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Abstract We formulate a model for coupled deformation and dehydration of antigorite, based on
a porosity-dependent yield criterion and including shear-enhanced compaction. A pore pressure and
compaction instability can develop when the net volume change associated with the reaction is
negative, i.e., at intermediate depth in subduction zones. The instability criterion is derived in terms of the
dependence of the yield criterion on porosity: if that dependence is strong, instabilities are more likely to
occur. We also find that the instability is associated with strain localization, over characteristic length scales
determined by the hydraulic diffusivity, the elasto-plastic parameters of the rock, and the reaction rate.
Typical lower bounds for the localization length are of the order of 10 to 100 for antigorite dehydration and
deformation at 3 GPa. The fluid pressure and deformation instability is expected to induce stress buildup
in the surrounding rocks forming the subducted slab, which provides a mechanism for the nucleation and
propagation of intermediate-depth earthquakes.

1. Introduction

During prograde metamorphism in subduction zones, hydrous phases such as serpentines progressively
dehydrate, forming free-fluid phases at depth. Such dehydration reactions are systematically associated with
a net decrease in solid volume (the reactions forming solid products denser than reactants), and with a vari-
able change in fluid volume, the sign of which being controlled by the pressure and temperature conditions
at which the reaction occurs. From initially nonporous metamorphic rocks (such as antigorite serpentinite),
dehydration reactions therefore produce, at least transiently, a porous rock saturated with fluids, the rheology
of which is markedly different from the original rock [e.g., Rutter et al., 2009]. The occurrence of metamorphic
dehydration reactions has therefore a great impact on the stress/strain state in subduction zones.

One key specific impact of dehydration reactions is their potential to trigger unstable faulting and earth-
quakes, a phenomenon generally termed “dehydration embrittlement.” This phenomenon corresponds to the
transition from ductile to brittle deformation due to a dehydration-induced increase in pore fluid pressure.
It is often thought that dehydration embrittlement is one of the main causes of, or is at least linked to,
intermediate-depth earthquakes in subduction zones [e.g., Hacker et al., 2003b]. Dehydration embrittlement
has been observed experimentally [e.g., Raleigh and Paterson, 1965; Murrell and Ismail, 1976] and is well
explained theoretically when the reaction produces an excess fluid volume, i.e., typically at relatively low pres-
sure conditions (e.g., less than around 2.5 GPa in antigorite). Under those conditions, the excess fluid volume
generated by the reaction tends to increase the pore fluid pressure, reducing the effective stress, and therefore
bringing back the material into the brittle field. At higher pressure, where the total volume change of the dehy-
dration reaction is negative, laboratory experiments indicate that dehydration embrittlement and earthquake
instability might still occur [e.g., Jung et al., 2004], but the exact mechanism remains unclear. One possibil-
ity is that the reaction products are plastically weak and facilitate brittle deformation in their surroundings
[e.g., Rutter et al., 2009; Brantut and Sulem, 2012]. Another potential mechanism is that the porosity gener-
ated by the reaction is rapidly compacted, hence producing a pore pressure rise which could bring back the
material into the brittle regime.

Coupling between mechanical compaction and dehydration reactions has been investigated in detail in the
case of viscous rock rheology: in his seminal study, Connolly [1997] (followed by Connolly and Podladchikov
[1998] and Connolly and Podladchikov [2004], summarized recently in Connolly [2004]) used a viscous com-
paction rheology coupled to devolatilization reactions together with a power law relation between porosity
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and permeability and determined that compaction would drive pore fluid pressure up to near-lithostatic
values, while producing intermittent upward motions of fluid (so-called porosity waves). Despite the great
success of this model for the prediction of fluid extraction from the lower crust (or along subduction zones,
see Skarbek and Rempel [2016]), one key assumption is that the compaction behavior is essentially driven by
a viscous creep process and does not include the instantaneous response of the material.

Serpentinites, and more specifically the high pressure form, antigorite, are known to behave in a semibrit-
tle manner even at high pressure and temperature [e.g., Chernak and Hirth, 2010; Proctor and Hirth, 2016],
i.e., antigorite deformation systematically involves a significant degree of microcracking, and its behavior
at high pressure is similar to cataclastic flow. Furthermore, laboratory experiments [Rutter et al., 2009] show
that dehydrated and partially dehydrated serpentinite behave essentially like classical porous rocks, and that
concepts of porous rock mechanics can be used to describe their mechanical behavior. Therefore, a purely
viscous constitutive law may not capture all the features and potential instabilities associated with coupled
compaction and dehydration in antigorite.

Here we model coupled dehydration and deformation in antigorite using, as a first approximation, a time
-independent inelastic flow law which includes strain hardening, strain-dependent dilatancy/compaction,
and a porosity-dependent yield envelope. Our approach is based on the concepts typically used to model the
behavior of porous rocks [e.g., Rudnicki and Rice, 1975; Issen and Rudnicki, 2000; Wong and Baud, 2012; Stefanou
and Sulem, 2014], and dehydration has here an indirect effect by contributing to the overall change in poros-
ity and fluid pressure. In this framework, two types of instabilities can arise: a rate-independent bifurcation
related to the constitutive behavior of the rock and a reaction-driven, rate-dependent instability (in the
Lyapunov sense) due to the growth to small pore pressure perturbations. We specifically focus on the behav-
ior of serpentinite under conditions such that the dehydration reaction produces a negative total volume
change, with the aim of determining whether pore pressure instabilities can occur.

2. Model and Governing Equations
2.1. Fluid Mass Balance and Pore Pressure Change
During dehydration, antigorite becomes a porous aggregate, with a porosity n filled with water at a pres-
sure denoted pf . We consider that the porosity of the aggregate is connected (at least at the scale of interest,
here of the order of 10 to 100 m), and that the fluid flows through the rock according to Darcy’s law with a
permeability k. The fluid pressure is modified by two independent contributions: the elasto-plastic com-
paction of the rock (bulk volumetric strain 𝜖, taken negative in compression), and the generation of fluids
from the dehydration reaction. These assumptions lead to the following governing equation for pore pressure
(see full derivation in Appendix A1):

𝜕pf

𝜕t
= k

𝜂cb
∇2pf −

1
cb

𝜕𝜖

𝜕t
+

m0
d

(
1 + 𝜌fΔrVs

)
𝜌f cb

𝜕𝜉

𝜕t
, (1)

where m0
d is the total fluid mass that can be released by the reaction per unit rock volume,𝜌f is the fluid density,

ΔrVs is the solid volume change of the reaction, 𝜕𝜉∕𝜕t is the reaction rate, and

cb = (1 − n)cs + ncf (2)

is an effective compressibility combining the compressibility of the solid cs, the compressibility of the fluid cf ,
and the porosity n. Note here that cb is not the usual storage capacity, because we did not split the volumetric
strain rate into an elastic and plastic one.

2.2. Rheology
It is well established experimentally that antigorite aggregates undergo a brittle to ductile transition at con-
fining pressures of the order of 300 to 400 MPa [Escartín et al., 1997], and that this transition depends weakly
on temperature (within antigorite’s stability field). Near the dehydration temperature of antigorite, the ductile
behavior remains dominated by cataclastic flow even at mantle pressures [Chernak and Hirth, 2010; Proctor
and Hirth, 2016], which is most likely due to the strong [001] cleavage plane and the insufficient number of
independent slip systems in antigorite single crystals. Across the stability boundary of antigorite, a very signif-
icant volume change occurs: the solid volume tends to decrease by up to around 25%, generating a porosity
occupied by pressurized water. Therefore, at pressure and temperature conditions near its stability boundary,
antigorite is expected to behave very much like a ductile (cataclastic) porous rock. Such a behavior has been
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Figure 1. Schematic of the yield surface in the stress space (p′, 𝜏). The
yield surface is capped at elevated pressures, which corresponds to
the possibility of yield under purely isotropic stress conditions. With
increasing porosity, the yield surface tends to shrink (reducing the stress
range for a purely elastic behavior), as represented by the dashed line.

well documented in lizardite by Rutter
et al. [2009], and we assume here that
the same behavior applies to antigorite.

In order to describe the elasto-plastic
behavior of antigorite, we introduce the
yield function f (𝝈, 𝜁 ), where 𝝈 is the
stress tensor (here we follow the sign
convention of continuum mechanics
and take compressive stresses as neg-
ative) and 𝜁 is an internal variable on
which the yield cap depends. The yield
function limits the elastic domain in the
stress space (f < 0, see Figure 1). It is
assumed that inelastic strain increments
are generated when the stress state lies
on the yield surface (f = 0) and if load-
ing is taking place. 𝜁 can be identified
to either the porosity of the material, or
more directly to the reaction progress in
the case of a pure chemical control over

the material’s strength [Stefanou and Sulem, 2014; Sulem and Stefanou, 2016]. While either option could be
deemed acceptable in the light of the available experimental data from Rutter et al. [2009], we will develop
our model assuming that the primary control on the rock’s strength is given by its porosity (a robust obser-
vation in porous rocks [see Wong and Baud [2012]]). We therefore equate incremental changes in the internal
variable 𝜁 to irreversible (inelastic) porosity changes. We also assume, in accordance with experimental obser-
vations, that the material undergoes strain hardening. The incremental constitutive behavior resulting from
our assumptions is written as follows (see full derivation in Appendix A2):

dp′ =
GK

[
(1 + (h − f ′𝛽)∕G)d𝜖 − 𝛽d𝛾

]
h − f ′𝛽 + G + 𝛽𝜇K

+
f ′𝛽Km0

dΔrVs

h − f ′𝛽 + G + 𝛽𝜇K
d𝜉, (3)

d𝜏 =
GK

[
−𝜇d𝜖 +

(
(h − f ′𝛽)∕K + 𝛽𝜇

)
d𝛾

]
h − f ′𝛽 + G + 𝛽𝜇K

+
f ′Gm0

dΔrVs

h − f ′𝛽 + G + 𝛽𝜇K
d𝜉, (4)

where p′ is the Terzaghi effective mean stress (p′ = p + pf , where p is the mean stress), 𝜏 is the shear stress
(taken equal to the square root of the second invariant of the deviatoric stress tensor), K and G are the bulk and
shear elastic moduli of the rock, respectively, 𝛾 is the shear strain (taken equal to the square root of the second
invariant of the deviatoric strain tensor), h is the strain hardening coefficient, 𝛽 is the dilatancy factor, and
f ′ = 𝜕f∕𝜕𝜁 is the dependency of the yield cap on porosity. We observe in equations (3) and (4) that the effect
of the variation of f with porosity (terms in f ′) on the mechanical behavior is entirely captured by the modified
hardening modulus h − f ′𝛽 . The chemical coupling appears through the product f ′ΔrVs: the reaction has
only an indirect effect, which is to modify the porosity. The solid volume change is always negative (porosity
creation), and f ′ is positive (the yield surface shrinks with increasing porosity), so that the overall effect of the
reaction is to weaken the material.

2.3. Reaction Rate
A very general formulation of mineral reaction rates is given by [Lasaga and Rye, 1993]

𝜕𝜉

𝜕t
= 𝜅Arlms|ΔG|nr , (5)

where 𝜅 is the temperature-dependent kinetic constant (typically following an Arrhenius law), Arlm is the spe-
cific surface area of the rate-limiting mineral, ΔG is the Gibbs energy change of the reaction, s is the opposite
of the sign of ΔG, and nr is the order of the reaction. Under isothermal conditions, and for small departures
from equilibrium, we can expandΔG in terms of pore pressure; only retaining the leading order term, we have
[Wang and Wong, 2003]

ΔG ≈ c′(pf − peq), (6)
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where c′ = 𝜕ΔG∕𝜕pf and peq is the pore pressure at equilibrium. Following Wang and Wong [2003], we can
rewrite (5) as

𝜕𝜉

𝜕t
= sr0

Arlm

A0
rlm

|1 − pf∕peq|nr , (7)

where r0 is a reference reaction rate, and A0
rlm is the surface area of the rate-limiting mineral at the reference

rate. The change in surface area is not very well constrained by experimental data. Hence, for simplicity, in the
following we will consider the ratio Arlm∕A0

rlm ≈ 1. This simplification is valid only when the reaction progress
is small, i.e., when depletion of the reaction is negligible (𝜉 ≪ 1).

2.4. Geometry and Stress Equilibrium
We consider a simple system made of a uniform horizontal layer of antigorite, sufficiently extended so that
lateral strains can be neglected (i.e., the system is invariant in the plane of the layer). In this geometry, the
vertical stress is given by p − 2𝜏∕

√
3, and the stress equilibrium requires that

𝜕

𝜕y

(
p − 2√

3
𝜏

)
= 0. (8)

where y denotes the vertical coordinate. The boundary condition is a constant applied vertical stress, which
implies that

𝜕p
𝜕t

− 2√
3

𝜕𝜏

𝜕t
= 0. (9)

In such geometry, only the vertical strain component is nonzero. Because no lateral deformation is allowed,
the vertical strain is equal to the volumetric strain. Therefore, the shear and volumetric strains are related to
one another by

𝛾 + 2√
3
𝜖 = 0. (10)

Using relations (9) and (10) in the incremental constitutive formulation (equations (3) and (4)) and combining
with the fluid mass conservation (equation (1) and expression (7)) for the reaction rate, we arrive at a single,
nonlinear diffusion equation that governs the fluid pressure (see details in Appendix A3):

𝜕pf

𝜕t
=

Mk∕𝜂
1 + cbM

𝜕2pf

𝜕y2
+

Mm0
d(1∕𝜌f + ΔrVs) − f ′X

1 + cbM
sr0

|||||1 −
pf

peq

|||||
nr

, (11)

where

M = GK
h − f ′𝛽 + G + 𝛽𝜇K

[(
1 + 2√

3
𝜇

)(
1 + 2√

3
𝛽

)
+ (h − f ′𝛽)

( 1
G
+ 4

3K

)]
, (12)

and

X = −m0
dΔrVs

𝛽K − 2G∕
√

3

h − f ′𝛽 + G + 𝛽𝜇K
. (13)

3. Parameters
3.1. Yield Function
The model described above contains a number of parameters that ought to be constrained from experimental
data. The yield cap can be constrained from the extensive data set of Rutter et al. [2009] on intact and dehy-
drated blocks of lizardite. The data used are shown in Figure 2. For simplicity, we use a modified Cam-clay yield
surface, given by

f (p′, 𝜏) = 𝜏 − C
√
(b + p′)(p∗ − p′) = 0, (14)

where C is the critical state line ratio, b is the tensile strength, and p∗ is the compaction yield pressure
(following the notation of Wong and Baud [2012]). Specific values of C, b, and p∗ for intact, partially, and fully
dehydrated serpentinites are reported in Figure 2.

In accordance with observations on porous sandstones, the critical compaction pressure p∗ decreases with
increasing porosity. Zhang et al. [1990] proposed a grain crushing model in which p∗ scales with the porosity
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Figure 2. Yield surfaces of intact, partially, and fully dehydrated serpentinites from Rutter et al. [2009], and fits with a
modified Cam-clay model (equation (14)). In all fits, we choose a tensile strength b = 5 MPa.

n as p∗ ∝ n−3∕2. For the serpentinite samples dehydrated at 35 MPa effective pressure and deformed at room
temperature (squares in Figure 2), we find a reasonable fit with p∗ = 130 MPa, while the inferred porosity of the
sample was around 19%. The partially dehydrated samples (diamonds in Figure 2) had a porosity of around
4%, and we determine a p∗ of 380 MPa. The relationship between p∗ and n for these two sample types does
not seem compatible with the scaling proposed by Zhang et al. [1990]. Here we will use an empirical scaling
p∗ ∝ 1∕n [Rutter and Glover, 2012], with a constant of proportionality equal to 19 MPa. The corresponding
yield caps are reported as dotted lines in Figure 2.

Obviously, the yield cap described by equation (14) is not appropriate as the porosity approaches zero, since
in that case p∗ diverges. However, the focus of this work is the description of rocks that are already undergoing
dehydration, i.e., in which the porosity is never exactly zero. Furthermore, in the absence of a more complete
data set on dehydrated and partially dehydrated serpentinite, the Cam-clay yield surface is one of the simplest
yield criterion which is closed at high pressure (i.e., the material can fail by pure hydrostatic compaction).
Hence, our choice for the yield function should be viewed as a first-order approximation which incorporates
the essential qualitative elements of the behavior of dehydrating serpentinite: a yield cap that is closed at
high pressure and that shrinks with increasing porosity.

3.2. Mechanical and Hydraulic Parameters
The elastic properties of serpentinite can be obtained from Voigt-Reuss-Hill averages of the single crystal
properties and are given by Bezacier et al. [2010]: K = 67.9 GPa, G = 38.5 GPa. The average Poisson’s ratio is
hence 𝜈 = 0.26. Note that we are modeling dehydrating serpentinite, and hence the average elastic properties
of the rock should be made dependent upon the evolving rock mineralogical composition and porosity. How-
ever, we focus here on the initiation of the dehydration reaction, and hence expect that the pure antigorite
end-member is a good approximation to the overall properties of the rock at the beginning of dehydration.

The friction coefficient 𝜇 is given by the local slope of the yield envelope (equation (A24)):

𝜇 = 𝜕f
𝜕p′ = C

2p′ + b − p∗

2
√
(p′ + b)(p∗ − p′)

. (15)

In the framework of associated plasticity, we could assume that the dilatancy factor is merely equal to the
friction coefficient. However, it is well known that rocks do not follow associated flow rules, and hence, we
shall leave the dilatancy factor 𝛽 as a free parameter and explore how it influences the stability of compaction
in our model. Likewise, we will leave the hardening coefficient as a free parameter, in order to encompass the
widest possible range of behaviors.

The permeability of the rock is expected to vary as a function of porosity and hence be impacted by the
compaction of the rock. However, these second-order controls on permeability should only influence the
behavior of the material at large times and not the initiation of the instability. For instance, using power
law permeability-porosity relationships, Connolly [1997] has shown that a dehydrating rock can generate
traveling porosity pulses, a well-known feature of nonlinear parabolic equations. Since we want to focus on
the initiation of the instability, we shall assume a constant value for the permeability, keeping in mind that
this assumption should be relaxed when modeling the long-term evolution of the system. The permeability
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Table 1. Thermodynamic Properties of Phases Involved in the Dehydration Reactions of Antigoritea

Molar Weight Molar Volume Thermal Expansion Bulk Modulus
M V∘m 𝛼∘ K∘

Phase (g/mol) (cm3/mol) (×10−5 K−1) (GPa) 𝜕K∕𝜕P

Atg, antigorite 4536 1754.7 4.7 67.9 2.77

Talc 379.7 136.4 3.7 41.6 6.5

Fo, forsterite 140.7 43.7 6.1 127 5.37

Ens, enstatite 200.8 62.6 5.1 106 8.5

PhA, phase A 456.3 154.4 8.3 97.4 6.0
aData are from Holland and Powell [1998].

of dehydrating serpentinite was measured by Tenthorey and Cox [2003], who report k = 10−22 m2 for the intact
material and k = 10−20 to 10−18 m2 during dehydration at 600∘C and 700∘C, respectively. Here we choose
k = 10−20 m2 as a representative value for serpentinites which are dehydrating not far from equilibrium.

The viscosity of the fluid 𝜂 can be precisely determined from interpolation of experimental measurements.
We will use here the formulation of the International Association for the Properties of Water and Steam, 2008
(http://iapws.org/relguide/visc.pdf) and compute the appropriate viscosity at the target pressure and temper-
ature conditions. The resulting viscosity of water ranges from 𝜂 = 6.9 × 10−5 to 4.9 × 10−7 Pa s at pf = 2 GPa
and 600∘C and pf = 5 GPa and 700∘C, respectively.

The effective compressibility of the rock, cb, does not play any role in the stability of the system; it is only
required for the computation of the full numerical solutions and acts as a scaling factor for the pore pressure
rate. Here we compute cb from equation (2), assuming that cs = 1∕K .

3.3. Chemical Parameters
The parameters associated with the chemical reaction can be obtained from the thermodynamic properties
of the mineral (and fluid) involved. At elevated pressure and temperature, there are three distinct dehydration
reactions involving antigorite:

antigorite → 4 talc + 18 forsterite + 27 water, (16)

→ 14 forsterite + 10 enstatite + 31 water (17)

→ (14∕5) phase A + (71∕5) enstatite + (113∕5)water. (18)

The properties of each mineral can be extracted from thermodynamic tables [e.g., Holland and Powell, 1998;
Hacker et al., 2003a] and are reported in Table 1. The thermodynamic properties of water are determined as

Figure 3. Net volume change 1∕𝜌f + ΔrVs, in m3 per unit mass of water, as a function of pressure and temperature, for
each reaction. Atg: antigorite; Fo: forsterite; Ens: enstatite; PhA: phase A.
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Table 2. Average Fluid Mass and Volume Change Associated With the Dehydration Reactions of
Antigorite

Volume Change
Mass of Releasable Fluid 1∕𝜌f + ΔrVs

m0
d

(×10−4 m3/kg)

Reaction (kg/m3) Average Min. Max.

Atg → 4 Talc + 18 Fo + 27 H2O 276 6.18 0.73 212.55

Atg → 14 Fo + 10 Ens + 31 H2O 323 −1.02 −1.71 0.25

5 Atg → 14 PhA + 71 Ens + 113 H2O 240 −3.09 −3.22 −2.93

a function of pressure and temperature from the International Association for the Properties of Water and
Steam formulation 95.

The computation of the solid volume change ΔrVs requires the knowledge of the molar volumes of each
solid phase at the pressure and temperature conditions of each reaction. The molar volumes are computed
following the approach explained in Hacker et al. [2003a], which is recalled in Appendix B for completeness.

The phase boundaries and net volume change of each reaction (16)–(18) are shown as a function of pressure
and temperature in Figure 3. Average volume changes along each phase boundary are presented in Table 2.

In addition, the knowledge of the molar volume of antigorite allows to compute precisely the total potential
mass of water releasable by each reaction, m0

d. Because antigorite is not very compressible, the main factor
influencing m0

d is the stoichiometry of the reactions. The computed averages of m0
d for each reaction are shown

in Table 2.

The reaction kinetics of antigorite as a function of pressure is not well constrained by existing experimental
data, which typically focus on the effect of temperature. However, the formulation (5) is general, and hence,
kinetic parameters obtained from experiments in whichΔG is imposed from a temperature over step or under
step should also be valid in the case when ΔG changes due to pressure fluctuations. Here we extract kinetic
parameters from the study of Eggler and Ehmann [2010], in which the dehydration kinetics of antigorite was
determined at 2 GPa (i.e., for reaction (17)) as a function of temperature. At a temperature T , the rate of
antigorite dehydration is given as

rate = 𝜅′Arlms
||||ΔG

RT

||||
nr

in molatg∕cm3
rock∕s, (19)

where R is the gas constant. In terms of reaction progress 𝜉, we rewrite (equation (19)) as

𝜕𝜉

𝜕t
= sr0

Arlm

A0
rlm

|1 − pf∕peq|nr , (20)

where

r0 = VmA0
rlm𝜅

′
|||||

peqc′

RT

|||||
nr

. (21)

The molar volume of antigorite Vm can be taken as the average along the phase boundary between antigorite
and forsterite, enstatite, and water, using equation (B6). This yields Vm ≈ 1.73 × 10−3 m3/molatg. The initial
specific surface area of antigorite, A0

rlm, depends on the grain size and shape; for square prisms with width W
and length L, A0

rlm = (2W2 +4LW)∕LW2. Using W = 50 μm and L = 10 μm, we find A0
rlm = 2.8×105 m2/m3. The

rate constant 𝜅′ given by Eggler and Ehmann [2010] is 9.2× 10−11 molatg/m2/s. The coefficient c′, as defined in
equation (6), is the net volume change of the reaction per unit mole of antigorite:

c′ = 𝜈fMf(1∕𝜌f + ΔrVs). (22)

Using the parameter value reported in Table 2 for the reaction of antigorite into forsterite and enstatite, we
obtain c′ ≈ 8.1 × 10−5 m3/molatg. The equilibrium pressure peq and the appropriate temperature T can
be found from the phase boundary (see Figure 3). As a representative value, we choose peq = 3 GPa and
T ≈ 640∘C. Finally, Eggler and Ehmann [2010] report that the exponent nr is equal to 1, i.e., the kinetic is linear.
Combining all the above parameters into our lumped kinetic parameter r0, we find a representative value of

r0 ≈ 1.47 × 10−6∕s. (23)
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4. Stability Analysis

The system governed by equation (11) involves two coupled phenomena: mechanical deformation (com-
paction), through the parameter M, and metamorphic effects with fluid production and porosity creation
through the source term in (11). In this section, we detail the possible sources of mechanical and chemical
instabilities and derive the key stability conditions in terms of the model parameters.

4.1. Mechanical Instability
If M < 0, we immediately observe that equation (11) is a diffusion equation with a negative diffusivity. This
corresponds to an unstable system as nonuniformities become more localized rather than more diffuse with
increasing time. In fact, the condition M < 0 is strictly equivalent to the compaction localization condition
derived by Issen and Rudnicki [2000, equation (19)] for axisymmetric compression:

h − f ′𝛽
G

<
hcrit

G
= − 3K

3K + 4G

(
1 + 2√

3
𝜇

)(
1 + 2√

3
𝛽

)
, (24)

with the additional term −f ′𝛽 occurring here due to the explicit dependence of the yield cap on porosity.
For a yield cap shrinking with increasing porosity, as expected and observed in dehydrating serpentinites
(Figure 2), f ′ is positive, and 𝛽 is negative (due to shear-enhanced compaction at high pressure). Hence, the
critical hardening modulus is reduced when the yield cap is assumed to be directly dependent on porosity;
this merely reflects that the yield cap expansion due to shear hardening is in fact offset by a further yield cap
expansion (respectively, shrinkage) due to shear-induced compaction (respectively, dilatancy).

Note, in passing, that we have derived here a slightly more general case for the compaction instability includ-
ing pore fluid pressurization effects; the stability condition, without chemical effects, is in fact M∕(1+cbM) < 0.
This has no practical consequence on the criterion because cb is usually very small.

4.2. Chemical Instability and Overpressure Development
The case of interest here is when M> 0 (equation (12)), i.e., a mechanically stable case. Equation (11) is a
nonlinear diffusion equation. We examine here the case when the total volume change of the reaction is
negative, for which the reaction kinetics increases when pf increases beyond peq. Before delving into the full
analysis including the effect of pore pressure diffusion, it is instructive to first analyze the undrained case; the
governing equation for pore pressure reduces to

𝜕pf

𝜕t
=

Mm0
d(1∕𝜌f + ΔrVs) − f ′X

1 + cbM
r0

(
pf

peq
− 1

)nr

. (25)

Assuming constant parameters, this equation has an analytical solution, which is

pf(t) = peq + (p0
f − peq) exp

(
Mm0

d(1∕𝜌f + ΔrVs) − f ′X

peq(1 + cbM)
r0t

)
(26)

if nr = 1, and

pf(t) = peq +

(
p−nr

eq (1 − nr)r0

Mm0
d(1∕𝜌f + ΔrVs) − f ′X

1 + cbM
t +

(
p0

f − peq

)1−nr

)1∕(1−nr)

(27)

if nr > 1, where p0
f

is the initial pore pressure in the system (a small perturbation above the equilibrium
pressure).

In both cases (linear and nonlinear kinetics), the evolution of pore pressure is an unbounded growth if

Mm0
d

(
1∕𝜌f + ΔrVs

)
− f ′X > 0. (28)

For linear kinetics, the growth is exponential, while for nonlinear kinetics the growth corresponds to a finite
time blow-up. In practice, this distinction is unimportant since pore pressure diffusion, as well as other non-
linearities not accounted for in our simplified system (such as the depletion of the reactant or the change in
mechanical properties with the evolving deformation and mineralogy of the rock), is expected to strongly
change the evolution of pore pressure at large times. Despite these subtleties, the solution of the undrained
problem yields a key condition (inequality (28)) to observe a potential pore pressure runaway. This condition
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Figure 4. Stability boundaries for a dehydrating material with a porosity-dependent yield function. The dilatancy factor
𝛽 has been assumed equal to the friction coefficient 𝜇 (i.e., we used the so-called associated plasticity assumption) in
order to limit the number of free parameters. Black curves correspond to stability boundary for the pore pressure
runaway (condition (30)), and blue curves correspond to stability boundary for conventional (mechanical) compaction
instability (condition (24)).

for instability can be expressed as a pair of conditions in terms of the dilatancy factor 𝛽 and the dependence
of the yield cap on porosity f ′ (see Appendix C1 for details):

𝛽 < 𝛽crit = −(
√

3∕2)
(

3
2

1 − 𝜈

1 − 2𝜈
1

𝜌fΔrVs
+ 1

)−1

, (29)

f ′ > f ′crit =
√

3
1 − 𝜈

1 − 2𝜈

h − hcrit

1 − 𝛽∕𝛽crit

(
1 + 1

𝜌fΔrVs

)
. (30)

Using the numerical values detailed in the previous section, we remark that 𝛽crit is always positive. Hence,
for the cases of interest where 𝛽 < 0 (shear-enhanced compaction), we always have 𝛽 < 𝛽crit, and thus the
condition for instability is simply f ′ > f ′crit.

The stability boundaries (h = hcrit + f ′𝛽 and f ′ = f ′crit) are shown as function of f ′∕G and 𝛽 in Figure 4, where
we have assumed 𝛽 = 𝜇. For h> 0, the mechanical compaction bifurcation arises only for negative values
of f ′, while the reaction-driven compaction and pore pressure instability occurs only for positive values of
f ′, leaving an area of stability between these two boundaries. For h = 0 (which seems relatively plausible
for antigorite, see Escartín et al. [1997]), the stability boundaries do not overlap; the area of stability expands
with decreasing (negative) values of 𝛽 . Because the friction coefficient 𝜇 only appears in the expression for
hcrit, changing 𝜇 independently from 𝛽 (which is a reasonable choice for most rocks) has a moderate impact
on the stability diagram for the pore pressure instability (condition (30)) but introduces large changes for the
bifurcation criterion (condition (24)).

Using our assumed form for the yield function f , we note that f ′ diverges as porosity decreases toward zero:
in practice, f ′ is potentially very large at the initiation of the dehydration reaction (when porosity is very low).
If the applied stress is such that 𝛽 < 0, as in the case at high effective pressure, then the reaction-driven
instability is very probable at the onset of dehydration. This implies that the pore fluid pressure will quickly rise
to decrease the effective stress; the pressure (solid and fluid) will hence equilibrate very suddenly, generating
a transient pore pressure pulse.

4.3. Strain Localization and Pore Pressure Buildup
The considerations above are restrained to the undrained system. The diffusion of pore fluids will tend to
stabilize the pore pressure runaway (if it occurs) by draining the rock over a certain length scale. There is no
general analytical solution available for equations of the form (11); here we restrict our analysis to a study of
the stability of the system to small departures from equilibrium (which corresponds to pf = peq).

BRANTUT ET AL. DEHYDRATION-INDUCED INSTABILITIES 6095



Journal of Geophysical Research: Solid Earth 10.1002/2017JB014357

Figure 5. Critical unstable wavelength 𝜆crit. Values are reported in meters. The parameter values used here are those
relevant to the dehydration of antigorite into enstatite and forsterite. For simplicity we assumed h = 0 and associated
plasticity (𝛽 = 𝜇). The wavelength becomes infinite along the stability boundary, i.e., for f ′ approaching f ′crit, and
approaches a constant (dashed lines) given by equation (32) for f ′ ≫ f ′crit.

As stated in section 3.3, the experimental data of Eggler and Ehmann [2010] show that the near-equilibrium
kinetics is linear, nr = 1. In that case, the stability analysis detailed in Appendix C2 shows that pore pressure
runaways are possible if f ′ > f ′crit (same as condition (30)) and if the spatial wavelength of the perturbation 𝜆

is such that

𝜆>𝜆crit = 2𝜋

√√√√ peq(k∕𝜂)
[
1 − f ′𝛽∕(h − hcrit)

]
r0m0

d

(
1∕𝜌f + ΔrVs

) (
1 − f ′∕f ′crit

) . (31)

We observe that the critical wavelength depends on a number of parameters, some of them well constrained
(equilibrium pressure peq, permeability k, fluid viscosity 𝜂, and the net volume change of the reaction) and
others much more poorly known (essentially, all the parameters associated with the mechanical behavior,
including f ′ and 𝛽). However, as discussed above, the value of f ′ at the onset of the reaction is expected to
be very large since small increments in porosity have large effects on the yield cap when the rock is initially
nonporous. We can use this fact to our advantage by noticing that the critical wavelength 𝜆crit tends to a
constant, nonzero value for f ′ ≫ f ′crit :

𝜆crit ∼ 2𝜋

√
peq(k∕𝜂)

r0m0
dΔrVs

√
3
𝜈 − 1

2𝜈 − 1
1

𝛽−1 − 𝛽−1
crit

. (32)

Equation (32) provides a simple lower bound for the critical wavelength, which is, quite remarkably, indepen-
dent from the hardening modulus h.

The value of 𝜆crit is shown in Figure 5 as a function of f ′ and 𝛽 for the parameters relevant to the dehydration
of antigorite into enstatite and forsterite. As expected, the wavelength tends to the constant given by (32)
at large values of f ′, and we confirm that this limit value has only a mild dependence (square root) on the
dilatancy factor 𝛽 .

Based on the parameter values outlined above for antigorite, we estimate typical values for 𝜆crit of the order of
10 to 100 m. In our model, this length scale corresponds to the characteristic width over which pore pressure
builds up and compaction (negative volumetric strain) localizes.

4.4. Numerical Tests
We performed a series of numerical computations in order to explore further the effects of potential nonlin-
earities associated with the variations of mechanical, hydraulic, and chemical parameters during deformation
and reaction. We included a power law dependence of the permeability on porosity, k ∝ 𝜁3 (where we recall
that 𝜁 is the porosity of the rock minus its poroelastic variations) and accounted for depletion of antigorite
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Figure 6. Nonlinear evolution of the compaction instability, modeled numerically. (a) Volumetric strain profiles as a
function of time; initial and final profiles are shown in thick black lines, and intermediate profiles are in light grey.
(b) Time evolution of volumetric strain at the center (y = 0) and at the edges (y = ±L∕2) of the modeled layer.

by using a simple first-order approximation for the reactant surface area, Arlm∕A0
rlm ≈ (1 − 𝜉), in equation (7).

The numerical method is described fully in Appendix D, and the MatlabⓇ implementation and source code
are available online at http://github.com/nbrantut/Compaction_Dehydration. The solution for pore fluid pres-
sure, strain, reaction progress, and porosity is computed within a layer of width L, with periodic boundary
conditions, and an initial sinusoidal infinitesimal pore pressure perturbation is added to the homogeneous
initial conditions. We chose a representative example by using an initial pore pressure of 3 GPa, an initial total
mean stress of 3.61 GPa (i.e., an initial shear stress of 0.87 GPa), and an initial porosity of 3%. Using the initial,
reference parameters, we find that the critical wavelength for instability is 𝜆crit ≈ 0.08L, so that we expect
some compaction localization (at least transiently).

The volumetric strain profile within the layer is shown as a function of time in Figure 6a. The initial (𝜖(y, 0) = 0)
and final (at t × r0 = 100) profiles are highlighted in black, and intermediate stages are shown in
light grey. Over time, a net volumetric strain localization develops around the center of the layer and
remains there permanently at large times. The time evolution of the compaction localization instability

Figure 7. Volumetric strain 𝜖 (black), reaction progress 𝜉 (orange),
porosity 𝜁 (green), and normalized pore pressure change pf − pf0∕𝜎n
(blue) as a function of normalized time t × r0. Solid lines show the
evolution at the center of the layer (y = 0), and dotted lines correspond
to the evolution at the edge of the layer (y = ±L∕2).

is better observed in Figure 6b, which
shows the volumetric strain in the cen-
ter of the layer (y = 0) and on the edge
(y = ±L∕2). The peak compaction at the
center develops quite rapidly, initially
accelerating, and then develops over a
timescale of the order of t × r0 ≈ 10 and
then stabilizes. At the edges of the layer,
the compaction develops more slowly
and a strong strain gradient develops
in the initial phase of the instability;
once the compaction stabilizes in the
center (at around t × r0 ≈ 20), the strain
becomes more homogeneous as the
edges also compact further until the
whole process eventually stabilizes,
leaving only a slight strain heteroge-
neity near the center.

The evolution of all other key variables
as a function of time is shown in Figure 7.
The onset of the compaction instabil-
ity is marked by a rapid acceleration of
the reaction progress, porosity, and pore
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Figure 8. Stress path of material elements within the antigorite layer. The
initial and final stress states are given by the filled black circles. The
trajectory of the element in the center of the layer is given by the solid
black line, and that of the element at the edge is given by the dashed
black line. The trajectories of all other elements are given as the thin grey
lines. In this simulation, the total normal stress is 𝜎n = 3.71 GPa, so that
the initial effective mean stress is 0.61 GPa and the initial shear stress is
0.09 GPa.

pressure changes localized in the cen-
ter of the layer (solid lines, t × r0

between 10 and 15). As the reac-
tion progresses further the differences
between the reaction progress, poros-
ity, strain, and pore pressure at the
center and at the edges progressively
decrease. As the reaction approaches
completion, the porosity stabilizes at
around 27% while the pore pressure
remains very high, corresponding to
a mean effective stress of around
0.07 GPa. At this point, no further com-
paction is possible because the peri-
odic boundary conditions effectively
ensure that the system is undrained.

The full stress path of each mate-
rial element in the layer is drawn in

Figure 8 in the effective mean stress, shear stress (p′, 𝜏) space. As the pore pressure and porosity increase in
the layer, the yield surface shrinks and the stress state evolves to maintain mechanical equilibrium. The stress
paths of different elements in the layer are not exactly the same, since heterogeneities in pore pressure and
stress develop between the center (solid line) and the edges (dashed line). As the reaction approaches com-
pletion, the effective stress becomes very small (p′∕𝜎n ≈ 0.019, i.e., p′ ≈ 0.07 GPa) and the material cannot
compact further because of the residual (small) nonzero strength, illustrated by the final yield surface.

Overall, the numerical simulation confirms that a compaction instability is possible, but that it is only transient
as the system tends again to a homogeneous state while the reaction approaches completion. The typical
timescale for instability is of the same order of magnitude as 1∕r0, i.e., around 7 to 8 days. In our simulations,
we impose periodic boundary conditions so that the layer is effectively undrained: hence, the porosity and
pore pressure remain high after the reaction is completed. We performed complementary simulations using
drained boundaries as another end-member case scenario and observed that there is a long-term compaction
occurring after the initial instability, and the pore pressure returns progressively toward its equilibrium value
over timescales determined by the drained length across the layer.

5. Discussion
5.1. Model Assumptions and Limitations
The key assumption of the model presented here is that ductile deformation of antigorite is essentially time
independent. This approximation is justified by experimental observations of antigorite deformation at ele-
vated pressures and temperature, showing that cataclastic mechanisms typically dominate [Chernak and
Hirth, 2010; Amiguet et al., 2014; Auzende et al., 2015] and that fully plastic flow is unlikely to occur due to the
large crystal anisotropy and lack of available slip systems in antigorite. Furthermore, partially dehydrated ser-
pentinite has also been shown to deform very similar to porous sandstones [Arkwright et al., 2008; Rutter et al.,
2009], which motivates the use of a closed yield envelope.

However, there are also clear experimental indications that ductile flow of antigorite depends on strain rate
[e.g., Hilairet et al., 2007; Amiguet et al., 2012], and time dependency may not be negligible if deformation
occurs over very long timescales. We can test whether time-dependent plastic flow contributes significantly
to deformation by estimating the strain rates developing during the instability in our model. As mentioned
in the previous section, the characteristic timescale over which the instability develops is determined by the
reaction kinetics, 1∕r0. The typical strain achieved during the instability is of the order of a few percents, so
that the strain rate is of the order of r0∕100, which is around 10−8 s−1. Using that strain rate, the typical shear
flow stress extrapolated from the plastic flow laws given in Amiguet et al. [2012, their Figure 6] is of the order of
0.1 GPa. Therefore, our model based on time-independent ductile flow is broadly consistent with the rheology
of serpentinites as long as relatively low shear stresses are considered (around 0.1 GPa).
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However, under near-isostatic conditions, the shear stress is not expected to be large enough to produce
significant viscous flow within the timescale of instability. The contribution of viscous flow to isostatic com-
paction typically scales with the inverse of the porosity [e.g., Wilkinson and Ashby, 1975; McKenzie, 1984], so
that the driving effective mean stress should be of the order of 1 GPa to achieve strain rates of around 10−8 s−1

for a porosity of around 10%. It is therefore likely that viscous compaction in the absence of shear stresses
slows down the development of the pore pressure instability.

A number of coupled deformation-dehydration physical models have been developed based on time-
dependent rheology of rocks [e.g., Connolly, 1997; Connolly and Podladchikov, 1998; Connolly, 2004; Skarbek
and Rempel, 2016]. One key parameter exhibited by these models is the compaction length scale, which is
related to the hydraulic diffusivity, compressibility, and bulk viscosity of the rock. In this context, the timescale
for compaction is entirely determined by the rheology of the rock. In our approach using time-independent
ductile deformation, a characteristic length for pore pressure development and compaction (𝜆c, equation (31))
also arises, associated with the hydraulic diffusivity, rheology, and reaction rate. This length 𝜆c is clearly ana-
logue to the one obtained from viscous compaction and corresponds to the limiting case where the timescale
for compaction is determined by the reaction rate. For typical crustal metamorphic reactions, Connolly [1997]
determines that the minimum compaction length is of the order of 10 to 100 m. Quite interestingly, we find
that the minimum compaction length in our model is also of the order of 10 to 100 m for antigorite dehydra-
tion at intermediate depth (see Figure 5). This similarity in compaction length scale between the two types of
model essentially arises from the similarity in timescales between viscous flow and reaction rate.

Here we made the assumption that the material deforms under isothermal conditions. Although a full analysis
including thermal effects is beyond the scope of the present work, we discuss here qualitatively how changes
in temperature can arise and modify the behavior of the material. First, the dehydration reaction of antig-
orite is endothermic, which constitutes a significant heat sink. Second, the irreversible work done by inelastic
deformation corresponds to energy dissipation and is a heat source. At 4 GPa and 625∘C, the enthalpy change
of the reaction is 442 kJ per mole of antigorite (computed from the database of Holland and Powell [1998]),
i.e., around 2.5×102 MJ m−3. For a reaction rate of the order of 10−8 s−1, the rate of heat absorbed by the reac-
tion is of the order of 2.5 J m−3 s−1. The rate of work of the volumetric strain is given by 𝜖̇p′, and for an effective
stress p′ of around 100 MPa and a characteristic strain rate of the order of 10−8 s−1, the rate of heat generated
by inelastic deformation is of the order of 1 J m−3 s−1. Although the exact quantities are only approximate,
the rate of heat absorbed by the reaction and released by deformation is of the same order of magnitude and
might compensate each other. If significant changes in temperature occur, for instance, a cooling due to the
endothermic character of the reaction overcoming the heat generated by deformation, the reaction kinetics
will also be modified according to the corresponding change inΔG (equation (5)). In that case, heat flow across
the deformed/reacted zone might be the rate limiting process. Assuming a heat diffusivity of 10−6 m2 s−1, the
characteristic diffusion time across a layer of 100 m in thickness is 1010 s, and it drops to 108 s for a 10 m width
layer. Therefore, we expect heat flow to be limiting only when the deformation (and reaction) rate becomes
faster than 10−10 s−1 (respectively, 10−8 s−1) in a thick (respectively, thin) layer. In our simulations, such strain
rates are achieved transiently during the instability, so that thermal effects might affect the behavior of the
system only after the instability has initiated.

Despite the limitations outlined above, the model formulation is quite general and could be applicable to
most devolatilization reactions in subduction zones and also at shallower depths in the crust. This is espe-
cially relevant for relatively cold parts of the crust (or subduction zones), where the viscous creep rates of
rocks are slow compared to reaction kinetics, so that the hypothesis of time-independent rheology would be
justified. Not all reactions are expected to generate a pore pressure instability, and the surprising result here
is that instabilities only arise when the total volume change of the reaction is negative (i.e., at high pressure
for antigorite). Under shallow crustal conditions, most devolatilization reactions are expected to produce a
positive volume change, so instabilities and in particular those responsible for episodic events [Poulet et al.,
2014] should be investigated on a case-by-case basis. In any case, the governing equation for pore pressure
(equation (11)) remains valid and can be used to make predictions for fluid flow in active prograde metamor-
phic settings, such as deep sedimentary basins (where gypsum and clay mineral dehydrate), around rising
plutons and magma chambers, and of course along subduction zones.
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5.2. Effective Stress in Subduction Zones and Implications for Intermediate-Depth Earthquakes
One of the key outcome of our model is that antigorite dehydration at intermediate depth results in a very
rapid buildup of pore pressure, reducing the effective mean stress toward near-zero values while maintaining
a significant open porosity (at least as long as the fluids are trapped inside the dehydrating layer). This pore
pressure buildup occurs despite the net negative volume change of the reaction and is primarily driven by the
collapse of porosity. Hence, we expect the effective mean stress to remain near zero throughout the regions
where dehydration proceeds independently from the net volume change associated with the reaction. While
this is also expected in models involving viscous rock deformation, we find here that the path toward low
effective stress states is unstable, but only in the case when the net volume change is negative 1∕𝜌f+ΔrVs < 0.
This instability arises because the compaction tends to increase pore pressure and takes the system farther
away from equilibrium. If the net volume change from the reaction is positive, any compaction and pore col-
lapse would increase pore pressure and bring the system back to equilibrium, unless unrealistic amounts of
shear-induced dilatancy occur.

One interesting outcome of our model is that we show that the dehydration and compaction process pro-
duce significant shear deformation in the rock and not just pure volumetric compaction. In our approach, we
used uniaxial strain boundary conditions in order to simulate a simple, tractable problem. In nature, the stress
state and boundary conditions are necessarily more complex. The existence of shear stresses, even very small
(0.01 to 0.1 GPa), is expected to produce significant shear strains during the pore pressure buildup. The dehy-
drating body of antigorite then acts as a very deformable layer or inclusion, amplifying the stresses around
it. In addition, pore fluid diffusion outside the dehydrating body also contributes to decreasing the effective
stress in the surrounding rocks.

The combination of relatively rapid stress amplification and effective pressure reduction provides a reason-
able mechanism for the inception of brittle deformation in the surrounding ultramafic rocks (peridotites and
metagabbros). Indeed, at the temperatures and pressures relevant to antigorite dehydration and at strain
rates as high as 10−8 s−1 during the pore pressure instability, peridotites have a high strength and are unlikely
to accommodate deformation in a purely viscous manner, thus raising elastic stresses and favoring brittle
deformation. Such a mechanism is essentially a kind of dehydration embrittlement, but in the surrounding
rocks and not in the dehydrating serpentinite itself. While this process had been suggested in earlier works
by Kirby [1987] or Rutter et al. [2009], our model provides first-order quantitative constrains on its likelihood
by establishing a closed-form stability criterion that depends on the rock rheology and reaction kinetics
(equation (28)).

As a final note of caution regarding our interpretations in terms of fluid pressure at intermediate depths, we
recall here that the concept of effective stress makes sense only if a uniform pore pressure can be defined for
a representative volume element of the rock. This is most likely the case when porosity is larger than several
percents, above the percolation threshold [Guéguen and Palciauskas, 1994]. However, over long timescales, the
progressive drainage of the pore fluid outside of the dehydrating zones tends to allow compaction to reduce
porosity; this reduction in porosity occurs concomitantly with surface diffusion and dissolution-precipitation
processes that heal and seal the pore space, leaving a disconnected pore network and free fluids present only
as fluid inclusions [e.g., Smith and Evans, 1984]. In the long term, pore pressure is not a well-defined concept
and neither is effective stress. There are currently insufficient constrains on healing mechanisms in silicates to
draw definitive quantitative conclusions on the persistence and connectivity of the pore space at intermediate
depths in subduction zones, but we expect that the short timescale of the instability (typically of the order of
10 days in our simulations) and the large porosity generated by the reaction (around 20%) ensure a reasonable
pore network connectivity and validate the use of the concept of effective stress.

6. Conclusions

We developed a model to simulate coupled deformation and dehydration of antigorite at intermediate
depths in subduction zones. Our model shows that dehydration can lead to unstable pore pressure rise and
deformation when the net volume change of the reaction is negative, due to a positive feedback between
pore fluid pressure, compaction, and dehydration rate. The stability criterion (equation (30)) is controlled by
the dependence of the yield envelope on porosity (parameter f ′ = 𝜕f∕𝜕𝜁 ); using estimates for f ′ consis-
tent with well-established mechanics of porous rocks, we find that antigorite dehydration leads to unstable
deformation under typical intermediate-depth conditions in subduction zones.
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Furthermore, we also show that the instability is associated with localized deformation and fluid pressure
over a characteristic length scale controlled by hydraulic diffusivity, rheological parameters, and reaction rate.
A lower bound for this characteristic length is of the order of 10 to 100 m, commensurate with the viscous
compaction length scale obtained in models using time-dependent rheologies.

Our model predicts that the typical strain rates during the instability are of the order of 10−8 s−1. At such
rates and at the relatively cool dehydration temperature of antigorite (around 600∘C), the surrounding, chem-
ically stable peridotites and metagabbroic rocks forming the subducted slab have a high strength and are
expected to build up elastic stresses. The elevated pore pressures associated with the dehydration reaction
can therefore transiently bring the surrounding rocks back into the brittle field, thus allowing the nucle-
ation and propagation of earthquakes. This mechanism is clearly a type of dehydration embrittlement but
is crucially based on a rapid stress transfer between weak dehydrating rocks and strong surrounding ultra-
mafic rocks, in a manner conceptually similar to the early model of Kirby [1987] for transformation-induced
instabilities.

Appendix A: Derivation of Governing Equations
A1. Fluid Pressure
For a reacting porous medium, the mass balance equations for the solid skeleton and the fluid are
[Coussy, 2004]

𝜕
(
𝜌s(1 − n)

)
𝜕t

+ div
(
𝜌s(1 − n)vs

)
= −r, (A1)

𝜕(n𝜌f)
𝜕t

+ div (n𝜌fvf) = +r, (A2)

where 𝜌s is the density of the solid, 𝜌f is the density of the fluid, n is the Eulerian porosity, vs is the velocity of
the solid, and vf is the velocity of the fluid. In the above equations, r denotes the rate at which fluid mass is
generated from solid mass. This will be our definition for the reaction rate. Neglecting gradients in 𝜌s and 𝜌f ,
the combination of equations (A1) and (A2) leads to

1 − n
𝜌s

𝜕𝜌s

𝜕t
+ n

𝜌f

𝜕𝜌f

𝜕t
+ div (vs) + div

(
n(vf − vs)

)
= r(1∕𝜌s − 1∕𝜌f). (A3)

We can relate the divergence of the relative fluid velocity with respect to the solid to the gradient in fluid
pressure by using Darcy’s law [Coussy, 2004]:

n(vf − vs) = −(k∕𝜂)grad (pf), (A4)

where pf is the fluid pressure, k is the permeability of the material, and 𝜂 is the viscosity of the fluid. The
divergence of the velocity of the solid is the bulk volumetric (Eulerian) strain rate:

div (vs) =
𝜕𝜖

𝜕t
, (A5)

where 𝜖 is the bulk volumetric strain. The combination of relations A4 and A5 with equation A3 yields

1 − n
𝜌s

𝜕𝜌s

𝜕t
+ n

𝜌f

𝜕𝜌f

𝜕t
+ 𝜕𝜖

𝜕t
− k

𝜂
∇2pf = r(1∕𝜌s − 1∕𝜌f). (A6)

The variation of the fluid density can be expressed as

1
𝜌f

𝜕𝜌f

𝜕t
= cf

𝜕pf

𝜕t
, (A7)

where cf is the compressibility of the fluid. The variation of the solid density is decomposed into two
contributions:

1
𝜌s

𝜕𝜌s

𝜕t
= cs

𝜕ps

𝜕t
+ 1

𝜌s

𝜕𝜌s

𝜕m
r, (A8)

where cs is the compressibility of the constituents of the solid skeleton, and m denotes the mass of fluid
released by the chemical reaction. The last term in (A8) corresponds to the evolution of the average density
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of the solid skeleton as the reaction proceeds (this term would be zero if the solid was transforming entirely
into a fluid, without generating solid products). Combining relations (A7) and (A8) into equation (A6) yields

(
(1 − n)cs + ncf

)𝜕pf

𝜕t
= k

𝜂
∇2pf −

𝜕𝜖

𝜕t
+ r

(
1
𝜌f

− 1
𝜌s

− 1 − n
𝜌s

𝜕𝜌s

𝜕m

)
. (A9)

We now need to express the evolution of the average density of the solid as a function of the reaction progress.
We are interested in the following type of chemical reaction:

mineral 0 −→
∑

i

𝜈imineral i + 𝜈ffluid , (A10)

where 𝜈i,f are stoichiometric coefficients. Denoting 𝜉 the reaction progress and m0
d the total mass of fluid that

can be released by the reaction (per unit volume of rock), the solid volume is expressed as

Vs =
m0

d

𝜈fMf

(
M0(1 − 𝜉)∕𝜌0 +

∑
i

(𝜈iMi∕𝜌i)𝜉

)
, (A11)

where Mi is the molar mass of constituent i. The average solid mass is denoted ms. The density of the solid is
𝜌s = ms∕Vs; hence, we have

1
𝜌s

𝜕𝜌s

𝜕m
= 1

ms

𝜕ms

𝜕m
− 1

Vs

𝜕Vs

𝜕m
. (A12)

The conservation of mass imposes that 𝜕ms∕𝜕m = −1, so that

1
𝜌s

𝜕𝜌s

𝜕m
= 1

Vs

(
− 1
𝜌s

−
𝜕Vs

𝜕m

)
. (A13)

The last term in parenthesis of the previous equation corresponds to the solid volume change of the reaction,
which we denote ΔrVs. Keeping in mind that m = m0

d𝜉, we can use relation (A11) to express ΔrVs as

ΔrVs = −
M0

𝜌0𝜈fMf
+

∑
i 𝜈iMi∕𝜌i

𝜈fMf
. (A14)

Finally, we have to keep in mind that Vs = 1 − n by definition, so that equation (A13) becomes

1 − n
𝜌s

= − 1
𝜌s

− ΔrVs. (A15)

The combination of the relation above with the mass balance equation (A9) eventually leads to the governing
equation (1) for pore fluid pressure.

A2. Constitutive Behavior
We assume that the dehydrating rock is elasto-plastic. We introduce the yield function f (𝝈, 𝜁 ), where 𝝈 is the
stress tensor and 𝜁 is an internal variable on which the yield cap depends. 𝜁 can be identified to either the
finite porosity of the material or more directly to the reaction progress in the case of a pure chemical control
over the material’s strength. These two options will be discussed later on. We also assume, in accordance with
experimental observations, that the material undergoes strain hardening. For the sake of simplicity, f and g
were assumed linear in terms of 𝜏 . In that case, the consistency condition for plastic loading is therefore(

𝜕f
𝜕𝝈

)T

d𝝈 + 𝜕f
𝜕𝜁

d𝜁 − hd𝜆 = 0, (A16)

where h is the hardening modulus and d𝜆 is a positive infinitesimal scalar (so-called plastic increment). If we
now introduce the plastic potential g(𝝈), the elasto-plastic stress increment is then given by

d𝝈 = Meld𝝐 − d𝜆Mel 𝜕g
𝜕𝝈

, (A17)

where Mel is the elastic tensor and 𝝐 is the total strain tensor. The combination of equations (A16) and (A17)
allows the determination of the plastic increment d𝜆 and yields the full incremental constitutive relation

d𝝈 = Mepd𝝐 +𝚿d𝜁, (A18)
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where

Mep = Mel −
Mel 𝜕g

𝜕𝝈

(
𝜕f
𝜕𝝈

)T
Mel

h +
(

𝜕f
𝜕𝝈

)T
Mel 𝜕g

𝜕𝝈

(A19)

and

𝚿 = −
Mel 𝜕f

𝜕𝜁

𝜕g
𝜕𝝈

h +
(

𝜕f
𝜕𝝈

)T
Mel 𝜕g

𝜕𝝈

. (A20)

We further assume that the material is isotropic. The scalars p′ and 𝜏 are used here, and they represent, respec-
tively, the Terzaghi effective mean stress (i.e., the difference between the total mean stress and the pore
pressure, p′ = tr(𝝈)∕3 + pf ) and the shearing stress intensity. The shearing stress intensity 𝜏 is defined as the

square root of the second invariant of the deviatoric part, s, of the stress tensor: 𝜏 =
√

1
2

sijsij . The Einstein
summation convention is adopted and the indices i, j take values 1,2,3. In the (p′, 𝜏) space, the stress vector 𝜎
is defined as

𝝈 =
(

p′

𝜏

)
. (A21)

Likewise, the strain vector can be described by the volumetric strain 𝜖 and shear strain 𝛾

𝝐 =
(
𝜖

𝛾

)
. (A22)

The elastic tensor is written then

Mel =
(

K 0
0 G

)
, (A23)

where K is the bulk modulus of the porous material, and G is shear modulus. For a general plastic behavior,
the derivatives of the yield function and plastic potential are expressed as follows:

𝜕f
𝜕𝝈

=
(
𝜇

1

)
,

𝜕g
𝜕𝝈

=
(
𝛽

1

)
, (A24)

where𝜇 is the friction coefficient, and 𝛽 is the dilatancy factor. For the sake of simplicity, f and g were assumed
linear in terms of 𝜏 . The full expression for the incremental stress-strain relation in the (p′, 𝜏) space becomes:

dp′ =
GK

[
(1 + h∕G)d𝜖 − 𝛽d𝛾

]
h + G + 𝛽𝜇K

− 𝛽K
h + G + 𝛽𝜇K

𝜕f
𝜕𝜁

d𝜁, (A25)

d𝜏 =
GK

[
−𝜇d𝜖 + (h∕K + 𝛽𝜇)d𝛾

]
h + G + 𝛽𝜇K

− G
h + G + 𝛽𝜇K

𝜕f
𝜕𝜁

d𝜁. (A26)

In expressions (A25) and (A26), the factor 𝜕f∕𝜕𝜁 corresponds to the dependency of the yield cap on the inter-
nal variable (or material parameter) 𝜁 . As summarized by Wong and Baud [2012], yield caps for porous rocks can
be scaled by the critical pressure for hydrostatic pore collapse, usually denoted P∗. It has also been observed
[e.g., Zhang et al., 1990] that P∗ is scaled by the product of the grain size and the porosity of the rock, to the
power 3/2. This dependency of f on P∗ and of P∗ on porosity implies that the yield cap can be considered as
a function of the porosity of the rock. Hence, a natural choice for the parameter 𝜁 is the total nominal poros-
ity (i.e., the current finite porosity resulting from deformation and reaction minus any variations produced by
elastic deformations). In such framework, we can write

d𝜁 = −m0
dΔrVsd𝜉 + d𝜖 − dp′∕K . (A27)

Using this expression for 𝜁 into equations (A25) and (A26), we finally arrive at the incremental constitutive
formulation of equations (3) and (4) in the main text.
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A3. Uniaxial Compaction
The combination of relations 10 and 3 yields

𝜕p
𝜕t

+
𝜕pf

𝜕t
=

GK
[
(1 + (h − f ′𝛽)∕G) + 2𝛽∕

√
3
]

h − f ′𝛽 + G + 𝛽𝜇K
𝜕𝜖

𝜕t
− f ′𝛽K

h − f ′𝛽 + G + 𝛽𝜇K
𝜕𝜉

𝜕t
. (A28)

Assuming a constant 𝜎n over time, equation (9) yields

𝜕p
𝜕t

= 2√
3

𝜕𝜏

𝜕t
, (A29)

which we combine to equation (A28), making use of relation (4), to obtain

𝜕pf

𝜕t
= M

𝜕𝜖

𝜕t
− f ′X

𝜕𝜉

𝜕t
, (A30)

where

M = GK
h − f ′𝛽 + G + 𝛽𝜇K

[(
1 + 2√

3
𝜇

)(
1 + 2√

3
𝛽

)
+ (h − f ′𝛽)

( 1
G
+ 4

3K

)]
, (A31)

and

X = −m0
dΔrVs

𝛽K − 2G∕
√

3

h − f ′𝛽 + G + 𝛽𝜇K
. (A32)

Now we can use equation (1) to express the volumetric strain rate:

𝜕𝜖

𝜕t
= k

𝜂

𝜕2pf

𝜕y2
+
(

m0
d(1∕𝜌f + ΔrVs)

) 𝜕𝜉

𝜕t
− cb

𝜕pf

𝜕t
. (A33)

We finally use the expression of the volumetric strain rate given by (A33) into equation (A30) to obtain

𝜕pf

𝜕t
=

Mk∕𝜂
1 + cbM

𝜕2pf

𝜕y2
+

Mm0
d(1∕𝜌f + ΔrVs) − f ′X

1 + cbM
𝜕𝜉

𝜕t
. (A34)

Using the chemical kinetics established in equation (7), we finally arrive at equation (11) of the main text.

Appendix B: Volume Change for Antigorite Dehydration

The density of a phase as a function of temperature is given by

𝜌(T) = 𝜌∘e−Φ, (B1)

where 𝜌∘ is the density under standard conditions (at T = T0 = 25∘C) and

Φ = ln(Vm(T)∕V∘m) = 𝛼∘
(

T − T0 − 20(
√

T −
√

T0)
)
. (B2)

The density as a function of pressure is given by

𝜌(P) = 𝜌∘(1 + 2𝓁)3∕2, (B3)

where 𝓁 is the linear strain calculated from the bulk modulus K and its derivative with pressure K ′ = 𝜕K∕𝜕P:

P∕K = 3𝓁(1 + 2𝓁)5∕2

[
1 − 2(3 − 3K ′∕4)𝓁 + 𝓁2

6

(
4(3 − 3K ′∕4)(4 − 3K ′) + 5(3K ′ − 5)

)]
. (B4)

The total change in density as a function of pressure and temperature is finally obtained from

𝜌(P, T) = [𝜌(P)∕𝜌∘]𝜌(T), (B5)

which implies that the molar volume is

Vm(P, T) = M∕𝜌(P, T) = V∘m(1 + 2𝓁)−3∕2eΦ. (B6)

BRANTUT ET AL. DEHYDRATION-INDUCED INSTABILITIES 6104



Journal of Geophysical Research: Solid Earth 10.1002/2017JB014357

Appendix C: Stability Analysis
C1. Derivation of Criterion
The inequality (28) can be rewritten as

f ′
[
ΔrVs(𝛽K − 2G∕

√
3) − 𝛽(K + 4G∕3)(1∕𝜌f + ΔrVs)

]
>−(K + 4G∕3)(h − hcrit)(1∕𝜌f + ΔrVs). (C1)

Assuming that the material is nominally stable, i.e, h> hcrit, and considering that the reaction has a total neg-
ative volume change (1∕𝜌f + ΔrVs < 0), the right-hand side of inequality (C1) is a positive quantity. If the
term in the brackets on the left-hand side is negative, f ′ would have to be also negative in order to satisfy the
inequality. This is a contradiction since the material is porosity softening and f ′ > 0. So a first requirement for
the instability to be possible is that the bracketed term is positive, which implies that

𝛽

[
1
𝜌f

+ 4G
3K + 4G

ΔrVs

]
<

2√
3

−3G
3K + 4G

ΔrVs. (C2)

Considering that the material is compactant (𝛽 < 0) and that the solid volume change of the reaction is
negative (ΔrVs < 0), inequality (C2) is satisfied when either

1
𝜌f

+ 4G
3K + 4G

ΔrVs > 0, (C3)

or

1
𝜌f

+ 4G
3K + 4G

ΔrVs < 0 and 𝛽 > 𝛽crit, (C4)

where 𝛽crit is defined in equation (29) of the main text. In that case, the instability criterion in terms of f ′ is
given by (see equation (C1))

f ′ >
−(K + 4G∕3)(h − hcrit)(1∕𝜌f + ΔrVs)

ΔrVs(𝛽K − 2G∕
√

3) − 𝛽(K + 4G∕3)(1∕𝜌f + ΔrVs)
, (C5)

which is exactly the same as equation (30) after some rearrangements.

C2. Linear Analysis
Denoting p′

f
the small perturbation of pf above peq, we rewrite the governing equation for pore pressure (11)

as follows:

𝜕p′
f

𝜕t
=

Mk∕𝜂
1 + cbM

𝜕2p′
f

𝜕y2
+

Mm0
d(1∕𝜌f + ΔrVs) − f ′X

1 + cbM
r0

(
p′

f

peq

)nr

. (C6)

The qualitative behavior of the system depends on the value of nr.

For nr = 1 (i.e., the dehydration reaction kinetics is approximated to be first order), the equation is linear and
we can perform a linear stability analysis to explore how the system evolves. We assume no flux conditions at
the boundaries of a dehydrating layer of thickness W (which simulates a serpentinite layer embedded in an
impermeable host rock). Then we look for solutions of (C6) (with nr = 1) in the form

p′
f = A cos(2𝜋y∕𝜆) exp(St), (C7)

where A is the amplitude of the perturbation, S is its growth factor, and 𝜆 is its wavelength. Our suggested
solution must be consistent with the prescribed boundary conditions; hence, we require that 𝜆 = W∕k,
(k = 1, 2,…). The perturbation is unstable (S> 0) if (1) f ′ > f ′crit and (2) the wavelength is greater than a critical
wavelength 𝜆crit:

𝜆>𝜆crit = 2𝜋

√
peqk∕𝜂

r0[m0
d(1∕𝜌f + ΔrVs) − f ′X∕M]

. (C8)

After some algebra, the critical wavelength can be rewritten as in (31) in the main text.

For nr > 1, the situation is mathematically more complicated. Indeed, one can immediately observe in
equation (C6) that the reaction term does not appear in a first-order stability analysis (it is elevated to a
power greater than 1). However, one could hope to make useful analytical predictions without resorting
to a full numerical treatment. Let us assume that the perturbation has a characteristic amplitude A and
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a characteristic length scale L, i.e., p′
f
(y, t) = A(t)g(y∕L(t)) where g is a nondimensional function of the order

of 1. The governing equation for p′
f

is then

𝜕p′
f

𝜕t
= A

L2

Mk∕𝜂
1 + cbM

g′′(y∕L) +
Mm0

d(1∕𝜌f + ΔrVs) − f ′X

1 + cbM
r0Anr gnr (y∕L). (C9)

The reaction term will be dominant, i.e., the system will be unstable, if

L ≫

√
1

Anr−1

peqk∕𝜂

r0

[
m0

d(1∕𝜌f + ΔrVs) − f ′X∕M
] = A(1−nr)∕2

2𝜋
𝜆crit. (C10)

The condition given in (C10) is very similar to the one obtained in (C8) for the linear case, but here we see that
the amplitude of the perturbation A appears in the definition of the critical length scale. Hence, according to
(C10), the system is unstable only if the wavelength and the amplitude of the perturbations is large enough to
overcome diffusion. In any case, we note that the reaction will only dominate the system at early times; one
can show that diffusion cannot be neglected everywhere when the system evolves with time. Here we are
only interested in the behavior at early times, because we have assumed that the parameters of the equations
are constant. For further evolution of the system, the full nonlinearities should be included and it is not worth
going too far mathematically with our simplified system.

Appendix D: Numerical Methods

The numerical solution of the fully coupled, nonlinear system is obtained by discretizing the governing
equation for pore pressure (11) in space using a centered finite difference stencil, and then solving for reaction
progress, pore pressure, volumetric strain, total mean stress, porosity, and shear stress as a coupled system of
ordinary differential equations (ODEs). In practice, we normalize the governing equations by using the mag-
nitude of the imposed total normal stress 𝜎n as the stress scale, the reaction rate 1∕r0 as the time scale, and
the thickness of the antigorite layer (denoted L). We use a centered finite difference approximation of the
second-order spatial derivatives of pore pressure, with a grid defined by points yi = iΔy, and implement
periodic boundary conditions at the edges y = 0 and y∕L = 1. The full system of ODEs is then

𝜕𝜉i

𝜕t
= s(1 − 𝜉i)|pfi∕peq − 1|nr , (D1)

𝜕pfi

𝜕t
= M

1 + cbM
1

𝜂Δy2

(
ki+1∕2

(
pfi+1 − pfi

)
− ki−1∕2

(
pfi − pfi−1

))
+

Mm0
d(1∕𝜌f + ΔrVs) − f ′X

1 + cbM

𝜕𝜉i

𝜕t
, (D2)

𝜕𝜖i

𝜕t
= 1

M

(
𝜕pfi

𝜕t
+ f ′X

𝜕𝜉i

𝜕t

)
, (D3)

𝜕pi

𝜕t
= 1√

3∕2 + 𝛽 − f ′∕K

(
(f ′∕K − 𝛽)

𝜕pfi

𝜕t
− f ′

𝜕𝜖i

𝜕t
+ f ′m0

dΔrVs
𝜕𝜉i

𝜕t

)
, (D4)

𝜕𝜁i

𝜕t
= −m0

dΔrVs
𝜕𝜉i

𝜕t
+

𝜕𝜖i

𝜕t
− 1

K

(
𝜕pi

𝜕t
+

𝜕pfi

𝜕t

)
, (D5)

𝜕𝜏i

𝜕t
= −𝛽

(
𝜕pi

𝜕t
+

𝜕pfi

𝜕t

)
− f ′

𝜕𝜉i

𝜕t
, (D6)

where subscripts i indicate variables at point xi, and

ki±1∕2 = (ki + ki±1)∕2. (D7)

In addition, a consistency check is performed by computing the total normal stress,

𝜕𝜎ni

𝜕t
=

𝜕pi

𝜕t
− 2√

3

𝜕𝜏i

𝜕t
, (D8)

and verifying a posteriori that it remains constant throughout space and time. All the parameters that are
stress dependent, namely, 𝛽 , 𝜇, and f ′, are updated at every time and space step to account for the nonlin-
earities. The ODEs are solved by using Matlab’s ode15s solver. The full Matlab code is available online at the
following url http://www.github.com/nbrantut/Compaction_Dehydration.git.
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