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A B S T R A C T

Both Attention-Deficit/Hyperactivity Disorder (ADHD) and Obsessive-Compulsive Disorder (OCD) are associated
with choice impulsivity, i.e. the tendency to prefer smaller immediate rewards over larger delayed rewards.
However, the extent to which this impulsivity is mediated by shared or distinct underlying neural mechanisms is
unclear. Twenty-six boys with ADHD, 20 boys with OCD and 20 matched controls (aged 12–18) completed an
fMRI version of an individually adjusted temporal discounting (TD) task which requires choosing between a
variable amount of money now or £100 in one week, one month or one year. Activations to immediate and
delayed reward choices were compared between groups using a three-way ANCOVA. ADHD patients had steeper
discounting rates on the task relative to controls. OCD patients did not differ from controls or patients with
ADHD. Patients with ADHD and OCD showed predominantly shared activation deficits during TD in fronto-
striato-insular-cerebellar regions responsible for self-control and temporal foresight, suggesting that choice
impulsivity is mediated by overlapping neural dysfunctions in both disorders. OCD patients alone showed
dysfunction relative to controls in right orbitofrontal and rostrolateral prefrontal cortex, extending previous
findings of abnormalities in these regions in OCD to the domain of choice impulsiveness.

1. Introduction

Impulsivity is a multifaceted construct and is typified by a pre-
mature, poorly controlled, delay averse response pattern where the
consequences of acts are poorly considered (Fineberg et al., 2014;
Rubia, 2002; Rubia et al., 2009). It has been investigated as a potential
correlate of both Attention-Deficit/Hyperactivity Disorder (ADHD) and
Obsessive-Compulsive Disorder (OCD), disorders which affect around
3–8% and 1–3% of children respectively, as well as around 4% (ADHD)
and 2% (OCD) of adults (Biederman et al., 2012; Ruscio et al., 2010). A
role for impulsivity has been hypothesised in both disorders. This is

despite their very distinct symptom profiles, with ADHD defined by age-
inappropriate problems with inattention, impulsivity and hyperactivity,
and OCD defined by obsessions, i.e. recurrent and intrusive thoughts
(e.g., on themes of contamination, checking, orderliness and sym-
metry), and compulsions, i.e. repetitive, ego-dystonic and time-con-
suming behavioural and mental rituals (e.g., repetitive washing or
checking) (American Psychiatric Association, 2013).

Impulsivity is a core feature of ADHD, which is particularly pre-
valent during childhood and adolescence (American Psychiatric
Association, 2013). In OCD, increased self-reported impulsivity is as-
sociated with poorer treatment outcomes (Kashyap et al., 2012).
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Compulsivity and impulsivity are traditionally situated at opposing
ends of a compulsivity-impulsivity spectrum, with OCD considered the
archetypal disorder of compulsivity (Fineberg et al., 2014; Robbins
et al., 2012). However, recent research questions this model and sug-
gests that compulsivity and impulsivity may in fact co-exist in OCD
(Fineberg et al., 2014; Grassi et al., 2015; Kashyap et al., 2012; Sohn
et al., 2014). In particular, impulsivity may underlie a tendency to
perform OCD behaviours in order to bring about an initially rewarding
outcome (i.e., relieve anxiety) despite their negative long-term con-
sequences (Fontenelle et al., 2015; Grassi et al., 2015).

To date, most neuroimaging studies of impulsivity in ADHD and
OCD have focused on tasks involving motor impulsivity, i.e. the poor
ability to inhibit inappropriate prepotent responses during response
inhibition paradigms (Benzina et al., 2016; Lipszyc and Schachar, 2010;
Norman et al., 2016; Rubia et al., 2010; Woolley et al., 2008; Zandt
et al., 2009). Recent fMRI studies and a large meta-analysis have pro-
vided evidence for disorder-specific fronto-insula-striatal activation
abnormalities in the two disorders, with lateral inferior prefrontal un-
deractivation being disorder-specific to ADHD (Norman et al., 2016,
2017; Rubia et al., 2010, 2011), and medial frontal dysfunction being
disorder-specific to OCD (Norman et al., 2016, 2017). However, im-
pulsivity is a multifaceted construct (Fineberg et al., 2014), and much
less research has examined the neural basis of other impulsivity do-
mains such as choice impulsivity, defined as the tendency to prefer
smaller immediate rewards over larger delayed rewards, which is also a
feature of ADHD and OCD (Noreika et al., 2013; Patros et al., 2016;
Sohn et al., 2014).

Choice impulsivity is typically measured in temporal discounting
(TD) tasks (Christakou et al., 2011; Fineberg et al., 2014; Hamilton
et al., 2015), during which participants are provided with a series of
choices between small immediate rewards and larger rewards available
after a hypothetical delay, typically ranging from weeks to years. TD
refers to the finding that the subjective values of rewards available after
a delay decrease as a function of the length of the delay (Christakou
et al., 2011; Hamilton et al., 2015). In studies incorporating adjusting-
amount procedures, adjustments of the immediate reward are per-
formed according to the individual participant's previous choices using
an online algorithm, such that the range of options is narrowed around
the point where the subjective value of the immediate reward is equal
to that of the fixed delayed reward (the indifference point) (Carlisi
et al., 2016; Christakou et al., 2011; Richards et al., 1997). Indifference
points across different delay lengths are used to produce a discounting
curve, which is typically hyperbolic (i.e., as delay periods become
longer, the rate at which reward values are declined decreases more
drastically) (Peters and Buchel, 2011). The steepness of discounting
curves varies widely between individuals, and steeper discounting in-
dicates more impulsive choices (Hamilton et al., 2015; Peters and
Buchel, 2011). The task measures several cognitive functions, such as
the inhibition of the immediate thrill of the reward, the sensitivity of an
individual to the varying real or hypothetical delay of time in units of
reward (delay aversion), temporal foresight to understand the future
gain of the delayed choice, as well as inter-temporal decision making
and reward evaluation with respect to its delay (Christakou et al., 2011;
Hamilton et al., 2015; Noreika et al., 2013; Rubia et al., 2009).

Performance during TD tasks relies on two main brain networks
(Christakou et al., 2011; Hare et al., 2014; Peters and Buchel, 2011).
The first of these involves the ventral striatum, ventromedial prefrontal
cortex/orbitofrontal cortex (VMPFC, OFC), and posterior cingulate
cortex (PCC), i.e. paralimbic regions involved in processing rewards
and motivation (Christakou et al., 2011; Peters and Buchel, 2011). The
second network involves inferior, rostrolateral and dorsolateral pre-
frontal cortex (IFG, RLPFC, DLPFC), anterior insula (AI), dorsal
striatum, parietal lobe and cerebellum, i.e. regions involved in execu-
tive functions such as inhibitory control (Hart et al., 2013; Wesley and
Bickel, 2014), working memory (Nee et al., 2013; Wesley and Bickel,
2014), planning (van den Heuvel et al., 2003), prospection (Burgess

et al., 2011), reappraisal (Delgado et al., 2008; Giuliani et al., 2014;
Kober et al., 2010; Volkow et al., 2010), time estimation (Hart et al.,
2012; Noreika et al., 2013; Rubia et al., 2009) and attentional control
(Hart et al., 2013; Rubia et al., 2011), processes which are important for
making farsighted delayed choices (Christakou et al., 2011; Rubia et al.,
2009; Wesley and Bickel, 2014). ADHD patients have shown steeper
discounting rates than controls in TD tasks and reduced activation in
executive function regions including IFG, AI and dorsal striatum during
delayed choices (Carlisi et al., 2016; Rubia et al., 2009), as well as al-
tered correlations between IFG, temporal lobe, AI, supplementary
motor area and cerebellum activation and TD discounting rates relative
to controls (Chantiluke et al., 2014). In adult ADHD, reduced activation
has been reported in DLPFC, striatal, parietal and cerebellar regions
during TD (Ortiz et al., 2015; Plichta et al., 2009).

Impulsive decision making is also a feature of OCD (Cavedini et al.,
2002; Kashyap et al., 2012; Sohn et al., 2014), including during TD
(Sohn et al., 2014). Previous research has established the importance of
VMPFC/OFC and striatal regions in OCD (Menzies et al., 2008; Radua
and Mataix-Cols, 2009; Radua et al., 2010; Saxena and Rauch, 2000),
which are reliably activated during symptom provocation (Rotge et al.,
2008), dysfunctional during cognitive and reward tasks (Page et al.,
2009; Remijnse et al., 2009), and highly relevant to TD (Christakou
et al., 2011; Peters and Buchel, 2011). In line with this, we recently
showed that adolescents with OCD had altered activation in VMPFC/
OFC and left caudate during TD, as well as in DLPFC, IFG, AI, parietal
lobes and cerebellum (Carlisi et al., 2017b).

It is not clear to what extent the underlying brain mechanisms of TD
differ or are shared between disorders as no published studies have
directly compared ADHD and OCD patients during TD using fMRI.
Shared neural dysfunction would lend credence to the idea that im-
pulsive decision making in ADHD and OCD is a shared transdiagnostic
mechanism, whereas disorder-specific patterns of functional abnorm-
alities would suggest that shared decision making impairments are si-
milar phenocopies associated with distinct underlying mechanisms
(Robbins et al., 2012).

The aim of this study was therefore to conduct the first direct
comparison of the neurofunctional substrates of TD in ADHD and OCD
patients using fMRI. Behaviourally, we anticipated that both patient
groups would show steeper discounting relative to controls (Patros
et al., 2016; Sohn et al., 2014). In the brain, we hypothesised shared
underactivation in both disorders relative to controls in striatal, DLPFC
and cerebellar regions previously implicated in ADHD (Carlisi et al.,
2016; Hart et al., 2013; Norman et al., 2016) and OCD (Carlisi et al.,
2017a, 2017b, In Press; Norman et al., 2016; Rubia et al., 2010, 2011).
We, however, hypothesised more prominent or disorder-specific ab-
normalities in OCD patients in VMPFC/OFC (Carlisi et al., 2017b;
Menzies et al., 2008; Norman et al., 2016, 2017), and larger or disorder-
specific underactivation in IFG in ADHD patients (Noreika et al., 2013;
Norman et al., 2016, 2017; Rubia et al., 2009, 2010). Data have been
published in other forms elsewhere, although in this paper we provide
the novel comparison between controls, patients with ADHD and pa-
tients with OCD (Carlisi et al., 2016, 2017b; Chantiluke et al., 2014;
Christakou et al., 2011; Rubia et al., 2009).

2. Methods

2.1. Participants

Sixty-six (26 ADHD, 20 OCD, 20 controls) right handed (Oldfield,
1971) male adolescents participated, aged between 12–18, and with an
IQ>70 as measured by the Wechsler Abbreviated Scale of Intelligence-
Revised (WASI-R) short form (Wechsler, 2008). ADHD boys were re-
cruited from local child and adolescent mental health services (CAMHS)
and met DSM-IV criteria for inattentive/hyperactive-impulsive com-
bined subtype, as assessed using the standardized Maudsley diagnostic
interview (Goldberg and Murray, 2006), and scored above clinical cut-
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off on the Conner's Parent Rating Scale-Revised (CPRS-R) (Conners
et al., 1998) and the inattention/hyperactivity scale of the parent
Strength and Difficulty Questionnaire (SDQ) (Goodman, 1997). A
consultant psychiatrist excluded comorbidity with other disorders (ex-
cept conduct disorder), including OCD. Twelve ADHD boys were
medication naïve. Fourteen ADHD boys were receiving psychostimulant
medication and underwent a 48 h washout period prior to scanning.
OCD boys were recruited from a national specialist clinic for child and
adolescent OCD and local CAMHS and had clinical diagnoses of OCD,
assessed according to the 10th edition of the International Classification
of Diseases (ICD-10) criteria and the Children's Yale-Brown Obsessive
Compulsive Scale (Scahill et al., 1997). Absence of comorbidity, in-
cluding comorbid ADHD, was confirmed by a consultant psychiatrist.
Sixteen OCD boys were medication naïve. Four were being treated with
selective serotonin re-uptake inhibitor (SSRI) medication. One of these
four patients was receiving risperidone as an augmentation treatment.
Control participants had no psychiatric diagnoses, and were recruited
using local advertising. Only boys were studied due to the pre-
ponderance of males in adolescent ADHD and OCD populations, and to
achieve greater homogeneity across participants and groups (Geller
et al., 1998; Willcutt, 2012). Exclusion criteria included comorbid
psychiatric disorders, medical disorders affecting brain development,
drug/alcohol dependency, head injury, abnormal brain structural MRI
findings and MRI contraindications.

Ethical approval was obtained from the local Research Ethics
Committee (05/Q0706/275), and the study was conducted in ac-
cordance with the Declaration of Helsinki. Study details were explained
to both child and guardian. Written informed consent was obtained for
all participants.

2.2. Temporal discounting fMRI task

In each trial of the TD task (Carlisi et al., 2016; Chantiluke et al.,
2014; Christakou et al., 2011; Rubia et al., 2009) participants are
presented with the choice of an amount of money (£100) available after
a delay or a smaller amount of money available immediately (0–£100).
Delay lengths are one week, one month and one year. For each parti-
cipant, an algorithm is used to find values for the immediate option
which are treated subjectively as equivalent to the larger delayed op-
tion for each delay length, thus ensuring each participant makes an
equal number of immediate and delayed choices (Carlisi et al., 2016;
Chantiluke et al., 2014; Christakou et al., 2011; Rubia et al., 2009).
Immediate options are presented on the left side of the screen and are
selected by pressing a button placed under the right index finger. De-
layed options are presented on the right side of the screen and are se-
lected with the right middle finger. Each trial lasts for 4 s, separated by
blank screen interval of at least 8 s (depending on the participant's re-
action time), which acts as an implicit baseline in the fMRI analysis
(inter-trial-interval: 12 s). Participants complete twenty trials for each
delay length (Fig. 1.). All participants completed an initial practice
session of the task within a “mock scanner”. Task length is 12 min.

2.3. Analysis of performance data

First, indifference points were calculated for each participant at
each delay length. The indifference point as defined here is the mid-
point value between the lowest selected immediate reward and the next
highest offered reward value, and represents the subjective value of
£100 after the specified delay. The subjective value of reward on the TD
task can be described using a hyperbolic decay function, and estimated
using the equation V= A/(1 + kD), where V is the subjective value of a
reward, A is size of the reward, D is the delay until reward receipt, and k
is a constant which characterizes an individual's rate of discounting,
and which is calculated by fitting a hyperbolic function to the in-
difference values for every delay (Christakou et al., 2011; Richards
et al., 1999). Larger k values indicate steeper discounting (Richards

et al., 1999). A three-way ANCOVA, controlling for non-significant
differences in age, was performed between groups with k as the de-
pendent measure to test for group differences in TD performance. To
aid interpretation of potential group differences in k, indifference points
for week, month and year delays were subjected to separate three-way
ANCOVAs. Potential differences in reaction times were examined using
a 2 (immediate and delayed choices) × 3 (ADHD, OCD & control
groups) ANCOVA. We anticipated group differences in IQ, since ADHD
is associated with low IQ (Bridgett and Walker, 2006). IQ was not
covaried in the first instance as covarying for differences between
groups that were not randomly selected violates ANCOVA assumptions
(Miller and Chapman, 2001). However, supplementary analyses were
performed covarying for IQ to test potential confounds.

2.4. fMRI image acquisition

The fMRI images were acquired at King's College London, Institute
of Psychiatry's Centre for Neuroimaging Sciences on a 3 T General
Electric Signa Horizon HDx MRI scanner (GE Healthcare, UK). Details
on scanning parameters are given in the Supplement.

2.5. fMRI data analysis methods

Data were analysed using the non-parametric XBAM software
package (Brammer et al., 1997). XBAM's non-parametric approach
overcomes many of the issues associated with parametric software
packages (e.g., poor control of FWE-corrected false positive cluster-wise
inference rates) (Bullmore et al., 1999; Eklund et al., 2016). Details of
individual and group-level analyses are described elsewhere
(Christakou et al., 2009) and in the Supplement.

In short, time-series analysis of individual subject activation was
performed with wavelet-based resampling (Bullmore et al., 2001a). We
first convolved the task epoch of each event of interest with two Poisson
model functions (4 s and 8 s delays). Using rigid-body and affine
transformation, individual maps were registered into Talairach space
(Talairach and Tournoux, 1988). Group maps were then produced for
each experimental condition, and hypothesis testing was performed
using cluster-level analysis, shown to give excellent cluster-wise type-I
error control (Bullmore et al., 2001a). Time-series permutation was
used to compute the distribution of the statistic of interest under the
null hypothesis. The voxel-level threshold was set to p<0.05 to give
maximum sensitivity and to avoid type-II error (Bullmore et al., 1999).
Then, a cluster-mass threshold was computed from the distribution of
cluster masses in the wavelet-permuted data such that the final ex-
pected number of type-I error clusters under the null hypothesis was
less than one per whole brain.

For comparisons between groups, a one-way ANCOVA was con-
ducted with group as factor and head displacement in Euclidian 3-D
space and age as covariates (Bullmore et al., 2001a, 1999). Age was
included as a covariate given established maturation effects on per-
formance and neural function during TD (Christakou et al., 2011). For
the between-group comparisons of the delayed-immediate contrast, less
than one false activated cluster was expected at p<0.05 for voxel and
p<0.027 for cluster comparisons. Analyses were repeated with IQ and
k as additional covariates, to rule out the possibility that group differ-
ences resulted from differences in IQ or task performance.

In order to interpret the group differences in brain activation from
the between-group ANCOVA, statistical measures of BOLD response
(SSQ) for each participant were extracted from significant clusters,
plotted, and subjected to pairwise (ADHD vs OCD, ADHD vs controls,
OCD vs controls) post-hoc t -tests (corrected for multiple comparisons
for three groups using the least significance difference method). Follow-
up analyses were performed between medicated and unmedicated pa-
tients with ADHD as well as between controls, unmedicated ADHD and
unmedicated OCD using these extracted BOLD responses.
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3. Results

3.1. Participant characteristics

There were no significant group differences in age, but IQ was sig-
nificantly lower in ADHD (Table 1).

3.2. Performance data

ANCOVA showed a significant between-group difference in k (F
(2,62)=4.49, p=0.02) that was driven by steeper discounting in ADHD
relative to control boys (p=0.003) but not relative to OCD boys
(p=0.12) (Table 1). Significant group differences were found in mean
indifference points for one month delays (F(2,62)=7.36, p<0.001),
which were smaller in ADHD relative to healthy controls (p=0.001)
and patients with OCD (p=0.002), who did not differ from each other
(p=0.89). This finding survived after covarying IQ (F(2,61)=3.44,
p=0.04). ANCOVA comparing groups for indifference points for one
week (F(2,62)=2.33, p=0.11) and one year (F(2,62)=0.04, p=0.96)
were not significant. There was a trend for participants to be slower
when making delayed relative to immediate choices (F(1,62)=3.56,

p=0.06). However, the group by choice interaction was not significant
(F(2,62)=0.79, p=0.46). Reaction times did not differ between groups
for either immediate (F(2,62)=0.65, p=0.52) or delayed (F(2,62)
=0.23, p=0.8) decisions. Findings remained unchanged after control-
ling for IQ, except that the ANCOVA for group differences in k remained
significant only at trend level (F(2,61)=2.99, p=0.06) (Table 1).

3.3. fMRI data

3.3.1. Movement
There were no group differences in median displacement of x, y, z

rotation and translation parameters (F(2,63)=1.6, p=0.1).

3.3.2. Group brain activation maps for delayed versus immediate choices
Within-group findings for delayed-immediate contrast are presented

in the Supplement.

3.3.3. Between-group differences
Whole-brain three-group ANCOVA analysis (controlling for age and

motion) with follow-up post-hoc t -tests (corrected for multiple com-
parisons for three groups using least significant differences method)

Fig. 1. Schematic representation of the temporal dis-
counting (TD) task. In the TD task, participants
choose between an amount of money (£100) avail-
able after a delay of one week, one month and one
year or a smaller amount of money available im-
mediately (0–£100). For each participant, an algo-
rithm is used to find values for the immediate option
which are subjectively equivalent to the larger de-
layed option for each delay length, which ensures
that participants make an equal number of im-
mediate and delayed choices. Immediate options are
presented on the left side of the screen and are se-
lected by pressing a button placed under the right
index finger. Delayed options are presented on the
right side of the screen and are selected with the
right middle finger. Each trial lasts for 4 s, separated
by blank screen interval of at least 8 s (depending on
the participant's reaction time) (inter-trial-interval:
12 s).

Table 1
Participant characteristics.

Controls ADHD OCD Sig.

N 20 26 20 –
Medicated/unmedicated N/A 14/12 4/16
Age 15.3 (1.78) 14.89 (1.71) 15.75 (1.43) F(2,63)=1.99, p=0.15
IQ 118.9 (11.99) 102.57 (12.54) 117.7 (13.36) F(2,63)=12.63, p<0.001 C,OCD>ADHD
SDQ Hyperactivity/Inattention 1.95 (1.58) 8.96 (1.1) 4.4 (3.03) F(2,62)=71.16, p<0.001 ADHD>OCD>C
SDQ Emotional 0.32 (0.58) 3.62 (2.87) 4.35 (2.58) F(2,62)=16.61, p<0.001 ADHD,OCD>C
SDQ Conduct 0.74 (1.1) 4.73 (2.47) 1.85 (1.53) F(2,62)=27.54, p<0.001 ADHD>OCD,C
SDQ Peer 1.32 (3.07) 3.2 (2.33) 1.85 (1.90) F(2,62)=4.38, p=0.02 C,OCD>ADHD
SDQ Prosocial 9.05 (1.78) 5.92 (2.51) 7.65 (2.58) F(2,62)=11.03, p<0.001 ADHD>OCD,C
CY-BOCS … … 22.32 (5.97)
Conner's T … 81.12 (7.55) …
K mean 0.016 (0.013) 0.046 (0.042) 0.027 (0.031) F(2,62)=4.61, p=0.01 ADHD>C,OCD
IP week 89.1 (8.72) 79.31 (18.07) 81.65 (16.37) F(2,62)=2.33, p=0.11
IP month 74.4 (13.69) 52.12 (28.84) 73.30 (17.97) F(2,62)=7.36, p<0.001 C,OCD>ADHD
IP year 38.6 (23.93) 39.23 (26.42) 40.75 (25.25) F(2,62)=0.04, p=0.96
Immediate RT (ms) 2130.39 (596.59) 2301.14 (625.03) 2239.26 (445.1) F(2,62)=0.65, p=0.52
Delayed RT (ms) 2208.88 (612.48) 2310.34 (620.8) 2317.82 (418.44) F(2,62)=0.23, p=0.8

Abbreviations. ADHD, Attention-Deficit/Hyperactivity Disorder; CY-BOCS, Children's Yale-Brown Obsessive-Compulsive Scale; IQ, intelligence quotient; OCD, Obsessive-Compulsive
Disorder; SDQ, strengths and difficulties questionnaire.
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revealed that patients shared underactivation relative to controls in
right IFG/AI/caudate (ADHD, p=0.02; OCD, p=0.006), right thalamus
(ADHD, p=0.02; OCD, p=0.01) and bilateral occipital lobe/cerebellum
(ADHD, p=0.003; OCD, p<0.001) during delayed relative to im-
mediate trials, as well as left superior/middle temporal/supramarginal
gyrus/fusiform gyrus (ADHD, p=0.001; OCD, p=0.003) and right
postcentral/superior temporal/supramarginal gyrus/posterior insula
(ADHD, p=0.001; OCD, p<0.001) to immediate relative to delayed
trials. OCD patients alone showed significantly reduced activation in
right OFC (p=0.006) and RLPFC/DLPFC (p=0.001) relative to controls
(Table 2 and Fig. 2.). All group difference clusters remained significant
after controlling for IQ and k using whole-brain ANCOVA. Follow-up t-
tests on extracted statistical BOLD activation in group difference clus-
ters performed between medicated and unmedicated ADHD patients
showed a significant difference in left temporal/parietal/occipital lobe
activation (p=0.046), which was more active during immediate choices
in medicated patients. In the unmedicated subgroup analysis on ex-
tracted BOLD activation, the thalamus cluster no longer differed be-
tween ADHD and controls (p=0.12) and the right AI/IFG/caudate
cluster differed only at a non-significant trend (p=0.06), presumably
reflecting reduced power. All other group difference clusters remained
significant. There were no significant correlations between CY-BOCS
scores and brain activation in the group difference clusters in the OCD
patients, or between SDQ inattention/hyperactivity scale or CPRS-R
scores and brain activation in ADHD patients. There was a significant
positive correlation between thalamus activation to delayed choices
and k (r(26)=0.389, p=0.049) in ADHD patients, although this cor-
relation did not survive correction for multiple comparisons (Benjamini
and Hochberg, 1995). There were no correlations between k and brain
activation in OCD patients or healthy controls.

4. Discussion

This fMRI study investigated potentially shared and disorder-spe-
cific neurofunctional abnormalities in paediatric ADHD and OCD
during TD. The findings show that patient groups relative to controls,

shared underactivation in key regions of self-control and temporal
foresight (Noreika et al., 2013; Rubia et al., 2009), including right IFG,
DLPFC, AI, dorsal striatum and bilateral cerebellum during delayed
choices. Only OCD patients showed underactivation during delayed
choices relative to controls in a right OFC region responsible for goal-
directed reward evaluation (Christakou et al., 2011; Hare et al., 2014)
and in a RLPFC region shown to mediate prospection and planning
(Burgess et al., 2011; van den Heuvel et al., 2003). The findings suggest
that key mechanisms associated with adaptive reward-related decision
making and temporal foresight during TD are impaired in both dis-
orders, while OFC and RLPFC regions are exclusively impaired in OCD.

During TD, IFG, DLPFC, AI, striatum and cerebellum are typically
recruited more during the selection of larger delayed than immediate
rewards (Christakou et al., 2011; Hare et al., 2014; Rubia et al., 2009).
These regions are also activated when participants consider the nega-
tive long-term consequences of unhealthy foods (Hare et al., 2009),
smoking cigarettes (Kober et al., 2010), and illegal drug use (Volkow
et al., 2010), suggesting a key role in self-control and temporal foresight
(Carlisi et al., 2016; Rubia et al., 2009). Findings of decreased activa-
tion in these regions extend previous findings in ADHD during TD (Ortiz
et al., 2015; Rubia et al., 2009), by showing that deficits are shared with
patients with OCD during this task. Interestingly, we have previously
shown that IFG underactivation is disorder-specific in ADHD relative to
OCD during inhibitory and attentional control (Norman et al., 2016,
2017; Rubia et al., 2010). Current findings are in line with suggestions
that inhibitory control and TD are mediated by neuroanatomically
overlapping but functionally dissociable fronto-striatal neural circuits
(Fineberg et al., 2014), and suggest that IFG underactivation in ADHD
relative to OCD is task-specific to the contexts of inhibitory and atten-
tional control, but not the context of TD.

Findings of largely shared dysfunction in right IFG, DLPFC, AI,
dorsal striatum and cerebellar regions during delayed choices in ADHD
and OCD suggest that TD taps into a shared underlying transdiagnostic
mechanism (Fineberg et al., 2014). A further implication of these
findings is that shared neural deficits may potentially be normalised
using the same psychological or psychopharmacological manipulation
across both disorders. For instance, we recently reported that TD per-
formance was normalised in ADHD patients relative to controls fol-
lowing an acute dose of the SSRI fluoxetine. This was also associated
with the up-regulation of activation in right IFG, AI, and striatum, re-
gions that we found to be underactive in ADHD and OCD in the current
study (Carlisi et al., 2016). SSRIs including fluoxetine are first line
treatment in OCD, and therefore it may be interesting to investigate
whether shared underactivation in right hemisphere fronto-insula-
striatal regions respond similarly to pharmacological manipulation
across disorders.

Only OCD patients showed significantly reduced activation in right
OFC during delayed choices relative to controls. The OFC is a key re-
gion for representing reward values (Hare et al., 2014), and receives
signalling from both striato-limbic regions which process low-level re-
ward properties and from DLPFC regions involved in temporal foresight
and self-control, integrating both representations into a goal-directed
reward valuation in order to guide long-sighted decision making
(Christakou et al., 2011; Hare et al., 2014). Adults with OCD show
reduced DLPFC and OFC recruitment during affective reversal
(Remijnse et al., 2006b, 2009), suggesting that in OCD patients, al-
terations within this brain network may underlie the perseverative
performance of undesired, goal-irrelevant behaviours due to a failure in
flexibly updating reward associations (Remijnse et al., 2009). Findings
of reduced OFC in OCD is in line with predominantly orbito-striatal
accounts of the disorder (Menzies et al., 2008; Norman et al., 2016),
and extends these by implicating OFC dysfunction in choice impulsivity
in OCD.

In RLPFC, controls showed greater activation during delayed
choices while OCD patients showed greater activation during im-
mediate choices. RLPFC has been implicated in episodic prospection

Table 2
ANCOVA differences in brain activation between adolescents with ADHD and OCD and
healthy comparison adolescents.

Brain regions of activation BA TAL COORD Voxels Cluster p-
value

Delay> Immediate
Controls>OCD
R OFC 11 33,56,−18 48 0.009
R RLPFC 10/9 18,67,20 15 0.001
R RLPFC/DLPFC 46/10 29,56,26 60 0.001
Controls>ADHD,OCD
R IFG/DLPFC 45/46 33,44,4 105 0.003
R AI/IFG/caudate 13/45 29,30,9 78 0.015
R thalamus 11,−11,15 27 0.01
L & R cerebellum/occipital lobe 17/18/

19
−29,−96,−7 760 0.004

Immediate>Delay
Controls>ADHD,OCD
R precentral/postcentral/

posterior insula/SMG/STL/
MTL

4/3/2/
13/40/
22/41/
42/43

54,−15,26 332 0.01

L STL/MTL/SMG/occipital lobe 37/21/
22/42/
39/17/
19

−51,−56, 9 232 0.02

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; AI, anterior insula; BA,
Brodmann area; DLPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; MTL,
middle temporal lobe; OCD, Obsessive-Compulsive Disorder; OFC, orbitofrontal cortex;
RLPFC, rostrolateral prefrontal cortex; SMG, supramarginal gyrus; STL, superior temporal
lobe; TAL COORD, Talairach coordinates.
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(Burgess et al., 2011), planning (van den Heuvel et al., 2003), coun-
terfactual thinking (Boorman et al., 2011), and representing abstract,
temporally extended goals (Badre and D’Esposito, 2009), i.e. in pro-
cesses involved in comparing competing options and considering their
long-term outcomes. Results parallel our meta-analytic finding of dis-
order-specific increased RLPFC grey matter in paediatric OCD relative
to paediatric ADHD (Norman et al., 2016). Also, OCD patients show
altered activity in this region during resting state fMRI (Le Jeune et al.,
2010) and symptom provocation studies (Rotge et al., 2008). Conven-
tional treatments including cognitive behavioural therapy (Yamanishi
et al., 2009) and SSRIs (Carey et al., 2004), as well as treatment with
deep-brain stimulation (Le Jeune et al., 2010) and repetitive tran-
scranial magnetic stimulation (Nauczyciel et al., 2014) modulate RLPFC
cortex activity in OCD, and targeting this region (along with adjacent
OFC) with neurofeedback training is associated with a decrease in OCD
symptoms (Scheinost et al., 2013, 2014). However, the nature of the
relationship between RLPFC alterations and OCD is poorly understood
(Gruner et al., 2016), and the findings of this study suggests that choice
impulsivity may represent one mechanism linking established altera-
tions in this region and OCD.

In line with previous research, we found evidence of steeper dis-
counting in ADHD relative to controls (Patros et al., 2016) but unlike a
previous study by Sohn and colleagues (Sohn et al., 2014), we did not

find evidence of impulsive decision making in OCD patients. However,
the study by Sohn and colleagues used a far larger sample size. Owing
to the focus on more sensitive neural outcomes, the current study may
have been underpowered to detect significant performance differences
in the OCD group. It is interesting to note that significant abnormalities
in brain functioning in the OCD sample in the current study are seen in
the absence of significant differences in behaviour, and this finding
along with a lack of any significant correlations between k and brain
activation and the fact that differences in brain activation remained
after controlling for differences in k suggest that there is not a one-to-
one relationship between brain activation and choice behaviour during
TD. As noted above, lateral prefrontal, orbitofrontal, insular and striatal
regions are associated with a number of cognitive processes which may
be important for TD performance, and these regions have been found to
be underactive in patients with OCD during reversal learning, atten-
tional and inhibitory control, and reappraisal tasks (de Wit et al., 2015;
Norman et al., 2016, 2017; Remijnse et al., 2009; Rubia et al., 2010,
2011). Findings may suggest a failure to appropriately recruit networks
supporting these cognitive processes, which nonetheless was not en-
ough to impact TD performance in OCD significantly. Findings of re-
duced activation in the absence of impaired performance are in line
with previous work in paediatric OCD (Carlisi et al., 2017b, In Press;
Norman et al., 2017; Woolley et al., 2008).

Fig. 2. ANCOVA results for the between-group differences in brain activation for contrast comparing delayed and immediate choices. (A) Axial slices for the group activation maps for the three
groups with a voxel threshold of p<0.05 and a cluster threshold of p<0.027. Red indicates significant between-group differences in activation for the delayed versus immediate choice
contrast. Talairach z-coordinates are indicated for slice distance (in mm) from the intercommissural line. The right side of the brain corresponds to the right side of the image. (B) Bar
chart showing mean SSQ for each group in each cluster. Controls = orange, ADHD = purple, OCD = green.
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Limitations of the study include a lower IQ in the ADHD group, in
light of evidence linking IQ to TD performance (Shamosh and Gray,
2008). However, lower IQ is typical for the population (Bridgett and
Walker, 2006) and findings remained significant after covarying for IQ.
Second, 54% of ADHD patients were receiving psychostimulant medi-
cation which has been associated with increased fronto-striatal activa-
tion, suggesting that functional deficits in fronto-striatal systems may
have been mitigated by stimulant treatment (Rubia et al., 2009).
However, significant clusters remained largely unchanged between
medicated and unmedicated groups, and remained significant in sub-
group comparisons of unmedicated patients. While participants were
determined by a consultant psychiatrist to be free of comorbidities after
clinical assessment, structured interviews to assess common co-
morbidities including anxiety, mood, impulse and personality disorders
in patients and undiagnosed conditions in controls were not performed.
Relatedly, sub-clinical depression and anxiety symptoms were not as-
sessed and were likely higher in both patient groups relative to controls
(McIntosh et al., 2009; Meyer et al., 2014). Moreover, we did not assess
socio-economic status (SES), and low SES has been reported to increase
risk for ADHD and OCD (Heyman et al., 2001; Russell et al., 2016). This
is particularly important given that depression, anxiety and low SES
have been associated with steeper discounting as well as structural and
functional alterations in fronto-limbic and fronto-striatal brain net-
works involved in reward processing and self-control (Chantiluke et al.,
2012; Noble et al., 2012; Norman et al., 2015; Pulcu et al., 2014; Radua
et al., 2010; Remijnse et al., 2006a, 2009; Sweitzer et al., 2013; Wise
et al., 2016). Future work should aim to match groups on these clinical
and demographic variables.

To summarise, the study provides the first comparison of functional
abnormalities during TD between ADHD and OCD patients. Both dis-
orders were associated with a common pattern of underactivation in
fronto-striatal-insula-cerebellum regions implicated in self-control and
temporal foresight during delayed choices, suggesting that choice im-
pulsivity in both disorders may partially represent a shared transdiag-
nostic mechanism. In addition, we found that OFC and RLPFC were
disorder-exclusively underactivated in OCD relative to controls, in line
with existing orbito-striatal accounts of OCD, and providing initial
evidence for its involvement in choice impulsivity in the disorder.
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