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Abstract—This paper addresses the robust stabilisation prob- exactly a nonlinear model in a compact set of the state space.
lem for T-S fuzzy stochastic descriptor systems using an integral One advantage of representing a nonlinear system by a T-
sliding mode control paradigm. A classical integral sliding mode S fuzzy model is that existing results on linear systems can

control scheme and a non-parallel distributed compensation b tilized. Earl It tabilit d stabilisati
(Non-PDC) integral sliding mode control scheme are presented. °€ UllIZ€d. Early results on stability and stabilisatiore a

It is shown that two restrictive assumptions previously adopted frequently based on a common quadratic Lyapunov function
developing sliding mode controllers for T-S fuzzy stochastic which inevitably introduces conservatism. With the objext

systems are not required with the proposed framework. A unified of decreasing this conservatism, several different ctasde
framework for sliding mode control of T-S fuzzy systems is on_quadratic Lyapunov functions have been explored where

formulated. The proposed Non-PDC integral sliding mode con- . ise L functi 5] f L func
trol scheme encompasses existing schemes when the previousl iecewise Lyapunov functions [5], fuzzy Lyapunov funcgon

imposed assumptions hold. Stability of the sliding motion is [6] and line-integral Lyapunov functions [7] are the most
analysed and the sliding mode controller is parameterised in typical. Parallel distributed compensation (PDC) is thessl-
terms of Fhe SO!L.JtiOI’]S of a set of linear matrix_ inequglities cal control approach adopted for T-S fuzzy systems Whereby
(LMIs) which facilitates design. The methodology is applied 10 ha controller shares the same fuzzy inference rules with th
an inverted pendulum model to validate the effectiveness of the .
results presented. contrplled plant. !—loweve_r, when a _non—quadratlc Lyapunov
function together is used in conjunction with the PDC cantro
scheme, the solution to a set of bilinear matrix inequalitge
often required. In addition, conservatism will always &xior
this reason, non-parallel distributed compensation (RB/E)
is proposed in [8] and combined with a non-quadratic Lya-
|. INTRODUCTION punov function to show the superiority of the approach when

HE DESCRIPTOR system representation is an estagrmpared to PDC. Fuzzy controller designs for T-S fuzzy
T lished approach to fully characterize physical systen$yStéms have been developed for both PDC and Non-PDC
and research on linear descriptor systems is mature [1]-[#{here [3], [9] provide a complete review of T-S fuzzy systems
Practically, many complex physical models, such as coftS nonlinear descriptor systems are often encounteredein th
strained mechanical systems, bio-economic singular syste "€l world, stabilisation of T-S fuzzy descriptor systenas h
robotic systems, show nonlinear features. Although thdimon P€en considered [4]. Subsequently investigations on Tz8yfu
ear descriptor system can be linearized at a certain opgraff€Scriptor systems have attracted increasing attentiom fr
point so that linear theory can be applied, the resultif§€ control community [10]-{12]. Stochastic phenomena are
analysis and synthesis results are only local and may not f§¢own to arise in many branches of science and engineering
satisfactory. This motivates considering the original limear [13]- This motivates introducing stochastic charactessinto
descriptor system directly for the purpose of design. Reégen the model representation. In recent years, many.resulte .hav
detailed qualitative analysis and control methods for sevePeen reported on the study of T-S fuzzy stochastic deseripto
classes of singular biological system have been developd$tems, including passivity and passification [14], fiftgr
[3]. However, for general nonlinear descriptor systems, 1], observer-based control [16] and guaranteed costraont
methodology is laborious and it is difficult to derive globall7]- Notice that in practice within control systems thefe a_
stability conditions. In 1985, Takagi and Sugeno present¥fpyS exist unknown disturbances and parameter uncegsinti

the well-known T-S fuzzy model [4], which can represf_lr}{vhmh increase the complexity of the system. It follows that
the design of a suitably robust control to tolerate or atiau
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has been paid to the sliding mode control problem for Bl P-null sets) andE{-} is the expectation operatoR™

S fuzzy descriptor systems [21]-[23], stochastic descriptrepresents the set of positive real numbsfs.| denotes
systems [24]-[25] and T-S fuzzy stochastic normal systerntse Euclidean norm of a vector or the induced norm of a
(E = I) [26]-[27]. However, sliding mode control for T-Smatrix. V' € C%! (R® x R*;R) denotes the family of all
fuzzy stochastic descriptor systems has not yet been studieal-valued functiond’ (z,t) defined onR™ x R* such that
and this provides motivation for this paper. In addition, ahey are continuously twice differentiable in and once in
demonstrated in [27], there exist two restrictive assuomgti ¢. £! (R*;R") and £2? (R*;R"*™) respectively denote the
for the development of sliding mode controllers for T-S fuzzfamily of all R™-valued measurablgF;}-adapted process
stochastic systems: the input matrices of each linear stdasy f = {f(¢)};>0 and n x m-matrix-valued measurabléF, }-

of the T-S fuzzy system are forced to be equal and the prodaetapted procesg = {g(t)}:>0 such thathT lf(®)|ldt < oo

of a parameter matrix in the sliding variable and the diffusi g, foT lg(t)||2dt < oo a.s. for everyT' > 0. The notation
matrices of each linear subsystem must be zero. Withouethgs . °g (p > () implies thatP is a real symmetric and positive
two assumptions, an effective sliding mode control mettwd fgefinjte (semi-positive definite) matrix. For a symmetrictrixa
T-S fuzzy stochastic normal system with parameter ungertaiy ) . (A)and\,,..(A) denote the minimum eigenvalue and
ties has been developed by introducing the state and Ny maximum eigenvalue of matrix, respectively.He(A)
vectors into the sliding variable [27]. However, it is diffit stangs for4 + A7. The star in a matrix block implies
to apply this method to counteract unknown disturbancggat it can be induced by symmetric position. Matrices, if

which occur in the input channel for T-S fuzzy stochastifheir dimensions are not explicitly stated, are assumedeto b
normal systems and the direct extension of the results dgmpatible for algebraic operations.

T-S fuzzy stochastic descriptor systems is problematic. As

a consequence, removing these two assumptions completely

and designing a suitable sliding mode control scheme for a |l. PROBLEM FORMULATION AND PRELIMINARIES

T-S fuzzy stochastic descriptor system with unknown input . . . .

disturbances is the second mativation for this paper. i C‘;T‘s'g‘f thti foIIov;mg‘lf[—S fuzzg)sItFo%hésnc descriptor-sys
In this paper, the robust stabilisation problem for T-S fuzz em fixe O_r € pro ,a My spao(. B, P): ,

stochastic descriptor systems is studied using an intstjcal Plant Rule i IF z,(t) is Fi1, 23(t) is Fi, -+, 2(t) is Fip,

ing mode control approach. Firstly, two novel integral isigd THEN

surfaces are constructed and the stability of the correipgn Ede(t) = [A(t) + Bi (u(t) + w(t))] dt + Ja(t)dw(t) (1)

sliding motion is analysed. The design parameter matrices ! ! !

defining the sliding variable are obtained by solving LMIsynere i € {1,2,---,r}, z1(t), 22(t), -+, z(t) are the

A classical integral sliding mode controller and a Non-PDGremise variablesF;,, Fy, - -, F,, are the fuzzy sets, and

integral sliding mode controller are presented to guaentg is the number of IF-THEN rulese(t) € R” is the state

that motion on the prescribed sliding surface is maintaine\gﬂector, u(t) € R™ is the input vectorw(t) € R™ is the

To show the validity of the proposed integral sliding modgnknown disturbance which satisfiéls) (1) < @. w(t) is a

method, simulation results of an inverted pendulum systegRe_dimensional Brownian motion defined on the probability

are provided. The contributions of this paper are threefoldyace (0, F,P). E, A;, B;, J;, i = 1,2,---,r are known

1) the equality of the input matrices of each subsystem apsh| matrices with proper dimensions and matkixhas the

the restrictive assumption on the parameter matrix in “Eﬁoperty rankE) = r. < n. Without loss of generality, it is

sliding variable and the diffusion matrix of each SUbSy?“*E‘ssumed thatank[E J;] = rankE, i = 1,2, -+ , 7.

are no longer a requirement of the approach; 2) a series 0gaseq on the centre-average defuzzifier, product inference

new sliding mode control schemes for T-S fuzzy stochaslit,y the singleton fuzzifier, the overall T-S fuzzy stoctwsti
systems are presented; 3) descriptor redundancy and WOp@Escriptor system can be inferred as
of fuzzy membership functions are exploited to decrease the

conservatism. r
The rest of this paper is organised as follows. Section I1Edz(t) :Zhi (2(t)) {[Aiz(t) + Bi (u(t) + w(t))] dt
i=1

L . 2
presents the problem description and some essential lemmas
Section Il focuses on construction of the sliding surface, + Jiz(t)dw(t)}
stability of the sliding motion, synthesis of a sliding mode _ } B
controller and comparisons with the existing results. iBact Whe;ilingZj(g) [21(), 22(t), -+, 2p(0)] and b (2(2)) =

IV provides examples to illustrate the effectiveness of ther, T, F, -,y 'S the normalized membership function

proposed methods and Section V concludes the paper.  with F;;(z;(t)) denoting the membership degreeszoft) in
Notation: The notation used throughout this paper is quitkuzzy setF;;. For allt > 0, the normalized membership func-

standard.R™ represents the:-dimensional Euclidean space tion satisfiesh; (z(t)) >0, i =1,2,---,r, >0 hi (2(t)) =

and R™*™ represents the set of ath x n real matrices. 1. To ease the notation, in the sequdlk) and B(hh) are

The superscriptd” and —1 denote matrix transposition andrespectively used to denote the single shM_, h; (2(t)) A;

matrix inverse respectively. The symb@l, F, {F;},P) is a and double sum3=i_, >°7_, h; (2(t)) h; (2(1)) Bij-

complete probability space with a filtratiofiF;} satisfying Some basic definitions and essential lemmas are first re-

the usual conditions (i.e. it is right continuous and camgai called to facilitate development of the main results. Tas thi
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end, the unforced T-S fuzzy stochastic descriptor system @®. Classical Integral Sliding Mode Control Scheme

is shown as follows

Edx(t) = A(R)x(t)dt + J(h)a(t)dw(t) 3)

Definition 1: The T-S fuzzy stochastic descriptor system (3
is said to be asymptotically mean square stable if for artiaini

conditionzg € R™, lim;_, o E{||z(¢)||*} = 0.
Lemma 1 [13]:Let x(¢) be ann-dimensionalltd process
ont > 0 with the stochastic differential

dz(t) = f(t)dt + g(t)dw(t)
where f(t) € £} (RT;R") and g(t) € £* (RT;R™™™). Let
V e C?! (R™ x RT;R). ThenV (x(t),t) is a real-valuedto
process with its stochastic differential given by
AV (2(t), 1) = Vi (2(8),) + gtrace (g7 (6)Va (2(1), 1) 9(1))
+Ve (2(t),1) f)]dt + V (x(t),t) g(t)dw(t)

This subsection is divided into three parts: the first part
considers construction of an appropriate sliding surféice,
econd part focuses on the stability analysis of the motion,
nd the final part presents the sliding mode controller aesig
method. First consider the construction of the sliding acef

1) Construction of Sliding SurfaceThe sliding surface is
defined bys(t) = 0, where the sliding variable is constructed
as follows

s(t) = SExz(t) — SExz(0)

K (4)
7/0 S(A(h) + B(h)Ky)x(r)dT

where K; € R™*" s the coefficient matrix to be determined
in the sequel, and € R™*™ is the parameter matrix ensuring
the nonsingularity ofSB(k). To this end, the method in [30]
can be adopted. By defining = %Z;’Zl B;, it follows that

Lemma 2 [28]: Suppose a piecewise continuous matrix _

A(t) € R™™", and a matrixX € R"*" satisfy the following
inequality
ADTX + XTA(t) < —al

for all ¢ and some positive number. Then the followings

hold:

1) A(t) is invertible,

2) ||A=1(t)|| < a for somea > 0.

Lemma 3 (Finsler's Lemma) [29)et z € R, Q = Q7 ¢
R™ 7 W e R™*™. The followings are equivalent:

1) 27Qx <0,V Wa =0,z #0;

2) 3IX e R™™: Q+ XW + WTXT <0,

It should be noted that in the sliding mode control of T-S
fuzzy descriptor systems [21]-[22] and stochastic desmrip

B(h) = B+ HF(h((1)))G ®)

where h(z(t)) = [h1(2(t)), ha(z(2)), -+ he(2(1))], H =
LB = Bi,B — By, , B — B,], F(h(2(1))) = diag[(1 —
2ha (2(8))1, (1-2ha(=(£)1, -~ , (1—2h,(2(1)))I], andG =
[I,1,---,1]T. Thus, the following result can be derived by the
N————

appré‘ach in [30].
Lemma 4 [30]:If the following LMIs

{f;I]{ —*I}<O’{? f:]]>O’Q<f3I’
2f1 >\min (BTB) * * (6)
rfa rfi * >0
Tf3 0 ’I"fl

systems [24], the following assumptions are imposed respec

tively:

Al: The matricesB;, i = 1,2,---
e — B'r — B;

A2: There exists a matri¥s' such thatdet(SB;) # 0 and

,v satisfy By = By =

are solvable for(Q, f1, f2, f3) with @ > 0, then there
exists parameter matrig = (BTQ”B)_1 BTQ~! such that
SB(h) is nonsingular.

Remark 1:More generally, matrixB can also be chosen
as the convex combination aB;, i = 1,2,---,r, that is,

SJ;i=0,i=1,2--,r. . -

These assumptions are restrictive and limit the applitgbil B = >_i—1 &iBi with & > 0 and>>;_, & = 1. From the
of the methods. As will be shown in Section IV, the moddproperty of convex combinations, it follows that if just ook
describing the balancing of the inverted pendulum on a cdf¢ matricesB; is nonsingular, then there must exist a set of
does not satisfy these two assumptions and in this caS6alarséi, i = 1,2,---,r such that the nonsingularity o8
existing results [21]-[24] are not applicable. The design &&n Pe guaranteed. In this case, define
an appropriate sliding mode scheme for T-S fuzzy stochasti 1
descriptor systems without the two assumptions is a mair% — 9 [ B=r&1B1, B—r&aBy, -+, B—r§:Bp, 201 |,
focus of this paper. F(h(2())) = diag[(1 — 2 (=())1, (1 = 2ha(2()], -,

[1l. M AIN RESULTS 1

First of all, a classical integral sliding mode control suige (12" (2(t))1 = D hal()(A-r&)B.G = [ 6T [
is presented to remove the restrictive assumptions Al and A2 =1
for the T-S fuzzy stochastic descriptor system (1). A Norwhere¢ = || >0, hi(z(t)) (1 — r&;) Bjl|. It can be shown that
PDC integral sliding mode control scheme will then be detiveB(h) = B + HF (h(z(t)))G. Therefore, the result in Lemma
to decrease the conservatism stemming from the selectiondois also applicable with, G, r replaced by, G, r + 1,
the coefficient matrix which defines the sliding surface irespectively.
the classical integral sliding mode control approach. Isina Remark 2:Note that whenB; = By = --- = B, = B,
comparison with the existing sliding mode control methais by choosing@ = I and without solving the LMIs (6), the
undertaken to show the merits of the proposed method in tipigrameter matrixs' can be given a$ = (BTB)_1 BT, since
paper. it has been proved in [31] that this set is optimal in the sence

]T
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that the Euclidean norm of the mismatched disturbances is=rom (12), it follows that

minimized. T 1
2) Stability of the Sliding MotionBased on (2) and (4), it E*(P(h)) . .
can be shown that — NNTETMT A 0 Py 0 NT
0 I * Kk (13)
ds(t) = SB(h)(u(t) + w(t) — Kyz(t))dt + ST (h)x(t)dw(t) I
" = N[ 0 ]Pfl [ L. 0]NT=(P(h) TE>0
In the sliding phaseE{s(t)} = 0 holds. When the state
trajectories of the system (2) reach and are confined toSumming (10) for alli = 1,2,--- ,» and using the Schur
the sliding surface with sliding variable (4), from (7), & i complement Lemma, straightforward algebraic maniputatio
necessary to satisfy yields Au(e(8)
4(2(t *
(SB(R))(u(t) +w(t) — Kya(t)) =0 { Aq(h)  —cHe(P(h)) ] <0 (14)
Sincg SB(h) is nonsingular, the equivalent control can bnere Au(z(1) — He (A(W)X + B(h)Z1) +
obtained as XTJh)T(ENTET(P(h)*EtJ(h)X.
Ueq(t) = Kr2(t) — w(t) 8 Pre- and post-multiplying (14) byliag{X—?’j, (P(h))~'}
By substituting (8) into the system (2), the sliding mod@nd its transpose, the following can be obtained
dynamics are given as follows [ J(R)T(EDTET(P(R)EtJ(h) * ]
—1
Edz(t) = Ac(h)z(t)dt + J(h)x(t)dw(t) 9) . f?h)) 0 (15)
where A.(h) = A(h) + B(h) K. +He([ (P(h))~! ] [ Ac(h) —1])<0
Theorem 1:f the following matrix inequalities
By Finsler's Lemma, (15) can be guaranteed by the follow-
Ain * * ing inequality
A; = JAND 75He(Pi) * <0 (10) - i L
Mo 0 on g [ FOTETEEQTEI 1], o
are solvable for( Py, Py;, Psi, X, ®;, Z1,¢), i = 1,2,--- ,r (P(h)) 0
where P > 0, e > 0, P33 = Pg;, ET is the for anyy = [ Y1 Yo ]T 7& 0 Satisfying
pseudoinverse off in the Moore-Penrose senséy;; =
T
[ I, 0 ] NTE+L,X, P, = N 51 1;1'_2 NTET 4+ Substituting (17) into (16), the following can be obtained
V®,;U, orthogonal matrices\/ and N satisfying M EN = A(z(t)) = (J(W)T(ENDTET(P(h) " YET)J(h) 18)
A/(; 8 ) A:diag{)\17)\2?"' 7)\7'6} >01 )\1a)\27"' a)\’!'e +He ((A((h))T(P(h))il) <0

are the singular values of matri%, U andV are respectively  The regularity and absence of impulse in the system (9) can
the lastn — r. rows and the last — r. columns of M and now be proved. Define
N, then the sliding motion (9) is regular, impulse free and -1
. o A 0
asymptotically mean square stable. Furthermore, the eoeffi M = 0 0
cient matrix K; in (4) can be expressed &5 = Z; X L.
Proof: Suppose that matrix inequalities in (10) are solv- 74 N = { A Ay ]

Ji

- Joi
}M, MJiN:{ 0 3 }
(19)

able, pre- and post-multiplying; by [ —eI I 0 | and its Azi Aug
transpose yieldX is invertible. It can be shown that Substituting (19) into (18), it follows that
P Py(h)T } T T * *
P(h) =N N'E Vo(h)U
() { Py(h)  Ps(h) TV alh) { * V(z(t) } <0
P 0][A O 1
= N{ Py(h) 0 } { 0 0 ]M where  V(z()) = (Jo(R)' P Ja(R)  +
: (11) He((Aa(r)* (@(h) ).
N { 0 0 ] M Note thatP; > 0 and V(z(t)) < 0. Then by Lemma 2,
0 ®(h) it follows that A,(%) is nonsingular and|(A4 (k)| < ps
N P, 0 A O Y with p; > 0. As a result, from [14], the sliding motion (9) is
B Py(h) ®(h) 0 I regular and impulse free. )
Furthermore Using the coordinate transformatiar(t) = N { ?8 }
2
(P(h) " = MT [ A(;l ? } { P:: (q)(;?))—l } NT the sliding motion (9) is equivalent to
12)  ATa(t) = [(Au(h) — Ao(R)(As(h)) " Ag(h))7r (t)dt
where % represent terms that are unimportant within the + (J1(h) = Jo(h)(Ag(h)) "t As(h))Z 1 (t)dw(t)]

current analysis. Fo(t) = — (Ax(h)) " Az(R)Z1 (1)
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Next, the sliding motion (9) will be shown to be asympderivative coefficient matri¥2, some slack matriceB;s, P;3,
totically mean square stable. Select the Lyapunov functidn,i = 1,2,--- ,r are introduced and the matrix’ (P(h))~!
candidate as follows is only dependent on the orthogonal matfiX and positive

. _ definite matrixP;. Moreover, based on the property of fuzzy
V(#:(5) = ()P 31 () =« (BT (P(h) ™ e (t) (20) membership functions?; is set to be independent of the fuzzy
Let L be the diffusion operator associated with (20). Thefembership functions to avoid the derivative of the fuzzy
by Lemma 1, it can be shown that membership functions appearing. Therefore, the conssnvat
_ . of the common quadratic Lyapunov function is reduced by
dV (#1(t)) = =~ (1) A(2(1))x(t)dt (21) exploiting the properties of fuzzy membership functionsl an
+ 22T (P(h)) =T J(h)x(t)dw(t) descriptor redundancy.
- ~ 3) Design of the Sliding Mode Controller: Theorem 2:
Th_us, Lv (“T.l.(t)) = @' (DA(=(t))(t). From (18), there Assume that matrice$ and K; satisfy Lemma 4 and Theorem
exists a positive constapt such that 1. The sliding mode controller

LV (i1(t)) < —ollz(t)|? (22) T
_ ) S (SBM) s()
According to (20) u(t) = Kie(t) = (SB(h)  Qs(t) =< I (SB(h))T S(t)(%)

Amin(Pfl)Hjl(t)HQ < V(jl(t)) < Amaw(Plil)”i’l(t)W
(23)
Due to||(A4(h))~t|| < p1, two positive constantp, and ps
can be defined satisfying

can confine the state trajectories of the resultant closeg-|
system in a sufficiently small band around the sliding swfac
with sliding variable (4) ifQ is a positive definite matrix and
¢ > w wherew is defined by the upper bound on the norm

p2llZ1 @) < |Z2()]| < psl|Z1(2)]] of the disturbancev(t).
) o _ Proof: Select the Lyapunov function candidate as
which further implies V (s(t)) = 157 ()s(t). By theTto formula, it follows that
~ 2 2 = 2
pallZ1 ()7 < lz@)° < psllZ1 ()l (24) dV( () = T( H)SB(h) (u(t) +w(t) — Kyaz(t)) dt
wherep, = p2 +1 andps = p2 + 1. + 2T ()Y (hh)x(t)dt
Using Lemma 1 and (21), it can be calculated that + T (1) ST(h)z()dw(t)
d [V (21(1))] = eV (21(1)) dt + e LV (2:1(t)) dt (25) - LV( (t)) dt + 57 (£)SJT(h)a(t)dw(t)

+ eV, (21(t)) Jiz(t)dw(t
(#1(0) Jiz(t)duo(?) where T (hh) = 1(J(h))TSTSJ(h).
Integrating and taking expectations on both sides of (25), i By (28), it can be computed that
follows that

_ . 2 2
CUE(V (51(8)) = E{V (21(0))} LV (s(t)) < Ainm (@) Is@®)ll ;Amax (C(hh)) [|lz()]
co + (@ =) [[(SB()s(1)]
+E /0 LV @) dr e (29)
t o R To achieve the sliding mode, the following condition should
+E/0 eTeV (Z1(7))dr be satisfied
Substituting (22), (23) and (24) into (26), it can be estiisd LV (s(t)) < —C|[(SB(R))"s(t)|| (30)
that
where( > 0. Without loss of generalityy can be selected to
E{V (Z1(1))} < e “E{V(#1(0)} satisfy s = ¢ 4 .
(b Combining (29) with (30), (30) holds if the following is
+E/ e i () P satisfied
whereé = oz (Pr) — opa. Amin (@) Is(OI* + Az (T (RR)) [lz(#)]]* < 0
Assign0 < e < 4~ and note (23), then 5
Amaz (Pr') which means that fofjs(t)| > ’”“(;(hh()gl)gﬂ(t . (30) is

E{[|Z1()]I*} < Amaz(P)E{V (21(0)) e~ (27) true. Similar to [27], [32], define the following smaII band

. . - around the sliding surface
As t tends tooo, (27) yields lim; }E{Hxl( N2 = o.

By (24), it follows that lim;_,., E{||z(¢)]?} = 0. As a Amaz (Y(RR)) ||lz(t)])2
consequence, based on Definition 1, the sliding motion (9)3( s(t)) = {s(@) |IIs@)] < Momin (Q)
is asymptotically mean square stable. n e

Remark 3:The existence of an asymptotically mean squate can be concluded that the sliding variable remains in the
stable sliding motion (9) is proved in Theorem 1 and the codfand 5 (s(t)) as in [27], [32]-[34]. It follows directly from
ficient matrix &; in the sliding varible (4) is obtained in termstheorem 3.1 in [32] that the state trajectories of the restilt
of a set of matrix inequalities. Due to the redundancy in thdosed-loop system are generally not kept on the sliding
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surface, but will remain in a sufficiently small bounded cegi  To use the non-quadratic Lyapunov function, the following

surrounding the sliding surface. m assumption in [38]-[39] is enforced.
Remark 41t should be noted that a term proportional to the Assumption 1:% > ¢ (p; < 0) for all i =
sliding variable is introduced into the sliding mode coli&io 1,2,.-. ,r, where¢;, i = 1,2,--- ,r are scalars.

(28). This removes the rigorous assumption A2 by defining Now, the following theorem will provide a method to solve
a small band around the sliding surface as in [27], [32] anfe existence problem of sliding modes and the unknown
it is proved that the sliding variable is restricted to a dmatoefficient matrices can also be obtained.

neighbourhood of the sliding surface. Note that when the Theorem 3:f the following matrix inequalities
assumptionS.J(h) = 0 holds, by assigning) = 0, the band

B (s(t)) is the sliding surface itself. In this case, the sliding Pi+X>0,i=1,2---,r (34)
mode controller (28) can maintain the state trajectoriethef
closed-loop system on the sliding surface. 9u <0,i=1,2,---,r
1
1@“4— (913+®j1)<0 ,j=1,2,--- .1, 1F£]j
B. Non-PDC Integral Sliding Mode Control Scheme "= (35)

It should be noted that despite the tractability of the dtads ‘
integral sliding mode control scheme presented above, so@t€ solvable for (Py;,Y;, ®;, K, X, P217Pd7,777) o=

conservatism may be produced in solving matrix inequalitid, 2, - - - ,~ where P; > 0, > 0, P3; = P4; and
for the coefficient matrix¥<; since a common matriX; is re- o
quired to stabilise all the local subsystéi, 4;, B;, J;) , i = o _ eljl H* v *
1,2,---,7. As a consequence, a Non-PDC integral sliding A @7{2 - ()e( i)ox
mode control scheme will be proposed to further reduce this i3 i
conserva_ltl_sm. - - N with @lij _ He(Ain + BiK2j) .
The sliding surface is defined Byt) = 0, where the sliding __ Pr+X Ph - '
variable is constructed as follows Y= (EN| = p Tt | NTED) O =
s(t) = SEx(t) — SEx(0) ,Pi_}/i'i_n(Ai}/j_FB’iKQ%)T' O3 = [ In. 0 ]NTE*JP;,
31) p Py Py | yrpr ,
/ sS4 B Ea(W)(Y (1)~ y(r)dr Gl p, = N P, p. |NTE" + VU, orthogonal
. L A O
Here S € R™*" is the same as that in (4) ardt,; € R™*™, matrices M and N satisfying MEN = 0 0|’ 'A -
Y; e R™*" i =1,2,--- ,r are unknown coefficient matricesdiag{A1, A2, -+, A, } > 0, Ay, Ao, -+, A, are the singular
to be designed later. values of matrixt/, U andV are respectively the last — r,

Remark 5: The sliding variable in (31) introduces thefows and the last — r. columns of A/ and N, then the
nonlinear termK,(h)(Y (h))"'z(7) to deal with the case sliding motion (33) is regular, impulse free and asymptitjc
when the coefficient matrix<; in (4) cannot be obtained mean square stable.
by Theorem 1. In the case thaf = Y, = --- = Y,, the Proof: If the matrix inequalities (35) hold, the@(hh) <
Non-PDC integral sliding mode control scheme reduces to tAeBased on (34) and; < 0, pre- and post-multiplyin@® (hh)
PDC integral sliding mode control scheme. Furthermore,wh®y | —n/ I 0 | and its transpose yiel@(h) is invertible.

assumption Al and’; = Y, = --- = Y, hold, the sliding It can be verified that

variable in (31) can recover the sliding variable preserited [ Pu(h) 0 A O

[21], [26] or in [22] by incorporating a delay term. In fact, P(h)=N Pl } [ ] M
Leal o 5 (h) 0 0 0

when the matrixS is selected to ensure the invertibility of -

SB(h), the nonlinear terni, (1) (Y (k))~tz(7) in (31) can be +N [ 0 0 ] [ A0 ] M

replaced by other stabilising state feedback control 188%3-[ i 0 ®(h) 0 1

[36] applicable for T-S fuzzy stochastic descriptor system _N Pi(h) 0 ] [ A O M

This observation is similar to that seen for nonlinear ndrma | P2(h) @(h) 0 I

systems in [37]. As a result, a new framework for the slidin? ) L .
mode control of T-S fuzzy stochastic descriptor system [g0m the invertibility of P(7), it follows that
proposed, even when assumptions Al and A2 are not satisfied. T { AL 0 ] [ (P(h) 0 } NT

I

. . . . —1
As in the previous subsection, the equivalent control la@P(h)) " = 0 * (@(h))~!

can be obtained as
B where % represent terms that are unimportant within the
teq(t) = Ko () (Y ()" (t) — w(t) (32) current analysis.
By substituting (32) into the system (2), the sliding mode Furthermore, it can be computed that
dynamics are given by ET(P(h)~" = (P(h))"TE
Eda(t) = (A(h) + B(h) K2 (h)(Y (h)) ™)z (t)dt N { I

+ T(h)z(t)dw(t) (33) =N| } (P(h) [ I, 0]NT>0
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Since (1) > ¢, and ¢y, < 0, it can be obtained that  pefine (1) = N ilgg and choose the following
2
" P.+X PT Lyapunov function candidate
— > ¢e(EN [ ' oh ] NTET) ) . L S .
k=1 o o V(@1(t) = 21 (t)(Pi(h) ™ 21 (t) = 2" () E" (P(h)) ™ =(t)
_ i(bk(MT [ A O } { Pyp+X 0 ] [ A O ] M) Then by Lemma 1, it can be calculated that
0 I 0 0 0 I
k=1 LV (1(t) = =™ (1) =(2(t))x(t)
r T
< - Z MEN { ?k ?k } NTET The subsequent proof can be directly obtained from that of
o ot 2k 3k Theorem 1 and thus is omitted. ]
"L Ohi(2(t)) X 0 - Remark 6:If the conditions in Theorem 3 are solvable, an
-y — N { 0 0 } N"E ideal sliding mode exists and a set of unknown coefficient ma-
k=1 trices K»;, Y;, i =1,2,--- ,r are obtained. Theorem 3 also
Note thatS>7_, hx(2(t)) = 1, thenS 7 _ 2z _ o ji  provides an approach to solve the state feedback stagilisin
can be furtherkgrllovvn that b=t problems for a T-S fuzzy stochastic descriptor system based
, . on the Non-PDC scheme. Since the non-quadratic Lyapunov
_ Z or(EN [ P+ X Py } NTET) function and Non-PDC scheme are used, some slack matrices
1 Pai Psi are introduced, the conditions in Theorem 3 are expected to
" Ohy(2(1)) p. pT be less conservative than that in Theorem 1.
< —ZatEN[ Plk P }NTET (37)  The sliding mode controller can be designed using the
k=1 2k Sk following result.
" Ohy(2(t)) 0 Theorem 4:Assume that matrice$ and Ky;, Y;, ¢ =
- Z ot EPy = _EQ(P(h)) 1,2,---,r satisfy Lemma 4 and Theorem 3. The sliding mode
k=1 . controller
Dl 001 8. i e Schurcomplmenemma: ) K (1) () (S50
: _ (SBU)Ts() (42
e iy | L A® + Bty v ) =1 ) [(SBH)TS@
! can confine the state trajectories of the resultant closeg-|
+ [ Ou(z(t)) * ] <0 system to a sufficiently small band around the sliding serfac
P(h) 0 with sliding variable (31) ifQ) is a positive definite matrix and
(38) ¢ > w wherew is defined in Theorem 2.
where O4(z(t)) - —EZ(P(h) + When the coefficient matrices; = Y, = --- = Y}, the
ot .- . _
(P(h))T(J(h))T(E+)TET(P(h))_1E+J(h)P(h). sliding variable in (31) degenerates to
By Finsler's Lemma, (38) holds if the following is satisfied s(t) = SEx(t) — SEx(0)
t 43
2T { 9;‘)(5%)) 6 } 2 <0 (39) —/0 S(A(R) + B(h)K3(h))z(r)dr (43)
for any z = [ 27 2T 1" # 0 satisfiesz, = (A(h) + HereS e R™*"is the same as that in (4) arfd;; € R™*",
B(h)Ka(h)(Y (h))~1)z1. i = 1,2,---,r are unknown coefficient matrices to be de-
Furthermore, (39) implies that signed later. . . _
. In this case, the sliding mode dynamics are given by
He((A(h) + B(h)K2(h)(Y (1))~ ")P(h))
0 where A 3(hh) = A(h) + B(h)Ks(h).
a EE(P(h)) <0 Corollary 1: If (34) and the following matrix inequalities
Similar to the proof of Theorem 1, the regularity and Fi<O0, i=1,2--.r
absence of impulse of the sliding motion (33) can be proved. 1
Due toP(h)(P(h))~! = I, it can be obtained that —qluts (Fij+Fj) <0, i,j=1,2,--,r i#j
0 0 :
TP ™Y = (P L L (P (P(h)~t  (41) are solvable for (Py;,Y, ®;, Zs;, X, Poi, Paiyn), @ =
5 (P(h)77) = =(P(h))=" 5. (P(h))(P(h)) Lo,y where Py > 0, =0, Py — P and
Pre-. and post-multiplying (40) byP(h))~T and its trans- Fin . N
pose, it follows from (41) that Fi=| Fijo —nHe(Y) .
E(2(1)) = He((A(h) + B(h)K2(h)(Y (b)) (P(h)) ") Fijs 0 —Pi

+ (J(W)T(ENDTET(P(h) " E*J(h) with Oy, = He(A;Y + BiZsj) -—

T
— BT (P ) < 0 Sioaen | B B ven, ey -

ot Py
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,Pi *Y+77(A1Y+B1Z3J)T, @31']' = [ Ire 0 ] NTE+J1'P]‘,

Py Py | urpr
P; = N i | NTET 4+ V®,U, orthogonal
Py Ps;
A O

matrices M and N satisfying M EN = REE A =

diag{A1, A2, -, A} > 0, A1, Ao, -+, A\, are the singular

values of matrixF, U andV are respectively the last — r, —=
rows and the last: — r. columns of M and N, then the @) @®)
sliding motion (44) is regular, impulse free and asymptiljc R TR T e
mean square stable. Furthermore, the coefficient matgx

in (43) can be expressed &&; = Z3;Y . Fig. 1. Inverted pendulum on a cart

Remark 7:As pointed out in [11], a logarithmically spaced
searche,n € {107%,1075 ... 105} is used to avoid opti-
mization technique to search fer and . As a result, the
conditions in Theorems 1 and 3, Corollary 1 are linear matrix
inequalities.

The sliding mode controller can also be synthesized by a
similar structure with that in Theorem 4. In this case, theCPD
integral sliding mode control scheme can be obtained. In this section, three examples are considered to show the
applicability and effectiveness of the results proposethis

aper.Example 1 is used to validate statements C2 and C3 in
= ubsection IlI-C and to show that the proposed method can

Other authors have developed sliding mode control methaogls \;sed to stabilize a T-S fuzzy stochastic descriptor syste
for T-S fuzzy normal systemd{ = ) when each local subsys-\yhich does not satisfy A1 and A2. Example 2 compares the
tem does not share the same input matrix [30], [27]. Althougdy|yapility of classical, PDC and Non-PDC integral sliding
such methods are effective for T-S fuzzy normal systemsesomode control schemes and also justifies the statement C4 in
restrictions have been observed when the methods are @pplighsection 111-C. Example 3 is given to verify the statement

to T-S fuzzy descriptor systems. The following discussiog] in Supsection I11-Cln the simulation, the unit vectqf(#)
. : i« avicting [ ’ ()]
clarifies the differences between this existing literatared is replaced by._5® in 118
the method proposed in this paper. ) Ei(g‘%cele 1 B(ﬁ)%%?of’h: ; rob[lerr]II f balancing the inverted
1) Comparison with the Method in [30]: pie = P ° g

) ) ) ) Fendulum on a cart as shown in Fig. 1, where the pivot of
C1 the methods in [30] and in this paper are applicable jge nenduium is mounted on the cart and the cart can move

T-S fuzzy normal systems. Thel method in [30] requiresy 4 horizontal direction. By referring to [40]-[41], thease
a rigorous precondition thatd;, . > ;_, B;) is stabilis- gqjation of the dynamic model is represented by
able. The results presented in this paper have no such

LLLLLS:

(E, A;) is impulse free in order to determine the un-
known coefficient matrices in the sliding variable. This
restriction is not needed in this paper.

IV. EXAMPLES

C. Comparison with Existing Sliding Mode Control Method

requirement; T1 = T2
C2 the method in [30] is based on the assumption [18] kmlzy cos x1 + (M + m)mgzs
that the systeni4;, 2 Y7, B;) can be expressed in the 2T (M +m)(J + mi%) — m2l2 cos? 2y
Ay Ay { 0 ] - ml cos x1
regular form , with det(B) # 0 - 20x
g ( Az Ay B ) (B) # (M 4+ m)(J + ml?) — m2l? cos? z1 (u+maas)

by an appropriate coordinate transformation. The slidin 5
variables then appear as a distinct subsystem which
is dependent of the control input. This facilitates thez, =
sliding mode design and the transformation to regular )
form is straightforward for any T-S fuzzy normal system + J+mi

where>""_, B; is full column rank. However, due to the (M +m)(J + mi?) — m?I? cos®
existence of the derivative coefficient matrix, it can 0= Isinzy — a5

be d'ﬁ"iu“ to express the T-S fuzzy descriptor Systefare ;. is the angular rotation of the pendulum(measured
(E, A, 3 >5= Bi) in regular form. clockwise);z3 is the displacement of the pivat; is the the
2) Comparison with the Method in [27]: horizontal position of the pendulum centre relative to tivetp

C3 Although the method in [27] provides a very effectiven is the mass of the penduluni/ is the mass of the cart;
solution of the sliding mode control problem for T-S is the distance from the centre of gravity to the pivdt;
fuzzy systems with parameter uncertainties, when tligethe moment of inertia of the pendulum with respect to the
system is subject to unknown matched nonlinearitieentre of gravity;k is a viscous damping coefficieny;is the
or disturbances, the method is not applicable [27]. Traeceleration due to gravityi(¢) is the horizontal force exerted
method in this paper can be used; on the cart.

C4 When the method in [27] is applied to T-S fuzzy descrip- It is well known that the viscous damping coefficient is
tor systems, it is required that each descriptor subsystetonsely related to the shape of the cart and the air visgosity

= x4
—k(J + mi?)xy — m?lgzs cos r1
(M 4+ m)(J + ml?) — m212 cos? xq

(u + mx%ajg,)
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10 mode control methods in this paper to stabilize the nonfinea
=50 =50 =0 —x,0 —x0) stochastic descriptor system (45).
5 Define z(t) = [ wi(t) wa(t) ws(t) xa(t) ws(t) "
=9 and a compact s€? = {z(¢) : |z;(¢)| <&, i =1,2,--- ,5}
X ‘VVV‘VV where&, = 5T and &, &, &, & are appropriate positive
-5 constants. By sector nonlinear approach [4], the inverted
pendulum system (45) can be represented in the compact set
'100 5 10 15 20 Q by the following T-S fuzzy model:
Time t(sec) N
Fig. 2. Time responses of the unforce system (45) Edx(t) = Z hi (x1(t)) {[Aiz(t) + B;(u(t) (46)

i=1

+ 223 ()5 (t) + w(t))]dt + Jiz(t)dw}
and the air viscosity varies with changes to external enviro ) )
mental factors such as air density, wind, dryness and hiynidivhere the premise variables arg(t) = cos(x1(t)), z2(t) =
temperature and so forth. These environmental factors ofte o5y @nd 23(t) = sin(z1(t)). The membership
feature random variation, which produces a stochasticuftuct functions areh;(z1(t)) = t;(z1(t))vk(21(t))pu(21(t)), i =

tion of the damping coefficient and this motivates consitteri [+2(k—1)+4(j—1), j.k,1 = 1,2 with t; (2, (t)) = 222,
stochastic noise in the environment within the model. Hered, (z,(t)) = 22Utz ) (g (1)) = Zxli—c arcsin =3 (1))
L1 bi—by P\ (c1—c2) arcsin(z3(t))

is assumed that the damping coefficient is subjected to Wh{ggqxl(t)) = 1 — t1(z1()), va(z1(t)) = 1 — vi(z1(t)),
noise which is known as the derivative of Brownian motiony, (z,(t)) = 1 — p1(z1(t)), a1 = 1, ag = cos(&1), by =

1
The damping coefficient is replaced by by il

= m, a =1 c = smg(—fl) The matched
disturbance isw(t) = 0.5sin(t). The coefficient matrices in
system (46) are

wherew is a one dimensional Brownian motion defined on the

k— k+ow

1 0 0 0 O
probability spacd(2, F, P). In addition, unknown disturbances 010 0 0
may arise in the control input channel. As a result, the E=1l0 01 0 0
dynamics of the inverted pendulum on a cart are described 000 1 0 ’
by 00000
doy = @adt 0 1.0 0 0
doy — (kmlzycoszy + (M + m)mgxs) dt 0 0 0 015405 58.8b
(M +m)(J +mil?) — m212 cos? z1 A; = 0 0 0 1 0 7
ml cos T (u + mx%xg) + w) dt — omlxz4 cos x1dw 0 0 0 —0.1br —5.88a,by
(M +m)(J 4+ mi?) — m21? cos® 2, 0.5¢, 0 0 0 -1
dry = wadl 000 0 0 0
ds — (fk(J + ml2)x4 — m2lgzs cosxl) dt 0 0 0 0.03ab, 0 —0.3a,;by
YT (M + m)(J + mi?) — m2% cos? zy Ji=10 0 0 0 0|,B = 0
(J +mi?) (u+ mades + w) dt — o(J + mi?)zadw 00 0 —0.020, 0 0.2by,
(M +m)(J 4+ ml?) — m212 cos? x, 000 0 0 0
0= [Isinzy —x5]dt wherei =1+ 2(k — 1) +4(j — 1), j, k,1 = 1,2.

(45) 1t should be noted that the methods in [21]-[24] cannot be
plied, sinceB; # Bs and there does not exist a matrix
such thatdet (SB;) # 0 and SJ; = 0, ¢ = 1,2,---,8.

05m. k=05 o —0.1 It is noted that the regular form in [30] can not be obtained

’ - - for the T-S fuzzy stochastic descriptor system (46) Theesfo

The time responses of the open-loop system (45) are shown = . . .
in Fig. 2, which shows that the unforced system (45) It\sﬁe sliding mode control method in [30] can not be applied,

. ; T which validates the statement CRext, a classical integral
unstable and oscillatonAlthough the integral sliding mode . . . -

) h .~ sliding mode control scheme and a PDC integral sliding mode
control method in [37] may be generalized to a nonlinear

. . S . .~ control scheme will be designed.
stochastic descriptor system, it is required that therstex Classical integral sliding mode control scheniy: applyin
nominal controller to stabilize the nominal nonlinear syst 9 9 applying

It should be noted that it may not be straightforward tLemma4and Theorem 1 with= 0.1, the coefficient matrices

find a nominal controller to stabilize the nonlinear stotitas 8ef|n|ng the sliding variable are obtained as

descriptor system (45). This fact is true especially for ptax S=[0 43638 0 35418 0],

nonlinear systems. In the sequel, it will be shown that it

is convenient to apply the proposed fuzzy integral sliding; = [ 245.0219 99.0627 10.7313 37.4414 302.9810 ]

wherew € R denotes an unknown disturbance or paramet
variation. TakingM = 8kg, m = 2kg, g = 9.8m/s?, | =
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0.6 —Sliding controller (48) 1 —Sliding controller (48) Can be Obtalned aS fOHOWS
o~ 04l . Shing conroler (59 =~ . Siing convoler (59 8 .
Lo 1 o)== 250l 50~ 205 B350
Ny 520 25 =30 = 5 i=
N o1 (T bl (0)SB) s(1)
0% 10 20 30 K 10 20 30 ||(Z?:1 hi(z1(1))SB:)"s(t)]|
Time t(sec) Time t(sec) (48)
10 —Sliding controller (48) 3 —Sliding controller (48 . R
-_-_-g:fzn;ni";;gg;;ﬁ:ﬂe":igj} f -_-_-g}j:";niga;gg;g}:g'::f;j:n PDC integral sliding mode control schem&ake = 1,
£ 9, z ; ¢; = —1000, i = 1,2,---,8. By Corollary 1, the coefficient
fw 3 =4 1 matrices for the PDC integral sliding mode controller are
* 0 obtained as
= 10 20 30 ) 10 20 30 K3 = [ 58.4573 50.0312 5.1554 11.6981 326.4954 ],
Time t(sec) Time t(sec)
03 —Siding comoller ) 300 —Siing convoller (9) Ksp = [ 57.9005 49.5838 5.0237 11.4594 323.5178 |,
_ =~ ~Nominal controller (51) - qulnal comrollers(“sl)
o 02} 5x 10 [ Smonnle 69 200 5 e = [ 65.5225 55.8304 5.7554 13.0006 343.8131 |,
o) > 25 25 % 30 = [ 64.9000 55.3832 5.6204 12.7576 340.7738 ],
0
= [ 96.1546 84.5041 9.4160 22.2747 548.4739 ],
0 10 20 30 100 10 20 30
Time t(sec) Time (sec) = [ 94.8990 83.4823 9.1935 21.7344 541.3294 ]
Fig. 3. Time responses of the system (45) using the classical intsliging [

mode controller (48), classical nominal controller (51) antkgral sliding
mode controller (54)

103.2430 90.4962 9.9912 23.4546 554.8338]7
K38:[102.7955 89.6102 9.8341 23.0596 546.9059]

The sliding variable is calculated as

0.6 —8liding controller (50) 0.5
04 Sngcomerse | s(t) = — 4.3638x9(t) + 3.5418x4(t)
g ' - E t 8 8
=S s cuii - / S ha(wn (7)S(A; + Be S il (7)) Kss)a(r)dr
x - —Sliding controller . .
1 --zi:(:ni?lal co‘nlrltl:llleis(?Z) 0 i=1 1=1 (49)
= - = Sliding controller (54)
05 10 20 30 % 10 20 30 ) o
Time t(sec) Time t(sec) By (42), the PDC integral sliding mode controller can be
10 —Slidiljg controller (50) 3 —Slidin_g controller (50) 0 bta| n ed as
- =-Nominal controller (52) . - =-Nominal controller (52)
- ’\_Q - = Sliding controller (54) - 28 - - Sliding controller (54) 8
= 5 Q
E : £
s E u(t) = — 2035 (t) + > il (£) Kaiar(t)
0 0-6 < 0 s =l
_0'50 .
= 10 20 30 T 10 20 30 - 2(2 hi(z1(t))SB;) ™ s(t) (50)
Time t(sec) Time t(sec) i=1
0.3 —Sliding controller 150 —Sliding controller 8
02 O E:o;mnjal co‘mr:t:)lleE:(%;Z) 100 ---E:q}uéal co‘mr:(:)lle:rzjszz) _ 1 (Z?:l h/’L (-Tl (t))SB’L)TS(t)
X 1 iding controller = = Shiding controller . 8
B 2 —1 hi(21(t))SBi)s(t)]]
E _ T o~ - 1=y P i
s g 50| 7 TS A, - -
N3 > 20 25 w30 Utilizing the classical integral sliding mode control sofe
0 (47)-(48) and the PDC integral sliding mode control scheme
- initi iti =[x T
~0.1; 15 50 2 ~50; i 5 2 (49) _(50), under the initial conditiom(0) = [§ 0 0 0 0.25]",
Time t(sec) Time t(sec) the time responses of the resultant closed-loop system, and

sliding mode controller are shown in Fig. 3 and Fig. 4. It
shows that the resultant closed-loop system is asympligtica
mean square stable. It is noted that the simulation resylts b
the classical integral sliding mode control scheme and & P
integral sliding mode control scheme are similar, wher&as,
matrix inequalities in Theorem 1 and matrix inequalities
in Corollary 1 are needed to be checked to guarantee the
- 4.36383:2( ) +3.541824(1) existence o{‘ sliding mode. Therefore, if the matrig inedies
in Theorem 1 are solvable, the classical integral slidingleno
_/ Zh (7 control scheme is more desirable from the numerical aspect.
The above simulations validate the fact that the results in
By Theorem 2, the classical integral sliding mode controll¢his paper can be applied to T-S fuzzy stochastic descriptor

Fig. 4. Time responses of the system (45) using the PDC integrahglidi
mode controller (50), PDC nominal controller (52) and intégtaing mode
controller (54)

The sliding variable is given by

s(t) =

S(A; + B;Ky)x(r)dr (47)
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system that does not satisfy assumptions Al and A2. Although = [411256.8052 104806.1379 696.6064 7032.0596

the result in this paper is proposed for the system (46),nt ca —1895.2377], G3 = —1826.233,
be applied to the original system (45) in that the T-S fuzzy, = [411353.0760 104830.8839 696.9483 7034.7605
stochastic descriptor system (46) is an exact representafi —1893.7411], G4 = —1826.2316,

the system (45) in the compact $et The simulation results F; = [462626.9289 117925.0662 807.8164 8061.6496
show that the proposed sliding mode control schemes are also  —1895.2435], G5 = —2001.3824,

applicable to the original system (45). The method propasedFs = [462719.8338 117948.9530 808.1522 8064.2913
this paper uses the integral sliding mode control concedt [4 —1893.7346], Gg = —2001.3668,

and thus it is possible to ensure the system initially seldse F; = [407976.5748 103970.2153 691.8141 6988.0922
to the sliding surface and remains within a bounded region of ~ —1895.2402], G7 = —1814.4383, a = 0.1,

the surface for all subsequent time. Fg = [408069.7028 103994.1591 692.1507 6990.7395
In order to show the effect of the disturbane€t) on the —1893.7303], Gg = —1814.4232, S,, = 0.0928,
system performance, the classical nominal controller Sy =[—33.8185 —17.5846 — 0.1193 — 1.2028 — 168.6425]

By using the sliding mode control scheme (53) and (54),
u(t) = —2w3(t)as(t) + Kaa(?) 51 the initial conditionz(0) = [= 0.0 0 0.25]7, u(0) = 0, the
and the PDC nominal controller time responses of the resultant closed-loop system and the
8 sliding mode controller are show in Fig. 3 and Fig. 4. This
u(t) = —2x3(t)xs(t) + Z (1 (t)) K3z (t) (52) shows that the sliding mode controller (54) cannot stabilie
i—1 T-S fuzzy stochastic descriptor system (46), which vatidat

are also used to control the T-S fuzzy stochastic descripfgtement C3 in Subsection III-C. This means that the gidin
system (46). It is noted that when the disturbancg) is mode control method proposed in this manuscript has certain
absent, the nominal controllers (51) and (52) can stabilize 2dvantages over existing methods [QGao]. _
T-S fuzzy stochastic descriptor system (46). The simufatio Examplg 2Consider the nonlinear stochast!c descriptor sys-
results are shown in Fig. 3 and Fig. 4. It is seen that in tgM described by the T-S fuzzy model (2) with the following
presence of the disturbaneg?), the nominal controllers (51) dat@ 10
and (52) can no longer stabilize the system (46). This means E= [ 0 0 ] )
that the input disturbance degrades the system performance
Example 1 also shows that the proposed integral sliding mode . _ | =1 1 _ |0 _| 05 =05

_ . Al ) Bl ) ‘]1 )
controllers exhibit much better performance than the namin 0 1 0 0
controllers since the discontinuous term is added to rejet b 0 2 —05 05
bounded input disturbance. 2= | _go _1 |'B2=| |2 0 0

It should be noted that although the sliding mode contr%herw andb are tuning parameters. The membershin func-
method in [27] can be generalized to control the T-S fuz 9p )

_ 1+sin(zq(t)) _ 1—sin(z1(t))
stochastic descriptor system, when the matched distuebang > arehn (v, (1)) = 2 Il (1) = 2

. _and the matched disturbances = 0.05¢~t. For different
w(t) cannot be expressed as parameter uncertainty, the slidin ) o
. rs (a,b) with a € [-1,3] andb € [—1, 3], the solvability
mode control method [27] can not stabilize the T-S fuzz o . . -
. . - L . f the coefficient matrixK; using Theorem 1, coefficient
stochastic descriptor system (46), which coincides widtest

ment C3 in Subsection I1I-C. Infact, when the method in [Zflﬂgg:g:[é% ?’ ! 1:21 ’3;”3;”%;232:;? ?sacgnﬁgz?ﬁfnt
315 - ) .

's derived for a T-S fuzzy stochastic descriptor system, trr‘gsultshown in Fig. 5 which reveals that the Non-PDC integra

sliding variable becomes - . .
9 sliding mode control scheme is much less conservative than

s(t) = SyEx(t) — Sy Ex(0) + Syu(t) — S,u(0) the classical integral sliding mode control scheme and PDC
¢ integral sliding mode control scheme.
- Sm/ (A(h)x(7) + B(h)u(7)) dr (53) Whena =0, b = 3, the descriptor systeri, 4,) is not
Ot impulse free. Although the sliding mode control method in
- Su/ (F(h)z(7) + G(h)u(T)) dr [27] can be generalized to a T-S fuzzy descriptor system, as
0 pointed out in statements C3 and C4 in Subsection IlI-C, the
and the sliding mode controller is method is invalid for this example since it is required thedte

L s(b) descriptor subsystem is impulse free and the unknown distur
du(t) = (F(h)x(t) + G(h)u(t) —n(t)S, " |5(t)”> dt (54) bance can be expressed by parameter uncertaituyever,
, from Lemma 4, the parameter matrikis computed as
@) = BLEGEOE 4o+ S, BM)@, a > 0, 8 = S=[05 05]
Donas (STS.),
With the parameters in Example 1, it can be calculated t

ltlrthermore, the matrix inequalities in (10) in Theorem & ar

Fy = [466246.2973 118847.4115 813.1039 8110.1673 ound to be infeasible. Nevertheless, using Theorem 3 with
' 1895 '2390] el :'_2014 3961 ’ n = 0.1 and ¢; = ¢ = —100, the following coefficient
F, = [466338.3969 118871.0948 813.4386 8112.7965 matrices are obtained
—1893.7248], G = —2014.3766, Ky = [ —6.1012 —4.7596 |,



SUBMIT TO IEEE TRANSACTIONS ON CYBERNETICS 12

1 1
3 tt - : —x,
: 05 —*,0 0
2 ) 0 : —1/
0% 10 20 30 % 10 20 30
o) 1 % . Time t(sec) Time t(sec)
it Fig. 7. Time responses of the system (56) under the classitajral sliding
2323221220 mode controller (57)
O§ A A A
Q2282880200111
[ E LT E T ETEETEEE]
CEEERRERBRLRRY
[ ET T XL ETEETEEE] . . 3
1 ittt Example 3:Consider the T-S fuzzy model in the following
-1 0 1 2 3 fom
a 2
B(t) =Y hi (2(t) (As(t) + B; (u(t) + w(t))  (56)
Fig. 5. Solvability of coefficient matricies with Theorem(l), Corollary 1 i=1
and Theorem 3f)
where w(t) = 0.05sin(z1(¢)), the membership func-
2 02 tions are hy (x1(t)) = %(1+§ig(x1(t))),_h2 (a:l(t))_ =
0 0 1 (1 —sin(z1(t))), and the coefficient matrices are given as
= / S0 follows
~ —x, (0 ~ -1 1 10
4 _— 04 A= { 0o 02 |'Br=1]
4 5 10 08 5 10
Time t(sec) Time t(sec)
2 0 2
Fig. 6. Time responses of the system (2) under the Non-PD@ratsliding Ay = 02 —1 By = 1

mode controller (55)

It can be verified that the system (56) is unstable &mel
Ky = [ —15.9196 11.3776 | method in [30] is not applicable since the paid;, Z1152)
cannot be stabilised. This also verifies the statement C1 in
Subsection IlI-C.However, using the integral sliding mode

y, [ 7.5602 —0.2557 ] Y= [ 7.5625 —0.9032

—1.7573  10.2554 —3.3748  19.2265 | control schemes in this papet = | 1 1 ] is selected
The Non-PDC integral sliding mode controller can be come guarantee the nonsingularity 6f ., h; (z(t)) B;. The
puted as coefficient matrices in the sliding variable can be solved by
2 2 Theorems 1 and 3, Corollary 1. Since the classical integral
u(t) = Z hi(xl(t))KQi(Z hi(1 (8)Y;) "t (t) sliding mode control scheme is much easier to be implemented
i1 i1 than the Non-PDC integral sliding mode control scheme and
2 PDC integral sliding mode control scheme, only the classica
=23 hi(21(t)SB;) " s(t) (55) integral sliding mode control scheme is considered hermgJs
i=1 Theorem 1 withe = 1, it follows that
o (Zi hi(a () SB) (1)
NS e (0)SB) (0] Ky =] —1.1678 —0.6487 |

Using the Non-PDC integral sliding mode control scheme The classical integral sliding mode controller is obtaimesd
(55) with the initial conditionz(0) = [ 2 —3.8 ]", the
time responses of the resulting closed-loop system anthglid  ;;(t) = —1.1678, (¢) — 0.648725(¢) — 0.1 s(t) (57)
mode controller are shown in Fig. 6. They are asymptotically [[s(@)]]
mean square stablExample 2 shows that among the proposed
integral sliding mode control schemes, the classical naleg Under the initial conditionz(0) = [ 0.9 0.8 ]T, the time
sliding mode control scheme is the most conservative and tfesponses of the resultant closed-loop system using tksi<la
Non-PDC integral sliding mode control scheme is the leasal integral sliding mode controller are shown in Fig. 7. The
conservative. It also shows that when one of the subsystesimulation results show that the resultant closed-loopesys
of the T-S fuzzy descriptor system is impulse free and the asymptotically mean square stabfxample 3 implies that
unknown disturbace is matched, as stated in statements t@8 proposed integral sliding mode control method does not
and C4 in Subsection I1I-C, the sliding mode control method require the assumption thatl;, 21:£52) and (A,, £1552) are
[27] cannot be generalized to the T-S fuzzy descriptor systestabilisable. This coincides with statement C1 in Subseacti
but the method proposed in this paper can be used. l-C.
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V. CONCLUSION

This paper has utilized integral sliding mode techniques
prescribe robust stability of T-S fuzzy stochastic dedorip

systems. Two restrictive assumptions previously empldged
the sliding mode control of stochastic and T-S fuzzy systems

13

[20] X. -G. Yan, S. K. Spurgeon, and C. Edwards, “Memorylesatict
output feedback sliding mode control for nonlinear systenth delayed
disturbances,JEEE Trans. Autom. Contrplo. 59, no. 7, pp. 1906-1912,
Jul. 2014.

[21] C. Han, G. Zhang, L. Wu, and Q. Zeng, “Sliding mode contbIT-S
fuzzy descriptor systems with time-delay,” Franklin Inst, vol. 349, no.
4, pp. 1430-1444, May. 2012.

to

have been removed by the proposed classical integral glidig2] M. Kchaou, H. Gassara, A. El-Hajjaji, and A. Toumi, “Diativity-

mode control scheme and the Non-PDC integral sliding mode
control scheme. In fact, the proposed sliding mode control

based integral sliding-mode control for a class of Takagi€do fuzzy
singular systems with time-varying delayT Control Theory App).vol.
8, no. 17, pp. 2045-2054, Nov. 2014.

scheme can be generalized to the more general case[28)5J. Li, Q. Zhang, X. Yan, and S.K. Spurgeon, “Integradsiy mode

explained in Remark 5. Finally, a few examples including
an inverted pendulum model were simulated to support the

theoretical results obtained in this paper.
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