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Abstract

In environments with scarce resources, adopting the right search strategy can make the difference

between succeeding and failing, even between life and death. At different scales, this applies to

molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural land-

scapes, to rescuers during search-and-rescue operations in disaster zones, and to genetic computer

algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous envi-

ronment, a combination of ballistic and diffusive steps is considered optimal; in particular, more

ballistic Lévy flights with exponent α ≤ 1 are generally believed to optimize the search process.

However, most search spaces present complex topographies. What is the best search strategy in

these more realistic scenarios? Here we show that the topography of the environment significantly

alters the optimal search strategy towards less ballistic and more Brownian strategies. We consider

an active particle performing a blind cruise search for non-regenerating sparse targets in a two-

dimensional space with steps drawn from a Lévy distribution with exponent varying from α = 1

to α = 2 (Brownian). We demonstrate that, when boundaries, barriers and obstacles are present,

the optimal search strategy depends on the topography of the environment with α assuming inter-

mediate values in the whole range under consideration. We interpret these findings using simple

scaling arguments and discuss their robustness to varying searcher’s size. Our results are relevant

for search problems at different length scales, from animal and human foraging, to microswimmers’

taxis, to biochemical rates of reaction.
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INTRODUCTION

What is the best strategy to search for randomly located resources? This is a crucial

question for fields as diverse as biology, genetics, ecology, anthropology, soft matter, com-

puter sciences and robotics [1, 2]. In order to describe and analyse how a searcher browses

the search space, many different plausible models have been proposed, including Brownian

motion, intermittent search patterns, as well as Lévy flights and walks [1–3]. In particu-

lar, Lévy statistics, among others models [1], have been successfully used to describe the

emergence of optimal search strategies in natural systems at different length scales, from

molecular entities [4, 5], to swimming and swarming microorganisms [6–8], to crawling eu-

karyotic cells [9], to different species of foraging animals [10–16], to human motion patterns

[17–19], although in the field of movement ecology there is some controversy on how uni-

versal Lévy searches are [20–25]. Lévy statistics have also found applications in science and

engineering, e.g., for defining the optimal search strategy for robots [26] and for describing

anomalous diffusion and navigation on networks [27, 28].

The strategies based on Lévy statistics can be described under a unified framework where

the searcher is an active particle [29] that performs random jumps (blind search) whose

lengths ` are drawn from a stable distribution P (`). The two limiting cases for α → 0

and α = 2 correspond to ballistic and Brownian motion, respectively. The intermediate

cases combine diffusive (i.e. local exploration) and ballistic (i.e. decorrelating, long-range

excursions) steps in different proportions. In particular, the case for α = 1 corresponds

to a compromise superdiffusive regime, where the searcher explores its surroundings while

reducing oversampling compared with a pure Brownian strategy [2, 11, 30]. When resources

are plentiful, the most efficient strategy is a Brownian search (α = 2)[11, 14, 15]; when

resources are sparse, however, a Lévy strategy with α = 1 performs better over a pure

Brownian strategy [2]. In general, more ballistic search strategies (i.e. α ≤ 1) have been

shown to be optimal in a wide range of situations, with the specific value of the exponent

α dependent on, e.g., the nature of the encounters with the targets (i.e. destructive or

non-destructive) or the presence of memory in the searcher’s motion [11, 23, 31–35].

These studies have limited their analysis to landscapes characterized by a barrier-free

homogenous topography. However, in realistic scenarios the environment is often character-

ized by a more complex topography, where boundaries, barriers and obstacles play a crucial
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role in determining the searcher’s motion. Examples of complex search spaces include cyto-

plasm for molecules within cells [36], biological tissue (or soil) for motile bacteria [37], and

patchy landscapes for foraging animals [38]. This complexity can significantly influence the

long-term behaviour of the system under study [39]. As it has been recently shown, even a

small perturbation, such as an external drift, can shift the optimal search strategy towards

more Brownian strategies [40].

Here, by considering a searcher performing a blind cruise search for uniformly distributed

non-regenerating sparse targets, we show with numerical simulations and simple scaling

arguments that the exponent that optimizes the search strategy depends on the topography

of the environment. In particular, we show that, differently from the homogeneous case where

typically α ≤ 1 optimizes the search process, the optimal search strategy tends towards less

ballistic and more Brownian cases, corresponding to values for the exponent α in the range

(1, 2].

RESULTS

Search in a homogenous topography

We start by analyzing an active particle of radius R blindly searching for targets in

an environment with a homogeneous topography, i.e. without any physical obstacles. As

the active particle cruises the search space, it continuously captures the targets that come

within a capture radius rc = 2R from its center, as schematically shown in Fig. 1A. The

number of targets caught in each run is proportional to the area swept by the capture region

surrounding the active particle. We assume the targets to be uniformly distributed, non-

regenerating and scarce, i.e. with density ρ� r−2c . The latter condition implies that, once

an active particle captures a target, the probability of finding a second one is negligible if

the particle moves by ` . rc.

The active particle performs a run-and-tumble motion, i.e. it has a fixed speed v and

changes its orientation ϕ by a normally-distributed angle with zero mean and standard

deviation σϕ at discrete time intervals tn with n = 0, 1, 2, ... [29]. In the following, we set

v = 5R s−1 and σϕ = π
6
. The time intervals tn between changes of direction are drawn

from a Lévy distribution Pα(t) of exponent α ∈ [1, 2] (Fig. 1B) [2]. Asymptotically, this

3



A

x

y

ϕ
v

t (s)
10

-2
10

0
10

2
10

4
10

6

P
α
(t
)

10
-12

10
-8

10
-4

10
0

B

∝ t−3
∝ t−2

α = 1
α = 1.2
α = 1.4
α = 1.6
α = 1.8
α = 2

C

α = 1 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

α

1 1.2 1.4 1.6 1.8 2

〈N
h
〉
(n
.u
.)

0.5

0.6

0.7

0.8

0.9

1 D

FIG. 1. Optimal search strategy in a homogenous topography. (A) Schematic represen-

tation (not to scale) of an active particle of radius R blindly searching for uniformly distributed

targets (dots) in a homogenous environment. The particle placed at position [x, y] moves with

constant speed v and variable orientation ϕ. The capture radius is rc (grey shaded area). (B)

The time intervals tn with n = 0, 1, 2, ... between changes of orientation ϕ are drawn from a

Lévy distribution Pα(t) of exponent α ∈ [1, 2]. The solid lines represent power-laws of exponent

−µ = −(α + 1) for the two limiting cases at µ = 2 (α = 1) and µ = 3 (α = 2). Note that for

the case α = 2 the distribution is a Gaussian, which is not a power law asymptotically. (C) Four

different 1000-s trajectories with a common origin are shown for various values of α. The black

scale bar corresponds to 1000R. (D) Average number of caught targets (circles) as a function of α

in normalized units (n.u.). The values are averaged over 1000 1-hour trajectories and normalized

to the maximum value at α = 1. The grey shaded area represents one standard deviation around

the average values. 4



distribution tends to a power law with exponent −(α + 1) for α ∈ [1, 2) [2]:

Pα(t) ≈ A(α)t−(α+1) for t→∞, (1)

where A(α) is a normalization constant such that
∫∞
0
Pα(t)dt = 1; for α = 2 the distribution

is a Gaussian which decays exponentially in t. As v is constant, the run lengths `h(tn) = vtn

are also distributed according to a Lévy distribution of same index α, thus leading the

particle to move superdiffusively for α < 2 and diffusively for α = 2 at long times (Fig.

S1A)[2]. Examples of trajectories for various values of α are shown in Fig. 1C: as α decreases

from the case of a pure Brownian strategy (α = 2), the searchers tend to move ballistically

over longer distances before a change in orientation occurs. These different superdiffusive

regimes allow the searcher to explore the overall search space combining ballistic and diffusive

steps in different proportions [2, 11, 30]. Figure 1D plots the average number of caught

targets 〈Nh〉 obtained from 1000 simulated 1-hour trajectories as a function of α. This

number decreases as a function of α, so that the optimal search strategy is for α = 1 while

the worst is the Brownian (α = 2), in agreement with foraging theory [2].

Search in a porous topography

In order to understand how the complexity of the environment influences the optimal

search strategy, we now consider an active particle looking for targets in a medium with a

heterogenous topography (Fig. 2A). Specifically, the search space is now a two-dimensional

porous medium constituted by uniformly distributed circular interconnected pores with av-

erage radius Rp � rc; the characteristic size of a cluster of pores is much bigger than the

total particle’s displacement within the simulation time. We model the interaction with the

pore walls using reflective boundary conditions so that the particle moves along the walls

until its orientation changes to point away from the boundary [41]. This scenario is real-

istic at different length scales as indeed both biological and artificial microswimmers and

elementary robots behave in a similar way [29, 42].

As it can be seen in Fig. 2B, moving in such a porous environment shifts the optimal

search strategy towards a more Brownian strategy (α = 1.3) from the more ballistic case

in the homogenous topography (α = 1). This shift can be understood in quantitative

terms by looking at the effective probability distribution of the run lengths Pp,α(`) in the
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FIG. 2. Shift of the optimal search strategy in a porous topography. (A) A sample area

of an extended two-dimensional porous medium where an active particle searches for uniformly

distributed targets (dots). The porous medium is constituted by circular interconnected pores of

average radius Rp (Rp/rc ≈ 12.5). (B) Average number of caught targets 〈Np〉 (squares) as a

function of α in normalized units (n.u.). The values are averaged over 1000 1-hour trajectories

and normalized to the maximum value at α = 1.3. The grey shaded area represents one standard

deviation around the average values. To directly compare with the homogenous case, the trend of

Fig. 1D is also shown (circles). (C) Simulated probability distribution of the run lengths Pp,α(`) in

the porous medium as a function of α (dots). The distributions are fitted to a power law with an

exponential cutoff for α ∈ [1, 2) (Eq. 2, dashed lines). The vertical dashed line represents the cutoff

Rc. (D) Four different 1000-s trajectories with a common origin are shown for different values of

α. All black scale bars correspond to 50R.

porous medium (Fig. 2C). This distribution is well-approximated by a power law with an

exponential cutoff at Rc = λRp

Pp,α(`) ≈ B(α, v)`−(α+1)e−
`

Rc for `→∞ (2)

where B(α, v) is a normalization constant such that
∫∞
0
Pp,α(`)d` = 1 and λ is a propor-

tionality constant; λ ≈ 2.4 is estimated by fitting the previous function to the simulated
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data and, in general, depends on the geometrical features of the medium. As a result of this

interaction with the boundaries, therefore, the porosity affects longer run lengths more than

shorter ones, thus mainly penalizing the more ballistic strategies over the more Brownian

ones. In other terms, even if the changes in the particle’s orientation are still dictated by the

distributions in Fig. 1B, the boundaries effectively limit the maximum run length leading

the particles to perform a subdiffusive motion rather than a superdiffusive one as in the

homogenous environment (Fig. S1B); this behavior is in accordance with observations on

persistent random walkers in the presence of obstacles [43]. Qualitatively, this can also be

appreciated by looking at some sample trajectories for different values of α (Fig. 2D): when

α decreases, the particles tend to spend longer portions of their trajectories at the walls,

thus exploring less efficiently the inner area of the pores. It is interesting to note that, at

least when the searcher explores the complex topography for a finite time as in our simu-

lations, the average shift in the optimal search strategy depends on the pore characteristic

size, while it is largely independent of the density of pores and the local configuration of the

explored cluster (Fig. S2).

Scaling arguments

In order to formalize the shift in the optimal search strategy due to the topography of the

environment, we define the efficiency η of catching targets in the porous medium compared

to the homogeneous case as

η(α, v) =
〈Np(α, v)〉
〈Nh(α, v)〉

. (3)

Since the mean square displacement of the active particle is of order t3−α in a homogenous

topography, self-intersections constitute a negligible fraction of the overall path for α < 2,

which is closely related to the fact that the Hausdorff dimension of a Lévy process in the

plane is equal to its exponent α [44]; this is also the case in the porous topography for run

lengths just below the spatial cutoff (Fig. 2C), which contribute with higher probability to

the capture of new targets. As a consequence, to a first approximation, we obtain that the

target capture rate is proportional to the average step length for a given topography and a

given α, so that

η(α, v) =
〈`p(α, v)〉
〈`h(α, v)〉

= β(v)

[
1− (1− γ)

(
Tc
tc

)−α+1
]
, (4)
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FIG. 3. Influence of the topography on the optimal search strategy: comparison be-

tween simulated data and model. (A) Normalized efficiency η∗: simulations (circles) and fit

to Eq. 5 (dashed line). (B) Average number of caught targets in the porous environment as a

function of α: simulations (circles) and fit to the model (dashed line). (C) Model prediction and

(D) simulated data of the average number of caught targets in the porous environment 〈Np〉 in

normalized units (n.u.) as a function of α and normalized speed v/R (γ = 0.47).

where β(v) ∈ [0, 1] is a function of the particle speed, γ ∈ [0, 1] is a constant, Tc = Rc/v,

tc = rc/v, and 〈`p(α, v)〉 and 〈`h(α, v)〉 are the average step lengths in the porous and

homogenous topography respectively (see Methods for their calculation).

While Eq. 4 explicitly depends on the particle’s speed v through β(v), the normalized

efficiency η∗ defined as

η∗(α) =
η(α, v)

max(η|v)
≈ η(α, v)

β(v)
= 1− (1− γ)

(
Tc
tc

)−α+1

(5)

is a universal curve that does not directly depend on v. Interestingly, from this equation,

the geometrical meaning of γ is apparent as the percentage of time that the particle spends

running instead of being stuck at a boundary above the spatial cutoff Rc.

Using Eq. 5, we can therefore estimate the shift in the optimal search strategy due to the

topography of the environment by finding the maximum of η∗(α)〈Nh(α)〉, i.e. only based

on geometrical parameters (tc, Tc and γ) and the knowledge of the particle’s behavior in a

homogenous topography 〈Nh(α)〉. As it can be seen in Fig. 3A, Eq. 5 reproduces very well

the simulated data, being γ the only fitting parameter in our case, and allows us to predict

correctly the optimal value for the capture rate in the porous medium from 〈Nh(α)〉 (Fig. 3B).

By comparing model predictions (Fig. 3C) with simulated data (Fig. 3D), Figs. 3C-D show
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how, once γ is known, this simple model based on scaling arguments predicts correctly the

optimal strategy in the porous medium at any particle speed. These figures show that, for

a given γ, the speed at which the particle moves within the environment has also an effect

on the optimal search strategy: for low values of speed, the optimal search strategy shifts

towards the more ballistic case (α = 1), as the particle tends to interact with the boundaries

only at very long times, thus mostly moving as in an effectively homogenous environment;

however, when v increases, the optimal search strategy shifts more and more towards the

Brownian case (α = 2), since this case is the one that minimizes the interaction with the

boundaries over time.

For further confirmation of the fact that the shift in optimal search strategy is due to

the upper spatial cutoff introduced by the topography of the environment, we now consider

a porous medium with a convex topography instead of the concave topography considered

previously (Fig. 2A). In this topography, the particle searches for uniformly distributed

targets within an interconnected space containing convex obstacles where there is no upper

cutoff, i.e. Rc → ∞ (Fig. 4A). Also in this case the average radius of the obstacles Rp is

chosen so that Rp/rc ≈ 12.5. As expected, the optimal search strategy remains at α = 1

(Fig. 4B), as for a particle searching in a homogenous space (Fig. 1D). In qualitative terms,

these results can be interpreted by observing sample trajectories for various values of α

(Fig. 4C): in fact, as it can be appreciated from these trajectories, the convex porosity does

not prevent the particles from moving ballistically over long distances when the value of α

is decreased.

Search in the presence of Brownian diffusion

The results shown so far apply to most length scales as long as properly rescaled to

the particle’s radius R. However, when R approaches the micro- and nanoscale, Brownian

diffusion starts playing a significant role in the translational and rotational motion of an

active particle [29, 41]. In particular, while the translational diffusion of a particle scales

with its inverse linear dimension (∝ R−1), its rotational diffusion scales with its inverse

volume (∝ R−3). As a consequence of this volumetric scaling, as R decreases, Brownian

rotation randomizes any persistence in the particle’s orientation due to the Lévy strategy.

Brownian diffusion becomes then an important parameter to consider when determining the
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FIG. 4. Convex vs. concave porous topography. (A) A sample area of an extended two-

dimensional convex porous medium where an active particle searches for uniformly distributed

targets (dots). The porous medium is constituted by the space surrounding circular convex obsta-

cles of average radius Rp (Rp/rc ≈ 12.5). (B) Average number of caught targets 〈Np〉 (triangles)

as a function of α in normalized units (n.u.). The values are averaged over 1000 1-hour trajectories

and normalized to the maximum value at α = 1. The grey shaded area represents one standard

deviation around the average values. To directly compare with the homogenous and concave porous

cases, the trends of Fig. 1D and Fig. 2B are also shown as circles and squares respectively. (C)

Four different 1000-s trajectories with a common origin are shown for different values of α. All

black scale bars corresponds to 50R.

optimal search strategy in a non-trivial topography for microscopic active particles, such as

biological and artificial microswimmers (e.g. motile bacteria [6–8] and manmade micro- and

nanorobots [45]) moving in complex and disordered environments [29, 39, 46, 47]. Fig. 5A

shows how the optimal search strategy (i.e. the optimal value of α) varies as a function of the

particle’s radius, i.e. of the strength of the particle’s translational and rotational Brownian

diffusion coefficients. We focus again on the environment of Fig. 2A, as it shows a clear

deviation from the homogenous case (Fig. 1). For a given v/R (e.g. for v/R = 5 s−1), when

R is above a certain threshold value (e.g. R ≥ 5µm for v/R = 5 s−1, corresponding to a

10



sufficiently weak rotational diffusion), the optimal strategy is the same as the one predicted

in Fig. 3C (Fig. 5A and 5B). However, when R decreases (entailing a stronger rotational

diffusion), the optimal search strategy shifts towards α = 1 (Fig. 5A and 5C). This shift

happens because the increased rotational diffusion leads to a reduction of the time that the

particle spends at the boundaries. This effectively reduces the penalization that boundaries

have on more ballistic strategies, thus allowing for the exploration of a greater inner area

of the porous structure compared to more diffusive strategies. Reducing R further, the

optimal search strategy remains at α = 1 although the relative efficiency over other α values

decreases (Fig. 5D). Finally, for even smaller values of R (e.g. R ≤ 0.1µm for v/R = 5 s−1),

the search process becomes effectively insensitive to the value of α (Fig. 5E), as the increase

in rotational diffusion makes persistent motion negligible [29].
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FIG. 5. Optimal search strategy in the presence of Brownian diffusion. (A) Optimal

value of α as a function of the particle’s radius R for different values of v: v = 5R s−1 (circles),

v = 10R s−1 (squares), v = 20R s−1 (triangles). The dashed horizontal lines represent the optimal

values in the absence of Brownian noise (Fig. 3). (B-E) Shift of the optimal search strategy as a

function of α in normalized units (n.u.) at the sample speed v = 5R s−1 with decreasing values of

the particle’s radius R: (B) R = 5µm, (C) R = 1µm, (D) R = 0.5µm and (E) R = 0.1µm. All

values are averaged over 10000 1-hour trajectories. The grey shaded area represents one standard

deviation around the average values.
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DISCUSSION

Our results demonstrate the critical role played by the topography of the environment in

determining the optimal search strategy for an active particle whose run lengths are drawn

from a Lévy distribution. In particular, the presence of physical boundaries, barriers and

obstacles can introduce a cutoff on the distribution of steps that can penalize more ballistic

strategies over more Brownian ones depending on different geometrical parameters connected

to the topography of the environment and its interaction with the particle’s motion.

In our model, we assumed that the particle is performing a cruise search with continuous

visibility for targets and perfect hitting probabilities. While we do not expect imperfect

hitting probabilities to affect the optimality of the search strategy in our case as long as they

affect all α values equally, other search scenarios might influence the optimal search strategy

in a complex topography [1]: for example, in the case of intermittent search strategies, where

there is an alternation between phases of slow motion that allow the searcher to detect the

targets and phases of fast motion during which targets cannot be detected; or in the case

of a search strategy with in-built delays so that, after a target is caught, some time must

elapse before the following target can be caught.

Another aspect that can influence the optimal search strategy is the interaction between

the searcher and the obstacles encoded in the boundary conditions. In this work, we have

implemented reflective boundary conditions, which implies that the searcher stays at the

boundary until a random reorientation event makes it point away from the obstacle. This

scenario is realistic at the macroscopic and microscopic scale, as for example both elementary

robots and microswimmers (biological and non) have been reported to behave in this way

[29, 42]. Alternatively, different responses can be considered in the presence of boundaries,

when information obtained from sensing the surroundings for example leads to a voluntary

switch in the strategy adopted by the searcher.

As the search time is generally a limiting factor in many realistic search scenarios [1],

the searcher was allowed to explore the search space for a finite time in our simulations.

Nevertheless, from a fundamental point of view, it would be interesting to study how the

optimal search strategy is influenced by the topography of the environment in the limit of

infinite search times. In the case of infinite searches, interesting behaviors could emerge as

a result of the interplay between the fractal dimensionality of the searcher’s trajectory and
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that of the environment in a porous topography at the percolation threshold or in a network

of channels.

Our findings are mostly scale-invariant and only partially break down at the nanoscopic

scale (R ≤ 1µm) when rotational diffusion becomes predominant. One important implica-

tion of this is that different search strategies (i.e. different values of α) will lead to similar

outcomes for nanoscopic particles such as biomolecules and molecular motors moving in a

two-dimensional space (Fig. 5E). This issue can be overcome by reducing the dimensionality

of the environment, for example by introducing a preferential direction of motion with molec-

ular rails. In fact, Lévy-type statistics emerge for molecular motors performing searches on

polymer chains such as DNA [4], or on one-dimensional molecular rails such as microtubules

[5]. Similarly, increasing the dimensionality of the system to a three-dimensional space will

alter the probability that the searcher goes back to the same point compared to a two-

dimensional space, and thus its optimal search strategy in a complex three-dimensional

environment can also be affected.

Our results are relevant for all random search problems where the searcher explores

complex search spaces. Examples at various length scales include the rate of molecular

encounters in the cytoplasm of cells, the localization of nutrients by motile bacteria in tissue

or soil, the foraging of animals in patchy landscapes as well as search-and-rescue operations

in ruins following natural disasters. Furthermore, similar dynamics could also be applied to

optimize navigation in topologically complex networks [27, 28].

MATERIALS AND METHODS

Numerical simulations

In our numerical model, we consider active particles of radius R performing a two-

dimensional run-and-tumble motion according to the following equations:
d

dt
x(t) = v cosϕn

d

dt
y(t) = v sinϕn

where [x(t), y(t)] is the particle’s position, v is the particle’s speed, and ϕn is the particle’s

orientation during the n-th time interval where n = 0, 1, 2, .... The time intervals tn between

13



changes of direction are drawn from a Lévy distribution Pα(t) of exponent α ∈ [1, 2]; only

the absolute value of the number is considered. At the end of each time interval the particle

orientation changes by a random angle according to a normal distribution with zero mean

and standard deviation σϕ = π
6
. The initial position for the trajectory was randomly chosen

within the medium according to a uniform distribution. The positions of the targets were

randomized for each trajectory. Interactions with the walls were modeled using the bound-

aries conditions described in Ref. [41]. In the data in Fig. 5, translational and rotational

Brownian motion are included by adding three independent white noise processes (Wx , Wy

and Wϕ) to the equations of motion [41]; in this set of simulations, the active particles are

moving in an aqueous environment (η = 0.001 Nsm−2, T = 300 K).

Calculation of the average run length

In a homogenous topography

The average run length in a homogenous environment 〈`h(α)〉 is

〈`h(α)〉 =

∫ ∞
0

`h(t)Pα(t)dt =

=

∫ tc(v)

0

`h(t)Pα(t)dt+

∫ ∞
tc(v)

`h(t)Pα(t)dt,

where tc(v) = rc/v represents the time that it takes for an active particle to travel a dis-

tance equal to its capture radius rc. Neglecting the first integral because it gives a small

contribution to the average run length, we obtain

〈`h(α)〉 ≈
∫ ∞
tc(v)

`h(t)Pα(t)dt,

which, using the asymptotic analytical form for Pα(t) in Eq. 1, can be calculated to be

〈`h(α)〉 ≈ vA(α)

∫ ∞
tc(v)

t−αdt = v
A(α)

α− 1
t−α+1
c .

In a porous topography

The average run length in a porous environment 〈`p(α)〉 is

〈`p(α)〉 =

∫ ∞
0

`p(t)Pα(t)dt =

14



=

∫ tc(v)

0

`p(t)Pα(t)dt+

∫ Tc(v)

tc(v)

`p(t)Pα(t)dt+

∫ ∞
Tc(v)

`p(t)Pα(t)dt

where the integral has been divided into three parts delimited by the time cutoff at tc and

by that at Tc = Rc/v calculated using the spatial cutoff introduced by the porous medium

(Fig. 2C). As for the homogenous case, the first integral gives a small contribution on the

average run length as it is smaller than rc. As such it can be neglected, so that

〈`p(α)〉 ≈
∫ Tc(v)

tc(v)

`p(t)Pα(t)dt+

∫ ∞
Tc(v)

`p(t)Pα(t)dt.

We can now treat these two integrals using the fact that, due to the interaction with the

boundaries, 〈`p(t)〉 ≤ 〈`h(t)〉 at any given time t taken from the distributions of Eq. 1

(Fig. 1B). In general, 〈`p(t)〉 = C(t, α, v)〈`h(t)〉, where C ∈ [0, 1] is a multivariable function.

To simplify the analysis, we introduce the following approximation: C(t, α, v) = β(v) for

t ∈ [tc, Tc] and C(t, α, v) = γβ(v) for t ∈ [Tc,∞), where β ∈ [0, 1] is a speed-dependent

constant and γ ∈ [0, 1] is a prefactor related to the topography of the environment. This

approximation allow us to determine the decrease of the average run length in the porous

environment over the homogenous case by estimating the decrease of the area of the integral

before and after the time cutoff at Tc (Fig. 2C), and thus to treat differently the distribution

of the run lengths in the porous environment Pp,α(`) (Eq. 2) in the two time intervals. We

therefore obtain for the two integrals:∫ Tc(v)

tc(v)

`p(t)Pα(t)dt ≈ β(v)v
A(α)

α− 1

(
t−α+1
c − T−α+1

c

)
and ∫ ∞

Tc(v)

`p(t)Pα(t)dt ≈ γβ(v)v
A(α)

α− 1
T−α+1
c

Summing these two integrals we obtain:

〈`p(α)〉 ≈ β(v)v
A(α)

α− 1

(
t−α+1
c − T−α+1

c

)
+ γβ(v)v

A(α)

α− 1
T−α+1
c =

= β(v)v
A(α)

α− 1
t−α+1
c

[
1− (1− γ)

(
Tc
tc

)−α+1
]

Dataset

Dataset available at https://doi.org/10.6084/m9.figshare.5488756.v1
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FIG. S1. Searcher’s MSDs in different topographies. Average mean square displacements

(MSDs) of searchers for different values of α (A) in a homogenous topography, showing superdif-

fusive behavior, and (B) in a porous topography, showing subdiffusive behavior. The dashed line

represents diffusive behavior. Each MSD curve was obtained as an ensemble average over 100

1-hour trajectories.
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FIG. S2. Optimal search strategy in a porous topography for different densities of pores.

Average number of caught targets as a function of α in normalized units (n.u.) for different pore

densities p. All data collapse on the same curve. The case p = 0.84 corresponds to the curve in

Fig. 2B. At p = 1, the porous structure is at percolation and the area occupied by the pores is

approximately 77% of the total area. Every curve is averaged over 1000 1-hour trajectories and

normalized to its maximum value.
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evolve through interaction between movement and environmental complexity. Science

332(6037):1551.

[17] Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel. Nature

439(7075):462–465.

18



[18] Gonzalez MC, Hidalgo CA, Barabasi AL (2008) Understanding individual human mobility

patterns. Nature 453(7196):779–782.
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