
 

 

 

 
 

Abstract— Reaching and grasping are two of the most 
affected functions after stroke. Hybrid rehabilitation systems 
combining Functional Electrical Stimulation with Robotic 
devices have been proposed in the literature to improve 
rehabilitation outcomes. In this work, we present the combined 
use of a hybrid robotic system with an EEG-based Brain-
Machine Interface to detect the user's movement intentions to 
trigger the assistance. The platform has been tested in a single 
session with a stroke patient. The results show how the patient 
could successfully interact with the BMI and command the 
assistance of the hybrid system with low latencies. Also, the 
Feedback Error Learning controller implemented in this 
system could adjust the required FES intensity to perform the 
task. 

I. INTRODUCTION 

Stroke is a leading cause of adult disability around the 
world. A large number of stroke survivors are left with a 
unilateral arm or leg paralysis. After completing conventional 
rehabilitation therapy, a significant number of stroke 
survivors are left with limited reaching and grasping 
capabilities [1]. 

As an alternatively, studies presented in literature have 
shown the benefits of Functional Electrical Stimulation (FES) 
for reaching and grasping rehabilitation [2]. FES have many 
advantages for rehabilitation purposes: it helps the 
preservation of the muscle mass and functions [3], it 
increases the muscle excitability, and promotes cortical 
reorganization [4]. However, due to its non-physiological 
motor unit recruitment, there are still open challenges that 
need to be addressed for its use in clinical environments. 
Similarly, the use of robotic devices was introduced in the 
last decade to rehabilitate motor functions [5]. In this regard, 
the advantages offered by theses mechanical devices are 
exploited to carry out repetitive and intensive tasks with the 
aim to recover motor functions. Nevertheless, the benefits 
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offered by these platforms compared to traditional methods 
are still no completely clear. Therefore, hybrid approaches 
combining FES with robotic devices have emerged over last 
years as a way to overcome their individual limitations and to 
generate a more robust and natural solution for motor 
assistance and rehabilitation [6].  

The design of real-time adaptive controllers is an 
important factor for the assistance of the hybrid system. The 
time-varying and non-linear characteristics of the 
musculoskeletal system must be considered when designing 
FES-based controllers. Additionally, the short amount of time 
available in clinical environments limits the design of simple 
and easy to calibrate controllers.  

On the other hand, there is strong evidence that the 
association between the assistance provided by a 
rehabilitation device with the user’s own movement 
intentions maximizes rehabilitation outcomes [7]. For this 
reason, researchers have been focusing on ways to decode 
volitional commands from physiological signals coming from 
the central nervous system and relate it with an external 
assistance.  

In this paper, we present preliminary results of a stroke 
patient using the hybrid robotic platform that we have 
developed for reaching rehabilitation. The assistance was 
triggered by volitional commands extracted from an EEG-
based brain-machine interface (BMI). A combination of two 
classifiers was implemented to improve the BMI 
performance in term of accuracy and latency. Furthermore, 
the Feedback Error Learning Algorithm (FEL) controller was 
implemented [8], [9] for the FES controller to adjust the 
stimuli intensities according to the user’s motor responses. 

II. METHODS 

A. Participant 
One male chronic stroke patient (right-handed, 72 years 

old) was recruited for the experiment. The participant has 
suffered an ischemic stroke, 3.8 years ago, on his right 
hemisphere of the brain. The subject had no previous 
experiences with BCI, FES and robotic devices. The 
experimental protocol was approved by the Ethical 
Committee of La Salle University (Madrid, Spain). He signed 
an informed consent to voluntarily participate in the 
experiment. 
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B. The Hybrid Robotic System 
The development of the hybrid robotic system is based on 

a distributed architecture, composed of four subsystems: the 
Assistive Devices (Exoskeleton+FES), Motor Intent 
Detection, the High-Level Controller (HLC), and the Medical 
Interface and Visual Feedback. The general overview of the 
system architecture is shown in Fig. 1a. 

The upper limb exoskeleton Armeo Spring® (Hocoma, 
Switzerland) and the IntFES stimulator (Technalia, Spain) 
were combined to aid in the execution of the reaching 
movement. The exoskeleton supports the arm weight against 
gravity and allows carrying out 3D reaching movement in an 
unconstrained space. The electrical stimuli were delivered to 
the anterior deltoid and triceps muscles using biphasic 
electrical pulses. This pulse was delivered at a frequency of 
40 Hz with a fixed amplitude (adjusted individually for each 
muscle before the session) while the FES controller 
modulated the pulse width to adjust the FES intensity during 
movement execution 

The detection of the motor intentions was carried out by 
an EEG-based BMI. The BMI was implemented using real-
time Simulink (The Mathworks Inc) on a dedicated 
computer. EEG signals were recorded from 28 positions 
(AFz, F3-F4, FC3-FC4, C5-C6, CP3-CP4, P3-P4, according 
to the international 10-10 system) using active Ag/AgCl 
electrodes (Acticap, Brain Products GmbH, Germany). The 
reference was set to the voltage of the earlobe contralateral to 
the affected arm and AFz was used as ground. Additionally, 
Electromyography (EMG) signals were recorded from two 
bipolar electrodes placed at anterior deltoid and triceps 
muscles. EEG and EMG signals were amplified using the 
gUSBamp (g.Tecgmbh, Austria) and were sampled at 256 
Hz.  

The HLC generated the joint-specific reference 
trajectories and guided the subject to perform the movements 
by regulating the level of assistance (FES intensity) during 
the rehabilitation exercise. This module was implemented in 
a PC104 architecture running the xPC Target operation 
system (Mathwork Inc) for real-time operation.  

The medical interface (Fig. 1b) was integrated into the 
architecture allowing the configuration of the therapy 
parameters (right/left arm, FES parameters and range of 
movements). Additionally, a visual feedback module was 
developed to provide information regarding the arm position 
(shoulder and elbow). The arm position was represented 
using 2D figures (Fig. 1c). The current position was depicted 
using a circle, where the x- and y-axis indicated the 
movements of the elbow and shoulder joints, respectively. 
The system also reported information regarding the quality of 
the movement by changing the color of the ball after the 
execution of each trial according to the performance. The 
color green indicated a good performance, yellow a moderate 
performance, orange a bad performance and red a poor 
performance. The Visual Feedback module and the Medical 
Interface were coded using Matlab as well.  

C. Experiment protocol 
The subject participated in one single session. The study 

was performed in a sound-attenuated room, where the he sat 
in a comfortable chair with his affected arm supported by the 

exoskeleton. The experiment was divided into two phases: 
measurement and evaluation.  
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Figure 1. a) General overview of the hybrid robotic system for reaching 

rehabilitation; b) Medical Interface for therapy parameter configuration; c) 
Visual and proprioceptive feedback. 

During the measurement phase, the subject was instructed 
to remain relaxed with his eyes open and his gaze fixated on 
a point on the front screen. He was asked to perform self-
initiated reaching movements with his affected arm. The 
average distance between movements execution was around 
8-15 s. During the resting state in between movements, the 
subject was asked to remain as relaxed and quite as possible, 
otherwise, he was asked to start a movement as soon as he 
felt the urge to do it. The recorded data was used to train an 
EEG-based detector of the reaching movement onsets. For 
this purpose, a total of 35 trials were collected for training.   

The EMG signals were recorded from the anterior deltoid 
and triceps muscles, which were used to detect muscle 
activation events to define the onsets of the reaching 
movements. The acquired EMG signal was processed offline 
using a band-pass filter (55≥ f ≤ 96 Hz) and a signal rectifier. 
A single threshold detector was implemented to detect onsets 
of muscle contractions. The threshold was set as the 7% of 
the maximum EMG amplitude during the voluntary 
movements. 

In the second part of the session, the subject was asked to 
stare at a screen and to repeat the same reaching movement 
execution. During this process, electrical stimuli and visual 
feedback were delivered each time the EEG-based detector 
estimated that a movement intention was detected. The 
participant was told that the electrical stimuli appeared 
whenever motor-related mental processes were observed. A 
total of seven runs of approximately 14 movements were 
performed, where each trial lasted 2 s. 

D. EEG-Based BMI for User Motor Intention Detection 
We implemented the same method as in [10], to decode 

the patient’s movement intentions based on the EEG signals.  

In brief, two classifiers based on the movement-related 
Event-Related Desynchronization (ERD) and the 
Bereitschaftspotential (BP) patterns were combined. A naive 
Bayes classifier was used to detect the ERD patterns 
preceding the movements. Band-pass filtering (Butterworth, 
3th order, 0.5 Hz < f1, 35 > f2) and Laplacian filter were first 
applied. The power values were estimated using the Welch’s 
methods in segments of 1.5 s and for frequencies between 7-
30 Hz (Hamming windows of 1 s, 50 % overlapping). The 
values obtained in the training run between -3 s to -0.5 s 



 

 

 

(with respect to the movement onsets) were labeled as resting 
state examples and estimations generated at t = 0 s were 
labeled as movement onset examples. The Bhattacharyya 
distance was used to select the 10 best features 
(channel/frequency pairs) to build the Bayesian classifier. 

The BP was detected using a finite impulse response low-
pass filter (below 2 Hz). A virtual channel was obtained by 
subtracting average potential of channels F3, Fz, F4, C3, C4, 
P3, Pz and P4 to channels Cz and C2. The average BP was 
computed for the resulting channel using the training data 
and it was used to design a matched filter. To this end, the 
average BP pattern was extracted from -1.5 s to 0 s. During 
the online function, the matched filter was applied to the 
virtual channel of the validation dataset. 

Finally, outputs from ERD- and BP-based detectors were 
combined using a logistic regression classifier. Training 
examples of the resting condition were taken from 
estimations between -3 s and -0.5 s with respect to the 
movement onset. The output estimations at the movement 
onset were used to model the movement state. The classifier 
generated estimations of the intention to move every 100 ms. 
A threshold was applied to the estimations to decide at each 
moment whether a movement intention was detected. The 
threshold was optimally obtained using the training dataset 
and following the criterion of maximizing the TP: percentage 
of trials with a correct motor intention detection (detection 
contained in the time interval from -0.75 s to +0.75 s) and 
with no previous incorrect detections.  

E. High-Level Controller  
Typically, stroke patients suffer from spasticity that 

produces an over-activity of flexor muscles of the arm and a 
loss in activity of triceps, anterior deltoid and fingers 
extensor muscles [11]. This is why we stimulated the anterior 
deltoid and triceps muscles to assist shoulder flexion and 
elbow extension movements. 

1) Estimation of the Human Arm Position 
We approximated the position of the human arm joints 

using the rotation axes of the position transducer embedded 
in the exoskeleton by considering several assumptions. First, 
we assumed a parallel arrangement of the human arm with 
the exoskeleton (Fig. 2a). Second, we assumed that the 
application of stimulation to the triceps produces a moment 
about an axis orthogonal to both the forearm and upper arm. 
Also, that the FES to the anterior deltoid produces a moment 
about an axis fixed with respect to the shoulder. Therefore, 
the same bijective transformation used in [12] was 
implemented to determine the arm axes (shoulder and elbow) 
and define its position given by vector Ø = [Ø1, Ø2, Ø3, Ø4, 
Ø5] (see Fig. 2a). 

2) Feedback Error Learning Controller 
We assumed that the controlled system is composed of 

two single-input, single-output (SISO) system, thus, the 
movement of the forearm and upper arm are independent of 
each other. These considerations allow us to implement two 
independent Feedback Error Learning (FEL) controllers for 
each joint, where each one consisted of a proportional-
integral-derivative (PID) feedback controller combined with 
a neural network (NN) based feedforward loop (see Fig. 2b). 

The implemented feedforward loop of the FEL controller 
allows learning the nonlinear inverse dynamic of the system, 
while the feedback controller compensates against external 
disturbances. The NN receives as input the desired kinematic 
profile and uses the output of the feedback loop as the 
correction parameter [8]. This learning process is kept along 
the execution of each movement, where the feedback loop 
output should tend to zero as learning proceeds. 
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Figure 2. a) Exoskeleton and human arm rotation axes; b) Implemented 

Feedback Error Learning control scheme. 

The NN was defined as a three-layer perceptron network. 
This network relies on nine input, nine hidden nodes, and one 
output node. The NN weights were initialized with small 
random values close to zero, which are updated during 
movement execution at each sample time. 

3) Reference Generator 
To generate the tracking references, we have used the 

method described by Flash and Hogan [13]. They derived a 
mathematical expression that describes the way in which the 
central nervous system move the hand smoothly from one 
point to another. They called this function the minimum jerk 
trajectory, and it only requires the target and the duration of 
the desired position to describe the trajectory completely. In 
this experiment, we generate the profiles for the position, the 
velocity and the acceleration, which were used as a reference 
for the NN ones the EEG-based BMI trigger the execution of 
the reaching movement. 

F. Metrics Performance 
For BCI validation, we calculated the percent of the good 

trials. Thus, a good trial was the attempted movements of the 
subject that produce FES assistance with low latency (< 750 
ms). The subject was instructed to say NO when he received 
the electrical stimuli but he did want to receive it. The HLC 
validation consists in the analysis of the FEL control signal 
recorded during the movement execution. For this aim, we 
used the information of the human arm position and the 
provided FES intensity. 

III.  RESULTS 
Fig. 3 shows the stroke patient during the session.  The 
accuracy of the BMI for detecting the user’s movement 
intentions and the corresponding latency are depicted in 
Table I. The first row represents the TP in each run and the 
second row is the average of the detection latency for each 
run. The accuracy during the first trials is not reported 



 

 

 

because the patient didn’t have to report discrepancies 
between his intentions and the feedback received. Differences 
were observed in the BCI accuracy across the runs (5, 6, 7, 8 
and 9), where the performance improved from run 5, and it 
decreased in run 9. This decayed behavior was attributed to 
the cognitive fatigue. The average latency in the detections 
was below 500 ms for all runs. It is highlighted that negative 
latencies were not feasible because once the movement 
intention was detected the stimulation was triggered. 

 
Fig 3. A picture of the patient during the rehabilitation session. 

TABLE I.  BCI DETECTION ACCURACY AND LATENCY 

BCI 
Training Session 

Run 5 Run 6 Run 7 Run 8 Run 9 
TP 
[%] 55. 55 90.9 75.0 84.62 40 

Latency 
[ms] 382±295 334±290 260±194 340±187 346±196 

 

Fig. 4 shows the subject’s tracking performance. The first 
row of the figure reveals that, in the first trial of run 1, the 
performance was poor with an RMSE = 7.9º and 37.8º for 
shoulder and elbow respectively. After several trials (Fig. 4, 
second row), the controller learned the inverse dynamic 
model of the arm, resulting in an overall improvement in 
tracking accuracy with an RMSE = 5.1º and 4.3º. Rows 3 and 
4 of Fig. 4 show the output of the FEL controller. During the 
first run, the assistance provided is mainly due the feedback 
controller (ufb). However, as the controller learned, the FES 
intensity was given mainly by the feedforward controller 
(uff). This behavior was more noticeable at the elbow joint. 

IV. CONCLUSION AND FUTURE WORKS 
A rehabilitation system that combines mechanical and 

FES assistance with an EEG-based BMI was presented. A 
preliminary single session evaluation with one stroke patient 
was carried out to test the usability of the system. This 
system represents a first attempt of using the user’s own 
movement intention to trigger the assistance of an upper limb 
hybrid robotic system by means of BMI. Although the first 
run the subject experienced some difficulties related the use 
of the BMI, the patient could successfully command the BMI 
during the last runs. Typically few sessions are needed to 
naturally interact with this type of systems. Also, the FEL 
controller could effectively drive the movement execution by 
automatically adjusting the FES intensity. Finally, more 
intervention sessions are needed to validate the proposed 
BMI-driven hybrid robotic platform and verify its 
effectiveness in rehabilitation. The future work comprises 

assessing the system in a clinical intervention with more 
patients to evaluate it rehabilitation effectiveness. 
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Figure 4. The performance of the FEL controller. a), b) The first row 

represents the shoulder (left) and elbow (right) movement, while the second 
row depicts the output of the FEL controller (u), where uff and ufb represent 

the feedforward and feedback output respectively. 
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