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Abstract Introduction: Genetic loci for Alzheimer’s disease (AD) have been identified in whites of European

ancestry, but the genetic architecture of AD among other populations is less understood.
Methods: We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in
Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-
Arabs assembled by the Alzheimer’s Disease Genetics Consortium. Suggestive results from Stage
1 from novel loci were followed up using summarized results in the International Genomics Alz-
heimer’s Project GWAS dataset.
Results: Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)–
based tests (P , 5 ! 1028) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and
BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE ε4 allele with NFIC SNP.
We also obtained GWS evidence (P , 2.7 ! 1026) for gene-based association in the total sample
with a novel locus, TPBG (P 5 1.8 ! 1026).
Discussion: Our findings highlight the value of transethnic studies for identifying novel AD suscep-
tibility loci.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Transethnic; Alzheimer’s disease; Genome-wide association; APOE interaction
1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurode-
generative disease in persons aged 65 years and older and the
sixth leading cause of death in the United States [1]. Total
healthcare payments in 2014 for people aged 65 years and
older with dementia are estimated at $214 billion [1]. By
the middle of the century, the number of Americans with
AD is projected at 13.8 million with one new case devel-
oping every 33 seconds or almost one million new cases
per year. The global burden of AD or dementia in 2015 is
more daunting with new cases of dementia in every 3 sec-
onds, and the estimated worldwide costs of dementia are
about $818 billion, rising to $2 trillion by 2030 [2]. The
number of people living with dementia in 2015 is estimated
to be 9.4 million in the Americas, 10.5 million in Europe, 4.0
million in Africa, and 22.9 million in Asia [2]. This is a
tremendous global epidemic in elderly persons regardless
of ethnic background.

AD with onset age after 65 years is highly heritable
with an estimated 74% of the liability explained by genetic
factors [3]. A major genetic risk factor for AD is APOE
genotype [4] that accounts for approximately 35% of the
genetic variance [5]. The three common apolipoprotein E
(APOE) alleles ( 32, 33, and 34) are determined by combi-
nations of polymorphic amino acid residues at Arg112
(rs429358) and Cys158 (rs7412) [6]. Among non-
Hispanic whites of European ancestry (EA), 34 heterozy-
gotes have a 2.5- to 3.0-fold increased risk and 34 homo-
zygotes have a 10- to 12-fold increased risk, compared
with persons with the 33/ 33 genotype [4]. The 32 allele
is protective [7] such that carriers of this allele have a
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40% reduction in AD risk compared with 33/ 33 individuals
[4]. The effect of APOE genotype to AD risk is highly var-
iable in other populations. The 34 frequency is lower in
Asians [8] and associated with higher AD risk among Jap-
anese (JPN) compared with EAs [9]. In contrast, the effect
of 34 on AD risk is much less in African-Americans (AAs)
among whom the 34 frequency is about 50% higher than in
EAs [10]. It is noteworthy that the 34 allele is virtually ab-
sent among Arabs living in northern Israeli community
where the prevalence of dementia is roughly double than
in EA populations [11].

More than 20 loci have been robustly associated with
AD [12] and are enriched in immune response, regulation
of endocytosis, cholesterol transport, and protein ubiquiti-
nation pathways [13]. A recent genome-wide association
study (GWAS) identified significant association of AD
with multiple single-nucleotide polymorphisms (SNPs) in
the MAPT-KANSL1 region among EAs lacking an APOE
ε4 allele [14]. Genetic studies in other populations have
increased our understanding of the genetic architecture
of AD. For example, the effect of the APOE ε4 allele is
much greater in JPN and substantially weaker in AA
and some Hispanic groups, due in part to varying fre-
quencies of this allele across populations [4]. Three loci
(SORL1, ABCA7, and ACE) whose association with AD
attained genome-wide significance in EAs [12] were
found to have larger effects on AD risk in AAs
(ABCA7) [15], JPN (SORL1) [9], and Israeli-Arabs (IAs)
(ACE) [16]. Some loci including PLXNA4 [17] and
SORL1 [18] demonstrate allelic heterogeneity among
genetically diverse populations. In the present study, we
leveraged genetic diversity across ethnic groups to in-
crease discovery of additional AD risk loci by combining
GWAS results obtained from samples of EAs, AAs, JPN,
and IAs.
2. Methods

2.1. Subjects, genotyping, and data processing

Details of subject recruitment and genotyping for individ-
ual case-control and family-based datasets, genotype impu-
tation, quality control, population substructure, and
statistical methods for association analyses were reported
previously for Alzheimer’s Disease Genetics Consortium
(ADGC) datasets containing EAs [5], AAs [15], JPN [9],
and IAs [11]. Characteristics of the 33,269 ADGC subjects
(26,320 EAs, 4983 AAs, 1845 JPN, and 115 IAs) used for
discovery in Stage 1 were shown in Supplementary
Table 1. Summarized results archived in the NIA Genetics
of Alzheimer’s Disease Data Storage Site (https://www.
niagads.org/) that are from a previous GWAS of EAs con-
ducted by the International Genomics Alzheimer’s Project
(IGAP) including 5813 AD cases and 20,474 controls after
excluding the ADGC datasets [12] were used in Stage 2
follow-up analyses (Supplementary Table 1).
2.2. Genome-wide association analysis in Stage 1
2.2.1. Design and power considerations
The primary analysis was a single GWAS including all

discovery datasets. Analyses were performed separately
for each dataset, and the results were pooled sequentially,
first within ethnic groups and then across ethnic groups.
The minimum detectable genotype relative risk for EAs
range from 1.16 for minor allele frequency (MAF) 5 0.5
to 1.73 for MAF 5 0.01. The corresponding ranges for
AAs and JPN are 1.40–2.69 and 1.74–3.78, respectively. Ge-
notype relative risks (GRRs) of ,5 are not detectable with
80% power in the small IA sample. However, the goal of
this study was not for novel discovery within ethnic groups
but rather in the total transethnic sample. Prompted by find-
ings of the previous studies [14], we also conducted separate
GWAS in subgroups of subjects who have or lack an APOE
ε4 allele. We also applied a complementary approach for as-
sessing a differential effect of association by APOE geno-
type by evaluating association of AD with an interaction
of SNP and ε4 status.
2.2.2. SNP-based association
Within each dataset, genome-wide association analyses

were conducted using more than 7 million imputed SNPs in
the total sample and in subgroups of subjects with and without
the APOE ε4 allele, using regression models including age,
sex, and the first three PCs. An additive effect of a SNP was
included in the model as a quantitative estimate between
0 and 2 representing the probability score of the effect allele
to incorporate the uncertainty of the imputation estimates.
Models were evaluated using a logistic generalized linear
model in case-control datasets and a logistic generalized esti-
mating equation in family-based datasets. We also evaluated
models including a term for the interaction of the SNP dosage
with the APOE ε4 status and models among subgroups strat-
ified by APOE ε4 status. Results for each model across data-
sets were combined by meta-analysis separately within each
ethnic group using a fixed-effects, inverse-variance weighted
meta-analysis in the METAL program [19]. SNPs with a mi-
nor allele frequency �1% and imputation quality �0.4 that
were available in at least 50% of the datasets were included
in the meta-analysis. The meta-analysis P-value for associa-
tion was estimated by the summarized test statistic, after
applying genomic control within each individual study.
Meta-analysis was also conducted using Han and Eskin–
modified random-effects (RE-HE) model that is optimized
to detect associations under effect heterogeneity, as imple-
mented in METASOFT [20]. This model has similar power
to the fixed effects model when heterogeneity is modest, for
example, when the standard deviation of the different ethnic-
ities log odds ratios (ORs) is�0.5 times the mean log OR, but
has better power than the fixed effects model for substantial
heterogeneity. Thus, we do not expect the RE-HE model to
produce substantially different results from the fixed effects
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model unless substantial heterogeneity among ethnicities
exists.

2.2.3. Gene-based association
We conducted genome-wide gene-based tests using

ethnic-specific association results from SNP-based tests.
Intragenic SNPs and SNPs within 30 kilobases (kb) of tran-
scription start and stop sites were included in each gene-
based test. We used the GATES [21] method, which
computes a gene-based P-value using SNP-based P values
and SNP-SNP correlations by penalizing lack of associa-
tion in correlated SNPs. Ethnic-specific gene-based results
for EA, AA, JPN, and IA groups were combined using the
sample-size weighted Z-score method in METAL assuming
the same direction of effect.

2.3. Follow-up association analysis

In Stage 2, we attempted to replicate Stage 1 top-
ranked SNP-based (P , 1025) results and validate gene-
based (P , 1024) results from each ethnic subgroup.
Previously known AD genes were evaluated in Stage 2
only when both SNP-based and gene-based P values met
threshold criteria for follow up. These analyses incorpo-
rated summarized results for the Stage 2 ADGC datasets
and previously reported results for IGAP datasets
excluding those from the ADGC that are described in
Supplementary Table 1. The genome-wide significance
threshold was set at P , 5 ! 1028 for individual SNPs
and P , 2 ! 1026 for gene-based tests in the Stage
1 1 2 analyses.
3. Results

3.1. Findings with individual SNPs

There was little evidence for genomic inflation in SNP-
based GWA results in the total sample with main effect
(l 5 1.02) and interaction effect of an SNP with APOE ε4
Table 1

Genome-wide significant results from individual SNP and SNP ! APOE ε4 inter

SNP and model CH Locus EfA

EAF Stage 1

EA AA JPN IA OR (95% CI)

SNP main effect

rs11168036 5 PFDN1/

HBEGF

T 0.5 0.5 0.5 0.6 1.08 (1.04–1.13)

rs7920721 10 USP6NL/

ECHDC3

G 0.4 0.2 0.2 0.4 1.09 (1.05–1.14)

rs2632516 17 BZRAP1-AS1 C 0.4 0.6 0.5 0.4 0.91 (0.88–0.95)

Interaction*

rs9749589

! ε4

19 NFIC A 0.16 0.2 0.02 NA 0.73 (0.66–0.81)

rs9749589 1.17 (1.04–1.20)

Abbreviations: SNP, single-nucleotide polymorphism; CH, chromosome; EfA

African-American; JPN, Japanese; IA, Israeli-Arab; OR, odds ratio; CI, confidenc

*Results for interaction term (NFIC rs9749589 ! APOE ε4) and main effect o
status on AD risk (l 5 1.02) and in APOE ε41 subjects
(l 5 0.99) and APOE ε4–subjects (l 5 0.99)
(Supplementary Fig. 1). In the total sample, we confirmed
genome-wide significant (GWS) association (P , 5 !
1028) with SNPs in several previously implicated AD loci
including CR1, BIN1, PTK2B, MS4A2/MS4A6A, PICALM
(Supplementary Table 2 and Supplementary Fig. 2). GWS
association was also observed with SNPs in NFIC and
PRKCE through interaction with APOE (Supplementary
Fig. 2B) and with SNPs between USP6N and ECHDC3
among subjects lacking APOE ε4 (Supplementary
Fig. 2D). Top-ranked SNPs in EA for PICALM, SORL1,
and ABCA7 had strong support for association in JPN,
whereas the top-ranked SNPs in CR1, BIN1, and EPHA1
were consistently associated in EAs and AAs
(Supplementary Table 2). In contrast, the effect direction
was significantly opposite in EAs versus AAs for NME8,
ABCA7, and CASS4 SNPs (Supplementary Table 2). A total
of 35 SNPs from 9 novel loci met criteria for follow up in
Stage 2 (Supplementary Table 3). Extensive evaluation of
SNPs from the APOE region across the different ethnic
groups demonstrated that only the APOE ε2 SNP (rs7412)
remained genome-wide significant among APOE ε4– sub-
jects (Supplementary Table 4), confirming our prior observa-
tion that APOE accounts for all association signals in this
region [22]. SNPs in other loci showed suggestive evidence
for association (P , 1026) in EAs or AAs (Supplementary
Table 5), but these results were much less significant in the
transethnic meta-analyses. Analysis of models including
an interaction term for each SNP with APOE ε4 status iden-
tified a GWS significant interaction (interaction: P5 1.5!
1028) for NFIC SNP rs9749589 (Table 1). This SNP ap-
peared protective in 341 subjects (OR 5 0.83, P 5 6.4 !
1026) but slightly increased risk of AD in 34– subjects
(OR 5 1.11, P 5 6.0 ! 1023) (Supplementary Table 6).

In the combined Stage 1 1 2 sample, GWS association
was observed with SNPs in several previously established
AD loci (CR1, BIN1, PTK2B, MS4A4A, and PICALM)
action tests (P , 5 ! 1028) in transethnic meta-analysis

Stage 2 Stages 1 1 2

P value OR (95% CI) P value OR (95% CI) P value

1.8 ! 1026 1.08 (1.04–1.13) 6.0 ! 1024 1.08 (1.06–1.10) 7.1 ! 1029

2.0 ! 1026 1.07 (1.03–1.12) 2.6 ! 1023 1.08 (1.04–1.13) 3.0 ! 1028

5.6 ! 1027 0.94 (0.89–1.00) 0.01 0.92 (0.91–0.94) 4.4 ! 1028

1.5 ! 1028 0.86 (0.68–1.09) 0.22 0.76 (0.69–0.83) 1.5 ! 1028

2.5 ! 1023 1.04 (0.92–1.19) 0.50 1.10 (1.03–1.16) 3.3 ! 1023

, effect allele; EAF, effect allele frequency; EA, European ancestry; AA,

e interval; P, P-value; NA, not applicable.

f rs9749589.
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(Supplementary Fig. 3 and Supplementary Fig. 4). Follow-up
of the 35 SNPs from novel loci in Stage 2 revealed nominally
significant associations for nine SNPs in PFDN1/HBEGF,
USP6NL/ECHDC3, and BZRAP1-AS1 (Supplementary
Table 6). In the combined Stage 11 2 sample, GWS associ-
ationwas attainedwith two intergenic SNPs betweenPFDN1
and HBEGF (best SNP: rs11168036, P5 7! 1029), six in-
tergenic SNPs between USP6NL and ECHDC3 (best SNP:
rs7920721, P 5 3 ! 1028), and BZRAP1-AS1 SNP
rs2632516 (P 5 4 ! 1028) (Table 1, Fig. 1, and
Supplementary Table 6). Analyses of models that condi-
tioned on the top SNP at the PFDN1/HBEGF, USP6NL/
ECHDC3, and BZRAP1-AS1 loci confirmed a single associa-
tion signal in each region (Supplementary Fig. 5). The signif-
icant interaction betweenNFIC SNP rs9749589 and 34 status
in Stage 1was not significant in Stage 2 (P5.2); however, the
magnitude and direction of effect were the same, and the
interaction P value in the total sample was not diminished
(Table 1 and Fig. 1). These GWS associations, except for
rs7920721, were supported by evidence in multiple ethnic
groups (Fig. 2). Further evaluation of the Stage 11 2 findings
revealed that the association with the USP6NL/ECHDC3
SNPs was exclusive to subjects lacking APOE 34 (e.g.,
rs7920721: 341, P 5 .07, OR 5 1.05; 342, P 5 2.7 !
1029, OR 5 1.14; interaction P 5 .01) and comparable in
terms of effect size and direction in the non-EA groups
(Supplementary Table 6 and Supplementary Fig. 6). All
GWS findings were similar using the METASOFT RE-HE
model (Supplementary Table 7).
3.2. Gene-based test findings

In Stage 1 analyses, there was strong evidence of asso-
ciation (gene-based P , 1024) with previously estab-
lished loci and novel loci in the total sample
(Supplementary Fig. 7 and Supplementary Table 8) but
only seven known genes (CR1, BIN1, PTK2B, CLU,
MS4A4A, PICALM, and ABCA7) and one novel one
(TPBG) were GWS (P , 2.7 ! 1026) in the combined
Stage 1 1 2 sample (Table 2 and Supplementary
Table 8). Both EAs and AAs contributed to the associa-
tion with TPBG. No additional genes were identified as
GWS in interaction models or APOE genotype sub-
groups.
4. Discussion

In this large transethnic genetic study of AD, we identi-
fied robust associations with several novel loci at the indi-
vidual SNP level (PFDN1/HBEGF, USP6NL/ECHDC3,
BZRAP1-AS1, and NFIC) and gene level (TPBG) in a sam-
ple of AD subjects and cognitively normal elders in cohorts
containing whites of EAs, AAs, JPN, and IAs. Most of
these findings are supported by evidence in more than
one ethnic group (Fig. 2 and Table 2). Previous GWAS us-
ing the EA discovery cohorts in this study did not detect
genome-wide significant association with any of these
loci, although there was suggestive evidence of association
(P . 1027) for the top SNPs in the PFDN1/HBEGF and
USP6NL/ECHDC3 regions in EAs [12,14]. The other
novel genes identified in this study were not previously
reported to be associated with AD in any ethnic groups.
The association with SNPs in the USP6NL/ECHDC3
region was specific to persons lacking the APOE ε4
allele. Our study also showed that associations for several
genes that have previously been robustly implicated in
AD in Caucasians of European descent (CR1, BIN1,
PTK2B, MS4A4A, and PICALM) were evident in other
populations even at the SNP level.

HBEGF, heparin epidermal growth factor (EGF)-like
growth factor, has roles in wound healing, cardiac hyper-
trophy, and heart development [23]. Although the biolog-
ical role for this gene in AD is not obvious, an HBEGF
knockout mouse that does not express HBEGF in cortex
and hippocampus has psychiatric and cognitive dysfunc-
tions that accompany downregulated N-methyl-D-aspartate
receptors [24]. Another study showed that rats exposed to
the pesticide cypermethrin had a reduction of HBEGF
expression leading to upregulation of GSK3b-dependent
Ab and phosphorylated tau [25].

A recent GWAS demonstrated pleiotrophic effects of
SNPs in the USP6NL/ECHDC3 (including rs7920721)
and BZRAP1-AS1 loci for AD and plasma C-reactive pro-
tein and lipid levels [26]. The pleiotropy at USP6NL/
ECHDC3 may be related to the association finding at
this locus among persons lacking the APOE 34 allele.
USP6NL, ubiquitin-specific peptidase 6 N-terminal like,
has a role in the EGF receptor (EGFR) signaling pathway
by acting as a GTPase-activating protein and inhibiting
internalization of EGFR [27]. Insight for a role of USP6NL
may be gained from information about USP6 that regulates
ubiquitylation and trafficking of cargo protein by clathrin-
independent endocytosis [28]. There is a growing body of
evidence from studies in humans and mice supporting a
role for clathrin-mediated endocytosis in AD [29–31]. In
addition, the association of the phosphatidylinositol-
binding clathrin assembly protein (PICALM) gene to AD
is well established [12].

ECHDC3, enoyl CoA hydratase domain containing 3, is
involved in fatty acid biosynthesis in mitochondria, and its
expression is increased in patients with acute myocardial
infarction [32]. It has been observed that ECHD3 expression
is altered in brains from persons with AD compared with
controls [26]. Although rs7920721 is closer to ECHDC3
than USP6NL, it is located on USP6NL side of a recombina-
tion hotspot between these two genes (Fig. 1B). Therefore,
we cannot rule out either of these genes, or even one not
adjacent to rs7920721, as explaining the association signal
in this region.

BZRAP1, benzodiazepine-associated protein 1 (re-
named as TSPO-associated protein 1, TSPOAP1), is a
subunit of the benzodiazepine receptor complex in



Fig. 1. Regional association plots in the combined Stage 1 and Stage 2 samples including main effects at (A) PFDN1/HBEGF, (B) USP6NL/ECHDC3, (C)

BZRAP1-AS1, and (D) single-nucleotide polymorphism (SNP) ! APOE 34 interaction near NFIC.
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Fig. 1. (continued).
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Fig. 2. Forest plots for by ethnicity and stage for (A) rs11168036 at PFDN1/HBEGF, (B) rs7920721 atUSP6NL/ECHDC3, (C) rs2632516 at BZRAP1-AS1, and

(D) NFIC rs9749589 ! APOE 34 interaction.
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mitochondria and a marker of neuroinflammation [33]. A
recent prospective cohort study of 8240 individuals aged
65 years and older showed an increased risk of dementia
with use of long half-life benzodiazepines [34], a drug
often prescribed for treatment of anxiety. A TSPO ligand
(Ro5-4864) has been shown to reverse b-amyloid accumu-
lation and behavioral impairment in 3xTgAD mice [35]. A
recent positron-emission tomography imaging study
demonstrated that the change over time of TSPO binding
to radioligand 11C-PBR28 is correlated with progression
of AD [36].

The relationship of AD to the other novel loci identified
in this study is less clear. PFDN1, a prefoldin subunit, is
upregulated in colorectal cancer [37]. NFIC is a
CCAAT-binding transcription factor. A study comparing
brain gene expression profiles between HIV seropositive
individuals with cognitive impairment and AD cases
Table 2

Genome-wide significant results (P , 2.7 ! 1026) from gene-based tests in Stag

Gene CH

Ethnic-specific P value in Stage1

EA AA JPN

CR1 1 3.4 ! 1029 0.84 0.35

BIN1 2 1.4 ! 10214 0.08 0.33

TPBG 6 2.2 ! 1023 3.5 ! 1023 0.29

PTK2B 8 4.7 ! 1026 0.26 0.49

CLU 8 7.0 ! 1026 0.11 0.59

MS4A4A 11 5.4 ! 10213 0.18 0.03

PICALM 11 1.9 ! 1028 0.71 1.8 ! 1023

ABCA7 19 2.3 ! 1024 1.6 ! 1023 0.07

Abbreviations: CH, chromosome; EA, European ancestry; AA, African-Americ
identified NFIC as having significant high co-expression
connectivity in white matter [38]. Trophoblast glycopro-
tein (TPBG), also known as 5T4, regulates development
of the olfactory bulb GABAgenic interneurons and its
overexpression in newborns is associated with abnormal
dendrites [39].

Our study highlights the benefit of combining results
obtained from genetically diverse populations. The trans-
ethnic approach applied here identified three novel loci
(BZRAP1-AS1, NFIC, and TPBG) and GWS association
for the first time with two other loci (PFDN1/HBEGF
and USP6NL/ECHDC3) noting that the size of the discov-
ery sample in this study was less than 45% of the one
included in a previous GWAS that contained more than
74,000 EA subjects. The improved power in our smaller
sample can be ascribed to allele frequency differences
and allelic heterogeneity among the ethnic groups.
e 1 1 2

Stage 1 Stage 2 Stage 1 1 2IA

0.10 4.8 ! 1029 6.4 ! 1025 1.4 ! 10212

0.80 3.7 ! 10215 2.5 ! 1029 8.8 ! 10223

0.70 6.8 ! 1025 8.2 ! 1023 1.8 ! 1026

0.81 2.2 ! 1026 1.9 ! 1023 7.6 ! 1028

0.10 1.1 ! 1026 1.1 ! 1029 1.4 ! 10212

0.95 3.6 ! 10214 0.04 6.1 ! 10214

0.93 1.6 ! 1029 3.6 ! 1023 2.7 ! 10211

0.02 6.6 ! 1027 4.9 ! 1023 1.1 ! 1028

an; JPN, Japanese; IA, Israeli-Arab; P, gene-based P-value.
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As an example highlighting the importance of these differ-
ences, the top SNPs from BZRAP1-AS1 and NFIC had
different minor allele frequencies across ethnic groups,
but the effect sizes were similar and association signals
were greater in fixed-effect meta-analysis. In addition,
gene-based tests, which consider association patterns
with all SNPs in the locus, identified TPBG. Importantly,
the most significant SNPs in these two regions differed
among the ethnic groups. Gene-based tests also indicated
potential allelic heterogeneity among ethnic groups for
previously established AD genes including TREM2 and
ABCA7. The novel GWS SNP associations were robust
in analyses allowing for heterogeneity across different
ethnic groups, and the P-values for the RE-HE approach
were slightly larger than for the fixed-effect model, sug-
gesting that the effect size heterogeneity across the groups
is modest.

Our study also revealed that the effect direction for
several SNPs vary across ethnic groups. For example,
the top-ranked SNPs in NME8, ABCA7, and CASS4
(Supplementary Table 2) were nominally significant in
EAs and AAs, but the referent allele was associated
with increased risk in one group and decreased risk in
the other. One explanation for these differences is that
the SNPs are tagging different functional variants across
groups. This idea is consistent with our findings from
gene-based tests showing that the constellation of variants
contributing to the association with some genes was
different across ethnic groups. Alternatively, when exam-
ining a large number of variants, it is expected that a few
will show nominal significance in opposite directions
among groups.

There are several limitations associated with our study.
The sample size imbalance between the EAs and the other
populations weakened the opportunity to identify associ-
ation patterns that may be unique to the non-EA groups.
The small size of the non-EA groups also reduced power
to detect novel gene associations if the functional variants
(and the SNPs that tag them) differ among ethnic groups.
An additional weakness is the lack of replication samples
for the non-EA populations. Despite these limitations, our
study highlights the importance of investigating the ge-
netic architecture for AD in ethnically diverse
populations.

Our findings warrant further replication in indepen-
dent samples, deep sequencing and bioinformatics
studies to identify the potentially functional variants,
and experimental validation. We expect that additional
novel gene discoveries will emerge in future transethnic
studies including larger samples from non-EA
populations.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed previously pub-
lished genome-wide association studies (GWAS)
for late-onset Alzheimer’s disease (AD) including
reports for non-white populations. Few GWAS have
been conducted in populations of non-white Euro-
pean ancestry.

2. Interpretation: Transethnic meta-analysis of GWAS
results for whites of European Ancestry, African-
Americans, Japanese, and Israeli-Arabs identified
novel genome-wide significant associations with
single-nucleotide polymorphisms in PFDN1/
HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and
with TPBG using a gene-based test. These findings
further our understanding of the genetic basis of AD
and provide insight about mechanisms leading to
AD.

3. Future directions: These results should be confirmed
in independent samples including subjects from the
same ethnic populations and tested in populations
of other genetic backgrounds. DNA sequencing
studies are needed to identify the functional variants
in these genes and their biological roles in AD should
be determined experimentally.
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