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Summary14

The rise of antibiotic resistance threatens modern medicine; to combat it new diagnos-15

tic methods are required. Sequencing the whole genome of a pathogen offers the potential16

to accurately determine which antibiotics will be effective to treat a patient. A key limi-17

tation of this approach is that it cannot classify rare or previously unseen mutations. Here18

we demonstrate that alchemical free energy methods, a well-established class of methods19

from computational chemistry, can successfully predict whether mutations in Staphylococ-20

cus aureus dihydrofolate reductase confer resistance to trimethoprim. We also show that21

the method is quantitively accurate by calculating how much the most common resistance-22

conferring mutation, F99Y, reduces the binding free energy of trimethoprim and compar-23

ing predicted and experimentally-measured minimum inhibitory concentrations for seven24

different mutations. Finally, by considering up to 32 free energy calculations for each mu-25

tation, we estimate its specificity and sensitivity. [143 words]26

INTRODUCTION27

Resistance of bacteria to the antibiotics used to treat them is a substantial and growing global28

threat to human health (Davies, 2013; World Economic Forum, 2013). Measures to counter29

the emergence of antibiotic resistance are restricted by the limitations of conventional diagnos-30

tic microbiology. This predominantly still relies on culture-based, phenotypic identification of31

bacteria followed by growth in the presence of different antibiotic concentrations to detect re-32

sistance. The process is labour intensive, takes days or even weeks depending on the growth33

rate of the organism in question, is expensive and open to subjective interpretation. Genetic ap-34

proaches, particularly those based on sequencing the entire genome of a pathogen (Didelot et al.,35

2012; Köser et al., 2014), have the potential to be faster and cheaper. Inferring the phenotype36

of an infecting pathogen from whole-genome sequence data by considering known resistance37

genes or mutations has already been shown to be reasonably accurate for a range of pathogens38

(Gordon et al., 2014; Walker et al., 2015; Pankhurst et al., 2016; Bradley et al., 2015) and has39

recently been implemented in the U.K. for the routine diagnosis of M. tuberculosis infections40
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(Walker et al., 2017). New mutations, however, continually arise and a genetics-based clinical41

microbiology service therefore also needs to be able to predict the effect of novel mutations. In42

this paper we demonstrate that molecular-based computational chemistry methods can predict43

whether individual protein mutations confer resistance to an antibiotic.44

As proof of principle we have investigated the effect of mutations to Staphylococcus au-45

reus dihydrofolate reductase (DHFR) on the binding of the antibiotic trimethoprim (TMP, Fig.46

1A). S. aureus is a clinically important gram-positive pathogen and has been the focus of much47

research due to the development of methicillin- and vancomycin-resistant strains, known as48

MRSA and VRSA, respectively. TMP, usually administered as co-trimoxazole (trimethoprim-49

sulfamethoxazole), has a long history of treating S. aureus infections (Tong et al., 2015) in-50

cluding common skin and soft tissue infections caused by MRSA strains (Nurjadi et al., 2014).51

TMP competes with the natural substrate, dihydrofolic acid (DHA, Fig. 1A), for binding to52

DHFR, thereby preventing DHFR catalyzing the conversion of DHA to tetrahydrofolic acid.53

Since tetrahydrofolate is essential for the biosynthesis of thymidylate, purine nucleotides, and54

some amino acids, arresting the production of DHA inhibits bacterial growth. Resistance to55

TMP in S. aureus can either arise from mutations in the chromosomal gene dfrB, or from the56

introduction of other naturally-resistant genes (dfrA, dfrG and dfrK) via plasmids (Lowy, 2003;57

Nurjadi et al., 2014). Here we focus on seven mutations in the dfrB chromosomal gene. We have58

chosen this gene for five reasons: (i) a series of resistance-conferring and no-effect mutations59

have been identified via whole-genome sequencing of isolates from patient infections (Gordon60

et al., 2014), as well as by more traditional methods, (ii) the most common resistance-conferring61

mutation is a very small chemical change (Phe ! Tyr) and this is therefore a challenging test62

for any predictive approach, (iii) DHFR is a small, soluble protein that has been well-studied,63

(iv) several experimental structures exist of S. aureus DHFR bound to TMP (Fig. 1B) (Dale64

et al., 1997; Oefner et al., 2009; Heaslet et al., 2009) and (v) there is published quantitative65

biophysical data on how the most common resistant-conferring mutation in S. aureus affects66

the binding of TMP to DHFR (Pires et al., 2015; Oefner et al., 2009; Dale et al., 1997; Frey67

et al., 2010, 2012). Since this is a classification problem we emphasise the importance of hav-68

ing negative controls (that is, mutations that are known to have no effect). This underscores the69

vital importance of clinical whole genome sequencing studies as these naturally identify large70
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numbers of such mutations.71

F123L

F99Y
L41F

L21V A135T

I83V
V76A

NADPH

Trimethoprim

A

dihydrofolic acid (DHA)

trimethoprim (TMP) B

Figure 1: Seven mutations in S. aureus dihydrofolate reductase (DHFR) were chosen from a
whole genome sequencing study of clinical isolates (Gordon et al., 2014) to test our approach
(A) Trimethoprim (TMP) competes with the natural substrate, dihydrofolic acid (DHA), for
binding to DHFR, thereby inhibiting the action of this essential protein. (B) A structure of
chromosomal S. aureus DHFR (dfrB) bound with TMP and NADPH, as resolved by X-ray
crystallography (Oefner et al., 2009). Three of the mutations, colored red (F99Y, F99Y/L21V
& L41F), were previously shown to confer resistance to TMP, whilst the remaining four, colored
blue (F123L, A135T, V76A, I83V), remained susceptible to the action of the antibiotic (Gordon
et al., 2014). This classification was confirmed by independent measurement of TMP minimum
inhibitory concentrations for each mutant (Table S1 & S2). These colors are used throughout.

Our hypothesis is that chromosomal mutations in an open reading frame will confer resis-72

tance if the mutation causes the antibiotic molecule to bind less well to the encoded protein,73

whilst, crucially, not significantly affecting how well the natural substrate binds. This is only74

one of several mechanisms by which bacteria can evolve resistance to antibiotics (Blair et al.,75

2014). Other mechanisms include the introduction, by horizontal gene transfer, of genes en-76

coding either proteins that degrade antibiotics, for example b -lactamases which are common77

in gram-negative bacteria, or, as mentioned above, naturally resistant versions of chromosomal78

proteins. The over-expression of efflux pumps can reduce the concentration of the antibiotic79

within the bacterium to below effective levels or the cell well can simply be impenetrable to80
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most antibiotics, the most notable example of this being M. tuberculosis.81

The binding free energy (DG) is the thermodynamic quantity that captures how strongly a82

small molecule, like an antibiotic, is bound to a protein. Our hypothesis therefore distills down83

to calculating how a specific mutation affects the binding free energies, relative to the wildtype84

(wt), of both TMP and DHA85

DDGT MP = DGmutant
TMP �DGwt

TMP

DDGDHA = DGmutant
DHA �DGwt

DHA

Whilst it would be trivial for a mutation to disrupt the binding of the antibiotic (i.e. DGmutant
TMP >86

DGwt
TMP and so DDGTMP > 0), it is difficult for a mutation to simultaneously not disrupt the bind-87

ing of the natural substrate (i.e. DGmutant
DHA ⇠ DGwt

DHA leading to DDGDHA ⇠ 0). For a mutation to88

give rise to a viable strain of S. aureus that is resistant to TMP a first estimate of a binding free-89

energy criterion is therefore is that DDGTMP > 0 and DDGDHA ⇠ 0. By making some simple90

assumptions and applying kinetic theory, we will relate these changes in binding free energies to91

the minimum inhibitory concentrations (MICs) of the antibiotics. This is the quantity measured92

by clinical microbiology laboratories, and we are able, through MICs distributions published93

by the European Committee on Antimicrobial Susceptibility Testing (EUCAST), derive more94

sophisticated criteria based on clinical data.95

To calculate how the binding free energy of either the antibiotic or the natural substrate96

changes upon introduction of the mutation we will apply Hamiltonian-exchange thermody-97

namic integration, an alchemical free energy method (Fowler et al., 2005; Gilson and Zhou,98

2007; Fowler et al., 2007; Michel et al., 2010; Chodera et al., 2011; Gapsys et al., 2015a; Perez99

et al., 2016; Abel et al., 2017). Alchemical free energy methods are derived from classical sta-100

tistical mechanics and calculate the cost of perturbing a chemical moiety, such as an amino acid101

sidechain, into another using a series of classical molecular dynamics (MD) simulations; hence102

they are dubbed ‘alchemical’. There are no free parameters, and so in theory are exact, although103

in practice there are always likely to be errors due to imperfections in the parametrisation of the104

molecules and the incomplete exploration of the dynamical phase space of the system during105
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the simulations. We will not consider here other methods of calculating or estimating binding106

free energies, such as computational docking, ‘endpoint’ methods or protein design or stability107

algorithms, since they are unlikely, in our opinion, to capture the subtlety of the molecular per-108

turbations. Since each free energy calculated by an alchemical free energy method requires a109

number of molecular dynamics simulations, this approach potentially requires large amounts of110

computational resource; however, given the continued increase in computing speeds this class111

of methods is coming of age and is beginning to find application (Wang et al., 2015; Samsudin112

et al., 2016; Gapsys et al., 2016; Lenselink et al., 2016).113

Traditionally, a single calculation would be run for each perturbation (here a protein mu-114

tation) and the error in the free energy estimated by, e.g. dividing the simulation trajectories115

into ‘independent’ sections by calculating a correlation time. Since this is a clinically impor-116

tant problem where the accuracy of the classification, and potentially also minimising the time117

taken to return a prediction, are essential, we shall instead run a large ensemble of relatively-118

short thermodynamic integration calculations for each mutation, simplifying the estimation of119

confidence intervals, as well as, subject to having sufficient computational resource, potentially120

reducing the time to solution. In the second half of the paper we will estimate the sensitivity121

and specificity of our method.122
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RESULTS123

Clinically a mutation is described as resistant if the minimum concentration of an antibiotic124

that inhibits the growth of the bacteria is greater than a reference concentration. According to125

the European Committee on Antimicrobial Susceptibility Testing (EUCAST, 2016), S. aureus126

is defined as not susceptible to TMP (i.e. resistant) if its minimum inhibitory concentration127

(MIC) is � 4 mg/l. Since TMP is a competitive inhibitor of DHFR and, assuming Michaelis-128

Menten enzyme kinetics (Price et al., 2009), then as shown in the Supplemental Information, if129

we assume that the mutation only affects the dissociation equilibrium constant of the antibiotic130

(Ki) we can derive a simple binding free-energy based resistance criterion,131

DDGTMP � 0.8 kcal/mol. (R1)

132

This assumes that the enzyme rate constant and the concentrations of the enzyme and the sub-133

strate are all unaffected by the mutation. Alternatively, if we allow the protein mutation to affect134

the dissociation constants of both the inhibitor and the natural substrate, then we find a second135

resistance criterion,136

DDGTMP �DDGDHA � 0.8 kcal/mol. (R2)

137

This is a more nuanced view of how resistance can arise: resistance is conferred if a mutation138

increases how well the natural substrate binds (DDGDHA < 0), as well as decreasing how well139

the antibiotic binds (DDGTMP > 0). It is likely, however, that large changes in the magnitude of140

DDGDHA will affect the action and turnover rate of the enzyme and so, in practice, there will be141

a limit on how much a mutation can affect the binding of the natural substrate. Applying either142

of the above criteria generates a prediction of whether a mutation confers resistance or not and143

one of the aims of this paper is to assess if criterion R2 is more accurate and precise than R1. For144

either resistance criterion to classify a mutation as conferring resistance (or having no effect) the145

relevant free energy in R1 or R2 must be lie demonstrably one side of the 0.8 kcal/mol threshold146
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or the other; if the confidence limits bracket the threshold, then either criterion must return a147

classification of ‘unknown’. This is a small departure from most culture-based microbiology148

tests which simply return a binary ‘resistant’ or ‘susceptible’ classification.149

We chose a series of mutations in the chromosomal gene dhfB identified by whole-genome150

sequencing of S. aureus clinical infections from two hospitals in the UK (Gordon et al., 2014).151

As expected, by far the most common naturally occurring TMP resistance-conferring muta-152

tion in S. aureus DHFR was F99Y (Gordon et al., 2014; Dale et al., 1997). Several studies153

have shown that this common mutation reduces the binding free energy of TMP to S. aureus154

DHFR by 2.0 ± 0.2 kcal/mol (Dale et al., 1997; Oefner et al., 2009; Frey et al., 2010, 2012;155

Pires et al., 2015), equivalent to a 24 fold increase in the dissociation constant, Ki. This is a156

large effect given the mutation only replaces a hydrogen by a hydroxyl. Two further resistance-157

conferring mutations were chosen: L41F, which has also been previously observed (Vickers158

et al., 2009), and the double mutation F99Y/L21V, which has not – the related triple mutation159

F99Y/L21V/N60I was, however, identified as resistant 20 years ago (Dale et al., 1997). Mu-160

tating two residues simultaneously is likely to lead to convergence issues, and we therefore de-161

composed the double F99Y/L21V mutation into two separate mutations, F99Y and Y99L21V,162

summing the free energies to obtain the result for the double mutation (Klimovich et al., 2015).163

Although it has not yet been observed in isolation, we also calculated the effect of the iso-164

lated L21V mutation, allowing us to test the additivity of these mutations. Both the L41F and165

F99Y/L21V mutations are rare, only being observed once each among nearly 1,000 UK clin-166

ical isolates (Gordon et al., 2014). Any classification method must be able to distinguish true167

positives from true negatives, and therefore we also studied the effect of four mutations in S.168

aureus DHFR that were each detected multiple times in the isolate collection and had no effect169

on the action of TMP based on the results of conventional drug susceptibility testing. These170

were F123L, A135T, V76A and I83V (Fig. 1B) and are negative controls.171

To confirm the phenotype of these seven mutations and to provide a consistent quantitative172

dataset, a subset of the clinical isolates that were sequenced as part of the previous study (Gor-173

don et al., 2014) were retrieved and re-tested as described in the Methods. The TMP MICs were174

determined for each patient isolate (Table S1); up to five independent measurements were ob-175

tained, depending on how many clinical isolates of that mutation existed. The values obtained176
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agree well with both MIC values recorded by Public Health England during routine testing (Ta-177

ble S2) and those previously reported in the literature (Pires et al., 2015; Dale et al., 1997; Frey178

et al., 2010, 2012; Vickers et al., 2009).179

Alchemical free energy calculations accurately predict which mutations180

confer resistance181

Using our chosen alchemical free method (see Methods) we calculated how the free energy of182

binding of both TMP (DDGTMP) and DHA (DDGDHA) varies upon introducing each of the seven183

clinically-observed mutations. Thirty two values of DDGTMP and DDGDHA were calculated for184

each mutation, making 512 DDG values in total. Since each pair of (DDGTMP,DDGDHA) values185

necessitated the calculation of 13 different DG values (Fig. S5), that makes 3,328 separate free186

energies. Since they originate from separate sets of simulations, each DDG value is assumed187

to be independent, and therefore it is straightforward to examine how the values of DDGTMP188

and DDGDHA converge as the number of calculations, n, increases (Fig. 2). As expected, the189

uncertainty in the free energy is a maximum around n = 3 and then falls as the number of190

calculations is increased. The mutations with the largest confidence intervals are also those191

which perturb the largest number of atoms (F99Y/L21V, L41F and F123L).192

The above analysis assumes that each DDG calculation is itself converged; the standard way193

to test this would be to compare the forward and reverse cumulative averages of each DDG value194

(Yang et al., 2004; Klimovich et al., 2015). This is not possible here due to the large numbers195

of DDG values; instead we demonstrate that increasing or decreasing the proportion of each196

simulation that is discarded does not significantly alter either the calculated numerical values,197

or the resulting classification (Fig. S1 & S2).198

Whilst our predicted value of DDGTMP for the common F99Y mutation (1.5 ± 0.2 kcal/mol)199

Fig. 3A, Table S3) does not agree within error with the mean value (2.0 ± 0.2 kcal/mol) of200

several previously published isothermal titration calorimetry (ITC) measurements (Pires et al.,201

2015; Oefner et al., 2009; Dale et al., 1997; Frey et al., 2010, 2012), there is considerable over-202

lap between the predicted and experimental values. Furthermore, all three known resistance-203

conferring mutations (F99Y, F99Y/L21V and L41F) are predicted to reduce how well TMP204
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Figure 2: The calculated values for how the binding free energies change upon mutation (DDG)
converge as the number of independent thermodynamic integration calculations is increased.
Thirty-two separate calculations of DDGTMP and DDGDHA were run for each of the (A) three
resistance-conferring and (B) four susceptible mutation (Table S3, S4). For each mutation, the
variation in the mean DDG value and its 95% confidence limits (calculated using the appropriate
t-statistic) are shown as a function of the number of calculations, n. The inset graphs show how
the confidence limits vary with n and all have the same scale. The initial 20% of each simulation
has been discarded to avoid equilibration effects.
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binds to DHFR (DDGTMP> 0, Fig. 3B, Table S3). Since these mutations were predicted to,205

on average, increase DDGTMP by significantly more than 0.8 kcal/mol, they are classified as206

conferring resistance to TMP by criterion R1. Of the four negative control mutations, three are207

predicted to have ‘no effect’ on the action of TMP, although the 0.8 kcal/mol threshold is just208

outside the confidence limits for the F123L mutation. Since the 95% confidence limits for the209

remaining I83V mutation cross the threshold, this mutation is classified as having an ‘unknown’210

phenotype.211

But how do the mutations affect the binding of the natural substrate, DHA? In contrast to212

the binding of TMP, all the mutations, with the exception of L41F and I83V, are predicted to213

either have no effect on the binding of DHA, or to increase how strongly DHA binds to DHFR214

(Fig. 3C, Table S4). By considering the mean values for all four no-effect mutants, we find they215

are not predicted to change the magnitude of DDGDHA by more than 0.5 kcal/mol, in line with216

our expectation that DDGDHA⇠ 0.217

Plotting the mean values of DDGDHA against DDGTMP (Fig. 4) allows us to classify the218

seven mutations using the second resistance criterion (R2). This condition predicts that all219

three known resistance-conferring mutations confer resistance to TMP, whilst of the four neg-220

ative controls, three (V76A, A135T and I83V) are correctly predicted to have no effect on the221

action of TMP. Since the confidence limits of the remaining F123L mutation straddle the 0.8222

kcal/mol threshold, it is predicted to have an ‘unknown’ effect. If the natural substrate binds223

more strongly to the enzyme (DDGDHA< 0), one could hypothesise that this should improve224

the turnover rate, if binding is the rate-limiting step. We speculate that L41F and I83V (espe-225

cially the former) induce a fitness cost, since they reduce how well DHA binds to DHFR, whilst226

V76A, F99Y and particularly F99Y/L21V, bring a fitness benefit, with the others have no effect227

on the fitness of the enzyme. Since the free energies for the L21V and Y99L21V mutations228

(Table S3 & S4) are identical, to within error, we conclude that the effects of the F99Y and229

L21V mutations on the binding of TMP or DHA in the double F99Y/L21V mutant are additive230

.231
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Figure 3: Thermodynamic integration correctly calculates how much the F99Y mutation re-
duces the TMP binding free energy and the R1 resistance criterion correctly classifies 6 of
the 7 clinical mutations. (A) Whilst the predicted change in the binding free energy of TMP
(DDGTMP) due to the F99Y mutation does not agree with previously published experimental
data, the difference is small. (B) Applying resistance criterion R1 correctly classifies the F99Y,
F99Y/L21V and L41F mutations as conferring resistance to TMP. The mutation L21V is also
predicted to confer resistance. Of the four mutations known to have no effect on the action of
TMP, F123L, A135T and V76A are correctly classified as not conferring resistance and I83V is
classified as having an unknown effect. The fold change in the dissociation equilibrium constant
(Ki) is also shown. Each value of DDG is the mean of 32 independent calculations (Tables S3,
S4), and the bars represent 95% confidence limits, using the appropriate t-statistic. The initial
20% of each simulation has been discarded to avoid equilibration effects. Discarding 10% or
50% of the data does not alter these conclusions (Fig. S1 & S2 ). (C) The same calculations
were repeated, but with dihydrofolic acid (DHA) bound. With the exception of L41F and I83V,
no mutation decreases how well DHA binds to DHFR, to within error.
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Predicting minimum inhibitory concentrations.232

A stronger test of our approach is to compare against quantitative, rather than qualitative, data233

for all the mutations tested, rather than just F99Y. In the absence of quantitative binding data234

for the other mutations (as measured by e.g. ITC), we can instead predict the MIC for each235

mutation using Equation S2 and then compare it to the experimentally observed mean MICs236

(Table S1). As described in the Methods, the TMP MICs were measured by bioMérieux E-237

test. These have a roughly-doubling ladder of antibiotic concentrations going from 0.002 to 32238

mg/L, a range of 16,000 fold. At first glance, there is a good correlation between the predicted239

and observed MICs (Fig. 5). This is, however, not a thorough test since (i) the experimental240

values have an upper limit of > 32 mg/ml and so we cannot distinguish between the different241

resistance-conferring mutations and (ii) there are no mutations that confer an intermediate level242

of resistance. Despite this, five of the seven predicted MICs can be said to be in ‘essential243

agreement’, since they are within a single doubling dilution (within the 2⇥ lines) of the refer-244

ence method value (ISO, 2007) and, overall, it is promising that it appears possible to predict245

MICs to within a factor of 2-4.246

We conclude that alchemical free energy methods are not only able to distinguish resistance-247

conferring mutations from susceptible mutations but also, by comparing to ITC data and MIC248

data, can make quantitatively accurate predictions, although more work is required before it249

will be possible to confirm that one can formally relate DDG values to MICs. This proof of250

principle also study suggests that a good level of confidence in the phenotype of a mutation can251

be obtained by only predicting the effect on the binding of the antibiotic (i.e. criterion R1), in252

this case trimethoprim.253

Classifying mutations using an alchemical free energy method is sensitive254

and specific.255

Given predictions made by this type of approach could, one day, be used to drive clinical deci-256

sion making, it is essential to establish the sensitivity and specificity of the method. First, let us257

assume that our sets of 32 pairs of DDGT MP and DDGDHA values per mutation are representative.258

The classification performance of the method can then be modelled by repeatedly drawing (with259
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for the F99YL21V mutation is very large (⇠ 2,400 mg/l) and therefore cannot be plotted in this
range. Clinically, a S. aureus DHFR mutation is classified as resistant if the TMP MIC � 4 mg/l
(EUCAST, 2016); this region is shaded light grey. To aid interpretation, lines corresponding to
a perfect correlation, and within factors of 2⇥ and 4⇥ are drawn. Since our calculations only
yield a fold increase in the MIC, all the predicted MIC values are assumed to be relative to
a wildtype (geometric mean) MIC of 1.1 mg/l (EUCAST, 2016). The mutations are colored
according to the same scheme as Fig. 1.
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replacement) samples containing n values of DDGT MP and n values of DDGDHA and applying260

either resistance criterion to produce a classification. We repeated this bootstrapping approach261

10,000 times at each value of 2  n  32 and a summary of the results at five distinct values of262

n 2 {3,5,10,16,32} is shown in Fig. 6 (see also Fig. S4). Interestingly, even at small values of263

n, the method is unlikely to return an incorrect categorical prediction – the highest false cate-264

gorisation rate occurs when applying the R1 resistance criterion to the I83V mutation at n = 3,265

and even then our analysis suggests the method would have incorrectly classified this mutation266

as conferring resistance only 2.5 % of the time with an ‘unknown’ result being returned in 91%267

of cases. We conclude that the method is robust in the sense that once n is large enough for it to268

return a definite categorisation it is highly likely to be correct.269

The performance of a binary classification process is usually assessed by considering the270

true positive and true negative rates of detection, often referred to as the sensitivity and speci-271

ficity, respectively. These are given in Table 1. Since our approach gives a ternary classification272

(‘unknown’ in addition to ‘resistant’ and ‘susceptible’), there are two ways one can define the273

sensitivity and specificity. The difference rises from whether one includes the uncharacterised274

cases in the numbers of false positives and false negatives, or whether these cases can be ex-275

cluded, since the method has (correctly) not attempted a definitive classification. If we first276

consider the former, more conservative definition, then the sensitivities / specificities are rela-277

tively low at small values of n and increase with n, achieving 99.7 / 61.3% for the R1 resistance278

criterion and 78.6 / 72.8% for the R2 criterion at n = 10 before reaching 100.0 / 77.9% and 84.0279

/ 91.0% at n = 32, respectively (Table 1). However, the proportion of uncharacterised cases fall280

dramatically from 37% (55%) for the first (second) resistance criterion at n = 3, to 11% (13%)281

at n = 32. If all these cases are excluded then all the sensitivities and specificities are � 98%,282

suggesting that (i) the increase in the conservative estimates of the sensitivities and specificities283

is entirely driven by the decrease in the proportion of uncharacterised cases and (ii) our previ-284

ous observation that the method rarely incorrectly classifies a mutation is correct. We conclude285

that the main effect of increasing the number of free energy calculations used in a prediction286

is increasing the likelihood that a definite classification will be made. We cannot, though, con-287

clude which resistance criterion is ‘better’ since both the R1 and R2 resistance criteria struggle288

to classify two mutations each (F123L & I83V and F123L & L41F, respectively), even at high289
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values of n. Difficulties in classifying a mutation are due to a combination of where it hap-290

pens to fall relative to the two free energy thresholds on the (DDGT MP,DDGDHA) plane (Fig.291

4, S3) and the variability between individual free energy calculations, which is related to the292

magnitude of the perturbation. The performance of either criteria therefore critically depends293

on which mutations have been selected to make up a test-set and, since we have only studied294

seven mutations, we cannot yet conclude which is preferable. Allowing a mutation to affect the295

binding of the natural substrate as well as the antibiotic is more elegant and hence one would296

expect the R2 resistance criterion to be more accurate, but it also requires 13
8 ⇥ the number of297

free energy calculations (Fig. S5).298

One final possibility is to use the classifications from both criteria to make an ensemble299

prediction. The cases where both resistance criteria agree are trivial; the key question is how to300

classify mixed classifications e.g. RU. Here we assume that a definitive classification (‘resistant’301

or ‘susceptible’) will overrule any ‘unknown’ classification and ‘resistant’ will overrule ‘sus-302

ceptible’. Hence if the results of applying the R1 and R2 resistance criteria can be represented303

as two letters, we shall define our ensemble rules for predicting resistance, susceptibility or un-304

known phenotypes as [RR,RU,UR,RS,SR], [SS,SU,US] and [UU], respectively. This ensemble305

method improves the classification performance, as measured by sensitivities and specificities306

(Table 1), for these seven mutations at least. It is, however, slightly unsatisfying since it weak-307

ens the link between the effect of the mutation on how well the antibiotic binds to the protein308

and the effectiveness of the drug.309
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Figure 6: Predicting whether a mutation confers resistance is accurate and robust. The data
in this figure were calculated by sampling-with-replacement and classifying 10,000 sets of n
values of DDGT MP and n values of DDGDHA for n 2 {3,5,10,16,32} A classification is then
made from each bootstrapped sample of free energies, and the results shown here as a function
of n, the number of measurements in each sample, depending on whether the (A) first or (B)
second resistance criterion was applied. (C) The results of applying both criteria and taking a
consensus is also shown. See Fig. S4. How well the R1 & R2 criteria classify each mutation
can be understood by considering the location and relative variations of each mutation on the
DDGDHA versus DDGT MP plane. This is shown in Fig. 4 for n = 32 and examples of how it
varies with n are shown in Fig. S3.
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(a) Resistance criterion R1. DDGTMP � 0.8 kcal/mol

all excluding uncharacterised

n sensitivity specificity sensitivity specificity uncharacterised

3 70.3 % 53.8 % 100.0 % 98.5 % 37.5 %

5 90.8 % 57.9 % 100.0 % 99.1 % 25.4 %

10 99.7 % 61.3 % 100.0 % 99.7 % 19.4 %

16 100.0 % 66.6 % 100.0 % 99.9 % 16.7 %

32 100.0 % 77.9 % 100.0 % 100.0 % 11.1 %

(b) Resistance criterion R2. DDGTMP +DDGDHA � 0.8 kcal/mol

all excluding uncharacterised

n sensitivity specificity sensitivity specificity uncharacterised

3 60.4 % 29.4 % 99.6 % 99.2 % 54.9 %

5 75.1 % 46.7 % 99.8 % 99.9 % 39.1 %

10 78.6 % 72.8 % 99.9 % 100.0 % 24.2 %

16 80.3 % 82.7 % 100.0 % 100.0 % 18.5 %

32 84.0 % 91.0 % 100.0 % 100.0 % 12.5 %

(c) Consensus. Taking (R1,R2) then: R=(RR,RU,UR), S=(SS,SU,US), U=UU

all excluding uncharacterised

n sensitivity specificity sensitivity specificity uncharacterised

3 82.3 % 59.3 % 99.8 % 98.4 % 28.6 %

5 96.8 % 68.0 % 99.9 % 99.2 % 17.3 %

10 100.0 % 79.5 % 100.0 % 99.8 % 10.2 %

16 100.0 % 86.8 % 100.0 % 99.9 % 6.6 %

32 100.0 % 94.3 % 100.0 % 100.0 % 2.8 %

Table 1: The expected proportion of classifications which would be returned with an ‘unknown’
phenotype decreases as the number of calculations, n, increases. The resulting sensitivities and
specificities also increase with n. Two sets are given; the latter excludes all classifications
with an unknown phenotype. All sensitivities and specificities are estimated by creating 10,000
samples of n values of DDGTMP and n values of DDGDHA by drawing-with-replacement from the
larger set of 32 calculations. Results are given for the (a) R1 and (b) R2 resistance criteria. (c)
Applying a consensus where any definitive ‘resistance’ or ‘susceptible’ classification overrules
any ‘unknown’ classification is optimal.
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DISCUSSION310

We have shown that alchemical free energy methods can predict whether mutations in S. aureus311

DHFR confer resistance or not to the antibiotic trimethoprim. This paves the way for the intro-312

duction of such structural-based predictive methods into a genetics-based clinical microbiology313

service (Didelot et al., 2012; Köser et al., 2014) – allowing novel or insufficiently-characterised314

mutations to be assessed, thereby mitigating one of the key weaknesses of genetics-based clini-315

cal microbiology. The potential benefits of transitioning from laboratory- to genetics-based mi-316

crobiology in the clinical setting are large: a reduction in the time for drug susceptibility testing317

(especially for slow-growing pathogens such as Mycobacterium tuberculosis), automatic epi-318

demiological monitoring of the dispersal of specific resistance mechanisms and ever-decreasing319

cost. The switch to a genetics-based clinical microbiology will ultimately lead to increased pre-320

cision in antibiotic prescribing and reduced selection for antibiotic resistance. The clinical tran-321

sition has just begun: in early 2017 Public Health England adopted whole-genome sequencing322

for routine drug susceptibility testing for M. tuberculosis infections (Walker et al., 2017) and323

other countries look likely to follow suit.324

Establishing the accuracy and reproducibility of any predictive method is essential, espe-325

cially if it could ultimately drive decisions in a clinical setting. We emphasise the vital im-326

portance of (i) having negative controls, which here was enabled by a previous clinical whole-327

genome sequencing (WGS) study (Gordon et al., 2014), (ii) running multiple repeats, which328

has the additional benefit of simplifying the estimation of errors (Coveney and Wan, 2016), and329

(iii) systematically assessing the sensitivity and specificity of any method.330

Ultimately, for predictions made by a computational method such as ours to form part of331

an antimicrobial diagnostic workflow, it must satisfy the same standards as any new lab-based332

diagnostic method (ISO, 2007; U.S. Department of Health and Human Services Food and Drug333

Administration, 2009). The key metrics used to assess a new method are the major discrepancy334

(MD) rate (the proportion of cases where the reference method predicts the infection is sensi-335

tive to an antibiotic but the new method predicts it is resistant) and the very major discrepancy336

(VMD) rate (which is the proportion of cases the reference method predicts the infection is337

resistant but the new method predicts it is sensitive). For a diagnostic test to be approved by338
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the International Standards Organization, both the MD and VMD < 3%. As noted earlier, our339

method very rarely produces an incorrect definitive classification, and hence if ’unknown’ re-340

sults can be excluded, our method, based on the results in this paper, satisfies these criteria. For341

example, if we take a ‘worst’ case and consider only n = 3 then the VMD and MD for the first342

resistance criterion are 0.0 % & 1.6 %, respectively, whilst for the second resistance criterion343

the VMD and MD are 0.4 % & 0.8%. In making this comparison, we are not claiming that this344

method is sufficiently accurate for use in a clinical microbiology workflow for diagnosing an-345

tibiotic resistant infections – clearly many more mutations and proteins need to be tested – but346

rather, in combination with the sensitivity and specificity analysis, it does show that this method347

has the potential to predict the effect of novel and rare mutations on the action of antibiotics.348

That the very major discrepancy rate is generally low but the proportion of classifications349

that are returned with an ‘unknown’ phenotype falls as n, the number of free energy calculations350

used to make a prediction, increases, suggests that a sensible way of applying this method would351

be to initially run a small number of free energy calculations (say n = 5) and try classifying the352

effect of the mutation. If a definitive result is returned, our analysis suggests that it is probably353

correct and will not be altered by adding more data. Alternatively, if the method cannot classify354

the effect of the mutation, then one can run additional free energy calculations until a definitive355

’resistant’ or ’no effect’ classification can be made. In this way, some mutations would be356

classified very quickly, and others, like F123L or L41F, would take longer, as one would expect357

given the larger number of atoms being perturbed by the protein mutation.358

Our approach has several weaknesses. Firstly, it assumes we know at a molecular level how359

an antibiotic works, specifically that it is a competitive inhibitor of an essential gene and it is360

mutations in that gene that we wish to examine; this is often, but not always, true. Secondly,361

it requires a high resolution experimental structure of the relevant bacterial protein with the362

antibiotic bound. Although the structural coverage of many bacterial genomes has more than363

doubled in the last ten years, with some species now having the structures of over half their364

proteins determined (Khafizov et al., 2014), the structural coverage of many pathogenic species365

remains low. In common with all applications of classical molecular dynamics, we are making366

two further key assumptions; (i) that our description of the molecular interactions is sufficiently367

accurate and (ii) that we have adequately sampled the phase space of the molecules. The first368
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is mitigated somewhat since it is protein atoms that are perturbed in the alchemical free energy369

calculation, and the protein forcefield has been extensively optimised (unlike in drug discovery370

where the atoms of a ligand, which inevitably are less well described, are perturbed). The sec-371

ond is mitigated by repeating calculations and allowing neighbouring simulations to exchange372

their Hamiltonians according to a Metropolis criterion. It is also difficult to calculate the relative373

free binding energy for some mutations using alchemical free energy methods; those perturbing374

large numbers of atoms are, as we have seen for e.g. F123L, take longer to converge. Finally,375

unlike in drug discovery where binding free energies (or equivalently dissociation equilibrium376

constants) are reported and to which one can directly compare predicted values of DDG, there is377

a paucity of binding free energy measurements for antibiotics. Instead the discipline of clinical378

microbiology measures and reports MIC values. It is possible, as we have done here, to relate379

the MIC to how the binding free energy changes upon the introduction of the mutation, but this380

requires several assumptions and is necessarily less direct.381

Throughout this study we have calculated each component free energy (Equation S10 &382

Fig. S7) using the same number of l simulations for the same duration, regardless of what type383

of free energy is being calculated and the size of the mutation being studied. This is almost cer-384

tainly highly inefficient; in future work we will examine how to optimise our approach so that385

the minimum amount of computational resource is required to produce an accurate classification386

in the shortest time possible. This will include determining if a large number of relatively short387

simulations (as done here) is more accurate, at least when it comes to classifying, than a smaller388

number of longer simulations. Although some progress has been made in recent years examin-389

ing this question in the context of endpoint free energy methods (Coveney and Wan, 2016), it390

has not yet been addressed for alchemical free energy calculations in general. Finally, it is only391

through the successful application of our approach to other proteins in other clinically-important392

pathogens where resistance is increasingly a problem, that it will be possible to determine if our393

method, or another one like it also based on the chemistry and structure of proteins, could, one394

day, be integrated into a genetics-based clinical microbiology pipeline.395
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Significance396

The discovery of antibiotics was one of humanity’s greatest achievements in the twentieth cen-397

tury; however, the evolution of antibiotic resistance by pathogens now threatens many advances398

of modern medicine. There is an urgent need for improved diagnostic tools so that resistant399

infections can be identified and treated appropriately. Analysis of whole-genome sequence data400

generated on affordable high-throughput platforms has the potential to allow resistant infec-401

tions to be more rapidly and cheaply diagnosed in the clinic than conventional culture based402

approaches. A key limitation of this approach is that it cannot identify whether rare or previ-403

ously unseen mutations will be associated with drug susceptibility or resistance. Since many404

antibiotics are competitive inhibitors, we hypothesise that mutations that confer resistance re-405

duce how well the drug binds the target protein, whilst not significantly altering the binding free406

energy of the natural substrate. In this case, predicting whether a mutation confers resistance407

is equivalent to calculating the effect of the mutation on the binding free energies of both the408

antibiotic and the natural substrate. By relating these quantities to the standard clinical microbi-409

ology metric, the minimum inhibitory concentration (MIC), we are able to derive two different410

clinically-based criteria for classifying the effect of mutations and show that alchemical free en-411

ergy methods, a well-established class of methods from computational chemistry, can not only412

predict which mutations confer resistance to trimethoprim, but are also quantitatively accurate.413

[233/300 words]414

23



Author contributions415

PWF, NCG & ASW designed the study. KC & MJL tested the clinical isolates. AMK provided416

data from Public Health England. PWF setup, ran and analysed the simulations. PWF, MJL,417

TEAP, DWC & ASW wrote the paper.418

Acknowledgement419

The research was funded by the National Institute for Health Research (NIHR) Oxford Biomed-420

ical Research Centre (BRC). We are grateful to the Science and Technology Facilities Research421

Council and Amazon Web Services for providing computer time. The views expressed are those422

of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.423

24



STAR METHODS424

CONTACT FOR REAGENT AND RESOURCE SHARING425

Further information and requests for reagents may be directed to, and will be fulfilled by the426

corresponding author Philip Fowler427

EXPERIMENTAL MODEL AND SUBJECT DETAILS428

The clinical isolates tested in this study were collected and sequenced as described previously429

(Gordon et al., 2014).430

METHOD DETAILS431

Trimethoprim Susceptibility Testing432

Susceptibility of test isolates to trimethoprim was determined by E-test (bioMérieux, Marcy433

l’Etoile, France) in accordance with the manufacturer’s instructions. Breakpoints were inter-434

preted according to EUCAST guidelines (EUCAST, 2016).435

System building and equilibration436

An experimental structure of S. aureus DHFR with trimethoprim (TMP) and NADPH bound437

(PDB:3FRE) was used to setup all simulations (Oefner et al., 2009). Apo structures were438

created by removing TMP. The generalized AMBER forcefield in conjunction with AMBER439

ff99SB-ILDN (Lindorff-Larsen et al., 2010) was used throughout and all simulations were car-440

ried out using GROMACS 5.0.x (Abraham et al., 2015). The mutations in the protein were441

represented using a dual topology and all GROMACS free energy topology files were prepared442

using pmx (Gapsys et al., 2015b). Each protein was solvated by adding waters and ions resulting443

in a simulation unit cell of dimensions 7.1 ⇥ 6.4 ⇥ 6.0 nm containing 27,077–27,120 atoms.444

For each mutant, separate apo, TMP- and DHA-bound short equilibration simulations were run.445

First the energy of each system was minimised using the steepest descent algorithm for 1000446

steps, then the dynamics of the system evolved for 2.5 ns with an integration timestep of 1 fs.447

Electrostatic forces were calculated using the particle mesh Ewald method with a real space448
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cutoff of 1.2 nm. Van der Waals interactions were cutoff at 1.2 nm, with a switching function449

applied from 0.9 nm. A Langevin thermostat with a time constant of 2 ps was applied to keep the450

temperature at 310 K. The pressure was maintained at 1 atm by an isotropic Parinello-Rahman451

barostat with a time constant of 1 ps and a compressibility of 4.46⇥ 10�5 bar�1. The lengths452

of all bonds involving a hydrogen were constrained using the LINCS algorithm. Since all the453

above simulations were run with l = 0 (i.e. wildtype sidechain), we then ran a short simula-454

tion to ‘phase-in’ the mutant sidechain using the Alchembed procedure (Jefferys et al., 2015).455

This was repeated for different snapshots taken during the 2.5 ns equilibration trajectory and456

ensured that we had a range of starting conformations suitable for all the different alchemical457

and end-point simulations.458

Alchemical simulations and calculations459

A thermodynamic cycle was constructed (Fig. S7) and changes in the free energy of binding460

upon introduction of the mutation, DDG, was defined by a series of alchemical transformation461

free energies. We followed best practice and, when changing one sidechain into another, cal-462

culated three separate free energies (Klimovich et al., 2015). This was repeated first for the463

apo protein (DG1) and then the complex (DG6). First the electrical charges on the perturbing464

atoms are removed (DG11 & DG61), before the van der Waals terms on the disappearing and465

appearing atoms are decoupled and coupled to the system, respectively (DG12 & DG62), using466

a soft-core potential (Beutler et al., 1994; Zacharias et al., 1994). Finally the electrical charges467

on the new atoms are switched on (DG13 & DG63). To keep the ligand within the active site,468

the distance between the protein and ligand centres of mass were restrained using a harmonic469

potential with a spring constant of 2000 kJ nm�1 mol�2. The reference distances for TMP and470

DHA were 0.644 nm and 0.794 nm, respectively. The free energies of removing both restraints471

were calculated (DG5 & DG7). The final free energy is derived in the Supplemental Information472

and is given by473

DDG = DG5 +(DG61 +DG62 +DG63)� (DG11 +DG12 +DG13)�DG7. (1)

Each free energy was calculated by running either 8, 11 or 16 simulations at equally-spaced474
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values of the progress parameter, l , between 0 and 1. To accelerate convergence, each set of 8,475

11 or 16 simulations were coupled and attempted to exchange Hamiltonians every 1,000 steps476

(Sugita et al., 2000; Woods et al., 2003). Each set was run for 0.25 ns, meaning each free energy477

calculation required between 26 and 52 ns of molecular dynamics simulation. Thirty two pairs478

of (DDGT MP,DDGDHA) were calculated for each mutation (Table S3 and Fig. S5), 5 with 11⇥l479

values, 5 with 16⇥l values and 22 with 8⇥l values. No correlation between the number of l480

values and the magnitude of the resulting value of DDG was detected. Calculating 32 pairs of481

DDG values for a single mutation therefore required 1.0 µs of molecular dynamics simulation.482

Eight mutations were calculated in total (since the F99YL21V mutation was decomposed into483

two separate mutations), making a total of 8.1 µs of molecular dynamics simulation. More484

daunting is that this is composed of 32,344 separate molecular dynamics simulations. These485

were stored and discovered using datreant, a flexible python module for handling heteroge-486

neous file-based data (Dotson et al., 2016).487

The first derivative of the internal energy at the specified value of l , as well as the internal488

energy evaluated at all other values of l were written to disc every 0.1 ps. This permitted the489

free energy (DG) to be calculated using either the multi-state Bennett acceptance ratio estimator490

(MBAR) (Shirts and Chodera, 2008) by the alchemical-analysis python module (Klimovich491

et al., 2015), or simple thermodynamic integration. Since no significant differences in DDG492

values were observed, with the mean unsigned error in a value of DDG being between 0.1-0.3493

kcal/mol, depending on the number of atoms being perturbed, the latter was used for simplicity.494

A subset of the GROMACS input files is available for download allowing a single pair of DDG495

values to be calculated for each mutant from https://github.com/philipwfowler/amr-free-energy-496

dhfr-examples.497

The simulation parameters are the same as for the equilibration simulations above, except498

the tolerance factor for the Ewald sum is decreased to 10�6 to increase the accuracy of calculat-499

ing electrostatic forces, as is standard in these types of calculations. To remove transient effects,500

the first 20% of each simulation was discarded. Discarding more (50%) or less (10%) of the501

data did not materially affect the results (Fig. S2).502
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QUANTIFICATION AND STATISTICAL ANALYSIS503

Throughout, standard errors were calculated at a confidence level of 95%, taking into account504

the appropriate t-statistic for the sample size. This assumes each calculated value of DG is505

independent, which is reasonable since they are started from different initial structures taken506

from the equilibration simulations and run using different random seeds.507

DATA AND SOFTWARE AVAILABILITY508

The clinical isolates tested in this paper were sequenced in a previous study (Gordon et al., 2014)509

and, as a result, can be found in the European Nucleotide Archive Sequence Read Archive under510

study accession number ERP004655.511
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Mutation measured MICs mean MIC MIC range Phenotype DDDGTMP�DHA

(mg/l) (mg/l) (95% confidence) (kcal/mol)

F99Y >32, >32, >32, >32, >32 >32 – Resistant > 2.1
F99Y/L21V >32 >32 – Resistant > 2.1
L41F 32 32 – Resistant 2.1
F123L 0.5, 0.5, 0.5 0.5 – Susceptible -0.5
A135T 0.38, 0.38, 0.5, 0.75, 1 0.6 0.3-0.9 Susceptible -0.4 ± 0.3
V76A 0.38, 1, 1, 1, 1 0.9 0.4-1.5 Susceptible -0.2 ± 0.4
I83V 0.5, 0.5, 0.75, 0.75, 1 0.7 0.5-1 Susceptible -0.3 ± 0.2

Table S1: Related to Figure 1. The trimethoprim minimum inhibitory concentrations (MIC), as measured by bioMérieux
E-test, for the seven mutations chosen for this study. The F99Y/L21V and L41F mutations were only observed once, and
hence each only has a single data point. Likewise the F123L mutation was only observed three times. For all other mutations
five randomly-selected clinical isolates were tested as described in the Methods. The average MIC was calculated using the
geometric mean and 95% confidence intervals are estimated using the appropriate t-statistic. The measured phenotypes are
consistent with the previously published study (Gordon et al., 2014).

Mutation PHE MIC values data (mg/l)

F99Y >32, >32
F99Y/L21V –
L41F –
F123L 0
A135T 0
V76A 0, 0, 0, 0, 1
I83V 0, 0, 1

Table S2: Related to Figure 1. The incidences and recorded trimethoprim minimum inhibitory concentrations (MIC) by
routine monitoring by Public Health England (PHE). Neither the F99Y/L21V or L41F mutation were observed. All isolates
containing any of the plasmid-encoded genes, dfrA, dfrG or dfrK, were excluded.
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C Resistance criterion R3:
R=RR/RU/UR, S=SS/SU/US, U=UU

Figure S4: Related to Figure 6. Increasing the number of independent calculations improves the classification by either
resistance criteria. (A) Using the first resistance criterion, if a small number of calculations (< 5) are run there is a small
chance of susceptible mutations being classified as resistant and a moderate chance of any mutation being classified as having
an unknown phenotype. As the number of calculations is increased past 10, these errors disappear and all mutations are either
correctly classified (as resistant or susceptible), or an unknown result is returned. The chance of an unknown phenotype being
returned falls steadily as the number of calculations increases, until at n = 32, we predict that five of the seven mutations,
would always be correctly classified and an ‘unknown’ result would be returned for F123L and I83L around half the time. (B)
The picture is similar if we apply the second resistance criterion, except that now it struggles to correctly classify the F123L
and L41F mutations. Again there is a small chance of a classification error when n < 5, which disappears as n increases.
The differences that arise from applying these two resistance criteria can be explained by considering where the mutations are
found on the DDGDHA v. DDGT MP plot (Fig. 4) in relation to the lines that define both resistance criteria. (C) We can improve
the performance slightly if we apply both resistance criteria, examine both results and allow any definitive classification
(‘resistant’ or ‘susceptible’) to overrule any ‘unknown’ classification.



Supplemental Theory
Relating binding free energies to minimum inhibitory concentrations

Since it is known that trimethoprim is a competitive inhibitor of DHFR and, if we assume the action of DHFR can be described
by Michaelis-Menten enzyme kinetics using the simple scheme in Fig. S5A, then the rate of product formation, v, is given by

v = kcat[E]0
[S]

KM +[S]

where kcat is the enzyme rate constant, [E]0 is the total concentration of the enzyme (DHFR), [S] is the concentration of the
substrate (DHA) and KM is the Michaelis-Menten constant (Price et al., 2009). The effect of a competitive inhibitor, such as
trimethoprim, is to increase the apparent magnitude of KM according to

K0M =

✓
1+

[I]
Ki

◆
KM

where [I] is the concentration of the inhibitor (TMP) and Ki its dissociation constant (Price et al., 2009). By definition, when
the concentration of the inhibitor, [I], is equal to the MIC then the rate of product formation, v, is a constant and is small
enough to prevent bacterial growth. If we assume that mutating DHFR does not alter the the enzyme rate constant (kcat), or
the concentrations of the enzyme ([E]0) and the substrate ([S]) then by equating the rates of product formation for the wildtype
(wt) and mutated enzymes at their respective MICs we find that
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Given the known values of the MIC and published data on Ki for DHFR (Oefner et al, 2009; Frey et al., 2010), we find that,
in general, MIC� Ki, and therefore this simplifies to

MICwt

MICmutant =
Kwt

i
Kmutant

i
.
Kmutant

M
Kwt

M
.

The simplest case is to assume that mutating DHFR only alters the dissociation constant of the inhibitor (Ki, the antibiotic
TMP), then

MICwt

MICmutant =
Kwt

i
Kmutant

i
.

Since the free energy of binding is related to the dissociation constant via

DG = kT ln(Ki/c� �), (S1)

where k is Boltzmann’s constant, T is the temperature and c� � is the standard concentration, then we can rewrite the above as

MICwt

MICmutant = exp
✓

DGwt
TMP�DGmutant

TMP
kT

◆
= exp

✓
DDGTMP

kT

◆
(S2)

where DDGTMP = DGwt
TMP�DGmutant

TMP is how the mutation affects the binding free energy of TMP, k is Bolzmann’s constant
and T is the temperature. The geometric mean MIC for wildtype trimethoprim in S. aureus is 1.1 mg/ml (EUCAST, 2016),
therefore for a mutation in S. aureus DHFR to be clinically defined as resistant,

DDGTMP � 0.8 kcal/mol, (R1)

which is equivalent to increasing Ki at least 3.6⇥. This is the first criterion for classifying a mutation as causing resistance,
and is therefore labelled R1, as in the main body of the paper.

Alternatively, we may allow the mutation to alter the dissociation constants of both the substrate (in effect altering KM)
and the inhibitor. By definition,
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Figure S5: Related to the STAR Methods. (A) A simple kinetic scheme for the competitive inhibition of an enzyme, E, by
an inhibitor, I. The enzyme binds with a substrate, S, to produce an intermediate, ES, which then reacts yielding the product,
P, and the enzyme. Each step is labelled with forward and, where appropriate, reverse rate constants. (B) The Michaelis-
Menten constant is defined in terms of three rate constants. (C) The dissociation constants of the inhibitor, Ki, and substrate,
Ks. (D) The thermodynamic cycle used to calculate how the binding free energy of either trimethoprim or dihydrofolic acid
changes (DDG) when a mutation is introduced into S. aureus DHFR. In the alchemical transitions (i.e. when one amino acid
is transformed into another) we remove all the electrical charges on the atoms that are being perturbed, before vanishing and
appearing the atoms necessary to make the mutation before finally recharging the resulting atoms. A free energy is therefore
calculated separately for each step (e.g. DG11). A soft-core van der Waals potential is used throughout. To prevent the ligand
unbinding from the protein during the simulations, a restraining potential is applied. The free energy of removing this potential
is calculated for both the wild-type and mutant proteins. Hence, a total of eight alchemical free energy calculations are needed
for each value.

KM =
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(S3)

where the various rate constants are defined in Fig. S5A. If we assume that kcat ⌧ k�1 and define the dissociation equilibrium
constant of the substrate as Ks = k�1

k1
, then
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Again writing this in terms of binding free energies,

MICwt

MICmutant = exp
✓
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TMP�DGmutant

TMP )� (DGwt
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(S4)

which implies that for a mutation to be classified as resistant,

DDGTMP�DDGDHA � 0.8 kcal/mol (R2)



Resistance criteria R1 and R2 provide two different approaches for operationally testing to see if a DHFR mutation confers
resistance to TMP. These are labelled R1 and R2, respectively, in all figures and in the main body of the paper.

Calculating differences in binding free energies using alchemical transformations.

How the binding free energy of a ligand, such as trimethoprim, changes when a mutation is introduced into S. aureus DHFR
is simply the difference in the binding free energies of the ligand to the wild-type and mutant proteins (Fig. S5D).

DDG = DG2�DG4 (S5)

Since free energy is a thermodynamic state function, and is therefore independent of the path taken to calculate it, we can
construct a thermodynamic cycle such as shown in Fig. S5D. By definition

DG1 +DG2�DG3�DG4 = 0 (S6)

hence we can rewrite Equation S5 as

DDG = DG3�DG1. (S7)

This is the difference between the free energies of introducing the mutation into the protein-ligand complex and the apo
protein and, although unphysical, is exact and computationally more tractable. This calculation assumes, however, that the
ligand remains bound during all simulations that contribute towards DG3, which since we are exploring mutations we believe
to weaken how well the ligand (in our case an antibiotic) binds to the protein, may not always hold. We therefore also applied
a simple harmonic restraint to keep the ligand in the binding site. The cost of removing this restraint must be calculated, and
so we construct a second thermodynamic cycle below the first. For this

DG3�DG5�DG6 +DG7 = 0 (S8)

which when we combine with Eqn. S7 gives us the final result

DDG = DG5 +DG6�DG1�DG7. (S9)

Or writing it out in full:

DDG = DG5 +(DG61 +DG62 +DG63)� (DG11 +DG12 +DG13)�DG7. (S10)

We note that calculating a single value of DDG for trimethoprim requires eight independent free energy calculations, however,
calculating a single value of DDG for the natural substrate, DHA, only requires an additional five free energy calculations since
the free energies for introducing the mutation into the apo protein (DG11,DG12,DG13) can be re-used. The computational cost
of testing the second criterion (R2) is therefore 1.625⇥ that of testing the first criterion, assuming all free energies require the
same amount of computational resource.


