episode from the study, taking into 

consideration three modes of representation and communication: verbal, 

diagrammatic and gestural. Before doing that, however, I want to provide additional 

justification for the distinction between narrative and conceptual gestures. In the 

diagrammatic framework, the distinction between narrative and conceptual diagrams 

was based on the presence of temporal factors. The challenge here is that gestures 
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occur in time. That challenge informed my thinking in the distinction between 

narrative and conceptual gestures, and I found the movement (or motion) to be a 

useful distinction. 

Thus the distinction is based on whether there is an action represented in the gesture. 

Since my interest is the content of the represented action, I make a further 

distinction, looking closely at whether the action represents a process or an object. 

Thus, if a student repeatedly traces an imagined mathematical object (a segment line, 

for instance) I would consider that action to represent both object and process. I 

would say that at the time the object was depicted with no motion, the gesture was 

conceptual. At the moment the gesture starts to express motion, it becomes narrative. 

3.1 	Narrative gestures: 

Narrative gestures are distinguished by the presence of the movement of fingers or 

hands (or artefacts). I have identified three types of processes based on the activity 

they indicate: drawing, symbolic and modelling. 

3.1.1 Drawing/sliding: 

This type of gesture is made by moving one's index-finger (or an artefact, a pen for 

example) forward and backward along a line (or other parts of a diagram such as an 

arc). The forward-and-backward motion suggests a mathematical meaning of 

measuring the length of that line. Ruth, for instance, in Figure 10-1, reading from left 

to right and top to bottom, moved her pen several times over the side of a trapezium 

(I added arrows to show how she moved her pen) in a gesture that appears to refer to 

the length of that side. Usually the single indexical gesture is accompanied by verbal 

demonstratives such as this and that. 

Figure 10-1: Drawing/sliding as a narrative action 
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Two fingers (most often the index will be one of them), furthermore, may be used to 

embody an arc or a curve rather than a straight line. Lionel, for example, referred to 

the radius of a circle using two fingers; one (the index) represents the centre, while 

the other (thumb) was moving, representing an arc (Figure 10-2). 

Figure 10-2: Two fingers drawing a radius 

Sliding gestures are akin to material processes in the transitivity system which, 

among other processes, realise the ideational meaning in language (Halliday, 1985), 

and, at the same time, are akin to the (measurement) arrowed diagram, embodied by 

the presence of bidirectional arrows, in the ideational (representational) meaning of 

diagrams. Measuring the length of a side is an example (see Figures 6-8&9 in 

Chapter 6) of this type of gesture, in which the bidirectional arrow may be (or may 

not be) accompanied by words (measure, the length of the side), as an embodiment 

of a (narrative) sliding gesture. 

3.1.2 Symbolic: 

A second type of narrative gestures is distinguished by the use of symbolic gestures 

or processes. According to the Peircean classification, symbols are signs that are 

related to their objects by conventions (Peirce & Buchler, 1955) such as words. A 

symbol refers to what the object is or means (Kress & Van Leeuwen, 2006). For 

example, the word 'triangle' is a symbol of an object called triangle; the triangle word 

itself is a signifier, and the shape triangle is the signified (meaning). An example of a 

symbolic gesture is when two fingers or hands are moving while keeping a fixed 

distance between them. The gesture itself (moving the two fingers of hands) is a 

signifier, and the (mathematical) meaning is parallelism (verbally, something like 

'two lines never meet') which is a geometric property. The gesture may be made 

using two fingers from the same hand (Figure 10-3 a), using one finger from one hand 

(Figure 10-3b) or using two hands (Figure 10-3c). 
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(a) 
(b) (c) 

Figure 10-3: Symbolic gestures showing parallelism 

3.1.3 Modelling: 

Sliding may also construct images or diagrams when a finger or hand has a starting 

and ending point, a closed area. Modelling may be indicated by the use of one or two 

fingers or hands. Richard, for example, used his pen to refer to a triangle in his 

discussion about Task 1 (see line 10 in Table 10-2 and Figure 10-11). Another 

student, Timmy, in a different episode, made use of his right and left index fingers to 

draw a figure that he couldn't name. He put his two index fingers in contact as a 

starting point, moved each of them apart in a straight line (one to the left and the 

other to the right), slid each of his two fingers downward, and then slid them toward 

each other again (one to the right and one to the left) until they met, thus 'closing' the 

diagram (Figure 10-4). 

Starting points 

< • •  >  

	> < 	 
Figure 10-4: Modelling a diagram by two fingers or two hands 

3.2 	Conceptual gestures: 

Conceptual gestures are distinguished by the lack of motion. It is interesting to note 

that when the movement in a gesture ceases or is frozen, a narrative gesture becomes 

conceptual, and instead of referring to mathematical action, it refers to pre-existing 

mathematical objects. As I have done for narrative gestures, I have identified three 

types of processes occurring in conceptual gestures: pointing/indexical (referring to 
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part or the whole of the diagram), bounding (referring to a fixed length) and still-

modelling (using a hand or hands to refer to a diagram). 

3.2.1 Pointing/indexical: 

In general, an indexical gesture is distinguished by the use of the finger (especially 

the index finger) or hand(s) to direct the attention of the viewer/or interlocutor 

toward something. As Haviland (2000) states: 

[p]ointing seems a straightforward matter: you stick your finger out in 
the appropriate direction, perhaps saying some accompanying words, 
and your interlocutors follow the trajectory of your arrow-like digit to 
the intended referent. (p. 14) 

But pointing is not always simple and straightforward, especially when there is a 

need to specify where exactly to direct the attention, in order to be accurate. Some 

studies report the use of index/pointing gestures in mathematics. Bjuland, Cestari, & 

Borgersen (2007), for instance, distinguished between students' use of pointing and 

sliding as prominent gestures in solving mathematical tasks. Moreover, Radford, 

Bardini, & Sabena (2007) identify several indexical gestures in students' algebraic 

generalisation. 

I use the indexical/pointing gesture to refer to the use of a finger (index) or hand(s) to 

point at an 'presupposed' (Haviland, 2000) object. In the mathematical context, this 

gesture is realised by using the (index) finger (or an artefact such as a pen) to point at 

a diagram or part of it. This is manifested by pointing one finger either to the whole 

diagram or to specific parts of it (Figure 10-5). The gesture is usually accompanied 

by the use of demonstratives such as this and that. 

Figure 10-5: Pointing at the whole diagram or parts of it 
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3.2.2 Bounding: 

Bounding is indicated by the use of two fingers or two hands to embody a fixed 

length or distance encircled between the two fingers or hands (see the schematic 

drawings in Figure 10-6). I note that bounding is distinguishable from the symbolic 

gesture indicating parallelism described in section 3.1.2, which is a narrative gesture, 

by the absence of motion. In Figure 10-6, Lara uses her two fingers to make the 

gesture of bounding, in order to refer to the length of EM in Task 1. 

Figure 10-6: A fixed distance (length) between two fingers/hands 

This type of gesture is visually similar to the way in which the length of a segment is 

shown traditionally in mathematical texts (Figure 10-7), where fingers or hands are 

represented either by two points or two little vertical signs. 

Figure 10-7: Length of a segment as shown visually in mathematics texts 

3.2.3 Still-modelling: 

Modelling in narrative gesture took place when students constructed an image of a 

diagram by sliding two fingers or hands and drawing an image of a diagram. Still-

modelling, on the other hand, is modelling without motion, in which the gesturer 

indicates a diagram using fingers or hands. A student, Lionel, held up two fingers 

(the index and the thumb) in both hands referring to a square (Figure 10-8) that had 

been presented earlier in his discussion with his colleagues about Task 2 in the 

current study. 
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Figure 10-8: A 'gestured' square 

As a summary, narrative gestures are realised by the action of doing rather than 

referring to an object, while conceptual gestures, in contrast, refer to the mental 

image of an object, rather than indicate an action. As in the diagrammatic and the 

verbal modes, mathematical activity may be represented in the gestural mode. Table 

10-1 summarises the types of gestures, the processes they involve, and how they are 

realised to achieve ideational meaning in the mathematical context. 

Table 10-1: Ideational meaning in gestures 

Gesture type Type of process Realisation 
Types of 

mathematical 
meaning 

Narrative 
gesture: 
Dynamic: 
ongoing action 

• Drawing/sliding 

• One finger21  or two slide (forward 
and backward) over a specific side of 
a diagram embodying an action of 
measuring the length of the side 
(Figure 10-1, Figure 10-2). 

• Measuring 

• Symbolic 

• Two 	fingers/hands 	moving 	while 
keeping a fixed distance between 
them indicating parallelism (Figure 
10-3). 

• Indicating a 
property 
(parallelism, 
perpendicular) 

• Modelling 
• Drawing an image of a diagram using 

finger(s) or hand(s), Figure 10-4. 
• Drawing a 

diagram 

Conceptual 
gesture: 
Static: no 
action 

• Pointing 

10-5). 
 

• Pointing with one finger, usually, 
accompanied 	by 	the 	use 	of 
demonstratives this and that (Figure 

• Part of or the 
whole diagram 

• Bounding 
• Fixing two fingers/hands with fixed 

distance (Figure 10-6). 
• Length or 

distance 

• Still-modelling 
• Holding fingers/hands presenting a 

diagram, 	creating 	an 	imaginary 
diagram (Figure 10-8) 

• Diagram 

21  Artefacts may be used instead of fingers. 
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4. 	Multimodal communication: an illustrative analysis 

So far I have discussed (the ideational meaning of) the gestural mode of 

representation and communication and what relationships may be constructed 

between the three different modes. In this part of the chapter, my plan is to illustrate 

that interaction by analysing an episode of students' communication in which the 

students try to solve the Task 1 (TF) in the current study. My goals, in doing so, are, 

first, to illustrate the applicability of the suggested framework (the gestural) and, 

second, to present an analytic (and transcription) tool which considers the three 

modes together (see also Morgan & Alshwaikh, 2009). 

Because my example is illustrative, I will be selective in presenting an extract from 

students' communication in solving the tasks. I searched for an extract which 

includes the three different modes: the verbal, the diagrammatic and the gestural. 

However, the issue of presenting an extract or episode in the communicative act 

raises the methodological issue of transcription: how to transcribe, which mode to 

start with, and how to present the transcript, all of which involve decisions that 

require adopting a theoretical position (Kress et al., 2001). Different studies have 

dealt with multimodal transcription within the social semiotics approach (e.g. Kress 

et al., 2001; Mayers, 2009; Norris, 2004; O'Halloran, 2004c). Norris (2004) suggests 

a step-by-step guide for multimodal transcription: 

First, we complete a transcript for each communicative mode; then 
combine two or more; and finally, combine all of our individual 
transcripts to present a complete transcript. (p. 66) 

The representation of the complete transcript, furthermore, is a matter of theoretical 

stance, too. Kress et al. (2001, p. 37) argue that the 'decision of what form to 

represent information in [written only or in written and visual] depended on the 

intensity of the information and the focus of the analysis.' In other words, multimodal 

transcripts provide a closer look at the data and a thick description of each mode and, 

moreover, of the interaction between modes. Jewitt (2006) describes different ways 

of organising transcripts such as a 'play script' in which language is the main mode, 

or a 'musical score' in which each mode resides in a row of the score, or organising 

each mode in a separate column based on time. 

Table 10-2 is an example of the last option of multimodal transcript, and it may take 

another form such as starting with the gestural mode or the diagrammatic rather than 
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the verbal. While most transcription presented in studies would start with the written 

or verbal mode, Mayers (2009), for example, presented her data starting with the 

images with which students engaged when they draw and write. This stance, placing 

one of the modes in the foreground and focusing on it and its meaning potential, may 

fragment the text and the text's potential meaning (Jewitt, 2006). Therefore, Jewitt 

(2006) suggests another complementary approach, which is taking the three 

interrelated metafunctions (ideational, interpersonal and textual) as a starting point 

for analysis. I do this in an illustrative example below. 

The 'process of transcribing multimodal data is extremely complex' (Norris, 2004, p. 

64). In order to reproduce Table 10-2, it took days of watching the video data in 

order to select a salient episode of just 34 seconds. Then, I watched and listened to 

each mode in isolation: I listened to the conversation only, watched the images alone, 

then the gestures, and then the three modes together. I then produced schematic 

drawings to illustrate the gestures before finally deciding how to present the data. 

This process has some limitations, such as the technical problems that may arise 

(audibility, pausing exactly at the required moments, the quality of the images, etc.) 

and the synchronisation of the three modes in order to construct an ensemble 

meaning. 

The analysis done by Radford et al. (2007) may overcome the shortcomings I have 

mentioned. Radford and his colleagues used complex tools to collect and analyse the 

data, including three or four video cameras, transcription, written texts and audio 

analysis. Furthermore, they performed an audio analysis in order to analyse the tone 

of the sounds that accompanied the gestures. These technological tools undoubtedly 

facilitate a rich analysis. Radford and his colleagues presented their analysis 

following the conventional form, in which they recorded the words spoken, 

interspersed with a description of the gestural mode in square brackets. They 

separately presented the images. 

I adopted a different transcription process, reproduced in Table 10-2, which I believe 

facilitates the multimodal analysis by presenting the different modes (verbal, 

gestural, and visual) in an integrated form. This process has been used by Mayers 

(2009) and Kress et al.(2001), as well as Morgan & Alshwaikh (2008; 2009) in the 

ReMath project. 
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Table 10-2: Multimodal transcript of students' geometric activity 

Line Time Stdnt Verbal 
Gesture/ Diagram 

Comments In 
words/pictures 

Schematic drawing 

1 00.31 Richard What's your 
opinion 
Ruth? 

, E Turning the page 
towards her side. 
(The diagram in 
the problem is 
shown in the 
previous column.) 

' \- 
2 0.32 Ruth What 

opinion? 

3 0.33- 
0.42 

Ruth I think we 
know the 
length 

• May be 
referring to PL 
[not seen in the 
video] 

or whatever Moving her pen 
next to EM 

• May be 
referring to EM 
since she moved 
her pen to it [not 
clear in the video] 

... do we 
know the 
width of it? 

Pointing at LM 

4 0.43 Richard Yeah 
5 0.44 Ruth Do we know 

the length of 
it? 

Sliding her pen 
in the same 
direction of PL 
(top to bottom 
direction) 

6 Richard Yeah 
7 0.47- 

0.50 
Ruth So I think ... 

so we need 
to find out 
what this ... 
this ... this 

11111111111111 

— Thili  

P 

, 

fi 

1  

• Sliding her pen 
over the side EM, 
moving from E to 
M repeatedly for 
few times (Figure 
10-1). Every 'this' 
may refer to the 
route E-M-E 

8 0.51 Richard Yeah ... or 
maybe we 
make a 
square 

Moving his pen 
over the diagram 
as follows: 
Pointing: 1-2 
Sliding 2-3-4
Pointing 5 
Sliding 5-6-7 
(see Figure 
10-10) 

, 

, 

2 , - 

5  

6  

• 

• The sequence of 
numbers indicates 
the sequence of 
gestures. 
• I think that the 
points 4&5 are  
supposed to  
represent the same 
point that Richard 
wanted when he 
said 'square'. 
• The point 7 is 
coloured to be 
distinguished from 
the point 2. 
Similarly point 9. 
• Richard used 
sliding to indicate 
an imaginary 
image. 

4\ ,,.• 

• 
1 	• 

4 

7 —.4_ • 

\ 

5 
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9 Ruth Yeah 
10 0.53 Richard and then that 

... 
Sliding 7-8-9 
(see Figure 
10-11) 

7 
P 	 E 	 8 • 

L 
-- - - Ai 

and then we 
use that ... 

Pointed at MLP 
and a point after 
E to indicate the 
whole diagram 
(trapezium plus 

triangle) 
(see Figure 
10-12) 

15g 

,4L41- 
the imagina ry 

E  16 • • 
17 

13 

The imagined 
triangle is the one 
that may be 
constructed by the 
points 5-6-7, 7-8-9 
or 16-17-13 

0.54 

and then we 
take away 
how many 
metres and 
centimetres... 

sliding between
10-11-12 
(see Figure 
10-13) 

P 	 E 

 io 	ii  Referring to the 
triangle (see the 
previous 
comment). 

0.56 

I. 

_,,,,. • 

41 

I 

12 

1 1 0.59- 
1.05 

Richard is that it?... 
yeah?... we 
have to draw 
on the sheet 

An illustrative episode: The multimodal dimensions of students' geometric activity 

The context - Three students (Richard and Caroline sitting next to each other and 

Ruth sitting in front of them) are supposed to work together to solve Task 1 (see 

Chapter 4) by first discussing it, agreeing on the solution and then writing their 

solutions individually. This episode occurred in the first minute of the discussion, 

when Richard initiated the dialogue by reading the problem and then asked Ruth her 

opinion. The ellipsis (...) in Table 10-2 refers to a pause that lasts less than a second. 

The mathematical task - The problem in Task 1 asks the students to find the distance 

needed for the two sprinklers to throw water in order to water the lawn (see Chapter 

4). In other words, students need to find two lengths/distances or radii of the two 

circles whose centres are E & P. However, most of the solutions presented by the 

students focused on finding the length of the side EM or the area of trapezium. These 

two types of solutions were dominant in students' interactions as well as in their 

written texts as presented in the analysis below. While my goal is to present and 

analyse students' interaction to solve this task, I think that the presentation of the task 

itself may influence that interaction. The text is presented in words followed by a 
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diagram that illustrates the verbal by presenting a specific example. While the main 

mode here is the verbal, the verbal and the diagrammatic modes working together 

introduce the problem, where students have to read them together. 

Since the ideational meaning is the only meaning that has been developed in the 

gestural mode, I will limit my analysis to the ideational meaning in each mode 

separately and in the interaction between the three modes. Specifically, the image of 

the mathematical activity will be the focus of this illustrative analysis. This analysis, 

indeed, requires looking at the kind of processes, the participants and the role of 

human agency (see Morgan, 1996 and Chapters 6 & 7 of the current study). 

The image of mathematical activity, I argue, is represented in (or within) each mode 

and in the interaction between the three modes. The original diagram presented in the 

problem (see line 2 in Table 10-2) is conceptual, meaning that it represents 

mathematical objects with spatial relational processes among them but does not 

suggest any action by or on these objects. As these processes are not specified in the 

diagram, one has to refer to the verbal text in order to recognise the spatial relations. 

For example, the size of the bases or height of the trapezium is only mentioned in the 

verbal text, an elaboration (anchorage) relation. 

Students' interaction — an analysis of this episode reveals two main events; setting 

the goal of the task and suggesting a solution. The contrast between the two events 

suggests that the students differ in their understanding of the goal of the task. This 

difference is indicated in the students' words and gestures. While Ruth in the first 

seven lines suggests that the goal of the task is to find out the length of EM, saying in 

line 7 'So I think ... so we need to find out what this...this...this' accompanied by a 

drawing/sliding gesture by moving her pen over the side EM (Figure 10-1), Richard, 

on the other hand, suggests a different route for the solution. His words and gestures 

were different from Ruth's. In line 8, he suggests to make a square and continues his 

suggestion to the end of the episode, accompanied by gestures, suggesting to solve 

the problem/task using the area concept. Actually his words were very limited, and 

he used the word that three times. The use of this and that in Ruth and Richard's 

utterances is impossible to follow without observing the gestures made over the 

diagram simultaneously (the three modes). These instances are good illustrations of 

the point I want to make: each mode offers different meaning potential, and there is a 
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need to look at the ensemble of modes in order to make meaning (Kress & Van 

Leeuwen, 2001; Radford et al., 2007). 

The drawing/sliding gesture that Ruth signalled suggests a measurement process of 

the side EM. Richard, on the other hand, made modelling gestures in order to show 

his interlocutor the diagrams he refers to. Although it is not entirely clear why 

Richard introduces the square, it seems that he wanted to find the area of the 

trapezium by adding an imaginary triangle to the trapezium to get a rectangle (that 

seemed an easier way to calculate its area) and then subtract the area of the triangle 

from the area of the rectangle to get the required area. Actually, Richard wrote this in 

the verbal part (Figure 10-9) of his final text: 

Figure 10-9: The verbal part of Richard's final text 

However, Richard made different gestures, not all of which are purposeful to achieve 

his goal. Richard went through the following procedures in order to find the solution: 

(8@0.5122) Yeah... or maybe we make a square [The square is constructed 

through four points as in the schematic figure, as recorded in the transcript and as 

constructed by the points 1, 2, 3 and 5 in Figure 10-10] 

Figure 10-10: A square 

22  Line 8 at time 0.51 
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As I indicated in the transcript, points 4 and 5 are supposed to be one point (M) since 

Richard referred to a square. What is not clear is his gesture going back from point 5 

to 3 to 2 (5-6-7 in the schematic drawing) referring to a triangle as in the following 

procedure. One can see the relevance of this gesture when looking at his final text 

and noticing the square and the triangle (see below). 

(10@0.53) 	and then that [a triangle is constructed through his gestures moving 

between the points 7-8-9 in the schematic drawing in the transcript and in Figure 

10-11] 

Figure 10-11: A triangle 

Now, Richard made a modelling gesture of the triangle he wanted according to his 

plan. This triangle, together with the trapezium presented in the given diagram, form 

a rectangle whose area is known to Richard. His gesture refers to the trapezium, and 

the triangle is presented in the next gesture. 

(10@0.54) 	and then we use that ... [referring to the whole diagram in the written 

part of his final text and in Figure 10-12] 

Here again, Richard highlighted the same triangle to which he pointed in every step 

of his suggestion of the solution, points 16-17-13. 
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Figure 10-12: A trapezium and a triangle 

After setting the scene for his plan, Richard now presented the last step in his 

solution in the following gesture. 

(10@0.56) 	and then we take away how many metres and centimetres... 

The 'take away' suggests the subtraction process that Richard refers to in order to find 

the area he planned to find from the beginning. This taking away process is related to 

the triangle to which he insisted on referring most of the time, as in 5-6-7, 7-8-9, 16-

17-13 and finally 10-11-12, as in Figure 10-13. 

Point 10 
	

Point 11 
	

Point 12 

Figure 10-13: Another triangle 

It is interesting to notice Richard's final text (Figure 10-14) and to notice the triangle 

(shaded, suggesting a narrative diagram, see Chapter 6) in his diagram, which is 

presented first. In his diagram, the triangle to which Richard gestured most of the 
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time (see his gestures in lines 8 and 10) is shaded, suggesting that it has been added 

afterwards. The 'metres and centimetres' in his utterance indicates the notion of the 

area of the triangle and the 'square'23  to which he gestured at line 8. The triangle 

appears in his final text in the calculation he did to find the area. It is, moreover, 

interesting to note that Richard's final text follows the pattern observed by Radford et 

al. (2007), namely that Richard's final text provides a history or narration of his 

attempts to solve the problem (see below). 

Figure 10-14: Richard's final text for Task 1 

23 Actually this diagram is not a square but rather a rectangle. See the 'comments' below. 
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Comments:  

• Multimodal demonstratives: 

It seems that the use of demonstratives may be inevitable in communication, 

especially when considering the different modes. In analysing the communication in 

the previous episode, I want to extend what Rowland (1992) suggested about 

Pointing with Pronouns in which he focused on 'it'. Rowland's 'it' is not accompanied 

by any other sign but 'points' to an entity that has no physical presence in the setting. 

On the other hand, it could be argued that the demonstrative plus the combination of 

diagram and gesture do in some sense point beyond what is already present in the 

setting. 

Rather than describing it as a linguistic pointer which occurs in 'maths talk', I would 

refer to demonstratives, this or that, as multimodal pointers which occur in 

multimodal-mathematical communication when gestures and diagrams are 

considered. The 'this... this ... this' in line 7, for example, refers to a specific entity on 

the diagram using a specific gesture. Moreover, the two 'thats' in line 10 are also 

multimodal pointers, where the reference in each is shown by the accompanied 

modes, the gestural and the diagrammatic. It seems that the entities being discussed 

have a significant role in communication, where geometric entities are the focus of 

the discussion which have physical presence on papers as diagrams, unlike the 

entities in Rowland's examples, which have no physical presence. This presence 

makes the communicative act meaningful when a reference is made to any part of 

that diagram or gesture, such as by saying 'this' or 'that'. 

Rowland argues that the use of demonstratives contributes to the efficiency of 

communication as a shortcut or linguistic economy, facilitating the flow of 

communication rather than 'interrupting' the idea of the speaker, especially when the 

idea is still 'unseen', as in 'that' in line 10 where the square or the triangle are not 

named yet. The unnamed concepts or diagrams may be another interpretation for the 

use of demonstratives. If students do not know the name of a diagram, they may use 

this or that to refer to it. The ability to consider the different modes of 

communication together, I argue, is another advantage of the multimodal analysis 

that I discuss in the next point. 
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Line 8, we make a 
square 

(10@0.56) 	and 

then we take away 

how many metres 

and centimetres ... 

• Students' meaning-making: 

The multimodal analysis may offer a chance to 'uncover' or interpret some of 

students' understandings about some concepts (such as area, circumference, etc.) and 

what learning difficulties students might have. 

Although his solution is not what the problem asks for and even has mistakes in 

finding the area of trapezium, the calculations that Richard wrote in his final text also 

contain traces of his process in solving the problem, which is synchronised with his 

gestures. Instead of writing his solution as: The required area = the area of the 

rectangle (trapezium and the added triangle) — the area of the added triangle, or 

simply finding the area of the trapezium, he divided the trapezium into two 

rectangles (he called the smallest a 'square' in his gesture at line 8) and found the area 

of each (Figure 10-15), which recalls the gestures he made (lines 8 & 10@0.54). 

Then he added the two areas, subtracted the area of the added triangle and claimed 

that the result is the required area. 

The area of the greater rectangle is supposed to be 160, and the area of the smaller 

one (which Richard called a square) is supposed to be 80. The fact that he repeated 

them suggests an alternative conception or understanding of the concept of area and 

circumference. Later, he subtracted the area of the triangle: 

Figure 10-15: Calculating the required area and the connected gestures 
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• Multimodal transcripts: 

'Transcription is a theory-laden practice' (Kress et al., 2001, p. 33). The way in which 

a transcript is organised is theoretically motivated. To put the modes in a table next 

to each other rather than in a hierarchical order, for example, may indicate that they 

occur together. There are some researchers who tried to develop accounts for 

multimodal transcription (e.g. Baldry, 2004; Jewitt, 2006; Kress et al., 2001; Morgan 

& Alshwaikh, 2009) and answers to the questions that arise, such as what to put first 

or second and how many details to include, answers which are influenced by the 

interest of the transcribers, the research concern or/and the focus of analysis. 

I have tried to emphasise the nature of information that I was able to add to the 

analysis by taking into account both the gestural and the diagrammatic modes 

separately as well as the interaction between them. While this attempt was complex 

and driven by the aim of my research, the multimodal transcript offers a thick 

descriptive tool (Jewitt, 2006; Pratt, 1998) for the analysis. 

5. 	Summary 

The aim of this chapter was to analyse mathematical communication and 

representation taking into consideration three modes; verbal, diagrammatic and 

gestural. To do so, I presented a preliminary framework to analyse, ideationally, the 

gestures used by students while solving mathematical problems. This framework 

needs, however, more development, in order to take account of the interpersonal and 

the textual functions of gestures. Then I demonstrated the multimodal analysis by 

selecting an episode from the set of data collected for the current study. 

That analysis aimed to show the applicability of the suggested frameworks (the 

diagrammatic and the gestural) and, moreover, to show that the consideration of 

additional modes of representation and communication would give a more detailed 

picture of students' meaning-making processes in learning mathematics. The 

illustrative example presented demonstrates how the multimodal analysis offers a 

deep look into meaning making processes that would not available by conducting the 

'traditional' form of analysis. This last claim needs further exploration, which is 

beyond the scope of the current study. The implications of the suggested frameworks 

and the multimodal analysis will be the focus of the next chapter. 
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11 Conclusions and implications of the study 

1. Plan of the chapter: 

My plan, in this final chapter, is to present the main findings of the study and to 

discuss its implications and its limitations. I will first present findings from the 

review of the literature and then from the study itself, before addressing some of the 

limitations of the current study and pointing out what it has not achieved. Then, I will 

discuss the implications of the study on three levels: its theoretical implications, its 

contribution to research and its implications for practice and for the development of 

practice. On this third level, I suggest some possibilities for use of the suggested 

frameworks. I finish this chapter by offering suggestions for future research. 

2. Theoretical research 

Most mathematicians exhibit prejudice against the use of mathematical (geometric) 

diagrams. The main arguments which back this stance are: that diagrams are 

unreliable and lack rigour; that the potential for misuse, for example, by inferring 

non-proven statements, is great, because diagrams by their nature may 'deceive the 

senses' and are limited in representing knowledge; and that diagrams are of an 

informal and personal nature (Dreyfus, 1991; Netz, 1999; Shin, 1994). Consequently, 

diagrams are not considered to represent the 'real' mathematics (see Chapter 3 for 

more details). 

Diagrams, however, throughout the history of the development of mathematics, have 

not always been disfavoured. A study of the mathematics of the Old Babylonian and 

Egyptian civilisations reveals that diagrams were a significant element of 

mathematical texts (Robson, 2008b). Moreover, Greek mathematicians gave such 

considerable attention to diagrams that at some point the diagram was the 'hallmark' 

of mathematics (Netz, 1999). Diagrams played a critical role in shaping Greek 

mathematics and, consequently, the most distinguished notion in mathematics — the 

proof. It was only in the 17th  century that mathematicians, influenced by the work of 

Descartes, began avoiding the use of diagrams and developing the current form of 

mathematics as 'abstract, formal, impersonal and symbolic' (Morgan, 2001). 
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The avoidance of diagrams finds its way into different mathematics contexts, 

including didactic ones in which students became reluctant to use diagrams or visual 

representations in their solutions, as shown by some studies (e.g. Dreyfus, 1991). 

Recently, and thanks to the development of the discipline of mathematics education, 

the 'stereotype' of mathematics as a symbolic and formal field has been challenged, 

mainly by scholars researching the language of (and in) mathematics and of teaching 

and learning mathematics. As researchers began to explore the interaction between 

sociolinguistics (Halliday, 1978) and mathematics education (Austin & Howson, 

1979; Pimm, 1987), they began to consider a more detailed analysis of mathematical 

texts, in which the notion of communication was central. 

A major development in this process of placing communication at the centre of 

research into mathematics education took place when scholars, especially Morgan 

(1995; 1996a; 1996b), adopted the Hallidayan SFL approach in their work on 

teaching and learning mathematics (see a review of Morgan's work in Pimm & 

Wagner, 2003). Seeing mathematics as a social semiotic practice is the main 

assumption which underlies Morgan's work. She offers a linguistic approach: 

to provide a means of identifying and interpreting features of the 
[written mathematical] texts that are likely to be of significance to the 
mathematical and social meanings constructed in the interaction 
between writers/speakers and readers/listeners. (Morgan, 2006, p. 226) 

As social semiotics developed, it addressed the multimodal characteristics of the 

interaction/communication between writers/speakers and readers/listeners, the 

participants in the communicative acts. Social semioticians, especially Kress and his 

colleagues (Kress & Van Leeuwen, 2001, 2006), began to challenge the dominance 

of language as the main mode of communication and extended social semiotic theory 

to include other modes of communication. This has led to the emergence of the social 

semiotics multimodality approach. Multimodality, briefly, gives equal attention to 

other modes of communication and representation such as images and gestures. 

The emergence of multimodality created a need to extend Morgan's work. 

Mathematics discourse is multimodal where different modes of communication 

coexist, (Morgan, 2006; O'Halloran, 2005), and, thus, it has to consider not only the 

language (written or spoken) but also the other modes such as diagrams and gestures. 

However, descriptive tools for such modes are not yet fully developed (Morgan, 

2006). This study set out to offer such tools. 

241 



3. 	The current study 

Having explored the relevant theoretical research, the aim of the current study is to 

construct an analytic framework for the diagrammatic mode that will offer a means 

to interpret and read geometric diagrams, in order to broaden our understanding of 

the role of mathematical visual representations in the construction of mathematical 

meaning. To a lesser extent, this study also addressed the gestural modes of 

representation and communication. 

Therefore, the focus of the current study centred on the mathematical texts collected 

for the purpose of the study, mainly students' texts produced in response to two 

mathematical tasks and also other available texts such as textbooks and diagrams 

from the Internet. In order to build the framework, I developed analytic and 

interpretative tools to identify significant features of the mathematical diagrams and 

gestures. These tools are based on the visual analysis derived from Kress and Van 

Leeuwen's (2006) visual grammar and Morgan's linguistic approach to mathematical 

texts (Morgan, 1996b). Both of these approaches adopt Halliday's systemic 

functional linguistics (SFL) which offers a grammar for reading the relationship 

between language and social structure (Halliday & Hasan, 1985) and argues that any 

human act fulfils three essential functions: ideational, interpersonal and textual. 

In order to achieve the aim of the study, an iterative design (Pratt, 1998) 

methodology was used. Iterative design is a process of investigation, construction, 

validation and refinement. In short, I started with a very general framework based on 

the literature, applied it to mathematical texts from the collected data, tested it to get 

feedback, refined the version and then suggested a 'new' version. The new version, in 

turn, went through the same method of application and feedback, and so on. In total, 

I have suggested three versions of the diagrammatic framework. An 'at a glance' 

version of the diagrammatic framework is presented in Table 11-1 (see Chapter 5 for 

more details). Chapter 4 provides more details about the methodology of the study, 

including the journey of the development of the framework. 
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Type of 
meaning 

Type of process/visual 
mark 

Types of potential 
mathematical meaning Diagram type 

• Transformation 
• Measurement 
• Constructing perpendicular or 

parallel line  
• Reflection 
• Proof 
• Construction 
• Relationships between shapes 

(e.g. 'squares are rhombuses')  
• Identify objects or refer to size 

relationships. 
• Arrows or words: attributive 

(parts of diagram); or 
identifying (refer to whole 
diagram)  

• Examples: 
Line&Line (perpendicular, 
parallel), Shape&Shape 
(congruent, similar) 

•-• 

c-zi 

0

E
463 

cd 

0 
ao 

E 

z 

Narrative diagram: 
Distinguished by the 
presence of temporal 
factors 

Conceptual 
diagram: 
(Relationships 
between objects) 
Distinguished by the 
absence of temporal 
factor 

• Demand diagrams 
(action required)  

• Offer diagrams (no 
action required) 

• Neat vs. rough diagrams 

• Labels (general, specific) 

• Colour, arrows, words 

• Diagrammatic modality 
markers (5 markers/cues) 

• Labels: Question mark, 
unknown quantity 

• Information about objects 
(properties and relationships). 

• Neat: formal & distance 
• Rough: close personal distance 
• Labels, colour, arrows, words: 

authority 
• Examples: abstract, naturalistic 

& contextual diagrams 

• Left-to-right, top-to-
bottom, centre and 
margin 

• Importance and attention 
• Frame: disconnected 
• No frame: connected, unit 

• Thematic progression (e.g. 
deductive argument) 

• Expression of reasoning (e.g. 
cause-result) 

• Overall structure of the text 
(e.g. proof) 

Information value 

Salience 

Framing 

• Arrowed 

• Dotted 

• Shaded 
• Sequence of diagrams 
• Construction 
• Classificational ('of the 

same kind' relation) 
• Identifying 
o Indexical processes 

(letters, arrows) 
o Symbolic processes 

(words) 

• Spatial 
o Positional (10 relations) 
o Size (7 relations) 

Contact 

(Social) Distance 
(Relationships 
between producer and 
viewer of diagram) 

Modality 

Table 11-1: An overview of the suggested framework for reading geometric diagrams 

The data needed for the iterative design were of three types: (a) data for validation of 

the framework such as diagrams from textbooks, students' mathematical texts and 

Internet, (b) data for understanding the context of situation and the context of culture, 

such as observation and field notes in the classroom, and (c) data for generalising the 
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framework, which was achieved by the large number of texts and by applying the 

study in two different cultures and languages, namely the UK and the Occupied 

Palestinian Territories (OPT). 

The development of the diagrammatic framework was informed by all these sources 

of data together with the literature and the two different contexts and cultures. The 

main aims behind these different types of data were the validation and the 

generalisation of the framework. 

Since the aim and focus of this study were the intended framework itself and its 

development, the framework needed to be validated with texts rather than with 

students. In order to do that, the suggested framework was applied to various 

diagrams in textbooks and in the empirical data and diagrams available on the 

Internet. The validation process had two main aims: to check the applicability of the 

framework and to get feedback that led to a new refined version of the framework. 

Moreover, three criteria were suggested to validate the framework: accuracy, 

delicacy and inclusiveness. The framework was considered to be accurate if there 

was a clear match between the suggested categories in the framework and their 

realisations in the diagram. A delicate framework is one that would be able to 

distinguish between different items of the same category. Inclusiveness means that 

the framework can address 'all' diagrams across the Euclidian geometry school. 

In this study, I adopt the reconceptualisation of the principle of 'generalisation' 

offered by Pratt (1998) and Schofield (2007) to mean 'fittingness' or 'natural 

generalisation', where a 'thick description' is provided, and the researcher can decide 

intuitively whether the data is generalisable or not based on the research aims, 

methodology and context. The framework met these criteria. Moreover, the 

application of the suggested framework in different situations/contexts, by 

conducting the study in different classes and schools in two different languages and 

cultures, English in the UK and Arabic in the OPT, contributed to the generalisability 

of the study. 

3.1 	Mathematics as a social practice concerned with communication 

The theoretical background underpinning this study, which informed the suggested 

frameworks, is that doing mathematics is a social practice (Morgan, 1996b; Pimm, 
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1987). This approach challenges the dominant image of mathematics which 

considers mathematics to be a 'universal' subject concerned with procedures and 

rules. Within this 'traditional' image, diagrams are presented as a means to assist 

problem solving or to clarify the verbal or the symbolic part of the mathematical text. 

The social perspective enabled me to make use of the SFL approach toward the 

diagrammatic mode (and the gestural as well). In other words, the diagrammatic 

framework presupposes that there is a relationship between the structure of diagrams 

and social structure or human experience. 

Adopting the Hallidayan SFL, the multimodality approach (Kress & Van Leeuwen, 

2006) and Morgan's linguistic approach to mathematical texts (Morgan, 1996b) 

offered together a means to construct the types of meanings of the structure of the 

diagrams and, moreover, the possible mathematical meaning. In other words, these 

two approaches enabled me to look at the way that the picture of the mathematical 

activity is presented in mathematical diagrams (and gestures), the social relationship 

between the producer of the diagram and the reader/viewer is constructed, and the 

elements of the text are arranged (see Table 11-1). 

3.1.1 The structure of diagrams and the social structure 

The picture of mathematical activity:  The development of the framework of the 

diagrammatic mode revealed that the use of geometric diagrams is consistent with 

the philosophical tension between divergent ways of looking at mathematics — as a 

process of doing versus a set of concepts — and the role of human beings in the 

construction of mathematics (see the discussion about this issue in, for example, 

Solomon & O'Neill (1998) and Morgan (2001)). As a result, I have distinguished 

between two structures of geometric diagrams: narrative and conceptual. 

Narrative diagrams tell a story that indicates what kind of mathematical activity is 

going on (measurement or proof, for instance) and how it proceeds. They are 

distinguished by the presence of temporal factors which are represented by visual 

cues or indicators such as arrows, dotted lines, shading, sequence of diagrams and 

construction marks. 

Conceptual diagrams present mathematical objects in timeless essence. They are 

distinguished by the absence of temporality. The suggested framework offers details 
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about the relational processes of conceptual diagrams such as classificational 

processes, identifying processes (indexical and symbolic) and spatial relations 

(position and size). In other words, these different subtypes of conceptual diagrams 

can be distinguished according to the relations between the geometric objects 

presented in the diagrams. 

The role of human beings in the construction of mathematics has been discussed in 

Chapter 6 of this study. Historically, the image of human beings and traces of their 

physical contexts have been removed from mathematical texts. This is related to the 

construction of the hitherto attitude towards mathematics as 'objective' knowledge 

that people (mathematicians) discover. Again, the suggested framework claims that 

although mathematicians 'succeeded' in concealing the role of human beings in the 

construction of mathematics, narrative diagrams play a significant role in revealing 

the 'humanistic' or 'subjective' origin, because of the temporality present in these 

diagrams. 

The social relationship between the author of the text and the reader/viewer: 

A social relationship is constructed between the author and the viewer, and it can be 

analysed via different indicators, namely contact, (social) distance, and modality. 

The framework offers an analytic tool to describe the contact between the author and 

the viewer of a diagram. It distinguishes between demand and offer diagrams and 

explores contact through visual indicators such as labels, variable names and colour 

in diagrams, which play a similar role as the gaze plays in images (Kress & Van 

Leeuwen, 2006). 

Demand diagrams ask for something to be done by the viewer. A direct demand can 

be realised by the presence of a question mark demanding a solution or asking the 

viewer to find the value of the marked part, for example. Indirect demands have 

visual indicators such as unknown quantities or variables (letters or numbers) asking 

for the value of a specified side, angle or area. Offer diagrams offer information to 

the viewer about geometric objects (properties and relationships between them) 

without asking that any action be taken. The visual indicators for offer diagrams are 

labels, colour, arrows and words. 
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The social distance constructed between the author and the viewer is realised 

through the neatness aspect of diagrams (neat diagrams vs. rough diagrams) and 

labels, colour, arrows and words. While a neat diagram 'indicates that the text is 

formal and that there is some distance in the relationship between the author and the 

reader' (Morgan, 1996b, p. 91), rough diagrams suggest a close personal distance, an 

intimate relationship between the author and the viewer. 

Modality refers to how reality and truth are represented in communication, or, in 

other words, what authors would use to show the degree of certainty and truth of 

their statements or propositions about the world. I have identified five diagrammatic 

modality markers such as abstractness of diagrams, naturalistic or contextual 

diagrams, labelled diagrams, additional information in diagrams, and neatness of 

diagrams. 

The arrangement of the text: 

Kress & Van Leeuwen (2006) argued that the value of the information, salience, and 

framing are three elements in the arrangement of a text which contribute to its 

meaning and coherence. In other words, the position that an element occupies in the 

'visual space' offers a meaning potential. Following this stance, the suggested 

framework provides an analytic tool to describe the components of the whole 

mathematical text, including the way in which its elements (verbal and visual) are 

organised and the relationship between them. 

The information value of the horizontal structure (Given and New) and the vertical 

structure (Ideal and Real), as well as placing information in the centre or margin of 

mathematical texts, were discussed fully in Chapter 9 using Morgan's linguistic 

approach (Morgan, 1996b). When analysing a mathematical text, there are two levels 

at which to view the text: internal and external. The internal level addresses the 

internal features of the text: the theme and the way in which reasoning is constructed. 

The external level looks at the structure of the text as a whole. 

The analysis of the textual meaning provides a means to describe and interpret the 

practice in mathematical texts. For example, analysis of some texts showed that the 

vertical structure is highly regarded in mathematics, where the theoretical part will be 
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idealised and located in the upper section, while the real part, in contrast, will be 

introduced at the lower section of the text. 

An examination of the whole text must incorporate its verbal mode (if any). I 

addressed the relationship between word and image based on the work of Halliday 

(1985) and Barthes, as discussed by Van Leeuwen (2005) and Kress & Van Leeuwen 

(2006). I identified two such types of relationships and their subtypes: elaboration, 

whose subtypes include specification and explanation; and extension, whose 

subtypes include similarity, contrast and complement. The significance of these types 

is the means they offer to describe and analyse multimodal texts that include, at least, 

the verbal and the diagrammatic modes. 

3.2 	Mathematical Arabic and English texts. 

The study used Arabic data either from students' texts produced in response to the 

tasks of the study or from the Palestinian school mathematics textbook. While I am 

neither a linguist nor an expert in either of the two languages, I have a sufficient 

user's knowledge of Arabic, being a native speaker, and good use of English. There 

are similarities between the structures of the two languages. For example, the verb in 

both languages refers to the deed, the action. Actually the word that stands for the 

verb in Arabic, fel (3—A), is used to mean 'to act'. In a broader sense, the clause in 

Arabic starts either with the verb or with the noun, which means that the theme may 

vary according to the interest of the sayer/writer, as in English. However, the two 

languages also differ, for example regarding the arrangement of words and the 

direction of writing and reading. A standard Arabic clause would start with the verb 

rather than the noun, unlike in English. 

A strong evidence of the power (robustness issue discussed in Chapter 4) of the 

suggested diagrammatic framework was its ability to distinguish between different 

kinds of texts, which has significance beyond the texts themselves. The way in which 

mathematics is perceived or constructed in an educational system (culture) may be 

realised through the order of the argument and the way in which a text proceeds. The 

Palestinian participant students tend to present their texts as products in cause-result 

order, with one diagram and few words. In contrast, the English students presented 

their texts as investigation or trial and error processes with more diagrams and 
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words. Can we read 'something' about the mathematics in the OPT or in the UK, 

educationally and culturally? As I mentioned, the English educational system, for the 

past 20 years, has encouraged an investigation attitude towards mathematics, while 

for historical reasons that I have described, the view toward mathematics in the 

Palestinian educational system is isolated from the living reality in the OPT, and 

Palestinian mathematics textbooks are content-focused. Unlike in the UK, in the 

OPT, mathematics is still perceived as a formal, definite, impersonal and symbolic 

subject. 

Finally, we should be careful not to draw too many conclusions from the study of the 

cultural differences, because the study was not about the way Palestinian and British 

students present their arguments, and the generalisability of the above-mentioned 

observation has not been established. However, the potential cultural differences 

between learning mathematics in the UK and the OPT warrant further investigation, 

and the analytic framework suggested by this study provides a tool with which to 

conduct such investigation. 

3.3 	The ideational meaning of gestures: 

As a result of the iterative watching of the video records of students' communication 

about the two geometric tasks of this study and the observation of their extensive use 

of gestures, I have developed a preliminary analytic framework for gestures using a 

social semiotics approach, as I did with the diagrammatic mode. That framework, 

however, is initial and limited to analysing the ideational meaning of gestures. Table 

11-2 provides a 'glance' at that framework. 

I have distinguished between narrative gestures and conceptual gestures. Narrative 

gestures are distinguished by the presence of the movement of fingers or hands (or 

artefacts). Similar to narrative diagrams, they refer to a mathematical activity that is 

taking place. I have identified three types of processes based on the activity they 

indicate: drawing, symbolic and modelling. 

Conceptual gestures are distinguished by lack of motion. Like conceptual diagrams, 

they refer to pre-existing mathematical objects. I have identified three types of 

processes based on the concept they indicate: pointing/indexical (referring to a part 
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of or the whole diagram), bounding (referring to a fixed length) and still-modelling 

(referring to modelling a diagram by one or two hands). 

While the suggested framework is preliminary and nascent, this distinction between 

narrative and conceptual is consistent with the suggested framework for the 

diagrammatic mode, and it may contribute to the coherency of the analysis of the 

multimodal communication. 

Table 11-2: An overview of the suggested framework for reading ideational meaning in gestures 

Gesture type Type of process 
Types of potential 

 mathematical meaning 

Narrative gesture: 
Dynamic: ongoing action 

• Drawing/sliding • Measurement 

• Symbolic 
• Property (parallelism, 

perpendicular) 
• Modelling • Drawing a diagram 

Conceptual gesture 
Static: no action 

• Pointing • Part of or the whole diagram 
• Bounding • Length or distance 
• Still-modelling • Diagram 

3.4 	Multimodal analysis: 

Having suggested two frameworks to read diagrams and gesture, I analysed a very 

short episode of participant students as an illustrative example for a possible 

multimodal analysis taking into consideration three modes of communication: verbal, 

diagrammatic and gestural. 

The aim of the multimodal analysis was to show the applicability of the suggested 

frameworks (the diagrammatic and the gestural) and, moreover, to show that the 

consideration of more modes of representation and communication would give a 

richer picture of students' meaning-making processes in learning mathematics. 

The illustrative example presented demonstrates how the multimodal analysis offers 

an in-depth analysis of meaning making processes that would not be available by 

doing the 'traditional' form of analysis. The latter issue, however, warrants further 

exploration, which is not within the scope of the current study. 
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4. 	Limitations of the current study 

The aim of this study was to develop a framework to analyse the diagrammatic mode 

in mathematics discourse and, to a lesser extent, the gestural mode. The study was 

mostly dedicated to the former. However, I wish to highlight three different aspects 

of the limitations of this study: 

• Aspects of the framework(s) that I have worked on and included in my analysis 

but that still require further development. 

• The generalisability of the framework beyond geometry 

• Issues that arose which are outside the scope of the original aims of the study but 

which could be explored by an extension of the methodology. 

	

4.1 	Aspects of the framework(s) requiring further development 

During the development of a framework to analyse the role of diagram in the 

construction of mathematical meaning, the interpersonal meaning was particularly 

difficult to construct, especially the social relationship between the producer of the 

diagram and the viewer. One reason is that the adopted approach, the visual grammar 

of Kress & Van Leeuwen (2006), focuses on images, not abstract diagrams. Many of 

the visual indicators suggested by that approach, such as the use of physical distance 

as an expression of social distance, were not relevant to geometric diagrams. While 

the neatness and roughness elements identified by the visual grammar approach offer 

good tools for analysing diagrams, the other visual indictors such as labels, colour, 

arrows and words require additional refinement in order to be more effectively 

applied to diagrams. 

The significance of labels and colour was considered in the analysis of all three 

meanings: the ideational meaning in conceptual diagrams, the interpersonal meaning, 

and the textual meaning as expressed by salience and framing. While this issue needs 

more exploration, in thinking about it, I do not see it as a deficit in the framework. 

The major visual indicators in geometric diagrams may be limited in terms of their 

types (labels, words, arrows, colours and combinations between them) and, therefore, 

it may make sense to consider them in the analysis of all kinds of meanings. What 
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does need more thinking is the mathematical meaning potential for the different uses 

of these indicators. 

Another aspect which the current study aimed to achieve, though to a lesser extent 

than was the case for the diagrammatic framework, was a framework to analyse the 

role of gestures. The preliminary suggested gestural framework clearly requires more 

investigation. First, the suggested analysis of the ideational meaning presented in this 

thesis should be developed. Second, the gestural framework should be developed for 

the other meanings, interpersonal and textual. There are, however, studies which may 

assist in that development, most prominently the work of Luis Radford (Radford, 

2003, 2009; Radford et al., 2007), among others. 

	

4.2 	Generalisability of the framework beyond geometry 

There were different sources of data for this study (textbooks, Internet, students' 

written texts) which enabled me to generalise the framework to geometric diagrams 

within Euclidean (2D) geometry. While most of the suggested features may be 

generalised to 3D geometry, the ability to generalise the suggested framework 

beyond geometry requires more work. One aspect of the framework, for example, 

which cannot be generalised to 3D geometry, is construction diagrams, which are 

limited to 2D diagrams. This issue, nevertheless, does not jeopardise the robustness 

of the framework. I have pointed in different places (mainly in Chapter 4 and in the 

current chapter) to evidence of the robustness of the framework. 

A similar warning should be issued about the gestural framework, to which I add the 

comment that the gathered data were not intended to be used for consideration of the 

gestural mode of communication. It was only after observing the students' heavy use 

of gestures during their communication in solving the tasks of the study that the 

significance of the gestural mode became apparent to me. 

	

4.3 	Issues outside the scope of the study 

In addition to the large number (around 350) of students' written texts which 

informed the development of the diagrammatic framework, the Internet was another 

way to look at different geometrical diagrams, which include what I term 'dynamic 
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diagrams on the screen'. By dynamic, I mean diagrams that move, in the physical 

sense. This kind of diagram was beyond the scope of the current study. In other 

words, the suggested framework for the diagrammatic mode is applicable to 2D 

geometric diagrams whether they are drawn in print or on the screen, as long as these 

diagrams are not in motion. While moving diagrams call for further research and 

investigation, such research and investigation could be facilitated by extending the 

methodology of developing the framework. 

	

5. 	Implications 

The current study offers two suggested frameworks to describe and analyse the role 

of diagrams and gestures in mathematical communication and representation. It 

furthermore suggests a multimodal analysis approach to look at ensemble modes of 

communication and representation (verbal, diagrammatic and gestural) 

simultaneously. These contributions have three different implications: theoretical 

implications, possible contribution to research (as a tool for analysis and 

interpretation) and possible contribution to practice and to the development of 

practice (for teachers and textbook writers). 

	

5.1 	Theoretical implications 

Halliday & Hasan (1985) argue that language is a social semiotic system of meaning, 

and together with other systems of meaning, it constitutes human culture. This study 

suggests that diagrams, as visual representations, are part of these systems of 

meaning. In other words, producing diagrams is a social activity 'similar' to writing 

or gesturing, though offering different possible meanings. 

Within the diagrammatic mode, different structures can be distinguished one from 

the other by the element of temporality, the significance of which has been identified 

in this study. Narrative diagrams, as suggested in this study, display temporal 

elements such as dotted lines or arrows, and, in doing so, they tell a story. Stories 

include participants and activities or actions. Participants and activities in 

mathematics should be mathematical! If diagrams have no temporality, they present 

a 'thing' or an 'object' that has no action. This object, in mathematics, should be, 

again, mathematical. 
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In that sense, diagrams are functional. They do something within a context, tell a 

story for example. Moreover, diagrams, as a result of this study, fulfil the three 

metafunctions suggested by the Hallidayan SFL. 

This study is concerned with the relationship between the structure of diagram and 

the social structure. The approach to analysing diagrams and constructing meaning 

starts by looking at visual indicators in diagrams as suggested by this study, 

recognising the structure and, later, deriving potential meaning, considering the 

context in which the diagrams were produced. This analysis provides a powerful tool 

in revealing the role of human beings in doing mathematics in narrative diagrams. I 

would argue that even when mathematicians obscure the human action in 

mathematics, as they often do, they still represent their mathematical activities in the 

diagrams they present, simply because these diagrams are social and cultural 

activities. Sometimes they even 'declare' the presence of activities in diagrams by 

showing some human figures or physical context, as in Figure 6-18. However, they 

sometimes 'succeed' in avoiding 'leaving' any traces or representations of these 

activities and, hence, they present mathematical objects in conceptual diagrams. 

A related aspect is the pedagogical consequences of that development. I find myself 

asking questions which may reveal the way people construct mathematics and hence 

the social nature of mathematics. For example, why was Descartes' approach so 

successful in changing the way mathematicians viewed the use of diagrams in 

geometry? How did Descartes' approach influence other areas of mathematics? How 

has the change in the way diagrams are viewed led to the construction of the current 

dominant view of mathematics? While it is true that these questions belong to the 

field of philosophy of mathematics, the answers directly affect the way we conceive 

of mathematics, which is an area of research in mathematics education worthy of 

investigation. In other words, the question of how the theoretical approaches to 

mathematics adopted by mathematicians find their way to school mathematics is 

worth exploring. 

What is mathematical literacy? 

The development of the frameworks and the multimodal analysis raise a challenge 

about literacy in mathematics for mathematics education. The challenge is to answer 
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the question, what does it mean to be literate in mathematics? This is a twofold 

challenge for mathematics education; first, literacy, traditionally, means reading and 

writing, for which the page is the dominant medium, but now, with the development 

of technology, mathematics teaching and learning takes place on the screen, not just 

on the page. Second, mathematics is an area which is shaped and distinguished by 

the use of symbols and 'very little writing' (Morgan, 1995). 

These challenges, however, have been tackled from different theoretical perspectives 

especially from the sociolinguistic, social semiotic and multimodality approaches. 

The relationship between writing and learning mathematics, for instance, has been 

the focus of the Writing-to-learn movement as a development of the Writing Across 

the Curriculum approach which spread in the UK and the United States in the 1970s 

and 1980s (Bazerman et al., 2005; Morgan, 1995). Bazerman et al. (2005) review the 

state-of-art of the Writing-to-learn approach in mathematics among many other 

disciplines. Most of the studies about Writing-to-learn mathematics, including 

Emig's work in the 1970s and Connolly & Vilardi's work in 1989 — Writing to learn 

mathematics and science — show to some extent that writing support learning. 

On the first issue, the relationship between language and literacy, I note that the view 

of literacy as just reading and writing has been challenged. Street (2005), for 

example, argues that there is a need to extend the traditional perspective which 

reduces language and literacy to rules and products in order to see them as processes 

and social practices. He also calls for considering other modes of communication 

such as images and gestures. This call has been the focus of the work of scholars 

adopting the multimodality approach, which argues that the notion of literacy as 

reading and writing has changed as a result of the shift from page to screen and that 

literacy is no longer just a matter of language but also of different modes of 

communication which take place simultaneously, such as images and gestures 

(Kress, 2003). 

In the current digital era, reading and writing take on new meanings and new 

'shapes'. For example, digital books, web pages and chat rooms impose new ways of 

reading, writing and learning. A substantial body of research has adopted a variety of 

views of the relationship between technology and learning (mathematics), but more 

exploration is still needed to consider different modes of communication, such as 

visual communication, gestures and gaze (Jewitt, 2003a, 2003b, 2006; Kress, 2003). 
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For instance, visual representations as a mode of communication need to be read in a 

'different' way. Reading Images (Kress & Van Leeuwen, 2006), for example, offers 

one way to do so. In other words, the new developments make it necessary to explore 

further how to read visual representations (as a mode of communication either in 

digital or non-digital forms) and their relationship to the learning process. 

While there is a recognition that mathematics textbooks use images, pictures, graphs 

and diagrams to offer alternative ways to communicate mathematical concepts 

(Campbell, 1981; Shuard & Rothery, 1984) and that reading visual representations 

inside mathematical texts is as important as reading and writing the natural language 

itself, especially when teaching young children (e.g. Clements, 1999; Noss & 

Hoyles, 1996), the dominant attitude toward visual representations is that they are 

necessary to enable students 'to get the full message' (Shuard & Rothery, 1984). 

Morgan (1995, p. 222) challenges the notion of 'getting' the full message or meaning 

intended by the author, arguing that a 'reader, rather than gaining direct access to the 

author's meaning, constructs her own meaning from the text.' 

5.2 	Contribution to research: 

The suggested diagrammatic (and gestural) framework offers a tool for analysis and 

interpretation of mathematical diagrams. One of the justifications for focusing on 

diagrams in this research is that some studies reported reluctance among students to 

use visual representation in problem solving (Eisenberg & Dreyfus, 1991). Eisenberg 

and Dreyfus (1991) provided a cognitive interpretation for that reluctance, noting 

that 'thinking visually makes higher cognitive demands than thinking algorithmically' 

(p. 25). The suggested framework, however, offers a different interpretation, a social 

one, derived, for instance, by analysing the way diagrams are represented in 

textbooks and in teachers' practices. We can imagine what conceptions about 

diagrams or even mathematics students might construct if they would learn, as some 

already have, from a textbook produced by Dieudonne in the 'new maths' period in 

France (as quoted in Mesquita (1998, p. 184)): 

I had allowed myself not to include any figure in the text, perhaps only 
to see that we can entirely dispense with them very well; but this is an 
omission, and my readers will fill in the gap of my text. 
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Even if textbooks include diagrams, their use of and attitude toward diagrams have 

an effect on students' approach to mathematics. The influence of mathematics 

textbooks on positioning the mathematics learner has been the focus of Herbel-

Eisenmann & Wagner (2007) who argue that obscuring human agency, 

nominalisation for example, in doing mathematics presents mathematical activity as 

if it occurs of its own accord. This issue has also been discussed in Morgan's work 

(e.g. Morgan, 1996b). Similarly, I would argue, the presentation of diagrams without 

any trace of human agency may contribute to the notion that mathematics is an 

autonomous system which, in turn, serves the absolutist perspective that mathematics 

exists somewhere, and students need to discover it. In order to conceive of 

mathematics as a social practice, there is a need to change that representation in class 

practice (learning and teaching) and in the textbooks. 

The multimodal analysis used in the current study may contribute to the study of the 

way in which mathematics is constructed in schools. Mathematics is a social practice 

shaped by the different modes of communication and representation, and, thus, this 

analysis calls attention to the need to take these modes into consideration. The 

analysis of the role of the diagrammatic and the gestural modes may contribute to the 

study of the construction of school mathematics. The ideational meaning in the 

diagrammatic mode, for example, offers a tool for analysing the image of 

mathematical activities presented in mathematics textbooks. This analysis is 

strengthened by the other analysis offered by the gestural mode suggested here and 

the verbal mode suggested by Morgan (1995). Furthermore, the multimodal analysis 

is additional evidence of the robustness of the diagrammatic framework, as discussed 

in Chapter 4. 

5.3 	Implications for practice and the development of practice 

The way in which textbooks and teachers make use of diagrams may contribute to a 

better understanding of the way in which students make their own mathematical 

meaning while solving mathematical problems. The framework suggested for 

reading diagrams offers textbook writers/designers and teachers ways of reviewing 

and planning their work when they wish students to encounter particular kinds of 

mathematical meanings. 
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One of the main contributions of the framework, I think, is that it draws the attention 

of these groups to the need for developing different views of mathematics. Rather 

than presenting a limited variety of diagrams in textbooks, the framework 

distinguishes between narrative and conceptual diagrams and, thus, encourages a 

richer image of mathematics to be made available for students. Therefore, textbook 

writers/designers may need to review the types of diagrams presented in textbooks to 

encourage students to engage with different kinds of mathematical meanings. 

I would also recommend that mathematics teachers use a variety of diagrams in their 

practice and that they encourage students to do so in their solutions. The framework 

suggests planning for the use of diagrams so that the students will be aware of the 

implications of the different diagrams with which they interact. 

Similarly, the suggested gestural framework calls attention to the significance of the 

gestures used by teachers or represented in textbooks. The framework distinguishes 

between narrative and conceptual gestures, each of which offers different views 

about mathematics with which teachers and textbook writer/designers may wish to 

familiarise students. 

6. 	Suggestions for future research 

While developing the diagrammatic mode made use of a large number of geometric 

diagrams, the scope of the study has been limited to 2D geometry in order to build 

the case about the diagrammatic mode of communication and the need for 

considering it in mathematics discourse. Thus extension of the suggested 

diagrammatic mode needs careful further investigation. However, I think that there 

are some features that may be considered to be essential in developing a general 

framework for mathematical (beyond geometrical) diagrams. I would start with the 

temporality issue as a distinguishing feature between narrative and conceptual 

structures of diagrams. The dotted line feature is also another element that would 

probably be relevant in other mathematical texts. Moreover, some of the considered 

features are related to a specific context such as the construction structure. 

An interesting aspect that this study did not set out to address but has nonetheless 

explored is the historic development of the use of diagrams within mathematics 

discourse. Although there are considerable and important studies that have looked at 
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diagrams within the history of mathematics such as those by Netz (1999), O'Halloran 

(2005) and Robson (2008b), still the 'full history of diagrams (...) is far from being 

written yet' as De Young commented (personal communication, November 26, 

2008). A specific question that arises, after I made a short historic presentation of the 

use of diagrams in the history of mathematics, is when was the turning point of 

prejudice against the use of diagrams? This question is especially interesting, 

because we know from the literature that diagrams were used throughout the 

different civilisations, such as Old Babylon and Ancient Egypt and Greece. Although 

the current study has indicated that the turning point may have been the 

algebraisation of geometry and the work of Descartes followed by Newton, the 

question requires further investigation. 

One consequence of Descartes's algebraisation is a transition from a geometric mode 

of thinking to an algebraic one (Mancosu, 1996) in which the dominant image of 

mathematics is formal and symbolic. The current study has not investigated algebraic 

notations (symbolism) or the symbolic mode, which have not been fully developed in 

the field of mathematics education. O'Halloran (2005), however, has suggested a 

theoretical framework to read mathematical symbolism and claims that the symbolic 

mode has developed a new and different meaning potential. I want to suggest, 

however, that still there is a need to develop a framework that is consistent with the 

two suggested frameworks here, namely to consider the narrative/conceptual aspect 

of the intended framework. This, I argue, is more consistent with the SFL approach, 

the visual grammar suggested by Kress & Van Leeuwen (2006) and the linguistic 

approach to mathematical texts suggested by Morgan (1996b), all of which aspire to 

a comprehensive framework that takes into consideration the different modes of 

communication and representation. 

The multiple modes of mathematical discourse have been analysed in one of the 

chapters of this thesis (Chapter 10) by providing an illustrative example analysing 

three modes of communication. While I did not initially plan to explore the 

multimodal analysis, during my research, I gained some insights into how it would 

look in mathematical texts. However, the multimodal analysis still needs more 

development, and there is a need for further study of the ensemble modes in the 

representation and communication of mathematics discourse. 
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The two suggested frameworks, finally, together with the multimodal analysis 

method developed in this study, provide a set of tools which deepen and extend our 

understanding of the multimodal nature of mathematical communication in 

mathematics learning and teaching and provide a critical perspective on the way in 

which mathematics is constructed in curriculum and school practice. 
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Figure 5-1 
Diagram a: UK textbook (Allan et al., 2005a, p. 130) 
Diagram b: http://en.wikipedia.org/wiki/Equilateral  triangle 

Figure 5-2 
Diagram a: http://www.mathleague.com/help/geometry/basicterms.htm  (redrawn by 

the author) 
Diagram b: http://www.mathleague.com/help/geometry/angles.htm  (redrawn by the 

author) 
Diagram c: Palestinian textbook, Grade 8 (part 2, p. 36)24  
Diagram d: Year 8, Debbie, typical 

Figure 5-3 
Diagram a: Year 8, Wendy, typical. 
Diagram b: Palestinian textbook, Grade 8 (part 2, p. 42) 

Figure 5-4 
Diagram a: http://vvww.lexington.k12.il  .us/teachers/menata/MATH/geometry/  

trianglesdd.htm  
Diagram b: http://www.mathsisfun.com/quadrilaterals.html   
Diagram c: Year 8, Patricia, unique. 

Figure 6-7 
Diagram a: UK textbook (Allan, Williams, & Perry, 2004, p. 246) 
Diagram b: UK textbook (Allan, Williams, & Perry, 2005b, p. 156) 
Diagram c: UK textbook (Allan et al., 2004, p. 240) 

Figure 6-8 
Diagram a: group's work (Lallie, Miranda & Laurinda), Year 8, typical 
Diagram b: http://www.mathsisfun.comJgeometry/transformations.html  
Diagram c: http ://www. math si s fun. c om/obtuse. html  
Diagram d: http://math.about.com/library/blmoreonangles.htm   

Figure 6-1 0 
Diagram a: Year 9, Hailey (typical) 
Diagram b: http://www.tutorvista.com/math/solve-triangle-transformation  
Diagram c: Palestinian textbook, Grade 8 (part 2, p. 60) 
Diagram d: (Stein, 1999, p. 73) 

24  All the Palestinian textbooks can be viewed and downloaded via: http://www.pcdc.edu.ps/ 
textbooks/index.htm. The number of page(s) refers to the page of the book in the pdf file and not to 
the page of the file itself. 
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Figure 6-11 
Diagram a: UK textbook (Allan et al., 2005a, p. 130) 
Diagram b: http://www.mathsisfun.com/geometry/translation.html  

Figure 6-13 
Diagram a: http://www.mathopenref.com/const306090.html   
Diagram b: http://www.mathopenref  com/constbisectangle.html  
Diagram c: http://www.tutorvista.com/content/math/geometry/simple-construction/  

question-answers.php  
Diagram d: http://wwvv.mathopenref.com/const3pointcircle.html   

Figure 6-19 
Diagram a: http://www.tutorvista.com/topic/trigonometry-angle   
Diagram b: http://www.skwirk.com/p-c  s-12 u-95 t-230 c-770/ angles-of-

elevati on-and-depression/nsw/maths/tri gonometry/appl ications  

Figure 6-20 
Diagram a: Year 9, a draft of a group work (Sandra, Colleen & Lillian) 
Diagram b: Year 9, group's text (Sandra, Colleen & Lillian) 
Diagram c: Year 9, a draft of a group work (Jemma, Jasmine, Helen & Belinda) 
Diagram d: Year 9, Jasmine, typical 

Figure 7-1 
Diagram a: Taken from Stein (1999, p. 73) 
Diagram b: UK textbook (Capewell et al., 2004, p. 57) 

Figure 7-4 
Points: http://www.tutorvista.com/math/solving-basic-geometry-definitions   
Lines & Triangle: http://www.codeproject.com/KB/recipes/Wykobi.aspx   
Angle: http://www.tutorvista.com/math/online-geomentry-tutor  
Plane: http://www.tutornext.com/help/just-plane-geometry-math-homework  

Figure 7-5 
Diagram a: http://kom19.ch/coding/triangle/  
Diagram b: http://commons.wikimedia.org/wiki/  

File:Pythagorean Theorem Proof.png 
Diagram c: http://math4allages.wordpress.com/2010/02/03/pythagorean-theorem/  

Figure 7-6 
Diagram a: http://rchsbowman.wordpress.com/2010/09/23/geometry-notes-exterior- 

angles-of-a-triangle/ 
Diagram b: Palestinian textbook, Grade 7, part 2, p. 59 
Diagram c: http://www.mathsisfun.com/right  angle triangle.html  
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Figure 7-7 
Diagram a: http://vvww.gogeometry.com/geometrv/parallelogram  definition.htm 
Diagram b: http://www.gogeometry.com/problem/  

p221 viviani_theorem equilateral triangle.htm  

Figure 7-8 
Diagram a: Year 7, Stacy, unique 
Diagram b: http://www.gogeometry.com/pythagoras/  

right triangle formulas facts.htm 

Figure 7-9 
Diagram a: http://www.tutorvista.com/math/incenter-theorem  
Diagram b: http://www.mathsisfun.com/geometry/circle.html   

Figure 7-10 
Diagram a: http://www.mathsisfun.com/geometry/polygons.html  
Diagram b: Palestinian textbook 
Diagram c: http://www.mathsisfun.com/angles.html  

Figure 7-12 
Diagram a: Drawn by the author 
Diagram b: http://www.basic-mathematics.com/perimeter-of-a-triangle.html  
Diagram c: http://math.asu.edu/—checkman/F2003/113/formulas.html  

Figure 7-13 
Diagram a: http://facultv.matcmadison.edu/kmirus/textbooks/804380text/  

geometry.html  
Diagram b: http://www.tutorvista.com/math/measurement-of-angle   
Diagram c: http://wwvv.tutorvista.com/topic/3pi-2-radians   

Figure 7-14 
Area of triangle, rectangle & parallelogram: 

http://www.analyzemath.com/Geometry/formulas/   
table formulas geometry.html  

Area of circle: http://qwickstep.com/search/area-of-a-circle-radius.html?p=2  

Figure 7-16 
Special marks: 

Diagram a: http://www.mathsisfun.com/quadrilaterals.html  
Diagram b: http://en.wikipedia.org/wiki/Triangle   
Diagram c: Palestinian textbook, Grade 7 part 2, p. 52 

Letters: 
Diagram a: http://www.basic-mathematics.com/perimeter-of-a-triangle.html   
Diagram b: www.pbs.org/teachers/mathline/concepts/historyandmathematics/  

activityl.shtm  
Diagram c: http://gogeometry.com/problem/   

p433 quadrilateral area measurement ratio similarity.htm 
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Numbers: 
Diagram a: http://www.firehow.com/200911154565/how-to-find-the-area-of-

a-triangle-with-some-examples.html  
Diagram b: Year 9, a draft of a group's work (Sandra, Colleen & Lillian) 
Diagram c: Palestinian textbook, Grade 7 part 2, p. 38 

Figure 7-17 
Diagram a: http://www.mathsisfun.com/quadrilaterals.html  
Diagram b: http://www.crctlessons.com/math-vocabulary.html   
Diagram c: http://www.math.union.edu/—dpvc/math/Pythagorus/welcome.html 

Figure 7-20 
Diagram a: Year 7, Hadley, typical. 
Diagram b: Year 9, a draft of a group's work (Sandra, Colleen & Lillian). 

Figure 7-21 
Diagram a: Grade 8, Sami, typical 
Diagram b: Year 8, Aaron, not common 

Figure 7-24 
Diagram a: Year 9, Carmel, typical 
Diagram b: http://www.mathsisfun.com/geometry/ellipse.html  

Figure 8-2 
Diagram a: Palestinian textbook, Grade 5 (part 2, p. 90) 
Diagram b: http://www.mathleague.com/help/geometry/angles.htm  (redrawn by the 

author) 

Figure 8-4 
Diagram a: http://www.tutorvista.com/topic/pythagorean-theorem-tutor  
Diagram b: http://www.tutorvista.com/topic/geometry-problem-triangle   
Diagram c: http://videowap.tv/pythagorean/  

Figure 8-5 
Diagram a: http://www.tutorvista.com/topic/pythagorean-theorem-tutor  
Diagram b: http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml  
Diagram c: http://www.algebra.com/algebra/homework/Surface-area/Surface-

area.faq.question.197702.html  

Figure 8-7 
Diagram a: http://www.mathsisfun.corn/quadrilaterals.html  
Diagram b: Palestinian textbook, Grade 7 part 2, p. 52 

Figure 8-8 
Diagram a: Palestinian textbook, Grade 8, part 1, p. 49 
Diagram b: http://www.mathsrevision.net/gcse/circle  theorems.php 
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Figure 8-9 
Diagram a: Palestinian textbook, Grade 7 part 2, p. 38 
Diagram b: http://www.bbc.co.uk/schools/ks2bitesize/maths/shape  space/ 

shapes/read2.shtml  
Diagram c: Year 9, group's text (Sandra, Colleen & Lillian), uncommon 

Figure 8-10 
Diagram a: http://www.math.uga.edut—clint/2008/geomF08/similar.htm 
Diagram b: http://www.mathsrevision.net/gcse/circle  theorems.php  
Diagram c: http://a.parsons.edut—lik43/sackboys/?p=208  

Figure 8-11 
Diagram a: http://gogeometry.com/problern/  

p221 viviani theorem equilateral triangle.htm 
Diagram b: https://nrich.maths.org/discus/messages/26/149983.html?1289236077  

Figure 8-12 
Diagram a: Year 8, Group text (no names), common 
Diagram b: Year 8, Group text (Aaron & John), common 
Diagram c: Palestinian textbook, Grade 8 part 1, p. 43 

Figure 8-13 
Diagram a: Year 8, Homer, common 
Diagram b: Year 8, Alden, not common 
Diagram c: http://fastandfuriousfitness.net/forlogo.php?p=irregular-hexagon-area  

Figure 8-14 
Diagram a: http://www.tutorvista.com/topic/find-similar-objects   
Diagram b: http://www.tutorvista.com/topic/types-of-picture-books  

Figure 8-17 
Diagram a: Palestinian textbook, Grade 8 part 1, p. 48 
Diagram b: http://gmatclub.com/forumJtest-52-released-exams-area-of-a-triangle-

88557.html  
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