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Abstract 

Unburied subsea pipelines operating under high-temperature and high-pressure conditions tend to relieve their 

axial compressive force by forming lateral buckles. Uncontrolled lateral buckling may lead to pipeline failure. In 

order to control lateral buckling, a sleeper is often employed as a buckle-initiation technique. In this study, analytical 

solutions of lateral buckling for unburied subsea pipelines with sleeper are derived. An energy analysis is employed 

to investigate the stability of the buckled pipeline. The influence of sleeper height and sleeper friction on pipeline 

buckled configurations and typical lateral buckling behaviour is illustrated and analysed. The results are shown to be 

in very good agreement with experimental data in the literature. We also discuss the effect of imperfections and 

conduct an error analysis of one of the main assumptions of the proposed analytical method. Our results show that 

increasing the height of the sleeper or decreasing the friction between pipeline and sleeper can all be used to decrease 

the minimum critical temperature difference. However, only the sleeper height is effective in substantially reducing 

the maximum compressive stress. 
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1. Introduction 

For the exploitation and transportation of energy resources, subsea pipelines are increasingly being required to 

operate under high-temperature conditions to ease the flow and prevent solidification of the wax fraction in deep 

water. The excessive axial compressive force induced by the increase in temperature may lead to lateral buckling for 

unburied subsea pipelines. Such uncontrolled lateral buckling would cause serious damage to the safety of the 

pipelines. Consequently, some engineering measures have been employed to prevent subsea pipeline buckling, such 

as trenching, burying and rock-dumping; or relieving the stress with in-line expansion spools [1]. However, these 

methods are becoming more and more expensive as the operating temperature increases and as hydrocarbon 

development moves into deeper water [2]. 

Thus, an effective and inexpensive method is proposed for the relief of thermal induced axial compressive force, 

which is to accommodate thermal expansion by artificially inducing the pipeline to buckle in a controlled manner at 

several controlled locations, rather than to allow it to suffer an uncontrolled, large buckle at one location only. 

Thermal expansion can be evenly divided into a number of buckles, none of which is subject to too much feed-in 

from thermal expansion. At these planned locations, a sufficient number of lateral buckles should be triggered at a 

sufficiently low axial compressive force [3, 4]. Several buckle initiation techniques, which are briefly described by 

Sinclair et al. [5], have recently been developed to ensure that regular buckles form along the pipeline. Three methods 

are commonly adopted to promote the reliable formation of lateral buckles and to control the buckle spacing and 

operating loads, which are snake-lay, sleeper and local weight reduction through distributed buoyancy [6]. A method 

related to distributed buoyancy is to use discrete buoyancy, such as buoyancy bags, to aid buckle initiation [3, 7, 8] . 

In this method, a discrete buoyancy, such as an air bag, is only used to initiate lateral buckling, and will be removed 

once the lateral buckle formation has occurred. Another buckle initiation technique is the zero-radius bend technique 

proposed by Peek et al. [9]. The advantage in the use of these engineered buckle initiation techniques is that the 

planned post-buckling configuration is generally more benign than uncontrolled lateral buckles. Consequently, the 
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integrity of pipelines within the buckle is improved. 

Lateral and upheaval buckling have been studied by previous researchers in the theoretical framework by 

modelling the pipeline as a beam resting on a rigid seabed [10-17] or on a soft seabed [18-20]. Nonlinear localised 

lateral buckling of straight pipelines was investigated analytically by Zhu et al. [21] and Wang [22] without the 

assumption of lateral deformation. On the other hand, small-scale model tests were conducted to understand the 

mechanism of upheaval buckling of buried pipelines [23, 24] and the properties of man-made initiation techniques 

to control lateral buckling [25, 26]. Experimental and numerical investigations were carried out to investigate the 

buckle interaction between propagation buckling and upheaval or lateral buckling in subsea pipelines by Albermani 

and Karampour [27, 28]. Moreover, many finite-element analyses have been performed to investigate lateral and 

upheaval buckling [29-35]. All these methods are employed to investigate lateral buckling or vertical buckling 

behaviour rather than how to control them. 

In recent years, several researches about lateral buckling of subsea pipelines with an initiation technique have been 

carried out. Simple analytical solutions were given for triggering lateral buckles through applying buoyancy to the 

pipeline by Peek and Yun [7], which could be applied to a single-point buoyancy load, two-point buoyancy load and 

distributed buoyancy load over a specified length. Furthermore, the single buoyancy method was further studied by 

Shi and Wang [3]. The single buoyancy load required to trigger lateral buckles along a pipeline was investigated 

through analytical methods by Shi and Wang [3]. Analytical solutions were derived based on the first and third lateral 

buckling mode for a pipeline section with a distributed buoyancy section by Wang et al. [36], Antunes et al. [37] and 

Li et al. [38]. 

The use of sleepers as buckle initiation technique does not seem to have attracted much work in the literature.  

Sinclair et al. [5] conducted a survey of the effect of a sleeper in controlling pipeline lateral buckling and collected 

operating data on the behaviour of nine pipelines employing sleepers as buckle initiators. Experiments on a scaled-

down model were carried out by Silva-Junior et al. [26] and de Oliveira Cardoso et al. [25]. Their studies compare 

displacements and critical buckling loads of various artificial buckle triggers, including sleepers. Bai et al. [39] 

studied the applications of dual sleepers as lateral buckling initiators through finite-element modelling. No analytical 

work appears to exist. Here we propose an analytical model for the study of lateral buckling of subsea pipelines with 

sleeper. 

The survey in [5] shows that the sleeper initiation technique can induce both symmetric (mode 1 or 3) and 

asymmetric (mode 2) buckles (in the classification of Hobbs [10]). The actual mode is driven by the local 

imperfection introduced during pipe lay. Consequently, it is not possible to predict the buckling mode. However, 

mode 1 is the most commonly considered lateral buckling mode for pipelines with sleeper according to the surveyed 

results of Sinclair et al. Thus, the aim of this paper is to derive the analytical solution of the first lateral buckling 

mode for unburied subsea pipelines with sleeper. Stability of the lateral buckling solutions is analysed by computing 

the total energy of the pipeline. Parameter studies are carried out to study the effect of sleeper height and sleeper 

friction on the lateral buckling behaviour. We validate our analytical model by comparing its predictions with the 

experimental data reported in [25], finding very good agreement. 
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2. Analytical solution 

P
0

lsls

P

O x

Axial compressive force

f
A

t

l1l1

 

Fig. 1 Axial compressive force distribution. 
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(b) 

Fig. 2 Configuration and load distribution. (a) Vertical plane. (b) Lateral plane. 

In the process of thermal buckling within a pipeline section that is initially immobilised by axial friction against 

the seabed a small central segment of pipe will mobilise. As pipe feeds into the buckle the compressive force in the 

pipe drops, pulling more pipe into the buckle. If the soil resistance for axial movement is constant, say 𝑓𝐴, then a 

compressive force will build up in the pipe, increasing linearly with the distance from the touchdown point between 

pipeline and seabed. At some point this compressive force is sufficient to satisfy the requirement of additional length 

introduced by the lateral displacement. The end points of this segment are called virtual anchor points. Fig. 1 shows 
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the feed-in region of length 2𝑙𝑠  within the larger immobilised section of the pipeline together with the typical 

compressive force variation. 𝑙𝑠 is sometimes called the slip-length. 𝑃0 is the axial compressive force at the virtual 

anchor points. 

 In practice multiple (independent) localised buckles may form in the immobilised pipe section, especially if it is 

long. In the following we present a theory for a single localised buckle that applies to each such buckle individually. 

Fig. 2 illustrates the configuration and load distribution of the first lateral buckling mode for unburied subsea 

pipelines with sleeper. In the analytical formulations of this mode presented in this section the pipeline is modelled 

using linear beam-column theory valid for small deflections. The vertical and lateral deflections are therefore 

essentially independent, coupled only by friction, and we consider each individually. 

2.1 Analytical solution in the vertical plane 

For exposed subsea pipelines the vertical resistance of the seabed is usually greater than the lateral resistance; 

therefore, the seabed is assumed rigid as a feasible approximation, even for soft soils. Consider a sleeper laid at the 

middle of the span, as shown in Fig. 2-a. The governing equation for the configuration of the pipeline with sleeper in 

the vertical plane is 

𝐸𝐼
𝑑4𝑣

𝑑𝑥4
= −𝑞  0 ≤ 𝑥 ≤ 𝑙1                                  (1) 

Eq. (1) 

where 𝑣  is the vertical deflection, 𝑞 is the submerged weight per unit length of the pipeline, 𝐸  is the elastic 

modulus, 𝐼 is the moment of inertia, 𝑙1 is the half span length. Only half of the pipeline needs to be considered 

owing to the symmetrical configuration and load distribution in the vertical direction. 

The general solution of Eq. (1) is 

𝑣 = −
𝑞

24𝐸𝐼
𝑥4 + 𝐶1𝑥

3 + 𝐶2𝑥
2 + 𝐶3𝑥 + 𝐶4                            (2) 

Eq. (2) 

By symmetry, the slope of 𝑣  at 𝑥 = 0  must be zero, while the shear force 𝐹  at 𝑥 = 0  comes from the 

supporting force 2𝐹 by the sleeper. In addition, the displacement, slope and moment at 𝑥 = 𝑙1 must be zero as well. 

So the boundary conditions at x = 0 and 𝑥 = 𝑙1 are 

{
 
 
 

 
 
 

𝑑𝑣

𝑑𝑥
(0) = 0

𝑑3𝑣

𝑑𝑥3
(0) =

𝐹

𝐸𝐼

𝑣(𝑙1) = 0
𝑑𝑣

𝑑𝑥
(𝑙1) = 0

𝑑2𝑣

𝑑𝑥2
(𝑙1) = 0

                                   (3) 

Eq. (3) 

Combining Eq. (2) and Eq. (3), 𝐶1 − 𝐶4 and 𝐹 can be obtained as 

𝐶1 =
𝑞𝑙1

9𝐸𝐼
, 𝐶2 = −

𝑞𝑙1
2

12𝐸𝐼
, 𝐶3 = 0, 𝐶4 =

𝑞𝑙1
4

72𝐸𝐼
, 𝐹 =

2

3
𝑞𝑙1                    (4) 

Eq. (4) 

Thus, the vertical deflection is 

𝑣 =
𝑞𝑙1
4

72𝐸𝐼
(−3

𝑥4

𝑙1
4 + 8

𝑥3

𝑙1
3 − 6

𝑥2

𝑙1
2 + 1)                                  (5) 

Eq. (5) 
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𝑣𝑜𝑚 = 𝑣(0) =
𝑞𝑙1
4

72𝐸𝐼
                                   (6) 

Eq. (6) 

where 𝑣𝑜𝑚 is the sleeper height. 

From Eq. (6) we obtain  

𝑙1 = √
72𝐸𝐼𝑣𝑜𝑚

𝑞

4
                                      (7) 

Eq. (7) 

Thus, the half span length 𝑙1 can be obtained through Eq. (7) when the sleeper height 𝑣𝑜𝑚 is given, which will be 

used in the analysis of the horizontal configuration. 

The point contact force between the pipeline and the seabed induced by the uplifted pipeline span at the touchdown 

point is 

𝐹𝑡 = 𝑞𝑙1 − 𝐹 = 1/3𝑞𝑙1                                   (8) 

Eq. (8) 

2.2 Analytical solution in the horizontal plane 

The pipeline consists of three zones in the horizontal plane: one span zone, in which the pipeline is uplifted by the 

sleeper, and two contacting zones, in which the pipeline contacts the seabed, as shown in Fig. 2-a. We assume that 

the pipeline always rests on the sleeper, i.e., that the weight of the pipe is always larger than the uplift force. Within 

the span zone no lateral or axial resistance is provided by the surrounding soil foundation. There is only a concentrated 

lateral and axial friction force at the touchdown point at 𝑥 = 𝑙1, as shown in Fig. 2-b. We assume that the value of 

the lateral soil resistance is constant for the pipeline lying on the seabed. 

With reference to Fig. 1, the axial compressive force distribution 𝑃̅(𝑥) can be expressed as 

𝑃̅(𝑥) = {
𝑃                                         0 < 𝑥 < 𝑙1
𝑃 + 𝑓𝐴𝑡 + 𝑓𝐴(𝑥 − 𝑙1)      𝑙1 < 𝑥 < 𝑙𝑠

                         (9) 

Eq. (9) 

Note that the axial force is constant (𝑃) in the span region because there is no distributed axial resistance acting on 

the pipe. For the axial soil resistance (a force per unit length) we can write 

𝑓𝐴 = 𝜇𝐴𝑞                                         (10) 

Eq. (10) 

where 𝜇𝐴  is the axial friction coefficient between pipeline and seabed. The axial friction force 𝑓𝐴𝑡 = 𝜇𝐴𝐹𝑡  is 

induced by the contact vertical force 𝐹𝑡 at the touchdown point 𝑥 = 𝑙1. 

The equation governing the horizontal deflection in the span zone is 

𝐸𝐼
𝑑4𝑤1

𝑑𝑥4
+ 𝑃

𝑑2𝑤1

𝑑𝑥2
= 0  0 ≤ 𝑥 ≤ 𝑙1                                 (11) 

Eq. (11) 

where, again, by symmetry of the first buckling mode and the load distribution, only half a mode needs to be 

considered. For the buckled pipeline section lying on the seabed, the governing equation is  

𝐸𝐼
𝑑4𝑤2

𝑑𝑥4
+ 𝑃

𝑑2𝑤2

𝑑𝑥2
= −𝑓   𝑙1 ≤ 𝑥 ≤ 𝑙2                              (12) 

Eq. (12) 

where 𝑓 = 𝜇𝐿𝑞  is the lateral friction force with 𝜇𝐿  the lateral friction coefficient. Here, for the purpose of 

determining the deflection 𝑤2, we have made the simplifying assumption that, despite Eq. (9), the axial compressive 

force in the entire buckled region 0 ≤ 𝑥 ≤ 𝑙2 is constant and equal to the force P at the centre of the buckle. The 

same approximation was made by Hobbs [10]. 
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Let 

λ2 =
𝑃

𝐸𝐼
                                            (13) 

Eq. (13) 

The general solutions of Eq. (11) and Eq. (12) are 

𝑤1(𝑥) = 𝐴1 cos 𝜆𝑥 + 𝐴2 sin 𝜆𝑥 + 𝐴3𝑥 + 𝐴4  (0 ≤ 𝑥 ≤ 𝑙1)                       (14) 

Eq. (14) 

𝑤2(𝑥) = 𝐵1 cos 𝜆𝑥 + 𝐵2 sin 𝜆𝑥 + 𝐵3𝑥 + 𝐵4 −
𝑓

2𝜆2𝐸𝐼
𝑥2  (𝑙1 ≤ 𝑥 ≤ 𝑙2)                   (15) 

Eq. (15) 

By symmetry, the slope of the deflection 𝑤1 at 𝑥 = 0 must be zero, while the shear force 𝑓𝑜𝑤 = 𝜇𝑠𝐹 at 𝑥 = 0 

is induced by the friction force 2𝑓𝑜𝑤  between pipeline and sleeper. Here 𝜇𝑠  is the friction coefficient between 

pipeline and sleeper, also called the sleeper friction. In addition, the displacement, slope and moment at 𝑥 = 𝑙2 must 

be zero. So the boundary conditions at x = 0 and 𝑥 = 𝑙2 are 

{
 
 
 

 
 
 

𝑑𝑤1

𝑑𝑥
(0) = 0

𝑑3𝑤1

𝑑𝑥3
(0) +

𝑓𝑜𝑤

𝐸𝐼
= 0

𝑤2(𝑙2) = 0
𝑑𝑤2

𝑑𝑥
(𝑙2) = 0

𝑑2𝑤2

𝑑𝑥2
(𝑙2) = 0

                                   (16) 

Eq. (16) 

The displacement, slope and bending moment must be continuous at the touchdown point 𝑥 = 𝑙1. On the other 

hand, there is a lateral concentrated friction force 𝑓𝑡 = 𝜇𝐿𝐹𝑡 at the touchdown point 𝑥 = 𝑙1 induced by the point 

contact force 𝐹𝑡 at 𝑙1, so the shear force has a jump at the touchdown point 𝑥 = 𝑙1. Thus, the following matching 

conditions have to be satisfied at 𝑥 = 𝑙1: 

{
 
 

 
 

𝑤1(𝑙1) = 𝑤2(𝑙1)
𝑑𝑤1

𝑑𝑥
(𝑙1) =

𝑑𝑤2

𝑑𝑥
(𝑙1)

𝑑2𝑤1

𝑑𝑥2
(𝑙1) =

𝑑2𝑤2

𝑑𝑥2
(𝑙1)

𝑑3𝑤1

𝑑𝑥3
(𝑙1) =

𝑑3𝑤2

𝑑𝑥3
(𝑙1) +

𝑓𝑡

𝐸𝐼

                                   (17) 

Eq. (17) 

By overall lateral force balance we find 

𝑓2 = 𝑓𝑜𝑤 + 𝑓(𝑙2 − 𝑙1) + 𝑓𝑡 

for the point force at 𝑥 = 𝑙2, i.e., the end point of the buckled region. This 𝑓2 is required to prevent a lobe forming 

in the horizontal plane. (Unlike in the vertical plane, the pipeline is not constrained in the horizontal plane, only 

resisted by friction, so in general further oscillations or lobes may form. By assuming that these do not form, i.e., that 

we have a first mode laterally, we effectively consider the unbuckled part of the pipeline for 𝑥 > 𝑙2 to provide a 

rigid support against which the buckled part of the pipeline pushes. This requires the point force 𝑓2 whose role is 

completely analogous to that of 𝐹𝑡 in the vertical plane.) 

Axial deformation of the pipeline is governed by the equation 

𝐸𝐴
𝑑2𝑢

𝑑𝑥2
= 𝑓𝐴     (𝑙1 ≤ 𝑥 ≤ 𝑙s)                            (18) 

Eq. (18) 



 

7 

 

where 𝐴 is the cross-sectional area of the pipe. Eq. (18) is solved subject to the slip-length boundary conditions [11] 

{
𝑢(𝑙s) = 0
𝑑𝑢

𝑑𝑥
(𝑙s) = 0

                                          (19) 

Eq. (19) 

giving for the axial displacement 

𝑢(𝑥) =
𝑓𝐴

2𝐸𝐴
(𝑥 − 𝑙s)

2                                     (20) 

Eq. (20) 

This result will be used later when computing the total potential energy of a buckled pipe solution. Finally, by axial 

force balance, we have 

𝑃0 = 𝑃 + 𝑓𝐴(𝑙𝑠 − 𝑙1) + 𝑓𝐴𝑡                                   (21) 

Eq. (21) 

We now use compatibility between axial and lateral deformation in the feed-in zone 0 ≤ 𝑥 ≤ 𝑙𝑠  to derive a 

relationship between the axial compressive force 𝑃 in the uplifted section of the pipe and the temperature difference 

𝑇0, between the fluid flowing inside the pipe and the environment, that causes the buckling. Compatibility can be 

expressed as 

𝑢1 = 𝑢2                                       (22) 

Eq. (22) 

where 𝑢1 is the length of axial expansion within the pipeline section 0 < 𝑥 < 𝑙𝑠 due to high pressure and high 

temperature. 𝑢2  is the geometric shortening, which allows for the additional length introduced by the lateral 

displacement. Eq. (22) simply states that, since there are virtual anchor points at distance 𝑙s from the centre of the 

pipe, the extra length of pipe in the buckle must come from axial expansion of the mobilised segment of pipe. 

We have 

𝑢1 = ∫
∆𝑃̅(𝑥)

𝐸𝐴
𝑑𝑥

𝑙𝑠

0
                                    (23) 

Eq. (23) 

where ∆𝑃̅(𝑥) is the amount of decrease of axial compressive force along the pipeline after the pipeline buckles, 

which, from Eq. (9), is given by 

∆𝑃̅(𝑥) = {
𝑃0 − 𝑃              0 < 𝑥 < 𝑙1
𝑓𝐴(𝑙𝑠 − 𝑥)        𝑙1 < 𝑥 < 𝑙𝑠

                               (24) 

Eq. (24) 

Thus, we find 

𝑢1 =
𝑓𝐴(𝑙𝑠−𝑙1)

2

2𝐸𝐴
+
(𝑃0−𝑃)𝑙1

𝐸𝐴
                                      (25) 

Eq. (25) 

Meanwhile, for 𝑢2 we have 

𝑢2 =
1

2
∫ (

𝑑𝑤1

𝑑𝑥
)
2
𝑑𝑥

𝑙1
0

+
1

2
∫ (

𝑑𝑤2

𝑑𝑥
)
2
𝑑𝑥

𝑙2
𝑙1

                                 (26) 

Eq. (26) 

Combining Eq. (22) and Eq. (25), we obtain the following equation 

𝑙𝑠 = √
1

3
𝑙1
2 +

2𝐸𝐴𝑢2

𝑓𝐴
                                   (27) 
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Eq. (27) 

from which, with the use of Eq. (21) and Eq. (8), we finally obtain 

𝑃0 = 𝑃 + 𝑓𝐴 (√
1

3
𝑙1
2 +

2𝐸𝐴𝑢2

𝑓𝐴
−
2

3
𝑙1)                                (28) 

Eq. (28) 

Within the range of linear elastic response this compressive force 𝑃0 can be written as 

𝑃0 = 𝐸𝐴𝛼𝑇0                                          (29) 

Eq. (29) 

where 𝛼  is the coefficient of linear thermal expansion. 𝑇0  is here the total temperature difference, which is 

composed of the initial temperature difference and the equivalent temperature difference generated by internal 

pressure. 

So given 𝑇0, Eq. (29), Eq. (28) and Eq. (26) (with Eq. (14) and Eq. (15) inserted) can be solved in conjunction 

with Eq. (16) and Eq. (17) to obtain 𝑃 , 𝑙2  and the coefficients 𝐴1 − 𝐴4  and 𝐵1 − 𝐵4 , and hence the lateral 

deflection 𝑤1, 𝑤2. 

The bending moment 𝑀𝑚 along the buckled pipeline can be obtained by 

𝑀𝑚 = 𝐸𝐼
𝑑2𝑤

𝑑𝑥2
                                         (30) 

Eq. (30) 

where w stands for either 𝑤1 or 𝑤2. Thus, the corresponding bending stress σ𝑀 along the buckled pipeline is 

σ𝑀 =
𝑀𝑚𝐷

2𝐼
                                        (31) 

Eq. (31) 

where D is the external diameter of the pipe. The maximum stress 𝜎𝑚  along the pipeline induced by axial 

compressive force 𝑃 and bending moment 𝑀𝑚 can be obtained from the following expression 

𝜎𝑚 =
𝑃

𝐴
+
𝑀𝑚𝐷

2𝐼
                                        (32) 

Eq. (32) 

3. Analytical results 

3.1 Relationship between 𝛌 and 𝒍𝟐 

The solution for the pipeline deflection 𝑤1, 𝑤2 can be presented in semi-explicit form by using Eq. (16) and Eq. 

(17) to express the coefficients 𝐴i, 𝐵i in terms of λ, 𝑙2 and all the parameters of the problem (see the Appendix). 

For the relationship between λ and 𝑙2 we then still need to solve a transcendental equation. For pipelines without 

sleeper (𝑣𝑜𝑚 = 0 ) the value of λ𝑙2  is 4.4934. However, for pipelines with sleeper (𝑣𝑜𝑚 > 0 ) the value of λ𝑙2 

changes with sleeper height 𝑣𝑜𝑚 and friction coefficient 𝜇𝑠 between pipeline and sleeper. For 𝑣𝑜𝑚 = 0.5 m and 

𝜇𝑠 = 0.1, the relationship between 𝑙2 and λ is given graphically in Fig. 3-a. By using Eq. (28) and Eq. (29) we can 

also obtain the relationship between 𝑙2 and the temperature difference 𝑇0. The result is shown in Fig. 3-b. Note that 

conversion from 𝑃 to 𝑇0 leads to a fold in the solution curve: a single temperature corresponds to two different 

central compressive forces. This non-uniqueness of solutions highlights the need for a stability analysis, which we 

perform by means of an energy analysis in which we determine the total energy involved in thermal pipeline buckling. 
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     (a)                                          (b) 

Fig. 3 Length of the buckled region 𝑙2. (a) Relationship between 𝑙2 and λ. (b) Relationship between 𝑙2 and 𝑇0. 

𝑣𝑜𝑚 = 0.5 m. 𝜇𝑠 = 0.1. 

3.2 Energy analysis of a typical buckling path 

The typical relationship between lateral buckling amplitude 𝑤𝑚 and total temperature difference 𝑇0 for a typical 

solution with sleeper is shown in Fig. 4. The significant point 𝑚 along the post-buckling path corresponds to the 

minimum critical temperature difference 𝑇𝑚. 𝑇𝑚 =  15.5121 ℃ for this case. For 𝑇0 > 𝑇𝑚 two solution branches 

exist, which will be referred to as 𝑚-𝑏 and 𝑚-𝑐, as shown in Fig. 4. We shall compare the energies. 

The total potential energy relating to the buckled pipeline (in the feed-in region 0 ≤ 𝑥 ≤ 𝑙𝑠) is given by 

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4                                          (33) 

Eq. (33) 

The bending strain energy 𝑉1 can be expressed as 

𝑉1 =
1

2
𝐸𝐼 ∫ (

𝑑2𝑤1

𝑑𝑥2
)
2

𝑑𝑥
𝑙1
0

+
1

2
𝐸𝐼 ∫ (

𝑑2𝑤2

𝑑𝑥2
)
2

𝑑𝑥
𝑙2
𝑙1

                       (34) 

Eq. (34) 

The energy loss 𝑉2 due to lateral soil resistance is 

𝑉2 = ∫ |𝑓𝑤2(𝑥)|𝑑𝑥
𝑙2
𝑙1

+ |𝑓𝑜𝑤𝑤1(0)|+ |𝑓𝑡𝑤1(𝑙1)|                         (35) 

Eq. (35) 

The energy loss 𝑉3 due to axial soil resistance is 

𝑉3 = ∫ |𝑓𝐴𝑢(𝑥)|𝑑𝑥
𝑙s
𝑙1

+ |𝑓𝐴𝑡𝑢(𝑙1)|                                    (36) 

Eq. (36) 

The axial compressive strain energy 𝑉4 is 

𝑉4 =
1

2𝐸𝐴
∫ 𝑃̅(𝑥)2𝑑𝑥
𝑙𝑠
0

                                           (37) 

Eq. (37) 

while the total potential energy of the straight pipeline, namely before buckling, is given by 

𝑉𝑖 =
1

2𝐸𝐴
∫ 𝑃0

2𝑑𝑥
𝑙𝑠
0

                                              (38) 

Eq. (38) 
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Fig. 4 Typical buckling path. 𝑣𝑜𝑚 = 0.5 m. 𝜇𝑠 = 0.1. 

When 𝑇0 is lower than 𝑇𝑚 only the trivial state (𝑤𝑚 = 0) exists and no lateral buckling occurs. The pipeline 

remains in the vertical plane. However, when 𝑇0 is larger than 𝑇𝑚, two lateral buckling states exist. Take 𝑇0 =

16.75 ℃ , for example. When 𝑇0  reaches 16.75 ℃ , the pipeline will remain unbuckled in the absence of a 

disturbance or imperfection, corresponding to point 𝑑 in Fig. 4. However, the deformed states b and c are available 

as well and a sufficiently large disturbance may cause a jump from d to one of these buckled states. From the fact 

that the post-buckling branch does not intersect the trivial branch we deduce that there is no critical temperature 𝑇0 

at which the pipe starts gradually to move sideways on the sleeper. Instead, the pipe will lift off the sleeper and then, 

at slightly higher 𝑇0, fall sideways back onto the sleeper. Thus a jump occurs from d to a point near b or c in Fig. 4. 

The total energy is calculated through Eq. (33) to determine the relative stability of the two branches. Since 𝑙𝑠 

depends on the precise shape of the solution, energies V for different solutions are not directly comparable. For a 

meaningful comparison we ensured pipes had equal length by adding extra length of (axially strained) pipe as 

necessary. 

The total energy of branches 𝑚 -𝑏  and 𝑚 -𝑐  for the lateral post-buckling state are denoted by 𝑉𝑏  and 𝑉𝑐 , 

respectively. 𝑉𝑖𝑏 and 𝑉𝑖𝑐 are the total potential energies of the unbuckled pipeline with sleeper of corresponding 

length 𝑙𝑠. 𝑉𝑏/𝑉𝑖𝑏 and 𝑉𝑐/𝑉𝑖𝑐 are illustrated in Fig. 5. We see that all the values of 𝑉𝑏/𝑉𝑖𝑏 are less than those of 

𝑉𝑐/𝑉𝑖𝑐, which means that the branch 𝑚-𝑏 is more stable than branch 𝑚-𝑐. In addition, the value of 𝑉𝑐/𝑉𝑖𝑐 first 

increases slightly and then decreases with increasing temperature difference, while all the values of 𝑉𝑐/𝑉𝑖𝑐 are larger 

than 1, which means that branch 𝑚-c is less stable than the trivial solution. The value of 𝑉𝑏/𝑉𝑖𝑏 decreases with 

increasing temperature difference, which means that the branch 𝑚 -𝑏  becomes more stable with increasing 

temperature difference. 𝑉𝑏/𝑉𝑖𝑏 = 1 when the temperature difference reaches 𝑇𝑒 = 16.58 ℃. For 𝑇0 < 𝑇𝑒, 𝑉𝑏/𝑉𝑖𝑏 

is bigger than 1, which means that the trivial solution is more stable. For 𝑇0 > 𝑇𝑒, 𝑉𝑏/𝑉𝑖𝑏 is smaller than 1, which 

means that the branch 𝑚-𝑏 is more stable than the trivial state. 

Fig. 4 also displays the buckling curve for the same pipeline without sleeper. We see that for 𝑇0 > 𝑇𝑛  two 

deformed states are available and an energy analysis shows that again the upper branch contains solutions with lower 

energy than the trivial state. A pipeline without sleeper, therefore, would likely jump into a buckled state under a 

sufficiently large disturbance when 𝑇0  becomes larger than 𝑇𝑛 . This buckling would be sudden, without any 

warning signs, and could happen at any point of a long immobilised pipeline. This potentially dangerous scenario is 

avoided by using a sleeper, which forces the pipeline into a deformed state at a specific point and at lower 𝑇0 before 

the critical temperature 𝑇𝑛 is reached. We see in Fig. 4 that the amplitude of lateral deflection will be larger in the 

case of a sleeper (at the same temperature difference 𝑇0). The effect of the sleeper will be investigated in more detail 
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in Section 3.3. 

In Fig. 6 we analyse the composition of the total potential energy of the buckled pipeline, namely branch 𝑚-𝑏. 

Both 𝑉1/𝑉 and 𝑉2/𝑉 first increase slightly and then reduce to less than 10% with increasing temperature difference. 

However, 𝑉3/𝑉  increases rapidly with temperature. We conclude that for large temperature difference the main 

energy loss is due to axial soil resistance. 𝑉4/𝑉 decreases rapidly to 50% at about 25 ℃ first and then decreases 

slightly with increasing temperature difference. Thus, the total potential energy relating to the buckled pipeline 

consists mainly of 𝑉3 and 𝑉4. 

 

 

Fig. 5 Ratio of the energy between the buckled state and the pre-buckling state. 𝑣𝑜𝑚 = 0.5 m. 𝜇𝑠 = 0.1. 

 

 

Fig. 6 Composition of the total potential energy of the buckled pipeline. 𝑣𝑜𝑚 = 0.5 m. 𝜇𝑠 = 0.1. 

3.3 Influence of the sleeper on lateral buckling 

Table 1. Design parameters 

Parameters Values Unit 

External diameter 𝐷 323.9 mm 

Wall thickness 𝑡 12.7  mm 

Elastic modulus 𝐸 206 GPa 
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Steel density 𝜌 7850 kg/m3 

Coefficient of thermal expansion 𝛼 1.1×10−5 /℃ 

Lateral friction coefficient 𝜇𝐿 0.5  --- 

Axial friction coefficient 𝜇𝐴 0.5 --- 

Sleeper friction 𝜇𝑠 0.1/0.2/0.3 --- 

Sleeper height 𝑣𝑜𝑚 0.1/0.3/0.5 m 

In this section, a typical pipeline with sleeper resting on the seabed is analysed for the first lateral buckling mode. 

The deformed shapes and bending stresses along the pipeline with different sleeper height 𝑣𝑜𝑚 and sleeper friction 

𝜇𝑠 under the same temperature are analysed and discussed. The sleeper changes the properties of pipeline lateral 

buckling, such as the lateral buckling amplitude 𝑤𝑚, the half-length of buckled section 𝑙2, the axial compressive 

force 𝑃, the axial expansion displacement 𝑢1, the length of feed-in zone 𝑙𝑠 and the maximum axial compressive 

stress 𝜎𝑚. We demonstrate this sleeper effect by employing the analytical formulation developed in Section 2 taking 

the parameters in Table 1 as a realistic case study. In this section, all the analysis is based on branch m-b, namely the 

stable branch. 

3.3.1 Influence of the sleeper on the configuration 

The deformed shapes and the corresponding bending stresses σ𝑀 along the buckled pipeline with different sleeper 

height under the same operating temperature difference are presented in Fig. 7-a and Fig. 7-b, respectively. In Fig. 7-

a it is seen that both the buckled region and the lateral deflection for the buckled pipeline with sleeper are larger than 

those without sleeper, and grow with increasing sleeper height. We also note that the lateral displacement amplitude 

increases with increasing sleeper height. As for the bending stress σ𝑀, there are two locations of maximum bending 

stress along the buckled pipeline for a given sleeper height. For the chosen temperature difference 𝑇0 = 25 ℃, the 

maximum (compressive) bending stress at 𝑥 = 0 m  for the pipeline with sleeper height 𝑣𝑜𝑚 = 0.5  m is a little 

smaller than that without sleeper. However, for the pipeline with sleeper height 𝑣𝑜𝑚 = 0.1 m and 𝑣𝑜𝑚 = 0.3 m, the 

maximum (compressive) bending stress at 𝑥 = 0 m is larger than that without sleeper. Generally, for larger 𝑇0, the 

maximum (compressive) bending stress for a pipeline with sleeper is smaller than that for a pipeline without sleeper 

(see Fig. 14). For pipelines with different sleeper height, the maximum (compressive) bending stress decreases with 

increasing sleeper height. The sleeper height does not have much effect on the maximum (tensile) bending stress near 

𝑥 = 40 m, which is a little smaller than that without sleeper, while the maximum value of bending stress σ𝑀 at 𝑥 =

0 m is larger (in absolute value) than that at 𝑥 = 40 m. 

 

  (a)                                             (b) 

Fig. 7 The influence of sleeper height. (a) Deformed shapes. (b) Bending stress. 𝜇𝑠 = 0.1. 𝑇0 = 25 ℃. The dot 

represents the touchdown point 𝑥 = 𝑙1. 
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 (a)                                            (b) 

Fig. 8 The influence of sleeper friction. (a) Deformed shapes. (b) Bending stress. 𝑣𝑜𝑚 = 0.1 m. 𝑇0 = 25 ℃. The 

dot represents the touchdown point 𝑥 = 𝑙1. 

The deformed shapes and the corresponding bending stress σ𝑀 along the buckled pipeline with different values 

of sleeper friction under the same operating temperature difference are presented in Fig. 8-a and Fig. 8-b, respectively. 

In Fig. 8-a the lateral deflection of the pipeline with sleeper increases with decreasing sleeper friction and is larger 

than that without sleeper. The sleeper friction has a bigger effect on the region of lateral deflection that is closer to 

the sleeper. However, the sleeper friction does not have much effect on the size of the buckled region 𝑙2. From Fig. 

8-b we see that the maximum value of the bending stress σ𝑀 for a pipeline with sleeper friction 𝜇𝑠 = 0.1 and 𝜇𝑠 =

0.2 is larger than that without sleeper for the chosen temperature difference 𝑇0 = 25 ℃. Generally, for larger 𝑇0, 

the maximum (compressive) bending stress for a pipeline with sleeper is smaller than that for a pipeline without 

sleeper (see Fig. 14). For pipelines with different sleeper friction, the maximum (compressive) bending stress 

decreases with increasing sleeper friction. The sleeper friction does not have much effect on the bending stress σ𝑀. 

The maximum value of the bending stress σ𝑀 at 𝑥 = 0 m is larger (in absolute value) than that at 𝑥 = 40 m. 

3.3.2 Influence of the sleeper on the post-buckling behaviour 

 

(a) (b)  

Fig. 9 Lateral displacement amplitude 𝑤𝑚. (a) Different sleeper height 𝑣𝑜𝑚. 𝜇𝑠 = 0.1. (b) Different sleeper 

friction 𝜇𝑠. 𝑣𝑜𝑚 = 0.1m. 

The typical relationships between lateral displacement amplitude 𝑤𝑚 and total temperature difference 𝑇0 with 
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different values of sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠 are shown in Fig. 9-a and Fig. 9-b, respectively. We 

present results for 0 < 𝑇0 < 50℃ but note that deflections for large 𝑇0 are not reliable and need a large-deflection 

theory (for instance, for 𝑇0 =40℃ the deflection 𝑤𝑚 is about 6 m, which corresponds to 18 pipe diameters). It is 

seen from Fig. 9-a that 𝑇𝑚 decreases with increasing sleeper height 𝑣𝑜𝑚 for a given sleeper friction 𝜇𝑠. Also, 𝑇𝑚 

for pipelines with sleeper are all smaller than those for pipelines without sleeper. However, 𝑇𝑚  increases with 

increasing sleeper friction 𝜇𝑠 for a given sleeper height 𝑣𝑜𝑚, as seen in Fig. 9-b. The minimum critical temperature 

difference 𝑇𝑚 for a sleeper with 𝜇𝑠 = 0.3 is close to that for a pipeline without sleeper. 𝑇𝑚 will be larger than that 

for a pipeline without sleeper with increasing sleeper friction 𝜇𝑠. Thus, it is an effective method to reduce the value 

of sleeper friction 𝜇𝑠 in order to trigger lateral buckling. For given sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠 the 

lateral displacement amplitude 𝑤𝑚  increases with increasing total temperature difference 𝑇0 . The lateral 

displacement amplitude 𝑤𝑚 increases with increasing sleeper height 𝑣𝑜𝑚 and decreases with increasing sleeper 

friction 𝜇𝑠 under the same temperature difference 𝑇0, and is bigger than that of a pipeline without sleeper. 

 

 (a)                                            (b) 

Fig. 10 Half-length 𝑙2 of the buckled section. (a) Different sleeper height 𝑣𝑜𝑚. 𝜇𝑠 = 0.1. (b) Different sleeper 

friction 𝜇𝑠. 𝑣𝑜𝑚 = 0.1m. 

The typical relationships between the half-length of the buckled section 𝑙2 and the total temperature difference 

𝑇0  with different values of sleeper height 𝑣𝑜𝑚  and sleeper friction 𝜇𝑠  are shown in Fig. 10-a and Fig. 10-b, 

respectively. For given sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠 the half-length 𝑙2 increases with increasing total 

temperature difference 𝑇0, as seen in Fig. 10. But the rate of increase reduces with increasing 𝑇0 and the half-length 

𝑙2 increases with increasing sleeper height 𝑣𝑜𝑚 and decreases with increasing sleeper friction 𝜇𝑠 under the same 

temperature difference 𝑇0, and is bigger than that of a pipeline without sleeper. 
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      (a)                                            (b) 

Fig. 11 Axial compressive force 𝑃. (a) Different sleeper height 𝑣𝑜𝑚. 𝜇𝑠 = 0.1. (b) Different sleeper friction 𝜇𝑠. 

𝑣𝑜𝑚 = 0.1m. 

The relationships between axial compressive force 𝑃 and total temperature difference 𝑇0 with different values 

of sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠 are shown in Fig. 11-a and Fig. 11-b, respectively. It is seen from Fig. 

11 that the axial compressive force 𝑃 decreases with increasing total temperature difference 𝑇0 for given sleeper 

height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠. This shows that the process of lateral buckling results in an axial compressive 

force reduction under increasing 𝑇0. The axial compressive force 𝑃 decreases with increasing sleeper height 𝑣𝑜𝑚 

and increases with increasing sleeper friction 𝜇𝑠 under the same temperature difference 𝑇0. Thus, the pipeline will 

be more stable because of smaller axial compressive force 𝑃 in the post-buckling stage for larger sleeper height 

𝑣𝑜𝑚 and smaller sleeper friction 𝜇𝑠. However, the free span length (2𝑙1) will increase with increasing sleeper height 

𝑣𝑜𝑚 and since a pipeline with larger span length has lower natural frequency, which will be closer to the fluid vortex 

frequency, this will more easily lead to vortex-induced vibration [40]. So both lateral buckling and vortex-induced 

vibration should be considered for the selection of an appropriate sleeper height 𝑣𝑜𝑚. 

The relationships between axial expansion displacement 𝑢1 and total temperature difference 𝑇0 with different 

values of sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠 are shown in Fig. 12-a and Fig. 12-b, respectively. It is seen 

from Fig. 12 that the axial expansion displacement 𝑢1 increases with increasing total temperature difference 𝑇0 for 

given sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠. The axial expansion displacement 𝑢1 is larger for larger sleeper 

height 𝑣𝑜𝑚 or smaller sleeper friction 𝜇𝑠. Because the lateral displacement will increase with increasing sleeper 

height 𝑣𝑜𝑚 (see Fig. 7-a) and decrease with increasing sleeper friction 𝜇𝑠 (see Fig. 8-a), which requires more axial 

feed-in displacement for larger sleeper height 𝑣𝑜𝑚  and smaller sleeper friction 𝜇𝑠 , and the axial feed-in 

displacement comes from the axial expansion of the pipeline, the length of feed-in zone 𝑙𝑠  also increases with 

increasing sleeper height 𝑣𝑜𝑚  and decreases with increasing sleeper friction 𝜇𝑠  under the same temperature 

difference, as shown in Fig. 13. We also see from Fig. 13 that the length of the feed-in zone 𝑙𝑠  increases with 

increasing total temperature difference 𝑇0 for given sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠. Thus, a series of 

sleepers can be artificially installed at planned locations to control the length of the feed-in zone 𝑙𝑠, which can be 

used to mitigate lateral buckle formation by adjusting the intervals between sleepers. 
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      (a)                                            (b) 

Fig. 12 Axial expansion displacement 𝑢1. (a) Different sleeper height 𝑣𝑜𝑚. 𝜇𝑠 = 0.1. (b) Different sleeper friction 

𝜇𝑠. 𝑣𝑜𝑚 = 0.1m. 

 

        (a)                                              (b) 

Fig. 13 Length 𝑙𝑠 of the feed-in zone. (a) Different sleeper height 𝑣𝑜𝑚. 𝜇𝑠 = 0.1. (b) Different sleeper friction 

𝜇𝑠. 𝑣𝑜𝑚 = 0.1m. 
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        (a)                                              (b) 

Fig. 14 Maximum axial compressive stress 𝜎𝑚. (a) Different sleeper height 𝑣𝑜𝑚. 𝜇𝑠 = 0.1. (b) Different sleeper 

friction 𝜇𝑠. 𝑣𝑜𝑚 = 0.1m. 

The relationships between the maximum axial compressive stress 𝜎𝑚 and the total temperature difference 𝑇0 

with different values of sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠 are shown in Fig. 14-a and Fig. 14-b, respectively. 

It is seen from Fig. 14 that the maximum axial compressive stress 𝜎𝑚 increases (in absolute value) with increasing 

total temperature difference 𝑇0 for given sleeper height 𝑣𝑜𝑚 and sleeper friction 𝜇𝑠. The rate of increase decreases 

with increasing sleeper height 𝑣𝑜𝑚. However, the rate of increase for different values of the sleeper friction 𝜇𝑠 stays 

almost the same. From Fig. 14, the maximum axial compressive stress 𝜎𝑚 decreases with increasing sleeper height 

𝑣𝑜𝑚 and sleeper friction 𝜇𝑠 under the same temperature difference 𝑇0, and is smaller than that for a pipeline without 

sleeper. Thus, increase of sleeper height 𝑣𝑜𝑚 can be used as a method to reduce the maximum axial compressive 

stress 𝜎𝑚 of the pipeline in the post-buckling stage. Consequently, the integrity of the pipeline within the buckle is 

improved. However, the minimum critical temperature difference will be increased when the sleeper friction 𝜇𝑠 is 

increased. Moreover, the rate of decrease of the maximum axial compressive stress 𝜎𝑚 is not affected much by 

increasing the sleeper friction 𝜇𝑠 . Therefore, it is not an appropriate strategy to reduce the maximum axial 

compressive stress 𝜎𝑚 by increasing the sleeper friction 𝜇𝑠. 

3.4 Imperfection effect 

The analysis so far has assumed that the profile of the pipeline is perfectly straight in the horizontal plane, namely 

no horizontal offset. Deviations from a straight profile for pipelines laid on the sleeper are introduced by the pipe-

laying vessel’s sway motion during the installation process. Large lateral offsets may be difficult to implement during 

installation; only very small offsets are likely during normal installation [35, 39]. The out of-straightness or initial 

lateral imperfection can lower the safe temperature difference and affect the post-buckling behaviour. Therefore, it is 

important to investigate the effect of imperfections on the lateral buckling behaviour of pipelines with sleeper. In this 

analysis, a lateral deflection imperfection is imposed around the location of the sleeper, the configuration of which is 

the configuration obtained in this paper, namely 𝑤1 and 𝑤2. So only the amplitude of the initial imperfection 𝑤om 

should be applied. There are two possible states for a pipeline initial imperfection: unstressed and stressed pipe. The 

unstressed pipe corresponds to a local imperfection in the pipe itself, which means the initial state of the pipeline 

with such an imperfection is unstressed. The stressed pipe represents the case where the unstressed pipeline is straight 

and where it forms an initial curvature due to the pipe-laying vessel’s sway motion or foundation irregularities. So 

the imperfection included here is the stressed case. For this case, the equations governing the horizontal deflection 

will not be affected. The effect of the initial imperfection is that an initial geometric shortening 𝑢20 exists. This 
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shortening 𝑢20 can be calculated by Eq. (26) when the amplitude of initial imperfection 𝑤om is given. So, Eq. (28) 

should be rewritten as 

𝑃0 = 𝑃 + 𝑓𝐴 (√
1

3
𝑙1
2 +

2𝐸𝐴(𝑢2−𝑢20)

𝑓𝐴
−
2

3
𝑙1)                                (39) 

Eq. (39) 

 

Fig. 15 The effect of imperfections on the load-deflection behavior. Arrows indicate dynamic jumps under 

increasing (to the right) or decreasing (to the left) 𝑇0. 

The effect of imperfections on the load-deflection behaviour of the pipeline is illustrated in Fig. 15, which shows 

an enlargement of the region of interest in Fig. 4 with some typical imperfection curves added. From Fig. 15, we see 

that for smaller values of the imperfection amplitude, such as 𝑤om = 0.2 m, the load-deflection curves have folds 

where dynamic jumps of the structure may occur under both increasing and decreasing temperature. Taking 𝑤om =

0.2 m as an example, when the temperature difference increases to 𝑇0(a), the pipeline will jump from point a to 

point b if some disturbance occurs. With further increasing temperature difference, the pipeline will follow the post-

buckling path. When the temperature difference decreases from 𝑇0(b)  to 𝑇0(c) , the pipeline will follow the 

buckling from point b to point c. Then, the pipeline will jump from point c back to point d. For larger values of the 

imperfection amplitude, such as 𝑤om = 0.8 m, the snap-through phenomenon disappears.  

3.5 Error analysis and validation 

The main approximation we make in our model (apart from the assumption of small deflections) is that we calculate 

the lateral buckling solution for constant compressive force P (cf. Eq. (12)), an approximation generally made in the 

literature (e.g., [10]). In doing this we ignore the extra contributions to the pressure for 𝑙1 < 𝑥 < 𝑙2 in Eq. (9). 

However, it is good to stress that we make this approximation only in calculating the shape of the lateral buckling 

solution and not in the computation of the corresponding temperature difference (based on deformational 

compatibility) and not in the energy analysis. We shall call this Case a.  

In order to investigate the error incurred by this constant-P approximation, we also calculate the lateral buckling 

solution with constant compressive force 𝑃 + 𝑓𝐴𝑡 + 𝑓𝐴(𝑙2 − 𝑙1) (Case b). Since this is the maximum compressive 

force attained in the buckled region, Case b will give us an upper bound to the error. The lateral displacement 

amplitude and maximum axial compressive stress of Case b are denoted by 𝑤𝑚𝑏 and 𝜎𝑚𝑏, respectively. The two 

cases are compared in Fig. 16 and Fig. 17. Fig. 16 shows that the difference between Case a and Case b is very small, 

the critical temperatures being 15.515 ℃ and 15.185 ℃, respectively (an error of 2.13%). From Fig. 17 we see that 

the error of lateral displacement amplitude and maximum axial compressive stress between Case a and Case b is 

large around the critical temperature, but decreases rapidly to -3% ~ 3% away from the critical temperature. The large 
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relative error near criticality is natural since the lateral deflection is so small. It causes no problems in practice as the 

absolute stress levels involved are very low (see Fig. 16). 

 

    (a)                                           (b) 

Fig. 16 Comparison of Case a and Case b. (a) Lateral displacement amplitude. (b) Maximum axial compressive 

stress. 

 

   (a)                                         (b) 

Fig. 17 The error between Case a and Case b. (a) (𝑤𝑚𝑏 −𝑤𝑚)/𝑤𝑚. (b) (𝜎𝑚𝑏 − 𝜎𝑚)/𝜎𝑚. 
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Fig. 18 Pipeline with three sleepers and the corresponding axial compressive force distribution. 
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Fig. 19 Validation with test data. 

In order to validate the analytical results proposed in this paper, another case is calculated by using the test 

parameters listed in Table 2. These parameters are the same as those used in the reduced-scale model in [25]. The 

total pipe length in [25] was 195 m. Three sleepers with equal spacing of 2𝑙𝑎 = 65 m were installed to trigger lateral 

buckling, as shown in Fig. 18. 𝑙𝑎 represents the maximum axial feed-in length. 𝑃𝑎 is the axial compressive force 

at the virtual anchors between two buckles. By symmetry, the axial feed-in displacement at the midpoint between 

two sleepers, namely at the virtual anchor between two buckles, is zero. So, for comparison with our model, we only 

consider a pipeline section over one sleeper and of length 𝐿 = 65 m. For this case, the maximum axial feed-in length 

𝑙𝑎 is 32.5 m. When the feed-in length 𝑙𝑠 is smaller than 𝑙𝑎, so that two adjacent buckles triggered by two adjacent 

sleepers are independent, all the formulae derived in this paper can be applied. When 𝑙𝑠 is larger than 𝑙𝑎, the formula 

for axial compressive force should be modified due to the limit of axial feed-in length. In that case, by axial force 

balance, we have 

𝑃𝑎 = 𝑃 + 𝑓𝐴(𝑙𝑎 − 𝑙1) + 𝑓𝐴𝑡                                (40) 

Eq. (40) 

and the length of axial expansion within the pipeline section 0 < 𝑥 < 𝑙𝑎 should be modified to 

𝑢1 = ∫
∆𝑃̅(𝑥)

𝐸𝐴
𝑑𝑥

𝑙𝑎

0
                                    (41) 

Eq. (41) 

where 

∆𝑃̅(𝑥) = {
𝑃0 − 𝑃              0 < 𝑥 < 𝑙1
𝑓𝐴(𝑙𝑎 − 𝑥)        𝑙1 < 𝑥 < 𝑙𝑎

                              (42) 

Eq. (42) 

Then, given 𝑇0 and 𝑙𝑎, Eq. (26), Eq. (29), Eq. (41), Eq. (42) and (with Eq. (14) and Eq. (15) inserted) can be solved 

in conjunction with Eq. (16) and Eq. (17) to obtain 𝑃, 𝑙2 and the coefficients 𝐴1 − 𝐴4 and 𝐵1 − 𝐵4, and hence the 

lateral deflection 𝑤1, 𝑤2.  

The results from model test and analytical method are compared in Fig. 19. The present analytical results appear 

to agree very well with the test data. For comparison, we also include in Fig. 19 results (labelled ‘Pipe length=infinite’) 

obtained by assuming that always 𝑙𝑠 < 𝑙𝑎, i.e., that the required feed-in length 𝑙𝑠 is always available. We see that 

the lateral displacement amplitude 𝑤𝑚 for a pipe of length 65 m is much smaller than that for a pipe of ‘infinite 

length’. This explains why many sleepers should be installed at regular intervals to trigger pipeline buckling at several 

planned locations. 
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Table 2. Test parameters 

Parameters Values Unit 

External diameter 𝐷 15 mm 

Wall thickness 𝑡 0.9  mm 

Elastic modulus 𝐸 191 GPa 

Pipeline submerged weight 3.94 N/m 

Coefficient of thermal expansion 𝛼 1.75×10−5 /℃ 

Lateral friction coefficient 𝜇𝐿 0.7  --- 

Axial friction coefficient 𝜇𝐴 0.7 --- 

Sleeper friction 𝜇𝑠 0.1 --- 

Sleeper height 𝑣𝑜𝑚 0.03 m 

Pipe length 𝐿 65 m 

 

4. Conclusions 

We have derived analytical solutions for the lateral buckling of unburied subsea pipelines with sleeper. The 

solutions are based on small-deflection (beam) theory, but take exact account of the compatibility between axial and 

lateral deformation to obtain curves of lateral deflection and axial compressive stress against temperature difference 

𝑇0.  

From our parameter studies the following conclusions can be drawn: 

(i) The energy analysis reveals several critical temperatures for pipelines with and without sleeper (see Fig. 4). No 

lateral buckling solutions exist for temperatures less than 𝑇𝑚, which therefore represents an upper bound to safe 

operating temperatures for the pipeline. For temperatures larger than 𝑇𝑚 two solutions with sleeper are available. 

Initially these have larger energy than the unbuckled pipe. However, we find that, typically, for only slightly higher 

temperatures (𝑇0 > 𝑇𝑒) one of the solutions acquires an energy lower than that of the trivial solution (see Fig. 5). For 

such temperatures, the unbuckled pipe with sleeper can therefore be considered unstable under sufficiently large 

perturbations (e.g., dynamic disturbances due to irregular fluid flow through the pipe or earthquakes). Meanwhile, 

the pipeline without sleeper becomes similarly unstable under large perturbations at temperatures slightly larger than 

the higher temperature 𝑇𝑛. This instability, however, is sudden and may occur anywhere along the pipe. Thus, by 

introducing a controlled deformation at a specific location, a sleeper causes the pipeline to buckle laterally at lower 

temperature 𝑇0, thereby avoiding a potentially hazardous instability. 

(ii) For pipelines with sleeper, under the same operating temperature difference, both the buckled region and the 

lateral deflection of the buckled pipeline with sleeper are larger than those without sleeper, and both grow with 

increasing sleeper height and decreasing sleeper friction. Also, the maximum bending stress at the midpoint of the 

pipeline with sleeper is smaller than that without sleeper, and further decreases with increasing sleeper height. 

However, the sleeper friction does not have much effect on the bending stress. 

(iii) The minimum critical temperature difference decreases with increasing sleeper height for given sleeper friction 

and increases with increasing sleeper friction for given sleeper height, and is smaller than that of pipelines without 

sleeper. Thus, it is an appropriate strategy to increase the sleeper height or to decrease the sleeper friction to reduce 

the minimum critical temperature difference. 

(iv) Under the same temperature difference, the lateral displacement amplitude increases and the maximum axial 

compressive stress decreases with increasing sleeper height. However, both the lateral displacement amplitude and 

the maximum axial compressive stress decrease with increasing sleeper friction. The maximum axial compressive 

stress increases with increasing total temperature difference for given sleeper height and sleeper friction and the rate 

of increase decreases with increasing sleeper height. However, the rate of increase for different values of the sleeper 
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friction stays almost the same. Thus, it is an appropriate strategy to reduce the maximum axial compressive stress by 

increasing the sleeper height. 

(v) For relatively small values of the imperfection amplitude, a snap-through instability occurs, which disappears 

for sufficiently large imperfection amplitude. 

(vi) We consider the case of a single sleeper, but in Section 3.5 indicate how the model can be extended to multiple 

sleepers. This involves putting a maximum on the available feed-in length 𝑙𝑠 given by the spacing of the sleepers. 

The use of multiple sleepers reduces the maximum deflection and the maximum compressive stress of the pipeline, 

so when applied to pipelines with multiple sleepers our model is less affected by the limitations of the small-deflection 

assumption. 
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Appendix A. 

𝐴1 =
sec(𝜆𝑙2)(𝑓cos(𝜆(𝑙1−𝑙2))−𝑓−𝑓𝑜𝑤𝜆 sin(𝜆𝑙2)+𝑓𝑡𝜆 sin(𝜆(𝑙1−𝑙2)))

𝐸𝐼𝜆4
                  Eq. (A.1) 

𝐴2 =
𝑓𝑜𝑤

𝐸𝐼𝜆3
                                                        Eq. (A.2) 

𝐴3 = −
𝑓𝑜𝑤

EI𝜆2
                                                      Eq. (A.3) 

𝐴4 =
𝑓(𝑙1−𝑙2)

2+2𝑓𝑜𝑤𝑙2+2𝑓𝑡(𝑙2−𝑙1)

2𝐸𝐼𝜆2
                                       Eq. (A.4) 

𝐵1 = −
tan(𝜆𝑙2)(−𝑓sin(𝜆𝑙1)+𝑓𝑜𝑤𝜆+𝑓𝑡𝜆 cos(𝜆𝑙1))+𝑓sec(𝜆𝑙2)

𝐸𝐼𝜆4
                       Eq. (A.5) 

𝐵2 =
−𝑓sin(𝜆𝑙1)+𝑓𝑜𝑤𝜆+𝑓𝑡𝜆cos(𝜆𝑙1)

𝐸𝐼𝜆4
                                      Eq. (A.6) 

𝐵3 = −
−𝑓𝑙1+𝑓𝑜𝑤+𝑓𝑡

𝐸𝐼𝜆2
                                                Eq. (A.7) 

𝐵4 =
𝜆2𝑙2(2(−𝑓𝑙1+𝑓𝑜𝑤+𝑓𝑡)+𝑓𝑙2)+2𝑓

2𝐸𝐼𝜆4
                                      Eq. (A.8) 
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