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ABSTRACT 

The thesis presents a research that focuses on how children's learning processes occur 

when algebra is introduced as a language-in-use. The research incorporates graphic 

calculators as a means for providing children with a computing environment where 

communication is held by using a symbolic language similar in syntax and notation to 

the algebraic code. The use of calculators is shaped by a set of tasks specifically 

designed for this study. The tasks are arranged in order to simulate the social processes 

through which children learn the mother tongue. 

The design of the learning environment is based on Bruner's research on children's 

language acquisition. According to this, the major aim of the study is to investigate the 

ways in which the calculator's symbolic code shapes children's expressions of general 

relationships, and more specifically the kinds of notions and strategies that children 

develop through using calculator language. The study seeks for an explanatory 

framework that might provide a better understanding of the potential of technological 

resources in the teaching of algebra. 

The study drew promising results that provide evidence for an alternative approach to 

teaching algebra. The thesis offers a discussion of the theoretical background and its 

relationship with the teachina method. It also provides an analysis of children's 

achievements and difficulties. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

Introduction 

This thesis is developed around a specific approach to introducing the study of algebra 

using graphic calculators. The research addresses the notions and strategies that 11-12 

year old children may develop whilst they work on a set of specially designed activities 

which shape the classroom setting so that the calculator code is met by children as a 

language-in-use. 

The research carried out until the early 80's on the transition from arithmetic to algebra 

has shed light on the teaching and learning of mathematics, and the recent advent of 

computerised resources within the mathematics classroom has opened promising new 

alternatives. Of particular interest to this thesis are those studies which have focused on: 

pupils' interpretations of the letters used in the algebraic code, the implications of chil-

dren's previous arithmetic experience to their approach to algebra, pupil's approaches to 

algebra problem solving, and the potential of new technological resources in the teach-

ing and learning of algebra. 

Some of the research carried out prior to the incorporation of computerised resources 

into the mathematics classroom (Collis, 1969-1975; Ktichemann, 1978-1981; Booth, 

1984; Clement et al, 1979-1982; among others) has suggested that some algebraic con-

cepts, such as the notions of variable and function, require from the children a level of 

maturity in their intellectual development, that they have not apparently reached at the 

age when the study of algebra traditionally starts (12-13 years old). 

In some countries (for example, USA, and UK) these results have led to delaying the 

study of algebra or to the decision that algebra should not be taught to those children 

who have not showed an acceptable performance in mathematics. However, the current 

availability of microcomputers and graphic calculators has encouraged the development 

of educational research which has provided empirical evidence that challenges the cur- 

13 



Chapter 1: Introduction and Background 

rent structure of the school algebra curriculum and suggests new promising approaches 

to the teaching and learning of this subject. 

The present study attempts to take advantage of the vast experience developed by the re-

search done prior to and after the incorporation of computing tools, and aims to explore 

the potential of the graphic calculator as a tool which may provide support for intro-

ducing algebra as a language-in-use, in a way similar to that in which one learns the 

mother tongue. As will be further discussed in Chapters 3 and 4, the approach to algebra 

as a language-in-use was influenced by the theoretical and empirical work by Bruner on 

language acquisition, some research results from Bruner's investigation were recast to 

shape the classroom tasks used in this study and to analyse the ways in which children 

confronted them. 

The chapter is organised in three sections: first those ideas that constitute the back-

ground for this study are discussed, then the aims of this researched are presented; fi-

nally, the structure of the thesis is described. 

1.1. Background 

This section presents some antecedents that constitute the raw material on which this re-

search was developed, and succinctly discusses those central issues which provide an 

overview for the study. The initial ideas that finally led to the present study have their 

origin in some conjectures developed by the author of this thesis. These conjectures rely 

on empirical findings obtained during a long experience of teaching. 

One of these conjectures consists of the idea that children develop a better grasp, 

whether of a notion or a mathematical strategy, once they have previously met and used 

it as a tool while dealing with a problem situation. As children use these notions and 

strategies in different and more complex situations they can gradually reformulate their 

explanatory framework. 

14 



Chapter 1: Introduction and Background 

What seems to be a major difficulty in such a teaching position is how to match the stu-

dents' present level of knowledge so that they are likely to become engaged enough with 

the mathematical activity. This position seems to find support in Vygotsky's concept of 

zone of proximal development. 

Another conjecture comes from an informal exploratory study carried out in 1990, in 

which programmable calculators were used as a means of introducing 11-12 years old 

children to use the algebraic symbolism. During the study it was observed that a special 

kind of interaction took place between children and the calculator. It seemed that chil-

dren were motivated by a sort of curiosity to know more about the facilities offered by 

the machine. Children's work suggested that the requirement of learning the intricacies 

of the calculator's programming code did not seem to be a serious obstacle. The way in 

which the children carried out the tasks suggested that they came into an environment in 

which, in order to inquire what else they could do with these machines, the children 

learned to use the formal code that the calculator 'understands'. This experience sug-

gested that most of these children were learning how to use the algebraic symbolism 

used by the calculator in something like a 'communicative setting'. It seemed that the 

need to establish communication with the calculator was what led them to cope with the 

algebraic symbolism as a language-in-use. 

The idea of conceiving algebra as a language has been addressed by various authors 

(see, for example, Papert, 1980; Mason et al 1985, Pimm, 1987; Sutherland & Rojano, 

1992; Bell, 1992; Shoenfeld, 1993; Tall, 1993). The positions put forward by these 

authors suggest that the metaphor of algebra as a language may be a fruitful vein for re-

search on algebra. The present study is intended to explore a particular view of this 

metaphor so as to investigate the potential of the graphic calculator within a highly 

framed learning environment specially designed for pupils to meet algebraic code as a 

language-in-use. Since these issues form the building block on which this thesis devel-

ops some of its central ideas are briefly discussed below and are further elaborated in the 

rest of the thesis. 
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Chapter 1: Introduction and Background 

Particularly relevant to this research is the work done by Papert (1980), Sutherland 

(1987), Hoyles and Sutherland (1989), and Mason et al. (1985). Papert's idea of a mi-

croworld influenced this study in the sense of creating a computer-based environment 

which encourages children to use a formal language to express and communicate 

mathematical ideas. The research carried out by Hoyles and Sutherland on Logo-based 

environments mainly influenced this study with regard to the role of the teacher; their 

work provided background to this study in the sense of focusing attention on how chil-

dren learn through interacting within computer environments as a necessary step in de-

signing a computer-based classroom setting. Hoyles and Sutherland found it necessary 

to modify Papert's original idea of encouraging pupils to create their own 'project goal' 

which was based on the principle of that "children learn to speak, learn the intuitive ge-

ometry needed to get around in space, and learn enough of logic and rhetoric to get 

around parents -all this without being taught" (Papert 1980, p. 7). Sutherland's work 

showed that teaching intervention is more important than Papert's original work sug-

gested, for structuring and guiding children's learning within the Logo environment. In 

this respect, this study took up Sutherland's findings and adopted Bruner's concept of 

format, which was recast so as to serve as a building block from which to delineate the 

teacher's intervention within the calculator-based setting designed for this research (this 

point is discussed in more detail in chapters 3 and 4). 

Mason's work influenced this study with regard to the approach used in the design of 

the tasks, which is based on the idea of 'expressing generality'. Mason's work on this 

topic as one of the routes to algebra was recast so as to incorporate the use of the 

graphic calculator. The use of the calculator was guided by the principle of expressing 

generality by means of the calculator's code, this principle was exploited to create a 

mathematical environment intended to allow pupils to meet the algebraic code as a lan-

guage which helps them explore the behaviour of number patterns and to produce alge-

braic expressions which encapsulate and govern these type of general relationships. The 

tight link between general number relationships and the production of algebraic expres-

sions mediated by the calculator is meant to constitute a shared context between pupil's 

previous arithmetic experience and the new algebraic code. 
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Chapter 1: Introduction and Background 

1.2. Aims of the Study 

The major aim of this thesis is to investigate the ways in which the calculator's sym-

bolic code shapes children's expressions of general relationships. More specifically, the 

main purposes of this study are to investigate: 

1. The notions that pupils may develop for algebraic language when they meet it 

through using calculator code. 

2. The extent to which the use of the calculator language helps pupils cope with sim-

plifying similar terms within linear expressions, inverting linear functions, and 

transforming a linear algebraic expression to obtain a target expression. 

3. The strategies that children may develop through working with the calculator. 

4. The extent to which the use of the calculator language as a means of expressing 

general rules governing number patterns, helps children grasp that the algebraic 

code can be used as a tool for coping with problem situations. 

1.3. Structure of the Thesis 

The remainder of the thesis is organised in eight chapters which are now briefly de-

scribed. Chapter 2 discusses the relevant algebra research literature which documents 

those research findings which more closely relate to the major issues addressed in this 

thesis, in particular, those topics that take place in the transition from arithmetic to alge-

bra, and technology-based studies which deal with introductory algebra. 

Chapter 3 addresses the theoretical perspective adopted in this study. The chapter pres-

ents an overview of Bruner's theoretical perspective on language acquisition and con-

cludes with an account of how Bruner's theory was recast so as to be applied to the case 

of the teaching and learning of early algebra using graphic calculators. 

Chapter 4 deals with methodological issues that guided the implementation of this re-

search, and provides a detailed account of how the theoretical perspective described in 

Chapter 3 was made concrete in a set of articulated tasks. These were intended to struc- 
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Chapter 1: Introduction and Background 

ture pupils' work throughout a lengthy learning process which assumed little knowledge 

about algebra and aimed at using the calculator language to negotiate problem solutions. 

Chapter 5 presents a vertical analysis of two case-study files which offers a detailed ac-

count of the work done by the children during the fieldwork. Since the thesis approaches 

the teaching and learning of algebra as a language-in-use, the ways in which pupils' 

command of calculator language evolves in time offers a relevant research perspective 

to this study. This chapter provides a chronological analysis of how children's use of the 

calculator language evolves, and how this use frames children's algebraic notions and 

strategies throughout the study. The chapter addresses some issues intended to start 

shaping an explanatory framework for analysing children's achievements. 

Chapter 6 presents a brief account of the work done by the other five children who were 

closely followed throughout the study. The major aim of this chapter is to complete the 

view provided by Chapter 5 and to provide background for the horizontal analysis car-

ried out in Chapter 7. 

Chapter 7 offers a wider view of the results presented in the preceding chapters. This 

chapter provides a horizontal analysis of children's work which focuses on the main dif-

ficulties, insights, notions and strategies presented by the seven children who were 

closely observed throughout the fieldwork. 

Chapter 8 presents the conclusions of this study which are formulated around the main 

contributions of this study to the research of algebra, its limitations, and the implications 

of the results drawn from the thesis to further research. 
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CHAPTER 2 

REVIEW OF THE ALGEBRA RESEARCH LITERATURE 

Introduction 

This chapter reviews those findings documented in the algebra research literature that 

have addressed from various perspectives the major issues investigated in this thesis. As 

was stated in Chapter 1, this study focuses on the transition from arithmetic to algebra, 

and of special interest to this thesis is the research that has studied this facet of mathe-

matics education before and after the availability of computers and graphic calculators 

in the classroom. Also relevant to this thesis are those studies and positions that have 

addressed the metaphor of algebra as a language and its implications to the teaching and 

learning of introductory algebra. 

The chapter is organised in six sections. Section 1 discusses some of the research that 

have focused on children's difficulties in generating correct notions for algebraic ex-

pressions, and some implications to children's approaches to solve word problems. Sec-

tion 2 deals with some research findings obtained from studies which, taking advantage 

of preceding studies on children's difficulties with school algebra, has included in their 

research method a teaching phase aimed at alleviating the problems children have. Sec-

tion 3 discusses some studies that have addressed the issue of providing a theoretical 

background to the teaching and learning of algebra. Section 4 discusses research find-

ings obtained from technology-based studies that have addressed issues concerning the 

transition from arithmetic to algebra. In particular, technology-based studies that have 

focused on children's notions of algebraic expressions, and how certain technology-

based approaches (algorithmics in school mathematics, Logo, Spreadsheets, Basic, and 

graphic calculators) may help pupils make sense of the algebraic code and use it in ne-

gotiating solutions for algebra word problems. Section 5 discusses various positions 

around the metaphor of algebra as a language. Finally, Section 6 presents the conclu-

sions derived from the review made in the preceding sections, and discusses some pos-

sible implications to the approach of algebra as a language-in-use adopted in the present 

study. 
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Chapter 2: Review of Algebra Research Literature 

2.1. Children's notions of algebraic expressions. 

A number of research studies have shown that the interpretation of algebraic expres-

sions, particularly of the letters used in the algebraic code, is not an easy matter for 

many children (Collis, 1969-1975; Ktichemann, 1978-1981; Booth, 1981; Booth 1984; 

Clement et al, 1979-1982; among others). From a range of different perspectives and 

emphases these studies have found that the majority of 15-year-olds appear to be unable 

to interpret algebraic letters as generalised numbers or even as specific unknowns. Large 

scale studies (Ktichemann. 1978-1981) have documented that a great proportion of stu-

dents ignore the letters, replace them by numerical values, or regard them as shorthand 

of names or measurement labels. A considerable research effort has been made to in-

vestigate the underlying reasons in children's difficulties to cope with the new use of 

letters introduced in the study of algebra. Perhaps the most immediate explanatory 

frame is provided by children's arithmetic experience in elementary school. For in-

stance, whilst in arithmetic children have experienced that letters can denote measure-

ments, for example 10m to denote 10 metres, in algebra such expression may denote 

`ten times an unspecified number'. Traditionally. children's experience with letters in 

elementary school is restricted to equations such as A=lxw, which seems to reinforce the 

arithmetic use of letters as labels (/ for length and w for width), this interpretation of 

letters as measurement labels seems to explain the students' tendency to treat numerical 

variables as if they stood for objects rather than numbers. 

The ambiguity of the use of letters in algebra also represents a difficult challenge for 

children to fulfill. In algebra the same letter can be used to represent different numbers 

within different situations; the same number can be represented by different letters in 

the same situation; a letter can also represent a whole class of numbers; and, what seems 

the most difficult part in all this; these letters represent unknown or unspecified num-

bers. In what follows, particular research approaches to these issues are discussed. 

Collis (1969, 1971, 1973, 1975a, 1975b). hypothesised that the difficulties children have 

in algebra relate to the abstract nature of the elements involved. He elaborated on 
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Piagetian findings on concrete and formal thinking to explain children's achievement in 

algebra. This framework allowed Collis to differentiate between concrete and formal 

operational thinkers on the basis of a child's degree of reliance on 'reality'. According 

to Collis, a concrete operational thinker is restricted to concrete-empirical experience, a 

concrete operational thinker considers only what is empirically verifiable; that is, con-

crete and formal thinkers differ in their ability to handle abstract elements and opera-

tions (Collis, 1969, 1971). This view proposes the existence of a progression in the chil-

dren's ability to cope with small numbers of immediate experience, then larger numbers 

which lie outside the immediately verifiable range, and algebraic elements, which would 

in turn be viewed initially as representing specific individual values, and only later as 

generalised number, and finally 'variables' (Collis, 1975c). Perhaps the main conclusion 

made from Collis' analysis was that development of understanding in algebra may cor-

respond to a progression in the ways in which letters are interpreted. 

The work done by Collis influenced the research carried out during the early 80's on 

children's conceptions of algebraic symbolism. A study by Ktichemann (1981), as part 

of the Concepts in Secondary Mathematics and Science (CSMS) project, investigated 

the performance of school students aged 11-16 on test items concerning the use of alge-

braic letters in generalised arithmetic. This study showed that most students in the large 

sample were unable to cope with items that required interpreting letters as generalised 

numbers or specific unknowns. Kiichemann (1978, 1980, 1981) used the framework de-

veloped by Collis to analyse and describe students responses, and found that most of the 

students' errors were likely to be produced by their interpretations of letters. Ktiche-

mann (1981) studied different students' conceptions of letters in algebra with a sample 

of 3000 British students (13-15 year olds). The study produced results that showed that 

73% of the 13 year olds, 59% of the 14 year olds, and 53% of the 15 year olds, dealt 

with letters in expressions and equations as objects; few were able to consider letters as 

specific unknowns, and fewer still as generalised numbers or variables. The study 

showed that students' misunderstanding of letters seem to be reflected in their approach 

to symbolising the relevant relationships in problem solutions. In this respect Ktiche-

mann reported that all students were asked the question: Blue pencils cost 5 pence each 
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and red pencils cost 6 pence each. I buy some blue and some red pencils and altogether 

it costs me 90 pence. If b is the number of blue pencils bought, and r is the number of 

red pencils bought, what can you write down about b and r? The percentages of correct 

responses within each age group were 2%, 1 1% , and 13% respectively. The most com-

mon response was b+/-90, this mistake suggests a strong students' tendency to con-

ceive letters as labels denoting specific sets, which seems to be a result of the students' 

attempt to accommodate their previous arithmetic experience with letters to the new 

meanings assigned to letters within an algebraic context. 

Similar results were found in the National Assessment of Educational Progress, which 

was carried out with 70,000 American pupils (9, 13, and 17-year-olds). The students 

were asked the problem: Carol earned D dollars during the week. She spent C dollars for 

clothes and F dollars for food. Write an expression using D, C and F that shows the 

number of dollars she has left (Carpenter et al., 1981). Though in this problem the literal 

symbols represent specific quantities that do not need to be related by an equation (as is 

required in the problem used by Kuchemann), a third of the 17 year old students (who 

had had one year of algebra) and over a quarter of those who had two years of algebra 

did not provide an acceptable answer. These results shed light on the problem of trans-

lating from one symbol system (natural language) to another (algebraic code) which 

shows the difficulty that novice algebra students have when using a new symbol system 

when, according to Kiichemann's results, they are not yet familiar with its semantic 

structure. 

Other studies have shown that symbolising the relationships in a problem situation is 

not only difficult for novice students (Clement, 1982; Clement, Lockhead, & Monk. 

1981; Clement, Lockhead, & Soloway, 1979). Clement et al investigated the responses 

of 150 freshman engineering students to the Students-Professors problem: Write an 

equation using the variables S and P to represent the following statement: There are six 

times as many students as professors at this university. Use S for the number of students 

and P for the number of professors. The results showed that only 63% of these students 



Chapter 2: Review of Algebra Research Literature 

could correctly solve the problem, where 68% of the errors consisted of the reversal 

situation (6S = P instead of 6P = s). 

Among others, these findings produced a striking impact on the ways in which the 

teaching and learning of algebra have been traditionally conceived, and suggested the 

development of new research lines oriented by the idea that investigating the meanings 

that children attach to literal symbols may provide results that lead us to propose teach-

ing approaches aimed at improving the learning of algebra. This research style is en-

couraged by the idea that though the errors already identified (and others) may be fa-

miliar to any algebra teacher, the causes of such errors should be identified, otherwise it 

is difficult to improve the teaching of algebra so as to enhance student's understanding. 

The development of further research in this direction is discussed in the next two sec-

tions. 

2.2. Research studies incorporating a teaching module 

Wagner (1979, 1981a) suggested that encouraging students to solve problems involving 

expressions and equations that are purposely similar in form may help in identifying 

particular learning difficulties associated with these forms. She proposed an analytical 

framework for investigating student's understanding of variables aimed at generating 

tasks that provide measures of the clarity and difficulty of the different roles of letters. 

The framework is based on the assumption that, similarly to words of verbal language, 

the symbols for mathematical variables acquire meaning only as they appear in some 

context and represent some referent. Wagner proposed that, as in verbal language, the 

symbol and its referent determine the syntactic role of the variable, and argued that all 

three components: symbol, referent and context, as well as all the three aspects (the se-

mantic role, the syntactic role and the mathematical role) combine to contribute to the 

student's interpretation of variables. A change in any of these components may or may 

not, depending on the nature of change, cause a corresponding change in each related 

aspect of the variable. Her study was designed to investigate whether the students (12-

17 year-olds) perceived the equivalence between pairs of equations which were pre- 
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sented using different letters as unknowns. The results showed a different confusion 

over the use of letters: some children did not appear to realise that the value of an un-

known is independent of the letter used. These children seemed to believe that changing 

the letter implied that the value was also changed (Wagner, 1981, 1981b). There were 

some children whose work showed that they established a sort of correspondence be-

tween the order in which letters appear in the alphabet and the number system: letters 

towards the end of the alphabet were assigned a higher value than those nearer the be-

ginning. 

Another research project that included a teaching module was carried out within the 

SESM project (Strategies and Errors in Secondary Mathematics Project, Booth, 1984a). 

The SESM was a sequel to the 1974-79 programme Concepts in Secondary Mathemat-

ics and Science (CSMS), and consisted of a longitudinal study of students in seven 

classes. Its aim was to investigate in depth some of the problems commonly experienced 

by secondary school pupils in the area of mathematics and examined to what extent 

these problems could be alleviated by specifically designed teaching modules. The 

SESM addressed the errors in generalised arithmetic identified by the ,earlier CSMS 

project and was based on the framework provided by the following hypotheses: (1) The 

errors observed depend (in part) on the child's interpretation of the letters involved, and 

(2): An error may also arise as a consequence of the procedures that the child uses in 

solving arithmetical problems of a similar kind. 

A general result obtained from this study is that the teaching module designed to over-

come particular difficulties in early algebra was more successful with high ability stu-

dents than with students in middle and lower streams. Booth suggested that this finding 

provides further evidence for the link between students' cognitive levels and their ability 

to understand the meanings of algebraic letters and to formalise mathematical methods. 

One of the specific issues addressed in the SESM was the children's approaches to for-

malising their methods. She suggested that the construction of formalised procedures 

constitutes a relevant part of mathematical activity. A teaching strategy was imple- 
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mented based on the idea of a 'mathematics machine', which involves the use of a four-

operations calculator and a pencil and paper 'mathematics machine' which extended the 

calculator facilities to include operations with letters. The rationale for the formalisation 

was provided by a notational machine, complete with input pad, start button, processor, 

store locations and output pad. She hypothesised that the advantages of such an ap-

proach are based on the need for explicit and rigorous representation of procedures; the 

use of the 'mathematics machine' was intended to provide a rationale for the use of let-

ters as a means for controlling the machine. The results obtained from this teaching ex-

periment showed that children improved their skills in formalising their methods and 

developed some insights about the role of algebraic symbolism. Booth reported that 

most of the difficulties children have in formalising their methods are likely to be due to 

children's tendency to use informal procedures which have been proved to be successful 

in facing arithmetic tasks but failed in the algebraic case. These results led Booth to 

suggest that teachers should be aware of the informal methods used by children and to 

encourage their use until these methods prove not to be efficient. Booth suggests that 

this strategy may help children accept the formal methods that the teacher is willing to 

teach. This is particularly so with regard to the understanding of letters as generalised 

numbers, where Booth reports that children presented a strong resistance to assimilating 

the idea of letter as generalised number even in the context of the teaching programme 

specially designed to help pupils overcome this difficulty. In this respect, the use of 

technology offers an interestina, alternative (as will be discussed in the following sec-

tion). There are various studies that have shown that computer or calculator-based envi-

ronments may be arranged to encourage children to explore mathematical situations us-

ing their own strategies (see, for example, Ruthven 1990; Sutherland & Rojano, 1993). 

Technology-based studies have reported that the formality of the code of the technologi-

cal resource helps children to structure a more formal approach on the basis of their ini-

tially informal methods. This point is taken up later in this chapter. 

Another specific issue addressed by the SESM was that of children's interpretation of 

letters. In this respect they reported that "whilst some of the misconceptions that chil-

dren have may be due to inadequacies in the teaching-learning situation, some of the 
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difficulty which children have appears to be related more to a 'cognitive readiness' fac-

tor. This is particularly so with regard to the apprehension of letters as representing gen-

eralised number rather than specific unknowns" (p. 87). The results obtained from using 

the 'mathematics machine' and a simple calculator suggest that the introduction of let-

ters as generalised numbers seems to be a promising starting point for children to 

achieve the different meanings assigned to letters in algebra. 

Booth's findings strongly suggest that many of the difficulties that children have in al-

gebra are not difficulties in algebra as such, but rather difficulties in arithmetic. Booth 

argues that "if algebra (or generalised arithmetic) is regarded as the writing of general 

statements representing given arithmetic rules, operations and procedures, the non use 

of and non-recognition of those structures in arithmetic would be likely to have a con-

siderable effect on children's performance in algebra" (p. 89). For example, children's 

reluctance to accept unclosed algebraic expressions may be explained in terms of their 

lack of experience with such type of expressions in arithmetic; conceiving of a+b as an 

object in algebra should have some numerical precursor in arithmetic. The 'acceptance 

of lack of closure' is reported by Booth (1984a) in items where students, were asked to 

mark all equivalent expressions among several options. She observed that, some chil-

dren thought that x+y was as equivalent to xy and found the same type of answers when 

children were asked to find the area of rectangles (for example, 7f3 or f21 for the area of 

a rectangle with length 7 and height f+3). This point is taken up again in Chapter 6. 

The link between the structure of arithmetic procedures with the structure of algebraic 

expressions was also investigated by Chaiklin and Lesgold (1984). They investigated 

the children's reactions when working with three-termed arithmetic expressions in-

volving a subtraction and an addition (for example, 685-492+947, 947+492-685, 947-

685+492, 947-492+685). The inquiry consisted of asking sixth graders to find equiva-

lencies without computing the totals. Chaiklin and Lesgold found that, despite the ex-

plicit instruction of not to calculate the totals, the prevalent method used by the pupils 

was to calculate the sums in order to decide the equivalence of expressions. Using 

similar tasks, Collis reported that younger children were able to succeed only when the 
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number of items involved were easy for them to calculate. Collis described the ability to 

work with the expressions without reducing them by calculating as 'acceptance of lack 

of closure'. 

The 'acceptance of lack of closure' was investigated within a geometrical context by 

Chalouh and Herscovics (1988). They used geometrical diagrams to help students make 

sense of and use algebraic expressions. Rectangular arrangements were included as part 

of an instructional phase with sixth and seventh-grade students. The teaching sequence 

allowed students to construct algebraic expressions for referring to the area of rectangles 

like the items used by Booth. The results showed that this approach supported children 

in using algebraic expressions to denote the area and perimeter of rectangular shapes. 

Nevertheless, children's responses still showed a sort of reluctance to accept unclosed 

algebraic expressions as real answers. The children considered that expressions like 

4x+4y were some how incomplete, and so they completed the expressions expressing 

them as part of an equality (i.e.. Area=4x+4y for a rectangle of height 4 and length x+y). 

2.3. Theoretical Approaches to the Teaching and Learning of Algebra. 

Many studies have been carried out with the aim of providing theoretical background to 

the teaching and learning of algebra. Of particular interest for this thesis is the work 

done by Herscovics (1989) on the concept of cognitive obstacle, the research carried out 

by Sfard (1991, 1992,1994) on the historical-epistemological development of algebra, 

and the work done by Mason et al (1980, 1984, 1985, 1988, 1989, 1991, 1993) on ex-

pressing generality as a particular route of algebraic thinking. These approaches are suc-

cinctly reviewed below focusing on those features that more closely relate with the ap-

proach to school algebra adopted in this thesis. 

The concept of cognitive obstacle 

Herscovics (1989) analysed the concept of cognitive obstacle as a way of providing a 

different explanation for the difficulties children have in facing the study of algebra. He 

pointed out that the arguments offered to explain the extensive rate of failure in high 

school algebra may be summarised in two points: (i) students' failure as a result of in- 
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adequate teaching, which suggests that improved teacher training programmes may 

solve the problem. This position suggests that all the problems involved in the learning 

of algebra can be solved, and, consequently, that the main problem relies on a failure in 

communication; and (ii) another type of explanation is given by the argument that 

mathematics, and consequently algebra, was never intended for the general population. 

This argument suggests that the teaching and learning of mathematics should not be a 

question of concern, since there have always been people who have learnt mathematics 

regardless of the way it is taught. 

The concept of cognitive obstacle provides an argument which is rooted in historical. 

epistemological and psychological points of view, which in Herscovics' view 

"denigrates neither the teacher's professionalism nor the students intellectual potential" 

(p. 60). The concept of obstacle was approached first within the context of science 

where it was referred to as an epistemological obstacle. Later on, Brousseau (1986) re-

cast the concept of epistemological obstacle in order to applied it to mathematics educa-

tion. He characterised a cognitive obstacle as "a piece of knowledge that has in general 

been satisfactory for a time for solving certain problems, and so becomes anchored in 

the student's mind, but subsequently that knowledge proves to be inadequate and diffi-

cult to adapt when the student is faced with new problems" (quoted by Tall, 1991). 

The concept of cognitive obstacle is illustrated by the difficulties that many children 

have at the beginning of their initial algebra course. For example, pupils' notions and 

strategies which proved to be successful in arithmetic but later lead them to misconcep-

tions in the construction of meanings for algebraic expressions, such as the interpreta-

tion of letters as denoting measurements (Booth, 1984). Children's apparent reluctance 

to accept unclosed expressions (Collis, 1974) provides another example of a cognitive 

obstacle. Herscovics (1989) used the framework of cognitive obstacle for examining 

three distinct situations: obstacles induced by instruction, obstacles of an epistemologi-

cal nature, and obstacles associated with the learner's process of accommodation (in 

Piaget's sense). He puts forward that the obstacles induced by instruction are often due 

to a formalistic presentation of mathematics, in this case the problem is caused because 
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the student cannot relate his/her existing knowledge with the new notions being, intro-

duced. His findings suggests that this type of obstacle remains with the student until 

he/she is provided with additional means to bridge the gap between the new material 

and his/her existing knowledge. The main difficulty here is that this gap is not always 

evident. 

An epistemological obstacle is associated with those violent shifts occurring in the his-

torical development of a discipline that had to be overcome for any growth, such as the 

concepts of limit and continuity of functions in the context of differential calculus. 

Those obstacles associated with the learner's process of accommodation seem to be the 

most challenging in pedagogical terms. Herscovics suggests that "no matter how much 

goodwill and care the teacher provides, these structural changes cannot be conveyed by 

mere transmission of information. Each learner is condemned to alter the mental struc-

ture in his or her own mind" (p. 83). 

A historical-epistemological approach to algebra 

Sfard developed a theoretical perspective from which to analyse the role of mathemati-

cal concepts in mathematical thinking that finally suggests a teaching approach to 

school algebra. She grounds her study in an ontological-psychological approach and 

analyses different mathematical definitions and representations which led her to con-

clude that abstract notions, such as number or function, can be conceived of in two fun-

damentally different, but complementary, ways: structurally as objects and operationally 

as processes. From this viewpoint, the algebraic representation of a function may be in-

terpreted both ways: it may be explained operationally, as a concise description of some 

computation, or structurally, as a static relation between two magnitudes. The dual 

meaning of equality sign (Behr et al., 1976; Kaput, 1979; Kieran, 1981) also illustrates 

the procedural/structural framework, the equality sign can be used as a symbol of iden-

tity, or as a 'command' for executing a series of arithmetic operations. 

Sfard's historical analysis proposes that for many people the operational conception is 

the first step in the acquisition of new mathematical notions. This framework relies on 
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the assumption that the transition from computational operations to abstract objects 

(concept formation) takes place through a process accomplished in three steps: interiori-

sation, condensation and reification. The latter is considered to be a complex phenome-

non, which seems inherently so difficult that it may remain practically out of reach for 

certain students. These three steps constitute a schema that suggests a hierarchy, where 

one stage cannot be reached before all the former steps are taken. Each stage in the 

process of concept formation may be summarised as follows: Interiorisation is charac-

terised as a process performed on already familiar objects. Condensation has to do with 

the stage in which this process turns into an autonomous entity. Reification relates to the 

ability to see this new entity as an integrated object that has been acquired. 

Sfard establishes the framework of reification on the basis of historical evolution of nu-

merical systems from natural to complex numbers and the history of the concept of 

function, this framework proposes that various processes had to be converted into com-

pact static wholes to become the basic units of a new higher level theory. Accordingly, 

such a hierarchy emerges in a long sequence of reifications. 

Sfard suggests that the theory of reification can be applied to develop a curricular ap-

proach to algebra. Her proposal relies on the argument that the structural approach is 

more abstract than the operational, which implies that a person could hardly arrive at a 

structural conception without previous operational understanding. On this view the his-

torical analysis of algebra suggests that algebraic thinking has its origin in operational 

processes and evolves in a sequence that goes on towards gaining generality and struc-

ture: from rhetorical to syncopated algebra, from this to Vietean symbolic algebra, and 

finally abstract algebra. 

Sfard (1994) carried out an empirical investigation which provided further evidence for 

the procedural-structural view. The study gave "not very encouraging conclusions ... 

pupils cannot cope with problems which do not yield to the standard algorithms ... it be-

came clear that the functional approach is not easily accessible even for the better stu-

dents" (p. 223). The unsatisfactory results obtained from this study were explained as a 
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consequence of the Israeli curriculum, where the study of algebra begins by introducing  

the use of letters as variables: This, according to Sfard's model, disrupts the historical-

epistemological order in which the use of letters evolved (first as unknowns and much 

later as variables). However, technology-based research has shown that the multiple rep-

resentation resources provided by computer environments encourage the introduction of 

algebra from the notion of function (Kaput, 1989; Dreyfus and Halevy, 1988; Leitzel, 

1989; Kieran, 1991; Confrey, 1993). In this respect Sfard suggests that "it is fairly pos-

sible that the massive use of computer graphics in teaching functions will reverse the 

`natural' order of learning (suggested by the historical analysis) so that the structural 

approach to algebra will become accessible even to young children" (p. 224). 

To summarise, Sfard's theory of reification leads to a hierarchical model which, she 

proposes, may be used to explain most of the difficulties students have in learning alge-

bra. The model may also be used to design teaching approaches that may help students 

reach the stage of reifying the central concepts in algebra. In Particular, Sfard's frame-

work points out that disrupting the natural way in which algebra evolved through history 

may lead to a pseudo-structural conception of algebra, which may be the case of intro-

ducing algebra through the notion of function. 

Expressing generality 

The theme of generality has been addressed by various authors (Piaget, 1988, 1985; 

Krutetskii, 1976; Polya, 1965), and more recently by Mason et al. (1980, 1984, 1985, 

1988, 1989, 1991, 1993) in the United Kingdom. Among the various perspectives on 

generality provided by these authors, the work done by Mason is of special interest to 

the present thesis, particularly due to Mason's orientation of integrating expressing gen-

erality into the everyday life of the mathematics classroom. 

Mason (1993) conjectures that "when awareness of generality permeates the classroom, 

algebra will cease to be a watershed for most people ... unless and until, expressing gen-

erality becomes natural and spontaneous in the conduct of mathematics" (p. 1). Though 

Mason acknowledges that there does not seem to be a single programme for learning al- 
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gebra through the expression of generality, his work seeks for awakening and sharpen-

inL,  sensitivity to the potential of generality for algebraic thinking. Mason (1988) offers 

a wide range of examples of tasks which have been exploited in this way (some of them 

were recast and used in the present research, see Appendix). 

According to Mason, activities intended to develop awareness of generality should en-

courage the abstraction and concretisation of experiences that promote seeing a general-

ity through the particular, and seeing the particular in the general. Seeing the particular 

in the general implies recognising the particular as an instance, that is, seeing the par-

ticular in the general involves maintaining attention on the general as well as on the 

particular. Mason (1989) proposes a framework for analysing the process of moving 

from the particular to the general and vice versa. The framework may be summarised as 

a four steps schema which evolves through a spiral which represents the development 

from confident manipulation, to getting-sense-of, to articulating that sense, to that ar-

ticulation becoming itself in turn confidently manipulable. 

Perhaps the strongest argument to place generality at the core of the teaching and learn-

ing of algebra is that -the facility in manipulation of generality follows as confidence in 

expression develops and as multiple expressions for the same thing arise, and that use of 

algebra to solve problems depends on confident expression of generality using the as 

yet-unknown supported by awareness of the role of constraints on variables" (Mason, 

1993, p. 2). 

A point which is emphasised in Mason's work is that generalisation seems to have such 

a tacit role in algebra that the experts no longer notice its presence in what is, for them, 

elementary, but it is precisely the shifts of attention that they have integrated into their 

thinking which are problematic to the novice. This view brings a cultural dimension to 

the approach of generality in the classroom, where generality is much more than a topic 

to be taught (if this were possible). It is rather a manner of thinking and acting which 

should shape the activity in the classroom, a setting in which teachers feel comfortable 

in acting mathematically with and in front of their pupils so as to help their pupils con- 
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front mathematics as a way of thinking and expressing, "just as naturally as they are into 

listening to and speaking their native tongue" (p. 3). 

The framework of manipulating, getting-a-sense-of and articulating was obtained by re-

casting Bruner's (1966) notion of enactive, iconic and symbolic representations. Though 

the proof of such framework is in future experience, Mason (1993) has applied it in 

analysing and describing experiences with teachers, and reports that these experiences 

can develop into potent sensitisers to future classroom opportunities. Particularly, he has 

found the framework informative when thinking of these experiences as phases in a de-

veloping spiral, in which manipulation, whether of physical, mental or symbolic objects, 

seemed to provide the basis for getting a sense of patterns, relationships and generali-

ties, and that as you become articulate, your relationship with the ideas changes. A shift 

takes place in the form and structure of your attention. What was previously abstract be-

comes increasingly confidently manipulable. Mason's spiral model attempts "to connect 

similar yet different states, while suggesting that manipulation changes as pattern is 

sensed, that attempts at articulation may cause re-thinking and re-manipulating, but that 

through a fluid almost symbiotic process, increasing facility and confidence develop" 

(p. 15). 

Expressing generality has been placed as one of the roots of algebra as well as one of the 

routes to learning algebra (Mason et al., 1985). The impact of this approach has been re-

flected in that during the last few years mathematics educators have come to regard 

working with generality as one of the characteristics of algebraic thinking. In a good 

deal of countries school algebra is nowadays a manifestation of generalisation about 

numbers. The study and description of patterns and general rules has been included 

within the algebra curriculum in some countries. In Australia, for example, the National 

Statement on Mathematics for Australian Schools (1991) and the Curriculum and 

evaluation Standards (1989) recommended that algebra learning should be introduced 

by investigating geometric patterns, number sequences and function tables (MacGregor 

and Stacey, 1993). 
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Perhaps number patterns have been the most common resource used to introduce young 

children to expressing generality. For example, the National Curriculum in the UK has 

integrated number pattern with the development of algebraic symbolism (Tall, 1993). 

The use of a number pattern approach is being generally applied within a sequence con-

sisting of asking children to find the underlying pattern, expressing it in words, and then 

use algebraic notation to describe the pattern (or a shorthand algebraic notation). 

Though the introduction to algebra through number patterns-based approaches seems to 

be successful for the more able pupils a number of research studies have found that this 

approach presents difficulties for the majority of children (Stacey, 1989; Herscovics, 

1989; Arzarello, 1991; MacGregor and Stacey, 1992; MacGregor and Stacey, 1993; 

Stacey and MacGregor, 1996). These researchers have addressed the effects of intro-

ducing school algebra through the study of patterns and rules relating two variables and 

have reported that students have difficulties in generating algebraic rules from patterns 

and tables. The results indicate that the ability to perceive a rule does not imply that the 

students can easily express it algebraically. 

Herscovics (1989) in reviewing the results of the national testing in the USA comments 

that although most students could recognise a pattern presented in a table of ordered 

pairs connected by simple rules (for example, add 4), the majority were unable to ex-

press these rules algebraically (for example, y=x+4). Arzarello (1991) also found that 

generating algebraic rules from number patterns was a difficult task. When students had 

generated a table of ordered pairs from a geometric pattern, they focus on the difference 

between successive values of each variable. The students looked for a recurrence rule 

that would help them predict a number from the value of its predecessor rather than a 

functional relationship linking pairs of numbers. 

MacGregor and Stacey (1993) carried out a questionnaire-based research with a sample 

of 143 students who were in their third year of learning algebra. A further 15 students 

were interviewed individually. The results show that more students were able to find 

and use a relationship for calculating than could describe it in words or algebraically. 
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They found that the major causes of difficulty were: (i) focusing on recurrence patterns 

in one variable rather than on relationships linking two variables; (ii) inability to articu-

late clearly the structure of a pattern or relationship using ordinary language. The items 

they used in the questionnaire were designed to find out what aspects of the task of rec-

ognising patterns and describing them algebraically present most difficulty. Their results 

show that "whereas most students can perceive patterns in tables easily, many do not 

perceive the functional relationship" (p. 181). Interview protocols showed that a sub-

stantial proportion of those students who 'see' the relationship clearly (so as to calculate 

with it), could not express it neither algebraically or in natural language. 

MacGregor and Stacey (1996) in reviewing how students go about expressing general 

relationships between variables, concluded that "a patterns-based approach does not 

automatically lead to better understanding; the way students are taught and the practice 

exercises that they do may promote the learning of a routine procedure without under-

standing" (p. 3). Among the student's difficulties they found is that most of the students 

guided their procedures by natural language descriptions which could hardly help them 

structure an algebraic expression to properly describe the relationships between two 

variables. 

2.4. Computers and calculators in the classroom. 

The incorporation of computerised resources in the mathematics classroom have shed 

light on new promising avenues for research in mathematics education. Studies based on 

using computers and calculators have shown that these new tools lead to different ap-

proaches in the teaching and learning of mathematics, in diSessa's (1995) terms 

`coming to see differently arises from being able to interact differently'. This section 

briefly reviews some of the findings from technology-based studies that address issues 

concerning the transition from arithmetic to algebra. The section is organised following 

a chronological order with regard to the incorporation of technology into the mathemat-

ics classroom. First, the role of algorithms in school mathematics is discussed; second, 

an approach using BASIC is presented; third, results from Logo-based environments are 
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discussed: fourth, some spreadsheets-based studies are presented; finally, the section 

provides an overview of calculators-based studies. 

The role of algorithms in school mathematics 

The present research exploits the programming mode of the graphic calculator to en-

courage children to produce rules governing number patterns, which implies the pro-

duction of a particular type of algorithm (functional rules). In this sense Johnson's 

(1991) conception of algorithms as an educational topic is of special interest for this 

study. 

Johnson (1991) discusses the "why", the "what" and the "how" for algorithmics in 

school mathematics, both in developing mathematical concepts and processes and as a 

subject of study in its own right. Algorithmics consists of the design and analysis of 

procedures and "provides a new way to approach and view or express many 'traditional' 

mathematical concepts and relationships" (p. 331), such as primeness, solving equa-

tions, generating values for parameters and variables, and evaluating or graphing func-

tions or relationships. Johnson argues that many mathematical ideas become more dy-

namic and useful when described as a procedure. 

According to Johnson, the potential of algorithms in the teaching and learning of school 

mathematics relies on the process of producing them, which involves design and analy-

sis. Design may include: (i) implementation of a known procedure to be applied using a 

programmable calculator or a spreadsheet, for example, to generate the successive terms 

in an arithmetic or geometric sequence, (ii) modification of a given procedure to carry 

out a new but related task, such as extending a procedure used to evaluate or generate 

results to a inquiry for particular values that satisfy given conditions, and (iii) develop-

ment of a new procedure to help solve a problem, for instance, searching for Pythago-

rean Triples. 

Analysis is "the process of determining how long an algorithm takes to run" (p. 333), 

which involves the question of efficiency. Analysis implies a high level outcome which 
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is traditionally taught within a Discrete Mathematics course in the upper high-school 

grades, whilst the design of algorithms seems to be a suitable task for the elementary, 

middle and lower high-school grades. 

While much about algorithms may look like computer science or teaching program-

ming, Johnson's essential idea is that "the contexts for applying (and learning about) 

these concepts will come from, and within, school mathematics ... The constructs, con-

cepts and relationships in algorithmics should develop naturally along with the devel-

opment of mathematics" (p. 334). From this view, algorithms may constitute a suitable 

domain for introducing mathematical concepts; the design of algorithms may be ex-

ploited to provide pupils with a new way to express a mathematical idea or relationship, 

for exploration, investigation, and problem solving. 

According to Johnson, the role of algorithms differs depending on their use in a teaching 

and learning environment or in software engineering applications. In teaching and 

learning the approach is based on the sequence 'Run-Understand-Debug-Edit'. This se-

quence is based on the assumption that the user generally experiments with program-

ming to "increase understanding of a problem rather than to produce a polished, com-

mercially viable product" (p. 336), Logo work in schools illustrates this approach. In 

this sense, the process of constructing an algorithm is a "bottom-up" or from "inside-

out". This approach contrasts with the strategy generally used with software engineer-

ing, which may be described by the sequence 'Specify-Prove-Implement-Verify'. 

Within this approach, the procedure is written until the problem has been completely 

specified. The approach is based on specification and proof, and may be described as a 

"top-down" approach. The approach is more "conventional-  and the focus is on specific 

examples which are used to illustrate the central ideas and techniques. 

With regard to elementary and middle school activity, where a major aim is to help pu-

pils understand key mathematical concepts and relationships, Johnson proposes that al-

gorithms can be better exploited using the 'Run-Understand-Debug-Edit' approach. He 

enhances the fact of the current increasing availability of programmable graphics calcu- 
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lators which "substantially facilitates individual or small group participation in the de-

sign activity of algorithmics" (p. 339). The 'Specify-Prove-Implement-Verify' approach 

may offer crucial support when facing open-ended problems or investigations where the 

development of an algorithm can aid exploration. 

To summarise, Johnson proposes that a rationale ("the why") for algorithms in school 

mathematics, consists of their potential in developing mathematical concepts and proc-

esses. With regard to "the what" for the teaching and learning, the big ideas which un-

derpin algorithmics are assignment, selection, iteration, recursion, and input-output; pu-

pils seem more likely to grasp these big ideas within a teaching and learning environ-

ment based on the 'Run-Understand-Debug-Edit' approach. In terms of "the how", he 

highlights the approach to prime numbers "in terms of both the role of a dynamic 

(procedural) mathematical description and the extensions, explorations and investiga-

tions of mathematical relationships" (p. 342). 

Programming with Basic. 

Tall and Thomas (1991) questioned that most of the precedent research has been carried 

out under the assumption that the mathematics curriculum will remain as it is as present. 

and "one must consider to what degree the conclusions may remain relevant in a new 

computer paradigm" (p. 88). They investigated some of the cognitive obstacles docu-

mented in the research literature within the pre-computer curriculum, and inquired if 

such obstacles would remain within a computer-based school setting. In order to carry 

out their research they created a learning environment based on combining the use of a 

programming language (BASIC), a sequence of physical activities carried out by the 

students which simulate the storage of variables and manipulation of variables when 

programming in BASIC (`cardboard maths machine'), and the use of a piece of software 

specially designed for their study which allows students to evaluate algebraic expres-

sions using standard mathematical notation (Generic Organiser). 

This environment was used to investigate the extent to which the students may over-

come what has been reported as cognitive obstacles related to the understanding of the 
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concept of variable. A cognitive obstacle is conceived here "as a piece of knowledge 

that has in general been satisfactory for a time for solvinL,  certain problems, and so be-

comes anchored in the student's mind, but subsequently that knowledge proves to be in-

adequate and difficult to adapt when the student is faced with new problems". (Tall, 

1989, p. 88). Using this characterisation of cognitive obstacle Tall and Thomas investi-

gated the potential of the learning environment they designed in helping novice algebra 

students overcome the obstacles described below. Their inquiry relies on the hypothesis 

that the cognitive obstacles previously documented in the research literature were found 

within the context of the pre-computer curriculum, so "if there are certain fundamental 

obstacles that occur for us all, they would therefore apply in a new paradigm" (p. 88). 

The cognitive obstacles addressed by Tall are: 

(i) The parsing obstacle, which consists of students' proclivity to read from left to right 

expressions such as 2+3a which may lead them to evaluating them incorrectly. This ob-

stacle seemed to originate because in most western civilisations language and algebra 

are both read and written from left to right, but the latter not always is processed from 

left to right. This conflict is also manifested when a child reads a+b as 'a and b', thus he 

simplifies it as ab, which is interpreted as a+b. Another manifestation of this conflict is 

when the child reads an expression like 5+4a from left to right, 5+4 gives 9, and consid-

ers the full expression as 9a. 

(ii) The expected answer obstacle. An explanation for this obstacle may be found in the 

previous children's arithmetic experience, where activities usually end with obtaining a 

numerical answer, thus a child sees an expression like 5+6 as 'an invitation to calculate', 

whereas an expression like 5+6b cannot be calculated unless the value of b is known. 

This erroneous expectation seems to be an explanation of why the child does not accept 

an open expression as an answer, because an answer cannot be expressed as something 

which still looks like a process. 

(iii) The product process obstacle. This obstacle is caused by the fact that an expression 

like 2+3a represents both the process by which the computation is carried out and the 
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product of that process. If a child thinks only in terms of process, he/she will conceive 

the expressions 3(a+b) and 3a+3b quite differently, because in the former expression 

the child requires the addition of a and b before multiplication of the result by 3, while 

the latter requires him to multiply both a and b by 3 before adding the results. Tall and 

Thomas have observed that though such a child may be asked to observe that both ex-

pressions lead to the same product when being evaluated, the child still needs to realise 

that, for example, an expression like 4a+5 comprises any process consisting of multi-

plying a number by four and then adding five to this result. They argue that for the child 

to overcome that obstacle, the child needs to 'encapsulate' the process as an object so 

that he/she can talk about it without the need to carry out the process with particular 

values for the variable. When the encapsulation has been performed, two different en-

capsulated objects can be compared and regarded as being the same object if they al-

ways give the same product. 

The research carried out by Tall and Thomas consisted of two experimental studies 

which compared children's achievements using a control/experimental group methodol-

ogy, and used teaching activities aimed at (i) encouraging the mental image of a letter as 

store label representing a single number which could be changed and, by extension, 

could hold any of the variety of numbers, and (ii) evaluating expressions (including 

equivalent expressions) in BASIC and in standard algebraic notations. Their results 

showed that those children who were exposed to the computer algebra work were better 

able to cope with the parsing obstacle. This obstacle was faced "by discussion between 

teacher and pupils, then encouraging pupils to reflect on the possible meaning of differ-

ent expressions using Basic and the algebraic maths machine to build theories as to the 

meaning of equivalent expressions" (p. 135). 

The process-product obstacle was faced by seeing that the expression represented both 

process (in the cardboard maths machine) and product (in the algebraic maths machine 

and in BASIC). The fact that the computer performed the process in BASIC helped pu-

pils concentrate on the notation as product and to think of it as a conceptual entity. The 

results showed that the experimental pupils were more likely to consider expressions 
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such as 2(a+b) and 2a+2b to he the same. In addition, they were better at conserving 

equations. For example, the experimental pupils were more likely to be able to holisti-

cally grasp information, for instance in seeing that p+1 can be treated as the variable in 

the equation 2(p+1)-1-5, whilst the control pupils showed a proclivity to process the in-

formation by multiplying out, collecting terms, and solving the equation. 

These results suggested that "the beginning phase of the subject -giving meaning to the 

variable concept and devising ways of overcoming the cognitive obstacles- is funda-

mental to laying a foundation for meaningful algebraic thinking" (p. 127). In this respect 

Tall and Thomas point out that though the initial difficulties in the learning of algebra 

cannot be totally avoided by the incorporation of computers into the mathematics class-

room, "these difficulties are exaggerated by the teaching of algebra in a context in which 

the symbolism does not make sense to the vast majority of pupils and that the success 

rate can be significantly improved by giving a coherent meaning to the concepts by us-

ing a computer" (p. 128). 

Logo-based research approaches 

Papert's contribution of the Logo programming language and his idea of a Logo Mi-

croworld has probably been the most documented computer-based approach to mathe-

matics education (see, for example, Noss, 1985; Noss, 1986; Hillel and Kieren 1988; De 

Corte and Verschaffel 1989; Hoyles and Sutherland 1989, Hoyles and Noss, 1992, 

Ursini, 1994). These studies focus on investigating the notions of angle, length, variable 

and function, which are the central concepts when working with the Logo programming 

language. Perhaps the most striking result which has emerged from these studies is that 

the role of the teacher, for structuring and guiding children's learning within the Logo 

environment, is more important than Papert's original work suggested (Sutherland, 

1987). 

The effects of using Logo in the developing of children's algebraic conceptions was 

studied by Noss (1986) as a sequel of a longitudinal investigation of the mathematical 

environment created through Logo programming (Noss, 1985). Noss (1986), carried out 
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an exploratory study aimed at examining the extent to which Logo experienced children 

are able to exploit their Logo-based knowledge to construct meaning for elementary al-

gebraic concepts. The study focused on the possible influence of children's Logo learn-

ing in facilitating the conceptualisation of algebraic variable, and their ability to for-

malise in a non computational context. 

Noss' (1986) research was based on the conjecture that "symbolic representation of 

mathematical concepts in the form of computer programs, engages the learner in the 

doing of mathematics" (p. 335); the study intended to clarify what else the children may 

be learning through programming with Logo. The research was carried out with eight 

children who had been the subjects of case-study (Noss, 1985). These children were 

working with Logo during 18 months (approximately 50 hours). The method consisted 

of interviews with children as they solved pencil and paper rule-formulation problems. 

The results of the study showed "that the metaphor of typing in a value at the keyboard 

can be viewed as a means of conceptualising a range of values while only necessitating 

the consideration of specific values (one at a time)" (p. 350), and that certain aspects of 

Logo syntax were used by the children in the construction of formalised rules. Noss 

concluded that, provided appropriate conditions, the Logo programming experience may 

help children make use of the algebra embedded in the Logo environment to develop al-

gebraic ideas within a non-computational context. On the basis of the results of this 

study, Noss suggested that Logo programming may be used to help young children in 

forming primitive conceptions of algebraic notions, in time, children integrate them as 

part of a system of algebraic understandings, and that "the challenge consists of finding 

ways of creating Logo settings which are sufficiently transparent and flexible to enable 

the learner to gain control over the embedded concepts" (p. 355). 

Within the context of a large study (Hoyles and Sutherland. 1989), which was aimed at 

providing a framework to organise and analyse children's work within the classroom, 

Sutherland (1987) investigated the hypothesis that certain experiences in Logo will pro-

vide pupils with a conceptual basis of algebraic ideas which will enhance their work 

with paper and pencil. This research led Sutherland to formulate categories for analys- 
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ing different features of children's work within the Logo environment, these categories 

clearly show how the results of previous research were taken up to be re-studied within 

a technological-based setting: acceptance of the idea of variable; understanding that any 

variable name can be used; understanding that a variable name represents a range of 

numbers; understanding that different variable names can represent the same value; ac-

ceptance of 'lack of closure' in a variable dependent expression; ability to establish a 

second-order relationship between variable dependent expressions; ability to use vari-

ables to formalise a general method. 

Hoyles and Sutherland found it necessary to modify Papert's principle of encouraging 

pupils to create their own 'project goal' and decided to intervene to provide pupils with 

specific goal-oriented 'Logo projects' to work with. Sutherland (1993) reports that 

"towards the end of the first year of the Logo Maths Project we changed our strategy 

and intervened with teacher-directed tasks which introduced pupils to the idea of vari-

able in Logo. This change in direction resulted from our ongoing analysis of the data, 

that is the finding that pupils were not choosing projects in which it was appropriate to 

introduce the idea of variable. We were now structuring the situation for the pupils" (p. 

98). 

Their analysis through the framework described above allowed them to design and put 

into practice various modifications to the classroom principles advocated by Papert. For 

example, Hoyles and Sutherland highlighted the role of teacher within the Logo envi-

ronment. Among the implications to using Logo in the classroom Hoyles and Suther-

land recommend that the teacher should: be aware of the different styles of interacting 

with Logo so he/she can promote that one particular style does not predominate; be fa-

miliar with student's misconceptions about the programming language, be alert to inter-

vene to remediate them; intervene to encourage students to predict and reflect, and, if 

necessary, take the initiative making explicit the mathematical features of activities in 

the Logo environment. 

43 



Chapter 2: Review of Algebra Research Literature 

Hoyles and Sutherland (1989) reported that the Logo environment, with appropriate 

teacher intervention, can help students overcome fears and restrictions generated by 

previous experience while working in mathematics. Particularly, they emphasised the 

potential of the Logo environment as a source for experimenting with an idea, as pro-

moting a dynamic representation of mathematical concepts, and the role of the computer 

feedback in provoking a cognitive conflict which results in child's reassessing his/her 

mathematical concepts. 

As far as the notion of variable is concerned, Hoyles and Sutherland (1989) reported 

that children did not necessarily use variables in programming tasks nor choose projects 

which needed this idea. Thus, they suggest that the use of variables might be introduced 

through simple general procedures within undemanding contexts. They point out that 

once the pupil is engaged in such a task he/she is in a better position to "become con-

fortable with the idea that a letter can stand for a range of numbers and then, with a 

wider range of experience, can develop their intuitive understanding of pattern and 

structure to the point where they can make a generalisation and formalise this in a Logo 

program" (p. 223). 

Later on. these guiding lines to shape teaching intervention were put into practice 

(Healy, Hoyles & Sutherland, 1990;). They investigated the role of peer group discus-

sion in linking their understanding of algebraic ideas and their Logo experience. Their 

findings indicate that those pupils who could operate on a variable performed better on 

the algebra interview than those who could not. The majority of these pupils who could 

operate on a variable understood that a variable represent a range of numbers and ac-

cepted lack of closure in an algebraic expression. 

Ursini (1996) investigated the potential of Logo in helping children construct algebraic 

concepts prior to formal algebraic instruction. She found that the use of Logo favoured 

the development and the formal expression of the intermediate steps that initially sup-

ported pupil's formal expression of a general method. A crucial point in supporting pu-

pil's activity was to encourage them to focus on the method for solving a problem as 
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opposed to focusing on the result obtained. The pupil's numeric background and their 

capability for working with particular cases were basic elements supporting this ap-

proach. 

Another relevant approach using Logo was carried out by Cuoco (1995). Cuoco ad-

dressed the function concept from two points of view: "an epistemological perspective 

that describes how the function concept may develop in students, and the various ways 

functions are used in mathematics" (p. 79). He elaborates on the basis of a framework 

which consists of three levels of abstraction: action, process, an object concepts of 

function. These levels come from Dubinsky's framework (to appear) which has its roots 

in the genetic epistemology of Piaget. In order to carry out experimental work, Cuoco 

used three different computational media that support both the different uses and levels 

of the function concept: The Function Machines, Logo and ISETL (Interactive Set Lan-

guage). 

The Function Machine allows students to start with isolated calculations and to gradu-

ally interiorise calculations into procedural entities. Logo is used to provide an envi-

ronment in which students build an experiment with processes, compare them and begin 

to manipulate them as data. ISETL is intended to support expressions for higher order 

functions allowing students to manipulate functions in a mathematical way. 

The experiments addressed the notion of algebraic equivalence between functions, the 

basic idea was that if two different expressions produced for every input the same out-

puts the functions are equivalent. The students were given a tabulating primitive that 

allows them to see a table of values for any function they model as a Logo procedure, 

and asked to find several different Logo procedures that produce the same table. An-

other type of activity was to tackle algebra word problems which can be modelled by 

means of a function. The students could then find the output which corresponds to a 

given input of that function. This procedure entails solving an equation as a particular 

case of a function. 
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Cuoco reports that the Function Machines prove to be a useful tool for students to find 

processes where all they could see before as isolated calculation (for example, 3x+2 

conceived as multiplying by three, then adding 2), and Logo as a medium to express 

students' procedural thinking (directly typing to f :x; output 3* :x+2; end). Using the 

Logo command 'tabulating primitive' students can produce a table of values, for exam-

ple, TAB "f 1 10, produce the table corresponding to the pairs (x, f(x)) from x=1 to 

x=10. 

Cuoco emphasises that the level of mathematics of the students he was working with 

does not determine the computational media used. "What is important is the degree to 

which students have interiorised the functions under consideration; students who are 

able to model a situation with a Logo procedure are already viewing the function at 

hand as a process" (p. 90). Another result reported was that the activity of finding vari-

ous Logo procedures which produce the same table proved to be a powerful resource in 

helping students to build, experiment, and compare processes and it guided them to the 

idea of function as an object. ISETL was used to confront students with higher levels of 

complexity tasks, such as operating with functions. An important characteristic of 

ITSEL is that it uses construction and notation that "are as close as possible to the lan-

guage of mathematics" (p. 92). 

Cuoco concluded that none of these three computational media allowed students to ex-

perience every facet of the function concept. A second conclusion was that students ex-

perience with the three computational media helped them developed a broad sense of 

mathematical function. The final conclusion puts forward the idea that the constraints of 

the medium strongly influence the ways in which students think of the situation being 

modelled. 

Spreadsheet-based studies 

Though spreadsheets were originally designed for business administration, their mathe-

matical nature has been exploited so as to create environments that have been used to 

study issues concerning modelling problem situations in mathematics and sciences 
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(Matos and Carreira, 1994; Matos, 1995; Neuwirth, 1995; Sutherland, Rojano. Ursini; 

Molyneux, and Jinich, 1996; Sutherland, Rojano, Mochon, Jinich, and Molyneux, 1996, 

among others), and coping with algebra word problems concerning features of the tran-

sition from arithmetic to algebra (Sutherland and Rojano, 1993). Due to the aims of this 

thesis, the review will concentrate in those spreadsheet-based approaches that have a fo-

cus on introductory algebra. 

The spreadsheet's column/row display and its crunching number facilities have been 

used to help children organise the involved relationships in word problems, where the 

spreadsheet code has been exploited to help children structure and express their reason-

ing by means of a formal code (i.e., A5*3 in one cell and (A5*3)^2 in another). Neuirth 

(1995) describes the spreadsheet environment by means of a spatial arrangement meta-

phor for representing structural relationships. He claims that creating formulas in 

spreadsheets can be a completely different process to dealing with formulas using paper 

and pencil and emphasises that the most important difference is that in the spreadsheet 

the variables do not have names (as it occurs in Logo), the role of variables is played by 

cells. The cell itself corresponds to the concept of a variable whereas the contents of the 

cells corresponds to the current values of the variable. The spreadsheet program allows 

us to combine variables into new values using the mouse-driven-interface, that is, cre-

ating formulas is done by pointing at the cells containing the values needed. Neuirth de-

scribes this technique as "the gestural representation of mathematical formulas" (p. 

172). 

Demana and Leitzel (1988) focused attention on using various numerical computation 

tools in helping students make the transition from arithmetic to algebraic reasoning. 

They used spreadsheets and calculators to investigate the relations among variables. 

Their strategy was to emphasise the search for patterns in tables of values for related 

variables to introduce students to formal algebraic expressions for describing such rela-

tionships. The results obtained by Demana and Leitzel suggest that this computation 

transition to the abstractions of algebra is noticeably more effective than traditional ap-

proaches. 
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Sutherland and Rojano (1993-1996) have designed activities that allowed them to in-

vestigate the potential of the spreadsheet in helping young children (10-15-year-olds) 

move from non-algebraic strategies to more algebraic approaches when coping with ne-

gotiating algebra word problems solutions. On the basis of their previous results using 

computer environments, Sutherland and Rojano have been trying out different strategies 

to help overcome the children's reluctance to spontaneously work with the unknown 

when facing situations involving generality. Their results have shown that work with the 

spreadsheet helped pupils to accept the idea of working with the unknown, "an idea 

which most pupils find difficult" (Sutherland, 1996a, p. 5). Their findings suggest that 

the algebra-like spreadsheet symbolic code can be used to mediate the algebraic ap-

proach. They argue that, in a spreadsheet, a critical feature in helping children move 

from a non-algebraic approach to a more algebraic strategy is that the pupils first use a 

cell to represent the unknown by a cell reference (for example, x), then other mathe-

matical relationships are expressed in terms of this unknown. Then pupils can use 

pointing with the mouse to support the expression of mathematical relationships. When 

a given problem has been expressed in the spreadsheet code pupils can vary the un-

known either by coping down the rules or by changing the number in the cell repre-

senting the unknown. This method has drawn encouraging results. Sutherland and Ro-

jano (1993) reported that with appropriate teacher's intervention, the use of spreadsheets 

help pupils move from non-algebraic to more algebraic solutions of algebra word prob-

lems. They have also stressed the idea of using  the spreadsheet cell as a variable to suc-

cessfully introduce the notions of algebraic equivalence and inverse function (undoing a 

spreadsheet rule). 

Sutherland (1996) in reviewing the results obtained from her previous research conjec-

tures that "work with computers was doing more than allowing to pupils progress alona, 

stages. Pupils seemed to transgress any traditional sequential learning path and ap-

proached problems in ways which did not fit easily a number of aspects of this way of 

looking at algebra learning" (p. 7). 
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Calculators in the classroom 

The use of calculators in the mathematics classroom has been a theme of great debate 

during the last two decades. One of the main topics addressed has been the teacher's 

concerns about the rapid introduction of calculator use into a teaching tradition strongly 

oriented to help children develop arithmetic skills in elementary school. Nowadays we 

have evidence from large scale studies which have shown that the use of calculators 

does not necessarily harm pupils' basic arithmetic skills. 

Hembree and Dessart (1986) studied the effects of hand-held calculator use in precol-

lege mathematics. This study was intended to elucidate why, despite the apparent po-

tential of the calculator facility in supporting student's problem solving skills and con-

cept development, and encouraging discovery, exploration and creativity, the calculator 

had caused little impact on redirecting curriculum development and had failed to enter 

most of mathematics classrooms. By the early 1980's less than 20% of the elementary 

teachers and less than 36% of the secondary teachers in the United States have em-

ployed the calculator in mathematics instruction (Suydam, 1982). Hembree and Dessart 

carried out their investigation by using a meta-analysis method to integrate the findings 

of 79 studies on the use of calculators. These studies were carried out in the United 

States during the late 1970's and the early 1980's; and focused on the effects of using 

calculators in Grades K-12. 

In each study one group of students had been permitted to use calculators within a pe-

riod of thirty school days, the machines were used for computation or to help develop 

concepts and problem solving strategies. During the same period each study included a 

comparison group which received instruction on the same mathematical topics but with 

no access in-class to calculators. The meta-analysis showed that the use of calculators in 

concert with traditional mathematics instruction apparently improves the average stu-

dent's basic skills with paper and pencil, both in working exercises and in problem 

solving. Particularly important for a rationale to calculator use in the classroom is that 

Hembree and Dessart found that calculators greatly benefit low-and high-ability stu-

dents in problem solving. Among other findings they emphasised the potential of using 
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calculators during tests. In this respect they found that, across all grades and ability lev-

els, the support provided by the calculator helped students achieve much higher scores 

than paper-and-pencil efforts. In particular they observed the most positive effects in 

low-level and high ability students in problem solving. The study found also beneficial 

effects of using calculators on student's attitude toward mathematics; Hembree and 

Dessart reported that "across all grade and ability levels the students using calculators 

showed a better attitude toward mathematics and better self-concept in mathematics 

than students not using calculators" (p. 83). 

Hembree and Dessart (1992) analysed nine additional research studies on calculator use 

in precollege mathematics. The new data strengthen the conclusion that "using the cal-

culator during instruction may improve paper-and-pencil skills for low average and 

high-ability students in addition to those of average ability" (p. 26). With regard to us-

ing calculators during tests, they found continued advantage from calculators in com-

putation and better advantage from devices in problem solving. In terms of students' at-

titudes the new data supported previous findings that calculators help promote a better 

attitude toward mathematics and specially better self-concept in mathematics. With re-

gard to prevailing uses of the calculator in different school levels they found that in the 

early grades the use of calculators is frequently for familiarisation, for checking work, 

and for problem solving, whilst in the senior high school the emphasis is made on using 

the machines as tools for calculation and reference. 

To what school policies for calculator use is concerned, Hembree and Dessart found that 

most schools tend to have a single classroom set of the devices, whilst it seems clear 

that for most efficient use, a calculator should be made available for each student. Ruth-

ven's work (1992, 1995) gives further support in this respect. The Graphic Calculators 

in Mathematics Project provided evidence for the advantages of calculator use as an in-

dividual resource (Ruthven, 1992, 1992a, 1993a, 1993b). The data showed that the cal-

culator promotes that the learning takes place "more privately and informally than on a 

classroom microcomputer with its public display exposed to scrutiny by hovering en-

thusiasts all too ready to offer advice or take control" (p. 92). This project brought to 
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light the fact that, despite the potential of computing in teaching and learning mathe-

matics, a major obstacle is that most mathematics classrooms have a single computer. 

which makes the access to computing resources very limited. Additionally, this fact en-

courages many teachers to use the computer for demonstration purposes with students' 

access to the machine being under the teacher's control. This situation means that few 

students are able to make spontaneous use of computing facilities. In this respect the 

graphic calculator offers an alternative: a class set of calculators is comparable in ex-

pense to a single microcomputer. Ruthven (1995) explored the potential of the calcula-

tor as a personal resource across the curriculum. He reported on a project where each 

Year 7 pupil in two Cambridgeshire school (1993/1994) was provided with a graphic 

calculator for their personal use. The project drew encouraging data with regard to the 

feasibility of school policies to give pupils personal ownership of calculators. The pupils 

showed a degree of involvement and initiative that suggests that such a school policy 

exerts a positive influence on pupils attitudes to technology and its use. 

Graphic calculator environment 

The graphic calculator offers facilities previously available only on micro computers, as 

production of graphics of functions and relations; some advanced prototypes provide 

also facilities to perform symbolic manipulations (Shumway, 1988). The large screen 

display, exploratory functions of graphing, and multiline display offered by graphic cal-

culators are now being exploited to design tasks and teaching approaches intended to 

promote student's creativity and exploration (see, for example, Usiskin, 1987; Demana 

and Leitzel, 1988; Shumway, 1990; Winter et al., 1991, Hector, 1992; Ruthven, 1992a, 

Burill, 1992). 

The potential of graphic calculators is described by Vonder Embse (1992) who focuses 

on the facilities provided by the large screen display and the editing and graphing func-

tions. He conceives the graphic calculator as "the ideal environment for middle school 

students to learn prealgebra concepts, to explore patterns and processes, and to solve 

problems" (p. 65). Vonder Embse emphasises the facilities offered by the large screen 

display of the graphic calculator, it allows us to show multiple inputs and outputs, which 
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helps students explore and experiment in ways that help better understand the various 

parts of a process, patterns or problem situation through the integration of numerical and 

graphic representation. These large screen functions (like a computer screen) allows us 

to show the entire key sequence of complicated string of numbers like 3+4(5-6+7), this 

facility may help novice users to visualise and hold in memory operational and grouping 

symbols as they are entered into the calculator. In particular, he argues that the screen 

display of the keying sequence closely resembles the actual mathematical expression, 

which may help students link the work with the calculator to their work with paper-and-

pencil. Multiple problems and answers can be shown at the same time as the keying se-

quence, which may help students grasp the functional idea of input and output and the 

concept of variable. 

The editing functions offered by the graphic calculator, like Insert and Delete, allows 

correction or changing the input rather than retyping a problem. The Replay function 

allows the user to repeat the last command line that was calculated, to edit the com-

mand, and to recalculate a new result. These editing functions may encourage and sup-

port 'guess-and-check' problem solving strategies; for example, the student can re-enter 

a single problem as many times as he needs within a process of guessing and refining a 

problem solution. The graphing calculator provides an environment which may help 

students to integrate the numerical, graphical and symbolic representations of mathe-

matical relationships. This environment may help students understand the relationship 

between numerical values in a table, the symbolic rule relating table values, and the 

graphical representation of the table and rule. 

Graphic calculator-based studies 

Research studies have critically examined the possible benefits provided by the graphic 

calculator. The results drawn from these studies have suggested that the graphic calcu-

lator environment influence students' strategies and mathematical attainment. Ruthven 

(1990) carried out an investigation which consisted of comparing the mathematical per-

formance of upper secondary school mathematics students who were provided with 

graphic calculators as a standard mathematical tool, with that of students of similar 
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background without access to graphing technology. The study examined students' re-

sponses to two types of item: (i) symbolisation items, which call for an algebraic de-

scription of some cartesian graph, and (ii) interpretation items, which call for the ex-

traction of information from verbally contextualised graphs. 

The study was carried out within the context of a large project (Graphic Calculators in 

Mathematics). This project enabled six small groups of classroom teachers to work with 

at least one class of students having access to graphic calculators during their two-year 

advanced-level mathematics course. The teachers were free to plan the work in their 

own classes and periodically met together to exchange ideas and review progress. To-

ward the end of the first year the students' performance was examined using the items 

described above. There were classes parallel to the project class in four of the six 

schools, which provided a sample of 87 students, 47 were in project classes having 

regular access to graphic calculators; the 40 students in the non-project classes had no 

access to graphing technology, with exception of seven students who bought their own 

graphic calculators. A questionnaire was administered by each class teacher, the first 

section of the questionnaire gathered general information about each student, the second 

section was a 40 minute test containing 12 items where students were allowed to use the 

computing and graphing technology. The items were designed to examine issues which 

cannot be faced by directly using automatic graphic procedures so as to give no direct 

advantage to calculator users. 

The results indicated that the project group was better at recognising a graph as a par-

ticular case of a family of functions, and they were better in producing a precise sym-

bolic description of the graph using the relevant information. A statistical analysis of the 

results showed that the project group substantially outperformed the comparison group 

in symbolisation items, but there were no significant differences between the groups 

with regard to interpretation items. This finding suggested that "the treatment effect is 

not an artefact of the design of the study, but genuinely attributable to the use of graphic 

calculators in the project classes" (Ruthven 1990, p. 447). This study led Ruthven 

(1992) to emphasise how the use of calculators influenced students' strategies and 
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mathematical attainment. The research data suggested that as the students gained com-

mand on the calculator's automatic procedures they developed variations of both 

graphic-trial and numeric-trial approaches. In this respect Ruthven emphasises the value 

of informal approaches, particularly in helping students who might have no other re-

source to face problem situations: "although the trial-and-improve approach has limita-

tions it often gives students a means of tackling a problem that would otherwise be in-

tractable. Moreover, it is an example of a moderated procedure, dependent for its effi-

ciency and success on intermediate judgements made by the user" (p. 97). The work 

done by some of the students showed that as they become familiar with specific mathe-

matical situations their judgements become more sophisticated; students' informal ap-

proaches indicated that they were not guessing blindly but were interpreting graphic 

feedback in the light of crucial mathematical principles. These results suggests that, un-

der appropriate conditions, the graphic calculator may play the role of a tool for cogni-

tive growth. 

The fact that graphic calculators naturally demand the use of unambiguous notation has 

been exploited to create calculator-based settings which may bring benefits to symbol 

manipulation. Ruthven (1992) analyses certain graphic calculator features which seemed 

to highlight the role of the machine as a cognitive tool. He puts forward that calculators 

offer more than a simple mechanism for calculating, that the calculator can be used so 

that it rather plays the part of a "medium for thinking and learning" (p. 95). One of the 

salient features of the graphic calculator is that it uses a symbolic language which is 

situated in the calculation environment, this feature gives an operational referent to the 

calculator's formal language (Ruthven 1993a). For example, the Ans' key can be used to 

design tasks which require the pupils to produce expressions using a symbolic algebra-

like language (i.e., the expression Ansx2 produces the sequence 2, 4, 8, 16). Another fa-

cility offered by the calculator symbolic language consists of using any of the alphabet 

The Ans function automatically stores the last result of a numerical calculation so that we can operate on 

that number by typing a program which uses the Ans symbol as variable. For example, if the last com-

puted result was 5, the keying sequence 2Ans+IEXE produces 11 as a result. Pressing EXE again will 

produce 23, and so on. 
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letters as variables to produce algebraic expressions which can be evaluated by giving 

numerical value to the letter(s) used. 

In this respect, Ruthven (1993b) reports advantages of exploiting the above features of 

the graphic calculator. A class of 13-year-olds worked with activities based on iterative 

patterns defining sequences of numbers. In particular, he found that activities based on 

number sequences that can be represented by linear expressions like Ansx3+2. lead stu-

dents to produce different but equivalent expressions. This situation encourages students 

to ask questions of whether and why these rules are the same, which provides "a highly 

motivating context for discussion, out of which I could develop two key algebraic ideas: 

the distinction between seeing such expressions as descriptions of a calculating proce-

dure, and seeing them as descriptions of the results of a procedure" (p. 23). He proposes 

a second type of activity which consists of simply programming the machine using let-

ters'. These techniques can be used to help students to cope with problem situations as 

`how many hours are there in any given number of days' by assigning a value to the 

letter D, and calculating 24xD or 24D (p. 24). This calculator facility can also be used to 

design activities focusing on algebraic equivalence, for example, establishing the 

equivalence of expressions as 2a+2b and 2(a+b) by means of comparing their numerical 

value. 

2.4. The metaphor of algebra as a language. 

Though within a wide range of perspectives, a good deal of mathematics educators have 

assumed the position of considering algebra as a language. Mason et al (1985) declared: 

"algebra is firstly a language, a way of saying and communicating (p. 1) ... If algebra 

can even be usefully referred to as a thing at all, then it must be as a language in which 

to express your thoughts and awareness of patterns" (p. 54). Pimm (1987) interprets the 

claim that mathematics is a language in a particular way, "namely as a metaphor" (p. 

= The graphic calculator uses letters to design each of the 26 immediately available memories. A letter 

can be used within the computing mode by providing it with a numerical value, for example if 2 is as-

signed to A, the expression A+5 will display 7 as a result. A letter can be used in the programming mode, 

which automatically updates the value of the variable as a number is entered in the calculator. 
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xiv). For Sutherland & Rojano (1992) "algebra is the language of mathematics, a lan-

guage which can be used to express within mathematics itself, or within other disci-

plines" (p. 2). Bell (1992) goes further and proposes that the algebraic language should 

be learned "in a way more similar to that in which the mother tongue is learnt" (p. 11-

12). Shoenfeld (1993) talks of the formal stuff of algebra as the syntax of a rich lan-

guage, on this view algebra is seen as the language of abstraction and manipulation of 

symbolic entities. 

The view of algebra as a language has been changed and broadened by technology. The 

availability of different representations for expressing quantitative relationships such as 

graphics and tables has influenced the ways in which mathematics educators conceive 

the teaching and learning of algebra. From this view algebra can be seen as a language 

with various dialects: symbols, graphs and tables. Particularly, the new teclmological re-

sources seem to strengthen the view of algebra as a language for generalising arithmetic. 

In this respect Tall (1993) declares that he advocates "introducing algebraic symbolism 

by using it as a language of communication with the computer, through programming in 

a suitable computer language ... it develops a meaningful algebraic language which can 

be used to describe number patterns, and it gives a foundation for traditional algebra and 

its manipulation" (p. 38). Tall suggests that using the symbolic code of a computer lan-

guage is "to speak it in a context where the algebraic language is seen to make sense" 

(p. 39). Tall compares Logo and BASIC as environments where the children may use 

variables closely related with the idea of a letter standing for a number. He suggests that 

whilst Logo is a better language for children to explore ideas, BASIC symbolism is 

closer to traditional algebra. For example, a BASIC command such as a=3 followed by 

the command PRINT a+1 will produce 4, which seems to be an easy task for children to 

predict what happens with the command PRINT a+2. The results of such a command 

can be predicted and then tested. Although BASIC language is close to traditional alge-

bra there are differences, for example the multiplication sign (i.e. 2*x instead of 2x or 

2xx). 
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The first, and perhaps the most clear attempt to approach the learning of mathematics 

based on the metaphor of learning natural language was made by Papert. Papert (1980) 

wrote: 

I take from Piaget a model of children as builders of their own intellectual struc-
tures. Children seem to be innately gifted learners, acquiring long before they go to 
school a vast quantity of knowledge by a process I call `Piagetian learning' or 
`learning without being taught'. For example, children learn to speak, learn the in-
tuitive geometry needed to get around in space, and learn enough of logic and rheto-
ric to get around parents -all this without being 'taught'. We must ask why some 
learning takes place so early and spontaneously while some is delayed many years 
or does not happen at all without deliberately imposed formal instruction (1980, p. 
7). 

The idea of language as means of communication is at the kernel of Papert's conception 

of 'Logo programming microworld': 

Programming a computer means nothing more or less than communicating to it in a 
language that it and the human user can both 'understand'. And learning languages 
is one of the things that children do best. Why then should a child not learn to 'talk' 
to a computer?. The computer can be a mathematics-speaking entity. We are learn-
ing how to make computers with which children love to communicate. When this 
communication occurs, children learn mathematics as a living language ... (Papert 
1980, pp. 5-6). 

A weak point in Papert's metaphor relating the Logo environment to the learning of the 

mother tongue relies on the assumption that "the interaction between student and com-

puter will have similar qualities to the interaction between child and caregiver" 

(Ruthven, 1993, p. 194). Ruthven argues that the caregiver-child interaction allows the 

child to receive and produce linguistic code, and stresses the role of that interaction in 

helping the child develop reception skills which in the long term supports him to de-

velop producing skills. He claims that this characteristic of the caregiver-child interac-

tion strongly contrasts with the child-computer interaction, because when working with 

the computer the child may produce programming utterances but he never receives pro-

gramming code from the computer. Ruthven also argues that the computer within the 

Logo environment cannot fulfil the role of the caregiver as an interlocutor "who is able 

to handle a considerable degree of ambiguity and unorthodoxy in the code produced by 
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the child and still respond appropriately" (p. 194). On this view the caregiver plays a 

crucial role in promoting effective communication meanwhile the child comes to master 

the language, and this feature of children-adult interaction is not fulfilled by the com-

puter within the Logo environment. 

The studies and positions above mentioned have influenced the design of the calculator-

based environment used in the present research, particularly with regard to the role 

played by the teacher within the calculator setting. The results drawn from investigating 

the Logo environment led to carefully design goal-oriented tasks intended to structure 

and guide children's actions within the calculator-based environment used in this study. 

For example, though it was expected that children might 'spontaneously' develop no-

tions for algebraic equivalence and inverting linear functions, specially designed activi-

ties were included to help them develop these notions (formats 3 and 4). In the same 

vein. Ruthven s criticism of Papert's metaphor of computer programming as learning 

to talk to the computer' led to the use in the present study of a specific method intended 

to accomplish as much as possible the caregiver-child interaction. The method consisted 

of marking children's work after every classroom session and letting children have the 

teacher's observations before they dealt with new tasks. This strategy helped the teacher 

have an updated view of each child's work during the whole study and allowed him to 

give the children opportune feedback delivering 'new calculator code' to children when 

they needed, for example, when children were not able to produce by themselves ex-

pressions of the form ax+b, and in the case of using parenthesis (this point is further dis-

cussed in Chapter 4). 

Contrasting with Piaget's constructivist conception of development of language as a by-

product of the development of other, non-linguistic cognitive operations, Bruner's 

(1982) investigations led him to conclude that language acquisition takes place through 

a 'teaching' process which, roughly said, consists of a highly framed child-adult inter-

action where -the child is hugely aided in his mastery of linguistically mediated requests 

by the social interactions into which he enters with his mother and other adults" (p. 1). 
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This thesis is strongly influenced by Bruner's view so his view is discussed in more de-

tail in Chapter 3. 

Other authors have subscribed a position that relates to this theme, some of them do not 

present algebra as a language either directly or metaphorically, but deal with the seman-

tics and syntax of algebra (for example, Kirshner, 1989). 

The above conceptions and theoretical positions will be reviewed when discussing the 

results of this thesis in Chapter 7. The present study focuses on exploring possible ways 

that allow us to set up a mathematical environment where algebra could be learned in a 

way more similar to that in which the mother tongue is learnt. In order to do this, we in-

vestigate the potential of graphic calculators as means of creating an algebraic context 

which helps achieve connection with 12-13 years old children's arithmetical back-

ground. A critical feature of such an environment is that of allowing the use of algebraic 

code so strongly attached to the number realm that children can permanently check the 

algebraic utterances they produce by means of basic arithmetic facts. We have arranged 

that environment trying to mirror Bruner's concept of Language Acquisition Support 

System to be discussed in Chapters 3 and 4. 

The research findings discussed in the above sections encourages the hypothesis that the 

resources offered by computers and calculators may allow the study of algebra as a lan-

guage-in-use, and, furtheimore. that the use of algebraic code helps the students gener-

ate meanings for that symbolic language that allow them to use it for problem solving 

and expressing and justifying generalisations. 

2.6. Concluding remarks and implications 

This section discusses the ways in which the research approaches and results discussed 

in the preceding sections have influenced the present study. The research previously car-

ried out influenced fundamental parts of the present thesis, in particular: (i) its aims, (ii) 

the choice of graphic calculators as a computing device, (iii) the research method, and 

(iv) the theoretical approach. These points are further discussed in what follows. 
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Implications for the aims of the study 

The aims of the present study were influenced by those contrasting results obtained 

from the research developed on the transition from arithmetic to algebra, before and af-

ter the incorporation of technological resources to school mathematics. The research 

carried out prior to the incorporation of technological resources into the mathematics 

classroom reports that children have strong difficulties in interpreting the letters as alge-

braic entities and how these difficulties may affect their approach to symbolising the 

relationships in problem solutions. These results shed light on the problem of translating 

from one symbolic system (natural language) to another (algebraic code) which shows 

the difficulty that novice algebra students have when using a new symbolic system. 

In contrast, many different technological-based approaches to the teaching and learning 

of algebra have reported that pupils do not seem to present the previously reported diffi-

culties in understanding the role of letters as variables (see section 2.3 in this chapter). 

Though technological-based approaches have provided promising results on pupils' 

achievements in modelling algebra problem situations, there has not been carried out re-

search (or not published yet) on the effects of computerised-based environments on how 

pupils, who have not had previous algebra instruction, may evolve from their first pre-

algebraic steps, to algebraic manipulation, to the stage of coping with algebra word 

problems using the algebra-like code provided by a computing device. This poses, at 

least, the following questions: 

• May the apparent benefits of computerised-based environments in helping children 

develop the notion of variable provide support for children to understand the role of 

algebraic symbolism as a tool for coping with algebraic manipulation and problem 

solving? 

• Which teaching strategies seem to be suitable in helping children develop algebraic 

notions and strategies that support them to cope with algebra problem solving? 
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The search for answers to these questions determined the aims of the present study set 

out in Chapter 1, the study intends to investigate: 

1. The notions that pupils develop for algebraic language when they meet it through 

using calculator code. 

2. The extent to which the use of the calculator language helps pupils cope with sim-

plifying similar terms within linear expressions, inverting linear functions, and 

transforming a linear algebraic expression to obtain a target expression. 

3. The algebraic strategies that children develop through working with the calculator. 

4. The extent to which the use of the calculator language as a means of expressing 

general rules governing number patterns, helps children grasp that the algebraic 

code can be used as a tool for coping with problem situations. 

According to these aims, this research is intended to document how pupils' notions of 

letters as mathematical entities evolve, how pupils cope with algebraic equivalence and 

inverting linear functions, and the extent to which pupils are able to negotiate solutions 

for algebra word problem through using the calculator code. 

The choice of the graphic calculator 

The choice of graphic calculators as the technological device on which to create the 

learning environment was determined by results drawn from the research reviewed in 

the previous sections. The most influential factor determining the use of calculators in 

this study was the constraints imposed by the existing differences between the computer 

code and the algebraic symbolic system, such as requiring the student to link the actions 

made by using the computer code with their work with standard algebraic notation (see, 

for example, Cuoco and Tall in this chapter). BASIC programming language has more 

similarities with the algebraic code than Logo language and spreadsheet code, but still 

presents noticeable differences with the standard algebraic symbolism. This fact encour-

aged the investigation of the potential of the graphic calculator in helping pupils to de-

velop algebraic notions and strategies. An influential factor in this respect were those re-

sults that have showed the potential of calculators as a personal resource which provides 

a symbolic language that presents strong similarities with the algebraic code, both in 

61 



Chapter 2: Review of Algebra Research Literature 

notation and syntax (Ruthven 1992, 1992a, 1993a, 1993b). This point will be further 

discussed in this section when dealinu, with methodological issues. 

Implications to the methodological approach 

The choice of the method used for data gathering and analysis was mainly influenced by 

the qualitative approaches employed by Noss (1985), Sutherland (1987), Hoyles 

Sutherland (1989) and Hoyles and Noss (1992). Their work has showed the potential of 

the case-study method in investigating in depth children's notions and strategies within 

computer-based environments. As will be further discussed in Chapter 4, individual in-

terviews were chosen to be the main source of data for this research. 

Other crucial methodological feature consisted of designing the tasks to be done in the 

classroom. There were two main features involved in designing the tasks: determining 

their content, and the ways in which the content may help exploit the use of calculator 

language. On the one hand the content of the tasks was influenced by the use of the cal-

culator, but the final form of the tasks was mainly determined by the work developed by 

Mason on expressing generality as a route to algebra. In deciding the content of the 

tasks Mason's claim was assumed that "the facility in manipulation of generality fol-

lows as confidence in expression develops and as multiple expressions for the same 

thing arise, and that use of algebra to solve problems depends on confident expression 

of generality using the as yet-unknown supported by awareness of the role of constraints 

on variables" (Mason, 1993, p. 2). This assumption led to the design of tasks involving 

expressing generality, in particular, tasks which require pupils to describe the rules gov-

erning given number patterns by means of calculator language (see Formats 1 and 2, 

Chapter 4, section 4.6); then, tasks which involve manipulating multiple expressions for 

the same thing were included (see format 3, Chapter 4, section 4.6); finally, tasks fo-

cusing on using the calculator code to solve problems which depend on confident ex-

pression of generality using the as yet-unknown were included (see, formats 5 and 6. 

Chapter 4, section 4.6). Though various studies have found that the introduction to alge-

bra through number patterns-based approaches present difficulties for the majority of 

children (Stacey, 1989; Herscovics, 1989; Arzarello, 1991; MacGregor and Stacey, 
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1992; MacGregor and Stacey, 1993; Stacey and MacGregor, 1996), technology-based 

approaches (Ruthven, 1993a, 1993b), have provided results which suggest that the sup-

port provided by graphic calculators to handle symbolic representation may help to take 

advantage of number patterns for introducing school algebra. Johnson's (1991) view 

that mathematical ideas become more dynamic and useful when described as a proce-

dure' provides further support for the position taken in the present research. In particu-

lar, Johnson's position that 'the potential of algorithms in the teaching and learning of 

school mathematics relies on the process of producing them', which is precisely the 

building block in helping children learn the calculator code as a language-in-use. 

With regard to the ways in which the calculator code would be used to tackle the tasks, 

the work by Booth (1984a), Johnson (1991), Tall (1993), and Ruthven (1993a, 1993b), 

were important antecedents. Booth's work influenced the present study in the sense of 

paying special attention to the difficulties that children have in formalising their meth-

ods, which are likely to be due to children's tendency to using informal procedures that 

have proved to be successful in facing arithmetic tasks but failed in the algebraic case. 

This finding led to the inclusion of tasks where the pupils, from the beginning of the 

study, confront number patterns which must be described by expressions of the form 

ax+b. Expressions of this form involve typing a string of operations 'in one piece', 

which are intended to break with children's experience in elementary school (see Ap-

pendix, Format 1). With regard to the issue of how to link pupils' previous arithmetic 

experience to the new algebra-like calculator code, Ruthven's claim that calculator lan-

guage 'is situated in the calculation environment' and this provides an operational refer-

ent to the calculator formal code, provides support to the way in which the calculator 

language used in the present research. In this respect, an original feature of the present 

research is that it exploits the programming calculator language, which currently, seems 

to be the only study that has devised in this way the fact that graphic calculators natu-

rally demand the use of unambiguous notation. 
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Implications to the theoretical approach 

As has been mentioned earlier, the work by Papert (1980) was the major theoretical an-

tecedent in the direction of taking advantage of the computer as an interlocutor for chil-

dren to communicate with by using a formal language. Papert's position may be briefly 

described by the metaphor of 'learning French in France". This study was primarily in-

spired by Papert's view and further refined by later research findings from working with 

Logo-based environments in the classroom (Sutherland, 1987, 1989;1993 Hoyles and 

Sutherland 1989). Sutherland's research brought to light that teaching intervention plays 

a more important role for structuring and guiding children's learning within the Logo 

environment, than Papert's original work suggested. Another important view in this 

sense was Ruthven's (1993) criticism of Papert's metaphor relating the Logo environ-

ment to the learning of the mother tongue. Ruthven pointed out that Papert's original 

position relies on the assumption that "the interaction between student and computer 

will have similar qualities to the interaction between child and caregiver" (p. 194). 

Ruthven argues that the computer cannot play the caregiver's role of delivering linguis-

tic code to the child, and stresses the role of the caregiver-child interaction in helping 

the child develop reception skills which in the long term will support him to develop 

language producing skills. 

Both, Sutherland (1995) findings and Ruthven's view, influenced the present study in 

the sense of searching for a theoretical background that supports a teaching position that 

allows the introduction of algebra as a language-in-use. Chapter 3 addresses this point. 

Final Remarks 

The preceding section has addressed the immediate implications of the algebra research 

literature for the major structural parts of the present study. Most of the research and 

theoretical positions reviewed in this chapter will be taken up later when discussing the 

results of this study (Chapter 7). 
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THEORETICAL BACKGROUND: 

A LINGUISTIC-BASED APPROACH TO INTRODUCTORY ALGEBRA 

Introduction 

The aim of this chapter is to discuss those theoretical issues that were used to shape the 

research on which the present thesis is based. The theoretical referent adopted in this 

study mainly relies on Bruner's research on the acquisition of the mother tongue (1978, 

1985, 1980, 1982, 1983, 1990). Some outcomes and principles drawn from Bruner's 

work were borrowed both to inform the study on children's algebraic achievements and 

to provide support for the design of a mathematical environment within which the 

teaching of algebra could be approached attempting to simulate the ways in which chil-

dren learn the rudiments of natural language. Bruner's research revolves around "how 

the young child acquires the uses of his native language and how by using language first 

for limited ends the child comes finally to recognise its more powerful, productive uses" 

(Bruner 1983, p. 7). There are two major research questions in Bruner's work: How 

does a child acquire language, and what may facilitate this learning? The theoretical is-

sues this chapter deals with do not attempt to provide an exhaustive review of Bruner's 

work on language acquisition. rather it offers a concise discussion of some selected 

topics that are more relevant to the research approach adopted in the present study. 

The adoption of children's language acquisition as a theoretical referent for this thesis 

was inspired by the following ideas: (i) as has been mentioned in Chapter 1, the author 

of the present thesis had found empirical evidence that encourages the idea of conceiv-

ing school algebra as a language which allows us to communicate and sort out mathe-

matical tasks; (ii) the graphic calculator offers facilities that allows us to put the pupil in 

the position of using the calculator's language without having previous instruction about 

its structure and syntax rules. More specifically, the graphic calculator allows the user to 

type and evaluate algebraic expressions by means of a code which presents strong simi-

larities with the algebraic notation, this calculator's facility offers a link between nu- 
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merical facts and the algebraic notation and its syntax rules: it is hypothesised that if the 

learninz  environment is suitably arranged, such a link may provide the children with a 

referent that helps them deal with the algebraic sign system being supported by their 

previous arithmetic knowledge. 

The main idea borrowed from Bruner's work in this research was that language is 

`taught', that is, language is neither a by-product of intellectual development or a result 

of a sort of children's imitation of adult's speech; Bruner's investigation proposes that 

the process of language acquisition actually starts earlier than the child is able to pro-

duce his/her first lexical utterances, that language acquisition comprises a lengthy pe-

riod of preparation where children acquire those clues which enable him/her to make 

sense of what it is talking about, and later to decode what initially appears as a continu-

ous flow of language utterances. As will be further discussed throughout the chapter, 

such a preparing stage for language acquisition relies on a highly framed adult-child in-

teraction which was recast to shape the classroom setting so that pupils can meet the 

calculator code as a language-in-use; the use of calculator code is put into a context 

which may help pupils negotiate meanings for the new language by numerically ex-

ploring the effects of using specific 'calculator's utterances'; such a classroom setting 

intends to provide a 'pre-algebraic' stage which includes those uses of algebraic code 

that constitutes the essence of an introductory algebra course, as expressing generality, 

symbolic manipulation and negotiating problem solutions. 

This chapter is organised as follows. First an overview of Bruner's theoretical view and 

his main empirical results are presented. Second, some prior approaches to language ac-

quisition are discussed and commented on in terms of Bruner's position. Third, a sum-

mary of Bruner's results and concepts is offered. Finally, the chapter is closed by dis-

cussing how Bruner's principles and empirical results were recast to make a link be-

tween language acquisition and the learning of algebra. This discussion is further elabo-

rated in Chapter 4, which describes in detail the methodological approach adopted in 

this thesis. 
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3.1. Bruner's Approach to Language Acquisition: An overview. 

Bruner's research throughout the 1970's addressed questions about what it is, beyond a 

splendid nervous system, that makes it possible for a child to acquire language so 

swiftly and effortlessly. From this view the acquisition of language not only addresses a 

psychological issue, it "is also a thorn in the side of linguistics, a testing ground for 

theories in the philosophy of mind, and a major enterprise in that part of anthropology 

and sociology that concerns itself with how a culture gets passed on" (Bruner. 1980, 

p.155). A central premise within such a theoretical position is that, to become a member 

of a linguistic community, "an aspirant human being must not only learn about language 

as a system of well-formed, rule-bound utterances about the world, but how to get 

things done with words in the language in the world" (p. 156). It is in this sense that the 

calculator-based environment in this study is meant to be: such an environment should 

help the pupil to become a member of the 'algebraic community'. In order to do this the 

classroom environment was artificially arranged intending that the pupil meets the alge-

braic code as a language that allows him to do things through 'algebraic speech' within 

the 'mathematical world' framed by the classroom activity. 

Bruner considers the syntactic, the semantic, and the pragmatic facets of language as 

constituting three great problem spaces in language acquisition: 

• Syntax deals with the problem of how we acquire our facility in managing well-

formed utterances governed by a grammar. 

• Semantics concerns the nature of the relation between words and possible worlds as 

we know such worlds. 

• Pragmatics has to do with the manner in which we finally come to use well-formed 

utterances about possible worlds to affect others. 

Bruner's investigation suggests that the pragmatic will be first and the syntactic will be 

last, but more importantly, that the acquisition of language-in-use strongly depends 

upon the interdependence of well-formedness, meaning and reference, and conventions 

of use. He emphasises that syntax, semantics and pragmatics "are not derivable each 
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from the other, but rather that each serves as a scaffold for aiding in mastery of the oth-

ers" (p. 155). 

For Bruner, language is learned by using it, and central to its use are what he called for-

mats, which are highly framed interactions between mother and child. His research fo-

cused principally on two of the great functions fulfilled through language by native 

speakers: indicating and requesting. In particular, Bruner studied the ascent of these 

functions from a pre-linguistic beginning to a level of linguistic proficiency where 

speakers are at the take-off point that will lead them into ordinary or conventional lan-

guage use. His findings led him to conclude that since the child masters some general 

aspects of communicative use before making much progress in either the semantic or 

syntactic domain, pragmatics provides the most general support system for mastery of 

the more formal aspects of language. In terms of the present thesis, the concept of for-

mat is borrowed to frame the teacher-pupil and the pupil-calculator interactions. 

Bruner's concept of format was recast so as to help children develop the referring func-

tion of language by confronting pupils to describing general number patters by means of 

the calculator language, and to develop the requesting function by encouraging the pu-

pils to gain experience in using calculator language to answer particular questions about 

general number patterns. These points are further discussed in section 3.4. in this chap-

ter (see Mathematical Formats). 

3.2. An overview of different approaches to language acquisition. 

This section is intended to place the pragmatic approach to language acquisition within 

the framework provided by other approaches to this topic. The intention is to discuss 

those issues which point at the boundaries between different theoretical positions in or-

der to get a better position from which to recast Bruner's pragmatic view of language in 

terms of the learning of introductory algebra. 

Behaviourist approach to language 

Bruner (1978) strongly criticised the positions taken towards language acquisition as 

existed up to the late 1950's, from what he considered its first enunciation by St. 
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Augustine to its last in Skinner (1957). This view conceived the process of language ac-

quisition as a particular way of learning and was explained by general theories. Ac-

cording to Bruner, most behaviourist learning theories operated with principles and with 

experimental paradigms that had little to do with the phenomena of language. Their 

principles and their research paradigms were not derived from the phenomena of lan-

guage but from general behaviour, which leads one to see language like any other be-

haviour, and to explain it as just another set of responses. For instance, transfer of re-

sponse from one stimulus to another was assured by the similarity between stimuli. In 

Bruner's (1983) terms "language learning was assumed to be much like, say, nonsense 

syllable learning, except that it might be aided by imitation, the learner imitating the 

performance of the 'model' and then being reinforced for correct performance" (p. 32). 

The Behaviourist learning theory put the emphasis on words rather than on grammar. 

Consequently, it omitted almost entirely the combinatorial and generative effect of 

having syntax which made possible the routine construction of sentences never before 

heard and which did not already exist in the adult speech to be imitated. 

Cognitive Developmental Approach 

The most important study within this position was provided by Piaget. Bruner (1982) 

considered that the development of language was for Piaget "a by-product of the devel-

opment of other, non-linguistic cognitive operations ... Language, so to speak, was sim-

ply a symptom of the automatic semiotization of those growing cognitive operations 

that achieved reversibility and made possible such things as object constancy, and so 

on" (p. 10). Karmiloff-Smith (1979) points out that for Piaget, language did not consti-

tute a separate problem space. Karmiloff-Smith did not find in Piaget's work a clear ex-

planation of how exactly these non-linguistic cognitive operations can support the abil-

ity "to recognise and use predicational grammar or the definite marking system of 

anaphora or to generate only well formed sentences". In this respect, Bruner questioned 

how the egocentric child mastered the shifter pronominals, like I and You, when he was 

supposed not to be able to take another's perspective. Bruner considered that "the origin 

of Piaget's massive intellectual scotoma about accounting for language acquisition was 

his stout resistance to the idea that language could lead to or even nourish non-linguistic 
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cognitive development ... Therefore he made it a by-product of non-linguistic develop-

ment" (1982, p 11). Bruner argues that the only way in which language acquisition 

could be shown to be an indicator of cognitive growth was by showing that it correlated 

with language development. "But then, so too does body weight ..." (p. 12). 

Bruner (1982) shows that the last decade of research strongly supports the view that 

language acquisition is aided by the acquirer gaining world knowledge, that language is 

aided by maturation; and it is aided by a privileged interaction between the child and a 

caregiver who is somewhat well tuned to his linguistic level. In this view, children's 

learning of language is seen as a result of a highly framed social interaction rather than 

solely a result of children's cognitive development. 

A syntactic Approach 

Perhaps Chomsky's (1957) work is the best representative of the syntactic approach. His 

thesis was that the acquisition of the structure of language depended upon a recognition 

device which Chomsky called the Language Acquisition Device (LAD). Briefly said, 

the LAD is what allows one to accept the surface structure of any natural language as 

input and to recognise its deep structure by virtue of the affinity of all natural languages 

with a universal linguistic deep structure that humans knew innately. The output of the 

LAD was the grammatical rules of the language by which the learner was enabled to 

generate well-formed utterances and none that were ill-formed. 

A radical interpretation, that according to Bruner is attributable more to his psychologi-

cal followers than to Chomsky himself, claims that acquisition of the formal, syntactic 

structure of language is completely independent of either world knowledge or of social 

interaction with speakers of the language. In this view LAD is basically a recognition 

mechanism "by which the infant speaker is enabled to recognise the deep regularities in 

the surface structure of the local language to which he is exposed by virtue of knowing 

already the nature of the deep structure of all languages" (Bruner, 1982, p.2). The radi-

cal Chomsky's followers propose that the child simply recognises the realisation of 

these universals in the local language, although he may have encountered only degener- 
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ate instances of it. In summary, syntax was independent of any kind of knowledge of the 

world and of communicative function, thus the acquisition of syntax is only constrained 

by limitations of performance, like the child's limited attention and memory span. 

Bruner's perspective on this radical view was that, the detail of language acquisition is 

entirely a matter of performance rather than competence, which he considers as a part of 

the innate child's endowment. Thus, the growth of performance depends entirely on the 

growth of attention span and information processing capacity. Bruner (1982) points out 

that "nobody has ever been very clear about whether this 'performance variable' grew 

simply with maturation (the more radical exponents rather implied it did) or whether it 

depended as well upon the acquisition of other forms of non-linguistic knowledge" (p. 

3). 

Bruner considers that the radical view of Chomsky's theory is undoubtedly wrong, 

mainly due to the fact that the LAD may require priming in order to operate. In any 

case, Bruner acknowledges that Chomsky succeeded in getting people to look afresh at 

language acquisition and to look at it as the acquisition of real language rather than in 

the form of nonsense syllables. 

A semantic approach 

According to Bruner (1980), the basic assumption that distinguishes the semantic from 

the syntactic approach to language is that the former proposes that children had a 

working knowledge of the world before they acquire language, and that such knowledge 

of the world assist them in learning the language. Bruner (1982) thinks that this is not an 

unreasonable start: "if you know what it is that you are trying to distinguish in the real 

world, you will presumably be alerted in some way to linguistic distinctions that reflect 

or map into or simply accompany those distinctions" (p. 6). However, he points out that 

it is a weak claim in the sense that there is nothing about conceptual distinctions be-

tween, for instance, phases of a goal-directed activity, that will give the child any hint as 

to how grammatical or lexical distinctions are realised linguistically. Bruner proposes 

that if the child did not have some code breaking device to aid him with the language, 
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knowledge of the real world would aid him very little. Bruner's point is that without 

such a code breaker the child would be back in the behaviourist-type position, operating 

by pure induction: "we know that is an impossible position if only for the formal reason 

that for any finite utterance, an infinite number of grammars is applicable and nobody 

lasts long enough to narrow down the contending field by pure induction" (1982, p. 7). 

There were many efforts to develop a generative semantics out of which grammatical 

hypotheses could be derived. They were oriented by the principle that a knowledge of 

the world, organised in terms of a system of concepts, might give one hints as to where 

distinctions could be expected to occur in the language. 

Bruner points out that the linguistic distinctions and their mode of being realised 

(whether morphologically or syntactically) have to be acquired as well, and that the is-

sue of whether rules of grammar can somehow be inferred or generalised from the 

structure of our knowledge of the world still conveys open questions which deserves 

further research. 

Bruner (1983) thinks that the semantic position does not seem to explain how the child 

gets to the point of being able to put together verbal strings so as to create utterances 

that assign appropriate perspectives to scenes, in Bruner's terms "the hypothesis is in-

teresting but in that special way in which, as in Japanese prints, landscapes are interest-

ing by virtue of being enshrouded in mist" (p. 159). Nevertheless he points out that the 

semantic approach incorporates child's actions and this new element provides a differ-

ent dimension for explaining language acquisition. For example, Fillmore (1977) hy-

pothesises that meanings depend upon scenes and this involves an assignment of per-

spective. Particular words used impose a perspective on the scene and sentence deci-

sions are perspective decisions. If, for example, the agent of action is forefronted in per-

spective, the nominal which represents it must be the 'deep subject' of the sentence. In 

this sense a child's action "comprises a set of universal, presumably innate, concepts 

which identify certain types of judgements human beings are capable of making about 

the events that are going on around them ... who did it, who it happened to, and what got 
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changed" (p.24). The basic structures are these action categories, and different lan-

guages go about realising them in different ways: by function words, by inflectional 

morphemes as in the case endings of Latin, syntactic devices like passivization. and so 

on. These grammatical forms are the surface structures of language that depend for their 

acquisition on an understanding of deep semantic concepts about action. 

Nelson (1975) offers an argument that the child approaches the task of acquiring lan-

guage already equipped with concepts related to action. In essence, she proposed that 

the child came to language with a store of familiar concepts of people and objects that 

were organised around the child's experience with these things. "Because the child's 

experience was active, the dynamic aspects would be the most potent part of what the 

child came to know about the things experienced. It could be expected that the child 

would organise knowledge around what he could do with things and what they could 

do. In other words, knowledge of the world would be functionally organised from the 

child's point of view" (pp. 4-5). 

Bruner, while investigating the child's acquisition of prelinguistic and linguistic means 

for making requests, found that requests are in the deepest sense dependent upon the 

child's understanding of action and on enlisting another in carrying out one's own ac-

tions. In this sense Bruner's findings coincide with the semantic-oriented studies in that 

action provides the child with a set of formats that permit him to organise his concepts 

sequentially in a sentence-like form. He points out that the capacity to do this is a "basic 

form of representation that the child uses from the start and gradually elaborates. In ef-

fect, it is what guides the formation of utterances beyond the one-word stage" (p. 160). 

A pragmatic Approach to Language Acquisition 

This section deals first with pragmatics in language generally, then with language ac-

quisition in particular. In Bruner's view the syntactic model assumes the child as simply 

a consumer of linguistic input; the semantic model assumes him as a rather lone prob-

lem solver sorting out the world around him in terms of his actions upon it and general- 
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ising that knowledge to language; and the pragmatic approach takes us directly into the 

issue of the social context of language. 

For Bruner (1982) pragmatics is "the study of how speech is used to accomplish such 

social ends as promising, humiliating, assuaging, warning, declaring, requesting ... Its 

elements do not 'stand for' anything: they are something ... even silence, though it can-

not be specified syntactically or semantically, may speak volumes in the context where 

it occurs. It is certainly not just like a grammatical deletion rule where patterned absence 

implies presence" (p. 13). From this perspective, language is conceived of as a vehicle 

for doing things with and to others. 

The implication is that pragmatics necessarily relates to discourse and, at the same time, 

is always context dependent, dependent upon a shared context. Discourse presupposes a 

reciprocal commitment between speakers that includes at least three elements: (i) a 

shared set of conventions for establishing speaker intent and listener uptake, (ii) a 

shared basis for exploiting the deictic possibilities of spatial, temporal, and interpersonal 

context; and (iii) conventional means jointly for establishing and retrieving presupposi-

tions. These three elements, announcement of intention, regulation of deixis, and control 

of presupposition, give discourse its future, present, and past orientations. 

A great many acts of discourse are found to be ways of 'tuning' these forms of recipro-

cal commitment. Within a radical position some linguistic theorists have proposed that 

the grammatical categories of language exist to ensure such tuning as well as to assure 

reference and meaning. For example, Benveniste (1971) raised the question of the func-

tion served by personal pronouns, a universal feature of all known languages. Why are 

they needed, he asked, when in fact we could accomplish the same semantic ends more 

reliably by using nominals to specify people or objects rather than having to employ 

shifter pronominals. His answer was that shifters like I and you serve as economical 

ways of sharing and regulating the perspectives of two speakers through reciprocal role 

shift. 
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Bruner's stance is that the pragmatics of discourse cannot be based upon ordinary 

grammatical categories alone. For grammar is traditionally based upon the concept of 

the sentence and on sentence parts. But the rules of discourse depend for their power 

upon the privileges of occurrence of expressions in discourse, not just in individual 

sentences. 

There is another sense in which interaction motivates grammatical rules. One of the 

major tasks in interacting with another is the regulation of joint attention, early interac-

tion abounds in procedures for regulating attentional perspective on scenes in the form 

of vocatives, demonstratives, pointing gestures, and intonational contours, employed by 

both adult and child. 

The publication of Austin's How To Do Things With Words in 1962 seemed to encour-

age the emergence of pragmatics. Austin's work addresses the issue that utterances can-

not be understood in terms of their propositional content. Utterances also have an op-

erational function based on convention. In this view, mastering a language involves not 

only knowing how to string together propositions, but also how to meet the conditions 

on the appropriate making of utterances. 

Bruner (1980) analysed the utterance 'would you be so kind as to pass the salt?' to ex-

emplify Austin's claim. Bruner argues that it is not designed to "prove the limits of the 

listener's compassion, but rather is a conventionalised request for the condiment named 

that also takes into account certain conditions imposed on discourse, for example, that 

the voluntarism of the addressee be recognised in the framing of a request" (p. 161). 

In Austin's view, an utterance can be thought of as containing not only a propositional 

form, its locution, but also an illocutionary force whose uptake by an interlocutor guides 

his assignment of interpretation to the locution. The speaker's communicative intentions 

are relevant issues for pragmatics, though the relation between the form of the locution 

and its force remains obscure. 
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The role of discourse within a pragmatic approach establishes a link with how language 

is acquired. There are at least two questions crucial to acquisition: communicative in-

tention and shared presuppositions. From the pragmatic perspective the intention is what 

needs to be decoded in speaking and understanding a language. For using a language not 

only depends upon a shared grammar and a shared lexicon that makes it possible for 

speaker and hearer to map each other's utterance into context if they are to extract 

meaningful propositions from talk. Communication also depends upon shared notions 

about conditions of utterances. Searle (1969) calls 'speech acts' the combined locution-

ary form and illocutionary force and describes them as having at least three conditions: 

a preparatory condition (laying appropriate ground for the utterance), an essential con-

dition (meeting the logical conditions for performing a speech act, as for example being 

uninformed as a condition for asking for information related to a matter), and sincerity 

conditions (meeting the psychological requirement that, for example, you really want 

the information you are asking for). 

In this respect, Bruner (1983) reports that the learning of speech acts seems, somehow, 

more clear than the learning either of syntax or semantics. Syntactic rule-following is 

rarely followed by corrective feedback. And even semantic mastery often seems strik-

ingly unassisted. Speech acts, on the contrary, work or don't work and are openly cor-

rected. What is striking about them, too, is that they are present in some recognisable 

form even before lexico-grammatical speech develops. The child learns how to realise 

his intentions communicatively by conventionalised gestural or vocal means before he 

ever learns to do so by the use of locutions. In this sense, primitive speech act patterns 

may be established in the child's repertory as a kind of matrix into which syntactic and 

semantic achievements can be set. 

Bruner found that what is very apparent in examining any early corpus of discourse (not 

just speech, but discourse in which the mother is included) is that the child manages 

quite well in making his intentions clear, and that the mother is very much more preoc-

cupied with teaching the child how, when, and where to make appropriate utterances 

than she is with issues of syntax or meaning. In contrast, it is very rare to find any early 
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instances of syntactic correction and there is even some suspicion (Nelson, 1973) that 

semantic corrections may lead to the suppression of the lexical items that produced the 

difficulty. It suffices to note only that there is a large investment of time and energy 

during acquisition in helping the child learn how to say things in a fashion appropriate 

to the discourse, even if syntax is ragged and semantics hazy. 

This brings us directly to the heart of the problem relating to a pragmatic approach to 

language: the role of the 'tutor' in language acquisition. The pragmatician's stress on 

shared convention and presupposition requires a more active role for the adult in the 

child's language acquisition than just being a 'model'. The pragmatic route requires that 

the adult be a partner. The research until the late 70's (a great deal of it summarised in 

Snow and Ferguson, 1977) indicate that parents play a far more active role in language 

acquisition than simply modelling the language and providing input for Chomsky's 

LAD. A suitable way of characterising the parents role is by the current phrase: the par-

ent's role is 'fine-tuned' to the level of their children. Bruner (1980) reported that 

"semantically, syntactically, lexically, intonationally, in terms of sentence length and 

complexity, parents get down to the level on which their children are operating and 

move ahead with them at a rate that shows remarkable sensitivity to their children's 

progress" (p. 160). Parents are very skilful in using the 'baby talk' register and the level 

of their speech matches strikingly well the level of their children's speech. This chil-

dren's approach to language seems to pose a dilemma. As Brown (1977) puts it. how do 

you teach children how to talk by talking baby talk with them at a level which they al-

ready understand? In this respect Bruner's research indicates that the answer has got to 

be that the important thing is to keep communicating with children for by so doing one 

allows them to learn how to extend the speech that they have into new contexts. how to 

meet the conditions on speech acts, how to maintain topics across turns, how indeed to 

regulate turn-taking and adjacency pairing, and so on. Above all, children are learning 

what is worth talking about, when and how. They are learning scripts about interaction 

with others through communication. 

77 



Chapter 3: Theoretical Background 

3.3. Bruner's Research Findings 

The research by Bruner on the process of language acquisition cover a vast range of 

fundamental psychological issues. According to the specific purposes of the present the-

sis, the most relevant result drawn from Bruner's theoretical and empirical work may be 

summarised in the existence of a Language Acquisition Support System (LASS). 

Bruner claims that there is a LASS that makes it possible for the infant to enter the lin-

guistic community, a system that "frames the interaction of human beings in such a way 

as to aid the aspirant speaker in mastering the uses of language. It is that system that 

provides the functional priming that makes language acquisition not only possible, but 

makes it proceed in the order and pace in which it ordinarily occurs" (p. 120). 

Bruner's work sustains the hypothesis that "in order for the young child to be clued into 

the language, he must first enter into social relationships of a kind that function in the 

manner consonant with the uses of language in discourse -relating to intention sharing, 

to deictic specification, and to the establishment of presupposition" (1982, p. 15). He 

calls such a social relationship a format. 

A format "is a rule-bound microcosm in which the adult and child do things to and with 

each other. In its most general sense, it is the instrument of patterned human interaction" 

(p. 16). The formats are crucial vehicles in the passage from communication to lan-

guage; formats pattern communicative interaction between infant and caregiver before 

lexico-grammatical speech begins. 

"A format entails a contingent interaction between two acting parties. It is contingent in 

the sense that the responses of each member can be shown to be dependent upon a prior 

response of the other" (Bruner, 1982, p. 16). Since each member of the pair has a goal 

and a set of means towards its attainment, it is necessary that the format fulfils two con-

ditions: first, that a participant's successive responses are instrumental to that goal, and 

second, that there is a discernible order in the sequence indicating that the terminal goal 

has been reached. 
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Formats, defined in this sense, represent a simple instance of a 'scenario'. Formats, 

however, grow and can become as varied and complex as necessary. Their growth is af-

fected in several ways. They may in time incorporate new means or strategies for the 

attainment of goals, including symbolic or linguistic ones. They may move toward co-

ordination of the goals of the two partners not only in the sense of agreement but also 

with respect to a division of labour and a division of initiative. 

Formats are also modular in the sense of being manageable as subroutines for incorpo-

ration in larger scale, longer term routines. A greeting format, for example, can be in-

corporated in a larger scale routine involving other forms of joint action. In this sense, 

any given format may have a hierarchical structure, parts being interpretable in terms of 

their placement in a larger structure. The creation of higher order formats by incorpora-

tion of subroutine formats is one of the principal sources of presupposition. What is in-

corporated becomes implicit or presupposed. Formats, except when highly convention-

alised, cannot be identified independently of the perceptions of the participants. In this 

sense, they have the property of contexts generally in being the results of definition by 

the participants. The communal definition of formats is one of the major ways in which 

a community controls the interaction of its members. Once a foiniat is conventionalised 

and 'socialised' it comes to be seen as having exteriority and constraint and is seen as 

having objective status. Eventually, they provide the basis for speech acts and can be re-

constituted as needed by linguistic means alone. 

Bruner suggests that one special property of formats involving an infant and an adult, 

"is that they are asymmetrical with respect to the 'consciousness' of the members, one 

`knowing what's up,' the other not knowing or knowing less. The adult serves as model, 

scaffold, and monitor until the child can take over on his own" (1982, p.18). 

A final feature of Bruner's (1983) research which has been relevant for this thesis is that 

his findings suggest that referring and requesting are the main linguistic functions that 

young children develop in the process of mastering language as means of communica- 
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tion. Referring has to do with -the causal historical chain that links an introductory ref 

erential event (when a person tries to indicate, however crudely, what he has on his 

mind) and some later referential episode (when each member of the communicating pair 

assigns a referential interpretation to a message that passes between them)" (p. 67). This 

framework presupposes four things: (i) that individuals can signal to each other 'that 

they have a referential or communicative intent', (ii) that two parties to a conversation 

may refer to the 'same' topic with widely different degrees of precision, (iii) that refer-

ence is a form of social interaction having to do with the management of joint attention. 

and (iv) that there is a goal-structure in referring , "referring is sustained not only by in-

tent to refer, but by appropriate means for doing so and by specification as to one has 

succeeded" (p. 68). To where requesting is concerned, Bruner characterises the object of 

request as "to get somebody to deliver the goods" (p. 91). His research findings suggests 

that requesting seems to be the form of language use which most deeply depends upon 

context. 

3.4. Implications of Bruner's theory for the teaching and learning of algebra. 

This section is aimed at discussing how some theoretical principles drawn from the 

pragmatic approach to language, and more particularly from Bruner's research, were re-

cast in order to outline a teaching approach to introductory algebra which make it possi-

ble to observe how children learn algebraic code as a language-in-use. 

As has been said earlier, the major aim of this thesis is to explore the learning of algebra 

within the pragmatic paradigm of language acquisition. This implies conceiving a 

teaching approach in which the learning environment mirrors, as much as possible, 

those social circumstances which frame the acquisition of the mother tongue. Accord-

ingly, such an approach must be different from both a syntactic or semantic teaching-

oriented approach. In order to make this clear an attempt is made to characterise such 

teaching trends, which in no sense tries to imply that one particular trend might be more 

effective than another. 
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A syntactic-oriented approach implies a teaching position in which the pupil plays the 

role of 'consumer of linguistic input', more specifically, a consumer of those rules gov-

erning the use of algebraic code. In this approach the teacher mainly acts as the model 

for pupils to imitate, and the teaching contents are characterised by introducing algebra 

starting with the study of polynomial expressions and their rules to perform legal trans-

formations, then equations and finally functions. A good deal of text books exemplify 

this approach: first the contents supported by examples, then a list of exercises and 

problems to be solved. 

A semantic-oriented approach may be characterised by the pupil playing the role of 'a 

lone problem solver sorting out the world around him in terms of his actions upon it and 

generalising that knowledge to algebraic language'. This kind of approach relies on 

supporting the introduction of algebraic syntax by providing pupils with 'meanings' for 

the symbolic system. The teacher is the most active person in the classroom and plays 

the role of a model to be followed by pupils. The teacher tries to offer as many different 

approaches to problem solving as possible intending to help pupils induce general prop-

erties or rules from a limited number of examples. In some countries (at least in Mex-

ico), this approach is generally based on introducing algebra by confronting the pupil 

with problem situations, then equations as a means for modelling these problems, then 

polynomial expressions, and finally functions. 

A pragmatic-based approach must allow pupils to enter into algebra by using its code, 

this principle marks the main difference with the other approaches. Though it seems 

paradoxical to propose starting to use a formal symbolic language before we know at 

least some definitions about it, there is a good example: children learn their native 

tongue without any previous knowledge of grammar rules or definitions. As will be dis-

cussed next, Bruner's work on language acquisition can be recast so that it sheds light 

on the use of certain technological facilities offered by graphic calculators and how 

these facilities support a pragmatic entry into the learning of algebra. 
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In principle, both natural language and school algebra deal with learning to use a sign 

system. One of the most overt differences between acquiring these sign systems is that 

natural language is learnt within the rich environment provided by adult-child interac-

tion, it embodies a learning process which, as has been discussed, is hugely aided by 

what Bruner calls a Language Acquisition Support System (LASS). In this respect, the 

present thesis proposes that, following Bruner's concept of LASS, the school setting can 

be artificially arranged to create an Algebra Acquisition Support System (AASS), a sys-

tem in which the teacher's expertise in using algebraic code is strengthened by incorpo-

rating a technological component (graphic calculator) that allows him/her to achieve a 

milieu where children encounter the algebraic code as language-in-use for expressing 

and negotiating mathematical ideas. In other words, the calculator use is shaped so that 

it allows children to use the algebraic code as 'a vehicle for doing things with and to 

others'. In such a milieu, the calculator code not only allows children to use a symbolic 

system to describe mathematical relationships, but, furthermore, the use of the calcula-

tor code positively conveys algebraic actions since this notational code is embedded 

within a sign system governed by algebraic rules. The role assigned to the calculator 

language resonates with Bruner's view that 'if the child did not have some code break-

ing device to aid him with the language, the knowledge of the real world would aid him 

little ... without such a code breaker the child would be back in the old empiricist posi-

tion, operating by pure induction'. 

Finally, the mathematical content included in the particular pragmatic approach in this 

study centres around the notion of function. Without following a rigid sequence, syn-

tactic and semantic algebraic features are treated, including certain types of problem 

situations, which involve modelling and solving equations. These features have more to 

do with methodology so a more detailed discussion of this is made in Chapter 4. 

The setting up of such an Algebra Acquisition Support System relies on three theoreti-

cal assumptions of a pragmatic nature. The first has to do with providing a context 

which makes discourse possible, a context that helps children use 'algebraic speech' to 

accomplish mathematical ends. The second assumption relies on the feasibility of cre- 
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ating 'mathematical formats' which allow the framing of both teacher-pupil and pupil-

calculator interaction. The third deals with the role of the teacher within a pragmatic ap-

proach to the teaching of algebra. These assumptions are discussed in more detail in the 

following paragraphs. 

A context for algebraic discourse 

As has been discussed earlier, discourse is always context dependent, that is dependent 

upon a shared context. In terms of encouraging 'algebraic discourse' the experimental 

tasks were designed so that children can resort to their prior arithmetic knowledge to 

make sense of and negotiate answers for the involved questions. That is, it was hypothe-

sised that children's command of elementary arithmetic facts may play the role of a 

shared set of conventions which supports teacher's communicative intent and pupil's 

language uptake. The interaction speaker-listener is twofold: teacher —pupil, and pu-

pilcalculator, which implies translating from one sign symbol system (natural lan-

guage) to another sign symbol system (calculator code). The role assigned to arithmetic 

as a shared symbol system attempts to fulfil the preparatory condition for discourse: 

laying appropriate ground for the utterance in the process of translating from one sym-

bol system to another. In summary, the arithmetic context is intended to provide con-

ventional means for establishing and retrieving presuppositions so as to help children 

negotiate meanings for the symbolic code in-use. Here, meaning is conceived of as -a 

culturally mediated phenomenon that depends upon the prior existence of a shared sym-

bol system ... where symbols depend upon the existence of a 'language' that contains an 

ordered or rule-governed system of signs" (Bruner, 1990, p. 69). 

Mathematical formats 

The second assumption upon which the Algebra Acquisition Support System depends, 

consists of the feasibility to create mathematical formats. Recasting Bruner's concepts, 

a mathematical format is conceived of as a routinised and familiar setting which frames 

teacher-child and child-calculator interaction to make communication effective,fine-

tuned'. Such formats must allow children to enter into mathematical tasks that function 

in a manner consonant with the uses of language in discourse (algebraic code). and 
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shape a microcosm where the child's successive responses are instrumental to a goal, 

and there is a discernible order in the sequence indicating that the terminal goal has been 

reached. Following Bruner's terms, these formats must also grow and become as varied 

and complex as necessary (see Appendix, Formats 1-6). 

An important feature that shapes the structure of the mathematical format is that its in-

tention is to embody the development of the two basic linguistic functions referring and 

requesting discussed earlier in this chapter. In structuring the mathematical formats an 

attempt has been made to help children develop these linguistic functions. Recasting 

Bruner's concepts into mathematical terms they consist, respectively, of using algebraic 

code to (a) describe general relationships (referring) and (b) negotiate problem solutions 

(requesting). Thus, every format was structured so that it includes a section which re-

quires children to describe a general number relationship by means of calculator code 

(referring), and another section that requires the children to answer questions and nego-

tiate problem solutions by means of calculator code (requesting). That is, to 'get the cal-

culator to deliver the goods'. The 'referring section' always has the same form, while 

`requesting' varies in content, this structure allowed the creation of higher order mathe-

matical formats by incorporating subroutine formats, which, in theory, provide the pu-

pil-teacher interaction with a basis for shared presupposition (what is incorporated be-

comes implicit or presupposed). A more specific discussion of the content and structure 

of the various mathematical formats used in this research is carried out in Chapter 4. 

The role of the teacher 

The teacher fulfils the role of proficient user of the calculator's language. It is assumed 

that his/her command of the language lets him/her guide the way it is used so as to fine 

tune it to the children's present level of knowledge. Among the specific responsibilities 

implied by this heavy burden, the teacher must be aware that the calculator only affords 

a good environment for children to produce and test algebraic utterances but does not 

provide children with 'new words' that allow their 'algebraic discourse' to flow. Thus, 

the teacher must fulfil the crucial role of helping children produce those expressions that 

go beyond their creative initiative. 
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Another important teacher's responsibility is to handle and respond appropriately to 

those unorthodox or ambiguous utterances that children may eventually produce. In this 

respect the teacher's intervention is guided (in theory) by the pragmatic principle that 

children acquire language with the intention of communicating; it is in the interest of 

fulfilling his communicative intentions that the child recognises new structural tricks 

relating to language. An intent of this kind uses whatever props are available. In this 

sense, the only errors recognised or responded to by the teacher should be those that he 

knows the child knows he can correct if challenged. 

3.5 Conclusions 

This chapter has discussed Bruner's main theoretical principles and empirical findings 

that have influenced the present research. Bruner's theoretical background has been 

primarily recast to design a mathematical environment intended to help children de-

velop algebraic notions and strategies through using the calculator code, that is, an envi-

ronment which is intended to allow children to learn about the calculator language 

through using such a language. As will be discussed in Chapters 4 and 5, this theoretical 

background will be also used to inform the study on children's algebraic achievements 

throughout the fieldwork. 

The major theoretical premise of Bruner that has been exploited in the present study is 

that children acquire the mother tongue through social interaction, an interaction which 

is highly framed and artificially arranged by the adult so that the adult's use of language 

is fine-tuned to the present level of child's intellectual development. Bruner's theoreti-

cal principles have been interpreted to create a learning setting which we have called an 

Algebra Acquisition Support System (AASS); it is hypothesised that such a system may 

provide a context which will help pupils attach meanings to the symbolic calculator 

code so that they can use the new formal code as a tool to cope with describing general 

number relations and negotiating solutions for algebra word problems. 
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The pedagogical approach proposed in this study strongly relies on the concept of 

mathematical format. The concept of format was the building block for designing the 

tasks used in this study. The AASS proposed in this study has been meant to be a prag-

matic approach to the teaching and learning of algebra in the sense that it places the 

mathematical activity into a context where children can use calculator language without 

having previous definitions or rules governing the use of that formal code; definitions 

and rules are supposed to be developed through using the calculator language. That is, 

the AASS relies on the hypothesis that the use of language is what provides meanings 

and support proper production of linguistic utterances, as opposite to the position which 

sustains that definitions and rules are what determine appropriate uses of language. 

The manner in which Bruner's concept of format was recast into algebraic activities is 

discussed in more detail in Chapter 4. 
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CHAPTER 4 

METHODOLOGY 

Introduction 

As was stated in Chapter 1 the general aim of this study is to investigate those learning 

events that take place when children encounter the algebraic code as a language-in-use. 

This aim, seen within the theoretical view adopted in this study, has implications for the 

research method. 

First, the research has to be carried out within the mathematics classroom, which is the 

natural setting in which children learn mathematics. Second, as a necessary condition 

for the research to be done, the method should include the creation of a teach-

ing/learning setting which places children in the position of users of algebraic language. 

Third, though observation of children's achievements play a relevant role in this study 

as this provides empirical evidence for the research, such achievements say nothing in 

isolation from the learning processes in which they arise, certainly such processes are 

what provide its explanatory framework. 

Consequently, the method used in this study sets out, on the one hand, to obtain infor-

mation which allows the analysis of each child's possible development throughout the 

study. On the other hand, the method also needs to allow a wider view of children's de-

velopment as a 'linguistic community'. 

This chapter is organised as follows. It begins with a discussion of the approach to 

qualitative analysis adopted in this study, then the pilot study is briefly described; fi-

nally the following components of the main study are discussed: (i) the calculator's role, 

(ii) the school setting, (iii) the classroom setting, (iv) the tasks used in the study. (v) the 

subjects taking part in the study, (vi) the sources of data and data gathering, and (vi) the 

analytical framework. 
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4.1. Method 

Following Bruner's approach to 

language acquisition, this research 

was carried out within the clutter of 

the mathematics classroom, the 

natural milieu where children are 

supposed to learn mathematics. The 

kind of data drawn from such study 

is essentially based on children's 

work episodes, which led to the adoption 

ANA I YSIS 

Fig. 1 

of a research method based on qualitative 

' 

analysis. The model proposed by Miles & Huberman (1984) influenced the methodo-

logical approach in this research. This model is described in figure 1. 

Miles & Huberman's model proposes that "analysis consists of three concurrent flows 

of activity: data reduction, data display and conclusion drawing/verification" (p. 21). 

The model assumes that data reduction and the creation and use of displays must not be 

taken separately from analysis, rather they are constituent parts of analysis. Data reduc-

tion refers to "the process of selecting, focusing, simplifying, abstracting, and trans-

forming the raw data obtained from fieldwork" (p. 21). This process takes place 

throughout the research study. 

Before the data is actually collected, Miles' model suggests an anticipatory phase for 

data reduction. In this research the anticipatory phase consisted of a pilot study which 

was intended to refine the tasks and interview protocols (the pilot study is discussed in 

more detail later on in this chapter). Data reduction was a process that continued after 

field work. This process included doing summaries and selecting extracts from inter-

view transcripts (Chapters 5, 6 and 7 are examples of how this principle was applied in 

this research). Data reduction was in fact "a form of analysis that sharpens, sorts, fo- 
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cuses, discards and organises data in such a way that 'final' conclusions can be drawn" 

(p. 21). 

Data display is the second major component of analytic activity. According to Miles 

Huberman (1984) a display "is an organised assembly of information that permits con-

clusion drawing and action taking" (p. 21). In this research data displays were used to 

help understand what was happening during classroom sessions and interviews so as to 

allow further analysis based on that understanding. The displays used in this study were 

matrices showing children's work throughout the study, and narrative text, used to dis-

cuss and analyse children's reactions during interviews. This kind of data analysis is 

presented in Chapters 5, where two case-study files are discussed. Chapter 6 presents a 

cross-analysis which is more based on narrative text. 

The third stream of analysis considered in Miles' model is conclusion drawing and veri-

fication. This level of analysis consists of "beginning to decide what things mean, in 

noting regularities, patterns, explanations, possible configurations, causal flows, and 

propositions". This level of analysis is carried out both in chapters 5, 6 and 7. In chap-

ters 5 and 6 each set of data is followed by a discussion in which some explanations for 

children's achievements are put forward. Chapter 7 intends to set up regularities among 

children's work, and some conjectures are discussed on the basis of the empirical data 

drawn from the field work. 

Data reduction, data displays and the 

drawing of conclusions interweave 

before, during and after data collec-

tion. (Fig. 2). This interrelation con-

sisted in moving back and forth be-

tween different types of data: every-

day children's work, video tapes and 

transcripts from interviews, and notes 
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taken by the researcher after each classroom session. In this sense, qualitative data 

analysis is an iterative process. Issues of data reduction, of display, and of conclusion 

drawing/verification result in analytical episodes following each other. The following 

sections discuss in more detail the different features included in the methodological ap-

proach. 

4.2. Pilot study 

The pilot study was carried out in three phases. The pilot study's major purposes were 

to refine the aims of the research, to test the strategy for collecting data, and to refine the 

design of the tasks. The different phases of the pilot study are described next. 

• The first phase was carried out with two groups of 25 children (11-12 years old) over 

12 weeks (two 50 minutes sessions per week). A sample of two boys and two girls 

were followed and interviewed during the last two weeks. This phase was carried out 

in Mexico City in a private school'. 

• The pilot experience held in Mexico led to refinement of the strategy and the adop-

tion of a case-study approach in order to improve the quality of data drawn from the 

study. Accordingly, a second phase of the pilot study was carried out in London with 

a 12 year old girl, during twenty sessions of 45 minutes each. Every session was 

audio taped. This phase allowed refinement of the protocol for individual interviews 

and incorporation of a number of tasks. 

• The third phase was implemented with a school class of 25 children during eight 

sessions (50 minutes each). This experience helped achieve the final design for the 

tasks and interview protocols. 

Conclusions from the pilot study 

The main conclusions from the pilot study are summarised next. 

The characteristics of the school are described when dealing with the school setting. 
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a) The requirement of learning the calculator programming code did not seem to be a 

serious obstacle for the children. They seemed to be motivated by a sort of curiosity 

to know more about the calculator facilities that led them to become competent users 

of the programming mode. 

b) The activities designed as input/output number tables were encouraging enough to 

engage children in the solution of the proposed tasks. The empirical data suggested 

that these kind of activities match well with the 11-12 years old children's arithmetic 

background and served to support children to face calculator language as language-

in-use. The pilot experience also offered opportunities for refining the experimental 

tasks. 

c) The empirical data obtained from the pilot study suggested that children learned to 

use the programming code not only as a computing recourse but as a language that 

allowed them to tackle mathematical tasks by making the machine 'do what they 

were looking for'. This data suggested that the calculator played the role of a media-

tional tool that gave support to children in making the transition from a step by step 

strategy to a more relational-based way of working. The final version of the tasks 

was achieved on the basis of these findings (see Appendix 1). 

4.3. The Main Study 

The main study was carried out as a part of the regular one year course which is given in 

the First Grade of Secondary School in Mexico and was implemented in the same 

school where the pilot study was held. The main study (fieldwork) lasted eighteen ses-

sions of fifty minutes each where the researcher acted as the teacher'. The following 

sections describe the methodological aspects considered in this research: 

• Calculator's role 

• School setting 
• Classroom setting 

'From now on references to "the researcher" will be made when interviews and data analysis is con-
cerned. References to "the teacher" will be made when dealing with issues concerning the work during 
classroom sessions. 
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• Subjects 

• Tasks, 
• Data gathering 
• Analytical framework 
• Final remarks. 

The calculator's role. 

The calculator played a relevant part in this study. A crucial factor determining its role 

relies on the similarity between its programming code and the algebraic symbol system, 

both in rules and notation. Another key factor is that the calculator's programming 

mode allows the children to type and evaluate algebraic expressions, which gives im-

mediate operational and numerical referent to the calculator's algebra-like language. 

This feature allows children to link an algebraic expression with their numerical value; 

this fact was the building block from which to offer the calculator's language as a lan-

guage-in-use to children who have not had any previous algebra instruction. This point 

is further discussed below. 

The calculators used in this study allow at 

least two ways of representing functional 

relationships: the analytic expression, used 

to type a program (figure 1); and the tabular representation, obtained 

on the calculator's screen by inputting a range of values to the pro-

gram's variable (figure 2). The tabular representation was used as an 

arithmetic referent for the analytic expressions. These characteristics of the machine's 

operation were exploited to create a mathematical work environment immersed in the 

context of communication. In it, the calculator's formal code is available to anyone with 

basic arithmetic skills. This environment was shaped as follows: 

• A teacher, who fulfils the role of proficient user of the calculator's language. It is hy-

pothesised that his command of the language allows him to guide the way it is used 

so as to fine tune it to the children's present level of knowledge. 

Fig. 1 
? —> A: 	2A+5 
Declaring Programming 
variables 	expression 

92 



Chapter 4: Methodology 

• A group of 23 children (11-12 years old), each with their own calculator. This acts as 

a tool with a new sign system that provides them with a way of expressing algebrai-

cally arithmetic procedures. 

• Previously designed activities which structure the children's use of the calculator's 

language. Children use this code to make the calculator do their bidding; that is, 

when the child is using the calculator's programming mode, he is in a situation where 

`by using words' that the calculator 'understands' he achieves his ends. 

Work begins by showing the student how to write a program for the calculator and what 

the program does when it runs. The activity consists of a game-like task in which the 

children 'guess' someone else's program. Pupils must recognise the numeric pattern 

shown in a table and program the calculator to produce this table. The activity's struc-

ture is given by the game itself, it contains the activity's rules and goals. The features 

used to shape the tasks so as to mirror Bruner's concept of format are discussed in sec-

tion 4.6. 

To summarise, the activities revolve around learning a code which allows you to express 

numeric relationships and make calculations with them. The interaction occurs on two 

levels: student-machine and student-teacher. The underlying hypothesis is that pupils, 

through use, create meanings for the calculator's sign system, somehow emulating the 

process through which we acquire the basics of our native tongue. 

When they engage in these activities the children are using the programming code as the 

language that the calculator 'understands'. Arithmetic plays the role of context that 

helps them set up and verify conjectures which they express through the calculator's 

language. These activities are intended to provide a work environment in which the lan-

guage is so strongly tied to context that corrections in its use can be made constantly 

through the context itself. This close relationship between form and context (tables-

analytic expressions) is similar to a fundamental characteristic of learning the native 

3  Graphics resources were not used. 
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tongue, where the child would find it nearly impossible to use linguistic forms without 

learning in context. 

School Setting 

The main study was carried out in the same school where the pilot study was imple-

mented. This school was chosen because of the possibility to work with a group of pu-

pils in an innovative way throughout the whole school year. The school is characterised 

by what in Mexico is called "active school", which is guided by the principle that disci-

pline within the classroom must be derived from the kind of work that the each teacher 

promotes, that is, the work within the classroom must be motivating enough so as to en-

courage children to become engaged in the activity. 

Another characteristic of this school is that the criteria for accepting a child as a pupil is 

based on a psychological test which provides elements to judge if an applicant may be 

of benefit for the school environment and if the school environment may be of benefit 

for such a pupil. That is, the criteria for accepting a pupil is not based on a pupil's at-

tainment, but in certain pupil's attitudes towards school'. On the basis of this fact the 

Principal of the school considers that their pupils constitute a 'mixed-ability' popula-

tion. The researcher's previous experience (ten years as a mathematics teacher in State 

Secondary Schools) suggests that the students population in this school does not signifi-

cantly differs from the students population within the State Schools in Mexico. 

The group of children who took part in the study were 11-12 year olds who were in the 

First Grade of Secondary School. In order to work with these pupils (they had not had 

any previous algebra instruction) it was necessary to make special arrangements because 

the Mexican Curriculum does not include any algebra in the First Grade. This fact made 

it necessary to submit the project for approval to the Ministry of Education Supervisors 

Board. Once the approval was given a Secondary School Inspector was regularly visit- 

Pupil's attainment is judged on the basis provided by the Primary School Certificate, which is the basic 
prerequisite that every applicant to Secondary School has to fulfil. As well, every aspirant has to pass an 
examination given by the school, which covers basic topics of Arithmetic and Spanish Language. 
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ing the Mathematics class in order to assure that the goals signalled by the Mexican 

Curriculum were being met. As well as this, the Principal of the school required the re-

searcher to teach the whole course', in order to fulfil the Ministry of Education Supervi-

sors Board requirements. 

On the one hand, the above conditions led to design the research so that it was a rela-

tively small part of the regular one year course (18 fifty minute sessions out of two hun-

dred sessions) and still have enough time to cover the regular syllabus. On the other 

hand, these restrictions placed the researcher in a situation which helped him more 

closely know each pupil in the class and have a better control of the mathematical con-

tent they were confronted with during the whole school year, (before the main study the 

pupils were not taught any topic that relates to pre-algebra, this condition was also re-

spected by the teachers in charge of Science and Computing). 

Classroom setting 

Each child in the class was given a calculator when the course began, this helped them 

master the machine's keyboard and computing functions. The programming mode was 

saved for the experimental period, which began three months after classes started. 

Activities were introduced in worksheets (a total of 55) which were organised in six 

packages called formats (after Bruner's concept). This way of presenting the tasks was 

intended to respect (as much as possible) each child's pace, which in fact is the way in 

which language acquisition occurs. Nevertheless, since the research had to be carried 

out during a pre-established period it was expected that some children would not have 

time to complete the whole set of tasks. Thus, the tasks were designed so that the central 

features were included within the first 60% of the activities in each format. The re-

maining 40% (within each format) was thought of in terms of those children who work 

5  The syllabus of the First Grade of Secondary School consists of eight chapters. Three chapters deal with 
Arithmetic (Algorithms of the basic arithmetic operations, Divisibility, and Fractions); four chapters deal 
with Geometry (Triangles and quadrilaterals; Angles, parallelism and perpendicularity, Plane representa-
tion of three dimensional figures, and Perimeter, area and volume). The last chapter deals with basic no-
tions of probability and statistics. 
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more rapidly. In order to do this the following working routine was set up: at the begin-

ning of the class each child was delivered an envelope containing a format's sheets 

without being told how many should be completed. They returned it at the end of the 

class. In the next class they collected their envelopes, finding their work marked by the 

teacher along with the sheets they had not completed. Marking the work was aimed at 

providing the researcher/teacher with a current view of each child's work throughout the 

study. This was also intended to simulate the care-giver-child interaction and to provide 

the pupil with an interlocutor who could understand unorthodox expressions and help 

him understand why these expressions do not work in the calculator's formal language. 

Teacher's feedback was outlined following Bruner's findings, particularly, it was in-

tended that the only errors recognised or responded to by the teacher should be those 

that he knows the child knows he can correct if challenged. Thus, the kind of feedback 

given to the children was characterised by asking them new questions that made the 

mistakes evident. 

Subjects 

In order to obtain data which might provide a more complete view of the effects of cal-

culator use on children with different levels of mathematical ability, eight' children were 

chosen to be observed during the experimental phase using a case-study methodology. 

They were selected according to their mathematical attainment prior to the experimental 

phase. This was done as follows: (i) a boy and girl of below average attainment, (ii) two 

boys and two girls of average attainment, and, (iii) a boy and girl of above average at-

tainment. 

The below average boy got sick at the middle of the study and was out of school for two months. 
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Tasks' 

The use of the calculator programming code determined the activities' con 

tents. The structure and the sequence of the tasks were defined by reinter-

preting Bruner's concept of format into mathematical terms. Activities were 

organised into six groups called formats. Format 1 contains the 'raw mate-

rial' on which formats 2 to 6 elaborate. In this format, expressions contain-

ing letters are introduced as the mathematical language that allows children 

to control the calculator. For example, running the program 2xA+1 for A=2, 

5, 9 outputs the table shown in figure 38. The activity is handled as a game in which pu-

pils are given a table (in a simulation of the calculator's screen). They are then asked to: 

• Find how the input is operated on to get the output, and express that in natural lan-

guage. 

• Program the calculator to reproduce the worksheet's table. 

• Complete another table given with the same program. 

This game contains the basic elements used to mirror Bruner's concept of format and 

constituted the communication platform on which increasingly complex activities were 

designed. As has been discussed in Chapter 3, a format is a highly routinised way of in-

teraction between children an adult, a format is the instrument of patterned interaction 

that allows the child to enter into social relationships of a kind that function in the man-

ner consonant with the uses of language in discourse. In other words, a format shapes 

communicative interaction between infant and caretaker before lexico-grammatical 

speech begins. Among other features, the concept of format was intended to mirror by 

keeping the children working on tasks which have the same structure, such an structure 

is provided by the game 'guess my rule'. Throughout Formats 1 to 5 the children con-

fronted different mathematical activities based on the 'guess my rule' structure while 

their content changes (they are asked to use the calculator language to: (i) describe 

'A sample of the tasks is shown in the Appendix . 
'Although the calculator recognises expressions like 2A+1, the arithmetical notation formerly known by 
the children was respected. 
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number patterns. (ii) produce number patterns. (iii) produce equivalent expressions, (iv) 

reverse linear functions, and (v) describe whole-part relationships). This structure was 

intended to help children gain self confidence in using the new mathematical 'words' 

involved in the calculator's code and start making sense of the new formal code in-use. 

For example, expressions of the form ax+b were like 'new words' for children; the use 

of these expressions imply leaving some calculations in suspense which is something 

that they seldom confronted when working arithmetically. This apparent routine was 

used to softly introduce new elements which were intended to keep children's interested 

in doing the tasks as they gained experience in dealing with the new code to cope with 

different mathematical tasks. Each worksheet included a new element, be it numerical, 

with a sign or decimal point, or structural, like 'two step' rules, for example 3xD is a 

`one step' rule and 3xD+1 is a 'two step' rule. As was described above, the new ele-

ments incorporated throughout the six formats designed for this study included algebraic 

equivalence, inverting linear functions and certain problem situations. 

These tasks attempt to minor Bruner's (1982) findings that formats, grow and can be-

come as varied and complex as necessary. Their growth is affected in several ways. The 

formats may in time incorporate new means or strategies for the attainment of goals 

(including symbolic or linguistic ones). They may move toward co-ordination of the 

goals of the two partners not only in the sense of agreement but also with respect to a 

division of labour and a division of initiative. These tasks also resemble the structure of 

`speech acts' (Searle, 1969): the child knows where the game starts, its rules. where the 

task ends; and can check on his own whether his work is correct or not. 

So far the internal structure of the mathematical formats has been discussed. Below. 

each format used in this study is described as is the sequence in which they were intro-

duced. This description gives a more concrete discussion that attempts to make clear 

how the creation of higher order mathematical formats by incorporation of subroutine 

formats is used to provide teacher-pupil and pupil-calculator interactions with a power-

ful source of presupposition: what is incorporated becomes implicit or presupposed. 
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Format 1  
This format consists of 15 worksheets that are aimed at introducing the use of the cal-

culator programming code (see Appendix 1, worksheets 1-15). Here, the children were 

supposed to learn 'how to say' to the calculator the rules of linear functional relation-

ships which were presented in its tabular form. In analysing the children's work atten-

tion is focused both on the role of tables as a means of encouraging children to use the 

new code and on children's specific achievements as clues of their development of lan-

guage reception and language production skills. The time allowed to complete the for-

mat was 5 sessions of 50 minute each. 

Format 2  
This format consists of five worksheets. The tasks are aimed at encouraging pupils to 

construct a functional rule before visualising a numerical pattern, which in terms of lan-

guage acquisition corresponds to let the child use language to get his own ends' (see 

Appendix 1, worksheets 16-20). The rules they constructed were used to create a table 

which they give as a clue for a fellow pupil to guess what program was being used to 

produce such a table. The time allowed to complete this format was one 50 minutes ses-

sion. 

Format 3  

This format consists of 10 worksheets aimed at introducing the notion of equivalence 

between algebraic expressions. The worksheets are presented as follows: firstly, chil-

dren are asked to program the calculator so that it duplicates a given table. Then pupils 

are required to construct at least four more programs which must display the same table 

(see appendix 1, worksheets 21-30). In terms of language acquisition, these tasks are 

aimed at helping children reach a higher linguistic level, from using tables as referents 

to 'talking' about tables using the algebraic code. It is intended to fulfil this aim by put-

ting children in the position of extending their prior experience, based on reading tables 

and reproducing them with a calculator program, to using tables to compare and con- 
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struct different algebraic expressions that produce the same table (synonymy). The time 

allowed to complete this format was three sessions of 50 minutes each. 

Format 4  
This format consisted of 10 worksheets, its content is based on finding rules of de-

creasing functions, which in fact introduced children to using, new words' (expressions 

of the form b-ax). Besides the typical tasks about finding a program to reproduce a 

given table, in this format the child is confronted with story-based problems which can 

be solved by means of a calculator program (see Appendix 1, worksheets 31-40). These 

problems require the pupil to symbolise part-whole relationships. for example. arbitrar-

ily cutting in two parts a piece of wire with length 16 cm. if one of these parts is called 

x. the other should be called 16—x. In terms of language acquisition this format is aimed 

at encouraging children to start linking quantitative relationships expressed in natural 

language with algebraic expressions. Three classroom sessions were assigned to this 

format. 

Since the number patterns produced by decreasing functions were completely new to the 

children, worksheets 31-32 include a table which might help the pupil link the problem 

statement with his previous experience. Problems in worksheets 33-34 require the pupil 

to grasp the functional variation suggested by the problem statement and relate it to the 

notion of a program as a functional rule. 

Format 5  

The time allowed to complete this format was two sessions, and it consisted of five 

worksheets. The tasks were aimed at introducing the notion of 'inverse programs' 

(inverse functions) and were delivered as follows: for a given table. pupils were asked to 

find a program that outputs it. then a program that outputs the inverse table (see Appen-

dix 1, worksheets 41-45). They were also asked to find the inverse of a given program 

when its rule is given. In terms of language acquisition these tasks are aimed at encour-

aging children to start operating symbolically with algebraic expressions. 
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Format 6  

This format consists of 10 worksheets and the time allowed to complete them was four 

sessions. Its aim was to observe the extent to which children can extend their experience 

in Formats 1-5 to facing new situations where children are required to use calculator 

language in negotiating problem solutions (see appendix 1, worksheets 46-55). These 

tasks are designed to provide the major source of data regarding the pragmatic facet of 

language acquisition. In other words, the tasks are aimed at obtaining a closer view of 

children's strategies when confronting new situations using the language they possibly 

acquired while describing number patterns. In order to provide an overview of this for-

mat, a succinct description of the tasks is made in what follows. 

• Worksheets 46-48 deal with sequences presented by geometrical patterns. The pupils 

are asked to program the calculator so that it helps them to obtain any specific mem-

ber of the sequence (which in fact corresponds to finding the general form of any 

term in the sequence). 

• Worksheets 49-51 and 54-55 require the children to translate word-based problem 

situations into algebraic expressions (like the length is 30 meters larger than twice the 

width). These tasks involve procedures to calculate the perimeter or the area of rec-

tangular shapes. For example, to negotiate a solution the pupils need to program the 

calculator to obtain the cost of any window frame of a whole class of rectangular 

shapes. More specifically, worksheet 54 focuses on calculating the length and width 

where a relationship between them and the perimeter are given. Worksheet 55 asks 

for the dimensions of a rectangular piece of land with maximum area where its pe-

rimeter is given. 

• Worksheets 51-53 concern problem situations which involve the notion of percent-

age. These tasks also deal with translating word-based statements into algebraic ex-

pressions. For example, children are asked to program the calculator to obtain the 

regular and the special price of any merchandise when the discount amount is given 

and the bargain offers 15% off. 
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Data gathering 

The main sources of data were the following: 

a) Children's written work throughout the fieldwork. 

b) Individual interviews which were carried out with the case-study children. 

c) Notes taken by the researcher after each classroom session during the fieldwork ad-

dressing relevant children's interventions. 

a) Children's written work throughout the fieldwork 

a) Children's written work throughout the fieldwork 

The content and aims of the tasks were already described (Tasks section). Approxi-

mately 1000 worksheets completed by the whole class were collected and marked. From 

these worksheets, around 350 were analysed (those completed by the case-study chil-

dren), the rest of the worksheets were used eventually to observe with more detail some 

particular features of children's work'. 

b) Individual interviews 

The major aim of the interviews was to obtain more precise and specific information 

about each case-study pupil and tackle some issues which were not directly addressed in 

the worksheets, such as algebraic transformation, and specific pupils' approaches to 

problem solving. The interviews were task-based sessions which lasted 50 minutes each 

(at most), and were centred on specific activities that closely related to the tasks the pu-

pils had carried out during the classroom sessions'°. As the interviewee was sorting out 

a task he/she was asked specific questions to explain his/her reasoning. The same ques-

tions were asked of each pupil and more specific questions for each children were pre-

pared in advance on the basis of each child's written work and the notes taken by the re-

searcher at the end of every classroom session. In each interview were incorporated 

some questions according to specific characteristics of each of the case-study subjects. 

9  Appendix 3 presents a sample of the work done by children who did not take part as case-study subjects. 
I°  Appendix 2 presents the protocols used to carry out each interview. 
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Each of the case-study children was interviewed three times, twice during the study, and 

once at the end. Every interview was video recorded and transcribed. Approximately 30 

hours of video taped interviews and 650 pages of interview transcripts were collected. 

An outline of the mathematical issues addressed in each interview is described below. 

Interview 1  

This interview was carried out once the children had completed five classroom sessions 

programming the calculator and centred on the activities in Formats 1 and 2. The inter-

view addressed the following aspects: 

• The notions the child might have developed about letters and symbolic expressions. 

• Child's use of parentheses and priority of operations. 

• Child's strategies for transforming linear function rules. 

Interview 2  

This interview was carried out once the children had completed 12 classroom sessions 

programming the calculator and centred on the activities in Formats 3, 4 and 5. The in-

terview addressed the following aspects: 

• Transforming an expression to obtain another given expression. 
• Simplifying linear expressions. 
• Inverting a given program. 

Interview 3  

This interview was carried out once the children had completed 18 classroom sessions 

programming the calculator and centred on the activities in Format 6. The interview ad-

dressed the following issues: 

• Interpreting algebraic expressions (geometrical context). 

• Simplifying linear expressions. 

• Inverting linear expressions. 

• Children's strategies of coping with problem situations involving generality. 
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c) Notes taken by the researcher 

The researcher took notes after each classroom session throughout the fieldwork. These 

were aimed at recording the interventions made by the teacher and pupils which could 

be used later during interviews or to provide further support data analysis. 

When the study began it was intended to pick up children's interventions both when 

talking to each other and when talking to the teacher. In order to do this the 

teacher/researcher carried with him an audio tape recording machine while children 

were working. After a few sessions this tactic was abandoned. The main reason for 

having made this decision was that the classroom environment made it difficult to iden-

tify individual interventions and particular situations which could be used effectively 

within a case-study based inquiry. It was observed that in order to take advantage of 

tape recording during classroom sessions it was necessary to introduce new constraints 

which could have inhibited children's spontaneous interventions. 

According to preliminary results obtained from the pilot study, the type of data derived 

from following the teacher's intervention was still not sufficient to thoroughly study the 

role of the teacher. 

Organisation of data gathering 

Data gathering was organised in three phases throughout the field work, each of them 

ending with an interview. These phases were determined by the content of the mathe-

matical formats in which the classroom tasks were organised and are described below. 

1. Children's entry into language, which consists of data provided by children's work 

in Formats 1 and the information provided by Interview 1. 

2. Children's entry into algebraic transformation; which consists of data provided by 

children's work through Formats 3, 4 and 5, and Interview 2. 

3. Children's entry into problem solving, which consists of data provided by children's 

work through Format 6 and Interview 3. 
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Chapter 5 presents a sample of children's work during all classroom sessions and inter-

views, the chapter consists of a chronological analysis of the work done by two case-

study children. Chapter 6 presents a brief overview of the other five children that took 

part in the study. Chapter 7 analyses from a more general view a set of selected excerpts 

of the work done by all the case-study children. 

Analytical framework 

The analytical framework was intended to follow children's work through their devel-

opment as users of calculator language. In order to do this the framework was based on 

the syntactic, semantic and pragmatic features of language. Though this framework al-

lowed the researcher to anticipate and identify a good many different aspects of chil-

dren's achievements, it was during the main study that the final features to be observed 

were more clearly defined so as to attempt to establish some regularities and put forward 

possible explanations. The qualitative nature of the research offered the advantage of in-

corporating different issues drawn from each case-study child, which provided a rich set 

of data (see, for example, Chapter 5), but it also made it impossible to follow a uniform 

scheme for describing children's work as a whole. 

The analytical framework was derived from Bruner's view of the syntactic, semantic 

and pragmatic facets of language discussed in Chapter 3. As has been mentioned earlier, 

Bruner (1980) conceives the syntactic, the semantic, and the pragmatic as three great 

problem spaces in language acquisition. In Bruner's terms syntax is concerned "with the 

problem of how we acquire our facility in managing well-formed utterances governed 

roughly by a grammar". Semantics concerns "the nature of the relation between words 

and possible worlds as we know such worlds". And pragmatics has to do with "the 

manner in which we come finally to use well-formed utterances about possible worlds 

to affect others" (p. 156). Since this study attempts to investigate children's mathemati-

cal activity from the perspective of language acquisition, the linguistic concepts of syn-

tax, semantics, and pragmatics were recast so that they serve to observe the children's 
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mathematical progress through the lenses of language acquisition. These categories 

were used to characterise the ways in which children approached the mathematical tasks 

they confronted during the study. The way in which these concepts were recast is shown 

below. 

• Syntax: How children acquire their facility in managing well-formed algebraic utter-

ances governed by the formality of calculator language. 

In terms of children's mathematical activity, this category was assigned to observe chil-

dren's understanding of the priority of operations and the use of parentheses, and the 

ways in which they cope with producing algebraic expressions that conform to syntax 

rules. 

• Semantics: The nature of the meanings that children develop for algebraic utter-

ances as they use calculator language to explore number patterns, deal with al-

gebraic transformations, and negotiate problem solutions. 

This category was assigned to deal with data that provides evidence for those notions 

developed by children for the literal terms and algebraic expressions used when pro-

gramming the calculator, and the notion of algebraic equivalence. 

• Pragmatics: The manner in which children come finally to use well-formed al-

gebraic utterances (produced while describing number patterns) to confront new 

problem situations within different contexts. 

In terms of children's mathematical activity, this category was taken to analyse: (i) the 

strategies used by the children to 'make the calculator do the work' when confronting 

problem situations, and (ii) the ways in which different contexts influence children's 

work when negotiating problem solutions. Pragmatics also has to do with the ways in 

which children put into play any available notion, be it of semantic or syntactic nature, 
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when confronting similar terms simplification, transforming a given expression to ob-

tain a target expression, and inverting linear functions. 

The thesis adopts the theoretical view that these three facets of language seem to be 

learned interdependently and that the three facets are inseparable in the process of ac-

quisition. Thus, syntax, semantics and pragmatics are taken not to be derivable each 

from the other, but rather that each serves as a scaffold for aiding in mastery of the oth-

ers (Bruner, 1980, p. 156). 

Final remarks 

The method used in this research consists of a qualitative analysis of the work done by 

the children during the field work. A central component of this method is the way in 

which the classroom setting was artificially arranged so that children can meet the cal-

culator language as a language in-use. In this respect it is important to make clear that 

Bruner's findings on children's language acquisition have been used to implement the 

field work and analyse children's work, but the tasks are of a mathematical nature. So 

this research does not intend to confirm Bruner's theory, what is relevant to this study 

are those algebraic notions and strategies that children may develop through using the 

calculator language within the particular pragmatic approach recast from Bruner's work. 

As was discussed earlier in this chapter, the classroom tasks were shaped following as 

closely as possible Bruner's findings, which he analysed in terms of a theory of prag-

matics, this is the main reason why the analytical framework is based on categories of a 

linguistic nature. 

It is also important to take into account that these categories were applied both to report 

and analyse episodes from children's work, so the criteria for assigning some particular 

episode to some particular category necessarily bears some researcher's subjectivity. 

Nevertheless, during the data analysis an effort has been made to be consistent in the 

way in which the categories were used. 
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CHAPTER 5 

CHRONOLOGY: VERTICAL ANALYSIS 

The cases of Diego and Jenny 

Introduction 

This chapter presents a vertical analysis of the work done by the children within the 

eighteen classroom sessions and the three interviews carried out during the field work. 

This vertical analysis is intended to demonstrate the ways in which children's acquisi-

tion of "calculator language" evolved in time, which, due to the nature of this research, 

fulfils a fundamental part of the study. As will be seen throughout the chapter, a single 

case-study file includes a huge amount of data, so in order to show a chronological view 

of children's work only two of the seven case-study files available will be analysed. 

These files were chosen to "represent" an "average view" of the seven case-study chil-

dren. That is, the selected files analysed in the chapter are of those children who did not 

reach either the highest or the lowest achievement during the field work. 

One of these files presents the analysis of the work done by a boy (Diego, 11 years old). 

Diego was considered to be within the "average strand" of the whole class according to 

his mathematical attainment during the first months of the course. The other file corre-

sponds to the case of a girl (Jenny, 12 years old), who in terms of the whole class was 

considered to be within the "above average strand". 

These two files allow us to observe in detail the different ways in which children may 

approach the same learning situations, and the ways in which the specific calculator-

based environment used in this study helped them build on the basis of their particular 

approaches and progressively refine their strategies and notions so as to successfully 

confront the most complex tasks delivered to them during the study. Jennifer was able to 

correctly complete all the tasks included in the study and Diego missed some of them. 

Nevertheless, from a qualitative point of view it is difficult to establish big differences 

between these two children in terms of the effectiveness of their responses to mathe- 
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matical situations. As will be seen throughout the chapter, the differences between these 

children rather corresponds to different styles of approaching the tasks. 

The chapter consists of two major sections, respectively: Diego's case, and Jennifer's 

case. Each of these sections is split into three phases, which respectively correspond to 

the algebraic topics around which the tasks were arranged (as was described in Chapter 

4): Phase 1, Children's entry into Calculator Language, provides an analysis of a child's 

work in formats 1 and 2, and in the first interview; Phase 2, Children's entry into Alge-

braic Manipulation, provides an analysis of a child's work throughout formats 3, 4 and 5 

and in the second interview; Phase 3, Children's entry into Problem Solving, provides 

an analysis of the work done by the child in Format 6 and interview 3. Finally, each 

case-study file is closed by a more general discussion which is intended to provide a 

background for the general results of this study that are discussed in Chapter 7. 

5.1. THE CASE OF DIEGO 

PHASE 1: Diego's Entry Into Calculator's Language. 

Phase 1 is organised as follows: First Diego's written work is analysed, then a summa-

rised transcription of his work is presented intending to give further support for the pre-

ceding analysis; finally Diego's work during Interview 1 is analysed. 

FORMAT 1: Discussion of Diego's work 

Semantics: Diego's notion of literal terms and algebraic expressions. 

Diego was interested in doing the tasks and completed 12 of the 15 worksheets included 

in Format 1 (the time allowed was five sessions). Diego's work indicates that he is be-

ginning to grasp how to read a table and to express it as a function rule (calculator pro-

gram). 

It is important to notice the way in which Diego refers to the function rule using natural 

language. For example, "I multiplied by 2 and added I" which does not explicitly in-

volve either the variable or the number on which he performs these operations. Never- 
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theless, he can express correctly the rule using calculator language (see, for example, 

worksheet 4). The way Diego is learning to formalise his methods seems to be strongly 

influenced by the calculator environment. The research data suggests that work with the 

calculator leads Diego to think of the tasks "operationally", that is, thinking of what 

computations have to be done to the input in order to obtain the given output. This 

seems to be the reason why Diego correctly expressed the relevant relationships alge-

braically, though he was not able to do it verbally. Diego's responses suggest that a 

teaching approach which advises children to first verbally describe the relevant relation-

ships, making explicit reference to the number or variable they are operating on, before 

expressing symbolically their method, (e.g. I multiplied the number by 2, then added 1 

to it) needs requestioning. This teaching approach is currently used in Mexico and 

probably in some other countries (see for example; Mason's (1980) recommendations 

and MacGregor & Stacey, (1993 and 1996) reports). It seems that this approach is in-

duced by the constraints imposed by the paper and pencil environment, where natural 

language is the most available tool for expressing mathematical relationships. Diego's 

work suggests that the use of calculator language provides another means of expressing 

such relationships, if the child does not respect the calculator's constraints the algebraic 

expressions they produce simply do not work. Accordingly, Diego's work within a pa-

per and pencil environment was observed during the rest of the study. 

Pragmatics: Diego's approach to inverting linear functions 

From the very beginning the tasks in Format 1 confronted the children with three types 

of questions. The first consisted of uncovering the underlying number pattern that gov-

erns a set of numbers presented in a table. The second question asked the child to de-

scribe that pattern, using calculator language in order to construct a program. The third 

question involved a new task, which required the child to sort out how to use that pro-

gram to find the numbers input when the outputs were given. This question is aimed at 

making the child reflect on the sense of the algebraic expression he/she has produced. 

From now on these tasks will be called "producing inverse values". 
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In this respect, Diego's work showed that, particularly at the beginning, teacher's feed-

back is crucial for Diego, because, when he runs a program for values which he has not 

already generated, he usually does not anticipate which results are going to be obtained. 

He just does what is required to: run the program and fill in the blanks. Thus, the task 

may result in a blind computing procedure. Diego's work also indicates that producing 

algebra-like expressions appears not enough for him to gain awareness of their general 

nature. It seems necessary that the child both produces and uses the expression. The 

following extract illustrates this: 

Diego had some trouble in producing inverse values, particularly when the expression 

involved was of the form ax+b. Once the teacher had given Diego feedback in the form 

of marked work he managed to correct and find a way to sort out the remaining tasks. 

Teacher's feedback consisted of marking the errors and writing down a note like "the 

program you made does not give these results, check it back". This helped him fill in the 

blanks correctly in worksheet 4, where Ax2+1 was the involved rule (Diego's answers 

in bold). 

Input 1.3 2.8 14 50 81 274 1st attempt: 	161.5 1st attempt: 	209 
2nd attempt: 	162 2nd attempt: 	209.5 

Output 3.6 6.6 29 101 163 549 325 420 

Let us look at the case of 325, at the first attempt he produced 161.5 by dividing 325 by 

2, 162.5, then he took 1 away and got 161.5. He did the same in the case of 420, which 

shows a trend of inverting operations following the order in which they appear (x, +, 

then ±, —). This allows us to see that he has grasped the inverse role played by these 

numbers in the table, but he has not yet realised that he might have used the program 

Ax2+1 as a source of feedback, which suggests a lack of awareness of the relationship 

between the arithmetic procedure executed by the program and the procedure he used to 

find the inverse values. In fact, Diego could answer the item by guessing with the pro-

gram Ax2+1 until he got the desired numbers. 

Pragmatics: Diego's approach to negative numbers 

Operating with negative numbers was new for all the children at the beginning of the 

calculator sessions. Previous to this only those aspects about order and the use of nega- 
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tive numbers were treated in representing magnitudes like temperature, income and 

debts, altitude with respect to the sea level, etc. Worksheets 6 and 7 includes tables 

whose inputs are decimal negative numbers, which imply operating with such numbers 

to find the functional rules that generate these tables (see Diego's work summary). Di-

ego found these rules by exploring with the calculator how to operate with negative 

numbers and was able to work out correctly the two worksheets. It seems relevant that 

Diego resorted to using the negative sign twice (i.e. A- - 5, worksheet 6) which required 

him to distinguish between the minus sign for operating and the minus sign for denoting 

a negative number. He also combined the adding and subtracting signs (A+-1.5, work-

sheet 7). This way of working provided evidence of Diego's level of engagement with 

the calculator's modes of computing, and how this experience enabled him to get sup-

port from the machine. 

FORMAT 1: Summary of Diego's work 

'Worksheets 11-15 were given only to those children who completed the work more rapidly. 
' The tasks required the child to express the rules using "their own words". 
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FORMAT 2: Discussion of Diego's work 

Semantics: Diego's notion of literal terms and algebraic expressions. 

In four of the five worksheets Diego constructed programming expressions based on 

combining two arithmetic operations. Since the kind of expressions to be used was Di-

ego's choice, this suggests that Diego was able to give sense to this type of expressions. 

Syntax: Diego's notions of parentheses and priority of operations. 

Diego's work highlights the value of allowing children to use the calculator language to 

get their own goals. In order to do this, the child may create a number-based generic ex-

ample to produce a general procedure, or he may just construct an algebraic expression 

and see how it works. Diego chose the former strategy, and due to his lack of awareness 

of priority of operations he first made a different table from the one he finally gave to 

his fellow partner (see tables below). Anticipating a general relationship gave him a 

method for verifying the correctness of the expression he had built. 

'Worksheets 11-15 were given only to those children who completed the work more rapidly. 
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Program that Diego 
used to build the table 

? -.A: A+-5x7 

Table obtained by mental calculation 

Input 1 3 5 8 10 20 
Output —28 —14 0 21 35 105 

Table obtained using the calculator 

Input 1 3 5 8 10 20 
Output —34 —32 —30 —27 —25 —15 

Diego did not expect the outputs he obtained with the program A+-5x7 because he was 

still operating from left to right. For example, he expected 10+-5x7=35 instead of —25. 

This made him inquire why he got such different results. At the time of delivering the 

task to a partner Diego had already learnt how to explain it in terms of order of arithme-

tic operations: "it first does —5x 7, —35, so it always takes 35 away from the number you 

input" (the researcher was the fellow he was working with). Nevertheless, data from in-

terview 2 shows that this experience was not enough for him to be always aware of the 

role of order of operations. 

FORMAT 2: Summary of Diego's work 

Work 	Program that Diego 
sheet 	used to build the table 

16. ? 	Ax5-2 

17. ? —>A: Ax9+1 5 

18. 2 	Ax13 1 

19. ? 	Ax5 3+1 

20. ? 	A+-5x7 

Clues given by Diego 

Input 3 5 8 10 20 
Output 2.5 7.5 12.5 20 25 50 

Input 3 5 8 10 20 

Output 10.5 28.5 46.5 73.5 91.5 181.5 

Input 3 5 8 10 20 

Output 13.1 39.3 65.5 104.8 131 262 

Input 3 5 8 10 20 

Output 6.3 16.9 27.5 43.4 54 107 

Input 3 5 8 10 20 

Output —34 —32 —30 —27 —25 —15 

INTERVIEW 1: Discussion of Diego's work 

Summary 

At the date the interview was given, Diego has been engaged in programming tasks 

during five classroom sessions (four in Format 1, one in Format 2). This interview was 

focused on observing the following aspects: 

The tasks required the child to express the rules using "their own words". 
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• The notions the child might have developed about letters and symbolic expressions. 

• Child's use of parentheses and priority of operations. 

• Child's strategies for transforming linear function rules. This was aimed at observing 

whether the programming experience may have helped the child in confronting sym-

bolic manipulation with algebraic expressions (this task is placed into calculator 

context, for example, transforming 4xA in order to make it equivalent to 3x A). These 

points are discussed in what follows. 

Semantics: Diego's notion of literal terms and algebraic expressions. 
Diego's responses indicate that his experience using the calculator has led him to de-

velop the notion of letters as symbols that represent a range of numbers. Diego has also 

grasped that letters can be chosen arbitrarily, that what matters is the structure of the ex-

pression that embodies the literal symbol. The following extracts illustrate this process. 

Being asked what the letter he used in a program meant to him, Diego answered: "the 

letter personifies the number I want to make the program with ... they personify any 

number, once you put the letter you can input any quantity ... you can run the program 

. for any number you want ... the output changes depending on the number you put in" 

(Il: 93-96)'. He has also grasped that a programming expression does not depend on the 

letter he uses. For instance, he had written the program Ax5÷.2, and was asked what 

would happened if someone else wrote Mx5±2. He answered: "Ax5±2 does the same as 

Alx5±2 because the number I am operating with may take the form of any other letter-

(11 : 1 5-1 7). 

It is also important to notice that the way in which Diego links literal symbols with 

numbers allowed him to successfully deal with tasks about symbolic manipulation. 

Syntax: Diego's notions of parentheses and priority of operations. 

Diego gained awareness of the priority of operations once he realised that the calculator 

did not give the results he was expecting to get. As will be discussed in Jenny's case, it 

was crucial that Diego was able to make the computations in advance, otherwise he 
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would not have realised anything from the outputs produced by the calculator. The fol-

lowing extract illustrates this. 

Diego was asked to program the calculator so that it first takes 1 away, then it multiplies 

the outcome by 3. He showed that he understood the question and mentally tried a few 

specific examples: "if I put 7 ... 6 by 3, 18 ... If I put 11, 10 by 3, 30" (11: 19-22). How-

ever, Diego typed the program A-1x3. He showed surprise when it produced 1 after 

having run the program for A=4, "because 1 expected it to output 9". Being asked why 

the program produced this, he ran it for a few values and found that "it is taking away 3" 

and explained that "the program first makes 1x3 then it takes this away". After several 

failed trials where he did not show any sign of knowing about parentheses he was told 

by the teacher/researcher how to get the desired program by using them. (I1: 23-64). 

What is relevant from this episode is how he grasped the idea of what parentheses are 

used for. From then on he used them as often as he could in answering the remaining 

questions in this interview (see the section about transforming linear function rules). 

This episode also suggests that for children to grasp the conventions of syntax it is nec-

essary to make evident their purpose in terms of being more suitable means than their 

previous available resources. 

Semantics: Diego's notion of algebraic equivalence 

This topic was presented immediately after Diego had faced the question of using pa-

rentheses. It seems that Diego's fresh knowledge about parentheses allowed him to face 

items on transforming algebraic expressions. The specific question was: I wanted to 

type the program 11xB but unwittingly I typed 10xB. Can you correct it without delet-

ing anything of what I have already typed? Diego's first attempt was to make the pro-

gram 10+1xB, he followed the rule of not deleting, he inserted +1. Without needing to 

run the program Diego realised that it would not work. because "the calculator multi-

plies B by I first, then adds 10". Then he inserted brackets: (10+1)xB (Il: 66-69). 

The code 'In: a-b' , is meant to denote 'Interview n, interventions a to b'. 
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Diego's number-based strategies helped him use his notion of letters as symbols that 

represent a range of numbers to develop the notion of letters as manipulative entities. 

For example, Diego was asked to transform the program 10xB so that it produces the 

same as 7xB without either deleting or inserting. He immediately said "again using 

brackets" but the imposed restriction of not inserting made him abandon this idea. He 

kept thinking, for a few moments and finally typed the program 10xB-3xB. He then ran 

it for a few values to check it back (he was really happy verifying his finding). Upon 

being asked, he explained: "The program had to multiply by three numbers less than 

ten, so we have to decrease B three times when we multiply" (11: 72-77). 

After this Diego was required to do it using, brackets: he typed (10-3)xB. Then he was 

told that there were now three different programs that he says are the same: 7xB, 10x B-

3xB and (10-3)xB. He asserted "they would all be the same". Then he was asked to 

choose from a list those programs he thought could be equivalent to 7xB. The list was 

the following: 11xB-4xB; (14-6)xB; 9xB-2xB; 6xB+1; 6xB+B and 6+1xB. He chose 

them correctly (he explained he had done it by mentally substituting values for vari-

ables) (II: 80-83). 

PHASE 2: Diego's entry into algebraic manipulation 

FORMAT 3: Discussion of Diego's work 

Diego completed correctly the 10 worksheets included in Format 3. Nevertheless, it is 

relevant how he put into play the new tools he had just dealt with three days before 

(interview 2), such as operating  with the literal terms and using parentheses, see, for ex-

ample, worksheets 22,26 and 28. 

Semantics: Diego's notion of algebraic equivalence 

Diego's approach to algebraic equivalence was hugely aided by his syntactic notions as 

will be discussed next. Diego resorted to using parentheses to operate with the coeffi-

cients of an algebraic expression in order to obtain a new equivalent expression. For ex- 
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ample, in worksheet 22 he built Bx(1+0.5) to be equivalent to Bx1.5 (see also work-

sheets 23-26). Although Diego's way of working shows his methods to be tightly linked 

to numerical computing it indicates as well that he is grasping what parentheses are used 

for. 

It seems worth noticing that Diego operated with the variable only when coefficients 

were integer numbers and where multiplication was involved (worksheets 21, and 28). 

Where division or fractional coefficients were included he operated on the independent 

term (worksheets 22-27 and 29-30). Diego's apparent limitation in manipulating alge-

braic terms relates to his approach to transforming algebraic expressions, which consists 

of exploring the behaviour of an algebraic expression through number-based generic ex-

amples (similarly to Jenny's case6). This strategy strongly relies on mental computing 

which is good as long as the target expression involves numbers and operations he can 

mentally operate with, that is, when he can anticipate the outcomes by himself. For ex-

ample, in worksheet 21 he set Bx2+Bx2, Bx5—B and Bx3+B as equivalent programs to 

Bx4, while in worksheet 22 he worked differently, there he set Bx 1 x1.5, Bx(1+0.5), 

Bx(2-0.5) and 1.5xBx1 to be equivalent to Bx1.5. 

It is also interesting how Diego extended his strategy of adding zero and multiplying by 

1 to the algebraic case. For example, in worksheet 27 he built Bx1+1+1-2 to be 

equivalent to 13+1. In worksheet 28 he wrote BxB+B—B and BxB+B—B+B2—BxB as 

equivalent expressions to B2. It is this strategy which can explain how he performed 

more difficult algebraic transformations later on (see interview 2). 

Semantics: Diego's notion of literal terms and algebraic expressions. 

When working in Format 3 Diego made a shift from describing his method using natural 

written language to describing it by means of the language of calculator expressions. 

For instance, In Format 1 his descriptions were of the type "I multiplied by 4", while in 

Format 3 they were of the type "Bx4". This shift suggests Diego's progress where 

translation from natural language to algebraic code is concerned. 
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1 	 i 
Given table 	Rule expressed in 1  Programming ex- 1  Equivalent expressions pro- 

sheet
21. 	in 	1 1.5 3 5 	7- 	Dx4 	I 9->B: Bx4 	17?->I3: Bxlx4duced.  

natural language Lpression aroduced 1  

1 	•  
1 Out 4 6 12 20 	I 	 I 	 1  ?-*B: Bx2+Bx2 

I 	 I ?->I3: Bx5-B 
I 	 I 	?-*B: Bx3+B 

22. lin 	2 4 8 10 	 1- 	Bx1.5 	1-7>-->13•• Bx1.5 	h?->13: Bx1x1.5 lin 	2 	• 	 1 
1 Out 3 6 12 14 	I 	 I 	 13 
1 	 I 	

1?-4 : Bx(1+0.5) 
I ?-*B: Bx(2-0.5) 

I 	 I 	 I 	 I  ?->13: 1.5xBx1  
Work I

- 	 1- 	 1-  
Given table 	Rule expressed in Programming ex- 1  Equivalent expressions 1 pro- 

sheet 	I 	 I natural lan_guage Lpression produced I 	 duced.  

23.   In 	1 	2 3 4 -I- 	B+4 	I  ?->I3: B+4 	I  ?->B: B+4x1 
i 	 I ' 

I Out 0.25 0.5 0.75 1 
i 

1 

24. 1In 	-1 	3 7.4 17 	Not required 	17?->13: B+-) -I- 

1 Out -0.5 1.5 3.7 8.5 
1 
1 

25. 1- 	 t- 	CANCELLED I- 
1n t- 	 ") 	.171 Bx2+2+2 26. 1 	3 	5 	9 	Not required 	1-7)->B• Bx+4 	?->B:  
! Out 6 	10 	14 22 	 I 	 I ,??-2313B: Bx2x2+2-,4 

I 	
1 ,_413.: Bx2+2x2+2+1  i 
.„..., 	.  (B+4+2)x2  

27. In 	15 16 17 18 	Not required'  I-7 -*B: B+1 1- 	 I- ?->I3: BxO+B 
1  Out 15 	16 	17 18 	 ,?-->B: B+1-1 
i 

1 	 I ?-*B: B+2X2141-1+' 
?->II: Bx1+1 

28. I 3.2 	5 	9 	Not required 	 1  ?-->B: BxB 	i+2  -1- 	 1-  
1-ii II  
1 Out 1 10.24 25 81 	I 	 i ?->B: 132 	I ?-÷B: BxB+B-B 

I2--B: BxB+B-B+B2-BxB I 	 1 

29. t- Here, the program 1-- 	 17?->N: Nx3 5x1 	
)  

il  `.->N: Nx7+2 

	

?->N: 3.5xN was pro- I 	 I 	 I ?->IN:Nx14+'): -) 

I vided instead of giving I 	 I 	 I ?-*N: Nx10.5+3 
atable. 

1-- 

	

	
.,_I ?-*N: Nx3.5+2x2 I 

30. 1 The program 1.02xZ 	Not required 	I7?->A: Axl 02x1 	Ii   
,

>A: Ax1+0.02 
\,, 1  as provided instead of 	 I I?-*A: A+2x2x1.02 

1 a table. 	 I 	 I 	 I 

Work 

?->B: B43+1) 
I ?-*B: B÷(5-1) 
t_1 ?->B: B4356-352) 

?->B: B+1x2 
1?-43: B+1+2 
I ?-->I3: Bx7+2+2 
?->B: B÷(9-7)  

t- 
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FORMAT 3: Summary of Diego's work 

FORMAT 4: Discussion of Diego's work 

In this format Diego just completed 5 out of the 10 tasks which reflects the difficulty he 

had in coping with a new kind of number pattern. Diego's reactions suggest that ex-

pressing rules of the form b-ax goes beyond that of just describing a pattern and some-

how implies operating, on the algebraic term. This conjecture seems to be supported by 

the fact that Diego confronted the task of recognising the underlying number pattern 

from a numerical exploration. that is, from finding what operations should be done with 

6  See section 5.2 in this chapter. 
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the input so as to obtain the output. This approach appears to add an important feature to 

symbolic manipulation, for in the case of describing functions of the form b-ax, the 

child not only is encouraged to operate with the as yet unknown but also he has to keep 

in suspense the as yet unknown, for example, he has first to find out the constant "b" 

and then subtract "ax" from this. This point is further discussed in the next paragraph. 

Semantics: Diego's notion of literal terms and algebraic expressions. 

In worksheet 32 Diego described the operations he made first verbally as "I took A 

away from 20" then, in the same row, as 20—A. Since the way of expressing the rule is 

the child's choice, this suggests that he is in the process of adopting algebraic language 

as a suitable means to describe quantitative relationships. From another perspective, Di-

ego used expressions like 20—A to describe his method which seems to be related to the 

issue of acceptance of unclosed algebraic expressions. 

Syntax: Diego's notion of using parentheses 

Contrasting with what Diego did in Formats 3 and 5, he did not use parentheses in this 

folinat. Worksheet 34 requires their use but he could not complete it. This suggests that 

children's learning of syntactic conventions consists of a lengthy process during which 

children need to confront different uses of the calculator language within different con-

texts. This point is taken up again in the last section of Diego's case. 

Pragmatics: Diego's approach to negative numbers 

Diego correctly completed worksheet 35 which involves operating with negative num-

bers to find the function rule (1—A). His written explanation indicates that he is at the 

stage of anticipating results of this kind without using the calculator: "I took the number 

I want away from 1, I knew this because of the negative outputs in the table". What he 

meant by saying "the number I want" is the input number in a program. 

Pragmatics: Diego's use of algebraic language to negotiate problem solutions. 

In this format the children met for the first time the use of calculator language to negoti-

ate problem solutions. Diego was able to algebraically represent quantitative relation-

ships involved in three out of four story-based problems (worksheets 31-33). He could 
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not make sense of the problem posed in worksheet 34 (the square box of maximum vol-

ume). 

FORMAT 4: Summary of Diego's work. 

WS Worksheet content Expression produced 

1-My grand father owns a hardware store. In helping him I programmed my 
calculator so that every time that some amount of wire is sold the program 

I tells you how much wire is left. The table below is an example of how my 
program works. Can you guess what is it? 

Sold 1.7 2.4 3.1 4.06 5.2 
Left 8.3 7.6 6.9 5.94 4.8 

32. 32.1. Can you program the calculator so that it produces the following ta-
ble? 

I 	 Input 	1.3 	2.5 	3.8 	4.4 	5.9 
Output 18.7 17.5 16.2 15.6 14.1 

32.2. What does it happen when you input a negative number? 

31. Answered correctly 
?->A: 5+5-A 

r-  Answered correctly 
?-*A: 20-A 
"I took away A from  20" 

"Instead of taking .4 away 
from 20 the program adds 
20" 

33. 	r I have some pieces of wire, all are of length 16 cm. I want to cut them all Answered correctly 
into two pieces in different was, for example, 12 cm and 4 cm, 11 cm I  ?-*A: 16-A 
and 5 cm, and so on. Can you program the calculator so that if I input the I "Because in earlier work- 
length of one small piece it prints out the length of the other one? 	sheets I was taking away 

I 	 ' from numbers and I did the 
I same here"  

34. 	I want to make a box with a squareT- 	 -TDid not complete this work- 
piece of cardboard. I can make the box I 	 4 	I sheet. 

by cutting squares off the corners and 
bending up the pieces that are left jutting 
out. 

The base and height of the box, are 
determined by the length of the sides of 
the squares I cut off. Figures 1 and 2 
show two possible ways of making the 
box. 

Can you program your calculator so 
that it allows to calculate the volume of 
any box I could build?  

Program your calculator so that it duplicates the table below. 
Input 1 2 3 4 5 

Output 0 -1 -2 -3 -4 I 

Program your calculator so that it produces the table below. 

	

Input 	1 	2 	3 	4 	5 

	

Output 	4 	9 14 19 24 

Program your calculator so that it produces the table below. 
Input 	1 	2 	3 	4 	5 

Program your calculator so that it produces the table below. 
Output 	0.5 	-0.5 	-1.5 	-2.5 	-3.5 	

I-Did not complete this work- 
Input 	1 	2 	3 	4 	5 

	
sheet. 

Output 8.5 6.5 4.5 2.5 0.5  
Program your calculator so that it duplicates the table below. 

Input 1 2 3 4 5 sheet. 
Output  0 0 0 0 0 

Program your calculator so that it produces the table below. 7 Did not complete this work- 
Input 1 2 3 4 5 sheet. 

Output -1 -2 -3 -4 -5 

35.  

36. 1--  

37. 1-  

38. r- 

Answered correctly 
?-*A: 1-A 
"I took the number I want 
away from 1, I knew this be-
cause of the negative outputs 
in the table- 
Answered correctly 
?-*A: Ax5-I 
"Because when I multiplied 
by 5 it always got one num-

iber less than thejsroduct".  
Did not complete this work-
sheet. 

7 Did not complete this work- 

39. 7 
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FORMAT 5: Discussion of Diego's work 

Pragmatics: Diego's approach to inverting linear functions 
Diego completed four out of five worksheets. His strategy for inverting rules of the form 

f(x)=ax+b consisted of reversing operations in the order in which they were written. 

After doing so, he adjusted the expression by adding or subtracting a constant to obtain 

the desired behaviour of the expression. For example, he inverted Ax2-1 as (A=2)+1-

0.5 (worksheet 44). In the same worksheet he could not invert the program Bx3+1, quite 

probably due to the complexity of the expression, which makes it more difficult to ad-

just 13+3-1 by adding a constant. 

Syntax: Diego's notion of using of parentheses 
Diego's work shows that he is not yet at the stage of discriminating when parentheses 

are strictly necessary (see for example worksheet 44). Besides, he could not extend his 

notion of using parentheses so as to apply then to get the inverse rule of functions of the 

form f(x)=ax+b. 

FORMAT 5: Summary of Diego's work 

WS 4_1 	 Content 	 4_1 	 i_ 	e_p 

I 	 I 	 I 

Program_produeed 	Inversrogram  
1 

41. I  Input 	10.4 16 	19 	23.5 37 	 1  ?->A: A+5.5 	 I  ?->A: A-5.5 

_i_OutEut 4.9 10.5 13.5 18 31.5  

42. 1  Input 	11.4 19 	23.1 	38 50 	 ? ->A: A-6.1 1-?->A: A+6.1 
LOutput   17.5 25.1 29.2 44.1 56.1  

43. I 	
. 

43 1 Input 0.13 0.17 	0.65 	3.8 9.28 	 ?-.A: Ax2 	 17?->A: A2. 
I 	 I  
I 	Output 0.26 0.34 1.3 	7.6 18.56 	 1 	 i 
I 43.2.Program your calculator so that it produces the inverse of Mx3. 	I 	 I ?-*M: M÷3 
I 	 I 	 I 
I 	 I 	 I 
1  43.3.Program your calculator so that it produces the inverse of Nx 1.5. 	I 	 1 
I 	 i 	 I ?->N: N÷1.5  

44. 744.1. Input 	3 7 	10 	11 15 	 17?->A: Ax2-1 	I- 
1 	 i 

5 13 19 21 29 	 I 	 I 
I 	 I 	 I 

I 44.2.Invent a program so that it "undoes-  the one you have just found. 	I 	 I ?->A: (A±2)+1-0.5 
I 	 i 	 i 
i 	 I 	 I 
I 44.3.Can you type a program so that it undoes the program Bx3+1? 	I 	 I 
i 	 I 	 I Did not complete 
I 	 I 	 fit.  

2 5 7 8 10 	
-1- 	  
I Did not complete it. 

i 
I 

I  Did not complete it 
I 
I 

construct one which undoes each of I Did not complete it 
I 
i 
i 
I 
I Did not complete it 

Output 

45. 45.1 Input 

Output 4 25 49 64 100 

I  45.2.Invent a program so that it "undoes" the one you have just found. 

45.3.For the following programs 

I 	them. 

?->A: Ax1.5+1 

I 	?->K: 0.5xK-1 

I 	?->X: 0.25xX+2 
I 	- 45.4.Did you find a method to undo programs? Say what it consists of. 
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INTERVIEW 2: Discussion of Diego's work 

The interview was carried out around the following features': 
• Transforming an expression in order to obtain another given expression. 
• Simplifying linear expressions 
• Inverting linear functions. 

Semantics: Diego's notion of literal terms and algebraic expressions. 

Diego's strategy of transforming algebraic expressions shows that he is not seeing let-

ters as entities on which he can operate, he rather conceives them as symbols that repre-

sent a range of numbers. Diego's responses suggest that his most basic strategy relies on 

conceiving algebraic expressions as instruments that serve to describe and perform ar-

ithmetical procedures. This notion enables him to proceed from the general to the par-

ticular and vice versa. This appears to be the main reason why he is able to cope with 

algebraic transfoimations based on specific cases without losing the general nature of 

the expressions. Here, both the exploratory background and the explanatory referent are 

provided by basic arithmetical facts, which strongly contrast with the way of proceeding 

within a formal algebraic transformation approach, where validity exclusively relies on 

correct application of syntax rules. The following extract illustrates this claim. 

Diego was asked to do something with A' so that it produces the same as A2. His first 

attempt was A.3 —A, "because it is like having A multiplied three times by itself so I have 

to delete an A". He silently ran the program for a couple of values and quickly changed 

it to A3-2x A. In this case he did not run the program, he kept watching the expression 

for a few moments and said: It does not work ... I was only thinking of 2 ... because 2' 

gives 8, minus 4, (2x), gives 4 ... the same as A2". He then was asked why he thought 

this was wrong, he explained "because it (the program) has to work with any other 

numbeF (12: 53-67). Although Diego was able to see A3  as AxAxA he could not think 

of dividing by A to get A2. He finally found a way to do it. He inserted parentheses to 

write A('-1)  (12: 68-78). 

7  It was planned to ask questions about simplifying similar terms within linear expressions but there was 
no time to do this. These questions were included in Interview 3. 
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The above episode deserves further analysis. Diego's reasoning about transforming Al  

to make it equivalent to A' was "to delete an A". He formalised this idea as A3—A, 

which is pure symbolic manipulation based on his failed interpretation of "deleting" as 

"taking away" instead of "dividing". The important point here is that, once he did this, 

he checked it back numerically which allowed him to realise his mistake. After this his 

trials were all number-based which, although they did not produce the expected answer 

(A3+A.), finally led him to successfully carry out the question. This episode shows Di-

ego's first steps in symbolic manipulation; it should be noticed that his strategy consists 

of exploring on the basis of an initial conjecture he made, which is quite different from 

blind guessing. Once he could not go ahead with his first idea he abandoned it, and 

looked for another strategy being guided by the numerical behaviour of the algebraic 

expression. 

The episode also shows that Diego's notion of programming expressions being like de-

vices to calculate and express arithmetic procedures enables him to cope with questions 

about algebraic expressions. In other words, Diego's previous experience of program-

ming the calculator seems to help him in making sense of symbolic manipulation and 

refining his conjectures. 

Syntax: Diego's notions of parentheses and priority of operations 

Diego's approach to determining if two algebraic expressions are equivalent allows us 

to see the crucial role that priority of arithmetical operations plays in helping him make 

sense of the question and in breaking down an algebraic expression into its simplest 

terms. The following episode illustrates this. 

Diego was asked to compare 7xB with 11 xB-4xB. After some mental calculation he 

found that "they are the same because here (pointing at 11 xB) you are multiplying by 

11, but we want 7, so you need to take 4 times this away, this would give 7xB" (12: 33-

34). After this Diego was given an algebraic expression to be rewritten without paren-

theses when parentheses were used and vice versa. The expression I gave to him was 

Cx(5-4), he easily rewrote it as Cx 1. Being asked for another way to do it, after an 
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overt struggle with mental calculation, Diego produced Cx5—Cx4 and explained: "I 

thought of Cx(5-4) without parentheses ... I mean Cx5-4, if C was 5, Cx5 would give 

us 25,25-4 doesn't give the same as Cxl, I needed minus 20 ... it is Cx4 ... it works" 

(12: 39-45). Diego could not have thought of 5x5-5x4 as a specific case of Cx5—Cx4 

without being aware of priority of operations. It is also worth observing that by estab-

lishing the equivalence Cx(5-4)=Cx5—Cx4, he is somehow applying the distributive 

law as a "theorem in action" (in Vergnaud's sense) 

Semantics: Diego's notion of algebraic equivalence 

Diego's approach to algebraic manipulation seems to be strongly supported by his syn-

tactic notions. As will be seen here, Diego's command on using parenthesis combined 

with the strategy of exploring the numerical behaviour of an algebraic expression led 

him to learn new features about algebraic manipulation. Diego confronted algebraic 

transformation resorting to simplifying similar terms. As will be shown below this fea-

ture of Diego's work emphasises the role of the calculator as an environment that en-

courages children to move back and forth between the particular and the general. 

Diego was asked to transform A3, to make it equivalent to A' without using parentheses 

(he had already done it as A(')). The interviewer made him notice that A3=AxAxik, 

trying to suggest that he could be doing A3±A. Diego seemed simply not to have heard 

any of this and kept following his own line of reasoning. His first reaction was to type 

the program A3—A24-A2: "I input 2 ... it only raises it to cube" (12:79-83). Diego men-

tally did some calculations and said: "I got it! When I put this it deleted it" (he meant — 

A2+A2). Immediately he retyped the program as A3 —A3+A' (12:84-90). It is worth re-

calling that Diego had used this strategy before (adding zero, Format 3). This shows 

how his strategies evolved. First, he resorted to adding zero in the numerical case, he 

then extended it to the algebraic case. For example, 132=Bxa+13—B+B2—BxB (worksheet 

28). Finally he extended this strategy to "reducing to zero", which is the way he used to 

set A3  = A3 —A3-HA2. The episode shows that his strategies are context dependent. but also 

shows that with time Diego can extend his findings to different contexts. 
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The above extract indicates that making Diego observe that A3=AxAx A meant nothing 

to him because he was engaged with the idea of deleting as "taking away". Thus, he ex-

plored again using symbolic manipulation and got A3—A4A2. It was not until he ran the 

program and contrasted it numerically that he abandoned his initial trial. This going 

back to numbers was what enabled him to make sense of the whole expression ("When I 

put this (—A2+A2) it deleted it"). Then he used his new finding to type A3—A3+A2, mov-

ing from a specific algebraic case (—A2+A2=0) to general symbolic manipulation. 

As in interview 1, Diego showed that he is more confident in multiplying than he is in 

dividing. When multiplication is involved he does not appear to have any difficulty in 

transforming algebraic expressions. This emphasises the importance of children's ar-

ithmetical background when the teaching of algebra is based upon arithmetic manipula-

tion. What follows provides evidence for this point. 

Diego was asked to transform A2  so that it gave the same as A3. Without any hesitation 

he answered "A' times A". Next he was asked to transform A2  so that it gave the same as 

A', he immediately wrote down A2xAxA and commented: "It is easy if I want a higher 

power, I don't know how to do it when the power is lower" (12:93-108). 

Pragmatics: Diego's approach to inverting linear functions 

The interview allows us to see that priority of operations is a topic that requires the pu-

pil to work on for a long period before he abandons his previous left to right way of op-

erating. Diego's reactions also suggest that teacher intervention is needed for him to use 

parentheses in inverting linear expressions. As has been shown earlier, his spontaneous 

tendency to invert function rules consists of reversing the arithmetic operations in the 

order in which they appear disregarding their priority. So far, Diego's responses make 

evident that his experience in programming the calculator has not been enough for him 

to link the notion of parentheses as devices that serve to break down the operating order 

imposed by the calculator with the notion of inverting as "doing first what was the last 

and vice versa". The following extract illustrates this. 
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Diego was asked what the program Ax2-1 does. He said "it takes 1 away from 2 then it 

multiplies this by something". Then he was told to run it; without doing it he said "no, it 

first multiply by 2, then takes 1 away" (12: 111-114). His response indicates that he is 

still at the stage of getting confused between his old habit of calculating from left to 

right and the new notion of priority of operations. 

Once he answered the above question correctly he was asked to invert the program. He 

said "everything all the way round", built the program A÷.2+1 and ran it. Then he real-

ised that if he input 3 the program gave 2.5, then he input 9 and got 5.5, which differs 

from the result he was expecting (Ax2-1 would give 3 if A=2, if A=5 would give 9). He 

became aware of this and adjusted the program by taking away 0.5 (A±2+1-0.5) and 

said: "now if I input 3 it will give 2, and so on ... that's it" (12:116-121). His answer 

shows that he is fully aware of the inverse nature of these programs but this is not 

enough to make him realise their inverse structure. 

PHASE 3: Diego's entry into Problem Solving 

FORMAT 6: Discussion of Diego's work 

This format consists of 10 worksheets and its aim was to observe the extent to which 

children can extend their experience in Formats 1-5 to facing new situations which re-

quire them to use the calculator language to negotiate problem solutions. Diego com-

pleted seven of the ten worksheets included in this format 

Pragmatics: The role of the context 

The work done by Diego shows that he can more easily confront problem situations 

whose wording involves number patterns than those whose content is described by 

means of written natural language. This may be seen as a direct consequence of the kind 

of tasks the children were doing throughout formats 1 to 5. Though this conjecture 

seems to be plausible, the research data suggest that those children with a better com-

mand of syntax conventions are more likely to be more able when confronting algebra 

word problems. As it will be shown in section 5.2, Diego's approach to problem solving 
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contrasts with Jenny's, for whom facing new situations seemed to encourage her to de-

velop new strategies and notions. 

A major difference between "number pattern based problems" and "word problems" is 

the nature of the verifying referent. Where a number pattern is given, it serves as a ref-

erent for the child to verify his responses. That is, the child can check whether the pro-

gram he has made duplicates (or not) the given number pattern. In the case of "word 

problems" the problem's statement is what plays the role of the referent. This requires 

the child to be able to decode it and properly describe the relationships involved by 

means of calculator language. If that happens successfully the pupil either will get a cor-

rect response at the first attempt or, if necessary, he may debug his initial trial by him-

self In this respect it is crucial that once the child has made a calculator program he 

runs it in order to check it with the numerical values he has already obtained by direct 

calculation. Otherwise, the child may not realise that his algebraic expression is a wrong 

description of his (quite frequently correct) arithmetic procedure. The research data 

shows that the most frequent mistake Diego makes in posing a problem is to follow his 

trend of calculating from left to right disregarding the formal constraints of calculator 

language. 

For example, Diego's written work in worksheets 46-48 suggests that he worked flu-

ently to completion of the tasks despite the difficulty implied by the number patterns. A 

possible explanation for (apparent) Diego's success is that, in these worksheets, the 

rules involved do not require the child to be aware of priority of operations (Ax2-1, 

Ax3-2, Ax4+4). He even successfully solved worksheet 49 at his first attempt 

(presented as a story-based situation) which required him to break the order of opera-

tions just once: (Ax3x2+Ax2)x53, but he could not successfully do this in worksheets 

50 and 55 as discussed below. 

The expression (Ax3x2+Ax2)x53 describes, step by step, a linear way of reasoning 

such as: 

If A denotes a short side of the rectangle, Ax3 denotes its largest side, so 

Ax3x2+Ax2 allows him to compute the perimeter of the rectangle. He then mul- 
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tiplied the perimeter by the cost per metre ($53.00), which led the child to obtain 

the total cost of any window frame. 

However, in worksheets 50 and 55, he needed the teacher's feedback to realise his mis-

takes. The problem situation in worksheet 50 has the same structure as the one in work-

sheet 49, but the relationship between the large and the short sides requires the child to 

break the order of operations twice ("the height is 50 centimetres shorter than three 

times the width"). At his first attempt Diego typed the program (Ax3-0.50x2+Ax2)x62. 

Upon being asked, he computed the cost for a specific value without using the calcula-

tor, then he compared this result with the one given by the program he had made. Not 

until then did Diego realise that it was necessary to put in another pair of brackets: 

((Ax3-0.50)x2+Ax2)x62. This extract enhances the value of the calculator both as 

feedback supplier and as a mathematical environment. It was the formality of calcula-

tor's code that made the child produce an expression that conforms to algebraic syntax 

rules. Otherwise Diego may have kept on working incorrectly, because he could follow 

with paper and pencil the wrong procedure (Ax3-0.50x2+Ax2)x62 and still get a cor-

rect outcome. 

Worksheet 55 (building a square box with maximum volume) also illustrates this point. 

Here, the way in which Diego completed the table indicates that he fully understood the 

problem's constraints (see summary of Diego's work). But, despite the fact that Diego's 

arithmetic procedure was correct he could not properly describe it by using calculator 

language. This seemed to be due to a lack of awareness of priority of operations at the 

time he typed the program. instead of typing (100—A)±2xA, he typed l00—A±2xA. It 

should be noticed that Diego might have run the program to check it with the table he 

had just correctly completed. He did not do this because he tackled the problem guided 

by the values displayed in the table, thus writing down the program was rather a formal 

requirement in the task. 

The above episodes suggest that Diego is still not able to confront by himself problem 

situations which require him to discern when and how to use parentheses in order to 
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produce suitable algebra-like expressions to negotiate problem solutions. Up to this 

point Diego's reactions show that he still needs help from a more competent person (be 

it the teacher or a fellow pupil) in order to use calculator language as an efficient tool. 

Pragmatics: Diego's approach to inverting linear functions 
Diego was able to obtain the inverse values included in worksheets 46-50, where the 

rules involved were as complex as Ax2-1, Ax3-2, Ax4+4, (Ax3x2+Ax2)x53, ((Ax3- 

0.50)x2+Ax2))x62 and A-Ax15±100 respectively. He could not get the inverse pro-

grams but resorted to finding the desired values by successive approximations using the 

above programs. This point is further discussed in the concluding remarks section. 

FORMAT 6: Summary of Diego's work. 
WS Problem situation: "Figurative patterns" 	I 	 Diego's responses 

46. Look at the following shapes: 	_ 	 Completed without teacher's feedback. 
I 

ID 	RFD 	 I 

46.2. 	How many squares are needed to build up the ! 	 33 
shape that goes in the 17th place? 	 _ 

H 46.3. 	How many squares are needed to build up the 	 Completed without teacher's feedback 
shape that goes in the 100th place? 	

I 	
199 

46.4. 	Explain how you reasoned to answer the HCompleted without teacher's feedback 
questions above. 	 "I realised that, when I multiplied by 2, I got too many squares, 

i one square more, then I had to take one away and it worked" 
- 

46.5. 	Can you program your calculator to complete 7 	 Completed without teacher's feedback 
the following table? 	 I 	 ?-*A: Ax2-1 

Place 	-74T 1-15 	-71T 1 1T6 72(T62.T4 	± 	Completed correctly (Diego's answers in bold) 	
- 

i 	I 	I 	I 	I 	I 	I 
_13 L  

No. of 	-I-95 	-1-1T9 	7-2,T1-3T1 1-411-4-507- -I 
1 	1 	I 	I 	I 	I 	1 

squares 	1 	i 	1 5 	i 	i 	i 
47. 

- - -- 

Look at the following shapes: I 
 0 I 	1 	••••• 	 1 U 	

• 

47.2. 	How many squares are needed to build up the I 	 Completed without teacher's feedback 
shape that goes in the 9th place? 	 25 

	 - 
47.3. 	How many squares are needed to build up the I 	 Completed without teacher's feedback 

shape that goes in the 17th place? 	 I 	 49 	
_ 

47.4. 	Explain how you reasoned to answer the I-Completed without teacher's feedback 
I 

questions above. 	 i "It is the same as the worksheet before but here I added I to the 
Lorogrram before (Ax2-1) to see !Zit works, and it worked". 	_ 

47.5. 	Can you program your calculator to complete I 	 Completed without teachers feedback 
the following table? 	 I 	 ?->A: Ax3-2 

Place 	7-48 -J 	--1-IT i-l-T3'-17 -21711- -I- 	Completed correctly (Diego's answers in bold) 
	 _ 

i 	1 	 1 

	

1 	1 

-- 
	

-- 1 

3  
--j

1  
No. of 	-142 4273

L
36 	4T7 -49- 6T1 

squares 	1 	1 	1 7 	I 	i 	1 
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WS Problem situation: "Figurative patterns" 	 Diego's responses 

48. Look at the following shapes: 
WOE 

MEMO • • 
••• III 	• IN 	• 
1111 	• 
••• 

• • 
•••• 

V 	• 
MIMI, 

48.2. 	Ho v many squares are needed to build up the I 	 Completed without teacher's feedback 
shape that goes in the 27th place? 	 I 	 112  

I-  

	

48.3. 	How many squares are needed to build up the 	 Completed without teacher's feedback 
shape that goes in the 40th place? 	 I 	 164 

	

48.4. 	Explain 	how you 	reasoned 	to 	answer the I-"I made a program with the squares then I answered the ques- 
questions above. 	 tions" . 

48 5 	Can you program your calculator to complete 
the following table? 

Completed without needing teacher's feedback 
I 	 ?-->A: Ax4+4 

Place 	1  48 	1  75 	1  123 	1  175 	1  192 	I 209 Completed correctly (Diego's answers in bold) 
-h196 -1-304-  No. of 	 1716-1-704 	1-772 	1840 

1 	I 	I 	I 	I 	I 
squares 	I 	i 	I 	i 	I 	I 

WS Problem situation: 
"Rectangular shapes" 

Diego's responses 

49. The windows have different 
dimensions but in all of them 
the height is three times the 
width. 

Completed without needing teacher's feedback 

1:1 

49.1 Can you complete the following table? 	-I- 

Width 	T-0.75 	1-0.86 	n.28 	1-1.17 	1-i.41 	I 	Correctly completed (Diego's answers in bold) 
height 	12.75 	1-2.58 	L3.84  1-3.51 	1-4.73 	1  

J.- 	1- 	..4_ 	  
49.2. 	The windows frame is made of wood which ' 	Completed without needing teacher's feedback 

cost is $53 per metre. 
a) 1-low much does a window frame cost whose I 	 $ 636.00 

width is 1.5 metres? 

b) What did you do to answer the question above? 	LI  multiplied the cost per meter by the height plus the width". 

49.3. 	Can you program the calculator to obtain the I 	 Completed without teacher's feedback 
cost of any window frame? 	 I 	 ?->A: (Ax3x2+Ax2)x53.00 

49.4. 	Complete the following table using the pro- 	Correctly completed (Diego's answers in bold) 
gram you have just made. 

Width 	1 0.68 	1 0.80 	I 0.95 1 	1.15 	1 1.25 

-1-339.2 -1-402.4- Cost 	-1:288.32   1-487.6-530 

NN 'S Problem situation: Diego's responses 
"Rectangular shapes" 

50. The windows (below) have different dimensions but 
in all of them the height is 50 cm less 
the width. 

than three times 

table? 	(- 50.1 Can you complete the following 
Width 	1-0.30 	1-0.45 	71.30 1-1.65 772.35 	I 	Correctly completed (Diego's answers in bold) 
Height 	t1. 	J40 	1-0.085 	1-3.40 4.45 	-I--6.55  .1_ 	.1._ 	i_ 	4_- 
50.2. 	Can you program the calculator 

cost of any window frame? 
to obtain the 'At At first attempt Diego did not put the outside parentheses. 

1 	 ?--)..A: ((Ax3-0.50)x2+Ax2))x62.00 
50.3. 	Fill in the blanks using the 

just made. 
program you have II  

Width -70735 	7075 T-0.84 I-1.20 	1-0.80 I 	 Observe that 0.80 is just an approximation. 
Cost 	-1-1711; -hi (To:4 -h3F74:6.1533::: -1-334 	-! 
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WS Problem situation: 
"Rectangular shapes" 

Diego's responses 

51. The tabletops (below) have different dimensions but 

in all of them the length is I meter greater than twice 

the width. 

Diego did not complete this worksheet 

width 

lelvh 

The tabletop is 

square meter. 

obtain the cost 

made of wood which costs $155 per 

Can you program your calculator to 

of any tabletop? 

54.  A good number of pieces of land are for sale. They all 	 Did not complete this worksheet 

have the following characteristics: 	the length 	is 30 

meters greater than the width.  

54.1. 	Mr. Perez needed 132 meters of wire fence to I- 	
_ 

limit his land. What are the dimensions of his 

land?  

54.2. 	Mr. Gonzalez bought a land whose width is 7 	
.... 

76 meters. How many meters of wire fence 

does he need? 

54.3. 	Did you program the calculator to solve these 

Problems? 
55.  A man has a piece of land by a stream. He I The man wants to use the stream as a border so I He completed the ta- 

bought 100 metres of barbed wire to fence his I  that his 100 metres of barbed wire yield the big- 	ble without using the 

land where it does not border the stream. 	I gest possible rectangular area. It depends on the I program he made. 

STREAM 	 I size of the sides. 	 I Thus, he could not 

realise that the pro- 

LAND 
Can you complete the following table? 	 gram was. not prop- 

I 	 1 erly written. 

Large side 	I 	50 	I 	40 	I 	60 	1 80 	I 	70 	1 84 	I 	65 	I 	55.5 	1 	54.8 

	

--S1107-ti(Te - i- T5 -1-7 -h--ici+.15-h- ifT --F-T- 	i75 -H 	22 	- + 2276-  
Area 	I-  1250 	1-1200 -1-0001-800-1-  557-01-6721-11373 -h 12 T4 li . 	1-1 -..T3K .1 

I 	I 	I 	I 	I 	I 	I 	I 	I 
I 	 I 	1 	I 	I 	I 	I 	I 	 8 

. 

55.1. Can you program the calculator to complete the table? ?-*A: 100-.1i-2xA 
55.2. How long should the long and short sides be to get the biggest area of land? Short side: 50.2 m 

Large side: 24.9 m 
Area: 1249.58 m2  

WS Problem situation: "Percents" Diego's responses 

52 The Music Centre is having a Special Sale: All records 15% off. 

The discount will be applied on the labelled price. 

bold 

52.1. Can you complete the following table? 	 Completed correctly 

Label Price 	I $ 34 	1  $ 18.75 	I $ 126.50 	I $ 28.50 1  $ 150 	1  $ 72.35 	I $ 29.40 	(Diego's 	responses 	in 
I 	I 	I 	I 	I 	I 	I 	1 

-H -  	.1-   
	ype 

Discount 	F51-H2TT17.:F - 1.T5-  2T.c- 15.c5f5 -47r
-,.  

Special Price r2tT.T1-1.-.T.q5T5 -1,-1(77T7 -1-21.2T2T 1-1F.7.:7; -1-610/512T. -H 
52.2. Can you program the calculator so that it prints out the Special Price every time 	?->A: A-Ax15A00 
you input the Label Price? 

52.3. Use the program you have just made to complete the table. 	 Completed correctly 

Label Price 	I  $84 	I  $28.75 	I  $226.50 	I  $ 29.60 	I  $140.00 	I  S168.00 	I  S170.00 	(Diego's 	responses 	in 
I 	I 	I I 	I 	I 	I 

i  type). _Li_ 

bold 

+25.16 Special Price 	 -+119t7Tiot2-7.-iTTEstf5277T   	- !_$142.10 I - 144.50-1  
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WS Problem situation: "Percents" Diego's responses 

53. A Book Store is having a Special Sale: All titles 25% off. 
The discount will be applied on the ticket price. 

53.1. Can you complete the following table? 
75.00 	I  24.00 	1  36.00 	I  86.00 	I 35.00 	I 26.00 	T  46.00 	He completed the table cur- Label Price 	

1l 	I 	I 	I 	I 	1 	I 
rectly. 

Discount 	17s1877571-$6.60 717s7.5 +$27177,76-  +s8.7.5 7Hs.5T) - t$I15...T 
Special Price 	t56.25 	t-DT 	—'727 - 7- -1-6-I L-1-2X.i.5 	-7i5.) 	1-3.T.7) -1  
53.2. 	Program the calculator so that it prints out the Special Price every time you in- 

put the Amount Discounted. 
He did not make a program 

53.3. 	Program the calculator so that it prints out the Amount Discounted every time 
you input the Label Price 

Ile did not make a program 

INTERVIEW 3: Discussion of Diego's work 

The interview was concerned with the following. issues: 

• Interpreting algebraic expressions: (geometrical context). 

• Simplifying linear expressions. 

• Inverting linear expressions. 

• Children's strategies to cope with problem situations involving generality. 

Pragmatics: The role of the context 
Dieuo's responses suggest that he was not able to use geometrical diagrams to obtain 

support to work algebraically. This strongly contrasts with the case of Jennifer to whom 

diagrams offered a rich context for her reasoning. In Diego's case the visual perception 

of shapes seems to dominate his reasoning making him disreiard  quantitative informa-

tion. What follows illustrates this fact. 

He was asked to program the calculator to compute the perimeter 

of the rectangle shown on the right. He thought that 2 must be 
5 

used as a scale measurement, so "to obtain the length of the large 
C 	2 

side I have to multiply 2 as many times as it fits into the line" (I3: 

-26).  Up to that point he was ignoring the letter C. Then he was told that the "small 

line" measures 2 and the other part measures 	and was encouraied to find a way of 

computing the perimeter of the shape . Diego thought of it for a while and said "The pe-

rimeter is all this line around ... first 5x2 ...No, I don't know how to do that .. I cannot 

recall the .Ibrniula for the perimeter". Could you put it as a calculator program? "No, I 
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don't recall the formula". Next, he was told that a pupil from another class believes that 

he can get the perimeter using the program 5x2+(C+2)x2. Immediately Diego agreed 

because "with 5x2 you get these two sides ... the height ... then (C+2)x2 gives the other 

two sides, and that's it" (13: 27-30). Then he was asked to program the calculator to 

compute the area of such rectangle, he fluently did it. 

The episode illustrates how well Diego reacted on reading an algebraic expression. At 

that point he easily accepted that C+2 denotes a length and the problem he had with re-

calling the formula for the perimeter did not appear at all. The following episode seems 

to corroborate that he really runs into problems when geometrical contexts appear. 

He was asked to program the calculator to compute the perimeter 

of the rectangle on the right hand. He said it was (A+5)x4 and ex-

plained: "it looks like the one before and all the sides are equal" 

(13: 41-44). Even after he had tried with specific values he hardly 

accepted the sides were different "because the shape looks like a 

square" (13: 45-56). 

Furthermore, once he had accepted that the shape was a rectangle he asked to be al-

lowed to try the program for the perimeter again. He wrote down A+5+Ax3 "because 

one side has a length of A+5, the length of the other three sides is A". 

This episode suggests that basic geometrical information is not as intuitive for all chil-

dren. It also suggests that we need to know enough about children's geometrical back-

ground before relying on a geometrical context to introduce algebraic notions. Even 

children like Diego, who showed himself to be able to correctly read and handle alge-

braic expressions as complex as 5x2+(C+2)x2 may be disturbed when algebra is put 

into a geometrical contexts. Diego's lack of geometrical skills may explain the long 

time he spent trying to deal with the problem about building a square box with maxi-

mum volume (Format 4). 

5 

A 
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Semantics: Diego's notion of literal terms and algebraic expressions. 

Diego was given the following story-based question: 

A pupil from another class says that (A+B)2  is the same as A4B2. What do you 

think about this? 

This item involves an expression containing two variables which was completely new 

for the child. Our aim was to observe the extent to which Diego's experience with cal-

culator language might allow him to make sense of the question and how he faced it. 

Diego's responses suggest that he was becoming able to interpret this kind of algebraic 

utterance. His notion of literal teims as "representing any number" helped him to relate 

algebraic expressions like A4B2  and (A+B)2  to numbers. This question was made 

within the paper and pencil environment, that is, he was not asked to program the cal-

culator using these type of expression. However, his first attempt suggests that he was 

able to grasp the whole expression's structure so as to compare both expressions on the 

basis of a global estimation of their number value. What follows is aimed at illustrating 

this. 

Diego said after some inspection: "Here (pointing at A2+132) it adds separately the num-

bers but already raised to square ... Here (pointing at (A+B)2) it adds first, then raises it 

to square ... The latter must be greater" Were you thinking of a number? "No, I was just 

thinking of this (pointing at the expressions)" Do you agree with this pupil? "No ... See, 

2 plus 3, 5, 5 times 5, 25 ... 2 times 2, 4, 3 times 3, 9, ... 13 ... No, I don't agree" (13: 

233-238). 

Syntax: Diego's notions of parentheses and priority of operations. 

Diego's answers while working with geometrical shapes indicate that there is still a long 

way to go before he incorporates syntax conventions into his working routines. Almost 

every time he used an algebraic expression working with paper and pencil he ignored 

the priority of operations. An important point here is that Diego correctly produced 

s  Though the Mexican syllabus for elementary school includes formulas for calculating the perimeter and 
the area of some polygons, the children are never confronted with unclosed expressions such as A2+132 . 
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these expressions when he was asked to work them out using the calculator. Diego's re-

sistance to incorporate mathematical formalities enhances the role of the calculator as an 

environment where the child must properly produce algebraic utterances. The following 

extracts illustrate this. 

Diego was asked for a way to compute the area of the rectangle (height 5, width C+2) 

mentioned above. He wrote down 5x2+C. Then he was required to explain what the cal-

culator would do if he tried this expression. He explained: "it'd do 5 times 2 first, then 

it'd add C to this". Then he said: "if I had to do it with the calculator I'd type 5x (2+C)" 

(13: 32-38). Later on, when working with the rectangle A, A+5, he did exactly the same. 

After having discussed with him that the opposite sides of a rectangle have the same 

length he finally wrote down the expression A+5x2+Ax2 but correctly computed the 

perimeter for a specific value by mental calculation. Being asked what the calculator 

would do if he entered such an expression he explained: "It would first compute 5x2 and 

Ax2, then would add them altogether and finally would add A to all this", next he re-

wrote it as (A+5)x2+Ax2 "because this is the way I'd do it with the calculator". Finally, 

being asked how he could know that his answer is correct, he explained "it's OK be-

cause I did it exactly as the calculator would do it" (13 : 61-68). 

The above excerpts show that priority of operations plays a critical role not only in chil-

dren's production of utterances that conform to algebraic rules, but also in the develop-

ment of children's algebraic reading skills. This is clearly exemplified by the above epi-

sode where Diego fluently read the expression 5x2+(C+2)x2: "with 5x2 you get these 

two sides ... the height ... then (C+2)x2 gives the other two sides, and that's it". He 

could not have read such an expression without being aware of the priority of opera-

tions. It seems obvious that syntax rules are needed to decode a string of symbolic utter-

ances, but the point I want to emphasise here is that Diego's incipient acquisition of 

syntax rules took place on the basis of semantic notions developed through using calcu-

lator language. 
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Semantics: Diego's notion of algebraic equivalence 

Diego's responses show that, when asked to, he can simplify similar terms within linear 

algebraic expressions. So far his strategy to do this is twofold. On the one hand he 

seemed to be developing something like the known method of "adding up the coeffi-

cients then put down the variable". On the other hand he resorts to verifying the correct-

ness of his outcomes through comparing the simplified expression with the original one 

giving specific values to the literal term. Diego's work shows how his simplify-

ing/verifying strategies enable him to know whether an expression can be simplified or 

not. 

In this respect it is important to note that Diego showed a tendency to generate misrules 

which, during the interview, he could debug by checking with the calculator. This sug-

gests that a teacher's careful supervision is necessary until the child realises that the cal-

culator can be used to get feedback. 

For example, Diego made the program Ax2+Ax3x2 to compute the 

perimeter of the rectangle shown on the right. Then he was asked if 	
A 

that program might be written in shorter way. His first reaction was 

Ax2+Ax6. When being asked to, he made it shorter (Ax8). He ex- Ax3 

plained his reasoning as follows: "I know it gives the same as 

Ax2+Ax6 because here these two are multiplying (pointing at the 

A's)... so I make 2+6 ... well ... see ... suppose A was 2, then 2x2, 4, 2x6, 12, 12+4, 16, 

. 2x8, 16... it gives the same as Ax8" (13: 74-86). 

Then Diego was told the following story to inquire about the extent to which he has 

grasped the role of the literal terms within an algebraic expression: "A pupil from an-

other class says that 3xA+2xB gives the same as 5xAxB. What do you think about 

this?" He answered: "that pupil was wrong ... because instead of multiplying by B he 

should have added B, like this: 5xA+B ... let's see ... if A was 2 and B was 3 ... I'd have 

3x2, 6 ... 2x4 ... 10. He'd get 5x2, 10, times B, 30 ... that's it, he is wrong ... Then mine 

5x2, 10, plus B, 13 ... I am wrong too! ... There is the problem (pointing at 3xA+2xB) 
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... you have two letters ... you have to enter two numbers ... You cannot make it shorter" 

(13: 87-98). 

Up to this point Diego seemed to be able to sort out some algebraic simplification. Later 

on he was asked again to simplify some other expressions. Diego's answers suggest that 

he is on his way to generating an algorithm but, meanwhile, he prematurely tries to get 

rid of numerical feedback and generates misrules. For example, he was asked if the pro-

gram A+2+A+5+A might be written shorter. He correctly simplified it as Ax3+7 by 

visual inspection, but he did not in the case of 2xA+3+Ax4+5. He got Ax6x2+8 and 

checked it by comparing the two expressions for A=2. He saw he was wrong but could 

not correct the mistake. Nevertheless, while explaining his reasoning he found how to 

debug it: "Here (pointing at 2xA and Ax4) you have two multiplications, then I added 

them ... it gives Ax6, then I multiplied it by 2 because A appears twice ... I've already 

realised that I didn't need to multiply by 2 ... it'd just be Ax6+8, that's it" (I3: 189-198). 

After this he fluently simplified 3xB+5+4xB+2+Bx3 which looks even more complex 

than the items he faced before (13: 203-204). 

The last item of this type was 7xM+4-2xM+6-1. Diego's response to this question 

shows that his experience during this interview made him gain self confidence. His first 

reaction was "I'm not sure i f I can ... but I'll try". His first approach was 9xM+10— 

Mx2-1 and compared the two expressions for M=2. Then he got 7xM+10—Mx2-1 and 

explained: "with the program before I got a difference of 4, that's 2x11/1, so I just took 

2x11/1 away from 9xA/1". When asked he finally got its simplest form: 5xM-9 (13: 205-

208). 

Pragmatics: Diego's approach to inverting linear functions 

Diego was asked to produce the inverse program of 4xD+7xD. This question was in-

tended to observe if Diego could resort to simplifying similar terms in order to obtain 

the inverse rule. We will see next that Diego finally was able to answer the question, 

nevertheless his approach suggests that for him, symbolic manipulation was not a task 
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he takes up spontaneously. This episode shows that for the child is not enough to have 

some knowledge about symbolic manipulation to use it as a tool to face problem situa-

tions. 

Diego's first approach was to make sense of the question by exploring the numerical 

value of 4xD+7xD for D=2: "let's see, 4x2, 8 ... plus 14, 22 ... Now, if I input 22 I have 

to get 2" (13: 209-210). At this point it seemed that he would easily get the inverse pro-

gram (D4-11). However, he faced the question based on the fact that multiplica-

tion/division and addition/subtraction are inverse operations. He simply changed multi-

plication for division and wrote the terms of the expression in the order they originally 

appeared (4±D+D±7). He tried it for D=2, he saw this was wrong and made another 

trial: 4÷D—D±7. Here he said "I forgot to change addition for subtraction" and tried it 

again for D=2, he kept on calculating for a while until he got mixed up (13: 211-213). 

The teacher was about to suggest that he gives up the task when he said, "11 divided by 

D". Being asked he explained: "I got 11 from 7+4, I thought of making shorter 

4xD+7xD, that's 11xD ... then I inverted it ... " (13: 214-220). Then he tried it for D=2 

and found that "the eleven must take the place of D ... then it should be D±11" (13: 221-

224). 

The above episode shows how his initial exploration with numbers allowed him to real-

ise his mistakes. That is why he abandoned his first trials. Even in his last trial, where he 

was much more confident, he resorted to checking with numbers. 

Diego's work showed again a trend to blindly operate with symbolic expressions. His 

tendency to prematurely operate leads us to think that despite the availability of the cal-

culator, exploring the numerical behaviour of the expressions involved is a heavy bur-

den for the child. This emphasises the importance of letting children have enough op-

portunities to work with algebraic expressions within a numerical environment until 

they get to the position of using numbers to verify their conjectures. Here it is important 

to note that, throughout Diego's learning phase, a teacher's careful supervision played a 

critical role. Otherwise, he may have kept on generating misrules being unaware of their 
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mistakes as has been found with students working in a paper and pencil environment 

(see Matz, 1980). 

Diego's responses also emphasise the potential of introducing the study of algebra with 

no previous rules but the ones the child may have got from his arithmetic experience. 

His reactions indicate that confronting symbolic manipulation is rather an invitation to 

explore instead of a heavy burden of working out routines. Although exploration may 

start as blind guessing it finally results in consistent strategies based on basic number 

manipulation facts. With time, these incipient children's achievements may result in 

solid algebraic process. Our data provides evidence that the calculator-based environ-

ment does help the child to value numerical exploration as a powerful tool to generate 

and validate algebraic syntax rules, overcoming what seems a child's natural tendency 

to premature symbolic manipulation. 

Pragmatics: Diego's approach to expressing and justifying generality. 

Diego was given two questions aimed at observing the extent to which he was able to 

extend his prior experience with calculator language to using it to express and justify 

generality within different contexts. The two questions were focused on numerical rela-

tionships, but required the child to use algebra to justify their general validity. 

The first question was the following puzzle-like situation: 

Think of a number, add 10 to it and write down the result. Now take the number 

you thought of away from 10 and write down the result. Now add the first result 

to the second one ... May I try to guess the final result you got? It must be 20. 

Then he was asked if he could find out why the final result could be predicted. 

The second question was a story-based situation: 

A pupil from another school says that every time he sums two consecutive numbers he 
gets an odd number. What do you think about this? Will it be true? 
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The way in which Diego dealt with the above questions indicates that the experience he 

has had with calculator language enabled him to describe algebraically the relationships 

involved. His answers suggest that he is aware of why he used algebraic code and what 

he uses it for in these particular situations. His work also suggests that he is becoming 

aware of the general nature of a programming expression and that letters serve to repre-

sent a range of numbers. As discussed below it seems that a key point for him to be able 

to face these questions was the numerical referent, which relates to his experience using 

the calculator. While producing the algebra-like expressions he was thinking aloud 

"think of a number, say 7 (wrote down  A) add ten to it and write down the result, that's 

7 plus 10, 17 (wrote down A+10), Now take the number you thought of away from ten 

and write down the result, that's 10 minus 7, 3 (wrote down 10—A), add the first result 

to the second one, 17 plus 3, 20 (wrote down A+10+10—A)"(I3: 116-126). 

However, Diego's work on these two questions makes evident that, to him, there is a 

difference between using algebraic code to express generality and using it to justify 

generality. Perhaps, a major problem here is that justifying generality may require the 

child to know how to operate algebraically and also be aware that symbolic manipula-

tion may lead him to produce fresh information. Diego's reactions show that he can per-

form some algebraic manipulation but cannot reach by himself the stage of transforming 

algebraic expressions with the aim of justifying generality. Nevertheless, his experience 

with calculator language allowed him to justify the general validity of the first question 

with some scaffolding from the interviewer. For the question about consecutive num-

bers he gave a good argument but he did not realise that he could relate it to the alge-

braic expression he had built ("cause if you put first an even number and then an odd 

number ... then you have to obtain an odd number when you add them" 13: 153-154). 

Expressing generality, as in the questions we are discussing, was not a topic which had 

ever been taught to him. Nevertheless, Diego's responses suggest that he could sort it 

out on his own on the basis of his prior experience of describing algebraically number 
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patterns. Additionally, Diego's reaction to the question about the sum of two consecu-

tive numbers indicates that he is beginning to develop a skill of algebraically describing 

numerical relationships that go beyond just translating step by step a sequenced proce-

dure, such as that involved in the "think of a number question". The difficulty Diego 

had to make the step between expressing generality and justifying generality suggests 

that using algebraic code to justify generality is a topic that needs more teaching support 

than that offered by the set of worksheets given throughout this research. The following 

extracts provide evidence for this. 

"Think of a number" question 

At the time Diego was given this question he followed it mentally operatinv, with the 

number he had thought of Then he was asked if he would always get 20 as a final out-

come. He tried unsuccessfully to explain it verbally: "Yes, because when you take a 

number away from 10 you get a number ... then you add the number you had thought of 

to 10 ... it will give 20". Then he was asked if there would be a general form to express 

this. Diego immediately said "with the calculator", but he did not use the machine, he 

wrote down A+10+10—A. When being asked to, he explained that the "A" he put in the 

program "means a number between 1 and 10" (I3: 116-122)9. After this it was suggested 

to Diego to look at the program in order to find why it always gives 20. He could not 

give a clear verbal explanation to this question and was asked to make the program 

shorter. Since he could not make sense of this question he was asked for an equivalent 

program and in response he quickly wrote down "A+20—A" (13: 125-126). The next 

question was if the latter program might explain why 20 will always be the final out-

come. He kept on looking at the expression and said "it is like if it were just 20 ... the re-

sult of all this ... Because I took A away, so the A means nothing ... it is like if it were 

zero ... nothing is left but 20" What about the program A+10+10—A, "it would give the 

same, they are equivalent" (13: 134-141). 

9  In order to prevent children to become confused with the appearance of negative numbers, they were 
asked to think of a number between I and 10. This explains Diego's reference to "a number between 1 
and 10" 
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"Consecutive numbers" question. 

Diego immediately said that he agreed with the other pupil "cause ... if you put first an 

even number and then an odd number ... then you have to obtain an odd number when 

you add them" (13: 153-154). Then he was asked if he could represent this in general, 

for instance with a calculator program. Diego at once said "a program that add two con-

secutive numbers", he kept on thinking for a few moments and said "A plus A plus 1". 

Being asked to explain, he said "well, at the beginning I did not know very well how ... 

because I did not know how to get a consecutive number and add it to A ... then I real-

ised that a consecutive number is one number more ... that's why I added 1 to A" (13: 

160-162). After this he was asked about a program for the case of three consecutive 

numbers. At once he wrote down "A +A +1 +A + 2" (13: 163-164). 

This episode suggests that he started reasoning from a perspective of generality. He 

thought first of a general number (A). then went to find out how to symbolically refer to 

the number that comes after A. There he resorted to analysing specific cases and went 

again to generality when finding the relationship between any two consecutive numbers: 

"then I realised that a consecutive number is one number more ... that's why I added 1 

to A". It could be seen that it was the idea of constructing a program which put him on 

the plane of generality. Then it was his experience of finding out number patterns which 

led him to explore with specific cases to find a general relationship. 

The above excerpts show that Diego's experience with number patterns presented as ta-

bles (foiniats 1-5) helped him to cope with general number relationships in other con-

texts. His acquaintance with symbolically expressing functional relationships enabled 

him to successfully confront certain problem situations using algebraic code. But he was 

still a long way from justifying generalisations using his own algebraic code. 
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DIEGO'S CASE: Concluding remarks 

The potential of the calculator within a pragmatic approach 

Diego's mathematical achievements during the field work provide evidence for the 

pragmatic approach to learning a new sign system by using it, and for the potential of 

the computing device as a basic support for this activity. We discuss this claim in more 

detail next. 

Diego's' semantic notions 

It seems that the major semantic notion developed by Diego was about algebraic expres-

sions. He conceives of an algebraic expression as a device to describe and compute gen-

eral arithmetic procedures. From this notion he derived two other relevant notions: 

i. Letters as symbols that serve to "personify" any number to him in order to make 

the calculator's general procedures work. 

ii. Algebraic equivalence which he conceives as two or more programs that produce 

the same outputs for the same inputs. 

The work done by Diego suggests that his mathematical notions strongly relate to the 

way in which the calculator-based tasks were designed. In what follows some conjec-

tures are made with the intention of explaining how he learned about these notions and 

how he was able to use them as tools to express generality and negotiate problem solu-

tions. 

Diego's interpretation of algebraic expressions and literal terms. 
Worksheets 1 to 3 require the child to find number patterns generated by function rules 

of the form f(x)=kx. Since these rules consist of only one operation (i.e. A+4 or Ax2 ) 

their algebraic description did not disturb Diego's prior arithmetic experience. From 

worksheet 4 on, most of the rules involved are of the form ax+b. 
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These tasks lead the child from the very beginning to express his reasoning by means of 

a 'one-piece' string of operations such as Ax2+1 w. In fact, Diego needed support from 

the teacher to find this rule (when he could not produce it on his own he was told "to try 

combining two different operations"). That was the most difficult part Diego had to 

overcome, once he found the rule he did not show any apparent difficulty in algebrai-

cally expressing it. It is discussed below how the calculator's way of working made it 

sensible for the child to express his reasoning in that form. 

The tasks are all goal-oriented activities intended to provide a numerical referent for the 

child to produce algebraic expressions. It underlines the fine tuning involved in orderly 

language learning and allows the child to proceed from learning how to refer to objects 

(arithmetic procedures) to learning to make a request using, calculator's language 

(negotiate problem solutions). From his first encounter with the calculator's language 

the child is required to express his method by means of the canonical utterances required 

by the machine. For instance, to carry out the tasks in worksheet 4 (Format 1) he needed 

to: 

i. Find out the underlying pattern shown in a table. For example: 

Input 1.1 2.5 3 4.3 5 

Output 3.2 6 7 9.6 11 

To do that the child had to carefully explore what computations have been carried out 

with 1.1 to obtain 3.2. Then he had to verify if those computations let him obtain 6 

when applied to 2.5, and so on. Diego first described it as "multiply by 2 then add 1 to 

this". 

ii. Communicate to the calculator how to multiply any of these numbers by 2 and then 

add 1 to the outcome. 

The above process required the child to do something new: to formalise his method. The 

child accepted the fotntality of an expression like Ax2+l because it is the way that the 

It was observed during the first three months of the school year that his spontaneous way of proceeding 
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calculator works. Based on this experience Diego developed the notion of letters as 

symbols that "person0; any number" (interview 2). The design of the tasks also led the 

child to extend this notion beyond the set of numbers displayed in the table. This was 

done by asking the child to complete a new table using the program he had built. To do 

this, he needed to find the input when the output are given. This made the child analyse 

more carefully how the program proceeded and, consequently, think of the role played 

by the letter he was using. For instance, he was asked to complete the table below using 

the program Ax2+1 (Diego's answers in bold type). 

Input 

Output 

; 1.3 

 3.6 

; 

r 

2.8 

6.6 

; 

i—  

14 

29 

50 

I— 	101 

; 	81 

I— 	163 1 

; 	274 

1 E  549 

; 	162 

i—  
1 	325 

; 

1 —  
1 

209.5 

420 

Throughout formats 1 to 4 tables were the only way to encourage pupils to use the cal-

culator language. This was a key point in helping children develop skills to receive and 

produce calculator's language utterances. In this context, representing an arithmetic pro-

cedure goes beyond the mere encoding of what is represented, it is rather a result of an 

interaction with the known according to a goal. 

Diego's work in formats 1 and 3 provide evidence for the way in which his "calculator 

language" evolved. Most of the worksheets include a task that requires the child to write 

down the rule he found. In Format 1 he did it using natural language (i.e. "I divided by 2 

and multiplied by 3"). But in Format 3 he used calculator language to answer these 

questions. During a classroom session he was asked why he did so, to which he ex-

plained "it is more comfortable ... it requires me less writing and says the same". This 

was his first approach to translating natural language utterances into algebraic expres-

sions. Later on, in formats 4, 5 and 6 he showed that he was able to deal with story-

based problems using calculator language. 

was not to express his reasoning, as 1.1x2+1. He usually performs 1.1x2, 2.2, then 2.2+1, 3.2. 
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Diego's notion of algebraic equivalence 

The research data shows that numerical substitution helped Diego develop a notion for 

algebraic equivalence. He grasped that two or more programs are equivalent "if they 

produce the same results" (see Format 3). This notion has to do with synonymy, it was 

the use of the calculator's language which allowed the child to grasp that a calculator's 

program may have different representations, but they are equivalent if they "produce 

same outputs for same inputs". An episode from interview 4 illustrates this. Diego built 

the program A+10+10—A to describe the relationships in the puzzle about "summing to 

20". Upon being asked he made the equivalent program A+20—A; this helped him real-

ise why any input number would give 20 and affirmed that the same would happen with 

A+10+10—A "because they are equivalent programs". This notion of equivalence was a 

building block in Diego's strategies when confronting any kind of algebraic transforma-

tion. Certainly, Diego could not have dealt with algebraic transformation without having 

a notion of algebraic equivalence (transforming an algebraic expression so as to make it 

equivalent to a target expression). 

The next sections will analyse how, in time, Diego's semantic notions allowed him to 

make sense and successfully cope with algebraic manipulations, such as inverting linear 

functions, constructing equivalent algebraic expressions and simplifying similar terms 

within linear expressions. His work shows that he confronts symbolic manipulation by 

exploring the numerical behaviour of algebraic expressions (that is, as a semantic activ-

ity). Later on he began to set up initial syntax rules. This relationship between semantics 

and syntax allowed Diego to develop strategies to verify his incipient syntax rules. 

Diego's syntactic notions: Priority of operations and use of parentheses 

Diego's work emphasises the role of tasks designed to let the child use calculator's lan-

guage to produce his own ends (Format 2). While working out these tasks Diego did not 

only learn "how to say it" but also what is canonical. For instance, tryina to make 

something difficult for a fellow pupil to guess, Diego made a table following the rule 

A+-5x7 (without using the calculator). Then he ran the program and found that the cal-

culator proceeds differently from himself. It was really his first encounter with the pri- 
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ority of arithmetical operations. Diego engaged himself in disentangling it and found 

why this occurred (see interview 2). For this to happen, it was crucial that Diego was 

able to carry out the calculations involved in advance, otherwise he would not have no-

ticed that the calculator proceeds in a different way. It is worth noticing that it was his 

notion of the calculator's program as a device to calculate which allowed him to make 

sense of this syntactic convention. 

During the study Diego repeatedly showed that he was unaware of priority of operations 

when working with paper and pencil. But he could always correct on his own if he was 

required to carry out the calculations by means of a calculator's program. This suggests 

that a longer period using the calculator is needed before the child incorporates syntax 

conventions into his everyday computing routines (see section on priority of operations, 

interview 3). 

The episode about the perimeter of the rectangle with height A +5 and width A illustrates 

this (interview 3). Diego produced the complex expression (A+5)x2+Ax2. The process 

by which Diego produced such an expression shows that he values syntax restrictions 

only when the context demands them. Before he got to correctly express the perimeter 

he wrote A+5x2+Ax2; nevertheless he used this expressions to compute the correct pe-

rimeter for several specific values. The incorrect syntax did not perturb him because he 

was following his own reasoning: "first the side's length plus 5, that's the height, then 

multiply it by 2, then the side's length plus 2, then add together the results". However, 

when being asked to do this with the calculator he typed without any hesitation 

(A+5)x2+Ax2 "because that's the way I'd do it with the calculator". 

Using parentheses was a feature Diego needed to be taught about. This took place once 

he realised that the calculator proceeds differently from him (certainly the tasks were 

not designed for him to find what parentheses are for). Once Diego understood the 

function of parentheses he used them as frequently as he could. Since the tasks required 

Diego to produce algebraic expressions his experience with parentheses was focused on 

using them, later he showed he was able to read them too. 
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Diego's work in Format 3 supports what has been discussed above. In worksheet 22, he 

used parentheses to obtain equivalent programs, for example, from Bx 1.5 he built the 

programs Bx(1+0.5) and Bx(2-0.5). Later on (interview 3), when transforming A3  so 

that it "gives the same" as A', he resorted to using parentheses: A('-' )=A2. In fact, Diego 

was faced with reading parentheses only once (interview 3). There, he was asked to 

judge somebody else's claim: "a pupil from another class says that he can compute the 

perimeter of a rectangle with height 5 and width C+2 using the program 5x2+(C+2)x2, 

what do you think about that". Diego properly read this sophisticated expression which 

provides evidence for his achievement in this respect. This suggests that Diego's prag-

matic encounter with syntax conventions, such as order of arithmetic operations and use 

of parentheses, helped him to acquire them as tools for his reasoning. He would not 

have been likely to have produced these achievements by a passive listening to teacher's 

explanations and reading expressions containing parentheses. 

Diego's strategies: Numerical substitution 

Diego's work shows that numerical substitution was his strongest strategy for coping 

with algebraic transformation. He used it wherever algebraic transformation was re-

quired: in operating with a given expression to make it equivalent to another expression, 

in inverting function rules and in simplifying algebraic expressions. 

Diego used numerical substitution to make sense of algebraic manipulation. that is, he 

essentially used numerical substitution as a semantic recourse. This fact seems to vali-

date the role assigned to arithmetic as a "shared context" within the study. Diego's strat-

egy of numerical substitution helped him go back and forth between the general and the 

particular. This process helped the child gain awareness of the general nature of pro-

gramming expressions and of the role played by specific cases as generic examples. In 

fact, Diego resorted to numerical substitution to explore generality whether to validate 

or to refute conjectures. For example. being asked to type an equivalent program to 

Cx(5-4) he got Cx5—Cx4 (interview 2). He certainly did not have in mind the distribu-

tive law (he did not know about it). What he did was to "think of Cx(5-4) without pa-

rentheses ... I mean Cx5-4, if C was 5, Cx5 would give us' 25, 25-4 doesn't give the 
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same as Cxl, I needed minus 20 ... it is Cx4 ... it works". This shows his transition from 

the general to the particular to the general. During interview 3 he was asked to analyse 

another child's statements, like "a pupil from another class says that (A+B)=A2+132". 

Though this type of expression was never used before he made sense of it with numbers 

and concluded that it was wrong: "Here (pointing at A2+132) it adds separately the num-

bers but already raised to square ... Here (pointing at (A+B)2) it adds first, then raises it 

to square ... The latter must be greater" When asked if he would agree with this pupil 

he resorted to numerical substitution to give stronger evidence: "No, I don't ... See, 2 

plus 3, 5, 5 times 5, 25 ... 2 times 2, 4, 3 times 3, 9, ... 13". 

Diego's approach to symbolic manipulation. 
Interview extracts cited earlier show that Diego was able to handle the task of trans-

forming an algebraic expression to make it equivalent to another. Here we will try to 

make some conclusions of how he became able to do this. 

Diego tackled algebraic manipulation based on his incipient experience of using paren-

theses and operating with the algebraic terms. For instance, when transforming 10xB to 

make it equivalent to 11xB, Diego inserted parentheses to operate with the coefficient: 

(10+1)xB. Next he was asked to transform 10xB so that it makes the same as 7xB with-

out using parentheses. He immediately started to manipulate the algebraic terms: lOxB-

3xB and explained: "first the program multiplies by 10 ... then I had to make it multiply 

by three numbers less than ten, so we have to decrease B three times when we multiply" 

(interview 2). Later on, his answer to worksheet 47 tells us about his tendency to sym-

bolic manipulation. In worksheet 46 he had built the program Ax2-1, then he produced 

the program Ax3-2 by "adding 1 to Ax2-1" (in fact, he added A-1, but he could not 

explain it). 

At the time Diego was confronted with algebraic transformations he had just completed 

five sessions programming the calculator (Formats 1 and 2). It seems that Diego's ap-

parent proclivity to algebraic manipulation led him to proceed too rapidly from explor-

ing with numbers to operating symbolically. An episode cited earlier (interview 2) il- 
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lustrates this. Despite Diego's initial approach to obtain the inverse of 4xD+7xD was to 

explore its numerical value, he abandoned this strategy and inverted the expression as 

4±D—D÷7. He could have left it like this, but the interviewer's questions made him re-

view the expression until he finally got a correct answer. 

Diego's approach to negotiating problem solutions 

We have already discussed Diego's achievements in problem solving when reviewing 

his work in Format 6. Diego's work shows that, despite the difficulty involved in most 

of the problem situations, he was able to make sense of a problem's constraints and 

worked out some of them successfully (see table below). It shows that his experience 

describing number patterns allowed him to use the calculator language to describe the 

relevant relationships. 

ws 	 Problem situation 
	

Diego's answer 

33. 1-1 1 have some pieces of wire, all are of length 16 cm. I want Correctly answered 
to cut them all into two pieces in different ways, for exam- ' 	?->A: 16-A I 
pie, 12 cm and 4 cm, 11 cm and 5 cm, and so on. Can you i -Because in earlier work- 
program the calculator so that if I input the length of one', sheets we were taking away 
small piece it prints out the length of the other one? 	from numbers and I did the 1 

I same here" 
4 . Programming the calculator to find the cost of a class o ft Correctly answered 

rectangular window's frames whose height is three times' 
I as its length. The cost per metre is $53. 	(Ax3x2+Ax2)x53.00 

50 

	

	1- Proizramming the calculator to find the cost of a class of I  First approach: 
rectangular window frames whose height is 50 centimetres', (Ax3-0.50x2+Ax2)x62 
less than three times its length. 	 I Second approach: 

((Ax3-0.50)x2+Ax2))x62 
52. find Programming the calculator to 	the special price of any 	Correctly answered 

merchandise when 15% is off and the regular price is 
known. 	 I 	A-Ax15±100 

	 -if 	  55. 1-Programming the calculatorT 	He missed putting in paren- 
to obtain the dimensions of a ' 	 STREAM 	 1 	theses 
"three sides" rectangle with i 	 I 
maximum area whose "three i 	 LAND 	1 

1 	100-A+2xA 
sides" perimeter is 100 me-  1 

I tres. 	 I 

Perhaps the most important point in this respect is the crucial role played by the calcu-

lator in helping the child to proceed from learning "how to say it" to "saying it" ac- 
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cording to algebraic canonical forms. Diego's work shows that understanding the prob-

lem's constraints was not enough for him to correctly express them, but it is also neces-

sary that the child masters syntactic conventions. His first approach to worksheet 50 il-

lustrates this (see table above). He did not notice anything wrong with this expression 

because he used it to outline his calculations with paper and pencil. That is, such an ex-

pression fits well his line of reasoning. A the teacher's intervention was needed to make 

him realise his mistake. 

Diego's achievement shows that the approach to algebra based on describing number 

patterns enabled him to make sense of and cope with some story-based problem situa-

tions. We found that the major step between describing number patterns and negotiating 

problem solutions is that, in the former, algebraic representation is a result of an inter-

action with the known (arithmetic facts) according to a goal (making the machine do 

what the child expects). This kind of interaction helps the child to check by himself the 

correctness of his algebraic utterances. This interaction (content-context) hardly occurs 

when the child fails in representing algebraically the relationships within a story prob-

lem situation, because, there, the role of the known (shared context) is played by quan-

titative relationships verbally delivered. This suggests that encouraging children to ex-

plore by specific cases should be of great help for them in getting an algebraic repre-

sentation to negotiate problem solutions. Then, the formality of the calculator's code 

may aid them to find what is canonical. 

Diego's approach to expressing and justifying generality 

Diego's reactions during interview 4 shows that his experience describing number pat-

terns helped him gain confidence in using calculator language as a means to describe 

quantitative relationships. With no apparent struggle he produced the expressions 

A+10+10—A and A+A+1 to refer respectively to the questions of "think of a number' 

and "consecutive numbers". This shows that Diego's use of calculator language goes 

beyond a mere description of arithmetic procedures, he is certainly expressing general-

ity. For instance, he was asked if the "think of a number" puzzle may be described in 

general, he immediately answered "with the calculator" and typed the program 

153 



CHAPTER 5: Chronology 
The case of Diego 

A+10+10—A. Furthermore, upon being asked, he explained that the letter A represents 

"any number between 1 and 10". A similar situation took place with the "consecutive 

numbers" item, for instance, he explained that the difficulty he had in making a program 

was "to find out how is the number that comes after A" (the letter he was using to pro-

gram the calculator). 

The research data indicate that there is a big step between using calculator language to 

express aenerality and using it to justify generality. Diego's experience with the set of 

worksheets used in this study was not enough for him to grasp that calculator languaue 

can help him to justify generalisations. 

Diego's conceptions 

Diego's work shows that simplifying algebraic expressions deserves special teaching 

attention. As well as Diego, the case-study children -except those with an above average 

attainment- showed a tendency to generate false rules when simplifying algebraic ex-

pressions. Since this trend was never present with other forms of algebraic transforma-

tion I think that the major reason for this to happen is that. when simplifying, the child 

has only one expression to operate with. This differs from the case of transforming a 

given expression to make it equivalent to another, where both the source and the taraet 

expressions are available. Diego's approach to inverting function rules corroborates this. 

There, he was also given only one expression to operate on and in this case also gener-

ated misrules. What follows is intended to make this clear. 

When transforming a given expression to make it equivalent to another, for example, 

transforming Bx7 to make equivalent to Bx10. Diego invariably obtained a specific 

value for the target expression; having this as a clue, he went on to operate with the 

source expression. Finally he compared the numerical value of the target expression 

with the new one and repeated the process as necessary until the desired result was ob-

tained. 
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Now, let us look at the task of simplifying an algebraic expression. There, the child is 

required to construct the target expression having the source expression. To do this, Di-

ego obtained a numerical value for the source expression. If the expression was of the 

form ax+bx, he easily found a shorter equivalent expression. For example, 

Bx5+Bx4=18 for B=2, this suggested to him that the rule should be "multiplying by 9". 

In that way he began to construct initial rules like Ax3+Ax2=Ax5. But, exploring the 

numerical behaviour of expressions like 2xA+3+Ax4+5, appeared to be too heavy a 

burden for him to fulfil (though he could have done it). It seems that the expression's 

complexity encouraged him to try out his own rules for algebraic manipulation. for ex-

ample, 2xA+3+Ax4+5=Ax6x2+8. He explained this as follows: 2xA+Ax4=6xAx2 be-

cause "2+4=6, but A appears twice, it must be 12 ... 12xA". This led him to fail even 

with questions he had shown he could master before. 

Diego's strategy of counting the "A's" relies on his previous findings about letters as 

entities to operate with. The following illustrates this. Just before the question we dis-

cussed above, Diego correctly simplified A+2+A+5+A. Despite the expression's com-

plexity, obtaining how many "A's there are" did not make him run into problems. This 

suggests that his error arose from applying this strategy where coefficients are different 

from 1. To debug this mistake Diego needed the interviewer to question his work. It was 

not until he tested his "rule" upon the expression's numerical value that he agreed that 

something was wrong. It is worth noticing one more feature about Diego's approach to 

algebraic simplification: He never showed any evidence of making mistakes such as 

a+b=ab, a+a=a2, 2xa=a2. Sxa+3=8xa, nor (a+b)2_a2 -rip2. I think this was due to the strong 

link between numbers and letters provided by the calculator environment. This suggests 

that these types of children's misunderstandings are induced by particular teaching ap-

proaches. 

General remarks: 

Priority of operations 

Diego's work suggests that mathematical conventions such as priority of operations and 

use of parentheses play a crucial role in bridging the gap between arithmetic and alge- 
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bra. The research data show that he attained a good level of command of these conven-

tions. Nevertheless, there were also a good number of episodes that showed his resis-

tance to incorporating priority of operations into his everyday ways of working, par-

ticularly when working with paper and pencil. 

Mental calculation 

Diego's approach to symbolic manipulation strongly relies on mental calculation. Di-

ego's first successful attempts to operate with literal terms took place where coefficients 

were positive integers and addition or multiplication were involved. The interview data 

suggested that his skills of mental calculation had much to do with both finding equiva-

lent expressions and simplifying similar terms. This leads us to suggest that special 

teaching attention should be paid to mental calculation if it is intended to introduce al-

gebra from an arithmetic approach. 
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5.2. THE CASE OF JENNY 

PHASE 1: Jenny's entry into Calculator's Language. 

Phase 1 is organised as follows: First Jenny's written work is analysed, then a summa-

rised transcription of her work is presented intending to give further support for the pre-

ceding, analysis; finally Jenny's work during Interview 1 is analysed. 

FORMAT 1: Discussion of Jenny's work 

This part reports on the work done by Jennifer within formats 1 and 2 and the first inter-

view. A discussion of Jenny's written work is presented first, then a summarised tran-

script of her work is presented. Finally Jenny's reactions during the first interview are 

analysed. 

Pragmatics: Jenny's approach to inverting linear functions 

Children were not explicitly required to use inverse programs to produce the numbers 

given as outputs. Nevertheless Jenny tried out inverse programs from the very begin-

ning, see, for example, worksheet 3. At this stage she made this explicit only in cases 

where the functional rule involved just one operation. Though she did not show how she 

calculated the inverse numbers when a "two step" expression was involved she managed 

herself to do it correctly without having typed the inverse program. For example, see the 

table below which Jenny completed using the rule Ax2+1 (the numbers in bold type are 

Jenny's responses, worksheet 4). 

Semantics: Jenny's notions of literal terms and algebraic expressions. 

Jenny kept doing the tasks quite motivated and correctly completed the 15 worksheets 

prepared for this format. Only 5 out of the 23 children in the class completed all the 

worksheets (the time allowed was five sessions). Her work shows that she has grasped 

how to read a table and express the relevant function rule as a program. 
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Pragmatics: Jenny's approach to negative numbers 

This theme was new for all the children when the course commenced. Only those as-

pects concerning the order of negative numbers and their use to represent magnitudes 

(like temperature, and profits and debts) were treated in classroom sessions. The topic of 

how to operate with negative numbers was not treated in order to observe the extent to 

which the calculator might help the children cope with it. In this respect Jenny correctly 

completed worksheets 6 and 7 which include tables whose inputs are decimal negative 

numbers. Her answers show that she was able to operate with such numbers, otherwise 

she could not have managed to find the functional rules that generate these tables (see 

the summary of Jenny's work below). Jenny explained that she found how to operate 

with negative numbers through exploring their behaviour with the calculator. For exam-

ple, she found that -10+0.5=-9.5 by a trial and refining strategy, like subtracting 0.5 

from minus 10, since this did not work, she tried adding 0.5. Then she systematised this 

experience so as to find how to program the calculator to produce the given table. 

FORMAT 1: Summary of Jenny's work 

Work 
sheet I 

Clues given I  Rule written in 	I Expression pro- 1 	 1 
i natural language 	1 duced 

I 	Completing the ta- 
1 
1 	ble 

I. I 	In 

1 
'Out 

1 	1 
I 
I 
15 

I 2 
1 

I 
16 

3 
I 
I 
1 7  

1 4 
I 
I 
18 

1 5 
i 
I 
1 9  

I  Add 4 to each number 	?->A: A+4 
I 	 I 
I 	 I 
1 	 I 

I  OK. 
I 
I 
I 

2 1 	In 

I 
1 Out 

1  7 

I 
1 	14 

1 	8 

i 
1 	16 

1 9 

I 
1 	18 

I 	15 

i 
1 30 

1 	18 

I 
1 36 

i 
I Multiply the number 	I  ?->Z: Z x2 

by 7 I I, 	- 
i 	 I 

I  OK even with deci-

1 mal numbers. 
i 

3. ' 	In 
I 
I 
I Out 

I 	2.5 
I 
I 
1 	7.5 

1 3. 1   
I 
I 
i 9.3 

4 

I 
112 

I 4.2 

I 
112.6  

I 	5.3 
I 
I 
I 

1 
I  Multiply the number 	?->J: J x3 

1 by 3, sometimes to di- I 
1  vide it be 3. 	1 

I 
I  OK even with deci- 

1 mal numbers. 
I 

4.  In 
1 
I  
I Out 

I 
I 

1 
	1.1  

I 
13.2 

I 

I 
2  5 

I  
1 6 

I 
I 

3 

I 
7 

I 

4.3 

I 
1  9.6 

I 

5 

I 
l 	I 	I 

I 

 Multiply the number 	?->L: Lx2.-.-1 
I 

1 by 2 and add Ito it. 	I 
1 	 I 
I 
I 	 I 

I  OK, it included cal-
I 
I culating inverse val- 

I ues involving deci-
I 
/ mal numbers. 

5.  I 	In 	I 
i 
I 	I 
Out 	I 1  

I 2 
I 
I 
I 3  

1 3 

I 
1 5  

1  4 

I 
I 7  

I 	5 
1 

I 
1 9  

1  Multiply the number 	'?->l.: Lx2-1 
1 
I by 2 and take away I. I 
I 	 I 

1 0K 
I 
1 
I 

6.   In 

1 
I Out 

-10 

1 	-9.5  

-9.7 

I 
1  -9.2 

-7.8 

I 
1 	-7.3 

-6.2 

I 
1 	-5.7 

1 	-5.3 

I 
1 

I  Not required 
I 	

?-*Y: Y-t-.5 

1 	 I 
I 	 I 

I 
I  OK. 

1 
I 

7.  I 	In 
1 
I 
1 Out 
i 
1 

-IS 

I 
1 	-16.5 

I 

-14.5 

I 
1 -16 
I 
I 

-12.4 

I 
1 	-13.9 
I 
I 

-10.2 

I 
1 	-11.7 
I 
I 

-5.8 

I 
I 

I 

I  Taking away 1.5 	?--->1-1: 1-1-1.5 
i 
I 	 I 
I 	 I 
1 	 I 

I 	 I 

1 
I  OK, it included cal-
I culating inverse val- 

1  ues involvin2. ne2a-
I 

1  tive numbers. 

S. 1 	In 
I 
I 
1 Out 

10.5 

I 
1 	5.25 

14.42 

I 
I 	7.21 

15.3 

I 
I 7.65 

16.7 

I 
1 	8.35 

1  20.1 
i 
I 
I 	10.05 

I Dividing the number 	I  ?-*C: C2 
i 	 i 
1 by 2 	 I 

I 	 I 

i 
i Not required. 

1 
I 
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Work i  
1 

sheet 	1 

Clues given i Rule written in i 
1 natural language 

I  Expression pro- 1 
1 duced 

i  Completing the ta- 
1 	ble 

9.  1  In 	1 6 
1 	I 
I 	I 
I Out 	1  9 

1  8 
I 
I 
1 	12 

I 	14 
I 
I 
I 21 

15 

I 
122.5 

1 	18 
I 
I 
I 27 

I  /multiplied the num- I 
I ber by 3 and divided 

I the result by 2. 

I  ?--->C: Cx3+2 1 
I 
I 

I  OK, it included cal-i 
I culating inverse val-

I ues. 

10.  I In 	4 

1 	I 
1 Out 1  4.04 
i 	I 

6 

I 
16.06 
I 

1  9 

I 
i 9.09 
I 

10 

I 
110.1 
I 

1- 12 

I 
1 	12.12 
I 

'Multiply the number 	I ?-*C: Cx1.01 

1 by 1.01 	 I 
I 	 I 
I 	 I 

I  OK, it included cal-

I culating inverse val- 

I ues involving deci-
I 
1  mal numbers. 

1 1. I  In 	7 1 
I 	I 
1 Out 1  23  
I 

I 	i 

9 

I 
1  29  

1 10 

I 
1  32  

1 12 

I 
1  38 

1 16 
I 
i 
1 50 
I 

I I I multiplied the num- 	?-1): Dx3+2 
1 	 i 
I ber by 3 and added 2 	I 
I to it. 	 I 
1 	 I 

I 

I  OK, it included cal-
i 
1 culating inverse val- 

I ues involving deci-
I 
, mal numbers. 

12.  In 	7 
1 	i 
I 	I 
I Out 	I 20 
I 
I 
I 	I 

7.5 

I 
1 21.5 

I 

8.2 

I 
123.6 

I 

9 

I 
1 26 

I 

I  9.6 
i 
I 
I 27.8 
I 
I 
I 

! I multiplied the num- 	1 ?--->B: Bx3-1 

I ber by 3 and took 	I 

I away I (I did some of I 
1 	 1 
I  them the other way 	1  

I round) 	 I 

I OK, it included cal-1 
I culating inverse val- 

I ues involving deci-
1 
1  mal numbers. 
I 

13
.  

I In 	1 10 
1 	I 
I 	I 
1 Out 	1 2.5 

15 
I 
1 
13.75 

1 20 
I 
I 
1 4 

25 
I 
1 
1 6.25 

1 30 
I 
I 
I 7.5 

I  I divided the number 1 
I by 4 (and vice versa) 
I 

I  ?-÷E: E÷4 1 
I 
I 

I OK 1 
I 
i 

14. li  In 	j 2 

I 	I 
!Out 	1 5 

3 

I 
17.5 

4 

I 
1 	10 

5 

I 
1 	12.5 

I 
I 
I 
I 

II  Multiply the number 

1 by 2.5 
I 

:?->Z: Zx2.5 

I 
I 

I  OK 1 
I 
i 

15.  'In 	0.15 
1 
I 	I 
I Out 	1 0.015 
I 	I 
I 

I 0.27 	0.3 
I 
I 	I 
I 0.027 1  0.03 
I 	I 
I 

1.5 

I 
I 0.15 
I 
I 

I 2.03 
I 
I 
1 0.203 
I 
I 

I  Multiply the number 
I 
I by .100 
I 
I 
I 

I  ?--->X: Xx.100 
1 

I 
I 
I 
I 

l  OK, it included cal-

I culating inverse val- 

I ues involving deci-
I 
I  mal numbers. 

FORMAT 2: Discussion of Jenny's work 

Syntax: Jenny's notions of using parentheses and priority of operations. 

She started using parentheses to express functional rules on her own initiative. Jenny 

constructed expressions which required parentheses, for example, "first take away 1, 

then multiply this by 3" (see worksheet 1). Such expressions are structurally different 

from the ones she confronted in Format 1 in which the functional rules involved were of 

the type f(x)=ax+b. The way in which she cope with using parenthesis is discussed later 

(interview 1). The following table summarises her work in Format 2. 

Work 	Program that Jenny 

sheet 	used to build the table 

16 	 ? -A: (A-1)x3 

17 	 ? -*A: (A+7)±2 

Clues given by Jenny 

Input 1 3 5 8 10 20 

Output 0 6 12 21 27 57 

Input 1 3 5 8 10 20 

Output 4 5 6 7.5 8.5 13.5 
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INTERVIEW 1: Discussion of Jenny's work 

At the time the interview was given Jennifer had been engaged in programming tasks 

during five classroom sessions (four in format 1, one in Format 2). The interview was 

focused on observing three points: (i) Semantics: the notions the child might have de-

veloped about letters and symbolic expressions used in calculator programs, (ii) Syntax: 

parentheses and priority of operations, and (iii) Syntax: whether the programming expe-

rience may help the child in facing symbolic manipulation of algebraic expressions. 

This task is placed into the calculator context as transforming, for example, to manipu-

late 4xA somehow in order to make it equivalent to 3x A. These points are discussed in 

what follows. 

Semantics: Jenny's notion of literal terms and algebraic expressions. 

Jennifer's notion of letters is that "they stand for any number". She has also grasped that 

a programming expression does not depend on the letter used to express it. It is also im-

portant to notice that this notion of letters allowed her to successfully work out the task 

about transforming a function rule to make it equivalent to another function rule. The 

notions she developed about letters and its role in programming expressions were de-

rived from the ways she used them in Formats 1-2. These notions were never discussed 

in class. What follows provides evidence for this. 

She was asked what do the letters she used in the program (A+7)±2 mean for her, she 

said: "any number ... A can be any number ...". (II: 31-32). Going further on this point 

she was asked what does the program (Z+7)±2 do. She said "it does the same as 

0+)+2, because when you put the letter in the calculator it doesn't matter if it is A or 

Z, A may he 1 and Z may be I as well and so on for any number, it is the same regard-

less the letter you put in". (II: 33-38). Jenny's reaction suggests a potential problem 

which she may have to face when dealing with polynomials or equations containing two 

or more variables. This point is further discussed in Chapter 8. 

Jenny's notion of algebraic expressions also shows that she has grasped its generality. 

For instance, she was asked how she knew that a program is correct. She answered 
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"when everything goes well with the same code (the same programming expression) ... 

not only one or two (input-output pairs) have to go well, but all of them" (Il: 25-28). 

Syntax: Jenny's notions of parentheses and priority of operations. 

Jennifer gained awareness of the use of parentheses and priority of operations once she 

realised that the calculator did not give the results she was expecting to get. For this it 

was crucial that she had made the computations in advance, otherwise she would not 

have been able to notice that difference. It is fair to say that this happened because she 

engaged herself in constructing a program which adds or subtracts before multiplying or 

dividing. In other words, it seems that it was this goal-oriented task that impelled her to 

accept the value of using parentheses and accept them as conventions imposed by the 

formality of calculator code. What follows provides evidence for this. 

In the interview she was asked why she used programs containing parentheses in Format 

2 (worksheets 1 and 2). Her answer shows how she came to grasp the role of parenthe-

ses and its relation with the priority of operations. "I had already mentally calculated 

the outputs and put them in the table ... but when I tried with the calculator it didn't do 

what I had in mind. I wanted to take 1 away first, then multiply ..." What do you mean 

by "it didn't do what I had in mind". "As I don't think as the calculator does, I said 1-1, 

0, then 0x3, 0. The machine said: —1x3, -3, 1-3, -2. I had to know how to make the cal-

culator do what I wanted (it was a task requirement) ... I put in parentheses (she wrote 

down the program (A-1)x3) ... It does what I had in mind". Let's suppose you want to 

explain to one of your fellows about using parentheses, how would you do it. 

"Parentheses serve for the calculator not to perform the two operations at a time ... I 

mean ... first one then the other". (I1: 1-12). 

Semantics: Jenny's notion of algebraic equivalence. 

Although it may seem trivial to transform 4xB in order to make it equivalent to 3xB the 

research data shows that it is not. Jenny's reactions suggest that it was the notion that 

she developed for letters as symbols that represent a range of numbers which helped her 
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firstly, to make sense of what the question was about, and secondly to successfully work 

it out. 

Jenny's answers indicate that the experience she has had with the calculator program-

ming, language led her to develop a notion of algebraic expressions as devices to de-

scribe and perform arithmetic procedures. Particularly, this notion comprises the use of 

letters as symbols that represent a range of values. 

The research data suggest that an approach to mathematical functions as devices to carry 

out arithmetic procedures makes algebraic manipulation an action of semantic interpre-

tation rather than a process of applying syntax rules. Jenny's responses indicates that 

this kind of encounter with symbolic manipulation allowed her to generate initial rules 

to face these tasks as well as to develop strategies to check their correctness. 

To make sense of the question Jenny needed to explore the numerical behaviour of the 

relevant expressions. She first tried with B=2 and, having in mind that 3xB=6, com-

pared the two expressions and found that 4xB-2=3xB, for B=2. Here, what was crucial 

was the fact that she was aware that the relation 4xB-2=3xB was only a particular case. 

At this point she knew that something should be taken away but it took her some time to 

realise that it was enough to subtract 13 from 4xB. She needed to explore more carefully 

the question and tried with B=1, B=4 and B=5. It was then she realised that there were 

an underlying, pattern: the number she took away from 4xB was the only one value of 

the variable that makes it equivalent to 3xB. Say, 4xB-1=3x13. for B=1. and 4xB-

5=3.B, for B=5. Thus. as she wanted both expressions to be equivalent regardless of the 

value she input, that "thing" to be taken away from 4xB must be the variable itself. 

Once Jenny had this insight she still needed to repeat this experience with a number of 

items before beginning to sketch a rule to perform such algebraic transformations. Her 

work suggests that Jenny started to make a shift from her first notion of letters as 
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"representing any number" to the new notion of letters as entities on which she can op-

erate'. The following extracts illustrate what is above. 

Question: I wanted to type the program 3xB but I made a mistake and typed 4xB. 

Can you correct my program without deleting anything of what I have typed? 

Her first attempt was 4xB-2, she said "it wouldn't work ... neither it would i f I take 1 

away". Being asked why, she said: "4xB-1 works only if B=1" (I1: 41-44). She kept 

thinking and said: "If I tried 4xB-5 it would only work for B=5" Then she was given a 

hint: when you tried 4xB-4 it only worked for B=4. What can we do to make it work 

for 1, 5 and other numbers. She said "This way ... " and typed Bx4-B. (Il: 41-60). 

When asked why she explained "it will now work for all the numbers ... because B is 

any number, 4 times that number and then it takes away ... well, this thing' ... well, I 

mean ... i f B is 6, 6x4, 24, as we know we want it to be 18, then minus 6, 18". (Il: 66) 

Then she was asked to correct the program 10xC so that it makes the same as 7xC. She 

immediately said: "It's the same as the one before, isn't it?". Surprisingly she got mixed 

up (she was expected to do it easily). Thus, the question was changed to transfolining 

10xC so that it made the same as 9xC. It was then that she really related this item with 

the one before. Finally Jenny was asked again to transform 10xC so that it makes the 

same as 7xC and 4xC. She faced them without hesitation (typed 10xC-3xC and 10xC-

6x C respectively). (I1: 67-100). 

PHASE 2: Jennifer's entry into Algebraic Manipulation 

This section reports the work done by Jennifer within formats 3, 4 and 5 and interview 

2. Similarly to the section before, Jenny's written work will be first discussed, then a 

This issue will be taken up again in interviews 2 and 3. 
2  It is interesting to notice that she actually does not know how to refer to the variable ("this thing") but 
she does know the role that the letter is playing in the expression. 
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summarised transcript of her work is presented to provide evidence for the analysis done 

in the preceding discussion. Finally Jenny's work during the third interview is analysed. 

FORMAT 3: Discussion of Jenny's work 

Jennifer completed correctly the whole set of worksheets which these three formats in-

clude. It seems relevant that she put into play the new tools she had just met, such as 

operating with literal symbols and using parentheses (see worksheets 21, 26, 27). She 

also used negative numbers to find equivalent expressions (worksheet 27). Her work 

shows that she has been exploring (by herself) with negative numbers using the calcu-

lator since operations involving laws of signs were not treated in class before (i.e. —5 ÷ 

—5). These points are next described in more detail. 

Syntax: Jenny's notions of using parentheses and priority of operations. 

She used them unnecessarily but not incorrectly in worksheets 21-28, and completely 

correctly in worksheet 26. 

Semantics: Jenny's notion of algebraic equivalence. 

Jennifer operated with literal symbols to obtain equivalent algebra-like expressions 

where the coefficients were integer numbers (worksheets 21, 26, 27 and 28). Where 

fractional coefficients were involved she just operated on the independent term 

(worksheets 22, 23, 29 and 30). The way in which Jenny carried out the tasks indicates 

that she is starting to operate with literal symbols within algebraic expressions. It seems 

that she was only able to transform expressions algebraically when coefficients were 

integers because this is directly connected with her skill in mentally operatinL,  with inte-

ger numbers. 

Semantics: Jenny's notion of literal terms and algebraic expressions. 

It is worth noticing the way in which she used the notion of literal symbol as represent-

ing a range of numbers in the program ?—*A: A (worksheet 27). It seems that she is con-

ceiving the letter as an entity (range of numbers) because she did not need to accompany 
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• 
Given table Rule written in 	Programming ex- 

natural language I pression pro- 
duced 

Equivalent expressions pro- 
duced. 

t-In 1 1.5 3 5 I-Multiply the num- 1-?-->W: Wx4 ?-->A: Ax5-A 
Out 4 6 12 20 ber by 4 ?->X: Xx3+X 

I ?-+Y: Yx2+(Yx2) 
?->C: Cx6-(Cx2) 

I ?->D: Dx7-(Dx3) 
In 2 4 8 10 r-Multiply the num- r7?-->I■1: Nx3+2 17?->A: A+2x3 
Out 3 6 12 14 I ber by 3 and divide 

this by 2 
?-*O: Ox2+2x1.5 
?->Q: Qx1.5 
?-*A: Ax6+4 

Work 
sheet 

21.  

22.  

Work 
	

Given table 
	

Rule written in Programming ex- 	Equivalent expressions pro- 
sheet 
	 natural language pression pro- 	 duced. 

duced 
23.  t In 	1 	2 	3 	4 

Out 0.25 0.5 0.75 	1 
I-Divide the number 17?->A: A+4 

by 4 

24.  1 in 	-1 	3 	7.4 	17 Not required I-?->A: A+2 
Out -0.5 	1.5 	3.7 8.5 

25.   n  CANCELLED  
26.  1In 	1 	3 	5 	9 Not required 17?-->A: Ax2+4 

Out 6 	10 	14 	22 

27.  1-In 	15 	16 	17 	18 Not required 17?->A: A+0 
Out 15 	16 	17 	18 

28.  In 	1 	3.2 	5 	9 r 	Not required r7)-->A-• AxA •  
Out 	1 	10.24 25 	81 

29.  Here, the program ?-*N: 1-7?->A- Ax7-2 ••• 	• 
3.5xN was given instead 

of giving a table. 

30.  I-Here the program ?->Z: Not required Ax2 04-/ 
1.02xZ was given in- 
stead of giving a table. 

117‘ >A: Ax0 25 
Ax2+8 

• Ax3+12 
-->A: Ax0 50+') 

?->A: A+4x2 
I „?->A: Ax2+4 

A+6x3 
->A: A+120x60 

->A: A+A+4 
C+4+C 

• A+A+(2x2) 
B+B±(2x4+2) 

?->A: A+A-A 
??--2>B.A: Ax120+120 

. B+5-6+1 
17->C: Cx-5+-5 
I 	A+AxA 
?-*A: A-A+A 

A 

->A: Az  
(A2x2)+2 

;->A: A+4x14 
I ->A: A+808 ; 

->A: A+16x56 
12->A: A+10x35 

?->A: Ax4.08+4 
I ?-*Z:2z  Zxl 02x8+4+2 2  

: Z+2+4x8x+1— 0",  
• Zx8.16+8 
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the letter with any number (though it might well also be due to the fact that she is seeing 

A+O=A). 

FORMAT 3: Summary of Jenny's work 
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FORMAT 4: Discussion of Jenny's work 

Jenny completed eight of the ten worksheets within the time allowed (three sessions). 

She completed the last two worksheets later. Jenny's work is described in more detail in 

what follows. 

Pragmatics: Jenny's approach to negative numbers 

Jennifer's responses (worksheets 35, 37, 38 and 40) show that her explorations with 

negative numbers have enabled her to operate with them supported by the calculator. It 

is worth noticing that this implies the acceptance of formal restrictions imposed by the 

machine's code. Particularly, the use of the minus sign for subtracting and the minus 

sign assianed to declare a negative number. See, for example, Jenny's explanation of 

how she found the program (Ax-1)-A+10.5: "I multiply the number by -1 -it gives the 

same number but negative, then I take away the same number and add 10.5" (worksheet 

38). 

Pragmatics: The role of the context 

Jenny's work shows how a new semantic referent influenced the way in which she 

tackles the tasks. Worksheets 31 and 33 are presented as word problems which suggest 

that the rule to be found is of the form f(x)=k-x, where the value of k can be found by 

adding any input value to its associated output in the table. Her written explanation in 

worksheet 33 proves that she grasped this clearly: -1 realised that all pieces of wire gave 

a total of 16 cm, then you put a number and the calculator gives how many units are left 

to get to 16-  (her program was 16-Z). She still used this strategy to deal with worksheet 

32 which consisted of constructing a program that duplicates a given table. Nevertheless 

she did not used this strategy to work out the rest of the tasks. In worksheets 35-40, 

where the referent was a table, she produced rules as sophisticated as Ax-1+1, Ax-

1+1.5 or (Ax-1)-A+10.5 instead of 1-A. 1.5-A and 10.5-2xA respectively. In this 

case her strategy consisted of finding out what operations she had to perform on the in-

put number (A) so that they produced the output number (f(A)). 
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Although eight out of the ten worksheets have the same structure (f(x)=k—ax) Jenny did 

not seem to realise this. That is why she worked them out differently according to the 

way in which each task was delivered. This suggests that in addition to repeatedly con-

fronting the child with algebraic utterances it is needed to help her recognise generic al-

gebraic forms. 

Pragmatics: Jenny's use of algebraic language to negotiate problem solutions. 

In this format the children met for first time the use of calculator language to negotiate 

problem solutions. Jennifer was able to represent algebraically quantitative relationships 

involved in story-based problems (worksheets 31, 33 and 34). During the classroom ses-

sion she explained to the teacher how she completed worksheet 34 (the box with maxi-

mum volume). "It looks like the other problems ... in this case the side of the cardboard 

has a length of 24 centimetres ... The A is the length I'm cutting out ... well, it is also the 

height of the box ... so, to calculate the area of the box I have to multiply its side by it-

self ... that is (24-2xA)' ... and I multiply this by the height ... that's it". 

FORMAT 4: Summary of Jenny's work 

Work i 	 Worksheet content 	 1  Expression pro- 
sheet 	I 	 1 duced 
31. 1—My grand father owns a hardware store. In helping him I programmed myF?—>A: 10—A 

i calculator so that every time that some amount of wire is sold the program I 
1 	 1 tells you how much wire is left. The table below is an example of how my 

program works. Can you guess what is it? 

  

Sold 1.7 2.4 3.1 4.06 5.2 
Left 8.3 7.6 6.9 5.94 4.8 

  

     

32. 1 32.1 Can you program the calculator so that it duplicates the following to- ?->A: 20—A 
I ble? 

Input 1.3 2.5 3.8 4.4 5.9 
Output 18.7 17.5 16.2 15.6 14.1 

132.2 What happens when have as input a negative number? 

33. 1-1 have some pieces of wire, all are of length 16 cm. I want to cut them all 
'into two smaller pieces in different ways, for example, 12 cm and 4 cm, III 
cm and 5 cm, and so on. Can you program the calculator so that if I input, 
the length of one small piece it prints out the length of the other? 

" Instead of tak-
ing A away from 
20 the program 
adds A on 20" 
?-+Z: 16—Z 

167 



4 8 

4 16 

16 
8 

CHAPTER 5: Chronology 
The case of Jenny 

Expression pro-
' duced 

I ?-*A: (24-Ax2)2  
I xA 

1-7?—>A: Ax-1+1 

Ax5-1 

Ax-1+1.5 

?->A: (Ax-1) - 
A+10.5 

T?->A: Ax0 

Zx-1 

34. I want to make a box with a square piece 
of cardboard. I can make the box by cutting 
squares off the corners and bending up the 
pieces that are left jutting out. 

The base and height of the box. are de-
termined by the,  length of the sides of the 
squares I cut off. Figures 1 and 2 show two 

possible ways of making the box. 

I Can you program your calculator so that it 
allows to calculate the volume of any box I 
could build?  

35. Program your calculator so that it duplicates the table below. 

	

Input 	1 	2 	3 	4 	5 

	

Output 	0 -1 -2 -3 -4 

36. Program your calculator so that it produces the table below. 

Input 	1 	2 	3 	4 	5 

	

Output 	4 	9 14 19 24 

37. Program your calculator so that it produces the table below. 

	

Input 	1 	2 	3 	4 	5 

	

Output 	0.5 -0.5 -1.5 -2.5 -3.5 

38. Program your calculator so that it produces the table below. 

Input 1 2 3 4 5 

Output 8.5 6.5 4.5 2.5 0.5 

39. Program your calculator so that it duplicates the table below. 

Input 	1 	2 	3 	4 	5 

Output 0 	0 0 0 0 
40. Program your calculator so that it produces the table below. 

Input 	1 	2 	3 	4 	5 

Output -1 --2 -3 -4 -5 

Work 
	

Worksheet content 
sheet 

FORMAT 5: Discussion of Jenny's work 
Jenny completed the five worksheets included in this format. In the case of inverting 

rules of the form f(x) = ax+b her first trials consisted of simply inverting operations in 

the order in which they appear. After doing this she adjusted the expression by adding 

or subtracting a constant (for example, she inverted Ax2-1 as A±2+0.5, worksheet 44). 

In the same worksheet she produced the inverse program by inverting the whole struc-

ture of the expression. for example, (B-1)±3 to invert Bx3+l. This suggests that deliv-

ering the task by giving the program expression instead of a table and including num-

bers more difficult for her to adjust her first trial, led Jenny to abandon her initial strat-

egy and take up a more general one. From then on she used this new strategy to work 

out the tasks (see worksheet 45). This point is taken up in more detail in interview 2. 
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Syntax: Jenny's notion of using of parentheses 

Jenny managed to use parentheses herself for constructing the inverse of an algebraic 

expression (tasks 44.2, 44.3 and 45.3). Jenny's work illustrates how her pragmatic ap-

proach to inverting linear functions seems to scaffold her to reach a higher level in alge-

braic manipulation. This is exemplified by Jenny's production of inverse functions of 

the form ax+b. This point is further discussed next. 

Pragmatics: Jenny's approach to inverting linear functions 

Throughout Format 1 to Format 4 Jenny worked with tables as a clue giving sources to 

construct an arithmetic procedure which she then described by means of the calculator 

language. But this strategy did not lead her to inverting algebraic expressions of the 

form ax+b. For example, Jenny showed herself to be able to obtain the underlying pat-

tern suggested by the numbers in a table and to describe it using calculator language, 

like Ax2-1 (see worksheet 44 below). But she could not have produced the inverse rule 

(A+1)±2 using the same strategy. What she did was the following. Since she knew it 

had to be the inverse rule she started by simply inverting the relevant operations 

(A±2+1). Then she ran this program, saw that it did not work and managed to make it 

give the desired outcomes (A÷2+1+0.5). 

She got an idea of how to use parentheses once her first strategy proved not to be 

enough to invert programs like Bx3+1 (see worksheet 44, task 44.3). Jenny's new strat-

egy was based on the metaphor of "doing first what was the last and vice versa" (see 

interview 2). This was the key point that made her link the task of inverting a program 

with her notion of parentheses as symbols that serve "to say to the calculator what to do 

first". 

FORMAT 5: Summary of Jenny's work 

Work i 
sheet  

41. Input 
Out.aut 

1—I  42. nput 
Output 

10.4 
4.9 
11.4 
17.5 

16 
10.5 
19 
25.1 

Content 

19 	23.5 	37 
13.5 	18 	31.5 

	

23.1 	38 	50 

	

29.2 	44.1 	56.1 

' Program produced ' 	Inverse program 

h7  —17?—>A: A+5.5 	 ?—>A: A-5.5 

117?-4A: A±6. I A-6.1 
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Work ' 	 Content 	 ' Program produced ' Inverse program 1 	 1 sheet 1_1  

	

43. 	1  43.1 Input 0.13 0.17 0.65 	3.8 9.28 	 -1-7?+>A Ax2 	 17?->A: A+2 
I 	 I 	 I Output 0.26 0.34 	1.3 	7.6 18.56 	 ?->M: M+3 I 	 I  
1 43.2.Program your calculator so that it produces the inverse! 	 I 
I 	as Mx3. 	 I 	 I 
I 43.3.Program your calculator so that it produces the inverse I 	 I 

asNx1.5. 	 I 	 I ?-->N: N+1.5 

	

44. 	1  44.1. Input 	3 7 	10 	11 15 	 -9->A Ax2-1 	 b 
I 

	

	 i 
Output 5 13 19 21 29 

I 	 I 	 I 
I 44.2.Invent a program so that it "undoes" the one you have 1 	 1 ?->A: A+2+0.5 and 
I 	just found. That is, that produces the following table: 	I 	 I ?->A: (A+1)+2 
I 	 Output 5 13 19 21 29 	 I 	 I 
I 	 Input 3 7 10 11 15  
II 	 I 
i 	 i 	 i 
44 3 ClI1 you type a program so that it undoes the program' 	 I 

I 	Bx3+1?  i ?->13: (B-13   	I 

	

45. 	r 1  45.1. Input 	2 	5 	7 	8 	10 	 -17?->A: ,,2 	 E 

Output 4 25 49 64 100 I 
I 	 I 	 1 
1 45.2.1nvent a program so that it "undoes" the one you have I 	 1 ?-->A: J A 
I 	just found. 	 I 	 I 
I 	 I 	 I 

4 - 	 i .3.For the following programs construct one which undoes 
each of them. I 

+ I 	?-A: Ax1.5+1 	 I?-A: (A-1) 1.5  
I 	?->K: 0.5xK-1 	 I ?-*K: (K+1)+0.5 

I 	?-*X: 0.25xX+2 	 I ?-*X: (X-2)+0.25 
I 
Ii 45.4.Did you find a method to undo programs? Say what it "To use the inverse op- 

1 	consists on. 	 I erations. Sometimes is 

I 	 I  necessary to put in pa- 
I 	 I rentheses-. 

INTERVIEW 2: Discussion of Jenny's work 

• The interview was concerned with tasks that rely on the notion of algebraic equiva-

lence. These tasks were the following: (a) Transfoniiing an expression to obtain an-

other given expression, (b) Simplifying linear expressions, and (c) Inverting a given 

program. Jenny's reactions to these questions are discussed next. 

Semantics: Jenny's notion of algebraic equivalence 

Our data confirm that the notion of algebraic expressions as devices to describe and 

carry out arithmetic procedures promotes a strong relationship between semantic inter-

pretation and syntax transformation of algebraic expressions. Jenny's strategy to cope 

with algebraic transformation illustrates this. It consisted of clearly distinguishing the 

role played for each of the expressions involved: the one to be transformed and the one 

which plays the role of target. Then she gave a value to the variable in the target expres-

sion. Having this in mind she went on to transform the other expression so that it gave 
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the same value as the target one. That is, Jenny needed a semantic analysis of the alge-

braic expression to make sense of the question of transforming, then when Jenny 

grasped what the question of transforming was about, she started to extend her initial 

strategy to operate on the variables. 

Jenny worked out successfully these kind of items in interview 1 (20 days before). In 

the second interview she showed she had not yet developed a systematic way to face the 

task (in fact she was not asked about it again until this interview). Nevertheless she had 

made remarkable progress. In this interview she dealt with the question of transforming, 

for example, 15xA into 2xA, by operating on the algebraic expression instead of ex-

ploring with specific values as she did in the first interview. Although she could not 

complete the task in this way her attempts show a higher level of understanding of what 

these algebraic expressions mean. What follows illustrates this: she first tried 

15xA+Ax2 "because 15xA gives any number ... as I don't want this I remove everything 

... well, I divide it by A, it removes everything ... then I multiply by 2" (12: 4). After a 

number of failed trials the question was changed to transforming 15xA into 14xA. She 

did it correctly (15xA—A): "I remember, that was the way I did it before" (12: 18). After 

this she answered successfully even more difficult questions, for instance, transfoiming 

10xA+5xA into 18.3xA and 12xB+5xB-2xB into 4xB (12: 41-47). It is worth noticing 

that she worked out the last questions first by operating on the coefficients, then she 

checked her responses by running the programs for specific values. This makes evident 

the role of the calculator in giving feedback to the child's conjectures. 

Simplifying similar terms is another relevant issue which relates to the notion of alge-

braic equivalence. This matter was implicitly involved in the question of transforming 

an expression with two or more terms into an expression with only one term (i.e. trans-

forminv, 10xA+5xA into 18.3xA). To do this Jenny simplified 10xA+5xA to 15xA in 

order to find the missing teen 3.3xA. She did this by mentally operating with the ex-

pressions but she could not proceed in the same way when transforming 12xB+5xB-

2xB into 4xB, apparently this was due to its complex structure. The following extract 

illustrates this. Her first reaction was to say "It might be ... getting the result of all this 
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(12xB+5xB-2xB) ... If B were 1 it would be 15 ... It multiplies by 15! Then it must be 

12xB+5xB-2xB—(Bx11)" (12: 47-54). The episode shows that she is developing a rule 

to simplify similar terms but when she meets a more difficult item she goes back to 

giving specific values to the variable which finally guides her to find a solution. At this 

stage the strongest resource she had for simplifying linear expressions was to explore 

the expression's numerical value. In this respect, her choosing of 1 seems to be her key 

strategy since it directly leads to simplifying the coefficients. 

Pragmatics: Jenny's approach to negative numbers 

The use of negative numbers was abruptly introduced in Format 4 (worksheets 32, 33, 

35, 37, 40). The aim was to observe the extent to which the pupils, being supported by 

the calculator, may develop some notions about operating with such numbers. Jenny ap-

peared to be one of those children to whom the topic of negative numbers was of special 

interest. The following episode shows the extent to which she had gained confidence in 

working with negative numbers. She was asked to transform 15xA into 25xA. She had 

the program 15xA—(Ax10) on the calculator screen (she made it to obtain Ax5) and just 

changed the expression between parentheses, she thought of it for a moment and typed 

15xA—(Ax-10). She explained this as follows: "because if I take Ax10 away from 15xA 

I get Ax5 ... but, if I want to add I put —10". Some moments after she said "it might be 

done in other way as well ... 	 /0" (12: 32). The episode shows that she unwit- 

tingly restricted herself to a more difficult situation, like solving an equation of the form 

15x-bx=25x where the unknown is b. She could finally manage the situation on the ba-

sis of her previous experience with negative numbers (see worksheet 32). 

Pragmatics: Jenny's approach to inverting linear functions 

The interview questions were focused on how Jenny began to use parentheses to find the 

inverse programs (see worksheets 44 and 45). In the interview she showed she had 

mastered how to invert linear functions of the form f(x)=ax+b, but she failed in doing 

this with the expression A-4x5 where awareness of priority of operations is needed. As 

we will see next, priority of operations plays a crucial role in the child's learning proc-

ess towards formalising her methods. In that process she had to make a shift from con- 
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structing a symbolic expression by copying step by step a number-based model to glob-

ally visualising the structure of the whole symbolic expression so as then to operate on 

it. The episodes cited below suggest on the one hand that priority of operations needs to 

be met several times before the child gets to be aware of its necessity. On the other hand 

they provide evidence for the value of calculator feedback, it seems that the child could 

hardly find by herself why her responses are wrong working with no computing support. 

Jenny explained how she built the program (A+1)+2 as the inverse of Ax2-1: "I first 

tried A=2+1 ... I saw it didn't work, then I adjusted it until get the outputs I had in mind, 

I got /1+2+0.5 ... Later I noticed that it was easier to put A+1 between parentheses, then 

divide it by 2" (12: 68) ... ... It is fully inverting the program ... it is not only inverting 

operations but putting in parentheses ... I have to do it all the way round ... because to 

invert a program I do first what I did last and vice versa" (12: 102). 

After this she showed that she was able to get the inverse of programs with the same 

structure as Ax2-1 but she failed with the expression A-4x5. In the previous questions 

she was able to find the inverse of a program at a glance. In the case of A-4x5 Jenny 

hesitated: "Is it A±5+4? ... Should I use brackets?" Then she typed the program A-4x5 

and ran it for A=10. She got —10 but expected to get 30, "because 10-4, 6, 6 times 5, 30" 

(12: 106-108). Jenny coped with this question by finding out why the calculator output 

was minus 10: "I don't know what is going on ... It first should take away 4... No, no ... 

That's it! It takes 4x5 away from 10!" (12: 114). Then she typed A+4x5 as the inverse 

of A-4x5. Jenny worked on the expression 4x5 as a whole entity, she did not read 4x5 

as 20. This shows that Jenny analysed the structure of the expression rather than ex-

ploring it with specific number values. 

The above episode illustrates how, once the child has grasped what algebraic transfor-

mation is about, she is in a position to gain a deeper semantic conception of algebraic 

expressions promoted by tasks based on symbolic manipulation. 
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PHASE 3: Jenny's entry into problem solving 

This section reports the work done by Jennifer in Format 6 and interview 4. Similarly to 

the sections before, Jenny's written work will first be discussed, then a summarised 

transcript of her work is presented to provide evidence for the analysis done in the pre-

ceding discussion. Finally Jenny's work during the third interview is analysed. 

FORMAT 6: Discussion of Jenny's work 

Format 6 presents three types of problem situations which require the child to formulate 

general relationships between quantities and represent such relationships using calcula-

tor language to negotiate solutions for particular cases. That is, to confront these prob-

lems using calculator language, the child has to use a function to model the problem and 

then to look for a particular case of that function (equation) to answer particular ques-

tions. One type of these problems consists of situations which require the child to an-

swer questions about number sequences presented by means of figurative patterns. The 

second type of problems requires the child to use calculator language to represent and 

compute either the perimeter or the area of rectangular shapes described by general re-

lationships between their sides. The third type of problem consists of situations that re-

quire the child to establish general relationships among quantities linked by percentual 

relationships. Jenny completed the ten worksheets included in this format. Her work is 

discussed in more detail below. 

Syntax: Jenny's notions of using parentheses and priority of operations. 

She used parentheses correctly every time they were needed, see, for example. work-

sheets 48, 49, 50, 51, 52, 53, 54 and 55. It is worth noticing that in worksheets 49, 50, 

51.53 and 55 she correctly produced nested expressions. Jenny's confident use of brack-

ets seems to be due to the fact that she approached on her own to that kind of expres-

sions ( see Format 2). Jenny's work suggests that an spontaneous approach to the prior-

ity of operations favour that children gain a better understanding of the function of 

brackets. Diego's case seems to confirm this conjecture, because it took him longer to 

appraise brackets as tools to break down the established order of arithmetic operations. 

As was discussed earlier in this chapter, Diego was guided by the researcher so that he 
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met expressions that needed the use of parentheses. Though he understood the function 

of brackets he frequently needed the teacher to intervene in order to make him realise 

what parentheses serve for and incorporate their use into his every day computing rou-

tines. 

Semantics: Jenny's notion of algebraic equivalence. 

In worksheet 48, Jenny made the program (A+2)2—(Ax A). Then she engaged in invert-

ing it to complete the table for the cases where outputs were given. She could not do this 

but found another way of interpreting the number pattern and produced the equivalent 

program Ax4+4. She accepted the equivalence "because both programs output the same 

values for same inputs". 

The following episode illustrates how Jenny has extended her notion of equivalence to 

simplifying similar terms. Jennifer produced the program ((Ax3)x2+(Ax2))x53 

(worksheet 49). When giving feedback the teacher included a note wondering if that 

program might be expressed in a shorter form. She simplified it to ((Ax6)+(Ax2))x53, 

then as (Ax8)x53. 

Pragmatics: Jenny's approach to inverting linear functions 

Jenny's work in this format shows that she has gained enough confidence both in look-

ing for equivalent expressions and in inverting linear expressions. In worksheet 48 (see 

Summary of Jenny's work below) she produced the expression (A+2)2—(AxA). As could 

be seen the structure of the expression is quite sophisticated, that is to say, she really 

struggled to produce such an expression. Nevertheless, since (A+2)2—(AxA) was not 

suitable for her to calculate the inverse values when the outputs were given, she went on 

and found an equivalent linear expression which she knew she would be able to invert: 

Ax4+4. Then she found two equivalent rules that reverse this expression: A+-4—1 and 

(A-4)÷4. She accepted the equivalence because both programs output the same values 

for the same inputs. This point is further discussed in the next section. 
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Pragmatics: The role of the context 

The geometrical-based number patterns influenced Jenny's work. Earlier, Jenny had al-

ready worked out the rule Lx2-1 (worksheet 4) where the clues were given by a table. 

There, Jenny's strategy was to investigate what operations should be carried out with 

any input number in order to obtain the associated output. 

This contrasts with the way she worked out worksheet 4 where the function rule was the 

same as in worksheet 46. Here she used a different strategy; the outputs (figurative pat-

terns) suggested to her a decomposition of the output number, for example, 5 as 2+3, 7 

as 3+4, and so on. Thus, she related this to the number of the figure in the sequence. 

Her explanation illustrates this: "I realised that in 

14:1=1 	 shape 4 there are 3 squares above and 4 below ... that 	
L _ J L  

is, above, there is one square less than the number of the shape and below there are ex-

actly as many squares as the number of the shape. So, I multiply the num-

ber of the shape by 2 and take away 1, which is the same as adding the 

number of the shape to itself but taking away 1". She used a similar strat-

egy in worksheet 48. It could be seen that she first tackled the question by taking away 

the area of the grey square from the area of the whole square (fig.1): (A+2)2 —(AxA). 

When trying to find a different way of expressing the rule she saw the shape as "a cross" 

(fig. 2) which allowed her to count the number of squares surrounding the grey square, 

then added the four squares on the corners: Ax4+4. 

FORMAT 6: Summary of Jenny's work 
WS Problem situation 

"Figurative patterns" 
Jenny's responses 

46. Look at the following shapes: _ 

33 
, 	  
r 	 199 
I, 

	 — 
Fl realised that, for example, in shape 4 (the shapes were 

I I  not numbered. she has this in her mind) there are 3 squares 
' above and 4 below. 1 mean. one square less than the number 
I of the shape. Below there are exactly as many squares as the 
I number of the shape. So 1 multiply the number of the shape 
I by 2 and take away 1 from it. which is the same as adding 
the number of the shape to itself -but taking 1 away' 

(D 
46.2. 

46.3. 

46.4. 

RFD L _ I 
How many squares are needed to build, 
	 up the shape that aoes in the 17th_place? 

How many squares are needed to build 
up the 	shape 	that 	goes 	in 	the 	100' 
	 place? 

Explain how you reasoned to answer 
the questions above. 
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WS Problem situation 
"Figurative patterns" 

Jenny's responses 

46.5. 	Can you program your calculator to corn- 
plete the following table? 

-Place-1-4 7 	-1-75 - '-.Li T3-  El 76 L.r-2 56 [254 -I-  
NT).of-t7)T- 1  149- 1  2T5-  I 3T1 	I 4Ti -I 577 	-I  

1 	1 	1 	1 	1 	1 
squar 	I 	I 	I 	I 	I 	I 
es 	I 	I 	I 	I 	I 	I 

Completed without teacher's feedback 
I 	 ?->A: Ax2-1 

Completed correctly (Jenny's answers in bold) 
	 _ 

47. Look at the following shapes: 

• IL  I 11111•ME 

	

47.2. 	How many 
up the shape 

	

47.3. 	How many 
up the shape 

	

47.4. 	Explain 
the questions 

I 

squares 
that 

squares 
that 

how you 
above. 

• 
• 

are needed to build i 	 25 
goes in the 9th  place? 

are needed to build 7 	 49 
 

goes in the 17"' place? 
reasoned to answer 71 multiply the number of the figure by 3 and take away 3 

I from this result. It gives the number of squares of this shape. 
I 1 tried it out with all the others and it works". 

48. Look at the following shapes: 
EMMEN 

MIMI E. 	II 
••• • II • I 
111 
••• 

• • • 
•••• 

MI 	• 
OEM  

	

48.2. 	How many squares are needed to build i 	 112 
up the shape that goes in the 27th  place? I ... 

	

48.3. 	How many squares are needed to build 1- 	 164 
up the shape that goes in the 40th  place? 

48.4. 	Explain how you reasoned to answer 	"I added 2 to the number of the figure and raised to square 
the questions above. 	 I and I take away the number of the figure multiplied by itself. 

I This gives the result required". 

48.5. 	Can you program your calculator to i 	 ?-*A: (A+2)2-(AxA) 
complete the following table? 

Since she could not invert the program above, she engaged 
Place 	48 75 	123 	 j herself in constructing a new program she was able to in- 
No. of 	 704 	772 840 	I vert. She got the program ?-->A: Ax4+4. The programs be- 
squares. 	 low are the inverse ones she did: 

?->A: A.±4-1 
I 	 ?->A: A÷4-4+3 

?->A: (A-4)+4 

WS Problem situation 
"Rectangular shapes" 

Jenny's responses 

49. The windows (below) have different di-
mensions but in all of them the height is 
three times the width. 

i i] El El 
49.2. 	The windows frame is made ofl- 

wood whose cost is $53 per metre. 
a) How 	much 	does 	it cost 	a window I 	 $ 636.00 

frame whose width is 1.5 meters? 
b) What did you do to answer the quer- I "I first multiplied 1.5 by 3 in order to get the height. I then cal- 

don above? 	 , culated the perimeter, then multiplied this result by 53". 
49.3. 	Can you program the calculator tol- 	 ?->A: ((Ax3)x2+(Ax2))x53 

obtain 	the 	cost 	of 	any 	window I Later she was encouraged to make this program shorter. Jenny 
frame? 	 I did the following: 

?->A: ((Ax6)+(Ax2))x53 
?->A: (Ax8)x53 
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WS Problem situation 
"Rectangular shapes" 

Jenny's responses 

50.  
sions 
less than 

The windows 
but in 

three 
all 

(below) 

times 
of them 

the 

have different dimen- 
the height is 50 cm 

width. 

As in worksheet 49 she was asked to program the calculator to 
obtain the cost of any window frame. She answered incorrectly. 
The program she used was: 

?—>A: ((Ax3)-0.50)x62. 
She missed adding the width to the height and doubling the sum. 

51.  The tabletops (below) have different dimen-
sions but in all of them the length is 1 metre 
greater than twice the width.. 

The table top is made of wood which costs 	 ?--->A: ((A x2+1)xA))x 155 
5155 per square metre Can you program your I  She also correctly used this program to complete a table which in-
calculator to obtain the cost of any table top? I volved "inverse values". 

54.  A number of pieces of land are for sale. They 
all 	have 	the 	following 	characteristics: 	the 
length 	is 30 meters greater than twice the 
width. 

	

54.1. 	Mr. 	Perez 	needed 	132 	metres 	of 	 length: 9 
wire fence to fence his land. What 	 width: 48 
are the dimensions of his land? 	I (Tasks 54.2 and 54.3 are similar to this one). 

	

54.2. 	Mr. Gonzalez bought a piece of land 	 668 meters 
whose width is 	76 meters. How 
many meters of wire fence does he 
need? 

54.3. 	Explain how you reasoned to answer 
the questions above. 

"1 took away 60 from the number that you gave me then I divided it 
by 8. This gives the width. To obtain the length I multiplied the 
width by 2 and added 30 to this". 

54.4. 	Did you program the calculator to 
solve these problems? 

"Yes, the program I used is (((A-60)±8)x2)+30-  

55.  A rectangular piece of land can be limited as 	The land-holder wants to take advantage of having the stream to 
shown in the figure. 	 limit one side of the land. Therefore he has only to fence the other 

three sides. The total facing available is 100 metres. ,..., 	_ 
STREAM 	 He'd like to do it so that the land has the maximum area which de- 

LAND 
pends of the measure of the land sides. To do this he will try with 
the following table: 

Large 	1 	; 60 	; 	; 70 	; 	; 65 	; 58 	; 55.5 	; 54.8 	; 49.7 	; She completed the table. 
side 	i 	II 	I 	I 	I 	I 	I 	I 	I 	I 

Short 	30 T 	10 	8 
i 	I 	II 	I 	I 	i 	I 	1 	I 	I 

side 	Ili 	I 	I 	I 	I 	I 	I 	I 	I 
-Ar ea  - -1-  - -1-  - -1-  - -7 — -7 - -7 - - r----  7 - - 1-  - - 1-  — 1 

1 	1 	I 	I 	 I 	I 	I 	 1 

LI 55.1. Can you program the calculator to complete the table above? 	?—>A: ((100-A).2)xA 
i 
i 

55.2. What are the measurements that make the land have maximum area? Short side: 50 m (49.999.4 
Large side: 25 m 
Area: 1250 square meters. 
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WS Problem situation 
"Percentages" 

Jenny's responses 

52.  The Music Centre is having a Special Sale: All records 15% off. 
The discount will be applied on the labelled price. 

52.1. 	Can you complete the following table? 
-s-1 8.757-i -I26755- i-$21.307-$137 -$777. 557s27. To Label 	MT 

I 	I 
Price! 	1 	1 	 I 	1 	I 	I 
Discount-E.  - - -7-  — -1-  - - - -1-  - - - -7  — - 7-  - - - 7-  - - - - 
Specral -I-  - - -I-  - - -± - - - - -I-  - - -± - - ---H-  - - - -I-  - - - - 

1 	i 	I 	i 	i 	i 	I 
Price 	1 	I 	I 	I 	I 	I 	I 	 
52.2. 	Can you program the calculator7o-tTaT it prints out IT Tpecial Price 

every time you input the Label Price? 

	

-s h e 	completed 	the 	table  

— — — 
 

b 

correctly. 

i 
I 

?->A: A-(Ax0.15) 

53.  A Book Store is having a Special Sale: All titles 25% off. 
The discount will be applied on the labelled price. 

53.1. 	Can you complete the following table? b  
Label Price 	1 	i 	i 	1 	i 	1 i 

	1 

1 	I 	1 	I 	I 	I 	i 
Amount Dis=1-$T 	-ri  $...-6-0-  7$-9-. ITO- -11-$1751) - 7 S .. T5-  irsT.T671 11-1:51 
counted 	I 	I 	11 	i 	1 	1 
Special PriceT -- T -- 1-1  - - _ 7---_  — 7 —

_ 
-T-

_ 
 T-  - 7  

1 She 	completed 	the 	table 
I correctly. 

i 

53.2. 	Program the calculator so that it prints out the Special Price every time 
you input the Amount Discounted. 

?->A: Ax3 

53.3. 	Program the calculator so that it prints out the discounted amount every 
time you input the Label Price 

?->A: (A÷25)x100. or 
?-->A: Ax4 

INTERVIEW 3: Discussion of Jenny's work 

The interview was concerned with the following issues: 

• Interpreting algebraic expressions used to denote measurements in diagrams 

• Simplifying linear expressions 

• Inverting linear functions 

• Working out problem situations involving generality by expressing number relation-

ships algebraically. 

Syntax: Jenny's notion of using of parentheses 

The episode about the rectangle C+2 by 5 provides evidence of Jenny's correct use of 

parentheses. However, when she was asked to transform 20xD in order to make it 

equivalent to 1 7xD she showed a lack of awareness of priority of operations while 

working with paper and pencil. When the question was asked she immediately an-

swered: 20-3xD "because 20 minus 3, 17, then 17 times D" (13: 131-134). Then it was 

suggested that she typed this in the calculator. She said (without using the calculator): 
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"It would give 3 times the number I input for D, then it would do 20 minus this ... I need 

to put in parentheses" (13: 135-136). Then she went to the calculator and typed (20-3) 

xD. Next, she was asked to find another way of getting 20xD equivalent to 17xD. She 

verbally proposed 20xD-3, when explaining what the program would do she let D=5 

and found in this way what was wrong, finally she got the expression 20xD-3xD (13: 

139-145). On the one hand the episode enhances the role of the calculator as source of 

feedback that helps the child gain awareness of syntax conventions. On the other hand, 

the episode suggests the need of combining more frequently the work within calculator 

and paper and pencil environments. 

Semantics: Jenny's notion of algebraic equivalence. 

Twenty days previously Jenny had successfully answered questions about simplifying 

similar terms. To probe this further she was asked again to do this in this interview. At 

this time Jenny's responses showed that she had gained acquaintance of simplifying lin-

ear expressions, for example, during the interview she made wrong conjectures but cor-

rected them by herself 

The way she worked out this type of question suggests that her experience of using cal-

culator programs enabled her to cope with algebraic simplification, and provides her 

with a referent that allows auto correction. Here, it seems worth remarking on a couple 

of points. First, that her correct use of parentheses relies on a good understanding of the 

priority of operations. Second, that it was still necessary to suggest to her to simplify an 

expression, otherwise she does see the need to do this. Although it may be obvious to 

have expected this to happen due to her incipient algebraic experience. Jenny's un-

awareness of the usefulness of simplifying leads one to think that simplification of 

similar terms should be taken within a context where algebraic transformation best 

shows its potential (this point is reviewed again in the section assigned to inverting lin-

ear functions). 

It is also relevant that Jenny's reactions suggest that the number-based approach to sim-

plifying seems to have prepared her for understanding, the distributive law. In fact, 
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Jenny seems to be stating this law when she explains her strategy to simplify similar 

terms. The following extract illustrates this. 

She typed the program (Ax2)+(Ax3)x2 to cal- 

culate the perimeter of the rectangle shown on 	 A 

the right. Then she was asked whether the pro- 

gram may be expressed in a shorter way or not. She answered by simplifying it as 

(Ax2)±(Ax6) and said: "it could also be A x12" (13: 43-44). But immediately she cor-

rected this saying: "A x8 ... I thought it was 6 times 2 times A, but it does not work be-

cause it is A x2 first.. then A x6 to make shorter (A x3) x2 ... then it gives A x8, because 

A times 2 plus A times 6 gives A times 8 ... well, it would be easier with numbers ... like 

1 x2 would give 2, and 1 x6 would be 6, and 2 plus 6 gives 8 ... then, instead of adding 

once and multiplying twice, I can just do 1 times 8" (I3: 48). 

It is interesting to notice how differently Jenny reacts to algebraic transformation de-

pending on the context. Jenny quite correctly worked out the item that was presented 

geometrically. However her work was not as fluent, and some times she became con-

fused, when symbolic manipulation relies solely on her notion of algebraic expressions, 

even with items that seemed less complex than the one presented in the extract above. 

This suggests that, for this child, her notions of letters and algebraic expressions are 

better exploited being supported by diagrams involving geometrical notions. 

Jenny's work confirms that the notion of letters as "representing any number" is the 

most powerful tool she has acquired to deal with this situations. In fact, this notion 

seems to be what leads her to substitute letters for specific values. The research data 

shows that Jenny can always resort to number substitution both to work out simplifica-

tions and, which seems more important, to validate/correct her answers, despite of not 

having developed solid algorithms to reduce similar algebraic terms. Here, again, the 

relevant role played by the calculator environment is critical in supporting the child's 

reasoning whether as clue giving source or as feedback supplier. The following inter-

view excerpts illustrate this. 
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Jenny was asked if the program 3 xA+4xA+A could be made shorter. By visual inspec-

tion she got 13xA. While explaining her answer she changed it to 12xA+A, "because 

3 x4=12, 12 plus A ... but I cannot add A ... for example, 12 x2, 24, 24+2, 26-  (13: 147-

152). Then she was asked about another way of checking the correctness of this answer, 

to which she replied "the two programs have to give the same". She let A=2, mentally 

obtained 16 as the number value of 3xA+4xA+A, and noticed that "adding 10 to this 

program the two programs would be the same, but only if A=2" (13: 153-158). From 

this she found where and why she had made an error and produced a correct answer for 

this question as well as with other even more complex expressions than the first. 

Pragmatics: Jenny's approach to inverting linear functions 

In the second interview (20 days before) Jenny showed that she had developed a con-

sistent strategy to invert linear functions. In the present interview it was intended to in-

quire whether the experience she had at that time may have helped her gain awareness 

of both simplification and inversion not just as syntactic transformations to be per-

formed but as tools to face problem situations involving algebraic expressions. So, she 

was asked to invert the program 4xD+7xD which implies simplifying as a previous step 

to inverting it. 

Despite the fact that Jenny had clearly shown that she was able to simplify even more 

complex expressions than 4xD+7xD, at the moment of having as a goal obtaining its 

inverse function, she resorted to giving values to the literal symbol. Jenny's reaction 

suggests that her strongest strategy to face algebraic transformation is to explore the be-

haviour of the expression by substituting the variable for particular values. In this the 

way she found that 4xD+7xD is equivalent to Dx11, then she found its inverse. D+11 

(13: 103-114). 

The above episode indicates that, in fact, substituting was the building block from 

which Jenny generated initial rules to simplify algebraic expressions. Nevertheless, 

rules like the one we are discussing, need time to be established as tools. Even the most 
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simple rules, like dividing as the inverse operation to multiplying seem to need to be 

intensively used before the child becomes able to master them. Very simple details may 

disturb children's attention and inhibit their progress, like the order in which the num-

bers must be input to perform a division. All this allows us to see the critical role of 

continuous feedback from the calculator. What follows exemplifies this. 

Once Jenny had found that 4xD+7xD=Dx11, she immediately said the inverse was 

"dividing by 11", but she typed the program 11--D . Then she realised that the program 

did not output what she expected. She had to make some effort to find what was wrong. 

She finally explained her mistake "I forgot that in the division the numbers cannot 

change places as opposite to the case of multiplication" (13: 116-128). 

Pragmatics: Jenny's use of algebraic language to negotiate problem solutions. 

Jennifer's answers suggest that the close relationship between the symbolic expressions 

used for programming the calculator and its function as a means of numerical comput-

ing, enables her to algebraically represent general procedures despite the fact that she 

conceives calculating only when it is to be performed with numbers. Jenny's way of 

proceeding evokes children's non acceptance of unclosed algebraic expressions, but 

Jenny had no difficulty in formalising her methods. What follows aims to clarify this. 

Jenny answered the question of calculating the pe-

rimeter of the rectangle shown in the diagram: "it is 
5 

not possible to calculate the perimeter of such a 
C 	2 

rectangle, is it? ... if it were a program ... I can do it 

with a program". Then, she quite naturally typed the program (A+2)x2+5x2 and ex-

plained: "this (pointing at (A+2)x2) is for the sides below and above altogether, and 

this (pointing at 5 x2) is two times the height" (13: 1-6). Then she was asked to build a 

program to calculate the area of such a rectangle, she typed (A+2)x5 and commented: 

"First, I add 2 to the number I put here (pointing at A) to make the program give the 

base (of the rectangle) then I multiply this by 5, which is its height" (13: 7-10). 
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The episode illustrates that the calculator's programming mode provides a fine-tuning 

link between Jenny's arithmetic way of reasoning and her initial steps towards using al-

gebraic code. Her reactions show that she is actually working with unclosed algebraic 

expressions being supported by the underlying notion of numerical computation. That is 

the only apparent reason why she is able to cope with the question. This suggests that 

Jenny's experience in expressing the rule that governs a number relationship being 

guided by an input-output table seems to be a good precursor to the ability to algebrai-

cally represent the structure of problems. 

Semantics: Jenny's notions of literal terms and algebraic expressions. 

The type of question such as the "rectangle C+2 by 5" had never been used before in 

this study, therefore it was thought necessary to inquire whether the children could 

make sense of it. Thus, Jenny was asked what the diagram might be about. She an-

swered: "It is wanted to know how much this measures (pointing at the C) ... so as to 

obtain the area" (13: 1-2). Can you calculate the perimeter of this rectangle? "It is not 

possible, is it? ... but with a program" (13: 3-4). The episode suggests that the experi-

ence of using letters while programming the calculator helped her to develop an ability 

to see the particular in the general and vice versa. More specifically, her first reaction 

was to see the letter as representing a specific value but, without any apparent difficulty, 

she could make a shift from this to the notion of a literal symbol as representing a range 

of values when programming the calculator. 

It also seems important that she used the letter A instead of C in the program she built to 

obtain the perimeter. This clearly shows that she has grasped that changing the literal 

symbol does not chance the expression (Wagner. 1981) and shows the range of general-

ity of Jenny's notion about letters as representing a range of numbers. 

Another remark in this respect concerns the development of children's skills for inter-

preting algebraic expressions. The use of algebraic expressions both as a means to rep-

resent general relationships and as tools to perform numerical computing seems to allow 

her to acquire elements from which to read algebraic expressions. Though most of the 
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time the child builds a programming expression by copying step by step an arithmetic 

procedure, the completion of this process comprises the formalisation of her method 

which seems to be the clue for her to acquire a global vision of symbolic expressions. 

Particularly, questions of the type of transforming expressions compels the child both to 

analyse step by step the algebraic expression and to look at the whole expression as an 

entity. In order to clarify this two interview extracts will be discussed next. 

As was discussed earlier in this section, Jenny started to develop a misrule to simplify 

similar terms. She proposed 12 xA+A as a simpler form of 3A+4xA+A because "3 times 

4 is 12 and it is not possible to add A". Though wrong, this shows that she was working 

on the basis of a whole view of the expression. She debugged this error by giving spe-

cific values to the variable and comparing the outputs obtained from the simplified and 

the original expressions. After this she could easily simplify more complex expressions, 

for example, 5xB+3xB+B+2><B as 11 xB explaining "I added those numbers which are 

not B because it is not possible to add B" (13: 167-172) (it is obvious that somehow she 

added the coefficient of B to 5+3+2, otherwise she could not have got 11, but she cannot 

explain this). Then she was asked to simplify the expression 5xB+3xB+1xB+2xB. She 

reacted immediately "it is the same as the one before because B alone is equal to 1 xB" 

(13: 173-174). It seems that the only way in which she could get this is by having a 

global view of the two expressions. 

After this she was asked to make shorter the program 5xB+2xA, she said: "... shorter? 

... It couldn't be shorter ... all the values are different here ... unless A and B had the 

same value ... or A was zero ... or B was zero" (13: 176-182). 

It seems relevant that Jenny shows neither reluctance to accept unclosed expressions nor 

any tendency to conjoin terms which could have happened when she had been asked to 

simplify 5 xB+2xA. All this seems to relate to the arithmetic notation used throughout 

the whole study and to the fact that the calculator leads her to express her reasoning in 

terms of arithmetic operations. This not necessarily happens within a paper and pencil 
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environment, where the child may consider enough to express her reasoning in natural 

language. This point will be further discussed in Chapter 7. 

Another type of item related to interpreting algebraic expressions was the following: A 

pupil from another class says that (A+B)2  gives the same as A4B2. What do you think 

about this? 

Despite the fact that the expression involves two variables and it was completely new to 

Jenny she did not show any hesitation either in making sense of the expression nor in 

finding a way to answer the question. Her answer was: "He is wrong, because to square 

a number means to multiply it by itself for example, if A was 1 and B was 2 we'd get 

1+4, 5, here (pointing at A4B2) and 32, 9, there (pointing at (A+B)2)" (13: 183-188). 

Then she was told that the pupil who said this said also that he had examples of his 

statement. After a moment of reflection she said, "he might have been thinking of A and 

B having both zero as a value ... or A was zero and B was 1" (13: 189-192). 

Pragmatics: Use of algebraic language to negotiate problem solutions. 

Since questions of the type involved in this section were not posed to the children be-

fore, it is assumed that Jenny's responses rely solely on her classroom experience using, 

algebraic language as calculator-language expressions. The question we will deal with 

next is to consider a problem situation under the criteria that the child does not have 

immediate available resources to confront it. 

A diagram like the one on the r42-ht was shown to Jennifer. She was 
5 

asked if the diagram provides her with some information. The point 

that will be focused on here is how the generality into which the A 

diagram is embedded led this child to use the general expression 

A+5—A to answer what seemed a simple question: finding out the 

difference between the two marked sides in the shape. 
A 
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Though incorrect at the beginning, Jenny was able to read the diagram relating metric 

relationships (A and A+5) to her geometric notion of square shapes. Jenny's first reac-

tion was to say "there is something wrong, it looks like a square, so it must have all its 

sides equal" (13: 12). Then she proposed to "arrange the figure" whether "by taking 5 

away or adding five to the other side because the A's have the same value" (13: 13-16). 

She was asked to suppose that the shape is not a square, and if she could say which is 

the greatest side. She did not have any difficulty in answering the question, "because in 

both sides the A values the same ... let's suppose that A was 9, here the two sides are the 

same, and 14 is greater than 9" (13: 20-22). Here we get to the point that seems rele-

vant, she was asked to say exactly how much greater is one side than the other. After 

some reflection she said "in the program A+5 ... Oh! A+5 —A would be the difference ... 

it depends on the value you give to A". The interviewer wrote down A+5—A and was 

interrupted by Jenny who said "No, it would always give 5 ... doesn't matter what value 

you input for A you would do nothing" ... In terms of numbers, what does A—A mean? 

..."Zero, zero plus five gives five" (13: 23-36). 

On the one hand, the episode shows that despite the fact that the diagram provides 

enough information to answer that question Jenny did not make any connection between 

it and the question she was asked, which suggests that some care is needed to rely on 

giving information by means of diagrams. On the other hand, it is relevant to notice that 

when calculating was required she used the calculator language to negotiate a problem 

solution, to do this she produced the expression A+5—A without being guided by any 

number-based pattern, this suggests that she was working purely with unclosed alge-

braic expressions. Though she might have done it with the idea of programming the cal-

culator to numerically explore the situation, she finally was able to find a solution ap-

parently by simple inspection of the symbolic expression. 

A second item was given to observe Jenny's use of calculator language to negotiate 

problem solutions. The item was the following: 
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Look at this list of numbers: 5, 9, 13, 17, 21, ... If I keep on writing down num-

bers in the list, will I get the number 877? 

Jenny used the calculator to divide 877 by 4 and obtained 219.25, then she did it with 

paper and pencil. Jenny explained that 877 must be in the list "because I noticed that for 

each number in the list 1 is left when you divide them by 4 ... so 877 must be in the list 

because if you divided it by 4 there is also 1 left" (13: 193-200). Then she was asked for 

the place in the list that 877 would have. She found it is "219 ... 887 must appear in this 

place because 4x219+1=877". After this she typed the program Ax4+1 in order to 

show a way of producing any number in the list (13: 201-208). 

Pragmatics: Jenny's approach to expressing and justifying generality. 

So far Jennifer's responses indicate that the experience she has had exploring and de-

scribing number patterns has enabled her to use the calculator's language to represent 

number relationships. 

However. Jenny's work shows that she still needs more experience using calculator lan-

guage before she becomes able to use it to justify generalisations. In fact. Jenny did not 

resort to using algebraic expressions spontaneously to confront justifying, generality, she 

did it only when she was specifically asked to do so. Nevertheless, her answers show 

that she has made important progress because it seems unlikely that she might use alge-

braic language as an argument without being able to represent the relationships involved 

symbolically. To summarise, it could be said that the acquaintance she has developed 

with representing number patterns algebraically seems to be a good starting point for her 

to begin exploring the use of calculator language as a means of expressing and justify-

ing generality. It seems promising that she needed less interviewer's help in the second 

item about generality than in the first one. which leads us to conjecture that Jenny is on 

her way to grasping how the calculator language may help her get fresh and more gen-

eral information. The following two extracts are aimed at illustrating, the above. 

The following puzzle-like situation was verbally posed to Jennifer: 
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Think of a number, add 10 to it and write down the result. Now take the number 
you thought of away from 10 and write down the result. Now add the first result to 
the second one ... May I try to guess the final result you got? It must be 20. 

Then she was asked if she could find out why the final result can be predicted. Jenny 

seemed to have understood why 20 would always be the final outcome but, after some 

trials, she could not offer any intelligible explanation from generalising numerical ex-

amples and said "you are using a trick so it always gives 20" (13: 49-58). Then she was 

asked to try to program the calculator so that it may help to explain that "trick". Without 

any apparent difficulty she typed the program (A+10)+(10—A) and was asked to observe 

the programming expression looking for an explanation of why it always gives 20. She 

was about to be told to abandon the task when she said "that's it, you are doing nothing 

... right there (pointing at the A's in the expression (A+10)+(10—A)) ... A minus A gives 

zero so it just leaves 10 plus 10, that is why it gives 20 ... does not matter what number 

you have thought of (13: 59-68). 

A second item was the following story-based situation: 

A pupil from another class says that every time he sums two consecutive num-

bers he gets an odd number. What do you think about this? 

This time she attempted a general reasoning: "I agree with him, because if you have two 

consecutive numbers one of them must be even and the other odd ... for the sum to be 

even you would need two even numbers... since you have one even and one odd numbers 

the sum must be odd" (13: 73-74). We should notice that if she had included in her rea-

soning the case of two odd numbers she would have had the skeleton of what we would 

accept as an indirect mathematical proof. After this she was asked to represent in gen-

eral the sum of two consecutive numbers. Since she appeared not to make sense of this, 

the question was changed to asking for a program to represent the sum of two consecu-

tive numbers. She immediately said (she did no type it): "A plus A plus one" and ex-

plained: "because A is a number, then A+1 is the one which follows ... Let's suppose A 

was 4, 4+1 is the next number" (13: 77-80). When asked she easily expressed the sum of 

three consecutive numbers as A+A+1+A+2 because "I just added A+2 to what I have 

already done" (13: 81-84). 
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It is worth emphasising that although Jenny could not make sense of the question posed 

in terms of generality this seems to be due to the novelty of the type of statement; her 

reasoning, though based on numbers, is founded on generality. 

After this she was asked if the expression A+A+1 might offer some explanation for the 

sum of consecutive numbers. She said it did, because "when the machine does A+A it is 

adding the same number twice, say, you input an even number, it does A+A and it's al-

ready an even number, say 4+4, 8, plus one, it gives an odd number, 9." What about if I 

input an odd number. ... "Well ... A may be also an odd number ... say 3, 3+3, it is the 

same as the one before, because it gives 6, plus one 7 ... it always gives an odd num-

ber" (13: 87-90). 

THE CASE OF JENNY: Concluding Remarks 

This section aims to put forward some conjectures intended to explain how Jenny de-

veloped the notions and strategies discussed in the previous sections. In order to do this 

some episodes will be re-analysed in terms of some learning processes which may have 

occurred within the framework provided by the tasks which she confronted during the 

field work. 

The potential of the calculator within a pragmatic approach 

Jenny's mathematical attainment before and during the field work lead us to think that 

her algebraic achievements stem from her working experience within the calculator-

based environment designed for the research. Jenny's mathematical attainment through-

out the study provides evidence for the implicit conjecture around which this research 

was implemented: 

Computing devices which use a programming language a similar code to alge-

braic sign system can help create a mathematical environment which encour-

ages the children to learn the algebraic sign system as a language-in-use, in a 

similar way as we learn the rudiments of the mother tonaue. 
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In what follows this statement will be discussed in more detail. 

Semantic notions developed by Jenny 

The use of calculator language helped Jenny develop two basic notions: 

i. Algebraic expressions as devices to describe and compute general arithmetic pro-

cedures. 

ii. Letters as symbols that allow her to represent any number and serve to make the 

calculator's general procedures work. 

Here there are two important points to discuss: how she learned about these notions and 

how she was able to use them as tools to express generality and negotiate problem solu-

tions. In this respect the claim is put forward that Jenny's mathematical notions strongly 

relate to the way in which the tasks were designed. 

Let us look at the tasks in more detail. They all are goal-oriented activities whose main 

characteristic consists of providing a numerical referent for the child to produce alge-

braic expressions. From her first encounter with calculator's language Jenny was re-

quired to formalise her method. For instance, to carry out the tasks in worksheet 4 

(format 1) she was required to: 

i. Find the underlying pattern shown in a table. 

Input 1.1 2.5 3 4.3 5 

Output 3.2 6 7 9.6 11 

According to the research data, Jenny confronted this task by carefully inquiring what 

computations had been carried out with 1.1 to obtain 3.2. Then she had to check out if 

those computations allowed her to obtain 6 when applied to 2.5, and so on. 

ii. Communicate to the calculator how to multiply any of these numbers by 2 and then 

add 1 to the outcome. This requires the child to produce a "one-piece" symbolic 

utterance so that it describes and carries out her reasoning. 
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The above process led the child to formalise her method. It was observed during the first 

three months of the school year that her spontaneous way of proceeding was not to ex-

press her reasoning as 1.1x2+1. She usually did 1.1x2, 2.2, then 2.2+1, 3.2. Jenny ac-

cepted the formality of an expression like Ax2+1 just because it is the way that the cal-

culator works. The research data indicates that she gained understanding of the general-

ity of such an expression since she had constructed it. From this experience the child 

develops the notion for letters as symbols that "represent any number". This notion is 

extended beyond the set of numbers displayed in the table by requiring the child to fill 

in the blanks in a new table using the program she had built. There, it is particularly im-

portant that she needs to find the inputs when outputs are given. This makes the child 

carefully analyse the way her program proceeds and, consequently, think of the role 

played by the letter she is using. For instance, in the same worksheet she completed the 

table below using the program Ax2+1 (Jenny's answers in bold type). 

Input i 1.3 i 2.8 II  14 i 50 11  81 i 274 II  162 i 209.5 

Output +-I  3.6 r 6.6 r 29 	101 	163 	549 	325 	420 

As has been said earlier, it was the teacher who introduced children to the calculator 

language. Worksheet 1 was used to exemplify this. Worksheets 2 and 3 helped children 

become familiar with programming operational details. From then on, tables were the 

only way used to encourage children to use calculator language. In fact, what children 

received were challenges to finding number patterns which they had to describe by 

means of calculator language. This was a key point in helping children develop skills to 

receive and produce calculator language utterances. Here, the game-like structure of the 

tasks also played an important role. 

With time. Jenny's semantic notions allowed her to make sense of and successfully deal 

with algebraic manipulation. like inverting linear functions, constructing equivalent al-

gebraic expressions and simplifying linear function's rules. Her work shows that she 

confronts symbolic manipulation by exploring the numerical behaviour of algebraic ex-

pressions (that is, as a semantic activity). Later on she started to construct initial syntax 

192 



CHAPTER 5: Chronology 
The case of Jenny 

rules. An important point here is that this relationship between semantics and syntax 

allowed Jennifer to develop strategies to verify her incipient syntax rules. 

Syntactic notions developed by Jenny 

Jenny learned about priority of operations and use of parentheses while using the calcu-

lator's language. The case of Jennifer is unique in this respect, her fellow pupils had to 

be guided by the researcher so that they met expressions which made them realise the 

priority of operations. It was Jenny's intellectual curiosity which led her to realise that 

the calculator "thinks differently from her" (format 2). 

Jenny gained awareness of the priority of arithmetic operations and use of parentheses 

for the only reason that it is the way the calculator works. Jenny's work shows that the 

calculator-based tasks create a milieu governed by mathematical rules that helped her 

accept their conventions. For this to happen, it was crucial that Jenny was able to carry 

out the relevant calculations in advance, otherwise she would not have noticed that the 

calculator proceeds differently. For instance, she thought of "a program that first takes 

1 away, then multiplies it by 3" (see interview 1) and calculated by herself several in-

put/output pairs. But she could not make the calculator work in that way. The fact that 

Jenny had met such conventions while trying to produce her own goals (see format 2) 

seemed to make her value the role of syntax rules. This suggests that more suitable tasks 

should be designed in order to favour such children's spontaneous approach to syntax. 

Our data shows that Jenny's command of priority of operations plays a critical role both 

in decoding an expression like Ax3+5+2xA and in constructing rules for algebraic 

transformations. This relationship between algebraic manipulation and priority of op-

erations is due to the fact that algebraic notation was introduced as a means of describ-

ing arithmetic procedures. In that fashion the child starts producing and reading alge-

braic expressions seeing behind them an arithmetic procedure. Then, being unaware of 

priority of operations is quite likely to result in misunderstandings. For instance, not to 

distinguish the terms Ax3, 5 and 2xA in the above expression. 
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Strategies developed by Jenny 

Jennifer's work shows that her strongest strategy to cope with algebraic transformation 

was numerical substitution. She used it wherever algebraic transformation was required: 

to operate on a given expression to make it equivalent to another expression, to invert 

function rules and to simplify algebraic expressions. Each of these cases are specifically 

discussed in what follows. 

Jenny's approach to symbolic manipulation 

The interview extracts cited earlier show that Jenny was able to cope with the task of 

transforming an algebraic expression to make it equivalent to another expression. Here 

we will discuss how she was able to do this and how a fusion of Jenny's semantic and 

syntax notions took place. 

It is worth noticing that Jenny had just completed five sessions programming the calcu-

lator when she was confronted with this kind of algebraic transformation (interview 1). 

Her work shows that the strategy she used relies on her prior experience describing 

number patterns by calculator language. In order to make it clear let us analyse the 

question of transforming 4xB to make it equivalent to 3xB. 

First she made sense of the question. That is, she clearly distinguished between the ex-

pression to be transformed (4xB) and the target expression (3xB). Then she let B=2 and 

produced 3xB=6. Having this in mind she put forth 4xB-2=3xB. Jenny did not accept 

this because "it works only for B=2". Up to this point it is clear that her strategy was 

based on having a numerical referent as a departure point so that she might compare 

both expressions by means of their numerical value. Then she tried with other values for 

the variable until she produced the expression 4xB—B=3xB, because: 

"-IxB-2=3xB only works if B=2, 
4xB-1=3xB only works if B=1, 
4xB-5=3xB only works if B=5, 
then it must be -IxB—B=3xB". 

This strategy is an extension of her previous experience with number patterns. The 

task's structure in that case was the same. She had a number to be transformed (input) 
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and a target number (output). Having the latter in mind she looked for those computa-

tions that helped her transform the input so as to obtain the output. Then she made a first 

conjecture and tried it with other pairs of input/output. Once her conjecture proved to 

work she expressed it as a calculator's program. This indicates how her notion of alge-

braic expressions as devices to calculate enabled her to extend her experience to cope 

with new situations. 

Later, when harder questions were asked, she started to sketch out syntax rules. For ex-

ample, without having yet a systematic way of proceeding she was able to operate on 

10xA+5xA to make it equivalent to 18.3xA, and 12xB+5xB-2xB into 4xB. 

Jenny's approach to simplifying similar terms 

Interview 3 shows that Jennifer was able to simplify similar terms. Here it will be ex-

plained in more detail how she was able to do that. Our first conclusion about this is that 

her incipient awareness of priority of operations was a key point for her to simplify 

similar terms. But there are also some experiences that seem to have mediated her 

learning. 

The question about simplifying similar terms was given in the third interview. Before 

this she had some experiences that relate to algebraic simplification. Specifically, she 

had completed the worksheets about equivalence in format 3 and had confronted the 

questions about transforming algebraic expressions twice, first in interview 1 and then 

in interview 2. I consider that these antecedents play an important role in explaining 

Jenny's strategies. 

For example, in format 3 (worksheet 21) she built the programs Ax5—A, Xx3+X, 

Yx2+(Yx2), Cx6—(Cx2) and Dx7—(Dx3) as equivalent to Wx4. These were her first 

steps towards algebraic manipulation. Thus, when she was asked to simplify similar 

terms she had gained some acquaintance with algebraic manipulation. Her work con-

firms this as we will see next. Jenny faced quite naturally the question of transforming 

10xA+5xA to make it equivalent to 18.3xA. To do this she operated with the expres- 

195 



Input II  1.3 i 2.8 i 14 i 50 1 

Output -1-1  3.6 r 6.6 	29 	101 — 

81 

163 

i 

— 

274 

549 

i 

—1-  
162 

325 

i 209.5 

— — — — 420 

CHAPTER 5: Chronology 
The case of Jenny 

sions, she saw that "I0xA+5xA gives the same as 15xA ... it must be 

10xA+5xA+3.3xA" (interview 3). Her strategy reflects her prior experience of equiva-

lence. Nevertheless, she did not face the question of simplifying 12xB+5xB-2xB in this 

way. Here she explored the numerical value of the expression. She let B=1, mentally 

operated and realised that "it multiplies by 15'3. We should notice that this was possible 

thanks to her awareness of priority of operations. It was this notion that enabled her to 

decompose this expression into "12xB, 5xB and 2xB". In this way she got 12x1+5x1— 

2x1=12+5-2=15, which she then related to 15xB as a simpler form of 12xB+5xB-2xB. 

Jenny's work suggests a second conclusion: she has not yet developed a method for 

simplifying linear expressions. Up to this point she resorts to using a twofold strategy, 

when she was able to make sense of the expression, she proceeded adding up the coeffi-

cients. When she was not able to make sense of the expression (for example, 

12xB+5xB-2xB), Jenny went on to explore its numerical behaviour in order to obtain 

further clues to guide her reasoning. 

Jenny's approach to inverting linear functions 

Jenny's strategy evolved according to the following pattern: 

i. When a table and the program that produces it are both available she uses the pro-

gram to "chase" the input by successive approximations. For example, to find the 

associated input to 325 (see table below) Jenny used the program Ax2+1 as fol-

lows: since 163<325<549 she looked for an A value so that 81<A<274, say 100. 

Then she went on trying until she got 162. 

ii. When just the program to be inverted is available, she inverted the operations in 

the order in which they appear, then she adjusts the result. For example, in work-

sheet 44 she inverted the program Ax2-1 as A4-2+1. Then she ran the program and 

saw its outcomes exceed by 0.5 the results she expected. For example, Ax2-1=5, 

She sometimes substitutes the variable for other values. 
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for A=3, and A+2+1=3.5, for A=5. So, she adjusted the program taking 0.5 away 

(A÷2+0.5). 

iii. When inverting operations proved not to be a suitable strategy, she found how to 

use parentheses to invert the expression. To do this Jenny related her notion of pa-

rentheses to her conception of inverting function rules. What follows aims to clar-

ify this. 

While working with the tasks in format 2 she realised that parentheses are symbols that 

"... serve for the calculator not to perform the two operations at a time ... I mean ... first 

one then the other" (interview 1). Later on, in format 5, she found that inversion con-

sists of "doing first what you did last and vice versa ... I have done it with the calculator 

... it works" (interview 3). These are the notions that enabled her to use parentheses 

when inverting linear function rules. For example, worksheet 44 required the child to 

invert the program Bx3+1. She first tried inverting the operations (B÷3-1). When she 

ran the program the output numbers were too difficult to grasp because of the periodic 

expansion obtained when dividing by 3. Then she looked for another way to do it. 

The above process provides a good example of how Jenny's command of the calcula-

tor's language evolved. It was Jenny's use of calculator language through a range of 

goal-oriented tasks which helped her to assign meanings to algebraic expressions and 

parentheses. Based on these notions she started making trials on symbolic manipulation 

like just inverting operations. Later on, she made her idea about inverting more concrete 

("we have to do it all the way round ... doing first what you did last ...") by using the 

calculator language. This shows a higher level of linguistic competence: from describ-

ing arithmetic procedures to pure symbolic manipulation. 

Jenny's approach to negotiating problem solutions 

Jenny's classroom work shows the extent to which she was able to use calculator lan-

guage in negotiating problem solutions. This section aims to discuss how she developed 
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strategies to cope with problem solving. To do this we will carefully look at the sample 

of Jenny's work shown below. 

WS Problem situation Jenny's answer 
34. Programming the calculator to build a square box with maximum 

volume (from a square cardboard with length 24 cm). 
(24-2xA)2  

49.  Programming the calculator to find the cost of a class of rectangular 
window frames whose height is three times its length. 

((Ax3)x2+(Ax2))x53 

50.  Programming the calculator to find the cost of a class of rectangular 
window frames whose height is 50 centimetres less than three times 
its length. 

((Ax3)-0.50)x62. 
She missed adding the width to 
the 	height 	and 	doubling 	the 
sum. 

51 Programming the calculator to find the cost of a class of table tops 
whose length is 1 metre greater than twice its width. 

((Ax2+1)xA))x155 

52. Programming the calculator to find the special price of any merchan- 
disc when 15% is off and the regular price is known. 

A—(Ax0.15) 

53.2 Programming the calculator to find the special price for any mer- 
chandise when the discount obtained (25%) in the purchase is 
known. 

Ax3 

53.3 Programming the calculator to find the regular price when the dis- 
count (25%) is known. 

(A+25)x100, or ?-*A: Ax4 

55. Programming the calculator to ob- ((100-A)+2)xA 
"(100-A) +2 represents the large 
side"; "(1x2) represents the two 

short sides". 

taro 	the 	a 	"three 	sides" 	rectangle 
area whose "three with maximum 

sides" perimeter is 100 metres. 

The algebraic representation of the relevant relationships in these problems involve a 

great level of difficulty, at least for a brief introductory study of algebra with 12-13 year 

old children. Situations like the ones in worksheets 34 and 55 usually appear in intro-

ductory Differential Calculus textbooks' (though these type of problems are also in-

cluded in many secondary school textbooks, but not for the same purpose). Worksheets 

49-51 require the child to algebraically describe sophisticated relationships like "the 

height is 50 centimetres less than three times the length" that usually appear in intro-

ductory algebra textbooks. Worksheets 51-53 require the child to use the notion of per-

centage so as to construct a program to compute the cost and the tax applied when its 

total is given. Additionally all the problems refer to a whole class of things, that is, they 

are modelled by functions. An important point here is that the children were not helped 

by the teacher to do these tasks. Thus, what they did stemmed from resources and 

strategies they developed through working with the calculator. 

4  For example. A. Cruse & M. Granbercz, 1975. Lectures on Freshman Calculus. Addison Wesley Publishing Com-

pany, London. 
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To confront these tasks Jenny put into play every strategy and notion she had learned 

about. Jennifer's work suggests that what goes on in tasks like games describing number 

patterns by calculator language can tell us much about learning algebra. The point that 

will be addressed here is how Jenny's mathematical attainment evolved from describing 

number patterns to using algebraic language to negotiate problem solutions. 

Jenny's transition from finding a rule like "multiplying by 3 then adding 2" to express-

ing it as Bx3+2 seems to be her starting point towards formalising her reasoning. This 

task provides the child with a bridge that links her prior step-by step arithmetic way of 

proceeding to an algebraic way of working. It was this arithmetically-exploring —> alge-

braically-describing structured activity that gradually let her gain confidence in using 

the calculator formal code. Let us carefully look at the child's actions while facing these 

tasks. 

She was free to operate with numbers in a fashion she had already mastered when find-

ing the rule that governs the numbers in a table. Then she expressed that rule using cal-

culator language. The fact that Jenny had made the relevant calculations in advance en-

abled her to verify (by herself) the correctness of her calculator language utterances. 

Also, she could resort to teacher's support when she ran into problems, as it happened 

when she could not make the calculator "add 1 first then multiply this by 2". Through 

using calculator language (33 worksheets before she faced problem solving) she was as-

signing meanings to programming expressions and getting awareness of some syntax 

notions. 

Later (when transforming), I introduced expressions in which the variable is used more 

than one time (for example, 3x A+4xA+5). Jenny made sense of these expressions by 

exploring, numerically and began to sketch some syntax rules to manipulate them sym-

bolically. In this process she found that parentheses allowed her to invert function rules 

of the form f(x)=ax+b. There she went further to algebraically describing, number pat-

terns and started to operate on algebraic expressions. This process shows a continuous 
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going back and forth from semantic to syntactic notions, from the particular to the gen-

eral. 

Finally, in worksheet 34 (box of maximum volume) she offered a first sample of how 

her prior experience using calculator language helped her describe general quantitative 

relationships. To do this she had to work with the as yet unknown, and furthermore, 

when the as yet unknown was a magnitude which was varying. Her work in worksheet 

55 illustrates the extent to which Jenny uses the calculator 

code to cope with problem solutions. Though the expres- 

sion she produced properly describe the relevant relation-

ships according to problem constraints, and she used it cor-

rectly to negotiate the problem solution (expression 1), the 

explanation she gave later allows us to see that there is still a lack of command of the 

calculator code (expressions 2 and 3)). She produced expression 1 to compute the area 

of the rectangle, and produced expressions 2 and 3 (see table above) to explain her re-

sponse. Expression 1 shows that Jenny used the letter A to represent the large side, con-

sequently ((100—A)±2))xA represents the product of the large and the short sides (the 

area of the rectangle). She built expression 1 on the basis of the numerical calculations 

she made when completing a table that required her to find the length of the short side 

when the large side was given. That table also included some rows where the short side 

was given and the large side had to be found. Eventually Jenny decided to algebraically 

express the relationships by naming A as the large side. But, when explaining how she 

reasoned to produce expression 1, she reversed the relationship between the sides: her 

written explanation says that (100—A)±2) represents the large side (which in fact is the 

short side), and that (Ax2) represents the two short sides (which in Willis of her initial 

program would represent two times the large side). 

There are various plausible explanations for Jenny's confusion. One possible explana-

tion comes from the common fact that many beginner algebra students are better able to 

cope with problem situations than they are to explain their reasoning. A second is that 

she had worked flexibly with both the unknown as long side and unknown as short side, 

Worksheet 55 
1. ((100-A)+2)xA 
2. "(100-A) +2 represents the 

large side". 
3. (Ax2) represents the two 

short sides". 
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and she became confused about what she had used in expressing the relationships. An-

other possible explanation is that Jenny might have been using the letter as an object (in 

Kiichemann's sense, 1981), thus she might have just been using the letter "A" as a 

"name" for the side of the rectangle, without relating that name with numbers (the 

length of the side). This interpretation of letters could have led Jenny to get confused so 

as to reverse the relationships between the sides of the rectangle. The research data 

throughout the study seems to contradict such explanation. During the study Jenny al-

ways used the letters to represent numbers, that is the way in which she program the 

calculator. Every time she dealt with a letter a number should have been evoked, other-

wise the work with the calculator does not make sense. Consequently, it seems unlikely 

that Jenny had become confused when explaining her reasoning because she had been 

thinking of a letter as a name for the side of the rectangle. 

The above discussion illustrates the kinds of subtle details that Jenny still have to refine 

before she becomes a more proficient user of the algebraic language as a tool for negoti-

ating problem solutions. 

Jenny's approach to expressing and justifying generality 

Interview 3 provides evidence for Jenny's acquaintance with expressing algebraically 

general statements. As has been discussed in reviewing interview 3, Jenny easily pro-

duced the expression A+A+1 to describe the "sum of any two consecutive numbers". 

She also, without any difficult, produced the expression (A+10)+(A-10) to describe the 

situation of "think of a number add it to 10 and write down the result. Now take your 

number away from ten and add the first result to the second one". In fact, making sense 

of and algebraically referring to these situations seem to be simpler than dealing with 

the problem's statements cited in the above section. But, in contrast with her attainment 

in problem solving, where she showed she had grasped how to use calculator language 

to negotiate problem situations, she could not spontaneously use the calculator's lan-

guage to justify generality. To do this she needed the teacher's intervention. Jennifer's 

case suggests that there is a distance between using algebra in problem solving and us-

ing it to argue mathematically. Nevertheless, Jenny's skilfulness in describing general 
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relationships seems to be an important antecedent to justifying generalisations since it 

seems unlikely that the child could do it without being able to communicate using alge-

braic language. 

General Remarks 

Priority of operations 

Jennifer's case suggest that mathematical conventions such as priority of operations and 

the use of parentheses play a crucial role in bridging the gap between arithmetic and al-

gebra. Jenny's work shows that she obtained a good level of command of these conven-

tions and her progress tells us about her talent and favourable attitude towards mathe-

matics. Nevertheless, there were also a good number of episodes that show her resis-

tance to incorporate priority of operations into her everyday ways of working, particu-

larly when working with paper and pencil. 

This suggests that special teaching attention should be paid to these features. Let us de-

scribe an experience with 30 mathematics school teachers during a workshop recently 

carried out. The teachers were asked to calculate 2+3x5. At first they looked a bit con-

fused about the question due to its elementary nature. A few of them let us know their 

answer, it was 25. Then we asked for the numerical value of 2+3a when a=5. This time 

they all got 17, "because that is algebraic substitution, so you know where to start from 

... there you clearly have two terms, 2 and 3a". In the other case they appear to be domi-

nated by the arithmetic fashion of calculating from left to right. We know this situation 

cannot lead us to any generalisation but, at least it shows that these school mathematics 

teachers were not aware of priority of operations in the arithmetic case. This suggests 

that there is a teacher's tendency to separate arithmetic from algebra, so we would not 

be surprised that pupils show a similar proclivity. 

Mental calculation 

As well as Diego, Jenny's approach to symbolic manipulation shows a strong relation 

with mental calculation. This remark is derived from observing that Jenny's first suc-

cessful attempts to operate with literal terms took place where the coefficients were 
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positive integers and addition or multiplication were involved. Interview data confirmed 

that her skills to mental calculation had much to do with both finding equivalent expres-

sions and simplifying similar terms. This leads us to suggest that special teaching atten-

tion should be paid to mental calculation if it is intended to introduce algebra from an 

arithmetic approach. 
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CHAPTER 6 

THE REST OF THE CASE-STUDY PUPILS: AN OVERVIEW 

Introduction 

Chapter 5 presented a detailed analysis of the data provided by two of the seven children 

that took part as case-study subjects throughout the study. The detailed account made in 

Chapter 5 provides background to the present chapter, which is intended to provide a 

more complete view of the data collected by presenting a succinct account of the work 

done and the strategies used by the other five children that were closely observed during 

the study. This review will be carried out by taking up those features that best charac-

terise each pupil. The chapter discusses those issues concerning pupil's attitude towards 

mathematics, their mathematical attainment prior to the fieldwork, the work done in 

terms of the number of worksheets completed, and their strategies to work out different 

tasks. 

The chapter is organised as follows. First, the case-study pupils with below average at-

tainment are presented. Second, the case-study pupils with average attainment are de-

scribed. Third, the case-study pupils with above average attainment are presented. The 

chapter ends with a section which presents some preliminary conclusions that outline 

the horizontal analysis to be made in Chapter 7. 

6.1. Lower attainment pupils. 

Rocio 

As has been said in Chapter 4, two children with below average attainment (Rocio and 

Omar) were initially chosen to be followed as case-study subjects. Unfortunately, Omar 

got sick in the middle of the study and was out of school for the rest of the school year. 

Thus, Rocio was the only pupil with below average attainment that was observed during 

the study. 

Rocio is a 12 year old girl, her work prior to the study showed that she was good at per-

forming arithmetic operations with whole positive numbers but she had strong difficul- 
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ties when solving arithmetic problem situations. A characteristic trait in Rocio's attitude 

was that she always tried to present her work to the teacher until she was convinced her 

work was correct. This attitude encouraged her from the beginning of the study to find 

out how to take advantage of the calculator's feedback. 

Probably due to her reluctance to showing mistakes in her work, Rocio worked slower 

than the majority of her fellow pupils, for example, in Format 1 she only completed five 

worksheets whilst the majority of children had completed ten worksheets (see summary 

table at the end of this section). Nevertheless, her work throughout the study shows that 

she was progressing. For example, the table below shows the way in which she tackled a 

problem situation in Format 6. Her answers to this problem show the extent to which 

she had grasped how to use the calculator code as a tool for representing the relevant 

relationships within a problem situation and to negotiate a solution. 

WS Problem situation 
"Figurative patterns" 

Rocio's written explanation 

46. Look at the following shapes: 

33 
L 	 _ 
I 	 199 
II  
	 _ 

H./ realised that in any figure the row below has one square 
less than the row above ... 1 multiplied by 2, because there 

	 Lire two rows, then I took 1 away" _ 
I 	 Completed without teacher's feedback 
I 
I 	 ?-4.11: Vx2-1 

0 	EFb130 L _ _ J 
46.2. 

	

	How many squares are needed to build 
up the shape that goes in the lrplace?  

46.3. 	How many squares are needed to build 
up the 	shape 	that goes 	in 	the 	100th  
Mace?  

46.4. 

	

	Explain how you reasoned to answer 
the questions above. 

46.5. 	Can you program your calculator to com- 
plcte the following table? 

Her explanation suggests that she was referring to a general rule: "I multiplied by 2 be-

cause there are 2 rows, then I took 1 away"). This extract suggests that she did not need 

to refer to a specific case because in "any figure" happens the same: "the row below has 

one square less than the row above". Rocio's explanation illustrates how the calculator 

environment influenced her thinking so as to help her look for a general relationship that 

she can describe using_ the calculator code: V x2-1. 

In worksheet 47 she went beyond correctly describing the underlying pattern: (Vx3)-2: 

at this time she also tried to produce the "inverse program" to answer questions where 
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she needed to calculate the inputs when the outputs were given: (V÷3)+2. Though her 

attempt was not correct, she finally produced a correct expression with the teacher's 

feedback (the metaphor of "undoing a route" was a successful hint: "doing last what you 

did first"). Later on (interview 3) she showed the extent to which she grasped the notion 

of inverse function when she correctly discerned that the inverse rule was needed to an-

swer the question: "Will the number 877 appear in the sequence 5, 9, 13, 17, ...?" (see 

also Chapter 7, section 6.4.a). 

The following table summarises Rocio's work throughout the study. 

Number of worksheets completed 
• C: completed correctly 
• F: completed correctly after having teacher's feedback 
• Denominators indicate the total number of worksheets in each format. 
Format I -7Format 2 -7  Format 3: rFormat 4: TFormat 5: T Format 6: 

Equivalence i Decreasing 	Inversion 1 Problem 
functions i 	solving 

4/15, C j 2/5, C-7 2/9, C ▪ 3/10, C 3/5, C 	1/10; C 
1/15, F 	 1/9,  F 	i 	 I 	4/10, F  

6.2. Average attainment pupils. 

Four children were chosen as average attainment pupils according to their work prior to 

the fieldwork. These children were two girls, Jimena and Erandi, and two boys, Raul 

and Diego. Since Diego's case was already presented in Chapter 5 this section will 

analyse the work done by Jimena. Erandi and Raul. 

Jimena 

Jimena is a 12 year old girl, mathematics is among her favourite school subjects. Per-

haps the most evident trait in Jimena's work was a tendency to produce algebraic ex-

pressions "just to see what happens". For example, in Format 2 (where children were 

asked to produce calculator program for a fellow pupil to guess), Jimena started, on her 

own, to produce expressions usinv, the variable more than once; for instance: AxA+A, 

A÷Ax2, and A+5±A. This "exploratory" approach helped her gain understanding of the 

dual character of letters in algebra: as symbols that represent "any number" and as sym-

bols on which she can operate. This experience influenced Jimena's work throughout 
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the study, for example, she faced the question of transforming an algebraic expression to 

make it equivalent to a target expression by directly operating with the variable, for ex-

ample, by adding 2x A to 7xA to obtain 9xA (this point is discussed in more detail in 

Chapter 7, equivalence). 

Later on (Format 6), Jimena's work suggests that this tendency led her to develop a 

"trial and refining" strategy based on operating with the literal terms. For example. the 

figurative patterns included in Format 6 induced for the first time the idea of recurrent 

rules (see table below), and Jimena's first approach was to use a recurrent rule, for in-

stance, A+3, because "every new figure has 3 squares more than the figure before", 

then, with teacher's feedback, she realised the rule did not work as a calculator program 

and tried by "multiplying by 3", she checked again until she finally produced the pro-

gram Ax3-2 (see Jimena's answer below). From then on she consistently used this 

strategy to cope with number sequences. As can be observed this method consists of 

finding out the slope of the linear function f(x)=ax+b, once a is determined, b can be 

found by giving specific values for x and f(x). Though she was lucky in producing this 

method, Jimena's work shows how her "exploratory insight" of operating with the lit-

eral terms led her to find a consistent method to face this kind of task. 

WS Problem situation: "Figurative patterns" 	 Jimena's responses 

47. Look at the following shapes: 	 i 
II 	111111••111 	 I 

• i 
• I 

1 
472 	How many squares are needed to build', 	 25 

up the shape that goes in the 9th  place? 	I 	 _ 
47.3. 	How many squares are needed to build T 	 49 

up the shape that goes in the I7th  place? 1 
— 47.4.Explain how you reasoned to answer ['Every new figure has 3 squares more than the one before, 

the questions above. 	 1 so I thought I had to add 3 (34-A) As this did not work I 
I multiplied by 3 (3x A), but the result gave 2 more than the 
1 
' number I was looking for. so  I took 2 away from 3x.-1 -. 

Jimena's work is further discussed in Chapter 7, in particular, her approach to using pa-

rentheses, how she developed the notion of inverse function, and how she cope with al-

gebra word problems using the calculator code. A global view of the work done by 

Jimena during the study is presented below. 
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Number of worksheets completed 
• C: completed correctly 
• F: completed correctly after having teacher's feedback 
• Denominators indicate the total number of worksheets in each format. 

[Format 5: Format 1-7 Format 2T Format 3: f Format 4: 	5: [Format 6: 

	

I 	I Equivalence I Decreasing I Inversion I Problem 

	

1 	1 	 1 	 1 	 1 

	

1 	I 	 1  functions 1 	 1  solving  

	

8/15, C 7 5/5, c i-  6/9, C 	7 4/10, C 	1 -r- 3/5 C , 	1 -E 6/10, C 

	

2/15, F ! 	I 	3/9; F 	I 	2/10, F 	I 	1/5, F 	! 	2/10, F 

Chapter 6: The rest of the case-study pupils: an overview 

Erandi 

Erandi is a 13 year old girl. She did not have a successful experience with arithmetic in 

the elementary school. In particular, she was not good at operating with fractions, be it 

common or decimal fractions. This experience led her not to like mathematics and to be 

reluctant to participate in the study. Despite Erandi's difficulties with arithmetic calcu-

lations she was considered an "average attainment pupil" because, prior the fieldwork, 

she showed she was able to delineate a strategy for facing word problem situations, 

though she frequently could not obtain the solution due to computing mistakes. 

Though Erandi was reluctant to participate at the beginning of the study, the way in 

which she engaged in carrying out the tasks suggests that the computing support offered 

by the calculator was a crucial source of motivation. Since the burden of carrying out 

the calculations was left to the calculator she was in a better position to concentrate on 

using the calculator code to express her reasoning. Erandi was gradually gaining self 

confidence during the study, this is shown by the increasing number of tasks she was 

completing as the study progress. For example, in Format 1 she completed 10 of 15 

worksheets; in Format 2 she just work out two of five tasks, but started using "two step" 

expressions (for example Ax5-1.5). In Format 5 she showed she had gained confidence 

on operating with decimal numbers, question that she did not want to know about at the 

beginning of the study. For example, she correctly work out worksheet 42, where recog-

nising the number pattern strongly depended upon correctly operating with decimal 

numbers (see Erandi's explanation below). 
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Worksheet 41 

 

ERANDPS ANSWERS 

   

I typed a program that produces the table below. I  
Can you make a program that produces the same I 
as mine? Explain what you did to answer this 
question. 

T 717 	27.1 73  
outpa 1-17.T 	 -h56.  

E-6.1 

"I realised that the difference in the decimal 
numbers was always 1, after this I just 
counted how many spaces there were be-
tween the whole numbers, it was 6, so the 
rule must have been taking away 6.1" 

Number of worksheets completed 

• C: completed correctly 
• F: completed correctly after having teacher's feedback 
• Denominators indicate the total number of worksheets in a format. 

Format 1 T-Format 2 T-1  Format 3: 
Equivalence 

7/15, C 	2/5, C T-1 	4/9, C 
7/15, F i 	I 	2/9, F 

r--- Format 4: 
Decreasing 
functions 

4/10, C 
2/10, F 

EFormat 5: 
Inversion 

3/5, C 
1/5, F 

r Format 6: 
I Problem 

solving 

8/10, C 
1/10, F 

Chapter 6: The rest of the case-study pupils: an overview 

Finally, in Format 6 (negotiating problem solutions), she correctly work out 9 of 10 

worksheets. The work done by Erandi throughout the study is summarised below. 

The main strategy used by Erandi to cope with the tasks consisted of exploring numeri-

cally the problem situations. She used this strategy to make sense of the question, be it 

about transforming algebraic expressions, inverting linear functions, or negotiating so-

lutions for algebra word problems. The ways in which Erandi confronted algebraic ma-

nipulation and coped with algebra word problems are discussed in more detailed in 

Chapter 7, sections 7.1 (algebraic equivalence), and 7.4.a, respectively. 

Raid 

Raul is a 12 year old boy, his work prior to the fieldwork shows that he was good at op-

erating with numbers but he had difficulty when dealing with arithmetic word problems. 

Though mathematics was not his favourite school subject he did not dislike it. In a 

similar way as Jimena did, Raul showed a tendency to produce programs using the vari-

able more than once from the beginning of the study. For example, in Format 1 he pro-

duced the programs A+Ax2-1 and A.±2+A (worksheets 5 and 9), whilst the majority of 

his fellow pupils produced Ax3-1 and Ax1.5 to respectively describe the same items. 
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RaLl's particular way of approaching the tasks shows, on the one hand, an incipient at-

tempt to operate with the literal terms; on the other hand, RaUl's work indicates that he 

was starting to grasp the role of the letters as symbols that represent a range of numbers, 

because, when constructing an expression such as A+Ax2-1, Raul was thinking of op-

erating "on the same number ... that is, I took first a number, say 2, then I multiplied this 

number by 2, and finally took 1 away" (interview 1). The extent to which Raul extended 

these notions so as to cope with algebraic equivalence and algebraic transformation is 

further discussed in Chapter 7, section 7.1. The ways in which RaUl coped with alge-

braic equivalence and algebraic transformation showed that his major strategy consisted 

of numerical substitution. The experience of describing number patterns seems to be the 

building block from which RaUl developed the numerical substitution strategy as a tool 

to cope with algebraic tasks. Possible explanations of how Rani and his fellow pupils 

developed this strategy are discussed in more detail in chapter 7., section 7.4. 

Raul's work during the study is summarised below. 

Number of worksheets completed 
• C: completed correctly 
• F: completed correctly after having teacher's feedback 
• Denominators indicate the total number of worksheets in a format.  

	

Format 1 -7Format 2-7  Format 	1— 	4: 7-  3: 	FormatFormat 5: T-Format 6: 
Equivalence i Decreasing I Inversion i Problem 

functions  i 	 i 	solving  
12/15, C -r-  4/5, C -7 	7/9, C 	7,-  5/10, C 	4/5, C 	4/10, C 
3/15, F i 	 2/9, F 	i 	2/10, F 	i 	 4/10, F 

6.3. Above average attainment pupils. 

Two children were chosen as "above average attainment pupils" according to their work 

prior to the fieldwork. These children were Jenny and Ivan. Jenny's case was already 

analysed in Chapter 5, thus, Ivan's will be the only case discussed in this section. 

Ivan 

Ivan is a 12 year old boy, he very quickly grasped how to describe number patterns and 

symbolise problem situations using the calculator code. Ivan was the only pupil that cor-

rectly completed the whole set of worksheets. From the beginning of the study he 
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grasped how to obtain feedback from the calculator and his work was generally correct, 

only 4 of the 55 worksheets were given back for him to correct (see summary table). 

Ivan grasped the notion of letters as representing a range of numbers from the beginning 

of the study. It seemed that the formality of the calculator code matched well his way of 

conceiving mathematics, for example, let us observe the formality of his written expla-

nation in worksheet 1: "the program adds 4 to the number you enter"; certainly, he was 

the only child who used such a formal expressions to explain his reasoning. In work-

sheet 2 he explained: "I made a program that multiplies by 2" (Ax2), which shows the 

extent to which he has grasped the general nature of the expressions used to program the 

calculator. From worksheet 2 on he explained his reasoning by just writing down the 

program he had made. 

As well as Jenny, Ivan engaged on his own in producing expressions which led him to 

realise the need for using, parentheses, for example, "a program that adds 2 first and 

then multiplies by 3". Once he was told to use parentheses he used them correctly when 

facing new situations (see for example worksheet 54 later in this section). 

Similarly to Jimena and Rani, Ivan produced programs using the variable more than 

once, for example A+A±100 (worksheet 10) to symbolise the number pattern below 

(Ivan's answers in bold): 

Input 	i 	1 

Output I–  1.01 

i 

1–  

2.2 

2 222 

II 	3.1 

h  3.131 

i 

1–  
- 11 1 1 1 

4.3 

4.343 

i 	9 

h  9.09 

1 

1–  

12 	i 	32  

12.12 -32.32 

It seems that this "spontaneous" approach to operate with the literal term helped Ivan to 

cope with questions involving algebraic equivalence. Ivan worked out so fluently the 

questions involving, algebraic equivalence that the researcher decided to confront him 

with more complex situations than the ones given to the other children. For example. 

upon being asked, he was able to program the calculator in order to produce five digit 

palindrome numbers (i.e.. 10000xB+1000xC+100xA+10xC+B), which implies analys-

ing the structure of the base ten numbers and symbolise the relationships among the 
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digits using three variables; he was also able to work with non linear expressions, for in-

stance, transforming A2  to make it equivalent to A6, and vice versa. 

The strategy used by Ivan to confront algebraic transformation was to directly operate 

with the literal terms, for example, upon being asked to transform Ax8 to make it 

equivalent to Ax15, he immediately proposed Ax8+Ax7. Nevertheless, when the in-

volved expression was more complex, for example, involving two or more similar 

terms, he resorted to giving specific values to the literal term, which suggests that the 

main strategy developed by Ivan to confront algebraic equivalence was numerical sub-

stitution. This point is further discussed in Chapter 7, section 7.3.b. 

To what negotiating algebra word problem solutions is concerned, Ivan was the only 

child who correctly completed worksheet 54 (see Ivan's answers below). 

WS Problem situation: "Rectangular shapes"  Ivan's responses 

54. A real estate firm is selling lots with the fol- 1  
lowing dimensions: A depth of 30 metres more 1  
than twice the width. Answer the following I 
using these data. 	 I  

— — — 

	

54.1. 	Mr. 	Perez 	needed 	132 	metres 	of I  
I 

barbed wire to fence his land. Give 1  
the dimensions of the plot he bought. 	I 

1 

	

54.2. 	Mr. Gonzalez bought a plot of land 
76 metres wide. How many metres of 
barbed wire does he need if he in- 
tends to keep people out of it? 

Length: 12 
width: 54 

(Tasks 54.2 and 54.3 are similar to this one). 

516 meters 
 

54.3. 	Explain your reasoning about the pre- 
vious questions. 

-I made a program to compute the perimeter according to the 
given measurements". 

54.4. 	Did you program your calculator to 
solve the problems? Show your pro-
gram if you did. 

The program I used is ((Ex2+30)+E)x2" 

Ivan answer shows that he was able to recognise that all these problems have the same 

structure, which allowed him to produce a program to tackle all of them. It seems worth 

noticing that the task 54.2 can be solved by directly running that program, but the task 

54.1 requires the child to use the inverse relationship. His explanation (see task 54.3) 

allows us to see that he accepted the relationship "A depth of 30 metres more than twice 

the width" as a given measurement which he symbolises as "Ex2+30". Possible expla- 
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nations of how the children were able to negotiate problem solutions using the calcula-

tor code are discussed in Chapter 7, section 6.4. 

The work done by Ivan throughout the study is summarised below. 

Number of worksheets completed 
• C: completed correctly 
• F: completed correctly after having teacher's feedback 
• Denominators indicate the total number of worksheets in a format. 

	

Format 	 4:Format5: Format 6: 
Equivalence i Decreasing I Inversion I Problem 

	

functions i 	 i solving 

	

14/15, C-7 4/5, C j 8/9, C 	f 10/10, C-7 5/5, C -7  8/10, C 

	

1/15 F 	i 	i 	1/9, F 	i 	 i 	 i 	2/10, F 

6.4. Teacher's feedback throughout the study 

The paragraphs below describe the kinds of teacher's feedback offered to children dur-

ing the study. Teacher's feedback was given both during the calculator-based sessions 

and through marking the written work that the children did every session. Besides, the 

teacher gave more specific and direct support to the children during interviews. 

Guiding principles 

As was stated in Chapter 4, the teacher's feedback was guided by the principle of 

"answering a question only when he considered that the child would not be able to give 

an answer by him/herself'. When it was found that a child was not able to answer a 

question, he/she was not given an answer but a new question that might encourage the 

child to reflect on the task so as to sort out the underlying. difficulties. This "feedback 

method" was intended to fit the pragmatic approach used to shape the activity in the 

classroom which was based on doing, in the sense that the child was expected to learn 

the calculator code through use, consequently, the teacher's feedback should help the 

child to learn from it through using the calculator code. 

The teacher's feedback was always given to children, when their work was correct they 

were given encouraging comments such as "well done, continue working in this way". 
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If there were mistakes in their work, the children also were given encouraging com-

ments. The teacher highlighted the positive points in their work and invited them to do 

something with the calculator that may lead them to see the mistakes. 

Feedback within classroom sessions 

During classroom sessions the teacher/researcher gave 

feedback only when the children explicitly requested ❑ 	Wit Lain 

him to do it. An example of how teacher's feedback was given during classroom ses-

sions is provided by the following episode. In worksheet 46 (see figure), Jimena found 

that the rule governing the number of squares for every shape in the sequence was B+2, 

"because any new shape has two more squares than the shape before" (recursive rule). 

Jimena then went to the teacher/researcher and proudly showed her work to him. She 

was told that was fine, but it was suggested that she run the program B+2 and observe if 

it produced the number of squares in any shape. She realised that the program did not 

work as she expected and that her recursive rule was not very suitable for her to find out 

how many squares would be needed to draw shape number 100 in the sequence. Then 

she finally built the program Bx2-1, which better helped her to answer such a question. 

Feedback to children's written work 

At the beginning of every new classroom session each child received an envelope con-

taining the work they had done, which had been marked by the teacher. The children 

were emphatically told that they must take first the work marked wrong and correct the 

highlighted mistakes; they could not go on with the rest of the tasks till they had tried 

correcting their work. If a child found that he/she could not correct the mistakes by 

him/herself, the teacher's verbal feedback would be available. 

Children's mistakes were marked underlining the mistake(s) and some comments were 

written down by the teacher following the idea of making evident to the child the mis-

take he/she has made. In general, the teacher's comments suggested to do something 

and then think about the results of doing that thing. For example, the children were 

asked to run the program they had built and check if it produced the expected results. 

215 



Chapter 6: The rest of the case-study pupils: an overview 

The teacher's feedback concerning the children's written work was crucial, particularly 

at the beginning of the study. An illustrating situation is provided in Chapter 5 (p. 107) 

when Diego's work was discussed. In general, the worksheets in Formats 1 to 5 required 

the children to produce a calculator program and then use this program to complete a 

given table. It was found that a good number of children did just what was asked: to run 

the program they had produced, so they did not pay enough attention to the results pro-

duced by the program, particularly where the given table required them to find out the 

input when the output was given. This activity showed that many children confronted 

the question without checking back if the program worked correctly. At this point, what 

helped them realise the mistake was the teacher's feedback, which consisted of asking 

them to run the program so that they might observe the incorrect answers. Then the 

children were encouraged to find out why that had happened. A detailed episode that 

further illustrates the teacher's feedback to children's written work can be found in 

Chapter 7, p. 212. 

Feedback during interviews 

This type of feedback confronted the teacher/researcher with a more difficult situation. 

Though the interviews were carried out following a ready made protocol, children's re-

actions frequently led the interview to unexpected situations that required the teacher to 

react on the course of the events. For example, when Erandi failed to reduce the similar 

tellies in the expression Ax2+Ax3+Ax5 despite the fact that she had shown in the pre-

ceding interview that she had found a "method" for doing this consisting of "adding up 

the numbers and then just attach them to A". As was discussed in Chapter 7, she found 

that 10+3xA was equivalent to Ax2+Ax3+Ax5, because -2+3+5=10 and the 'A' ap-

pears three times". Erandi's reaction suggests that if the teacher had only told her that 

she was wrong, she could hardly learn from this situation why she was wrong. Fortu-

nately, the teacher decided to ask her to explain how she found this result, trying to not 

make evident that he had noted something wrong in her answer. This teacher's attitude 

seemed to favour a more natural reaction from the child, who proudly offered the expla-

nation mentioned above. Meanwhile the teacher gained time to look for a better strategy 
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to help the child realise the mistake. The teacher then asked her for another way of 

checking the correctness of her answer. Since Erandi got stuck she was asked to run 

both programs (Ax2+Ax3+Ax5 and 10+3xA) to verify whether they were equivalent, 

the child said "it was not necessary because she had correctly applied the 'method' she 

had found". This child's reaction suggests that if the teacher had not made her to run the 

programs and compare the results, she could hardly accept she was wrong, if she did, it 

would likely to have been as a result of obeying the teacher's suggestion but not on the 

basis of a better understanding of the situation. 

Concluding remarks 

These kind of situations provided relevant research data, these data were obtained 

thanks to a suitable (and sometimes fortunate) teacher's reaction when giving feedback. 

Nevertheless, it cannot be assured that all of these precious moments when interacting 

with children have been exploited during the study, quite likely some were lost. How-

ever, the experience throughout the study shows that the general principles for guiding 

the teacher's feedback were crucial supporting points for the teacher when interacting 

with children, whether during classroom sessions, when checking back their work, and 

in the course of individual interviews. 

The research data suggest that perhaps the most important feature of the teacher's feed-

back was to offer support when the children were confronted with syntactic issues, like 

transforming algebraic expressions and using parentheses. Though the calculator can of-

fer support for children to make sense of algebraic expressions by allowing them to link 

such expressions with their numerical value, operating algebraically seems to encourage 

children to prematurely get rid of numbers and start generating rules for algebraic trans-

formation. 

On the one hand, this seems to be profitable because children generate their own rules. 

which quite likely conform better with their way of reasoning than the rules taught by 

the teacher. But, on the other hand, the research data show that a good number of pupils 
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generate mal rules, which apparently, without the teacher's intervention, the children 

would keep on using such mal rules being unaware of the involved misconceptions. 

Finally, the list below describes the situations where the children most frequently re-

quired the teacher's feedback. 

• Situations which implied awareness of order of operations and consequently of the 

use of parentheses. 

• Tasks which required the children to produce expressions of the form ax+b. 

• Encouraging the children to become aware of the possibility of obtaining feedback 

from the calculator. For example, using the calculator to verify algebraic transforma-

tions by means of typing the corresponding programs and running them to check 

back the equivalence of the involved expressions. 

• Tasks where children confronted similar terms simplification. In such kind of activity 

the children showed a tendency to generate their own syntax rules which sometimes 

may lead them to generate misconceptions. 

6.5. Summary 

The succinct report of the work done by Rocio, Jimena, Erandi, Raul and Ivan has been 

intended to provide a more complete view of the detailed analysis of Jenny's and Di-

ego's cases made in Chapter 5. The data presented in Chapter 5 and 6 provide elements 

which lead to the following general conclusions. 

a) The calculator-based environment helped children develop: 

• The notion of letters as symbols that represent a range of values. 

• A notion of algebraic equivalence: "two calculator programs are equivalent if they 

produce the same inputs for same outputs". They used this notion to cope with sim-

plification of similar terms and transforming an algebraic expression to make it 

equivalent to a target expression. 

• A notion of inverse function, which they used to cope with problem situations. 
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b) With different levels of attainment, the children were able to use the calculator code 

to cope with algebra word problems on the basis provided by their experience of de-

scribing number patterns. 

c) The research data suggest that the children would not make mistakes such as 

a+b=ab, a+a=a2, 2xa= a2, 5xa+3=8xa, nor (a+b)2=a4b2. This conjecture points to a 

relevant feature of using calculators in the classroom and deserves further research. 

d) The research data shows that the teacher's feedback is crucial, particularly when 

children confront symbolic manipulation (simplifying similar terms). In such kind of 

activity the children showed a tendency to create their own syntax rules which 

sometimes may lead them to generate misconceptions. 
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CHAPTER 7 

RESULTS: HORIZONTAL ANALYSIS. 

Introduction 

This chapter discusses from a more general perspective the results analysed in Chapters 

5 and 6. In order to fulfil this aim the chapter offers a horizontal analysis which was 

carried out by examining selected excerpts of children's work involving what seemed to 

be their most significant features in terms of the aims of this study. The main results of 

the thesis constitute the core of this chapter and analysis is focused on the calculator-

based environment as a mediating tool in children's learning of algebraic code as a lan-

guage-in-use. Some excerpts of work done by children when dealing with algebraic 

transformation and negotiating problem solutions provide the raw material for discus-

sion. Since the children mastered some general aspects of arithmetic use before they 

make much progress in either the semantic or syntactic algebraic domain, the chapter 

will outline why pragmatics seems to provide the most general support system for mas-

tery of the more formal aspects of algebraic language. 

Here, the term pragmatics refers to a highly framed teacher-child and child-calculator 

interaction, it is hypothesised that this highly framed classroom environment will pro-

vide a context that gives continuous feedback to the children's use of calculator lan-

guage so that they can negotiate meanings for the calculator code through using it. This 

pragmatic approach is not based on syntactic rules or definitions (which characterise a 

syntactic approach) nor on rich examples for children to be followed and later on induce 

generalisations (which characterise a semantic-based approach). The pragmatic ap-

proach adopted here is founded on a tight relation between context and language use, so 

that the use of language can always be checked upon context itself. It is the context 

which encourages language exploration and structures it. A context which helps children 

make sense of what is being done in the classroom and provides support for negotiating 

meanings so as to help them use the calculator code as a means of communication. 
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The analysis was carried out by thoroughly looking at how children's acquisition of 

calculator language evolves through the syntactic, semantic, and pragmatic facets of 

language. As has been discussed in Chapter 4, these facets of language are used as cate-

gories which may inform the particular ways in which different children approach the 

specific tasks used in this study. Since this framework will be applied throughout the 

chapter the characterisation for syntax, semantics and pragmatics are presented below. 

• Syntax: How children acquire their facility in managing well-formed algebraic utter-

ances governed by the formality of calculator language. 

• Semantics: The nature of the meanings that children develop for algebraic utterances 

(words) as they use calculator language to explore number patterns and face algebraic 

transformation and problem solving (possible worlds). 

• Pragmatics: The manner in which children come finally to use well-formed algebraic 

utterances (produced while describing number patterns) to face new problem situa-

tions within different contexts. 

The chapter presents a picture of the calculator's role in mediating children's learning 

processes from no previous experience of algebra to negotiating problem solutions using 

algebraic language. As has been showed in Chapter 5, children's work involves highly 

intertwined features, therefore, some issues will be referred to in more than one of the 

above categories. In order to better appraise the results of this research it must be re-

membered that all the instruction that the children received to cope with the experimen-

tal tasks was only that necessary to handle the calculator programming mode. 

The content of the chapter is organised as follows: Section 7.1 deals with those results 

that relate with the semantic notions developed by the children during the study, these 

notions correspond to those meanings that children developed for the letters and expres-

sions they used when programming the calculator, the notion of algebraic equivalence, 

and the notion of inverse function. Section 7.2 addresses the ways in which the context 

influenced children's approach to negotiate solutions for algebra word problems. Sec-

tion 7.3 discusses the strategies that children used to cope with algebraic transformation 
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and problem solving. Finally, Section 7.4, Final Remarks, presents a general discussion 

of the results presented in the preceding sections. The discussion includes a view of the 

results of this research through the lenses of the research literature of the teaching and 

learning of algebra. 

7.1. The calculator's role in children's acquisition of semantic notions 

The notion of Algebraic Equivalence 

While using the calculator language to describe number patterns the children grasped 

that "two programs are equivalent if both give the same outputs for same inputs". This 

notion resembles the criterion for equivalence between functions: If f and g are func-

tions, and f(x)=g(x) for every x, then f and g are equivalent. The ways in which children 

acquired a notion of equivalence has to do with synonymy, that is, while exploring with 

the calculator they found that the valuable thing in all this was its numerical value, be-

cause the numerical values is what provides feedback to them, in other words, the nu-

merical value is what provides the meaning for the involved algebraic expression. This 

process helps children learn that a calculator program may have different expressions, 

but these expressions remain equivalent if they produce the same results for all values. 

A relevant feature of children's notion of algebraic equivalence is that the children were 

able to apply such a notion to confront new algebraic expressions containing two vari-

ables both in linear and quadratic expressions. This provides information on the poten-

tial of such a notion. For example, in interview 4 the children correctly answered the 

question: "A pupil from another class says that (A+B )2  is equivalent to A4B2, what do 

you think about that?" This fact relates to Bruner's (1983) hypothesis that "formats 

eventually migrate from their original situational moorings and are generalised to ac-

tivities and settings in which they have never before occurred" (p. 121). This point is 

further discussed at the end of this section. 

The discussion will now more closely analyse how the calculator-based environment 

supported children to cope with situations involving the notion of algebraic equivalence. 

As will be discussed below there were specific features in the classroom setting that 
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helped children gradually confront situations involving algebraic equivalence. First, the 

simple fact that children could use any letter to represent a variable within a calculator 

program induced a first insight of equivalence. This fact helped them grasp that the nu-

merical value of a program does not depend on the letter used as a variable. The de-

scription of children's work presented in Chapter 5 widely illustrates how children re-

sort to using different letters when programming the calculator. This fact was observed 

in the work done by all of the children. An example of the extent to which children 

grasped that the letter used does not affect the results of a calculator program is that all 

the children answered correctly the question of comparing programs such as (A+7)x2 

and (L+7)x2 (see Interview 1, Diego's case, Chapter 5). This result has also been re-

ported in other computer-based studies (Hoyles and Sutherland (1989) using Logo, 

Sutherland and Rojano using spreadsheets (1993), Tall (1991) using Basic). The fact 

that this result has been found from different computer-based environments strongly 

suggests that children's belief that changing the letter changes the value of the unknown 

(Wagner, 1981) comes from issues concerning the learning of algebra within a paper-

and-pencil environment. 

Children's reactions indicate that what enabled them to cope with algebraic equivalence 

was the meanings they developed for letters and algebraic expressions through pro-

gramming the calculator. The following, extract illustrates what seems to be the first 

antecedent for children to develop the notion of equivalence. Raul' was asked to com-

pare the programs (A+1)x3 and (L+1)x3. He answered: "they are the same because with 

the calculator the number you input stands for the letter you have put ... That's ... the 

calculator removes the letter and puts the number you input in its place". Ratil's reac-

tion allows us to see the richness of the meanings he has developed through using cal-

culator language. First, his answer shows that he looked at the whole structure of the 

expressions rather than only conceiving them as mere procedures. Second, it shows he 

has gained awareness of the arbitrary choice of letters when using algebraic code. Third, 

his reaction shows an incipient notion of letters as symbols that represent a range of 

Average mathematical attainment pupil 

224 



Chapter 7: Horizontal Analysis 

values, and algebraic expressions as a means of representing and computing general 

arithmetic procedures. 

Another relevant feature concerning the calculator environment is that the strong simi-

larity between the calculator code and the algebraic code seems to provide an advantage 

in comparison with the use of Logo or spreadsheet codes. The experience with the cal-

culator code helped the children make sense of questions involving expressions like 

(A+B)2=A4B2. When confronting this question the children did not need any explana-

tion about the expression, whereas in the case of Logo or spreadsheet children still have 

to sort out the subtle differences between Logo or spreadsheet code with the algebraic 

symbolism. Even in the case of Basic, where the language more closely matches the 

algebraic code, children still have to link the expression (a+b)^2=aA2+b^2 with the 

standard algebraic notation. 

A second factor that might influence the development of the notion of equivalence was 

the social milieu offered by the classroom activity. Though most of the children decided 

to work individually, the feasibility of producing different representations for the same 

program was present from the very initial tasks, for example, the children eventually 

witnessed that someone else's program was different from theirs but produced the same 

outputs. This fact mainly emerged when the children built a program for a fellow pupil 

to guess (Format 2). These tasks encouraged the children to discuss whether two calcu-

lator programs were equivalent or not. A third influencing factor were the tasks in For-

mat 3. These tasks consisted of asking children to make various programs that produce 

the same table (see Format 3, Chapter 5). Children's responses showed that they had 

grasped that two programs are equivalent "if they produce the same outputs for the same 

inputs". Their responses indicate that the majority of the pupils resorted to operating 

with the independent terms to construct equivalent programs, for example 

3xA+2=3xA+8÷4 (see Format 3, Chapter 5). Similar results have been reported by 

Sutherland (1996), working with spreadsheets the children were able to construct 

equivalent spreadsheet rules without needing the teacher's intervention. In this case the 

children also concentrated on transforming the constant terms. 
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This sort of invitation was taken up by several children and produced complex expres-

sions such as Dx7—Dx3 to be equivalent to Wx4 (see, Jenny's case, Format 3, Chapter 

5). In this respect Ruthven (1993a), using graphic calculators with a group of 13-year-

olds, reports that using the key Ans to explore the behaviour of number sequences led 

the children to produce different expressions that encouraged rich discussion about 

equivalence. Though children's notion of equivalence is correct when constructing ex-

pressions like Dx7—Dx3 to be equivalent to Wx4 (as functions), this example suggests a 

potential problem that children may have to face when they deal with polynomial ex-

pressions with more than one variable and with equations containing more than one un-

known. This situation deserves further research. 

The notion of equivalence between functions has also been investigated by Cuoco 

(1995). Cuoco used a similar approach as the one adopted in the present study (tables, 

algebraic rules) and used three different environments to introduce the idea of equiva-

lence between functions: The Function Machines allows students to start with isolated 

calculation and gradually interiorise calculations into procedural entities. Logo provides 

an environment in which students build an experiment with processes, produce tables, 

compare them and begin to manipulate them as data. ISETL supports expressions of 

higher order functions allowing students to manipulate functions in a mathematical way. 

The findings obtained by Cuoco are similar to the results of the present research: the 

students found that two functions are equivalent if they produce the same outputs for the 

same inputs. If the limitations of the graphic calculator are not crucial factors, such as 

screen size, reduced data storage capability, and lack of symbolic manipulation. the 

gJaphic calculator may be used as a media which provides the three different computer-

ised media used by Cuoco: using the calculator computing mode pupils can perform 

isolated calculations: using the calculator progsamming, code the pupils are allowed to 

use standard mathematical notation and produce tables of values for the functions used 

to make the programs. 
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Algebraic equivalence as a tool for coping with algebraic transformation 

Algebraic equivalence was a powerful semantic notion developed by the children. 

Chapter 5 provides evidence for the extent to which Jenny and Diego were able to cope 

with situations which involved the notion of algebraic equivalence (see equivalence in 

Interviews 1-3, and in Concluding Remarks). This section analyses further episodes 

with the rest of the children and discusses how the notion of algebraic equivalence al-

lowed them to confront algebraic transformation and simplification of similar terms 

within linear algebraic expressions. These episodes also indicate the potential of intro-

ducing the calculator code as language-in-use, particularly how children actually use the 

calculator language as a means of learning about a new situation, that is, as a means for 

negotiating new meanings in order to cope with new complex problem situations. 

The data obtained during the fieldwork suggests that the use of mathematical functions 

as devices to carry out arithmetic procedures makes algebraic manipulation an action of 

semantic interpretation rather than a process of applying syntactic rules. The research 

data indicates that this kind of encounter with symbolic manipulation led children, in 

time, to generate initial rules to face these tasks as well as to develop strategies to check 

their correctness. The following episode illustrates this. The children were asked the 

question: 

"I wanted to type the program Bx8 but I made a mistake, instead of that I 

typed Bx7. Can you correct it without deleting anything of what I typed?" 

Erandi faced the above question by exploring the numerical behaviour of the given ex-

pressions, which resemble her prior experience in describing number patterns using cal-

culator language. She used numerical exploration to make sense of the question and 

finally recognised an underlying pattern which she could symbolise using calculator 

language. The following documents her approach. 

The child tried with Bx7+4 and checked it for B=2 (she expected to get 16, i.e., Bx8). 

She ran the program and saw it gave 18, she said "I thought it would work ... I had 
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mentally checked it for B=4, it was right (i.e. Bx7+4=Bx8, for B=4). That is why I 

thought it would give 16 when I input 2 ... But it multiplies by 7 ... then it adds 4, 7x2, 

14, plus 4, 18 ... it works all right for 4 ... but wont do it for 5 ... it should work for all 

the numbers ... there must be something to do for making it work for 5, 6, and so on". 

After a few moments of reflection Erandi found how to do it: "I got it, it must be 

7xB+B". She checked the program and clearly happy explained: "I realised that the 

number I needed to add is the one you put here (pointing at B in 7xB)". Later on, she 

easily worked out other symbolic manipulations like obtaining 9xB by adding B+B to 

7xB, and subtracting 3xB from 10xB to obtain 7xB. Erandi explained that "at the be-

ginning I thought that it wasn't possible to repeat and repeat the letter within a pro-

gram ... I mean, to put B more than once". It is worth noticing that she answered the last 

questions working with paper but applying the numerical exploration strategy induced 

by using the calculator. 

This episode highlights a relevant result of this research, a result of encouraging pupils 

to meet the algebraic code as language-in-use. Erandi's work shows that she did not use 

the calculator code to formally describe a fully polished idea. She used the calculator 

code to explore the situation in order to make sense of the question; by using the calcu-

lator language she was learning about the question, the feedback offered by the machine 

supported her in successively structuring-re-structuring her reasoning. Erandi's work 

shows that she was actually using the calculator language as a means of communication, 

communication with an interlocutor (the calculator) that can help her gain insights about 

the problematic situation she was facing. Other children confronted this task in a similar 

way as Erandi did (Jenny, Diego, Rocio). Other children's approaches are discussed 

later in this section. 

Erandi's explanation suggests that expressions like 7B+B were like "new words" for the 

children. It is also interesting to note that these "new words" can be generated from pre-

vious children's experience of using calculator language to describe number patterns. 

That is, the language used to work out these tasks provided elements for Erandi to ex-

tend her "vocabulary". Erandi's work suggests that as she gained further insight into the 
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language as a codified system of representation, she came to operate not only on con-

crete events, but upon possible combinations derived from operations on the language 

itself. 

Another important factor that influenced the ways in which children developed strate-

gies to cope with algebraic equivalence was the way in which the tasks were adminis-

tered, particularly the intention of respecting each child's pace2. This feature was aimed 

at simulating the ways in which children acquire natural language. Respecting each 

child's pace was a crucial aspect of the learning processes, it encouraged children to 

focus attention on their own work, which allowed them to keep on using, and progres-

sively refining, their own strategies without being disrupted by someone else's inter-

ventions, particularly, general teacher interventions. This way of working resulted in a 

range of children's different strategies to face algebraic transformation, some of them 

are illustrated below. 

An alternative children's approach to transforming algebraic expressions consisted of 

directly operating with the literal term. It is significant that this strategy was used only 

by those children who, from the beginning of the study, spontaneously modelled num-

ber patterns with expressions containing the literal term more than once. Those children 

(like Jimena3, Raul and Ivan') who built expressions involving the literal term more than 

once from the beginning of the study (for example, A-0.75xA, Ivan, Format 3), seemed 

to have gained awareness of the dual character of letters in algebra, both as devices to 

represent "any number" and as entities on which they can operate. 

RaUl's work illustrates a version of this approach. He faced the question using a whole-

part strategy. For example, to transform Ax9 to obtain an equivalent expression to 

Ax 10, RaUl directly typed Ax9+A because "A is one tenth of Ax10, so it is just missing 

an A to complete Ax10". Nevertheless, Raul resorted to a similar strategy as Erandi's 

one, when he was confronted with more complex situations, for example, transforming 

A detailed account of this point is provided in Section 4.4., Classroom Setting, Chapter 4. 
Average attainment pupil 
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Ax3+Ax5+A to make it equivalent to Ax 13. Racal's approach resembles Kuchemann's 

category of "letters as objects". Racal's responses suggests that he was not thinking of a 

letter as representing a range of numbers, rather, his "holistic" view of the expression (A 

as one tenth of Ax10) suggests that he is dealing with the letter as an entity. As was 

stated before, the whole-part approach was found as a spontaneous children's strategy, 

(that is, this strategy was neither encouraged or suggested by the tasks included in the 

study). This fact suggests that the interpretation of letters as objects was apparently de-

rived from the whole part tactics and has little to do with the calculator-based experi-

ence they had during the study. 

Despite Raul's whole-part tactics which helped him to easily set up incipient rules for 

algebraic transformation like 3xB+4xB=7xB, he could not look at Ax3+Ax5+Ax2 as 

Ax 10, which would have put him in the position of adding Ax3 to obtain Ax 13 (as he 

did before). Racal's reactions suggest that his "whole-part" strategy is more context de-

pendent than the "number-based" strategy, which appears to be of a more general na-

ture. 

Jimena and Ivan faced also the question by operating directly with the literal term. In the 

same way as Raul did, they resorted to exploring with specific values when facing more 

complex situations. This shows that exploring the numerical behaviour of the algebraic 

expressions was the strongest strategy the case-study children acquired to face algebraic 

transformation. 

It was mentioned at the beginning of this section that children's notions of letters and 

algebraic equivalence allowed them to confront more complex questions. The following 

episode provides evidence for this claim. In the fourth interview the children were asked 

the question: "A pupil from another class says that A2+B2=(A+B)2, what do you think 

about that?" Though they had never been confronted with this kind of expression, the 

children were able to make sense of the question and successfully faced it by giving 

specific values to the letter. Jenny went beyond this and found that "this pupil is wrong 

Above averac.ze attainment pupil 
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... but he possibly might have been thinking of A=0 or B=0". Ivan and Diego gave a 

"holistic answer": "see, (A+B)`' must be greater because you are adding first the num-

bers and then you are raising it to square". Then they substituted the variables for spe-

cific values to strength their argument. 

These children's achievements agree with Bruner's (1983) view that for children to de-

velop meanings for linguistic utterances they must take part in communicative interac-

tion, a setting in which "the child is hugely aided in his mastery of linguistically medi-

ated requests by the social interactions into which he enters with his mother and other 

adults" (p. 1). Here, the role of calculator as a supplier of immediate feedback played 

also a relevant part, as has been shown in the above extracts. 

7.2. The calculator's role in children's acquisition of syntactic notions. 

The results of this research about children's insight into syntactic conventions centre 

around the following issues: a) How the calculator environment enhances the instru-

mental character of syntax conventions; b) The role of priority of arithmetic operations 

in simplifying similar terms; c) Pros and cons of children's proclivity to create their own 

syntactic rules for symbolic manipulation; and d) Children's awareness of the role of 

letters within algebraic expressions. These points are discussed below in terms of spe-

cific results and the role played by the calculator-based environment. 

a) How the calculator environment enhanced the instrumental character of syntax 

conventions. 

The research data suggest that children more effectively learned syntax conventions 

instrumentally, that is as instruments for carrying out certain previously operative 

functions and objectives. For this to happen it was crucial that children used the calcu-

lator language to express their own reasoning; while doing this the children make the 

involved computations in advance which helped them realise that the calculator pro-

ceeds differently from them. It was observed during the study that children are not con-

cerned with priority of operations and use of parentheses as long as they work with pa-

per and pencil. In contrast, they were aware of these conventions while working with 
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the calculator. This fact enhances the role of the calculator environment in helping 

children gain awareness of algebraic syntax. The children inquired about syntax con-

ventions when they ran into problems to express their reasoning using calculator lan-

guage. The research data suggest that it was the need to use syntax conventions as a 

means of communication which made children realise their value. 

To summarise, using parentheses was a feature that the children needed to be reminded 

about. This took place after children realised that the calculator proceeded differently 

from themselves. Once the children understood the function of parentheses they used 

them as frequently as they could. Since the tasks required the children to produce alge-

braic utterances their experience with parentheses was focused on using them, later they 

showed they were able to read them too. This suggests that the children's pragmatic 

encounter with order of arithmetic operations and use of parentheses, helped them ac-

quire these syntax conventions as tools for their reasoning. These issues are more care-

fully discussed in what follows. 

There were children who met syntax conventions while trying to program the calculator. 

The key point in this kind of encounter is that these children have done the involved 

computations in advance, otherwise they could not have realised that the calculator did 

not work as they expected. This children's approach relates with Shatz 's (1982) con-

jecture that "some forms of syntax may be derived from prior semantic representations 

that achieve deep structure by being transformed by social interaction" (quoted by 

Bruner, 1982, p. 26) 

It is worth noticing. that the children who spontaneously met syntax conventions seemed 

to have grasped a better notion of priority of operations and use of parentheses than 

those children whose encounter with syntax was provoked by the researcher. Perhaps 

the greatest difference between these approaches was that, in the former case. the entry 

into syntax came out as a response to children's own enquiry, whilst in the latter, the 

children had to follow not their own reasoning but the researcher's. 
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An extract from Jenny's work illustrates a spontaneous approach to syntax. Jenny en-

gaged herself in posing an item for a fellow pupil to guess (format 2). Her idea was to 

program the calculator so that "it first took 1 away, then multiplied this by 3". Her first 

attempt was to make the program B-1x3. Jenny's explanation nicely shows how the 

formality of calculator code helped her gain awareness of the priority of operations and 

use of parentheses: "the calculator did not do what I meant ... As I don't think as the 

calculator does, I said 1-1, 0, then 0x3, 0. The machine said: —1x3, -3, 1-3, -2. I'd like 

to know how to make the calculator do what I want". Then the teacher/researcher sug-

gested she used parentheses. The way in which this pragmatic approach was assimilated 

by Jenny was shown later when she was asked to explain what parentheses serve for: 

"they serve to make the machine do first one operation then the other". The kind of ex-

pressions she produced later (Format 6) allows us to see the extent to which she could 

apply these notions, for example, ((Ax2+1)xA))x155 (see Chapter 5, worksheet 51). 

The last point to be discussed about this result is that of children's apparent reluctance 

to incorporate syntax conventions into their everyday computing routines, particularly 

when working with paper and pencil. This point highlights the calculator's role as a me-

diational tool in children's learning processes. Working with the calculator encouraged 

the acceptance of parentheses use and operation priority as conventions necessary to 

"communicate" procedures to the calculator. Children's reactions suggest that, for them, 

the calculator played the role of an interlocutor that requires formal use of syntax to 

produce the expected results. This kind of interaction took the children, from being 

competent readers of expressions containing parentheses, to being competent in using 

these symbols as instruments of their thought. The children did not really understand 

parentheses use until they needed to use them as a means of expression rather than to 

just read them. Their answers show that parentheses use only becomes reasonable when 

they have to express a procedure algebraically. Seemingly, new rules and procedures 

must prove absolutely necessary or at least more effective than those already known, 

otherwise, the children treat them as teacher impositions and thus forget them quickly. 
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An episode with Diego illustrates well this children's trend. He was 

shown the figure on the right hand and asked if he could compute its 

perimeter (interview 4). After some struggle the child said that this 
A 

could be made with a calculator program and eventually produced 
5 

the expression (A+5)x2+Ax2. The process by which he came to 	
A 

produce such an expression indicates that he values syntax restric- 

tions only when the context demands them. Before Diego correctly expressed the pe-

rimeter he wrote the incorrect expression A+5x2+Ax2. Nevertheless he unerringly used 

it to compute the perimeter for several specific values. Formal syntax restrictions did 

not perturb him because he was following his own reasoning: "first the side's length 

plus 5, that's the height, then multiply it times 2, then the side's length plus 2, then add 

together the results". However, when being asked to do it with the calculator he typed 

without any hesitation (A+5)x2+Ax2 "because that's the way I'd do it with the calcu-

lator". This episode suggests that if the terms involved are just numbers, the child does 

not see the need to group them, since he can always operate on two of them to get just 

one. 

The use of parentheses implies delaying some operations. For example, with expres-

sions like (3+A)x2 this delay is required. The following episode illustrates this situation. 

Parentheses use and its relationship with operation priorities was explained when the 

calculator's keyboard was introduced (at the beginning of the school year). The children 

then completed quite a few activities. Nevertheless, most of them did not recall this ex-

perience later when they needed to use parentheses to program the calculator. 

Children's work shows that they find it unnecessary to group terms because they do the 

operations themselves. They were asked. for example, to compute (with paper and pen-

cil) the perimeter of a 5 cm by 8 cm rectangle and show their work in just one expres-

sion. They used the expression 5+8x2, while getting the right answer, 26 cm. Clearly, 

their reasoning and calculations were correct. their problem was expressing correctly 

their procedure. Apparently, parentheses use and operation priorities make no sense to 

them, in spite of knowing about them. This is because their arithmetic procedures do not 
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lead them to any questionable results. The following problem was given to them to 

prove this: "A student from another school uses the operations 2X5+8 to compute the 

rectangle's perimeter. What do you think about that?". The children thought that was all 

right, because "you know what it's about, first you add 5 and 8, 13, and then you multi-

ply that times 2". To contradict this they were asked to run it through the calculator. 

They saw that something was wrong, and remembered that they needed to use parenthe-

ses. Still, this did not seem like a relevant experience; ultimately, they could thrive 

without using parentheses, so their use was too sophisticated. 

It was said above that the real need for parentheses use first arose when students were 

building number patterns for their classmates to duplicate with a program (Fonnat 2). 

Given the nature of the activity, students were expected to try to build complex number 

patterns, which was encouraged; but they were asked not to base that complexity on big 

numbers or complicated fractions. Thus, to build number patterns which were hard to 

find, they started to vary the expressions' structure. In these sessions several students 

asked questions like Jennifer did, for example Jimena: "I want the calculator to add 1 

and then multiply times 2. I programmed A+1 x2, but it doesn't do what I want, it just 

adds 2, why?" 

From similar situations the children noticed that they needed parentheses to modify pre-

established order and operation priorities. Pupils were very enthusiastic about the 

chance to use different expressions. Soon, this information had spread and most of the 

class were using parentheses in their expressions. Later, when we worked on inverting, 

programs, it was noticed that they did not mention parentheses use when they explained 

what they had done; though, in their worksheets they did use them. They were asked 

why they did this. The following incident with Jenny exemplifies this: "I don't think like 

the calculator ... neither do you ... you can understand me ... If I want the calculator to 

understand me I have to use parentheses, otherwise it will make a mess".. 
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b) The role of priority of arithmetic operations in simplifying similar terms. 

The research data suggests that the priority of operations plays a central role in chil-

dren's understanding of similar terms simplification. This notion helped children to 

distinguish the terms within an algebraic expression and find a relationship among its 

coefficients which eventually led them to generate rules for simplifying  similar terms. 

The major issue discussed in this section is the role of children's awareness of priority 

of operations in their way of generating rules for simplifying similar terms. Children's 

work showed that once they have successfully simplified expressions containing two 

terms, they tend to create rules for simplifying like terms, for example, Bx4+Bx2=Bx6. 

Nevertheless, this achievement was not enough for them to simplify expressions con-

taining more than two linear teal's. The children faced these kinds of expressions by 

giving particular values to the variable, so their success strongly depended on their 

computing skills. The children did so because they could not realise the feasibility of 

applying their rules for simplifying two terms more than once, for example: 

5xA+2xA+4xA=7xA+4xA=11xA. 

The research data suggest that a lack of awareness of the associative property of addi-

tion was not at the core of the difficulty they had. this was confirmed by the fact that 

they could not cope with the question even after they were reminded of the way they 

usually carry out that operations with numbers. The following extract from Rail's inter-

view illustrates this fact: "I know what to do with additions like 5+2+4, that is 11, but 

there (pointing at 5xA+2xA+4xA) you have something else ... those numbers the A 

stands for ... you still have to multiply ... that's where I get mixed up". 

Children's reactions indicate that the problem they had to sort out was a lack of aware-

ness of priority of operations. The successful strategy they used was to type a program 

to evaluate the algebraic expression. They then ran the program to explore its numerical 

behaviour and finally found how the calculator performed these operations. The fol-

lowing extract from Ivan's third interview illustrates this. He was asked to simplify 

12x13--,5xB-2xB: After some failed trials working with paper and pencil he said: "It 
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might be ... if I get the result of all this (he typed the program 12xB+5xB-2xB) ... If I 

input 1... it gives 15 ... It multiplies by 15! Then it is ... see, 12 times 1, 12, 5 times 1, 5, 

altogether gives 17, minus 2, 15! ... I can type it shorter: 15xA" Then he explained that 

he had tried to do that by mental calculation but he "got mix up because 12 times 2 gives 

24, then I multiplied 24 times 5, then plus ... I don't know". After this he found that he 

could just add "the numbers that are not B". The next section tell us about some pros 

and cons of children's proclivity to generate syntax rules. 

c) Children's proclivity to create syntactic rules for symbolic manipulation 

Similar terms simplification was the only task in which the children generated malrules. 

Once the children start generating syntax rules they tend to completely rely on them, 

which in the case of malrules may prevent them from achieving future success in 

mathematics. 

An important outcome regarding similar terms simplification is that it was the only task 

in which the children generated malrules. In other tasks, like transforming expressions 

or inverting linear functions, they sometimes generated non elegant or less effective 

rules, but never false rules, as occurred in the case of simplifying similar terms. A pos-

sible explanation is that when transforming an expression to make it equivalent to an-

other, the children have two expressions to work with, a "target" expression and a 

"source" expression, which helped them get clues to relate each other. While in the case 

of simplifying they had just one expression, the simplified expression was something to 

be found. Though they could compare the original expression with the simplified one by 

numerical substitution, they did not, because they had faced the question using their 

own rules. This children's trend presents pros and cons. The following excerpt of Er-

andi's fourth interview documents this. 

Erandi had faced this type of question in interview 3 and successfully started to make 

rules to simplify two similar terms. In the fourth interview she was asked a more diffi-

cult question: to "make shorter" the program Ax2+Ax3+Ax5. She immediately simpli-

fied it to Ax3+10, so the interviewer asked her to program the calculator to check her 
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answer. She explained: "I don't need to do that, it is all right ... I counted the A's, there 

are three, then I added this, 3+2+5". 

The above excerpt shows why she thought it was not sensible to use the calculator: she 

already had a rule to work out the task and she was even able to explain it. On the one 

hand, this episode enhances the fact that the child had used her own rule, it compelled 

her to defend it, which finally led her to get a better understanding of the question. Once 

the child checked her answer with the calculator she realised her error and did not want 

to abandon the task until finding the mistake she had made. On the other hand, the epi-

sode allows us to see the importance of a teacher's opportune intervention. This resem-

bles Bruner's assertion that "the pragmatic route requires that the adult be a partner". 

(Bruner, 1980, p. 163). 

Erandi's answer also suggests that symbolic manipulation prompts the child to shift 

their conception of letters as "representing any number" to a new conception of "letters 

as entities to operate with". It seems that numerical exploration implies a too heavy bur-

den for the child to fulfil, so she eventually decided to detach numerical meaning from 

the letter in order to operate with it. This episode points to a potential problem that chil-

dren may have to eventually overcome, because the pragmatic approach to algebra 

adopted in this study does not provide children with syntactic rules, rather the approach 

encourages children to generate such rules through their experience use calculator lan-

guage. This lack of rules represents on the one hand the advantage of encouraging the 

children to create their own rules which may fit better their own ways of reasoning. But, 

on the other hand, this lack of rules represents a potential risk, which may result in chil-

dren becoming lost unless they are supported by opportune teacher's feedback. This 

discussion highlights the major role that the teacher has to play within a pragmatic ap-

proach to learning and teaching school algebra. 
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d) Children's awareness of the role of letters within algebraic expressions 

The research data suggest that the children would not make some of the most common 

mistakes reported in the research literature on algebra. Particularly those mistakes 

about erroneous concatenation of terms, like 3+a=3a, a+a=a2, 3a+5=8a or a+b=ab. 

Throughout the study the children were asked questions that relate with items that have 

been used to investigate children's misconceptions (Matz (1980, 1982), Kiichemann 

(1978, 1980, 1981), Booth (1984, 1984a), Peirera (1987), Kieran (1988, 1990, 1992). 

The questions used in the present study were arranged so that they fit the pragmatic ap-

proach adopted in the study. For example, algebraic transformation was put in the situa-

tion of "doing something to a calculator program in order to make it equivalent to an-

other program" or judging the feasibility of "make it shorter" a calculator program. 

Other example is provided in Chapter 5, Interview 3, where the children were asked to 

interpret the information given by a diagram where letters were used to denote unknown 

measurements. These diagrams were used to observe whether the child were able to 

relate their experience of programming the calculator to questions about calculating the 

perimeter or the area of rectangles involving unclosed algebraic expressions. Though the 

contexts of paper and pencil and the calculator environment are different, children's 

reactions in the present study provided data which suggest that they would not make the 

mistakes reported by previous research when working within a paper and pencil envi-

ronment. These points are further discussed next. 

The first has to do with the fact that the arithmetic notation for multiplication was re-

spected throughout the study, for example, Ax3 instead of 3A. The use of this notation 

helped children distinguish terms containing variables from constant terms. For exam-

ple, the children were asked whether the program 5x A+3 could be expressed shorter. 

Children did not present any apparent difficulty to explain that it could not. They then 

were told that "a pupil from another class says that 5x A+3=8x A". Some children went 

beyond noticing the error and looked for the specific case when 5xA+3=8x A. For ex-

ample, Raul explained that "if A were 1 the program 5xA+3 could be typed as 8xA 

but only in this case". When they were asked this question involving two variables chil- 
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dren's reactions were similar. For instance: "A pupil from another class says that 

Ax3+5xB gives the same as 8xAxB". Rocio, by visual inspection, answered: "he is 

wrong because you have two different letters, they have different values ... if both letters 

had the same value he is right ... but, why should I make a program with two letters if 

they will always have same value?". 

Although Rocio's answer is not correct because she did not explicitly provide the num-

ber value that the variables must have to make the expressions Ax3+5xB and 8xAxB 

equivalent (A=B=1), her answer does provide us with an interesting episode to analyse. 

Rocio's response informs us of the progress she has made in understanding the role of 

letters within a calculator program on the basis of the pragmatic experience she has had 

using the machine. This experience led her to question the feasibility of having a pro-

gram involving two variables, not because she considered they could not eventually take 

the same value, but because it does not make sense to program the calculator using two 

variables that will always represent the same value ("why should I make a program with 

two letters if they will always have same value?"). A relevant point in terms of the issue 

we are discussing here, is that Rocio's answer (though wrong) shows that the experience 

using the calculator has provided her with incipient algebraic notions that she used to 

judge conjectures involving algebraic equivalence. From a pragmatic perspective she 

has decided that it does not make sense for A and B to be the same value, in this exam-

ple, however this does not imply that she has developed a misconception -that A can 

never be equal to B within an algebraic expression. 

The other factor that seemed to have prevented children from making these mistakes is 

the numerical-based approach to algebra induced by the calculator environment. Chil-

dren's answers show that they used numerical substitution as a tool for making sense of 

questions involving algebraic expressions. The support given by numerical substitution 

prevented them far from interpreting, for example a+b as "a and b", which seemed to 

produce the error a+b=ab (Tall. 1991). In paragraph 6.2 it was discussed how children 

face the false identity A4B2=(A+B)2, which implies the analysis of a more complex 

structured expression. 
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This result shows that, at this stage, these children do not present the dissociation be-

tween arithmetic and algebra reported by Lee and Wheeler (1986, 1989). The apparent 

strength of numerical-based notions developed by these children suggests that they will 

not have the problems pointed out by Lee and Wheeler, nevertheless this hypothesis 

needs to be proved. This fact points at an issue to be attended by future research. 

This result also relates to the children's apparent reluctance to accept unclosed expres-

sions reported by Booth (1984). The way in which children approached the questions 

mentioned above shows that they analysed the algebraic expressions as a whole and not 

only as descriptors of general arithmetic procedures, which suggest an acceptance of 

unclosed expressions. A possible explanation for children's apparent readiness to work 

with unclosed expressions is the fact that from the beginning of the study they used such 

an expression to program the calculator. They accept these expressions because "that is 

the way the calculator works". That is, the use of the calculator language seems to imply 

a tacit children's acceptance of syntactic conventions imposed by its formal code. This 

point will be taken up again in the next section. 

7.3. Pragmatics: The manner in which children come to produce well-formed alge-

braic utterances to face new problem situations. 

An analysis of children's pragmatic approaches to new problem situations makes a 

dense summary of the notions and strategies they developed throughout the study. The 

research data seem to conform to Bruner's (1990) view that "with an appreciation of 

context, the child seems better able to grasp not only the lexicon but the appropriate 

aspects of the grammar of the language" (p. 71). This section focuses on the apparent 

influence of different contexts on children's insights when negotiating problem solu-

tions, and is organised around the following features: a) the context provided by invert-

ing linear functions b) visual images as supportive context for children's insights, and, 

c) the major strategies used by the children throughout the study. 
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a) The context provided by inverting linear functions 

Despite the fact that most of the children could not grasp the canonical way of inverting 

functions, it is relevant that they developed a pragmatic notion that allowed them to 

grasp what inverting a function serves for. 

Rocio's work in interview 4 illustrates this result. She was asked if the number 877 

would appear in the sequence 5, 9, 13, 17, ... After some struggle she said: "If I input 1 

it must give 5 ... I got it, it is 4xB+1! ... But it will not tell me if 877 is in the list ... What 

I want is the program that undoes this, because I need to know if there is a place for 877 

in the list ... If I input 877 and it gives an "exact number" (sic) it will be the place in 

which 877 appears in the list". Rocio needed some interviewer's help to find the inverse 

function, but the relevant point is that she knew in advance what to do with (B-1)÷4. 

Once she had this program she ran it for B=877 and got 219, and explained: "219 is an 

"exact number" (she meant a whole number), so 877 is in the list ... it comes in the 

219th place". 

Rocio's answer is a result of a pragmatic learning process where she first found that, in 

the same way in which she could program the calculator to reproduce an "X-->Y" table, 

she can also construct a program to produce a "Y—>X" table. Based on this experience 

she grasped the role of the variable used in a calculator program and the role of the pro-

gram as a means for representing the relationship between the sets of numbers that was 

delivered to her in its tabular foiiu. 

It seems sianificant that only a few children were able to find a systematic way of in-

verting linear functions. This suggests a deep step in linguistic competence: from de-

scribing algebraically arithmetic procedures to pure symbolic manipulation. For exam-

ple, Jennifer and Ivan found the standard form when "adjusting the results" was more 

difficult, like in Ax3-1. Jennifer explained her finding as follows: "I realised that it was 

not enough to reverse operations, I had to fully reverse it ... I mean, doing last what I 

did first ... since the last thing was to take 1 away, I added 1 first, then I divided it by 3 
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... That's done with parentheses ... they serve to do first one operation then the other". 

Other children, like Jimena and Erandi learned from them how to do it. 

Most of the children used a rather intuitive approach, whether by using the program to 

be inverted until finding through successive approximations the "x" value correspond-

ing to the given "y" value, or reversing operations and adjusting the results. For exam-

ple, Diego inverted Bx2+1 as 13+2-1+0.5. To obtain the latter expression Diego first 

reversed the operations (B÷2-1), he then tried with specific values and adjusted the 

"inverse program". Jimena's work exemplifies the case in which the child found how to 

invert the function ("first taking away 1, then dividing by 2 the result") but could not 

program the calculator due to a lack of command on using parentheses. She did the in-

volved calculations by hand "because the calculator did not understand what I want to 

do". Once she learned about parentheses she resorted to using them whenever it was 

needed. 

b) Visual images: a supportive context for children's insights 

Visual patterns and simple geometrical relations helped children obtain equivalent al-

gebraic representations according to problem constraints. This allowed them to ignore 

intricate details of syntax. 

Perhaps the most relevant issue raised when children confronted problem solving is how 

they resorted to using their incipient notions and strategies as tools for negotiating solu-

tions, particularly those notions about algebraic equivalence and inverting a given func-

tion. For example, Jennifer and Jimena, using different strategies, looked for an equiva-

lent expression to obtain fresh information to face a problem situation. The following 

extracts provide a detailed account of how the context helped children go back and forth 

between the concrete and the general until they had a better position to face the problem 

situation. 
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Jenny made the program (A+2)2—(AxA) to obtain the number of 

white squares in any member of the sequence shown in figure 1 

(worksheet 48). She then became engaged, on her own, in in-

verting the program to complete the table for the cases where 

outputs were given. The complexity of the expression did not allow her to do it but she 

finally found another way of interpreting the number pattern and produced the equiva-

lent program Ax4+4. She then built the "inverse program" to complete the task: (A-

4)+4. 

Jenny explained that she made the program (A+2)2—(AxA) "taking away 

the area of the grey square from the area of the whole square ... The "A" is 

the length of the grey square (fig. 1) ... I found a different program when I 

saw the shape as a cross" (fig. 2). This allowed her to count the number of 

squares surrounding the grey square, then added the four squares on the 

corners: Ax4+4. 

Fig. 2 

This episode indicates that Jennifer used calculator code as a language that allowed her 

to cope with different situations. Her approach relates with synonymy, when she could 

not properly tackle the problem situation with certain expression, she looked for a dif-

ferent expression. Her explanation provides evidence for this: "I was trying to say the 

same to the calculator ... I knew I could use any of these programs because both output 

the same values for the same inputs". 

Jimena's work provides another interesting example. It illustrates how context provides 

support for children's insights when children are ready to face new problem situations. 

Similarly to Jenny's approach, Jimena became engaged in inverting a complex expres-

sion to complete a table where the outputs were given. Her attempt led her to "uncover.' 

the distributive law. She had made the program (Ax2+Ax3x2)x53 to compute the cost 

of any window wooden frame which "they all are three times as high as they are wide 

and the price per metre is $ 53.00" (worksheet 49). When working out the inverse func-

tion she found that (Ax2+Ax3x2)x53=106xA+318xA. She explained it as follows "if I 
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had two sides which cost 53 each, altogether should cost 106 times the length of one ... I 

did the same with the other two sides of the window ... I then checked it with the calcu-

lator and saw it works". 

Erandi's approach exemplifies another children's strategy. The problem situation was 

the following: 

"In the sculptures parlour of a certain Art Gallery, the windows have the fol-

lowing features: Their sizes vary, but, in all of them the height is 50 cm less 

than three times the width. The material used to build the frames costs $62 per 

metre. Can you program the calculator so that it helps you compute the cost of 

any window frame? " (worksheet 50). 

It is relevant that Erandi, being supported by context, 

used her incipient knowledge about algebraic simplifica-

tion in producing an expression that properly describes 

these relationships. She built the program ((B+B)+(Bx6— 3xB-0 5 

1))x62 to compute the cost of any window's frame. To 

explain how she obtained this program Erandi sketched a 

diagram like the one on the right to explain: "The width 

is B ... there is another B on the top ... the height is 50 cm less than three times the 

width, that is ... 3xB-0.5 ... the opposite side is the same ... Then I computed the pe- 

rimeter, that's B plus B plus the other two ... they are six times B but one metre less 

(pointing at 0.5)... all this multiplied by 62 gives the cost". She proceeded similarly to 

face task in worksheet 49. 

Another illustrative situation in this respect is provided by Jimena's solution to the 

problem briefly posed below: 

Find the length and width that gives the maximum area for the "three sides" rec-

tangle with perimeter 100 metres" (see Appendix, worksheet 54). 

245 



Chapter 7: Horizontal Analysis 

Jimena made the program (100—A)±2xA. The problem statement did not required her to 

explain her reasoning nor did the researcher. Nevertheless she wrote the following ex-

planation "to assure" that the researcher could understand what she did: "(100—A)÷2 is 

going to give the short side, i f I multiply it by "A", which is to be the large side, I will 

get the area". 

Since the children were not given examples that directly relate problem solving with 

their previous experience (describing number patterns), their achievements document 

the potential of putting them in the position of learning a language, not in the role of 

spectator, but through use. 

The ways in which the children faced problem solving agrees with Bruner 's (1990) 

claim that "certain communicative functions or intentions are well in place before the 

child has mastered the formal language for expressing them linguistically" (p. 71). 

In terms of this research, the "communicative functions" referred to above are those 

resources that children had access to when using calculator language to represent quan-

titative relationships and to set up eventual dependence among variables. The above 

extracts provide evidence of how children cope with the as yet unknown so as to 

"request the calculator" to provide fresh information to face certain problem situations. 

Each excerpt suggests that the use of the calculator seems to help children learn princi-

ples rather than algorithms, and how "sensitive to context" these learning processes are. 

c) The major strategies used by the children throughout the study 

Numerical substitution was the children's strongest strategy to cope with generalisation 

and algebraic transformation. 

The research data discussed earlier in the chapter show that children resorted to explor-

ing the numerical behaviour of algebraic expressions either to cope with algebraic ma-

nipulation or express generality. 
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Children used numerical substitution essentially as a semantic recourse; the data from 

the study shows that they used it to make sense of the question. This way of working led 

the children to go back and forth between the general and the particular. This process 

helped them gain awareness of the general nature of programming expressions and of 

the role played by specific cases as generic examples. In fact, the children resorted to 

numerical substitution to explore generality whether to validate or refute conjectures. 

For example, Diego built the program Cx5—Cx4 to be equivalent to Cx(5-4) (interview 

3). He certainly did not have in mind the distributive law (the children did not know 

about it at all). What he actually did was to "think of Cx(5-4) without parentheses ... I 

mean Cx5-4, i f C was 5, Cx5 would give us 25,25-4 doesn't give the same as Cx 1, I 

needed minus 20 ... it is Cx4 ... it works". This makes it evident how he went from the 

general-to the particular-to the general. 

7.4. Final Remarks 

Children's algebraic attainment throughout the study provides empirical evidence for 

the approach to learning a new sign system by using it, and for the potential of the 

graphic calculator as a fundamental support in the fulfilment of this enterprise. 

The results discussed in the above sections led to the conclusion that a highly framed 

calculator environment, based on expressing generality, provides a promising alternative 

for introducing the algebraic code as a language-in-use. The conjunction calculator-

generality helped pupils to make sense of algebraic expressions so as to allow them to 

cope with basic algebraic activities such as initial symbolic manipulation and negotiat-

ing problem solutions. 

The work done by the children during the study conforms to Bruner's (1990) hypothesis 

that "being exposed to the flow of language is not nearly so important as using it in the 

midst of 'doing'. Learning a language is learning 'how to do things with words' ... The 

child is not learning simply what to say but how, where, to whom, and under what cir-

cumstances" (p. 71). 
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The research data shows that children's arithmetic background played the role of a 

`shared symbol system' which supported them to generate meanings for the algebraic 

code and gain insights of how to use it while moving within the 'classroom culture' 

shaped by the calculator based-environment. The term meaning is used here as a 

"culturally mediated phenomenon that depends upon the prior existence of a shared 

symbol system ... In this sense, symbols depend upon the existence of a "language" that 

contains an ordered or rule governed system of signs" (Bruner, 1990, p. 69). 

This research sheds some light on the enterprise of taking advantage of technology to 

fill in the gap between arithmetic and algebra. Children's mathematical attainment dur-

ing the study indicates that, while working with the calculator, they were not only 

learning about using the specific calculator's facilities to face specific mathematical 

tasks. Chapter 5 shows that children were progressively developing algebraic notions 

and strategies that allowed them to use calculator language to face genuine algebraic 

situations, like transforming a linear algebraic expression to obtain a target expression, 

simplifying similar terms within linear algebraic expressions, inverting linear functions, 

and negotiating certain problem solutions using algebraic language. These points are 

further discussed in the following sections. 

A crucial issue in the children-calculator interaction was that children used the calcula-

tor's language as a means of expressing their reasoning. In this way, the child-calculator 

interaction constituted an act of communication mediated by a sign system similar to 

algebraic code. The fact that the child is the one who produces the algebraic expression 

prepares him/her to receive feedback from the calculator's outputs. This allows the child 

to anticipate the calculator's outcomes which led him/her to reflect on the task and test 

his/her own symbolic descriptions. This interaction was supported by the calculator-

based environment, which was arranged to provide goal oriented tasks to encourage 

children to put forward a conjecture. 

Jennifer's work illustrates the above, in particular, how arithmetic played the role of a 

`shared symbol system' that allowed her to analyse the calculator code. She was en- 
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gaged in programming the calculator so that "it first took 1 away, then multiplied this by 

3". Since Jenny did not know about using parentheses she had tried the program B-1x3. 

She explained she had already made the computations in advance and filled in a table 

"but the calculator did not do what I meant ... As I don't think as the calculator does, I 

said 1-1, 0, then 0x3, 0. The machine said: —1x3, -3, 1-3, -2. I'd like to know how to 

make the calculator do what I want". 

Jenny's reaction illustrates how the interaction with the calculator encouraged her to go 

forward and backward from the general to the particular (intending a program that first 

takes 1 away ... then producing a table by mental calculation). 

Though the calculator provides an excellent environment for children to produce alge-

braic expressions, the machine cannot confront children with the flow of language, so 

children's utterances revolve within the limits of their own creativity. This limitation of 

the calculator-based setting was confirmed by the fact that most of the children ran into 

problems when facing for the first time number patterns where the rule was of the form 

ax+b (worksheet 4). 

It seems that children's previous arithmetic experience led them to express a string with 

more than two operations following a step by step procedure. It was observed during the 

first three months of the school year that they performed, for example, 2x3+2, comput-

ing first 2x3=6 with the calculator; then 6+2=8. They kept on working in this way de-

spite the fact that they were encouraged to express the whole string of operations in one 

line and then compute them. This tendency led them to run into problems when facing a 

rule like "multiplying by 3 and adding 2", they could not conceive how to type a calcu-

lator program for representing such an expression, for example, some tried expressions 

like "3xA=+2", which made the calculator produce a "syntax error" message. This 

process required the children to do something new: to formalise their method. Their 

work shows that they accepted the formality of an expression like Ax3+2 because 

"that's the way that the calculator works". At this point the researcher/teacher interven-

tion was crucial. This point is further discussed in Chapter 8, section 8.4. 
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From the beginning of the study the calculator tasks encouraged the children to produce 

and use algebraic expressions. This process helped them develop the notion of letters as 

symbols that "represent any number" (see, for example Chapter 5, interview 2). The 

tasks led the children to extend their notion of letters beyond the set of numbers dis-

played in the table. This was done by asking them to complete a new table using the 

program they had built. They then needed to find the inputs when outputs were given. 

This led the children to analyse more carefully how the program proceeds and, conse-

quently, think of the role played by the letter they were using. 

Children's work in formats 1 and 3 shows how their use of calculator language evolved. 

Most of the worksheets include a task that requires the children to write down the rule 

they found. In format 1 they did it using natural language (i.e. "I divided by 2 and mul-

tiplied by 3"). But in format 3, most of them used calculator language to answer these 

questions. Later on, in formats 4, 5 and 6 the pupils showed they were able to confront 

story-based problems using calculator language. 

The results presented in this chapter allows us to see that, along the use of the calculator 

in the classroom, the articulated activities used in the study help create an environment 

in which children, through working on the tasks, might develop their first conceptuali-

sations to cope with algebraic issues. Pupil's interaction with the mathematical content 

was highly framed (in Bruner 's sense) intending to scaffold them in the transition from 

arithmetic to algebra. This approach to teaching and learning algebra strongly contrasts 

with the approach traditionally adopted in the school, where children's learning heavily 

depends on the teacher's discourse. These points are further reviewed in Chapter 8 

(summary of results). 

250 



CHAPTER 8: CONCLUSIONS 

Introduction 

The conclusions of this thesis were derived from reviewing those aspects that more 

clearly characterise its nature and research outcomes. The chapter is organised in five 

sections. The first section, Summary of Results, is aimed at providing an outline which 

may guide the reader for further analysis and discussion throughout the different chap-

ters of the thesis. The second section, Contributions, discusses the possible contributions 

of this thesis to the research on the teaching and learning of algebra; this section centres 

on the most general features of the theoretical approach to teaching and learning algebra 

adopted in the study and the role played by the graphic calculator in the research. The 

third section, Limitations, discusses those factors that seemed to have caused the most 

evident limitations of this research, and some possible alternative actions which may 

help in overcoming these limitations are put forward. The fourth section, Findings, ad-

dresses pedagogical issues which were beyond the aims of this research, in particular. 

the section discusses some relevant aspects with regard to the role of the teacher within 

the calculator-based environment. Finally, the fifth section, Further Research, outlines 

some of the possible lines for future research that may lead to a more solid theoretical 

and methodological position with regard of taking advantage of the symbolic facilities 

offered by the graphic calculator. 

8.1. Summary of results 

Chapter 5 has presented a detailed analysis of two case-study subjects (vertical analy-

sis). Chapter 6 provided an overview of the work done by the other five case-study sub-

jects, the overview was intended to provide a more complete picture of those individual 

learning events that took place throughout the study. Chapter 7 provided a horizontal 

analysis focusing on selected episodes that inform how the calculator-based environ-

ment shaped children's expressions of general relationships and helps them to develop 

algebraic notions and strategies. 
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The present section summarises those research results that can be attributed to the ma-

jority of the children that participated in the study. The summary of results is presented 

in terms of the general aims of the study. As was set out in Chapter 1, this study is in-

tended to investigate: 

1. The notions that pupils may develop for algebraic language when they meet it 

through using calculator code. 

2. The extent to which the use of the calculator language helps pupils cope with sim-

plifying similar terms within linear expressions, inverting linear functions, and 

transforming a linear algebraic expression to obtain a target expression. 

3. The strategies that children may develop through working with the calculator. 

4. The extent to which the use of the calculator language as a means of expressing 

general rules governing number patterns, helps children grasp that the algebraic 

code can be used as a tool for coping with problem situations. 

Notions that pupils developed throughout the study (Aim 1) 

♦ The children's notions of letters within algebraic expressions 

Children's work during the study suggests that the use of the calculator language to de-

scribe number patterns helped them develop the notion of letters as symbols that 

"represent any number'", and the notion of 'computing devices' for the algebraic ex-

pressions used to produce calculator programs. 

The data analysed in chapters 5, 6 and 7 provides support for the above claim, the ways 

in which the children worked out the tasks throughout the study suggest that a key point 

for them to develop these notions was the fact that the calculator allowed the children to 

use the programming code both as a means of describing and calculating. Besides, the 

activity based on describing number patterns helped pupils to link their previous arith-

metic experience with the new formal code they were using to program the calculator. 

The tight link between the tasks and the computing tool helped children find out and 

formally express the general behaviour of number patterns by producing algebra-like 

expressions. 
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The fact that the calculator code is situated within the computing environment helped 

children to develop a notion of programming expressions as 'calculating' tools. The 

children's strategy of numerically validating/refuting the symbolic expressions they 

produced provides evidence of this notion (see Chapter 7, section 7.3c). The ways in 

which the children coped with expressing rules governing general number relationships 

suggest that algebraic representation, within the calculator environment, is more than 

simply encoding what is represented, in this context representation is rather a result of 

an interaction with the known (arithmetic) according to a goal (make the calculator pro-

duce a given table). This activity allowed the children to move from the particular 

(analysing a particular pair a-->b) to the general (verifying the validity of the rule they 

found for every pair x—>y in the table). This experience was the building block for them 

to develop the notion of letters as "representing any number", and for algebraic expres-

sions (calculator programs) as "things that allow you to make the same operations as 

many times as you want with the numbers you want" (Rocioi, interview 2). The ways in 

which children used the calculator algebra-like code are the best evidence of the notions 

they developed (see Chapter 5). The children's verbal descriptions illustrate their idio-

syncratic conceptions of letters as algebraic entities. Diego's description of the letters he 

was using to program the calculator encapsulates the notion developed by the children: 

"the letter personifies the number I want to make the program with ... they can personify 

any number, once you put the letter you can input any quantity ... you can run the pro-

gram for any number you want ... the output changes depending on the number you put 

in" (Diego, Interview 1). 

The children also showed that they grasped that the value of an algebraic expression 

does not depend on the letter used. To investigate this feature the children were asked 

the question: "What does the letter used in the program (A+7)÷2 mean for you? Jenny's 

answer captures the essence of the notions developed by the children: "any number ... A 

can be any number ...". Going further on this point she was asked: "What will the pro-

gram (Z+7)÷2 produce?". She said "it does the same as (A+7)÷2, because when you put 

the letter in the calculator it doesn't matter if it is A or Z, A may be 1 and Z may be 1 as 

Below average attainment pupil 
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well ... and so on for any number, it is the same regardless of the letter you put in" (see 

chapters 5, 6 and 7 for further evidence). 

Along with the notion of letters as "representing any number" the children became 

aware that different letters represent different values within the same expression but can 

also represent the same value within the same expression. The following episode pro-

vides support for this assertion. The children were asked whether (A+B)2  could be equal 

to A2-FB2. The question was completely new for them, this fact highlights the finding 

that all of them (including the child with low average attainment) were able to cope with 

the question by giving specific values to the variables. Some went further and found that 

the assertion would be correct if "A or B were zero" (see Chapter 7, section 7.1). This 

finding suggests that the calculator environment helped the children to develop aware-

ness of the role of the letter within an algebraic expression and grasp: (i) the existence of 

a relationship between the variable and the function through their numerical value, (ii) 

that the same letter always represent the same value within an expression, (iii) that, in 

general, different letters represent different values, but can represent the same value in 

the same expression (a more detailed discussion is presented in Chapter 5, Interview 4; 

Chapter 5, Final Remarks; Chapter 7, section 7.1). 

The notions for letters developed by the children closely relate to the notion of variable. 

Their work during, the study shows that they did not only associate a range of values to a 

given letter. but they consistently associated such range of values (inputs) to another set 

of values (outputs), which was the building block for them to explore and verify con-

jectures about number relationships. This notion is a result of a specific way of working, 

where the calculator played a central part. 

This finding contrasts with Ktichemann s (1981) results, which suggests a hierarchical 

categorisation for children's interpretation of letters: as objects, as unknowns, as gener-

alised numbers, and finally as variables. Following Piagetian principles, Ktichemann as-

sociated these different roles played by the letters within algebraic expressions to differ-

ent stages of children's intellectual development. which suggests that the notion of vari- 
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able can only be grasped when the child reaches the stage of 'formal operations'. Ac-

cordingly, the other notions of letters should precede the notion of variable. The results 

of the present study suggest that children can grasp the notion of letters as variables 

without having as antecedent other notions (letters as objects, as unknowns or as gener-

alised numbers). Rather, a good number of episodes reported on in chapters 5, 6 and 7, 

show that the children eventually shifted from the notion of letters as representing a 

range of numbers, to the notion of letters as unknowns (for example when finding out a 

specific value for the input when the output is given). This result seems to indicate that 

the notion of variable does not exclusively depend on issues related with intellectual de-

velopment, rather it seems that the development of such notion strongly depends on 

specific teaching approaches and activities. 

♦ The children's notions of algebraic equivalence 

The pupils developed a notion of algebraic equivalence based on exploring the numeri-

cal value of algebra-like calculator expressions. This strategy indicates that such a no-

tion of equivalence was derived from the use of calculator language to describe number 

patterns. 

The research data suggests that along with the notion of variable the children were de-

veloping a notion of algebraic equivalence, which, in time, proved to be one of the most 

powerful tools developed by children to cope with a range of different tasks, such as al-

gebraic transformation and inverting linear functions. The research data suggests that 

the children's experience of using the calculator language to describe number patterns 

helped them develop a notion of algebraic equivalence. The notion of algebraic equiva-

lence developed by the children was that two calculator programs (linear expressions) 

are equivalent if "they produce the same output for the same input". The work carried 

out by the children throughout the study shows that this notion helped children to cope 

with algebraic equivalence within situations that they had never met before. For exam-

ple, they were able to face questions involving quadratic expressions with two variables. 

An example of these tasks was given in the above section (i.e., (A+B)2=A2+B2— () Other 
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illustrating episodes can be found in Diego's and Jenny's cases, Chapter 5, interviews 2 

and 3, and Chapter 7, Section 7.1. 

The children's notion of algebraic equivalence was the building block for them to cope 

with algebraic transformation. The data analysed in Chapters 5, 6 and 7 suggest that 

such notion of equivalence was a result of their work within a highly framed classroom 

setting. A detailed discussion of this point is made in Chapter 7, Section 7.1. 

The data analysis also allows us to see that this notion of equivalence still needs to be 

refined. This feature points to the need to investigate the ways in which this numerical-

based notion may help/obstruct a more formal approach to algebraic equivalence. 

♦ The children's notions of priority of operations and use of parentheses 

The children more effectively learned syntax conventions instrumentally, that is as in-

struments for carrying out certain previously operative functions and objectives. For 

this to happen it was crucial that the children used calculator language to express their 

own reasoning; while doing this the children make the involved computations in ad-

vance which help them realise that the calculator proceeds differently from them. It was 

observed during the study that children are not concerned about priority of operations 

and use of parentheses as long as they work with paper and pencil. In contrast, they 

were aware of these conventions while working with the calculator. 

This fact enhances the role of the calculator environment in helping children gain 

awareness of algebraic syntax. The children inquired about syntax conventions when 

they ran into problems to express their reasoning using calculator language. The chil-

dren's reactions suggest that it was the need to use syntax conventions as means of 

communication which made children appraise their value (examples of the extent to 

which children use correctly parentheses are provided in Chapter 5, Children's work, 

Format 6; this feature is discussed in more detail in Chapter 7, section 7.2). 
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How children coped with symbolic manipulation (Aim 2) 

♦ Algebraic transformation 

The children's experience of using the calculator code to describe number patterns 

helped them cope with transforming a linear algebraic expression in order to make it 

equivalent to a target expression. The ways in which the children tackled these tasks 

suggests that numerical exploration played a crucial part in the children's approaches 

to algebraic manipulation. 

In order to investigate this issue the children were asked questions such as the follow-

ing: 

I wanted to type the program Bx8 but I made a mistake, instead of that I typed Bx7. 

Can you correct it without deleting anything I typed? 

The children's reactions to this question are further discussed in this section when ana-

lysing the children's strategies. 

♦ Simplifying similar terms 

The research data suggest that the experience of using the calculator code helped the 

children cope with simplifying similar terms within linear expressions. A relevant find-

ing in this respect is that similar terms simplification was the only task where children 

tended to generate misrules. 

The typical question asked to the children was like the following: "Can you make 

shorter the program Ax7+Ax3?". Children's initial strategy was to give specific values 

to the variable, they then found, for example, that the program "just multiply by 10" and 

typed the expression Ax10 (a more detailed discussion is made in Diego's and Jenny's 

cases, Chapter 5, Interviews 2 and 3, Chapter 5, Final Remarks, and Chapter 7, section 

7.1). 

The research data shows that once the children start generating syntax rules they tend to 

completely rely on them, which in the case of misrules may prevent them from achiev- 
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ing, future success in mathematics. Erandi's response to this question captures the es-

sence of the mistake that children tended to make. She found that Ax13 was equivalent 

to Ax2+Ax3+Ax5 because "the numbers 2, 3, and 5 give 10 altogether, then you must 

add 3 to 10 because you have three A's there, it gives 13 times A". A detailed discussion 

of this feature is made in Chapter 7, Section 7.2.c. 

♦ How children coped with inverting linear functions 

Despite the fact that most of the pupils could not grasp the canonical way of inverting 

functions, it is relevant that all of them grasped what inverting a function serves for. 

The majority of the children used a strategy that consists of reversing the order in which 

the operations appeared, they then checked their trial and 'adjusted the results'. For ex-

ample, to invert the rule Ax2-1, most of the children produced the program A±2+1, af-

ter running the program they realised that it did not produce the expected results, they 

then went on adjusting the results (trial-and-refining) until they produced a program like 

A±2+1-0.5. Only the children with above average attainment were able to find a sys-

tematic way of inverting linear functions (i.e., (A+1)±2). Nevertheless, all the case-

study pupils grasped what inverting a function serves for. An episode with Rocio (a 

`below average attainment pupil') provides evidence for this conclusion. Rocio was 

asked if the number 877 would appear in the sequence 5, 9, 13, 17, ... After some strug-

gle she program the calculator to produce this number pattern (Ax4+1), but immediately 

recognised that the inverse rule was what she needed to answer the question. Rocio 

needed some help to find the inverse function, but the relevant point is that she knew in 

advance what to do with (B-1)±4 (a more detailed discussion is made in Chapter 6, Di-

ego's and Jenny's cases; Chapter 7, Section 7.3,a). 

Children's strategies (Aim 3) 

Through using the calculator code the majority of the children developed informal 

strategies which enabled them to cope with algebraic manipulation. These informal 

strategies suggest that the children used the calculator code as a means of making sense 

of and negotiating solutions for new problem situations, rather than using it to repre- 
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sent a ready made idea. This result seems to contrast with the use of algebraic language 

within a paper-and-pencil environment, where the students usually use the algebraic 

code as the  final step of a process of reasoning instead of  a means of reasoning. 

When facing the tasks of algebraic manipulation, the children presented the following 

strategies: (i) trial-and-refining through numerical substitution, and (ii) operating di-

rectly with the variable terms. Some of the children used the first strategy, for example, 

Jenny, Erandi and Diego gave specific values to the variable (i.e., B=1 in Bx8, since it 

did not work they tried with B=2, and so on). By structuring and restructuring their rea-

soning the children finally realised that the expression they wanted was Bx8—B (see 

Chapter 5 and Chapter 7, section 7.1). Other children (Jimena, Raul and Ivan) operated 

directly with the variable, for example, Bx10-3xB to make Bx10 (the source expres-

sion) equivalent to Bx7 (the target expression). Nevertheless, all of them finally resorted 

to giving values to the variable when confronting more difficult tasks, for example, 

transforming a three term linear expression to make it equivalent to a one term linear 

expression (see Chapter 5, Final Remarks; Chapter 7, Section 7.1). This fact suggests 

that numerical substitution was the strongest strategy developed by the children. 

The trial-and-refining strategy used by the children highlights the role of the calculator 

language as a mediational tool in the learning of introductory algebra. The ways in 

which children confronted the task indicate that, in general, they did not use the calcu-

lator code to describe a polished idea, the children rather used the calculator code as a 

means for making sense of the question and progressively refine their reasoning. The re-

search data suggest that the children used the calculator code to communicate with an 

interlocutor (the calculator), the calculator's feedback helped them to structure and re-

structure their reasoning. This approach indicates that children used that formal code as 

a transactional tool, which strongly contrasts with paper-and-pencil work, where alge-

braic language is, in general, used as the final step within a process of anticipating and 

establishing the involved relationships. A detailed account of the children's informal 

approaches is made in Chapter 5, Interviews 2 and 3, Diego's and Jenny's cases; Chap-

ter 5, Final Remarks; Chapter 6, Jimena's case; and Chapter 7, Section 7.1. 
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How children used the calculator code when confronting problem situations (Aim 4) 

With different level of attainment, all the case-study children were able to use the cal-

culator code to cope with algebra word problems. 

The experience of describing number patterns using the calculator language helped pu-

pils make sense of traditional algebra word problems and provided pupils with a formal 

code to negotiate problem solutions. This result strongly contrasts with outcomes ob-

tained in studies that have investigated the effects of introducing school algebra through 

describing number patterns (Stacey, 1989; Herscovics, 1989; Arzarello, 1991; MacGre-

gor and Stacey, 1993; Stacey and MacGregor, 1996). These studies reported students' 

difficulties in generating algebraic rules from patterns and tables. MacGregor and Sta-

cey (1996) concluded that "a patterns-based approach does not automatically lead to 

better understanding; the way students are taught and the practice exercises that they do 

may promote the learning of a routine procedure without understanding" (p. 3). They 

reported that students were able to recognise and describe the involved quantitative re-

lationships, but their approach was rather a rhetorical description (in the sense of 

Harper, 1987) which leave children far from describing the problem algebraically. 

This result involves a relevant contribution of this thesis, therefore the rest of this sec-

tion discusses those issues that provide an explanatory framework of why children were 

able to take the step between using calculator language to describe number patters, and 

using the calculator code to negotiate problem solutions (further evidence is provided in 

Chapter 5, Format 6: children's work; Chapter 6; Chapter 7, section 7.3). 

There are various factors that may explain the strong contrast observed in the findings of 

this thesis and the outcomes obtained by MacGregor and Stacey. What seems the most 

immediate explanation is that the students reported by MacGregor and Stacey worked 

within a paper and pencil environment, where apparently natural language is the most 

immediately available tool for children to structure their reasoning when facing a prob-

lem situation. MacGregor and Stacey (1996) found that most of the students guided 
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their procedures by natural language descriptions. Nevertheless, they conclude that this 

approach hardly helps them structure an algebraic expression to properly describe the 

relationships between two variables. 

This contrasts with the fact that the calculator programming language is situated within 

the computing environment, this feature allows the user to produce algebra-like expres-

sions and use them both to describe numerical relationships and to calculate with these 

expressions. The operative nature of the calculator language places the children within a 

milieu where algebraic formulation becomes an inherent part of the problem situation to 

be solved. The use of the calculator language leads children to describe the relationships  

in a problem situation operationally, even if they make this description in natural lan-

guage. When working with the calculator the children do not look for the relationship 

between the "x" and "y" variables to find out the underlying pattern (which was the 

question used by MacGregor and Stacey); the calculator environment allows us to make 

the same question so that the children are led to think of what operations they can make 

with the input in order to produce the correspondent output. The data obtained from the 

present study provide evidence for this assertion: when the children were asked to use 

natural language to describe the relationship involved in a number pattern, they used ex-

pressions which always include an operative description, for example, "I multiplied by 

2" which they expressed as Ax2 to program the calculator. When the rules were more 

sophisticated, they ignored the constraint of using natural language and directly used 

calculator language, for example, 3xA+2, "because the calculator language makes it 

easier to explain this" (see, for example, Chapter 5, Diego's and Jenny's work, Format 

1). This use of the calculator code allowed the children to focus on the operational 

structure of the calculator expressions, whether describing number patterns or describ-

ing the relationships involved in story-based problem situations. This operational ap-

proach does not necessarily occur when the children work within a paper and pencil en-

vironment, where natural language is the immediate means of communication, this 

situation seems to lead children to see the use of algebraic code as a sophisticated 

teacher's imposition. 
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The mathematical content and the sequence of the tasks used during the study provide 

another source of explanation for pupils' achievements in problem solving. As was dis-

cussed in Chapter 4, the content of the tasks addressed general mathematical notions as 

opposed to specific topics. Specifically the tasks addressed the following issues: ex-

pressing generality (formats 1 and 2), algebraic equivalence (Format 3), inversion 

(Format 4), decreasing linear functions (Format 5), and problem solving (Format 6). A 

close look at the tasks provides an explanatory framework for how the children devel-

oped such notions and strategies which finally they exhibited when coping with negoti-

ating problem solutions. This review is intended to provide support for the conclusion 

that these tasks shaped a didactic 'route to algebra problem solving'. 

The results discussed in Chapters 5, 6 and 7 show that the tasks in Formats 1 and 2 al-

lowed the introduction of calculator language as a language-in-use. The main feature of 

these tasks was to place children in the position of using the calculator code to fulfil 

their communicative intention. The tasks guided the children to gain awareness of the 

inherent generality of the algebraic expressions they were using from the beginning of 

the study. The tasks in these formats also introduced children to the use of parentheses 

and the idea of inverse function (finding the input when the output was given). 

The tasks in Format 2 introduced children to the notion of algebraic equivalence. The 

children's work showed that, spontaneously, they construct equivalent expressions op-

erating with the independent temis (for example, 3xB+4=3xB+8±2). That is, they did 

not spontaneously operate with terms containing variables to construct equivalent ex-

pressions. Nevertheless, during individual interviews they showed they were able to op-

erate with algebraic expressions when the task was changed to that of transforming an 

algebraic expression to make it equivalent to a target expression. The work carried out 

by the pupils in Format 6, where they produced expressions as ((Ax3)x2+(Ax2))x53, 

suggests that the experience of transfoimin2 algebraic expressions was a key point in 

helping children gain awareness of the feasibility of using expressions of the form 

ax+bx-'-c (see Chapter 5, Format 6). 
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The tasks in Format 4 required the children to deal with inverting linear functions. 

These tasks encouraged the children to look for a systematic way of inverting linear 

functions, and to refine their notion about using parentheses. The children's responses to 

questions about number sequences (see worksheets 46-48, Chapter 5, Format 6) show 

how their previous experience with inverting linear functions helped them cope with 

problem situations which required them to apply their incipient notion of inverse rela-

tionships. 

Finally, the tasks in Format 5 introduced the children to new number patterns generated 

by linear decreasing functions. These tasks were intended to introduce children to the 

use of algebraic expressions to describe part-whole relationships. The children's re-

sponses to worksheet 55, where they produced expressions like ((100—A)±2xA, provide 

evidence of the extent to which their experience in producing decreasing functions in-

fluenced the ways in which they used the algebraic code to negotiate solutions. 

As a final remark, it must be mentioned that the notions and strategies that children used 

when negotiating problem solutions can provide a basis for further development of al-

gebraic ideas. As was discussed in Chapters 5 and 7, the pupils will still need to refine 

some notions and strategies in order to become more competent users of the algebra-like 

calculator language. They sometimes became confused when explaining how they pro-

duced symbolic expression to describe the relationships within algebra problems. 

8.2. Contributions to the teaching and learning of algebra. 

The children's algebraic attainment throughout the study provides empirical evidence 

for the approach to learning a new sign system by using it, and for the potential of the 

graphic calculator as a fundamental support in the fulfilment of this enterprise. 

This study provides empirical evidence for a pragmatic approach to the teaching and 

learning of algebra that offers a promising vein for exploiting the symbolic facilities of-

fered by the graphic calculator. The study stresses the potential of technological devices 
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in envisioning new possible routes to school algebra (this issue is discussed in more de-

tail in Chapter 7, section 7.4). 

The theoretical background used in the study contributes to fill in the gap between a 

constructivist approach to using technology in the classroom and the need of a more in-

formed teaching intervention. The results of this study show that the way in which 

Bruner's research findings were recast gives promising guiding lines for using calcula-

tors in the mathematics classroom. Perhaps the most relevant pedagogical feature of the 

material used in the study consists of having motivated children in a way that once they 

grasped what the few first worksheets required them to do, they were in the position of 

working out a set of progressively complex tasks on their own. The research data shows 

that, along with the crucial support provided by the calculator, the tasks used in the 

study motivated a favourable pupils' attitude toward mathematics. This pupils' attitude 

was a critical issue in getting to work the approach to algebra as a language-in-use. In 

fact, language acquisition could hardly take place without a children's attitude of willing  

receipt. The fact that children have shown that readiness to work indicates that the tasks 

allowed a productive teacher-pupil and pupil-calculator interaction, where both 

teacher's and pupil's presuppositions and intentions were clearly exposed so as to create 

a solid platform of communication. 

The set of articulated teaching materials used in the study made it possible to document 

a lengthy children's learning process which addresses fundamental algebraic activities: 

expressing generality, symbolic manipulation and problem solving. Though the tasks 

used in the study are widely known by the mathematics educator's community (much of 

it due to the work done by Mason, 1988), the materials were rearranged in order to take 

advantage of the calculator facilities. The research data suggests that the children's 

achievements came as a result of the particular way of using the calculator adopted in 

this study. The work carried out by the children throughout the study shows that they 

were able to cope with issues that have been earlier reported on as problematic, such as 

the acceptance of unclosed expressions, the connection between arithmetic and algebra. 
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the use of parentheses, and most important: the use of algebraic code to negotiate prob-

lem solutions (see chapters 5, 6 and 7). 

8.3. Limitations 

Methodological issues 

One of the limitations of the present study derives from its qualitative nature, which 

does not allow us to generalise its results. Consequently, the research outcomes pro-

vided by this study should be taken as an empirical evidence which documents a prom-

ising approach to using graphic calculators in the teaching and learning of algebra. 

Another methodological factor that limited the present research was the fact that, in or-

der to investigate the learning processes that take place when the study of algebra be-

gins, the fieldwork had to be carried out during a short time period. The time constraints 

made it impossible to follow the children within a longer time period, which would have 

let us investigate the children's informal strategies more thoroughly. The results ob-

tained by the present research showed that allowing children to develop and recreate 

their own strategies provides them with a powerful tool which seemed to place them in a 

better position to cope with the learning of algebra. These results suggest that investi-

gating in depth the children's informal strategies must provide more solid outcomes 

which would surely strengthen and refine the conclusions derived form this study. 

The data drawn from this study shows that the approach to algebra as a language in use 

helped children use the calculator language to negotiate solutions for algebra word 

problems, and develop a notion of algebraic equivalence that allowed them to confront 

tasks involving algebraic manipulation, such as simplifying similar terms, transforming 

an algebraic expressions to make it equivalent to another, and inverting linear functions. 

The study suggests that the children have reached what seems a promising starting point 

to confront more traditional school algebra. 

Nevertheless, there are still many aspects of algebra which the children did not encoun-

ter within this study. In particular, a number of research questions should be faced in or- 
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der to refine/consolidate the results of the existing study. Among the major issues lead-

ing to further research are the following: 

In which sense may the pragmatic approach to teaching and learning algebra 

help/obstruct: 

a) children's learning of formal syntactic rules for algebraic manipulation? 

b) children's learning when confronting algebra problem solving which involves 

using equations? 

c) children's learning of more founal methods for establishing algebraic equiva-

lence (for instance, algebraic transformation)? 

d) children's learning of a more formal approach to the notion of function? 

e) children's learning of graphs as another way of representing number relation-

ships? 

f) children's learning of formal features concerning negative numbers? 

g) children's understanding that a conjecture about number relationships cannot be 

validated on the basis of the results obtained from specific cases? 

h) children's understanding of the value of counterexamples as a means of 

proof/refuse mathematical conjectures? 

The above research questions tell us about the potentialities and limitations of the pres-

ent study. About its potential because these questions give an account of the wide range 

of algebraic topics that children experienced during a relatively short school time (about 

18 hours). These questions tell us of the limitations of the present study because they 

bring to light issues that still have to be investigated before setting up stronger claims 

about the potential of the approach to learning and teaching of algebra as a language in 

use, and the support provided by the symbolic capabilities of the graphic calculator to 

fulfil such an enterprise. 

Theoretical issues 

The theoretical referent shaped for the study gave encouraging results in terms of pro-

viding promising guidelines to take advantage of the symbolic facilities offered by the 
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graphic calculator. Nevertheless, the theoretical background needs further development. 

So far, the theory provided strong support for shaping the teacher-pupil and pupil-

calculator interactions (the design of the tasks), and for interpreting the ways in which 

the children tackled specific problem situations (syntactically, semantically or pragmati-

cally). Nevertheless, the theory, perhaps due to the researcher's limitations, could not be 

suitably exploited to analyse the children's mathematical achievements in terms of lan-

guage acquisition. The causes of this theoretical limitation should be thoroughly re-

viewed in order to search for a stronger link between the linguistic-based approach and 

the mathematical realm. 

8.4. Findings: Pedagogical issues 

Though the calculator provides an excellent environment for children to produce alge-

braic expressions, the machine cannot confront children with the flow of language, so 

children's utterances revolve within the limits of their own creativity. This limitation of 

the calculator-based setting was confirmed by the fact that most of the children ran into 

problems when facing for the first time number patterns where the rule was of the form 

ax+b (worksheet 4). 

A key factor in 'getting to work' the calculator-based environment was the presence of 

an 'expert user of calculator language'. The role of the teacher was particularly relevant 

when children faced the task of expressing number patterns governed by rules of the 

form ax+b. This issue seems to be on the border line between children's arithmetic ex-

perience and their entry into algebra. Expressions like Ax3+2 were like "new words" 

that children needed to learn from a more competent peer, these "new calculator words" 

mark a crucial point in their way to formalising their methods. 

It seems that the children's previous arithmetic experience led them to express a string 

with more than two operations following a step by step procedure. It was observed dur-

ing the first three months of the school year that they performed, for example, 2x3+2, 

computing first 2x3=6 with the calculator; then 6+2=8. They kept on working in this 

way despite the fact that they were encouraged to express the whole string of operations 
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in one line and then compute them. This tendency led them to run into problems when 

facing a rule like "multiplying by 3 and adding 2", they could not conceive by them-

selves how to type a calculator program for representing such an expression, for exam-

ple, some tried expressions like "3xA=+2", which made the calculator produce a 

"syntax error" message. 

At this point the researcher/teacher intervened suggesting that they type the rule 

"altogether, as a one-piece string of operations". From then on, the children's prior re-

luctance to work in this way practically disappeared. This suggests that the formality of 

calculator language helped them realise the value of these "new words" mainly due to 

their instrumental function. Children's reactions resemble Bruner's (1980) claim that 

"mastering a language involves not only knowing how to string together propositions, 

but also how to meet the conditions on the appropriate making of utterances" (p. 161). 

8.5. Further research 

The fact that the researcher acted as the teacher during the fieldwork induces particular 

conditions which must have influenced the research. In order to obtain more elements 

whether to reinforce or refine the theoretical background and the results of the research, 

it appears suitable to carry out a replica of the study where the researcher plays only the 

role of observer. This new research stage should provide an opportunity to test both the 

theoretical and methodological approaches when the classroom activity takes place un-

der conditions derived from the mathematics teacher's conceptions and his/her own in-

terpretation of the calculator-based approach. 

The present study was carried out following, the hypothesis that the symbolic capabili-

ties of the graphic calculator can be exploited to introduce the learning of algebraic code 

as a language-in use, but the acquisition of a language takes place within a long time pe-

riod (maybe an entire life!). This hypothesis suggests an important vein for further re-

search: to carry out a longitudinal study throughout the secondary school mathematics, a 

study aimed at investigating the ways in which the specific approach to algebra as a lan- 
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guage-in-use may influence children's learning when they face more formal aspects of 

algebra. 

Finally, a more specific topic that deserves further research is that of the effects of in-

troducing algebra as a language-in-use on the learning of negative numbers. As was dis-

cussed in Chapter 5, the children developed interesting informal strategies to cope with 

tasks that required them to operate with negative numbers. Time constraints led the re-

searcher to the decision of exploring just a few issues regarding the children's ap-

proaches to negative numbers being supported by the use of calculators. Thus, an inter-

esting step for future research is to investigate the potential of the graphic calculator as 

an aid in the learning of negative numbers. 
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APPENDIX 1 

TASKS 



511 
	

613.03 

89.73 107.06 299.1 307.09 17 35.02 

WORKSHEET 1 (Format 1) 

NAME 	 DATE 

I programmed my calculator to do 
the following: 

9 

1 

9 

7 

9 

3 

9 

4 

9 

5 

5 

6 

7 

8 

9 

What will the calculator output if I input the number 5? 	What if I input 10 ? 	 

What happens if I input 70? 	  

Which operations did you use to make these predictions? 	  

Can you program the calculator to do that? Write your program in the following space. 

Use your program to complete the following table. 

284 



9 

7 

9 

8 

9 

9 

9 

15 

9 

18 

14 

16 

18 

30 

36 

WORKSHEET 2 (Format 1) 

NAME 
	

DATE 

I programmed my calculator to do the following: 

What will my program output if I input 5 into the calculator? 	If I input 25 in- 
stead? 	 Or if I input 17? 	  

Which operations did you use to get these answers? 

Can you program the calculator to do that? Write your program in the following space. 

Use your program to complete the following table. 

25 
	

37.03 
	

59.83 
	

117.18 
	

136.1 
	

200.79 
551 
	

653.38 

285 



2.5 7.5 

3.1 9.3 

4 12 

4.2 12.6 

5.3 

6.2 

47.4 

73 

Complete the following table. 

WORKSHEET 3 (Format 1) 

NAME 
	

DATE 

Which operations did you use to complete the table? 	  

Can you program the calculator to find the right hand column numbers? Write your pro-
gram in the following space. 

Does your program output the numbers shown in the table? 	  

Use your program to complete the following table. 

9 
	

17 
	

18.04 
	

47.01 
	

50.4 
	

63.9 
89.1 
	

92.4 
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I programmed my calculator to do the 
following: 

WORKSHEET 4 (Format 1) 

NAME 
	

DATE 

9 

1.1 
3.2 

2.5 
6 

3 
7 

9 

4.3 
9.6 

5 
11 

What will the calculator output if I input the number 50? 	  

What if I input 81? 	 What happens if I input 274? 	  

Which operations did you use to make these predictions? 	  

Can you program the calculator to do that? Write your program in the following space. 

Use your program to complete the following table. 

1.3 
	

2.8 
	

14 
	

50 
	

81 
	

274 
325 
	

420 
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WORKSHEET 5 (Format 1) 

NAME 	 DATE 

I programmed my calculator to do the fol-
lowing: 

9 

 

 

1 
9 

2 

9 

3 

9 

4 

9 

5 

5 

7 

9 

What will my program output if I input 6 into the calculator? 	  
If I input 7 instead? 	 Or if I input 15? 	  

Which operations did you use to get these answers? 	  

Write a program that copies mine. 
Show your program in the right hand 
square. 

Is my program's output identical to yours? 	  

Use your program to complete the following table. 

10 
	

11 
	

15 
	

19 
	

27 
	

24.9 
	

136.5 
	

259.14 
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,cf 

NAME 

 

WORKSHEET 6 (Format 1) 

	 DATE 

 

    

Fill in the blanks in the following table. 

-10 -9.7 -7.8 -6.2 -5.3 -4.6 -0.7 0 1.3 12.4 
-9.5 -9.2 - 7.3 -5.7 

Can you program the calculator to do the work? 

Once you have done that show 
your program in the right hand 
square. 

Use your program to copy the previous table. Did you get the same num-
bers? 

Use your program to complete the following table. 

-20 	-14.7 	-13.8 	-12.3 	-10.8 	-9.6 	-0.5 
	

0 
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WORKSHEET 7 (Format 1) 

NAME 
	

DATE 

7  

I am making this table. 

Can you complete it? 

-15 -14.5 -12.4 -10.2 -5.8 -4.6 -0.9 0 1.3 15.4 

-16.5 -16 -13.9 -11.7 

The numbers in the previous table follow a rule. Can you state it? 	  

Can you program said rule in your calculator? 

Write it in the square once you 

have finished. 

Use your program to copy the previous table. Did you get the same numbers? 	 

Use your program to complete the following table. 

-20 
	 -13.8 	 -11183 	 -0.5 

-17.3 	 -11.9 	 -9.72 
	

10 
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WORKSHEET 8 (Format 1) 

NAME 
	

DATE 

I programmed my calculator to do the following: 10.5 
5.25 

7 

14.42 
7.21 

9 

15.3 
7.65 

9 

16.7 
8.35 

20.1 
10.05 

If the input is 6, what will my calculator output? 	  

If the input is 19.3, what will my calculator output? 	  

If the input is 56, what will my calculator output? 	  

If the input is 177, what will my calculator output? 	  

Explain your answers. 	  

Can you program the calculator to do the same thing? When you are finished write your 
program in the following space. 
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WORKSHEET 9 (Format 1) 

NAME 	 DATE 

I programmed my calculator to do the fol-
lowing: 

6 
9 

8 
12 

7 

14 
21 

15 
22.5 

18 
27 

What will my program output if I input 10 into the calculator? 	  

If I input 13.4 instead? 

 

Or if I input 15.6? 	  

 

Explain your answers. 

   

   

Can you program the calculator to do the same thing? When you are finished write your 
program in the following space. 

Use your program to complete the following table. 

20 
	

35 
	

44 
	

72 
33 
	

57 
	

75 
	

123 
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4 4.04 

6 6.06 

9 9.09 

10 10.1 

12 12.12 

15.5 

17.8 

19.2 

20.4 

50.2 

I am completing this table. Can you find 
the missing numbers? 

WORKSHEET 10 (Format 1) 

NAME 
	

DATE 

The numbers in the table above were found following certain rule. Which is this rule? 

Can you program the calcula-
tor using such rule? Write 
down your program on the 
right. 

Did your program produce the same numbers as the ones that appear in the table? 

Use your program to complete the following table. 

1 
	

3.1 
	

9 
	

32 
2.222 
	

4.343 
	

12.12 
	

38.784 
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WORKSHEET 11 (Format 1) 

NAME 
	

DATE 

I programmed my calculator to do the following: 9 

7 
23 

9 

9 
29 

9 

10 
32 

9 

12 
38 

9 

16 
50 

What will my program output if I input 11 into the calculator? 	  

If I input 13.4 instead? 	  

The calculator output 76. Which number did I input? 	 

Explain your answers. 

Can you program the calculator to do the same thing? When you are finished write your 
program in the following space. 

Use your program to complete the following table. 

1 
	

5.1 
	

9.4 
	

22 

17 
	

20.9 
	

33.5 
	

8:3 
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WORKSHEET 12 (Format 1) 

NAME 
	

DATE 

I programmed my calculator to do the follow-
ing: 

9 
7 

20 
9 

7.5 
21.5 

9 

8.2 
23.6 

9 

9 
26 

9 
9.6 

27.8 

What will my program output if I input 11 into the calculator? 
instead? 	Or if I input 15.6? 	  

 

If I input 12 

 

     

The calculator output 17.5. Which number did I input? 

Explain your answers. 

Can you program the calculator to do the same 
thing? When you are finished write your pro-
gram in the following space. 

Use your program to complete the following table. 

3 
	

5.1 
	

9.4 
	

22 
17 
	

15.2 
	

32.6 
	

80 
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9 

10 

9 

15 

9 

20 

9 

25 

9 

30 

2.5 

3.75 

4 

6.25 

7.5 

WORKSHEET 13 (Format 1) 

NAME 
	

DATE 

I programmed my calculator to do the follow-
ing: 

What will my program output if I input 56 into the calculator? 

The calculator output 87. Which number did I input? 

Explain your answers. 

Can you program the calculator to do the same 
thing? When you are finished write your program in 
the following space. 

Use your program to complete the following table. 

 

3 
	

5.1 
	

9.4 
	

22 
1 
	

1.65 
	

2.7 
	

8.75 
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9 

2 

9 

3 

9 

4 

9 

5 

5 

7.5 

10 

12.5 

WORKSHEET 14 (Format 1) 

NAME: 
	

DATE: 

I programmed my calculator 
to do the following: 

If the input is 6, what will my calculator output? 	  

If the input is 7, what will my calculator output? 	  

If the input is 55, what will my calculator output? 	  

Which operations did you use to get these answers? 	  

Can you program the calculator to do the same thing? When you are finished write your 
program in the following space. 

Use your program to complete the following table. 

3 
	

5.1 
	

9.4 
	

12.2 
8.5 
	

15.5 
	

23.5 
	

35 
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WORKSHEET 15 (Format 1) 

NAME 
	

DATE 

9 

0.15 

9 

0.015 

I programmed my cal-

culator to do this: 

0.27 

9 

0.3 

9 

1.5 

9 

2.03 

0.027 

0.03 

0.15 

0.203 

What will the calculator output if I input the number 10 	 

If the calculator outputs 37, what number did I input? 	 

Which operations did you use to make these predictions? 

Can you program the calculator to do that? Write 
your program in the this space. 

Use your program to complete the following table. 

3 5.1 9.4 12.2 

0.4 0.63 1.18 35 
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WORKSHEET 16 (Format 2)1  

GUESS MY PROGRAM 

Date 	  

Name of the programmer: 	  

Who is guessing? 	  

IMPORTANT: IF ITS YOUR TURN TO MAKE THE PROGRAM, YOU MUST 
WRITE IT DOWN. YOU MUST GIVE ONLY A FEW HINTS FOR GUESSING. 
WHEN YOUR PARTNER MAKES A GUESS, YOU MUST VERIFY IT. 

Clues for guessing: 

Input Output 
1 
3 
5 
8 
10 
20 

If you are guessing you must program your calculator. 
If your program works show it in the square below. 

How many times did you try to guess? 	 Did you need extra clues? 	 

If so, which ones? 

Worksheets 17 to 20 are identical to this worksheet. 
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9 

1 

9 

1.5 

9 

3 

9 

5 

4 

6 

12 

20 

WORKSHEET 21 (Format 3) 

NAME 
	

DATE 

1. I programmed my calculator to do the 

following: 

If the input is 7, what will my calculator output? 	  

What if I input 10 ? 

 

What happens if I input 70? 	  

 

Which operations did you use to make these predictions? 	  

2. Can you program the calculator to do the same thing? Test your program in your calcu-
lator once you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 
calculator and write it below. 

Can you program the calculator to do it in other different ways? Test them, if they work. 
write them below. 
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WORKSHEET 22 (Format 3) 

NAME 
	

DATE 

1. I programmed my calculator to do the following: 9  
2 

3 
9 

4 
6 

9 

8 
12 

9 

10 
15 

If the input is 5, what will my calculator output? 	  

What if I input 6 ? 	 What happens if I input 15? 	  

Which operations did you use to make these predictions? 	  

2. Can you program the calculator to do the same thing? Test your program in your calcu-
lator once you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 
calculator and write it below. 

4. Can you program the calculator to do it in other different ways? Test them, if they work, 
write them below. 
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9 

1 

9 

2 

9 

3 

9 

4 

.25 

0.5 

0.75 

1 

WORKSHEET 23 (Format 3) 

NAME 
	

DATE 

1. I programmed my calculator to do the following: 

If the input is 5, what will my calculator output? 	  

What if I input 6 ? 

 

What happens if I input 15? 	  

 

Which operations did you use to make these predictions? 

2. Can you program the calculator to do the same thing? Test your program in your calcu-
lator once you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 
calculator and write it below. 

4. Can you program the calculator to do it in other different ways? Test them, if they work. 
write them below. 
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WORKSHEET 24 (Format 3) 

NAME 
	

DATE 

1. I programmed my calculator to do the 

following: 

9 

-1 

9 

3 

9 

7.4 

9 

17 

-0.5 

1.5 

3.7 

8.5 

If the input is 5, what will my calculator output? 	  

What if I input 6 ? 	 What happens if I input 15? 	  

Which operations did you use to make these predictions? 	  

2. Can you program the calculator to do the same thing? Test your program in your calcu-
lator once you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 
calculator and write it below. 

4. Can you program the calculator to do it in other different ways? Test them, if they work, 
write them below. 
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I programmed my calculator 
to do the following: 

6 

9 

9 

9 

10 

18 

6 

9 

15 

27 

9 

4 

WORKSHEET 25 (Format 3) 

NAME 	 DATE 

If the input is 12, what will my calculator output? 	  

What if I input 20 ? 

 

What happens if I input 50? 	  

 

Can you program the calculator to do that? Test your program in your calculator once you 
have it. Write it below if it works. 

Can you program the calculator to do it in a different way? Test your program in your cal-
culator and write it below. 

Can you program the calculator to do it in other different ways? Test them, if they work, 
write them below. 
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9 

1 

9 

3 

9 

5 

9 

9 

6 

10 

14 

22 

WORKSHEET 26 (Format 3) 

NAME 	 DATE 

I programmed my calculator to do the following: 

If the input is 10, what will my calculator output? 	  

What if I input 20 ? 	 What happens if I input 50? 	  

2. Can you program the calculator to do that? Test your program in your calculator once 
you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 
calculator and write it below. 

4. Can you program the calculator to do it in other different ways? Test them, if they 
work, write them below. 
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lowing: 

WORKSHEET 27 (Format 3) 

NAME 
	

DATE 

1. I programmed my calculator to do the fol- 
9 

15 
15 

9 

16 
16 

9 

17 
17 

9 

18 
18 

If the input is 1, what will my calculator output? 	  

What if I input 2 ? 

 

What happens if I input 55? 	  

 

2. Can you program the calculator to do that? Test your program in your calculator once 
you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 
calculator and write it below. 

4. Can you program the calculator to do it in other different ways? Test them. if they 
work, write them below. 
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WORKSHEET 28 (Format 3) 

NAME 
	

DATE 

1. I programmed my calculator to do the 
following: 

9 

1 
1 

10.24 

25 

81 

9 

3.2 

9 

5 

9 

9 

If the input is 7, what will my calculator output? 	  

What if I input 10 ? 

 

What happens if I input 25? 	  

 

2. Can you program the calculator to do that? Test your program in your calculator once 
you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 
calculator and write it below. 

4. Can you program the calculator to do it in other different ways? Test them, if they 
work, write them below. 
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WORKSHEET 29 (Format 3) 

NAME 	 DATE 	  

I produced the following program: 

? —> N: 3.5 x N 

If the input is 8, what will my calculator output? 	  

What if I input 14 ? 	 What happens if I input 29? 	  

2. Can you program the calculator to do that? Test your program in your calculator once 

you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 

calculator and write it below. 

4. Can you program the calculator to do it in other different ways? Test them, if they 
work, write them below. 
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WORKSHEET 30 (Format 3) 

NAME 
	

DATE 

I produced the following program: 

? —> Z: 1.02. x Z 

If the input is 7, what will my calculator output? 	  

What if I input 10 ? 	 What happens if I input 26.7? 	  

2. Can you program the calculator to do that? Test your program in your calculator once 
you have it. Write it below if it works. 

3. Can you program the calculator to do it in a different way? Test your program in your 
calculator and write it below. 

4. Can you program the calculator to do it in other different ways? Test them, if they 
work, write them below. 
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9 

1.7 

2.4 

7 

3.1 

4.06 

9 

9 

5.2 

8.3 

7.6 

6.9 

5.94 

4.8 

WORKSHEET 31 (Format 4) 

NAME 	 DATE 	  

1. There is a roll of wire in my grandfather's hardware 

shop which is sold as it weights. 

I programmed the calculator in order to help him reg-

ister how much wire is left. If you input the amount of 

sold wire, the program outputs the amount of wire that 

is left. 

According to the table above, how many kilos of wire there are in a roll of wire? 

2. Can you program your calculator so that it produces the same thing as mine? Test 
your program in your calculator and write it below. 

3. Use your program to complete the following table 

2.83 
	

3.03 
	

3.5 
	

4.8 
5.01 
	

6.2 
	

7.04 
	

7.32 
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9  
1.3 

9 

2.5 

9 

3.8 

9 
4.4 

9 
5.9 

18.7 

17.5 

16.2 

15.6 

14.1 

WORKSHEET 32 (Format 4) 

NAME 	 DATE 

1. I programmed my calculator to do the following: 

If the input is 6, what will my calculator output? 	  

What if I input 7 ? 

 

What happens if I input 9? 	  

 

    

Which operations did you use to make these predictions? 	  

2. Can you program the calculator to do the same thing? When you are finished write 
your program in the following space. 

3. Use your program to complete the following table. 

2.83 
	

3.03 	- 3.5 	- 4.8 
5.01 
	

6.2 
	

27.04 
	

37.32 

4. What happens when you input a negative number? 	  
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WORKSHEET 33 (Format 4) 

NAME 	 DATE 	  

I have several pieces of wire, all them with a 
length of 16 cm. I want to cut them into two 
parts in different ways. Some possibilities are 
shown below. 

     

4 cm 	12 cm 11 cm 	5 cm 

3cm I 	13 cm 

  

 

9 crn 	7 cm 

14 cm 	2 cm 

6 cm 	10 cm 

1. Can you program the calculator so that if you input the length of one piece of wire 
the machine outputs the length of the other piece? 

Write your program down in the following space. 

2. Explain how did you reason to produce that program 	  

3. Use your program to complete the following table. 

1.7 
	

3.8 
	

6.8 
	

7.9 

12.8 
	

14.9 
	

15.6 
	

17.4 
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According to Figure 1 According to Figure 2 
Area of the base 
Height of the box 
Volume of the box 

WORKSHEET 34 (Format 4) 

NAME 
	

DATE 

I want to make a box with a square piece of card-
board. I can make the box by cutting squares off the 
corners and bending up the pieces that are left jutting 
out. 

The dimensions, the base and height of the box, are 
determined by the length of the sides of the squares I 
cut off. Figures 1 and 2 show two possible ways of 
making the box. 

Fig.1 

4 cm 

Fig. 2 

8 cm 

  

    

16 cm 

16 cm 

8cm I 

4 cm 

8cm 

18 cm 

1. 	How long is the side of my cardboard square? 	 What is its area? 
	 Write down the operations you used. 	  

2. 	Complete the following table: 

3. 	I would like a box with the biggest 
possible volume. Having only one 
cardboard, I can try only once. Can you 
program your calculator to find the 
volume of any box made like this? 

Write your program here. 

4. 	Use your program to find the desired 
base and height for a box with the big-
gest volume. Write the answers here. 

Base Height Volume 
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WORKSHEET 35 (Format 4) 

NAME 	 DATE 

1. I programmed my calculator to do the following: 

0 
2 

-1 
3 

-2 
4 

5 
-2 

If the input is 6, what will my calculator output? 	  

What if 1 input 7 ? 	 What happens if I input 9? 	  

What about if I input 17? 	  

How did you obtain these results? 	  

2. Can you program the calculator to do the same thing? When you are finished write 
your program in the following space. 
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WORKSHEET 36 (Format 4) 

NAME 
	

DATE 

1. I programmed my calculator to do the fol-
lowing: ? 

1 
4 

2 
9 

3 
14 

4 
19 

5 
24 

If the input is 6, what will my calculator output? 	  

What if I input 7 ? 

 

What happens if I input 9? 

 

  

What about if I input 17? 	  

How did you obtain these results? 

2. Can you program the calculator to do the same thing? When you are finished write 
your program in the following space. 
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WORKSHEET 37 (Format 4) 

NAME 	 DATE 	  

1. I made a program that produced the following: 

7 

1 
0.5 

-0.5 
3 

-1.5 
4 

-2.5 
5 

-3.5 

If the input is 6, what will my calculator output? 	  

What if I input 7 ? 	 What happens if I input 9? 	  

What about if I input 17? 	  

How did you obtain these results? 	  

2. Can you program the calculator to do the same thing? When you are finished write 
your program in the following space. 
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7 

1 

2 

3 

4 

5 

8.5 

6.5 

4.5 

2.5 

0.5 

WORKSHEET 38 (Format 4) 

NAME 
	

DATE 

1. Can you guess what program I made? It produced the 
following table 

If the input is 6, what will my calculator output? 	  

What if I input 7? 	 What happens if I input 9? 	  

What about if I input 17? 	  

How did you obtain these results? 	  

2. Can you program the calculator to do the same thing? When you are finished write 
your program in the following space. 
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7 

1 
0 

2 
0 

3 
0 

4 
0 

5 
0 

WORKSHEET 39 (Format 4) 

NAME 	 DATE 	  

1. I programmed my calculator to do the following: 

If the input is 6, what will my calculator output? 	  

What if I input 7 ? 

 

What happens if I input 9? 	  

  

What about if I input 17? 	  

How did you obtain these results? 	  

2. Can you program the calculator to do the same thing? When you are finished write 
your program in the following space. 
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WORKSHEET 40 (Format 4) 

NAME 
	

DATE 

1. I programmed my calculator to do the following: 

? 
1 

2 
-2 

3 
-3 

4 
-4 

5 
-5 

If the input is 6, what will my calculator output? 	  

What if I input 7 ? 	 What happens if I input 9? 	  

What about if I input 17? 	  

How did you obtain these results? 	  

2. Can you program the calculator to do the same thing? When you are finished write 
your program in the following space. 
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WORKSHEET 41 (Format 5) 

NAME: 	 DATE: 

I programmed my calculator 
to do the following: 

9 

10.4 

9 

16 

9 

19 

9 

23.5 

9 

37 

4.9 

10.5 

13.5 

18 

31.5 

1. Guess my program. Try your program on your calculator, if it works like mine 
write it below. 

2. Can you program your calculator to do the opposite of what my program does? It 
should output the number that the following table shows: 

4.9 10.5 13.5 18 31.5 

10.4 16 19 23.5 37 

If you could write a program that undoes mine. show it in the square below. 
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WORKSHEET 42 (Format 5) 

NAME: 
	

DATE: 

9 

11.4 
17.5 

17.5 

25.1 

29.2 

44.1 

56.1 

I programmed my calculator to do the following: 

9 

11.4 

9 

19 

9 

23.1 

9 

38 

9 

50 

1. Guess my program. Try your program on your calculator, if it works like mine 
write it below. 

2. Can you program your calculator to do the opposite of what my program does? It 
should output the number that the following table shows: 

17.5 25.1 29.2 44.1 31.5 
11.4 19 23.1 38 37 

If you could write a program that undoes mine, 
show it in the following space. 

3. Explain what you did to build a program that "undoes" mine. 
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WORKSHEET 43 (Format 5) 

NAME: 
	

DATE: 

      

      

9 

0.13 

9 

0.17 

9 

0.65 

9 

3.8 

9 

9.28 

0.26 

0.34 

1. Guess my program. Try your program on your calcula-
tor, if it works like mine write it below. 

1.3 

7.6 

18.56 

2. Can you program your calculator to do the opposite of what my program does? Try 
your program on your calculator, if it works write it below. 

3. Can you program your calculator to do the opposite of what the following program 

does? 
?—>M:Mx 3 

Try your program on your calcu-
lator, if it works write in the fol-
lowing space. 

4. Can you program your calculator to do the opposite of what the following program 
does? 

? -->N:Nx1.5 

Try your program on your calculator, 
if it works write in the following 
space. 

322 



WORKSHEET 44 (Format 5) 

NAME: 	 DATE: 

I programmed the calculator to do the fol-
lowing: 

9 
3 

5 

13 

19 

21 

29 

9 

7 

9 
10 

9 
11 

9 
15 

1. Guess my program. Try your program on your calculator, if it works like mine show 
it below. 

2. Can you program your calculator do the opposite of what my program does? It 
should output the number that the following table shows: 

5 13 19 21 29 

3 7 10 11 15 

If you could write a program that undoes 
mine, show it in the following space. 

3. Can you program your calculator to do the opposite of what the following program 
does? 

? ---> B : B x 3 + 1 
Try your program on your calculator, if it works write in the following space. 
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WORKSHEET 45(Format 5) 

NAME: 

  

	 DATE: 	 

I programmed the calculator to do 
the following: 

 

 

9 

  

 

2 

9 

5 

7 

9 

8 

9 

l0 

4 

25 

49 

64 

100 

1. Guess my program. Try your program on your calculator, 
if it works like mine show it in the following space. 

2. Can you program your calculator to do the opposite of what my program does? It 
should output the number that the following table shows: 

4 25 49 64 100 

2 5 7 8 10 

If you could write a program that undoes mine, 
show it in the following space. 

3. Produce programs that "undo" every program in the following list. Test the programs 
you made in the calculator, if they work show them in the spaces below. 

?—>A:Ax1.5+1 
? ---> K : 0.5 x K - 1 
?—>X:0.25xX+2 

4. Did you find a method for "undoing programs"? Explain what your method consists 
of. 
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WORKSHEET 46 (Format 6) 

NAME 	 DATE 

Look at the following shapes. 

L 	• • • 

1. Draw the next two shapes of the sequence in the space below. 

2. How many squares would be 
needed to draw shape number 17? 

3. How many squares would be 
needed to draw shape number 
100? 

   

      

4. Explain how you reasoned to answer question 2 and 3. 	  

5. Can you program your calculator to complete the following table? 

The shape's number in 
the sequence. 

Number of squares needed 
to draw it. 

48 
75 
123 

351 
411 
507 

Write your program here. 
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WORKSHEET 47 (Format 6) 

NAME 	 DATE 

Look at the following shapes. 

   

        

        

        

••• 

1. Draw the next two shapes of the sequence in the space below. 

2. How many squares would be 	3. How many squares would be needed 

	

needed to draw shape number 9? 	 to draw shape number 17? 

4. Explain how you reasoned to answer question 2 and 3. 	  

5. Can you program your calculator to complete the following table? 

The shape's number in 
the sequence. 

Number of squares needed 
to draw it. 

48 

75 

123 

427 

469 

601 

Write your program here.. 
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WORKSHEET 48 (Format 6) 

NAME 
	

DATE 

Look at the following shapes. 

• • • 

1. Draw the next two shapes of the sequence in the space below. 

2. How many squares would be 
needed to draw shape number 27? 

3. How many squares would be needed 
to draw shape number 40? 

      

      

4. Explain how you reasoned to answer question 2 and 3. 

5. Can you program your calculator to complete the following table? 

The shape's number in 
the sequence. 

Number of squares needed 
to draw it. 

48 
75 

123 
704 
772 
840 

Write your program here. 
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Width of the window 0.75 m 0.86 m 1.28 m 

Height of the window 3.51 m 4.23 m 

WORKSHEET 49 (Format 6) 

NAME 	 DATE 	  

WINDOWS 
In the sculptures parlour, of a certain gallery, windows have the following features: 

Their sizes vary, but, they all 
are three times as high as they 
are wide. 

1. 	Can you complete the table? 

2. 	The window's frames are wooden, their price per metre is $ 53.00. 

a) What is the price of the frame if the window is 1.5 metres tall? 	  

b) Which operations did you do to compute the cost? 	  

3. Can you write a program that gives you the frame's price for any of the windows in 
the gallery? Show your program below. 

4. Use your program to complete the following table. 

Width of the window 0.68 m 0.80 m 0.95 m 0.98 m 1.15 m 

Price of the frame $ $ $ $ $ $ 530 
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Cost $ 334.00 

Width of the window 0.35 m 0.65 m 0.84 m 1.20 m 

WORKSHEET 50 (Format 6) 

NAME 	 DATE 

MORE WINDOWS 
In the Modern Art Museum windows have the following features: 

Their sizes vary, but, but in all of 
them the height is 50 cm less than 
three times the width. 

1. Can you complete the following table? 

Ancho 
	

0.30 m 
	

0.45 m 
	

1.30 

Altura 
	

4.45 
	

6.55 m 

2. 	The window's frames are wooden, their price per metre is $ 62.00. 

a) What is the price of the frame if the window is 1.5 metres wide? 	  

b) Which operations did you do to compute the cost? 	  

3. 	Can you write a program that gives you the frame's price for any of the windows in the mu- 
seum? Show your program below. 

4. Use your program to complete the following table. 
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2. The tables are wooden, the 
price per square metre is 
$155.00. Can you program 
your calculator so that it allows 
to obtain the cost of the any of 
these tables? If you could show 
your program in the space be-
low. 

WORKSHEET 50 (Format 6) 

NAME 	 DATE 	  

SCALE MODELS 
An exposition of Scale Models is held in the Modern Art Museum in order to show different 
designs for the new airport. The scale models are located on special tables with the following 
characteristics. 

Their sizes vary but 
in all of them the 
length is one metre 
more than the 
width. 

1. Can you complete the following table? 

With of the 
table 

Length of 
the table 

1.40 metros 
2.55 metros 
3.45 metros 

2.75 metros 
6.5 metros 
4.4 metros 
8.3 metros 

3. Use your program to complete the following table. 

Width 1.20 m 1.70 m 1.85 m 
Cost $ 1413.00 $ 1692.00 $ 2157.6 
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WORKSHEET 52 (Format 6) 

NAME 
	

DATE 

A library and record store is making the following offer: 

15% OFF IN ALL OUR MERCHANDISE 
The discount will be taken off the ticket price at the counters. 

1. Complete the following table. 

Ticket price Amount discounted Discount price 
£ 34.00 
£ 18.75 

£ 126.80 
£ 28.50 

£ 150.00 
£ 72.35 
£ 29.40 

2. Can you program your calculator to do the following? 
If you input the ticket price, it should output the discount price. Write your program in 
the square below. 

1. Use your program to complete the following table. 

Ticket price Discount price 

£ 84.00 
£ 28.75 
£226.80 
£29.60 

£ 140.00 
£ 142.80 
£ 144.50 
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WORKSHEET 53 (Format 6) 

NAME 
	

DATE 

A stationary store is making the following offer: 

25% OFF IN ALL OUR MERCHANDISE 
The discount will be taken off the ticket price at the counters. 

1. 	Complete the following table. 

Ticket price Amount discounted Discount price 

E18.75 
£ 6.00 
£ 9.00 

£21.50 
£ 8.75 

£6.50 
£ 11.50 

2.  

3.  

a)  

b)  

Program your calculator to do the 
output the discount price. Write your 

Program your calculator thus: if you 
put the ticket price. Write your program: 

Use your programs to complete the 

following. If 
program: 

input the 

you input the ticket price, it should 

amount discounted, it should out- 

following tables. 

Amount discounted $ 15.40 $ 18.75 $ 8.90 $ 10.00 $ 14.35 

Discount price 

Amount discounted $ 11.70 $ 6.75 $ 8.90 $ 8.40 $ 9.60 

Ticket price 

332 



WORKSHEET 54 (Format 6) 

NAME 
	

DATE 

A real estate firm is selling lots 
with the following dimensions: 
A depth of 30 metres more than 
twice the front. 

    

 

 

////////1/4//////// 
Answer the following using these data. 

1. Mr. Perez needed 132 metres of barbed wire to fence his land. Give the dimensions of 
the plot he bought. 	  

2. Mrs. G6mez used 168 metres of barbed wire to fence her recently acquired plot. How 
long are its front and depth? 	  

3. Mrs. Rodriguez built a white fence 156 metres long around her lot. What are the dimen-
sions of said lot? 

4. Mr. Gonzalez bought a plot of land 76 metres wide. How many metres of barbed wire 
does he need if he intends to keep people out of it? 	  

5. Explain your reasoning about the previous questions. 

6. Did you program your calculator to solve the problems? Show your program if you did. 
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WORKSHEET 55 (Format 6) 

NAME 
	

DATE 

A man has a piece of land by a stream. He 
bought 100 metres of barbed wire to fence his 
land where it does not border the stream. 

STREAM 

LAND 

7. Can you program the calculator to complete 
the table faster? If you did so, show the pro-
gram below. 

Long 
side 

Short 
side 

Area 

50 

30 
60 

10 
70 

8 
65 

58 
55.5 

54.8 
53.4 
50.2 
49.7 

The man wants to use the stream as a border so 
that his 100 metres of barbed wire yield the big-
gest possible rectangular area. It depends on the 
size of the sides. 

1. Complete the right hand table. 

3. How long should the long and short sides 	Long side = 	 metres 
be to get the biggest area of land? 

Short side = 	 metres 

Area = 	 square metres. 
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INTERVIEW PROTOCOLS 



336 

INTERVIEW PROTOCOLS 

General issues 

♦ The researcher should encourage children to feel free of pressure. This was attempted by 

considering the following guidelines: 

• The interviewee must be told the purposes of the interview (for example, that these 

sessions were aimed at knowing better how the pupils were learning in order to im-

prove the teaching strategies during the course). 

• The interviewer should not take seat in front to but beside the interviewee. 

• The interview should start by asking questions about situations where the interviewee 

was successful during the previous classroom sessions. 

• All the pupils should be asked the same (or similar) questions and the interviewer 

must be alert so as to introduce new suitable questions in order to follow not expected 

situations that may surge from specific pupil's answers. 

♦ The interviews were task-based sessions and were carried out within the school schedule 

(out of the Mathematics class). The first and second interviews should last 50 minutes each 

(at most). In some cases, the third interview might take up to 90 minutes. 

• The interviews were given individually. 

♦ All interviews were video taped and transcribed. 

♦ The questions posed within each interview must clearly relate to the major aims of the 

study. As was stated in Chapter 1 these aims are the following. 

To investigate: 

1. The notions that pupils may develop for algebraic language when they meet it through 

using calculator code. 

2. The extent to which the use of the calculator language helps pupils cope with simplifying 

similar terms within linear expressions, inverting linear functions, and transforming a 

linear algebraic expression to obtain a target expression. 

3. The strategies that children may develop through working with the calculator. 

4. The extent to which the use of the calculator language as a means of expressing general 

rules governing number patterns, helps children grasp that the algebraic code can be used 

as a tool for coping with problem situations. 
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337 

FIRST INTERVIEW 

ISSUES 
	

QUESTIONS 
	

RELATED 
AIMS 

  

—71.1. You have produced a calculator program. What do the letter 7  1 and 3 
you used in such program mean to you? 

1.2. You had written the program Ax5+2, what would happened 
if someone else wrote Mx5÷2? 

1. The notions 
the child 
might have 
developed 
about letters 
and symbolic 
expressions. 

2. Child's use of±2.1. Can you program the calculator so that it first takes 1 away, I— 

 

1 and 3 
parentheses i 	then it multiplies the outcome by 3? 
and priority i If the child produced a wrong program (for example, A-1 x3), 
of operations. i he/she would be asked to mentally calculate the result when, for 

i example, A=2. Then he/she would be asked to run the program 
he/she had produced and explain why the program proceeds dif-
ferently. 

2.2. Explain how you come to use parentheses (this question was 
asked to those pupils who "spontaneously" came to see the 
need to use parentheses in Format 2. 

I wanted to type the program 3xB but I made a mistake and 
typed 4xB. Can you correct my program without deleting 
anything of what I have typed? 
I wanted to type the program 10xC but I made a mistake and 
typed 7xC. Can you correct my program without deleting 
anything of what I have typed? 
I wanted to type the program 10xC but I made a mistake and 
typed 4xC. Can you correct my program without deleting 
anything of what I have typed? 
Look at the programs in the following list. Which of them 
are equivalent programs? 

11xB-4xB 
(14-6)xB 
9xB-2xB 
6xB+1 
6xB+B 
6+IxB 

3. Child's 	T3.1. 
strategies for 
transforming 
linear func- 	3.2. 
tion rules. 

3.3. 

3.4. 

2 and 3 
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SECOND INTERVIEW 

QUESTIONS 

-1-1.1. Can you do something with 15xA so that it produces-1-  
the same as 2xA? 

1.2. Can you do something with 12xB+5xB-2xB so that 
it produces the same as 4xB? 

1.3. Can you do something with 10xA+5xA so that it 
produces the same as 18.3xA? 

1.4. Can you do something with 15xA so that it produces 
the same as 25xA? 

1.5. Can you do something with A3  so that it produces 
the same as A2? 

-hThis issue was implicitly observed when the children-h  
were sorting out tasks like 1.2. and 1.3 in the section 
above. 

Can you produce a program so that it "undoes" what-h  
• the program Ax2-1 does? 

3.2. Can you produce a program so that it "undoes" what 
the program A÷2+1 does? 

3.3. Can you produce a program so that it "undoes" what 
the program A-4x5 does? 

ISSUES 

1. Transforming 
an expression 
to obtain an-
other given ex-
pression. 

2. Simplifying 
linear expres-
sions. 

3. Inverting a 
given program 

RELATED 
AIMS 

2 and 3 

2 and 3 

2 and 3 
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THIRD INTERVIEW 

ISSUES 	 QUESTIONS 

1. 
algebraic ex-
pressions 
used to de-
note meas-
urements in 
diagrams. 

5 

 

  

RELATED 
AIMS  

- 1 and 3 	—r Interpreting 	1.1. Which information does this diagram give to you? 

C 	2 

1.2. Can you calculate the perimeter/area of this rectangle? 
The following questions were made when a pupil could not 
make sense of question 1.2. 

• Can you program the calculator so that it allows you to 
compute the perimeter of this rectangle? 

• Can you program the calculator so that it allows you to 
compute the area of this rectangle? 

1.2. Do the diagrams below provide any information? 

A 

A 

A 
	

5 

  

3 X A 

  

 

—72.1. Might the program A+2+A+5+A be written shorter? 

  

2. Simplifying 

 

2 and 3 
linear ex- 	i 2.2. Might the program Ax2+Ax3x2 be written shorter? 
pressions 	i 2.3. Might the program 3 xA+4xA+A be written shorter 

2.4. Might the program 2xA+3+Ax4+5 be written shorter? 
i  2.5. Might the program 2xA+3+Ax4+5 be written shorter? 

2.6. Might the program 3xB+5+4xB+2+Bx3 be written shorter? 
i 2.7. Might the program 7xM+4-2xM+6-1 be written shorter? 

2.8. A pupil from another class says that 3xA+2xB gives the 
same as 5xAxB. What do you think about this? 

3. Inverting lin-7-3.1. Can you type a program that makes the inverse as the pro- 
	r 2 and 3 

ear functions. gram: 
4xD +7xD 

If the pupil cannot make sense of this question he/she will be 
asked the following question: 
3.2. Can you "make shorter" the program ?—÷D: 4xD+7xD? 
3.3. If the pupil answer question 1.1, he/she will be asked to in-

vert the new program. 
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4. Problem 

situations in-

volving gen-

erality. 

4.1. Think of a number, add 10 to it and write down the result. 
Now take the number you thought of away from 10 and 
write down the result. Now add the first result to the second 
one ... May I try to guess the final result you got? It must be 
20. Would you like to try other numbers? Can you explain 
why you always come to 20? 

3 and 4 

4.2. A pupil from another class says that every time he sums two 
consecutive numbers he gets an odd number. What do you 
think about this? 

• The interviewee will be asked to justify his/her answer. 
• If the pupil tried to justify by means of specific examples 

he/she will be asked to program the calculator so that it allows 
him/her to face this question. 

• If the pupil can make a program describing the sum of two 
consecutive numbers, he/she will be asked to explain what the 
symbols he/she used mean and to try to "make shorter" that 
program. 

4.3. Look at the following sequence: 5, 9, 13, 17, 21, ... Will the 
number 877 appear if I continued writing, numbers down in 
such list? 

4.4. A pupil from another class says that (A+BY = A2+132. What 
do you think about this? 
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CHILDREN'S WORK: A SAMPLE 
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HOJA DE TRABAJO NUMERO 2 (Format° 1) 

NOMBRE  E. &in tot 71G ePAI/KB15-z- FECHA  44 	. 

? 
7 

14 

8 
16 

9 
18 

4 

15 
30 

9 

18 

36 

En mi calculadon escribi un programa que 
pace lo siguiente: 

1. 4Que resultado me va a dar la calculadora si esmibo en mi programa el limner° 57 	 

si wax) el niunero 25?  V, 	,Si escril)o el 'inner° 177 	  

i,Que operation's hiciste para obt= resultados 
vi.cw.e.ro .9( se  

2. Ruedes programar tu calcultulora para que Naga Io mismo? Esaibe tu pro 
cuadro de abajo. 

3. Usa el programa que hitiste para encontrar los numeros que litlian en la table. 

25 37.03 59.83 117.18 136.1 200.79 215. g 32.k,,o3.  
s-c) 1-1.CG ir9-6,‘,, zzq.z.G, 21Z- 2. LitY.95 551  653.38  

br" 

ku5' 
6?-4  

1A6 Si  
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FECHA  t 1 —54 "IR 

En mi calculadora escribi un programa que 
hace lo siguiente: 

2. 4Puedes programar to calculadora para gue haga lo mismo? Escribe tuyrograma en el 
cuadro de abajo. 

3. Usa el programa que hiciste para encontrar los atmeros que faltan en 

25 37.03 59.83 117.18 136.1 200.7 1 I OZ_ ' 	, 	' 
bo 4-.06 74' itcl..‘c z3L ,C z. 	-2_-z -o 1  . 55 . 

HOJA DE TRABAJO NUMERO 2 (Format° 1) 

NOMBRE 14e-c.- 

7 
14 

8 
16 

9 

9 
18 

9 

15 
30 

18 

36 

1. 4,Que resultado me va a dar la calculadora si escribo en mi programa el anneto 5? t 

Y si escribo el runner° 25?  50 	L,Si escribo et nitmero 17?  2' fi  

4,Que operaciones hiciste para obtener mos resultados 	C..  
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En mi calculadora escribt ust programa 
que Bate to siguiente: 

auedes programar to calculadora pans que hap lo 'limo? Escr, tu programa en el 
cuadro de abajo. 	 - L.Y. (2' ,  4 ft:LA.-1C. 1"" 

Ei 144 0.-Y 0,3-  

LA. 4 ir 6-111--e. Usa el programa que biciste pan compIetar la al 	lade 

A.4.111. -ate 	 ArgigUllir 

Olpfr afir" 	; 
Ce<A44 

/-0,1 e1/4_ 
•CO 

HOJA DE TRABAJO NUMERO 4 (Formato 1) 

NOMBRE 	 Wit 3=2.- IECHA  /4.fk 4 

1.1 

2.5 

3/ 

6 

3 
7 

4.3 
9.6 

5 
11 

4Qui resuhado me va a dar it calculadora si escribo en mi programa el /tumor° 50?  ko  
Y si =sib° el niuntro 81?  KZ 	4S1 escriboel- 	• 4?  6-41Ck  

4Qui operaclones hiciste para ohtener 
■•• 
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programa en 

NOMBRE 

1.1 
3.2 

2.5 
6 

3 

4.3 
9.6 

5 
11 

FECHA  rt7.-• Pt \or;  

En nil ealeuladuraescribi un programa 
qua betel° signiente: 

HOJA DE TRABAJO NUMERO 4 (Forrnato 1) 

Loud resulted° me va a dar la cal uladorall moil* on Jill mgcama el ninnero 50?  101  

Y si estribo el unarm 81?  t 4_1.2) 	eteribo minter* 274? 

/Quo operaciones hieiste part obtecer 
4.13  

rAck  

jPuedes programer to calmladora Pars que haga lo - mismo 
cuadro de abajo. 

-e—t›Dtc) 
Usa el programa que hicist Para completer 	tabla. 

2.8/ 14 / 50 81 j 27:67(izof . 
f
5 7CI 1:1 

C., 	'2 7 it,  325 420 
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NOMBRE hcrtico 

1.1 
3.2 

2.5 
6 

3 
7 

4.3 
9.6 

5 
11 

FECHA 

En mi cakdadora esertli un programa 
que hace to siguiente: 

Y si escriho el duller° 81? 	c;,3  

4Que operaciones hiciste pars obtener 
tony  

HOIA DE TRABAJO NUMERO 4 (Fornuno 1) 

rIZOW resultado me va a dar la calculadora si ascribe en mi programa el 	50?  t 01  

mimero 274?  5451  

nrAkT cCt( irk  

euedes programer to calcuLadora pars que Naga b • 	Escrtle to programa est el 

%1'6  

cuadro de abajo. 

Usa el programa que hiciste pars completar la siguiente tabla. 

1.3 
	

2.8 
	

14 
	

50 
	

81 
3. 6 

-.715 P,T)14.A*‘ 
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3.2 

En mi calculadora escribi un programa 
que hace lo siguiente: 

  

2.5 

4.3 

5 

6 

7 

9.6 

11 

LQue resultado me va a dar la calculadora si escribo en mi programa el numero 50?  0  

Y si escribo el minter° 81? \-)3 escribo el namero 274? /\  

   

LQue operaciones hiciste para obtener esos resultados? 
nu rr\Ct 0 y\r,CN flr\  

I,Puedes programar tu calculadora para que hags lo mismo? Escribe tu programa en e 
cuadro de abajo. 

  

Usa el programa que hiciste para completar la siguiente tabla. 

1.3 2.8 14 50 81 274 	ta, ‘Cci.,(:) 

1 6 (0 .(o 2q L.C... l(9 X19ci 	325 420 	. 

HOJA DE TRABAJO NUMERO 4 (Formato 1) 

NOMBRE  r'ClOi \k in 
	

FECHA  /  
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4Puectes programar tu calculadora para que haga el trabajo de cornpletar la table. 

Una vez que lo hayas hecho 
ascribe tu programa en d 
cuadro de la defect= 

  

  

   

Usa el programa qua hiciste pare obtener los n6meros que se nmestran en la tabla tenor. 
Rudiste obtener los misrnos nUmeros? 

Compteta la siguiente tabla usando d programa que 

-20 - -14.7 -13.8 -12.3 -10.8 -9.6 -0.5 0 
_-1q .5 -lwa .-11. -44,2 -49-1 -̀1•1 0 0.S 

HOJA DE TRABAJO NUMERO 6 (Forrnato 1) 

NOMBRE  Alio _cti In 0-) fiti Ando •  FECHA  1//c/C2C./  

Escribe en la tabla los nitmeros que faltan 

-10 -9.7 -7.8 -6.2 -5.3 -4.6 -0.7 0 1.3 12.4 
-9.5 -9.2 -7,3 -5.7 _- LIS __---4,,t _ --0„-->  €1,4 4,2 AI , q 

Es-te 	Yd Gerct)A4K. vt-0 

tirm 

u Viz 6.46 	
ev 

VIA ,D 	
6\-( 	dre al-e 

Yote, 	
eigiqr& 11/3  CA 0 r0 (4. 
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HOJA DS TRABA/0 NOMA° 7 (Forstato 1) 

NOMBRE  S Q S4  \-4)  f  1 S 4 ell t:"Ifik"  	FECHA  /  

  

Estoy haciendo esta tabla. tPuedes obtener los 
numetos que faltan? 

-15 -14.5 -12.4 -10.2 -5.8 -4.6 -0.94  0 (1.3 	15.4 
-16.5 -16 -13.9 -11.7 —1 3 —61 1  -7,1 -itr 	-.2 	-13,41 

Los ntimeros que aparecen en la tabla anterior se obtuvieron siguiendo una regla. ',CIA! es 
esa regla? 	̂ ,5  

i,Puedes programar tu calculadora usando esa regla?. 

Una vez que to hayas hecho 
escribe tu programa en el 
cuadro de la derecha 

Usa el programa que hiciste para obtener los Mimeros que aparecen en la tabla. LTu 
programa produce los mismos mimeros? 	  

Completa la siguiente 	la usando el pro 	a que hiciste. 

-20 -13.8 "';k -10.83 	—1,1:4 -0.5 11g.  7:1 

-11,c 	-17.3 -I 5. -11.9 -17:57.,.; 	-9.72 'V 10 
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Usa el programa que hiciste para obtener los niimeros que aparecen en la tabla. LTu 	s 
programa produce los mismos nUmeros? 	  

Completa la siguien tabla usando el programa que hiciste,,/ 
+10  

2e  
-20 

-17.3 
-13.8 -10.83 -0.5 /  

/11.9 ISI 5  -12.33 &22 
-9.72 

11.5 
10 

HOJA DE TRABAJO NUMERO 7 (Forman) 1) 

NOMBRE  nC(ta kiCt 
	

FECH  t5  

 

Estoy haciendo est* labia. i,Puedes obtener los 
numeros que &Ito? 

 

-15 -14.5 -12.4 -10.2 -5.8 -4.6 -0.9 0 1.3 15.4 
-16.5 -16 -13.9 -11.7 - 7, 1 — 	1 - LI _ 1..7 _ — 0,2 15,,e4 

Los ntimeros que aparecen en la tabla anterior se obtuvieron siguiendo una resit LCuil es 
esa regla? 	jrrtf  

i,Puecles programar tu calculadora usando esa regla?. 

Una vez que lo hayas hecho 
escribe tu programa en el 
cuadro de la derecha 

7D: 
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ju programa produce les mi s numeros que aparecen en In tabla?  '5/  

19.2. 

20.4 

50.2 

Los mimeros que apareeett en la tabla anterior se 
esa regla7 	inu 1 ;-k I  

iyuedes progsamar to 
catculadora usando Oa regla7 
Escribe to programa en el 
cuadro de la demobs 

4 4.04 

6 6.06 

9 9.09 

10 10.1 

12 12.12 

15.5 

17.8 

Pstoy completando esta tabla. i,Puedes 
encootrar los ntuneros que me faltan? 

1 32 
12.12 38.784 

Usa el programa e para coal • ar aguiente tabla_ 

HOJA DE TRABAJO NUMERO 10 Tomato 

NOMBRE 	te, ts noi fk/C1 
	
FECTIA  "fr-ses4-ci4.  
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Si escribo d dimes 10 Nue rimer° va a dar como resultado la calculadora? 	 

Si escribo d niunero 12, Nue tinmero va a dar como resultado la calculadora? 	 

La calculadora me dio como resultado 1/.5. iCuil numero It omo entrada? 314.  

Explica cow obtuviste esos resultados 

tPuedes programar tu calculadora para que haga to 
mismo? Una vez que to hayas hecho ascribe tu 
programa en el cuadro la derecha. 

Usa el programa 	hiciste para co pletar 

HOJA DE TRABAJO MEW 12 (Formai° 1) 

NOMBRE 	'4  a.‘, k4:0,,,rrff 1{11. H<   FECHA 344.411 

En mi calculadora escribi un programa qua hate 
lo siguiestc 
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2 

3 

4 

5 

5 

7.5 

10 

12.5 

i,Puedes programar tu calculadora para que haga lo 
mismo? Una vez que lo hayas hecho escribe tu 
programa en el cuadro de la derecha. 

Usa el programa que hiciste para completar la siguiente tabla. 

HOJA DE TRABAJO NUMERO 14 (Format° 1) 

NOMBRE  01,A6 ZIAICINSt< SArjilt 4+)(AFECHA  I 1°4-1/1"  
• 

En mi calculadora escnbi un programa que hue to 
siguiente: 

Si escribo el niunero 6 Lque minter° va a dar como resultado la calculadora? 

Si escribo el ntimero 7, Lque nnmero va a dar como resultado la calculadora? 

Si escribo el nnmero 55, Lque nnmero va a dar como resultado la calculadora? 

i,Que operaciones hiciste para obtener esos resultados?  1l014:1 i Pt 	2 
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HOJA DE TRABAJO NUMERO 15 (Format° 1) 

NOMBRE ra?..c.i,c, 	\-401cAV•it, 	 FECHA 

En mi calculadora escribi un programa que pace lo 
siguiente: 

0.15 
0.015 

0.27 
0.027 

0.3 
0.03 

1.5 
0.15 

2.03 
0.203 

zer  Si escribo el dller° 10 Lque nUmero va a dar como resultado la calculadora?  C ,  

La calculadora me dio como resultado 37, Lque nu o le di como entrada? 

LQue operaciones hiciste pa obtener esos 	11.2d 	  

c \('
r  

fl 

iyuedes programar tu calculadora para que hags 
lo mismo? Una vez que 1. hayas hecho escribe tu 
programa en el cuadr. se la derecha. 

  

Usa el pro 

 

e hiciste para 

 

mpletar siguiente tabla. tl  "1 	. 1. • 

 

  

1111111/AMMIIIEDFAMILMI 9 .4  

WM Mil 0.63 MA 1.18 Imam= 0.4 
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HOJA DE TRABAJO NUMERO 16 (Format° 2) 

ADIVINA MI PROGRAMA 

A l 

Nombre del que invento el programa: 	Ckr7cAro  

Nombre del que adivino el programa:  jektrly 	T  

IMPORTANTE: EL QUE INVENTA EL PROGRAMA NO DEBE BSCRIBIRLO, 
SOLO DEBE DAR ALGUNAS PISTAS PARA QUE SU COIIIPAAERO (A) LO 
ADIVINE. CUANDO SU COMPA/■TERO (A) PROPONGA UN PRORA1VIA, EL QUE 
LO INVENTO DEBE CHECAR SI ADIVINO CORRECTAMENTE. 

Pistas para adivinar el programa: 

Milner() de entrada NUmero de salida 
1 '1 . 
3 LI, 
5 q ,- 
8 ri.- , 
10 le.) . 
20 '-zila. 

El que esti adivinando el programa debe escribirlo en su calculadora y si su 
programa funciona bien debe anotarlo en el siguiente cuadro. 

A:A ><3 -+Z 

LCuantos intentos hiciste para adivinar el programa? 

LNecesitaste que to dieran más pistas? i,Cuales? 

Fecha 7_0 

ha  
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HOJA DE TRABAJO NUMERO 17 (Formato 2) 

ADIVINA MT PROGRAMA 

Fecha 2 9y  

 

   

Nombre del que invento el programa: 	4:4G Zii L41
J 

Q J h 

Nombre del que adivino el programa:  tl-_,cp Lis z 	71---uj ara Ko 

IMPORTANTE: EL QUE 1NVENTA EL PROGRAMA NO DEBE ESCRIBIRLO, 
SOLO DEBE DAR ALGUNAS PISTAS PARA QUE SU COMPARERO (A) LO 
ADIVINE. CUANDO SU COMPA/ZIERO (A) PROPONGA UN PR9GRAMA, EL QUE 
LO INVENTO DEBE CHECAR SI ADIVINO CORRECTAMENTA 

Pistas para adivinar el programa: 

NUmero de entrada NUmero de salida 
1 q, 
3 2 7y   

5  5 

8 1: f 
10 
20 47 

El que esti adivinando el program-a debe escribirlo en su calculadora y si su 
programa funciona bien debe anotarlo en el siguiente cuadro. 

LA x 

Suantos intentos hiciste para adivinar el programa? 	 

LNecesitaste que to dieran mas pistas? Saes? 	3 	Citi(19  
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20 WL- 

Niimero de entrada Numero de salida 
1 
3 

23  5 
8 
10 

HOJA DE TRABA10 NUMERO 17 (Formato 2) 

ADIVINA MI PROGRAMA 

Fecha  "O/A/3P i 1./ 4Li  

Nombre del que invento el programa:  Cow; 	Ot,vg/611  

Nombre del que adivin6 el programa: Elo,c_islut.atai 

IMPORTANTE: EL QUE INVENTA EL PROGRAMA NO DEBE ESCRIBIRLO, 
SOLO DEBE DAR ALGUNAS PISTAS PARA QUE SU COMPAIZIERO (A) LO 
ADIVINE. CUANDO SU COMPARERO (A) PROPONGA UN P 	EL QUE 
LO INVENT() DEBE CHECAR SI ADIVINO CORRECT 	. 

Pistas para adivinar el programs: 

AO. 

El que esti adivinando el programa debe escribirlo en su cakuladora y si su 
programs funciona bien debe anotarlo en el siguiente cuadro. 

El% s 
Suantos intentos hiciste para adivinar el programa? 

tNecesitaste que to dieran mas pistas? i,Cuales? •31 
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HOJA DE TRABAJO NUMERO 17 (Focmato 2) 

ADIVINA MI PROGRAMA 

Fecha  70 (1 I clq  

Nombre del que invento el programa: 	e ( 	en  fiery,  P- 

Nombre del que adivin6 el programa: 	0420-gfr,  —3", (Lori, uez  

IMPORTANTE: EL QUE INVENTA EL PROGRAMA NO DEBE ESCRIBIRLO, 
SOLO DEBE DAR ALGUNAS PISTAS PARA QUE SU COMPARERO (A) LO 
ADIVINE. CUANDO SU COMPA/ZIERO (A) PROPONGA UN P R1MA, EL QUE 
LO INVENT° DEBE CHECAR SI ADIVINO CORRECT 

Pistas para adivinar el programa: 

Namero de entrada Niunero de salida 
1 4- 
3 I,. 	,,j 
5 i _ B 
8 2..y 

1 0 2,, 93 
20 -1.  8 

El que esti adivinando el programa debe escribirlo en su calculadora y si su 
programa funciona bien debe anotarlo en el siguiente cuadro. 

,,\11) 	'27  

LCuantos intentos hiciste para adivinar el programa? 

i,Necesitaste que to dieran mas pistas? i,Cuales? 
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\S" 

Y si escribo el nUmero 10? 	4/0 	tSi escribo el nUmero 70? °I\ 

4Que operaciones hiciste para obtener esos resultados? 	.0-Nv 1, C 

HOJA DE TRABAJO NUN= 21 (Panto 3) 

No 

En mi calculadora escribi un 
programa que hate lo siguiente: 

(.
) 

FECHA z5 61(11 

4 

1.5 
6 

3 
.12 

9 

5 
20 

NOMBRE AN•■.C1  

Si escribo el dimero 7, Lque namero va a dar como resultado la calculadora?  a  R  

2. LPuedes programar to calculadora 	que haga lo mismo? Un ez que lo hayas hecho 
escribe el programa que hiciste en el cuadro de abajo. 

3. 4Puedes escribir otro programa que haga lo mismo? Una 
escribelo en el cuadro de abajo. 

vez que to hay hecho 

tr 

4. LPuedes encontrar otros prograti--as-riistirtferrqui6—g-an lo mismo? Escn'belos abajo. 
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:L-74 

-;4 ()At( 	 07L, 

HOU DE TRABAJO WIG= 21 (Formato 3) 

NOMBRE GCOraS I na 

En mi calculadora mai us 
programa que hate to siguiate: 

r1D 	~ FECI1A ("1/ 

4 
7 
1.5 

6 

3 
-12 

5 
20 

Si escribo el numero 7, t quo rimer° va a dar como resultado la culadora? 	 

Y si escribo el nitmero 10? 	0 	t Si escribo e 	o 70?  AWO  

i,Que operaciones hiciste para obtener esos resultados?  nnu I -ti 

 

 

2. suedes programar to calculadora paia que haga to mismo? Una v 	e to hayas hecho 
escribe el programa que hiciste en el cuadro de abajo. 

3. suedes escribir otro programa que haga to mismo? Una vez q o hayas hecho 
escribelo en el cuadro de abajo. 

---- 
4. tPuedes encontrar otros programas distintos que hagan to mismo? Escribetos abajo. 
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distintos que hagan mi 	Escribelos abajo. 5. euerles encontrar otos progr 

HOJA DE TRABAJO NUMERO 21 (Format° 3) 

NOMBRE 41Vqi FFEcHAt  fp,  

    

En mi calculadora escribi un 
programa que hace to siguiente: 

Si escribo el niunero 7, Lque numero va a dar como resultado la calculadora?  Z 8  

Y si escribo el namero 10?  4o 	LSi escribo el duller° 70?  1/..-ip 

LQue operaciones hiciste para obtener esos resultados? 	  

2. iyuedes programar to calculadora pare que haga lo mismo 
escribe el programa que hiciste en el cuadro de abajo. 

 

vez que lo hayas hecho 

   

   

    

3. 4Puedes esaibir otro programa que haga to mismo? Una vez e lo hayas hecho 
escn'belo en el cuadro de abajo. 
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0 

En mi calculadora escal un 
programa que hate lo siguiente: 

1 
4 

1.5 
6 

3 

t 	12 

20 

Si escribo el numero 7, ',qui rimer° va a dar como resultado la calculadora? 

Y si escribo el framer° 10?  (.(0 	LSi escribo el flamer° 70 

-1/4) \73rCx3 
4. iyuedes encontrar otros progr 	distintos que pagan lo mismo? Escn'belos abajo. 

\(-\X3'61 

C.:  5f 0_ 	MAA4 

no to 
ExRci.\ L 

HOJA DE TRABAJO NUMERO 21 (Format° 3) 

NOMBRE  1,1,k. ZcA Cca q t 	FECHA  2.5/6y 4/1 

LQue operaciones hiciste para obtener esos resultados?  nit )1.1-ipyttkic 0061 (../  

2. euedes programar to calculadora pea que haga lo mismo? • na vez que lo hayas hecho 
escribe d programa que hiciste en el cuadro de abajo. 

3. LPuedes escribir otro programa que hags lo mismo? Una vyjue lo hayas hecho 
escn'belo en el cuadro de abajo. 
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En mi calculadora escribi un programs que hate 10 
siguiente: 

2 

4 

10 

6 

12 

15 

N encalo el nomero 5, tqui niunero va a du CCM 	• la calculadora? 

0,w 
HOJA DE TRABAJO NUMERO 22 ormato 3 

NOMBRE  1:c.:k pe. 	0 	FECHA 	  

Y si escribo d !inner° 6? 	q 	 el minter° 15?  PZ./  

LQui operaciones hiciste para obtener esos resultados? 	  

2. euedes programar to calculadora para que hags lo mismo? Una vez que lo hayas becho 
pruibalo en to calculadora y si funcionrescribelo en el cuadro de abajo. 

8;9 X3 :"Z 

3. i,Puedes =n1* otro programa que hags lo 
limcions escribelo en el cuadro de abajo. 

to calculadora y si 

4. i,Puedes encontrar 	programas distintos que hagan lo misino? Pruebalos en to 
calculadora y 	escrfbelos abajo. 
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2. euedes programer tu caladadom part que hogs lo mimeo? Si tu 
eseribelo at el cuadro de tab*. 

's)  

HOJA DE TRABAJO NUMERO 26 (Formate  3) 

NOMBRE 	 FEctutuliik-A 
Erred ealculedora esmiti me programa que haat lo 
aiguieele: 

Si eacsixt el ammo 10, tque 	vs a der woo resultado Is calculadora?  7g  
4,Y si amnia) el nansero 20? 	UL-{ 	i,Si maim el litesero 50? 	011 
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En mi calculadora escribi un programa que hace lo 
siguiente: 

HOJA DE TRABAJO NUMERO 32 (Formato 4) 

p  NOMBRE  Erw-icit Pei- IvRe.  	FECHA  1(0—tilesr,—  

1.3 
18.7 

7 
2.5 

17.5 

3.8 
-16.2 

4.4 
15.6 

5.9 
14.1 

Si escribo el niimero 6 Lque nimero va a dar como resultado la calculadora?  IL/  

LY si escribo el numero 7? 	1  LSi escribo el mimero 9? 

 

  

4Que operaciones hkciste p obtenr eL47os rereltados? 	Z,C) 	A  
re,s4e5 ID .  

2. ,Puedes programar tu calculadora para que haga lo mismo? Una vez qu 	hayas hecho 
escribe tu programa en el cuadro de abajo. 

7-1>0 10+10-D 

3. Usa tu programa para completar la siguiente tabla. 

2.83 3.03 -3.5 -4.8 -75,0 i -74 . 7_ 
ii,. 41 [k,..11 2.3.-5 ?LI_ b 5.01 6.2 

44"1.04yei., n. 
27.04 	37.32 

4. 4Que ocurre Fuando introduFes como entrada a tu programa un num negativo? 
ren%  
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En mi calculadora escribi tut programa qua Ince lo 
siguiente: 

1.3 

2.5 

3.8 

4.4 

5.9 

18.7 

17.5 

16.2 

15.6 

14.1 

27.04 	,32 

4. LcQuej\  ocurre,) pcuandoz  UN:deuces como4d; a topror1/474,136111Cr0 	7 

l-5. - 3.5 2.83 	3.03  
ic,-94 

- 4.8 
s  6.2 

lq•  
5.01 

}MADE TRABAJO NUMERO 32 (Formai° 4) 

NOMBRE  1-‘kOCk10 P 	 fi;\1rEeliA 

ET L 	C i v Af etEIV 
• 
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5. Usa el programa que hide para completar la siguiente ta 

1.7 Ae3. '8 yte .6aq ie -,2)," 7.9 ' b9.  

ILL x 	12.8 .7, 14.9 	n  7 15 	'8,0  ,I .1,.?.1 

HOJA DE TRABAJO NUMERO 33 (Format° 4) 

Cr. 

NOMBRE 	 FECHA  6,-  

Tengo varios trozos de abunbre, todos miden 16 
cm. de largo. Los quiero cortar en dos partes de 
dsitintas maneras. En Is siguiente figura se 
muestran algunas posibilidades: 

4 cm I  12 cm 11 cm 	5 cm 

3 cm 	13 cm 

  

9 cm 	7 cm 

 

      

14 cm 	2 cm 

6 cm 	10 cm 

1. i,Puedes programar tu calculadora de manera que si le das la 	da de una de las 
partes to de como resultado la medida de la otra parte? 

Escribe el programa que hiciste en el 	ro de abajo. 

2. Describe aim razonaste para consTruir tu 
programa. GA---,,4 12n n.Orke_ro 

 

.e...ozz fix 	[4(1(kko 
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HOJA DE TRABAJO NUMERO 34 (Formato 4) 

NOMBRE 	 FECHA 	  

Tengo una pieza cuadrada de cart& y quiero =la 
para !racer una caja. Si recorto cuadrados ea cada 
esquina de Ia pieza de carton y luego doblo hacia ant* 
fonnare Ia caja que quiero. 

El tunsuio de los lados de los cuadrados que =orb 
deteminan mato va a medir la base de la caja y 
tambitn mint° va a medir su altura. Las figura' 1 y 2 
muestran dos posibles forma: para armar la caja. 

Firs 1 	 Firs 

4aa 	
tan 

 

   

16a6 

1 4  " 

iml 

  

16cm tan 

1. tCuanto made por l4do la 	cuadrada de carton que taw ? 
ribe las operaciones que hiciste. 

2. Completa la siguiente tabla: 

De acuerdo con la Figural De ac 	con la figura 2 ,- 
Area de la base 17S 6 kA 

Altura de Ia caja  , ._.-' .e 
Volumen de la aria J__(')Z4 C Ili I,  '' 	̀,./C 1 f) 	, IY1L  

3. Quisiera formar una caja de manera que tenga el 	or volumen posibk. 
esta pieza de carton solamente puedo hacer 	tento. LPuedes p 
para obtener el volumen de cualquier caja que forme cortando 
Escribe tu programa en el cuadro de abajo. 

1.

4. Usa tu programa para obtener cuanto deben medir el lado de la base y altura de la caja Ora 

Volumen maxim° Apron por defecto Apron. por exceso 
Lado de la base 

13 . S 23 7_9 
Altura de la caja 

, 1_ S 
, s 6 

es su area? 

calculadora 
en las estrinis? ; 

obtener un volumen maximo. Escribe las medidas que encontraste en el cuadro de abajo. 
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NOM DE TRABAJO NUMERO 34 (Formato 4) 

NOMBRE 	e 	FECHA  A
l  VT  

I 

Tengo una pieza cuadrada de carton y quiero usarla 
para baccr una caja. Si recorto cuadrados ea sada 
esquina de la pieza de carton y luego doblo hacia arriba 
forrnare La caja que quiero. 

El tarmac de los lados de los cuadrados que =ore 
determinan cuiutto va a medic la base de is caja y 
tambien cuanoa va a medir 311 altars. Las figures 1 y 2 
muestran dos posibles formas para anew la caja. 

No." 	 maims 

	

4cm 	 Scot  

1 8 a4  

• 7 
16cm 
	

Sem 

1. 4Cusinto mide por ladg la pieza cuadrada de carton que tengo ? 
'Abe las operaciones que hiciste. 

2. Completa la siguiente table 

De acuerdo con la )figura 1/ 
Area de la base /t- 1 .  4 7 	, 

De acujrdo email figura ,2 

Altura de Is cab' L / t:* 2 Y  
Volume's de la caja ,11,1-‘ .../K7-  / , 	it z 

/ 
3. Quisiera formar una caja de manera quo temp el mayor volumen posible. Cool solo 

esta pieza de carton solamente puedo hater un intento. tPuedes p 	calcu 
para obtener el volumen de cualquier caja que forme cortando 	las 	u 	:---- 
Escribe to programa en el cuadro de abajo. 

4. Usa to programa para obtatei cuanto dcben medir el lado de la 	y Aura de la caja para 
obtener un volurocn maxim°. Escribe las medidas que 

Volumes miximo Aprox. por defecto Aprox. ion,- exceso 
Lade de is base 

\ b—  I 4 6,L't 
Altura de la caja 

4,01 rD, 	ct5-  . 

16 an 

es su area? 
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HOIA DE TRABAIO NUMERO 34 (Formato 

NOMBRE VV1 -5CVLA t 7 EV-Pr- 	FECHA 	 

Tango una pima cuadrada de carton y quisro nada 
para !racer una caja. Si recorto cuadradoi en cads 
cumin& de la pizza de cart& y luego doblo hacia grata 
formlue la caia quo quiero. 

El tamailo de los kdos de los cuadados qoe react° 
&Annan' an canto va a medir la base de la ayp y 
tambida cuanto va a medic so altura. Las figtkas 1 y 2 
mast:tan dos posibla tarmac para sonar la cap. 

NM 1 	 14•a 2 
I MI 

*■•■• 

16 cra 

ole.•••••■ 

tam 

1. teuissio 	 pieta meek* earak gift 
es su area? 74  Exalts las operations qua 

2. Completa la siguieate 

De guard* amiallittnra 1 Ek 	am la rem 2 
Area de la base -2. , 

Ahura de la ads 
t 

Veltman (le la rale k 0 	k c (11,-,t?  , 	_ ow) I 	L. r ,,,,n11 

3. Quisiera format tam caja de num qua tenge. el mayor velomea posible.Corno 	tago 
eats pima de carton solamente puedo hear on imam 4Puedea programs to 	laden 
para obtainer el volumea de cualquier 	qua *cane 	coadrados en 	coquinas? 
Escribe to programa en el condo) de abajo. 

• ., 
4. Ust to proem= para cote atinto de medir el 

411 
base y aura de la caja para 

obtener em volumen maxima Escribe las medicks qua emantraste ea el cuadro de absijo. 

V0121212E11 MAXIMO 

Lado de la base ' 
&pros. per defect° Amex. par ems* 

Altura de la caja 

V;u3 
 

95-te, k/)  /4 144  L -Fre  d. 4,..5 d)i,,, 71., 11( K 

r 0 	saz,i er 110, 
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2. 4Fuedes programer to calculadora pars que haga lo mismo? Una vez que 
escribe et programa que hiciste en el cuadro de abajo. 

HOJA DE TRABAJO NUMERO 35 

NOMBRE  -1\ *.1N41,•Urtl_""a FECHA 

 

  

Pritg 5 

1 
0 

En el area de programacion 
nitmero 5 de mi calculadora 

escribi un programa que hut 2 
lo siguiente: -1 

3 
-2 

4 
-3 

5 
-2 

Si escribo niimero 6 Lque nUntero va a dar come resultado la calculadora? 

Si escribo el natnero 7, Nue antler° va a dar como resultado la calculadora? 

Si escribo el nnmero 9, 4qui numero va a dar como resultado la calculadora? 

Si escribo e! nUmero 17, 4que niimero va a dar como resultado la calculi Oar 

gor qui pudiste saber esos resultados? 	PL  nt,t4_61o, 
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HOJA DE. TItABAJO NUMERO 35 

NOMBRE 	 ~ 	•  . FECIIA 	  

Frog 5 

En el Area lit rigivimiam 
numeso-5-de i eolcultdOca 

magi uo programa quo ham 
k3 *late: 

1 

3 

4 
-3 

S 

-2 

Si esalo el Biloxi° 6 oh 	va a dar mem mikado la cohabit:1ra? 

Si escribo el minim 7, Ad in c o va a dar nolo reauktdo k ealuuladors?  '""  
3 

Si nab° d nomero 9, /Ad mimeo va a dar cow ti de IaUaladadons? 	 

Si esaibo el ammo 17, glue min= va a dar corn° resukado laouleuladora7 	1 (0 
on 

LPor quoloodiste saber mos mikados?  ?Of 	L k) rrh.t  
t N.WYK.  

2. ',Putties programer to caloaladom pare qua hags lo mismo? U 	(me to tapas bed* 
male el programa qua hiciste en el cualro de abajo. 
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2. LPuedes programar to calculadora pare que haga lo mi 
escrle el programa que biciste en el cuadm de abajo. 

Una vez que to hayas heck 

HOJA DE TRABAJO NUMERO 39 

NOMBRE 	 CE-1./54-1 	FECHA _ 

En el frac de programacion 
niimeto 9 de mi calculadora 

escribi un programa que Noe 
lo siguiette: 

Prog 9 

1 
tl 

2 

3 

4 
0 

S 
0 

Si escribe el rimes 6 4que ninnero va a dar comp resultado la calculaciora? 

Siescribe el timer° 7, 4que n imero va a dar come resultado la calailadera? 	 

Si escribe el niunero 9, two nianere va a dar come mikado la calculadora? 

Si escribo el niimero 17, 4qui niunerova a dar corm resultado la calculadora? 

I,Por qui pudiste saber esos resultados? 	floe...7/P 	4:S\  
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MA DE TRABAJO NUMERO 40 

NOMBRE 4i/Lr jzrlG Luc FECHA G  

Pros 0 

End arta de progannan 
numero 0 de mi calculadora 

escribi un prognmukque hum 7 I 2 
lo *triune: -2 

3 
t 

-4 
5 

Si escnbo el n(unero 6 tqui mitnero va a dar corm resultado la calculadora? 

Si escribo el ritmero 7, Lque ntimcro va a dar coat resultado Ia calculadora? 

Si escribo el rimer* 9, Au6 nionero va a dar come resultado la calculadora? 	 

Si esciibo mimero 17, Nue niunero va a dar coma resultado calculadorar  7-7 414"  

,Por qui pudiste saber esos resultados? 	7-0 le 4 	 apsoi-cp 

2. guedes programar to calculadora para (pie haga lo mismo? Una vez que lo hayas hecho 
escribe el programa que hiciste en at cuadro de dojo. 

2-4 g,..4....c4-4) 
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17.5 	. 25.1 1 292 A 	44.1 3 _ )1r 
11.4 19 I_ 23.1 3$ 

Si prim haat el programa escribdo ma d eamdro 
de deaths. 

IICOA. DB MADAM M .O4s (Parmsla 5) 

NOMBRE jak24=1,07:CEL4or,,Trimaulifizitsgs:-) cCl  

11.4 
17.5 

Ea asi adouladara alibi am programa gm Ince 
b siguimlar 

11.4 
17.9 

 

3$ 

50 

44.1 

1. Maim adi as al pratipms gra Yea. Bardials 40 is 	y of *maim loll 
gm al lab aussibilo mad agile da di* 

2. Akira ineemat ars pagramos qv* hrr b lama, do le on loco i yaagrsora I E 
deck gm ta ea los maim gra as =Outran 40 It iiriamsmils: 

3. Describemai tic este pars commird programa qua 'dolma* d mlo 	  
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5 13 19 21 29 
3 7 10 11 15 zi 

7  -4> 0 ( 0 
Si pudiste inventar un programa como el 
que se pide escribelo en el cuadro de la 
derecha. 

3. 1,Puedes hater un programa que "deshaga* al siguiente pro 
7-->B:Bx3+1 

Prueba tu programa en tu calculadora y asegurate que fu  
escribelo en el cuadro de abajo. 

corno esperaa, despues 

FECHA 

HOJA DE TRABAJO NUMERO 44 (Format° 5) 

NOMBRE 	V■ \el ti (Qq_  

En rill calculadora escxibi un programa que hate to 
siguiente: 

1.  zPuedes adivinar quo programa hice? Si lo encuentras prueb 	tu calculadora y 
escribelo en el cuadro de abajo. 

-PO :70 Xa--01 
2.  Ahora inventa un programa 

de los mirneros que 
que 'deshaga" lo que lace ani programa 

se mesh= en Is siguiente tablas 
? Es decir que to 
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1.(i f 

HOJA DE TRABAJO NUMERO 44 (Founato 5) 

NOMBRE --4r fee 	 1.??1,-k ivicja  

En mi calculadora escribi un programa que hate to 
siguiente; 

ECHA ..2 / 19- .%.;F 

3 
5 

7 
13 

10 
19 

11 
21 

15 
29 

1. 4Puedes adivinar clue programa hive? Si lo encuentras pruebalo en to calculadora y 
escribelo en el cuadro de abajo. 

2. Ahora invents un programa que "deshage to que pace mi programa ? Es decir que to 
dk los dimeros que se muestran en is siguiente table: 

5 13 19 21 29 
3 7 10 11 15 

Si pudiste invent& un programa coma at 
que se pile escn'belo en el cuadro de Is 
derecha. 

3. i,Puedes hater un programa que 'deshage al siguiente programa? 
-->B:Bx 3+1 

Prueba tu programa en tu calculadora y asegtirate que funcione como esperas, despues 
escribelo en el cuadro de abajo. 

?E1,(); 	x 
D c 	of's- 	f  

,(*? 

p0 or,AA 

v  ( 
110'4 	c Q 
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FECHA Ci 

3 
5 

7 
13 

10 
19 

11 
21 

IS 
29 

\-j°  NOMBRE  'Aakeo Sai. Ivan Ice Anti% 

HOJA DE TRABAJO NUMERO 44 (F'ormato 5) 

En mi calculadora escribi un programa quo hace lo 
siguiente: 

5 13 19 21 29 
3 7 10 11 15 

1. 1,Puedes adivinar quo programa hive? Si to encuentras pr halo en to calculadora y 
escribelo en el cuadro de abajo. 

• 

2. Ahora inventa un programa quo "deshaga" lo qua hace mi programa 7 Es decir quo to 
do los nameros qua se muestran en Is siguiente tabu  

Si pudiste inverdar un programa como el 
qua se pile escrlbelo en el cuadro de in 
derecha. 

PCI 

3. 4Puecles lacer un programa que "desha,ga" al siguiente programa? 
?-+B:Bx3+1 

Prueba to programa en to calculadora y asegsirate 	fund 
escribelo en el cuadro de abajo. 1,ev 
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13 5 
7 3 

Si pudiste inventar un programa comp at 
que se pide escribelo en el cuadro de is 
derecha. 

29 
13 

vl I II 

3. iyuedes hacer un programa que "desbage al siguiente programa? 
?-+B:Bx 3+1 

Prueba tu programa en tu calculadora y asegiirate que funcione 
escribelo en el cuadro de abajo. 

G 	S'/V  

esperas, 	es 	-- 

" 	
C)ryc-- 

ztr6- 
 

Crt 	
U 10..srfa. Ca 

,e+ )-04c0.,t,t 	
3/ 	-4.1- 

E TRABAJO NUMERO 44 (Format° 5) 

NOMBRE 	 FECHA 	 

En mi calculadora escribi un programa que bac* lo 
siguiente: 

1. iguedes adivinar 	programa Bice? Si b encuentras prueb 	calculadora y 
escribelo en el cuadro de abajo. 

L 

2. Ahora invents un programa que "deshaga" lo que hace mi programa ? Es decir que to 
de los mimeros que se muestran en la siguieme tabla: 
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I 
. 

_ 
. 	19  21 20 

: 10 11  15 A 

S pram imam sa parlossamo d 
quo so plis slab& d strive ds h 
ands 

3. Oudot law us pecIpos 4 S'i.+1 " al lipase 
?--) It S x3+1 

Prods is rowans «lr alabials isseirals Sodom cm> mass, 
Nab& is d anis d. simis. 

BMA DE litABAJO MAIM 44 (Pomo° 5) 

man  Pascrut- Uf27t. 	PECHA 	 

samba= Nati w propasi gas Ya lo 
149Mate: 

• "dm it qpilivimmtlipe 111 ►  arr. . 	40 at 	y 
ssashois aid 41114.041114411 

2. Aiw.rs i nds ispoilossips1~10,sliss apwarris 7 Es ack ipio to 
di les strostipw-st srmast at kiwis* idds 

_ 
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JA DE TRABAJO NUMERO 45 (Formato 5) 

• 

En mi calculadora escnbi tm programa que bace lo 
siguiente: 

1. 4Puedes adivinar cue programa hice? Si lo 
encuentras pruebalo en tu calculadara y 
escribelo en el cuadro de la derecha. 

?—t:Ax 1,5+1 vothtt'vstY -04 
../ 

i is -
, 

i 
? 	K : 0.5 x K — 1 14164504441 7 . 	' 

:  Vt) 1 ' 
?—>X:0.25 xX+2 1$41104611 11 • 454 *, i 

4. 	LEncontraste un "metoclo" para invertir pro 
1. 

3. Para cada uno de los siguientes programas inventa otro programa que los "deshaga” Prueba 
cada uno de tus programas en tu calculadora y asegOrate que funcionen coma espe  
despus escribelos en los cuadros de la derecha 	 t/t) 

SV)tj \(3  
Cf)  

Explca en qua consiste. ‘(Vi'  
• ir 41 	It 

3. Ahora inventa un programa que "deshaga" to que hate mi programa ? Es deck que to 
de los mimeros que se muestran en la siguiente table 

4 25 49 64 100 
2 5 '7 8 10 

Si pudiste bacer el programa escribelo en el cuadro de la 
derecha. 
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4 25  49 64 100 
2 5 -7 8 10 

Si pudiste !racer el programa escribelo en el cuadro de Is 
&recta. 

4. Para cada uno de los siguientes programas inventa otro programa que los Mohave 
cada uno de Ms programas en to calcuLadora y =Orate que funcioneu 
despu6s maxims ea los coadros de la derechs 

?-+A:Ax1.5+1 .=) 0- ift -1 ) 2- l .5  
? -+ K : 0.5 x K - 1 
?-0C:0.25 xX+2 

V\ % 	...\..., 	oNk"1- 	ock..........„ 

NOMBRE 

 

HOJA DE TRA13ATO NUMERO 45 (Formato 5) 

FAVIIrt45\4 \\e-NiAt  	FFJCHA 	 

  

2 
4 

5 
25 

7 
49 

64 

10 
100 

1. guedes adivinar cid programa hice? Si lo 
encuentras pruebalo en to calculadora y 
escribelo en el cuadro do to derecha. 

En mi calculadora =cal nn programa qua hate to 
signior*: 

2. Ahora invents un programs quo "destine lo que bace mi programa ? Es decir qua to 
de los mamma que se muestran en la siguiente tablas 

3. Encontraste un umetodo" pars invertir programas? Explca en qua consiste. 
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4. Ahora inventa un programa que "deshiga* lo que hace mi programa Es decir q 
d6 los mimeros que se muestran en la siguiente labia: 

4 25 49 64 100 
2 5 1 8 10 

Si pudistc hacer el programa escnivlo en el cuadro de la 
derecha. 

uma;  
HOJA DE TRAB 0 A 4 0 45 Tonnato 

NOMBRE La, C-4-1-14 

2 
4 

7 
5 

25 

7 
49 

8 
64 

10 
100 

u  A-4 	FE CHA//1-4 Y1/14' 

E.12 mi calculadora escribi un programa qua hace lo 
siguiente: 

1. i,Puedes adivinar que programa hice? Si lo 
encuentras pruebalo en to calculadora y 
escribelo en el cuadro de la derecha. 

-7,4g,114 

• 
2. Para cada uno de los siguientes programas iaventa otro programa quo los "deshaga"? Prueba 

cada uno de tus prograrnas en to calculadora y asegdrate que funcionea caw esperas, 
despues escribelos en los cuadros de la derecha 

7 ---s.A;Ax 1.5+1 37_A I. ( A -4) -; f., .6-  ''. 6 ---  
7-+K:0.5 xK-1 12 4 2-(4 +1)4 0  S 
?-0E:0.25xX+2 6--3  YVY-21 -.-10,1 

3. LEncontraste un mmitodo" pare invertir programs? Explea en qui cons 
rxc-f 1Al V t JZ7i2  w5  

P4_ 	s- /  
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4 25 49 64 100 
2 5 7 8 10 

Si pudiste hacer el programa escribelo en el cuadro de la 
derecha. 

HOJA DE TRABAJO NUMERO 45 (Formato 5) 

NOMBRE 1erAS ‘ 

2 
4 

5 
25 

7 
49 

8 
64 

10 
100 

FECHA 9'y 

En mi calculadora esaribf un programa que pace to 
siguiente: 

1. i,Puedes adivinar qui programa hice? Si lo 
encuentras pruibalo en tu calculadora y 
escribelo en el cuadro de la derecha. 

2. Ahora inventa un programa que "deshaga" to que hate mi programa ? Es decir que to 
di los nameros que se muestran en la siguiente tabla: 

3. Para cada uno de los siguientes programas inventa otro programa que los "deshaga"? Prueba 
cada uno de tus programas en tu calculadora y asegiirate que funcionen corno esperas, 
despues escribelos en los cuadros de la derecha 

?-4A:Ax 1.5+1 
7—)1C:0.5xK-1 

q __- ,1--1)t. \ . 	' 
 --ti. t-  rNA-N))-1,7, U .c-1 

?—>X:0.25xX+2 tl -0 Us. 	_X -7 	-1. .."75 , 
_,V 

4. j,Encontraste u "mitodo" para invertir programas? Explca en 	consiste. 

 

L""),  F  cCACIThli.N  
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E 

. 1. En el espacl0 de absio -dilxiia 

-Pr• 

$ 	9 
gum quo legume ea esa suceelon. 

EFER:FILI 

1-10JA DE TRABAJIZMUMERO 46 (Format° 6) 

NOMBILE-St7A1- (ctinrri-t."1%.%6A414-c-  c.  FECHA  ic..C-7q4  

Observa las siguientes figuras. 

2, 4Cuentos cuadrados ateSlexedian 	3. 4Cskintotcusdradoe ae titan 
pare construir la figure, qua vs earel 	parazonssuir la figura quo va en 

17? r lug 	me° 	 el sugar namero 1007 ar Tel 
3 a 	‘cct  

4. 5xplicsi atuno rezone= pan responder las pilegp,tntjas 2 
C 	411 Ii>n7k3M51_ 	\-)'z'r-ier.z. No 01/17 ,112  

,Puedes programer to calculadora pars completer In siguiente table? 

Lugar quo ocupa Is 
figura en la sucesion 

N(nero de cuadittdos 
que ea ueeesitan 

48 
75 
123  

Fil  Q 
351 
4 

lid 507 

Eacrle aqui el programa que 
hiciste. 

.s4 V 1,4 I 
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Escribe en ste cuadro el 
progrfm que hiciste. 

HOJA DE TRABAJO NUMERO 47 (Formato 6) 

NOMBRE 	San 5. •r,  i, 474  FECHA 4V90 

Observa la siguiente sucesion de figuras. 

1=1  'TR 1 I 
• • • 

1. En el espacio de abajo dibuja las dos figuFtseque siguen en esa sucesion. 

2. LCuantos cuadrados se necesitan 
para construir la figura que va en e 
lugar ntimero 9? 

. LCuantos cu 	os se necesitan 
para c,onst 	la figura que va en el 
lugar n ero 17? 

1-19  

4. Explica cOmo razonaste para responder las preguntas 2 y 3 
ctsmtnid t4 socitsitx. cut. cord 4.1.■eaft4te 	("timultv(le  

5. i,Puedes programar to calculadora para completar la siguiente tabla? 

Lugar que ocupa la 
figura en la sucesiOn 

Mime 	de cuadrados 
e se necesitan 

48 141 
75 len 
123 "361 
141 427 
v 51 469 

-2.0 I 601 
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acio de abajo dibu'a las dos fi 

Escribe en este cuadro el 
programa que hiciste. 

L I ) 

sot-i—LI  

HOJA DE TRABAIO NUMERO 48 (Format° 6) 

NOMBRE  P.yly-Ac c NAn-rd\C.til 	FECHA2J 

Observa la siguiente sucesion de figures. 

• • 
IRE • II • • 
• • • • • • 
u. NEM MUM • • • 

2. LCuantos cuadrados se necesitan 
para construir el marco del 
cuadrado gris en la figura que va en 
el lugar nUmero 27? 

3. LCuantos cuadrados se necesitan 
para construir el marco del cuadrado 
gris en la figura que va en el lugar 
namero 40?)6  

4. Explica coma raionace para responder las preguntas 2 y 3. 

5. tPuedes programar to calculadora para completar la siguiente tabla? 

Lugar que ocupa Ia 
figura en Ia sucesion 

Namero de cuadrados 
que se usan en el marco 

48 1% 
75 2.4f)C1 

123 tc-iG 

" 
704 

01 772 

76\ 70 840 
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Escribe en este cuadro el 
programa que hiciste. 

J 

HOJA DE TRABAJO NUMERO 48 (Format° 6) 

NOMBRE  ts?k e L v 	q 	°yr VFECHA--Z1/9 

Observa is siguiente sucesion de figuras. 

••• 

1. En el espacio de abajo dibuja las dos figuras que siguen en esa lazesilne- 

3. 4Cuintos cuadrados se necesitan 
pars construir 	del cuadrado 
gris en la 	que va en el lugar 
n6 

2. 4Cuantos cuadrados se necesitan 
pars construir el marco del 
cuadrado gris en la figura que va en 
el lugar numero 27? of 	t„,  

4. Explica c6mo razonaste para responder I 
et (Ivry\ 4,4,0 

(04" 

reguntas 2 y 3. 

43 .  044(  X  

5. suedes programar to calculadora para completar la siguiente tabla? 

Lugar que ocupa la 
figura en la sucesien 

Numero de cuadrados 
que se usan en el marco 

ac 
123V' Ilk 1046 "/ 

/ (( tk / 772 
i tl 9( 840 
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MIA DE TIABAJO NUMERO 4$ (Formato 6) 

NOMBRE !a/.~..L.~l. FECHA 

Obaerva Is siguiente sucesiea de figura'. 

:f 
Ali 	i t'  

12 
• • • 

1 	En el espacio de abajo dibuja las dos fir que siguen en esa sucesion,- 

oiner11111111Bas 

rats 

2. 	autos cua dos se necesitan 	20 LCu 
pars construir el marco del 
cuadrado gris en la figura que va en 
el lugar namero 27? 

4. Explica como razonaste para rest der las p egur2 y 3. 

.47 I' I 	/4,,-r2-5/.11.0 4  t.zr-eri  

ef.1,4k7 7/t̀  141. 	q ./r "-SQ. 

5. LPuedes programar to calculadora para completar Ia siguiente tabla? 

cuadrados se necesitan 
p. construir el marco del cuadrado 

s en Ia figura que va en el lu 
numero 40? 

Lugar que ocupa la 
figura en Ia sucesion 

NUmero de cuadrados 
que se usan en el marco 

48 
75 0 

123 
704 -7

0
1 ii 772 

840 

Escribe en este cuadro 
programa que hici 

of, ; 

11 



Ancho de la ventana 
Altura de la ventana 

0.75 m 0.86 m 
1.15 ro 

1.28 m 
3.51 m 

(0 411 
4.23 m 

f) LQue operaciones hiciste para calcular ese posto? 
por d  

my' 4' r7//Co  

  

  

   

3. i,Puedes hacer un programa que to permita calcular el costo del marco pars cu 
de las ventanas de esa sala del museo? E 	programa en el cuadro 

uiera 
ajo. 

: (r;(3),Ct (?. 
4. Usa el programa que hiciste para a siguiente t 

53b,  

k' 

0 in  ai  C-5A 1  Q, 	\ep YQ- 

stc,\ 	‘1  ? kiel‘r(e.0 0 	ut kAi1 1/44- V 0 

q'q 4 	

HOJA DE TiABAJO NUMERO 49 (Formato 6) 

\1N1 tQ'j  
(-)--1TOMBRE  Ge511.6/4 6 itIC-dt,ot. 	FECHA  *6/114  

or''• 
U-1  

VENTANAS 
En la sala de escultura de un museo de Arte Modemo las ventanas tienen las siguientes 
caracteristicas: 

Las ventanas tienen distintas 
medidas, pero en todas la 
altura mide el triple de lo que 
mide el ancho 

1. 4Puedes completar la siguiente tabla? 

2. Los marcos de las ventanas estan hechos con madera cuyo precio por metro es S 
53.00. 

a) LCual es el costo del marco de una ventana que mide 1.5 metros de ancho? 

Ancho de la ventana 0.68 m 	0.80 m 	0.95 m 	0.98 m 1.15m 5 
Costa del marco $ eki-ns 3`39, 2C. s•WA $45.-5  (Jr  530 

le_ 
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11Q1A DE TRABAJO NUMERO 49 (Forma° 6) 

X 00  
UI' 1.2S in 036 m 

331 m 
0.75 ni 
Ea-5 

I Al 1 
4.23 m 

Ameba de le notes* 
Altera de la reset eme 

andeo? 

	

b) Owl operstiones hiciste pas eslcutsr of come 	 f ks 

3. i,Puedes lacer un programa --- to permits Wailer d costes del mem port ossiquiemg a'S 141 1711 
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VENTANA/I 
En la ma de esadium dem mimeo de Arts Modem les veetenes time he iitimetes 
earecteristicas: 

Las vegetate:I dame diabetes 
meilidak pare es Was le 
Mara rids el triple de 1 gee 
mak d moo 

1. euedes completer la iguana table? 
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HOJA DE TRABAJO NUMERO 50 (Formato 6) 

NOMBRE  (-210,..3c) 	ti  A ?CI ( -(\t9r  FicHA  L 2/ti/  

MAS VENTANAS 
En la sala de arquitectura del Museo de Arte Moderno las ventanas tienen las siguientes 
caracteristicas: 

Las ventanas tienen distintas 
medidas, pero en todas su allure 
mide 50 cm. menos que el triple 
de lo que nide el ancho. 

1 	i,Puedes completer siguiente table? 	t 
1. 0/ 

.30 
Altura 
	

`4.45 
Ancho 0.30 0.4 m 1.5W 

6.55 m 

• 3.t 
2. Los marcos de las v tanas estan hechos de wader* cuyo precio es $ 62.00 par 

metro. 
a) tCuil es el costo del marco de una ventana que mide 1.3 metros de ancho? 

Pit-10  
b) • Que operacio 	hiciste pare calcular ese costo 

3. 4Puedes programer to calculadora pare obtener el costo del mare() pare cualquiera 
ventanas de esa sale del museo? 

Escribe el programa que hiciste en el 
cuadro de la derecha. 

4. Usa el programa que hiciste pare co etar la siguiente tabla. 

Ancho dela ventana 
Costo del marco 01?,5a 

0.65 m 
;c5.0g, G 

0.84.ed  
S 354:00 ,c44  
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HOIA DE TRABAJO NUMERO 52 (Format° 6) 

NOMBRE  1.k\R 	PC-iJi)-t414. C4-40V) sk)a  FECHA ic.T7.)  

En una tienda de libros y discos estan haciendo la siguiente oferta. 

15% DE DESCUENTO EN TODA LA MERCANCIA 
El descuento se aplica en la caja sobre el precio marcado en la etiqueta. 

1. Completa la siguiente tabla. 

Precio en Is etiqueta Cantidad gue se descuenta Precio de oferta 
$ 34.00 J. ‘. `1.S..9 
$ 18.75 -?.... 9(2. 

11-1), :1\y` 
(1_,...t , 

$ 126.80 i Ci .11• ic1—. 
$ 28.50 t 4 i k-- 	,--) 

$ 150.00 11 , 
1)-1-,- ., \ .(-0-4 

$ 29.40 C-4 	ck 1  `1, 1 	q T 

2. tPuedes programar to calculadora pars que Naga lo siguiente? 
Si le das el precio de etiqueta to de por resultado el precio dOoferbt. 

Escribe el programa que hicite en el 
cuadro de la derecha. 

1. Usa el programa que hiciste para completar la siguiente tabla. 

Precio en la etiqueta Precio de oferta 
$ 84.00 "'1_k • 9 
$ 28.75 Z.L \ 0'1 	1  S 
$ 226.80 4 ea . 7 
$ 29.60 
$ 140.00 k 	ek 

I c $ 

1 	- i G/ 

$ 142.80 
I 7Q $ 144.50 
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HOJA DE TRABAJONUMERO 53 (Formato 6) 

NOMBRE  C.  c,,,i_z_027/e",  'O.•v?/a4 	, FEcHA  2e)4  

En tors papeleria man Wieland° la siguiente oferta. 

25% DE DESCUENTO EN TODA IA MERCANCIA 
El dement° se aplica en la c.aja sobre el precio marcado en in etiqueta. 

1. De acuerdo con esa informacion completa la signianetabla. 

Preclo en la etiqueta Cantidad gime se • 
descutata 

?redo de oferta 
I 	i . e....v,,sr  $ 18,75 .4-4`12$' 	_ 
Ii 4 1__di $ 6.00 I 

a $ 9.00 24 
$ 21.50 . tc11,4-  

ar $ 8.75 .26./.6-  
—2_4 $ 6.50 0.3 - _ 
146 $ 11.50 ifit Ah- 

2. Programa tu calculadora pars que Naga lo siguiente: Si le des al programa la 
cantidad qua se despientaltte debe dar coma resultado el precis de oferta. Escribe 
tu programa:  CA.44-4  

3. Programa tu calculadora pare qua Naga lo siguieme: Si le des al programa la 
cantidad que se dements*, to debe dar coxuo resultado d precio marcado en la 
etiqueta. Escribe tu program=  "lay  

4. Usa los prograrnas que hiciste pant completer las siguientes tablas. 

Cantidad gut se 
descuenta 

$ 15.40 $ 18.75 $ 8.90 $ 10.00 S 14.35 

Precio de oferta 
04'.  7r 3thr. 4 '/O i  C-1. y 

Cantidad que se 
descuenta 

$ 11.70 $ 6.75 $ 8.90 $ 8.40 $ 9.60 

Freda manacle 
en la etiqueta le' f  2-cv2-5-  1‘...7 zfi 2 2 	V' 

BllL 
LONOIN. 

UNA 
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