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Differential brainstem atrophy patterns in multiple sclerosis and neuromyelitis 

optica spectrum disorders  

 

 

Abstract 

Background: Multiple sclerosis (MS) and neuromyelitis optica spectrum 

disorders (NMOSD) are CNS inflammatory demyelinating disorders. It is 

clinically important to distinguish MS from NMOSD as treatment and prognosis 

differ. Brainstem involvement is common in both disorders. 

Purpose: To investigate whether the patterns of brainstem atrophy on 

volumetric analysis in MS and NMOSD were different and correlated with clinical 

disability.  

Study Type: Case control cross-sectional study 

Subjects: 17 MS, 13 NMOSD and 18 healthy control (HC) subjects were studied. 

Field Strength/Sequence: T1w and T2w spin-echo images were acquired by 3T 

scanner  (Achieva, Philips Healthcare, Best, The Netherlands).  

Assessment: Semi-automated segmentation and volumetric measurement of 

brainstem regions were performed. Anatomical information was obtained from 

whole brain T1w images using three-dimensional magnetization-prepared rapid 

gradient-echo (MPRAGE) imaging sequence (TR/TE/T: 7.0/3.2/800ms, voxel 

size: 1x1x1mm3, scan time: 10min41s). 

Statistical Tests: independent samples T-test, Mann-Whitney U test, partial 

correlation and multiple regression analysis 
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Results: Baseline characteristics were similar across the 3 groups, without 

significant difference in disease duration (p=0.354) and EDSS score (p=0.159) 

between MS and NMOSD subjects. Compared to HC, MS subjects had significantly 

smaller normalized whole brainstem (-5.2%, p=0.027), midbrain (-8.3%, 

p=0.0001) and pons volumes (-5.9%, p=0.048). while only the normalized 

medulla volume was significantly smaller in NMOSD subjects compared to HC (-

8.5% vs HC, p=0.024).  Normalized midbrain volume was significantly smaller in 

MS compared to NMOSD subjects (-5.0%, p=0.014) whereas normalized medulla 

volume was significantly smaller in NMOSD compared to MS subjects (-8.1%, 

p=0.032).  Partial correlations and multiple regression analysis revealed that 

smaller normalized whole brainstem, pons and medulla oblongata volumes were 

associated with greater disability on Expanded Disability Status Scale (EDSS), 

Functional System Score (FSS)-brainstem and FSS-cerebellar in NMOSD subjects.  

Data Conclusion: Differential patterns of brainstem atrophy were observed, 

with the midbrain being most severely affected followed by pons in MS, whereas 

only the medulla oblongata was affected in NMOSD.  

 

 

Keywords: multiple sclerosis, neuromyelitis optica spectrum disorders, brainstem 

atrophy, brainstem regional volume, disability 
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Introduction 

Multiple sclerosis (MS) is an important central nervous system inflammatory 

demyelinating disorder (CNS IDD) and the most common non-traumatic cause of 

neurological disabilities  among young patients (1). It is an immune-mediated 

disorder with uncertain etiology and immunopathogenesis.  The majority of MS 

patients have a course at onset typified by recurrent attacks of unilateral optic 

neuritis, short-segment myelitis, and involvement of cerebral hemispheres, 

cerebellum and brainstem separated by variable and unpredictable intervals, 

classified as relapsing-remitting multiple sclerosis (RRMS) (1). 

Histopathologically, MS is characterized by CNS demyelination, axonal injury and 

loss, lymphocytic inflammatory infiltrate and reactive astrocytes during acute 

neuroinflammation and chronic demyelination, partial remyelination, axonal and 

neuronal loss, astrogliosis, and brain and spinal cord atrophy in the chronic 

phase (2, 3).  

 

Neuromyelitis optica spectrum disorders (NMOSD) belong to another group of 

CNS IDD.  The majority of NMOSD patients have relapsing attacks of 

neuroinflammation, classically severe unilateral or bilateral optic neuritis, 

longitudinally extensive myelitis, and less commonly cerebral involvement 

affecting the dorsal medulla (area postrema), other brainstem regions, peri-

ventricular and peri-ependymal regions of the diencephalon, as well as cerebral 

hemispheres which can mimic MS (4, 5). However, NMOSD is distinct from MS as 

the underlying pathophysiology, autoimmunity against the aquaporin-4 (AQP4) 

water channel, is present in the majority of NMOSD patients but absent in MS 

patients (6). This is evidenced by the detection of autoantibodies against 
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aquaporin-4 (AQP4-IgG) in the serum of the majority of NMOSD (~75%), but not 

in MS patients (7). Inflammatory infiltrates composed of macrophages, 

neutrophils, eosinophils and variable amount of lymphocytes, demyelination, 

white and gray matter necrosis, vasculocentric deposition of immunoglobulins 

and complement activation products (C9neo) with hyalinized blood vessel walls, 

loss of AQP4 and astrocytes, cavitation, and cord atrophy are the typical 

pathologies observed in affected spinal cord of AQP4-IgG positive NMOSD 

patients (8, 9). 

 

The prevalence of MS is much higher among Caucasians than Asians whereas 

NMOSDs are more prevalent among Asians including Hong Kong Chinese than 

Caucasians. Our recent single-center study revealed that MS and NMOSD account 

for 41.9% and 22.4% of CNS IDD in our patients respectively suggesting that MS 

and NMOSD are the two most common CNS IDD in Hong Kong Chinese (10). The 

distinction of MS from NMOSD is important as long-term disease-modifying 

therapies (DMTs) for MS such as interferon-β, fingolimod and natalizumab may 

be ineffective and even harmful for NMOSD (11-13). Early diagnosis of NMOSD 

confirmed with detection of AQP4-IgG is critically important as prompt initiation 

of immunosuppressive therapy is indicated to prevent relapses which are 

typically severe, disabling and even life-threatening (9, 14). 

 

The brainstem is frequently affected, both clinically and radiologically, in both 

MS and NMOSD patients (15, 16). We hypothesized that the brainstem volume is 

significantly reduced in our MS and NMOSD patients, and the pattern of volume 

loss is different between MS and NMOSD as the medulla seems more commonly 
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and severely affected in NMOSD. , In this study, we aimed to measure the 

brainstem volume at midbrain, pons, and medulla level in a cohort of Chinese MS 

and NMOSD patients, and analyze whether the regional brainstem volumes 

correlate with neurological disability scores of the patients, which may help to 

understand the differences in patterns of neurological disability. 
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Methods 

Recruitment of subjects 

MR images of 17 RRMS patients, 13 NMOSD patients and 18 healthy control (HC) 

subjects were investigated.  Diagnoses of MS and NMOSD were made according 

to the 2010 revisions to the McDonald Criteria of the International Panel on 

Diagnosis of MS (17) and 2006 revised diagnostic criteria for neuromyelitis 

optica (18) respectively. All the NMOSD subjects included also fulfill the recently 

revised diagnostic criteria (6). None of the HC subjects had a neurological or 

psychological condition, physical disability, or abnormality on brain MR images. 

Neurologic disabilities of the MS and NMOSD subjects were assessed by a 

neurologist (K.H.C.) at the time of MR scan, and graded according to Kurtzke 

Functional System Scores (FSS) and the Expanded Disability Status Scale (EDSS) . 

This study was approved by the local institutional review board. Informed 

consents were obtained from all participants. 

 

 

MRI acquisition 

Imaging was performed on a 3T scanner (Achieva, Philips Healthcare, Best, The 

Netherlands) with a body coil for excitation and an 8-channel head coil for 

reception. Anatomical information was obtained from whole brain T1-weighted 

(T1w) images acquired using three-dimensional magnetization-prepared rapid 

gradient-echo (MPRAGE) imaging sequence (TR/TE/T: 7.0/3.2/800ms, voxel 

size: 1x1x1mm3, scan time: 10min41s). Additionally, T2-weighted (T2w) spin-

echo images were acquired (44 axial slices with no inter-slice gap, slice thickness: 

3mm, in-plane resolution: 1mmx1mm). Both T1w and T2w images were 
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examined to exclude pathology other than MS or NMOSD by a neuroradiologist 

(H.K.M.) with  24 years of experience in clinical work and research in 

neuroradiology.   

 

 

Image processing and volumetric analysis 

The T1w-MPRAGE images were first processed with the automatic structural 

imaging processing stream (19) in Freesurfer v5.3.0 (20). Cerebellar volumes 

were generated by the standard Freesurfer processing pipeline. Brainstem 

segmentation was then refined with the brainstem substructures tools (21). 

Visual checking and manual corrective voxel-editing of the brainstem 

segmentations were then performed by a neurologist (C.Y.L.) with experience in 

neuroimaging processing. Volumes of the brainstem structures were computed 

based on these corrected segmentations.   

 

To account for differences in brain sizes attributable to variation in head size 

(22-24), all volumes were adjust for head size variation. Total intracranial 

volume (TICV) was estimated using SPM12 (http://www.fil.ion.ucl.ac.uk/spm 

/software/spm12) with its “Segment” and “Tissue Volumes” utilities (25). 

Hyperintense lesions on T2w images were manually outlined by a neurologist 

(C.Y.L.) with experience in neuroimaging processing and T2 lesion volume (T2LV) 

was then calculated using MIPAV (26); this was repeated by a neuroradiologist 

(H.C.C.) with experience in neuroimaging process which yielded an inter-

observer Pearson correlation coefficient of 0.911 (p=0.000) with measurement 

by the neurologist, indicating high inter-observer consistency 
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Data and statistical analysis 

All statistical analyses were performed with SPSS version 23. The volume 

estimates computed were normalized to the TICV using the residual method (23). 

The residual method predicts a normalized volume according to the correlation 

between the computed volume estimates and the TICV using the following 

equation:  

 

Volume[normalized] = Volume[computed] + α(TICV[mean] – TICV) 

 

Both TICV[mean] and the coefficient α are calculated from the HC subjects; α is the 

gradient of the ordinary least-squares regression line between the computed 

volumes and TICV. A distinct α value was estimated for midbrain, pons, medulla 

oblongata, whole brainstem, cerebellum and whole brain correspondingly. 

Lesion volumes were also normalized according to individual head and brain 

size. 

 

Different volumes of interest (VOIs) and other normally distributed continuous 

variables between groups were compared using independent samples T-test, 

while non-normally distributed or ordinal variables were compared using Mann-

Whitney U test. Partial correlation was employed to assess associations between 

VOIs, different clinical scores and other continuous variables with correction for 
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age and sex. To find the predictive factors and models for EDSS and FSS, 

variables (VOIs or other clinical parameters) with p-value <0.1 in univariate 

analysis were further analyzed using multiple regression with backward 

selection method and adjustment of age and sex. VOIs with high collinearity e.g. 

brainstem volume and pons volume were tested in separate regression models. 

A p-value (2 tailed) less than 0.05 was considered statistically significant. The 

significant predictive models were compared based on the adjusted squared 

multiple correlation coefficients (R2) and those with highest R2 were presented 

as the final models.  

 

 

Results 

Baseline characteristics 

The demographic, clinical and MR imaging characteristics of the subjects are 

summarized in Table 1. All the VOIs showed a significant linear relationship with 

TICV in the control group and were normalized accordingly. Comparing MS and 

NMOSD subjects, there was no significant difference in disease duration, history 

of use of immunotherapies, EDSS, FSS-cerebellar or FSS-brainstem.  

 

 

Brain and brainstem atrophy 

The comparative patterns of brainstem atrophy among the 3 groups were 

summarized in Table 2. 
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1. MS versus controls 

The normalized volumes of whole brainstem, midbrain and pons were 

significantly reduced in MS subjects compared to HC. The differences were 

1.27mL (5.2%, p=0.027), 0.50ml (8.3%, p=0.000) and 0.83mL (5.9%, p=0.048) 

respectively. The normalized brain volume (NBV), normalized supratentorial 

brain volume (NStBV) and WM volume were also significantly smaller in MS 

subjects compared to HC, with a mean difference of 85.35mL (7.6%, p=0.005), 

85.97mL (8.8%, p=0.004) and 56.93mL (13.4%, p<0.0001) respectively. There 

was no significant difference in age, gender, normalized volume of medulla 

oblongata, cerebellum or TICV. 

 

 

2. NMOSD versus controls 

The normalized volume of medulla oblongata was reduced in NMOSD group 

compared to HC with a mean difference of 0.37mL (8.5%, p=0.024). Otherwise 

there was no statistically significant difference in whole brain or other VOIs. 

There was also no significant difference in age, gender or TICV. 

 

 

3. MS versus NMOSD 

MS subjects had smaller midbrain volumes with a mean difference of 0.29mL 

(5.0%, p=0.014) and NMO subjects had smaller medulla oblongata volumes with 

a mean difference of 0.35mL (8.1%, p=0.032). Figure 2 shows a comparison of 

MR images of an RRMS subject and an NMOSD subject. The NBV, NStBV and WM 

volume were reduced in MS subjects with a mean difference compared to 
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NMOSD of 80.06mL (7.2%, p=0.009), 78.39mL (8.1%, p=0.009) and 45.56mL 

(11.0%, p=0.004). Total, cerebral and infratentorial T2LV were significantly 

larger in MS. The volumes of pons, whole brainstem, cerebellum and GM showed 

no significant difference. There was also no significant difference in age, gender 

or TICV. Figure 1 showed T1w images with brainstem segmentation of an MS 

subject and an NMO subject. 

 

 

MS and NMOSD subgroup analysis 

 In MS subjects (Table 3), the normalized brainstem volume (NBsV) showed a 

moderate to strong positive correlation with NStBV (r=0.628, p=0.027). 

No statistical significant correlation was found of EDSS with whole brain volume 

or T2LV (total, cerebral or infratentorial).  On the other hand, longer disease 

duration was associated with higher EDSS (r=0.567, p=0.028), while smaller 

NBsV (r=-0.461, p=0.084), smaller normalized midbrain volume (r=-0.444, 

p=0.097), and the use of DMTs (median EDSS 2.75 vs 1.0, p=0.082) showed a 

trend towards higher EDSS. Multiple regression analysis using age, sex, disease 

duration, use of DMTs and NBsV or midbrain volume was performed attempting 

to predict the EDSS, but a statistically significant model could not be found. For 

FSS-cerebellar in MS subjects, the only variable with significant correlation was 

normalized whole brain volume (r=-0.603, p=0.017) and multiple regression 

analysis revealed a significant predictive model (adjusted R2=0.480, p=0.032) 

(Table 4). No significant association was found between FSS-brainstem and 

other tested variables.   
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Similar partial correlation analyses were performed in NMOSD subjects (Table 

5). Larger infratentorial T2LV was associated with smaller NBsV and normalized 

pons volume. Disease duration or AQP4 IgG positivity has no significant 

association with EDSS or FSS. Multiple regression analysis was performed and 

the significant predictive models for the clinical disability scores were 

summarized in Table 6. NBsV significantly predicted all three clinical scores, 

while normalized medulla oblongata volume and normalized pons volume 

predicted FSS-brainstem and FSS-cerebellar. 

 

 

Discussion 

Brainstem involvement is a major cause of significant disability in MS and 

NMOSD. Our previous study of Chinese RRMS and NMOSD patients revealed that 

the brainstem is commonly affected in both RRMS (two-thirds) and NMOSD 

(44%) patients (15, 16). It is noteworthy that the frequency of brainstem T2W 

hyperintense lesions  detected in the current study is much lower than our 

previous study, because all of these patients have been aggressively treated with 

immunotherapies and some lesions had resolved. Although more than half of our 

patients had cerebral lesions detected on MRI, the lesion volumes were small. It 

is increasingly recognized that brainstem lesions on MRI are common in NMOSD 

patients (5, 27). One study from China suggested medulla oblongata lesions as a 

predictor of more severe neurologic deficits and worse prognosis in NMOSD (28). 

Other studies reported whole brain, white matter, focal cortical and deep gray 

matter atrophy in NMOSD patients compared to HC (29-31), but no consistent 

pattern was found.  



 

 13 

 

Our study showed that medulla oblongata volume was significantly reduced in 

NMOSD subjects compared to both HC  and RRMS subjects , even though our 

NMOSD patients had relatively short disease duration. Importantly, smaller 

medulla oblongata volume was associated with more severe brainstem and 

cerebellar symptoms. There was no significant atrophy compared to HC in gray 

or white matter, supratentorial or other brainstem regions. Therefore, our 

findings suggested the importance of medulla volume as an independent marker 

of disease severity and disability in NMOSD patients, even when brainstem 

lesions are absent on conventional MRI (after treatment).  

 

Studies on brainstem atrophy in MS are limited. Previous studies mainly 

examined the whole brainstem volume, and consistently reported reduced 

brainstem volume in MS patients compared to HC (32, 33). One study that 

included both RRMS and SPMS patients with a median disease duration of 7 

years reported a reduction of brainstem volume up to 20.6% and brainstem 

atrophy was associated with higher EDSS score but not supratentorial volume 

loss (32). A more recent study showed a 5.2% NBsV reduction in RRMS 

compared to HC, which was similar to our finding, despite a longer mean disease 

duration of about 19 years (33). The authors reported no significant association 

between NBsV and different clinical measures of motor dysfunction including 

EDSS in the regression models (33). 

 

Our study extends those findings by identifying that midbrain volume is reduced 

most (8.3%) followed by pons volume (5.9%) in RRMS patients relative to HC. 
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This is consistent with a recent study of RRMS patients with median disease 

duration of 9 years using cross-sectional area (CSA) as a measurement reflective 

of regional brainstem size, which reported a similar descending trend of atrophy 

from midbrain to medulla  (34). Statistically significant medulla atrophy was not 

detected in MS patients compared to HC in our study.  This may be due to our 

small sample size and relatively short disease duration of studied subjects. 

Liptak et al. reported that medulla oblongata volume is associated with disability 

and spinal cord damage in a cohort of MS patients (71% RRMS) with a  mean 

disease duration of  7.1 years (35), supporting medulla atrophy is an important 

pathology in MS. Brain atrophy and lesion load on MRI are important biomarkers 

in MS (36, 37) and are shown to associate with long-term disabilities . Our 

findings showed that whole brain and regional (supratentorial, whole brainstem, 

midbrain and pons) atrophy were evident in MS subjects, and normalized 

brainstem volume was positively correlated with supratentorial brain volume. 

This, together with the descending trend of atrophy from midbrain to medulla, 

may suggest that brainstem atrophy in MS results from both axonal loss due to 

Wallerian degeneration of long fiber tracts secondary to cerebral hemispheric 

lesions and direct axonal injury from brainstem inflammation. No statistical 

significant association was noted between EDSS and brain volume or T2LV in our 

study, which could be again related to the small sample size.  

 

 

 

The pathogenetic basis of the observed medulla atrophy in NMOSD patients are 

uncertain. The area postrema in the dorsal medulla is of particular interest in 
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NMOSD as the lack of intact blood brain barrier in the area postrema allows 

access of AQP4 IgG in peripheral blood to the CNS in this region. This is 

consistent with the clinical observation of area postrema syndrome 

characterized by refractory nausea, hiccups and/or vomiting in NMOSD patients. 

Among 15 NMO patients studied, Mayo investigators found unilateral or bilateral 

lesions in the medullary floor of the fourth ventricle and area postrema of 6 

patients (40%) (27). AQP4 loss was prominent in lesions of all 6 patients and the 

AQP4 loss areas showed tissue rarefaction or vacuolation, blood vessel wall 

thickening, marked parenchymal and perivascular infiltration by T cells (CD3+ 

and CD8+), B cells and plasma cells, prominent activation of parenchymal 

microglia and perivascular macrophages, and prominent astroglial reaction. 

Complement deposition was observed in 3 patients but there was no astrocyte 

loss or acute neuronal pathology in all 6 patients (27). We believe that axonal 

loss complicating repeated attacks of neuroinflammation due to reactive 

astrocytosis triggered upon AQP4-IgG binding to astrocytic membrane AQP4 

may be the pathophysiological basis of medulla atrophy in NMOSD.  The common 

involvement of the medulla oblongata in Asian NMOSD subjects may possibly be 

due to a high permeability of the blood-brain barrier in the medulla of Asians 

and hence increased accessibility to AQP4-IgG, or a high level of AQP4 expression 

in the medulla of Asians.  

 

 

 

While the symptoms and clinical presentation of relapses can be similar in MS 

and NMOSD, their disease course, treatment strategies and prognosis are 
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markedly different. Along with detection of AQP4-IgG, other clinical and 

paraclinical features including MRI can be used to differentiate the two (38). 

Apart from conventional MRI, other advanced MRI techniques have been 

employed to study the differences of the two diseases (39). However, these 

modalities remain largely for research purpose. Our study has shown a 

differential pattern of atrophy in MS and NMOSD subjects with similar EDSS 

levels, specifically in the brainstem. Furthermore, our findings were consistent 

with other studies reporting that MS subjects have more prominent whole brain, 

supratentorial and white matter atrophy, and higher T2LV (both supratentorial 

and infratentorial) compared to NMOSD subjects. These regional volume 

changes reflect different underlying pathophysiological mechanisms and 

pathologies. 

 

Our study has several limitations. First, our sample size is small. Some of the 

findings and regression models cannot be ascertained with statistical 

significance. Second, our imaging protocol did not include fluid attenuated 

inversion recovery (FLAIR) or proton density (PD) weighted sequence, and 

therefore the T2LV which was manually delineated could subject to intra- and 

inter-observer differences. We suggest in future volumetric studies FLAIR 

sequence should be performed for reproducible measurement of T2LV. Third, 

our study design and imaging protocol did not include measurement of mean 

upper cervical cord area (MUCCA), which has been reported to be an important 

predictor of motor dysfunction and disability in MS subjects (33, 40). We also 

suggest the addition of other MS-specific functional score such as the Multiple 
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Sclerosis Functional Composite  which may measure  the degree of disability 

better.  

 

 

 

In conclusion, a  different pattern of brainstem atrophy was found between 

RRMS and NMOSD subjects with similar disease duration, functional and 

disability status. We postulate that these patterns reflect different 

pathophysiological mechanisms and pathologies underlying the two diseases. 

Although volumetric measurement of brainstem structures is mainly used in 

research at present, its value as a biomarker for diagnosis and disease 

progression in MS and NMOSD deserve clarification by longitudinal studies. 
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Table 1. Demographic, clinical and MRI characteristics of the subjects 
 MS NMOSD HC 
Age at MRI (mean ± SD), 
years 

41.0 ± 9.4 44.2 ± 13.4 43.4 ± 12.3 

Gender (% female) 12/17 (70.6%) 11/13 (84.6%) 9/18 (50%) 
Disease duration (median), 
years 

6 (IQR 2.5-11) 4 (IQR 2.5-6.5) − 

EDSS (median) 2 (IQR 1.5-4) 3.5 (IQR 2-4) − 
FSS-brainstem 

Median (IQR) 
Mean ± SD 

 
0 (0-1.5) 
0.71 ± 0.85 

 
0 (0-2) 
0.54 ± 0.88 

− 

FSS-cerebellar (median) 
Median (IQR) 

Mean ± SD 

 
1 (0-2) 
1.29 ± 1.16 

 
0 (0-2) 
0.85 ± 1.21 

− 

CSF oligoclonal bands 11/13 a (84.6%) *** 3/13 (23.1%) *** − 
AQP4-IgG positivity 0/17 *** 10/13 (76.9%)*** − 
History of use of 
immunotherapies 

12/17 (70.6%) 13/13 (100%) − 

TICV (mean), L 1.30 ± 0.14 1.27 ± 0.14 1.37 ± 0.15 
NBV (mean), L 1.03 ± 0.10 **, ††  1.11 ± 0.04 ** 1.12 ± 0.04 †† 
 - GM 0.664 ± 0.065 0.699 ± 0.049 0.693 ± 0.032 
 - WM 0.368 ± 0.048 **, ††† 0.414 ± 0.023 ** 0.425 ± 0.030 ††† 
NStBV (mean), L 0.89 ± 0.10 **, †† 0.97 ± 0.04 ** 0.98 ± 0.04 †† 
NCbV (mean), L 0.119 ± 0.013 0.120 ± 0.015 0.117 ± 0.006 
NBsV (mean), mL 23.37 ± 1.38 † 24.00 ± 2.23 24.64 ± 1.82 † 
 - Midbrain 5.50 ± 0.27 *, ††† 5.79 ± 0.35 * 6.00 ± 0.29 ††† 
 - Pons 13.22 ± 1.01 † 13.79 ± 1.56 14.05 ± 1.35 † 
 - Medulla oblongata 4.33 ± 0.27 * 3.98 ± 0.56 *, ϕ 4.35 ± 0.30 ϕ 
Normalized total T2LV 
(mean), mL 

14.15 ± 11.63 *** 0.38 ± 0.53 b *** − 

 - Cerebral 13.76 ± 11.41 *** 0.34 ± 0.54 b *** − 
 - Infratentorial 0.40 ± 0.61 ** − b ** − 

Abbreviations: MS= multiple sclerosis; NMOSD= neuromyelitis optica spectrum disorders; HC= 
healthy controls; SD= standard deviation; IQR= interquartile range; EDSS= expanded disability 
status scale; FSS= functional system score; CSF= cerebrospinal fluid; AQP4-IgG= aquaporin-4 
autoantibody; TICV= total intracranial volume; NBV= normalized brain volume; GM= gray matter; 
WM= white matter; NStBV= normalized supratentorial brain volume; NCbV= normalized 
cerebellar volume; NBsV= normalized brainstem volume; T2LV= T2 lesion volume 
a. 4 of the patients have no CSF oligoclonal bands results available. 
b. 7 out of 13 of the NMO subjects had supratentorial lesions (range 0.07-1.4ml) and only 1 out of 
13 had infratentorial lesions of 0.39ml. 
* p<0.05, ** p<0.01, *** p<0.001 for comparison between MS and NMOSD subjects. 
† p<0.05,  †† p<0.01, ††† p<0.001 for comparison between MS and control subjects. 
ϕ p<0.05 for comparison between NMOSD and control subjects. 
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Table 2 Difference of mean brain and brainstem volumes among groups 

 MS – HC NMOSD – HC MS – NMOSD 
NBV, mL -85.35 (7.6%) ** -5.29 (0.5%)  -80.06 (7.2%) ** 
 GM -28.37 (4.1%)  6.15 (0.9%)  - 34.52 (4.9%)  
 WM -56.93 (13.4%) *** -11.37 (2.7%)  -45.56 (11%) ** 
NStBV, mL -85.97 (8.8%) ** -7.58 (0.8%)  -78.39 (8.1%) ** 
NBsV, mL -1.27 (5.2%) * -0.63 (2.7%)  -0.64 (2.5%)  
 Midbrain -0.50 (8.3%) *** -0.21 (3.5%)  -0.29 (5.0%) * 
 Pons -0.83 (5.9%) * -0.25 (1.8%)  -0.58 (4.2%)  
 Medulla  -0.02 (0.4%)  -0.37 (8.5%) * +0.35 (8.1%) * 
Abbreviations: MS= multiple sclerosis; NMOSD= neuromyelitis optica spectrum disorders; HC= 
healthy controls; NBV= normalized brain volume; GM= gray matter; WM= white matter; NStBV= 
normalized supratentorial brain volume; NBsV= normalized brainstem volume 
* p <0.05; ** p <0.01; *** p <0.001 
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Table 3. Partial correlations between normalized regional volumes and 
other disease parameters after correction for age and sex in MS subjects 
 WB Brainstem Midbrain Pons Medulla Cb 
NStBV − 0.628* 0.448^ 0.602* NS NS 
Normalized total 
T2LV 

-0.447^ NS NS -0.464^ NS NS 

 Cerebral -0.460^ NS NS -0.480^ NS NS 
 Infratentorial NS NS NS NS NS NS 
Disease duration NS NS NS NS -0.487^ NS 
EDSS NS -0.461^ -0.444^ NS NS NS 
FSS-brainstem NS NS NS NS NS NS 
FSS-cerebellar -0.603 * NS NS NS NS NS 
Abbreviations: MS= multiple sclerosis; WB= whole brain; Cb= cerebellum; NStBV= normalized 
supratentorial brain volume; T2LV= T2 lesion volume; EDSS= expanded disability status scale; 
FSS= functional system score; NS= not significant 
^ p<0.1, * p<0.05 
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Table 4.  Multiple regression models for prediction of EDSS and FSS in MS 
subjects 

 R2 Adjusted R2 p-value 
FSS-cerebellar    
Age, sex, NBV 0.693 0.480 0.032* 
EDSS; FSS-brainstem    
(No significant model was found)    
Abbreviations: MS= multiple sclerosis; EDSS= expanded disability status scale; FSS= functional 
system score; R2=squared multiple correlation coefficient of the model; NBV= normalized brain 
volume 
* p<0.05 



 

 25 

 

Table 5. Partial correlations between normalized regional volumes and 
other disease parameters after correction for age and sex in NMOSD 
subjects 
 WB Brainstem Midbrain Pons Medulla Cb 
NStBV − NS NS NS NS NS 
Normalized total 
T2LV 

NS NS NS NS NS NS 

 Cerebral NS NS NS NS NS NS 
 Infratentorial NS -0.605* NS -0.625* NS NS 
Disease duration NS NS NS NS  -0.573^ 
EDSS NS -0.571^ NS -0.541^ -0.534^ NS 
FSS-brainstem NS -0.829** -0.778** -0.755** -0.757 ** -0.615* 
FSS-cerebellar NS -0.819** -0.681* -0.779** -0.739 ** -0.766** 
Abbreviations: NMOSD= neuromyelitis optica spectrum disorder; WB= whole brain; Cb= 
cerebellum; NStBV= normalized supratentorial brain volume; T2LV= T2 lesion volume; EDSS= 
expanded disability status scale; FSS= functional system score; NS= not significant 
^ p<0.1, * p<0.05, ** p<0.01 
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Table 6.  Multiple regression models for prediction of EDSS and FSS in 
NMOSD subjects 

 R2 Adjusted R2 p-value 
EDSS     
Age, sex, NBsV 0.574 0.432 0.045 * 
FSS-brainstem    
Model 1: Age, sex, NBsV 
Model 2: Age, sex, NMbV, NPonsV, NMedV 

0.710 
0.786 

0.614 
0.633 

0.009 ** 
0.027 * 

FSS-cerebellar    
Model 1: Age, sex, NBsV, NStV 
Model 2: Age, sex, NPonsV, NMedV, NStV 

0.893 
0.907 

0.840 
0.841 

0.001 ** 
0.002 ** 

Abbreviations: NMOSD= neuromyelitis optica spectrum disorders; EDSS= expanded disability 
status scale; FSS= functional system score; R2=squared multiple correlation coefficient of the 
model; NBsV= normalized brainstem volume; NMbV= normalized midbrain volume; NPonsV= 
normalized pons volume; NMedV= normalized medulla volume; NStV= normalized 
supratentorial brain volume 
* p<0.05, ** p<0.01 
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Figure Legends 
 
Figure 1. Typical sagittal T1w MR images of an MS subject (A) with midbrain atrophy, and an NMOSD subject (B) with medulla oblongata 
atrophy, processed with Freesurfer and corrected manually. Color code: light green= midbrain, green= pons, pale blue= medulla 
oblongata

 MS subject NMOSD Subject 
Age and gender 32 years old female 48 years old female 
Disease duration 2 years 3 years 
EDSS 2.0 2.0 
FSS (brainstem, cerebellar) 1, 3 0, 0 
Normalized VOIs (mL)   

Whole brainstem 
Midbrain 
Pons 
Medulla oblongata 

21.14 
5.09 
11.42 
4.40 

25.78 
6.16 
15.36 
3.77 
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