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Wave Intensity Analysis Provides Novel Insights Into Pulmonary
Arterial Hypertension and Chronic Thromboembolic Pulmonary

Hypertension

Junjing Su, MD; Charlotte Manisty, PhD; Kim H. Parker, PhD; UIf Simonsen, PhD; Jens Erik Nielsen-Kudsk, PhD; Soren Mellemkjaer,
PhD; Susan Connolly, PhD; P. Boon Lim, PhD; Zachary I. Whinnett, PhD; Igbal S. Malik, PhD; Geoffrey Watson, MBBS;
Justin E. Davies, PhD; Simon Gibbs, MD; Alun D. Hughes, PhD;* Luke Howard, DPhil*

Background—In contrast to systemic hypertension, the significance of arterial waves in pulmonary hypertension (PH) is not well
understood. We hypothesized that arterial wave energy and wave reflection are augmented in PH and that wave behavior differs
between patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH).

Methods and Results—Right heart catheterization was performed using a pressure and Doppler flow sensor—tipped catheter to
obtain simultaneous pressure and flow velocity measurements in the pulmonary artery. Wave intensity analysis was subsequently
applied to the acquired data. Ten control participants, 11 patients with PAH, and 10 patients with CTEPH were studied. Wave speed
and wave power were significantly greater in PH patients compared with controls, indicating increased arterial stiffness and right
ventricular work, respectively. The ratio of wave power to mean right ventricular power was lower in PAH patients than CTEPH
patients and controls. Wave reflection index in PH patients (PAH: ~25%; CTEPH: ~30%) was significantly greater compared with
controls (=4%), indicating downstream vascular impedance mismatch. Although wave speed was significantly correlated to disease
severity, wave reflection indexes of patients with mildly and severely elevated pulmonary pressures were similar.

Conclusions—Wave reflection in the pulmonary artery increased in PH and was unrelated to severity, suggesting that vascular
impedance mismatch occurs early in the development of pulmonary vascular disease. The lower wave power fraction in PAH
compared with CTEPH indicates differences in the intrinsic and/or extrinsic ventricular load between the 2 diseases. (J/ Am Heart
Assoc. 2017;6:e006679. DOI: 10.1161/JAHA.117.006679.)
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ulmonary hypertension (PH), defined as an elevated
mean pulmonary arterial pressure (PAPm >25 mm Hg) at
rest measured by right heart catheterization,' is a severe
disease that often leads to right heart failure. Clinically, PAPm
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and pulmonary vascular resistance are commonly used
hemodynamic measures to evaluate disease severity. How-
ever, they describe only the steady-state component of the
right ventricular (RV) workload and neglect the dynamic
compliance of the pulmonary arteries and magnitude of wave
reflection in the circulation. Wave travel is influenced by the
working state of the heart under the impact of its workload?;
therefore, analysis of arterial waves in the pulmonary artery
may provide additional information about disease severity and
progression in pulmonary vascular disease.

Previous studies that used impedance-based methods to
investigate arterial waves in the pulmonary artery® > suggested
that distal wave reflection plays a significant role in pulmonary
hemodynamics. Wave intensity analysis (WIA), as proposed by
Parker and Jones,’ uses simultaneous changes in the arterial
pressure and flow velocity to determine the energy, origin, type,
and timing of the traveling waves in a circulation. Unlike the
impedance-based methods, in which the results are presented
in the frequency domain, WIA is a time domain technique, in
which the results are presented as a function of time, allowing
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Clinical Perspective

What Is New?

* Wave intensity analysis applied to the pulmonary artery
revealed increased arterial wave speed, power, and reflec-
tion in pulmonary hypertension patients, indicating
increased arterial stiffness, right ventricular work, and
vascular impedance mismatch, respectively.

In contrast to wave speed, the magnitude of wave reflection was
unrelated to pulmonary hypertension severity in established
disease, suggesting that vascular impedance mismatch occurs
early in the development of pulmonary vascular disease.

The ratio of wave power to mean right ventricular power was
lower in pulmonary arterial hypertension patients than in
chronic thromboembolic PH patients, suggesting differences
in the intrinsic and/or extrinsic ventricular loads between
the 2 diseases.

What Are the Clinical Implications?

* Wave reflection may be an early marker of disease in the
pulmonary vasculature.

 Characterizing the pathophysiological differences between
pulmonary arterial hypertension and chronic thromboem-
bolic PH may contribute to our understanding of disease
progression and treatment response in pulmonary hyper-
tension.

investigators to relate arterial waves to events occurring at
specific times in the cardiac cycle. WIA has broadened our
knowledge in arterial physiology and pathophysiology in the
systemic”"® and coronary circulation,”'° and its clinical utility
has been demonstrated in previous studies.'''® However, it is
only very recently that WIA has been applied in the pulmonary
circulation in humans. '

The objective of this study was to use WIA in the
pulmonary artery to characterize wave propagation in persons
without pulmonary vascular disease and in patients with
pulmonary arterial hypertension (PAH) and chronic throm-
boembolic PH (CTEPH). Furthermore, we explored the
relationship between WIA parameters and conventionally
used measurements in PH. We postulate that WIA would
provide novel insights into pulmonary hemodynamics and RV
workload; in particular, we hypothesize that arterial wave
energy and wave reflection are augmented in PH and that
wave behavior differs between PAH and CTEPH.

Materials and Methods
Study Population

Study participants were selected from patients undergoing
cardiac catheterization for clinical reasons at Hammersmith

Hospital, Imperial College Healthcare, and at Aarhus Univer-
sity Hospital. Patient recruitment and the study protocol
were standardized at both centers to avoid measuring bias,
and the same investigator was present at every patient case
at both centers to ensure that the study protocol was
performed in the standardized manner. Control participants
were recruited among patients without significant cardiovas-
cular or lung disease who were referred for coronary
angiography or electrophysiology procedures for supraven-
tricular tachycardias. Only patients whose angiogram and
transthoracic echocardiogram showed unobstructed coro-
nary arteries with or without non—flow-limiting atheromas
and normal biventricular dimensions and function without
moderate or severe valvular pathology, respectively, were
included. PH patients were recruited among patients with
confirmed or suspected PAH and CTEPH who were under-
going right heart catheterization as part of a diagnostic
investigation or routine follow-up. Patients with normal
PAPm and previous history of thromboembolism and
patients with elevated pulmonary arterial wedge pressure
(>15 mm Hg) with or without elevated PAPm were excluded
because they may not have normal pulmonary hemodynam-
ics to be considered as controls and they did not fall into
the categories of PAH and CTEPH. The study was approved
by the London-Fulham Research Ethics Committee and the
Central Denmark Region Committees on Health Research
Ethics, respectively (references 13/LO/1305 and M-2013-
278-13, respectively), and all participants gave written
informed consent.

Study Protocol

Following the clinical procedure, a 6-Fr multipurpose catheter
or a 6-Fr balloon flotation catheter was advanced into the
pulmonary artery via the right femoral, brachial, or internal
jugular vein. A combined dual-tipped pressure and Doppler
flow sensor wire (Combowire; Philips Volcano) was then
advanced ~1 cm beyond the end of the catheter.® Careful
manual catheter and wire manipulation ensured that the
Doppler flow velocity signals were optimized in situ. Once
stable signals were observed, pressure and velocity data were
acquired simultaneously (Combomap; Philips Volcano) at a
sampling rate of 200 Hz for 30 to 60 seconds, together with
ECG monitoring in a free breathing state in the main
pulmonary artery and subsequently in either the left or right
pulmonary artery, hereafter referred to as the branch
pulmonary artery. In CTEPH patients, data were acquired from
both the left and right pulmonary arteries. All participants
were in sinus rhythm at the time of data collection. Data from
standard transthoracic echocardiography and routine blood
test results, both of which were performed within the same
week as the cardiac catheterization, were collected.
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Cardiac output was determined using the thermodilution,
direct Fick, or indirect Fick method when direct measurement
was not possible. Indexed total pulmonary resistance was
calculated as PAPm divided by cardiac index, and global
pulmonary arterial compliance was calculated as stroke
volume divided by pulmonary arterial pulse pressure. In PH
patients, indexed pulmonary vascular resistance was calcu-
lated as the transpulmonary pressure gradient (defined as the
difference between PAPm and pulmonary arterial wedge
pressure) divided by cardiac index.

RV Power and Energy Densities

RV power density and energy density, defined as the power
and energy, respectively, delivered by the right ventricle to
generate the stroke volume per unit of cross-sectional area of
the artery, were derived from the conventionally used formula
for calculating steady flow RV stroke work (RVSW Equa-
tion 1)'¢:

RVSW = (PAPm — RAP) - RVSV (M

where RAP is the right atrial pressure and RVSV is the RV
stroke volume. RAP was measured in all PH patients but not in
the control participants and was arbitrarily set to 6 mmHg in
controls.

Normalizing RV stroke work to the cross-sectional area
(CSA) of the main pulmonary artery yields RV energy density
(Equation 2):

RVSW  (PAPm — RAP) - RVSV
RV energy density = _ (PAPm )

CSA RVSV:HR/Upnean
_ (PAPm — RAP) 2
H R/Umean

where Upean is the mean flow velocity and HR is the heart
rate. Hence,

RV energy density = (PAPm — RAP) - Upean - CCD (3)

where CCD is the duration of the cardiac cycle, and,

RV power density = (PAPM — RAP) - Urnean- (4)

Wave Intensity Analysis

Pressure and velocity data (shown as a P and U, respectively,
in Equation 5) were processed offline using customized
Matlab software (MathWorks)."” Signals were ensemble-
averaged with timing gated to the R wave of ECG and
smoothed using a Savitzky—Golay differentiating filter (second
order polynomial fit, window size 11). An automatic procedure
for eliminating particular noisy velocity waveforms from the
ensemble was applied by calculating and ranking the cross-

correlation of each beat with the global ensemble average.
Beats with the lowest correlation coefficient were eliminated
iteratively until the integral of the standard error of the
ensemble average velocity waveform over the cardiac period
was minimized. The ensemble averaged pressure waveform
was then calculated for the same beats. Hardware-related
delay between pressure and velocity signals was corrected by
shifting the velocity data until the beginning of the upslope of
the velocity and pressure waveforms were aligned.

The local wave speed (shown as c) was calculated using
the sum of squares method (Equation 5)'é:

1 dpP?
=5 | Ea o

where p is the blood density, assumed to be 1040 kg/ms,
and the sum is taken over 1 cardiac period.

The sum of squares method was used to calculate wave
speed rather than the PU-loop (pressure and velocity loop)
method. In the latter method, the instantaneous measure-
ment of pressure is plotted against velocity, and the slope of
the early linear portion of the PU curve is expected to be equal
to the product of blood density and wave speed.' The PU-
loop method is valid only under the assumption that there is
no wave reflection in early systole, namely, that there is an
early linear segment on the PU curve. In many of our
participants, the PU loop did not display a perfectly linear
initial segment, and because wave propagation in the
pulmonary artery is not well understood, we could not rule
out early wave reflection, especially in PH patients.

A wave originating from the proximal part of the artery can
be a forward compression wave (FCW) that increases the
pressure and flow or a forward decompression wave (FDW)
that decreases the pressure and flow. Likewise, a wave
originating from the distal part of the artery can be a backward
compression wave (BCW) that increases the pressure while
decreasing the flow or a backward decompression wave (BDW)
that decreases the pressure while increasing the flow. Wave
intensity is positive for forward-traveling waves and negative
for backward-traveling waves. WIA was performed essentially
as described previously,? but values were normalized to
cardiac cycle length to make it independent of sampling rate.?®
With the knowledge of the local wave speed, waves were
separated into their forward (shown as WI,) and backward
(shown as WI_) components (Equation 6):

dP - CCD

dU - CCD) 2
Wi =+ (dt +pc- dt) /(4pc) (6)

Separated waves were quantified by the peak intensity of
the individual waves (W/m?) and by the cumulative area under
each wave corresponding to the wave energy density (J/m?)
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over a cardiac cycle squared. The magnitude of wave
reflection, denoted as the wave reflection index (WRI), was
calculated as the ratio of the energy of the backward traveling
wave in systole to the energy of the incident wave related to
ventricular ejection.

Statistical Analyses

Data were analyzed for normality using the Q-Q plot. Results
are expressed as mean+SD when normally distributed or as
median (25-75% quartile) when nonnormally distributed.
Proportions are expressed as percentages. Differences
among the 3 study groups were compared using 1-way
ANOVA followed by a Bonferroni test. A Kruskal-Wallis test
followed by a Dunn test was used for nonnormally
distributed data and for normally distributed data with
unequal variances, as tested by the Bartlett test. The Fisher
exact test was used for categorical variables. Differences
between data from the main and branch artery within each
group were compared using a paired ¢ test or the Wilcoxon
signed-rank test. Spearman correlation analysis was per-
formed to examine simple relationships between variables.
Area under the receiver operating characteristic curve was
used to assess the accuracy of FCW to RV power and energy
density ratios to discriminate between PAH and CTEPH
patients. The level of significance in all tests was set at
P<0.05. All statistical analyses were performed using Stata
13 (StataCorp).

Results

Patient Characteristics

A total of 36 participants were recruited (Figure 1). Eleven
subjects had no significant cardiovascular disease or lung
disease and served as control participants, and technically

satisfactory data were obtained from 10 of them (aged
59414 years, 8 male). Eleven patients (aged 56+21 years, 2
male) had confirmed PAH: 6 with idiopathic PAH, 4 with PAH
associated with connective tissue disease, and 1 with
pulmonary veno-occlusive disease. Of the remaining 14
patients, 10 were diagnosed with CTEPH (aged 66+9 years,
2 male). Satisfactory velocity data from the left pulmonary
artery could not be obtained from several CTEPH patients;
therefore, only data from the right pulmonary artery were
included in this study. Satisfactory data from the main
pulmonary artery were obtained from 10 PAH patients and 9
CTEPH patients, whereas satisfactory data from the branch
pulmonary artery were obtained from all PAH patients and 9
CTEPH patients. All PH patients had normal left heart function
on transthoracic echocardiography and no significant mitral or
aortic valve disease.

Baseline characteristics and hemodynamic parameters of
all patients studied are shown in Table 1. The PH patients had
higher PAPm and total pulmonary resistance and lower flow
velocity and global pulmonary compliance compared with
controls. The cardiac index was highest in the control group,
although the difference was not statistically significant
compared with the PH groups. There were no significant
differences in the conventionally used hemodynamic para-
meters between the PAH and CTEPH groups.

Wave Intensity Parameters

A representative original recording trace for a PAH patient is
shown in Figure 2. A midsystolic notch was observed in the
Doppler velocity signal in the majority of the PH patients.
Ensemble averaged pressure and velocity waveforms in the
main pulmonary artery and the corresponding wave intensity
patterns from a representative participant in each group are
shown in Figure 3, and wave intensity parameters are
summarized in Table 2. Wave speed (Figure 4) in the main

| Recruited patients: 36 |

Coronary angiography or

| PAH investigation: 11 | | CTEPH investigation: 14 |

radiofrequency ablation: 11

Unsatisfactory data: 1 }—

CTEPH ruled out: 4

| Control subjects: 10 |

| PAH confirmed: 11 |

| CTEPH confirmed: 10 |

Figure 1. Flow chart for patient recruitment. Of the included patients, all control participants and
pulmonary arterial hypertension (PAH) patients were recruited from Hammersmith Hospital, London,
whereas 6 of the chronic thromboembolic pulmonary hypertension patients (CTEPH) were recruited from

Aarhus University Hospital.
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Table 1. Patient Characteristics and Hemodynamic Values

Control (n=10) PAH (n=11) CTEPH (n=10) P Value
Demographics
Age, y 59+14* 56+21* 6649 0.36
Male, n (%) 8 (80)* 2 (18)* 2 (20) 0.009"
BMI, kg/m? 27.945.2 26.5+4.6 27.446.3 0.82
Drugs, n (%)
o-/B-adrenoceptor antagonist 4 (40) 3(27) 0(0) 0.11
Calcium antagonist 3 (30) 3(27) 0(0) 0.20
ACEl/angiotensin Il antagonist 2 (20) 0(0) 3 (30) 0.16
Diuretic 1(0) 6 (55) 7 (70) 0.022"
PDE-5 inhibitor 0 6 (55) 1(10) 0.007*
Endothelin receptor antagonist 0 5 (45) 0(0) 0.006*
Prostanoid 0 19 0(0) 1.0
Hemodynamics
Heart rate 73+8* 8148 80415 0.21
SBP, mm Hg 129+19 11614 125+20 0.19
DBP, mm Hg 73+19 71+10 86+16 0.080
Right atrial pressure, mm Hg 842 945 0.36
PAPs, mm Hg 26-+3* 76+16* 72417 <0.001"
PAPd, mm Hg 124+3* 33+9* 27+5 <0.001"
PAPm, mm Hg 17+3* 47+11* 42+8 <0.0.001"
Mean velocity in main PA, cm/s 27.8+10.2 20.54+5.9 20.04+6.4 0.065
Max velocity in main PA, cm/s 53.1+14.6 37.3+11.2 36.9+11.2 0.0117
Mean velocity in branch PA, cm/s 33.8+13.1*% 21.0+9.5* 17.5+6.2 0.003"
Max velocity in branch PA, cm/s 63.0421.1%% 40.9+18.3* 32.449.8 0.002"
Cardiac index, L/min per m? 2.57+0.46 2.33+1.08 2.35+0.77 0.77
Indexed TPR, WU/m? 6.96+1.97 24.6+12.8 19.6+7.8 <0.0017
Cp, mL/mm Hg 5.344+1.62 1.33+0.83 1.38+0.68 <0.0017
Indexed RV stroke work, mm Hg-mL/m? 388475 1062+326 990+503 0.003"
RV stroke power density, W/m? 403+143 10164221 887+441 <0.001"
RV stroke energy density, J/m? 3314114 7574180 665+318 0.0017

Data are presented as mean=+SD or n (%). Cardiac index was calculated using thermodilution (n=4), direct Fick method (n=22), or indirect Fick method (n=4). ACEl indicates angiotensin-
converting enzyme inhibitor; BMI, body mass index; Cp, global pulmonary compliance; CTEPH, chronic thromboembolic pulmonary hypertension; DBP, diastolic blood pressure; PA,
pulmonary artery; PAH, pulmonary arterial hypertension; PAPd, diastolic pulmonary arterial pressure; PAPm, mean pulmonary arterial pressure; PAPs, systolic pulmonary arterial pressure;
PDE-5, phosphodiesterase type 5; RV, right ventricle; SBP, systolic blood pressure; TPR, total pulmonary resistance; WU, wood unit.

*Previously published data.?°

Control significantly different from PAH and CTEPH.
fPAH significantly different from control and CTEPH.
SBranch PA significantly different from main PA.

pulmonary artery was ~3 m/s in control participants and
significantly higher in PAH patients, at ~12 m/s, indicating
increased local arterial stiffness. Wave speed in CTEPH
patients was ~15 m/s, which was significantly higher
compared with controls but not PAH patients.

During systole, 2 distinct forward traveling waves were
consistently identified in all 3 groups. An FCW, the incident

wave, was observed in early systole, which is generally
attributed to RV ejection, and a forward decompression wave
was observed in late systole just before the dicrotic notch on
the pressure waveform. The forward decompression wave
decreased the pressure and flow and is assumed to corre-
spond to ventricular relaxation before the closure of the
pulmonary valve. The magnitude of the FCW (both peak wave
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Figure 2. Representative original trace from a patient with
pulmonary arterial hypertension. (Top) ECG trace. (Middle)
Simultaneous pressure traces from a fluid-filled catheter (red
line) and high-fidelity solid state catheter (Combowire; yellow
line). (Bottom) Doppler flow signal with velocity tracking (blue
line). There is a mid-systolic notch in the Doppler flow signal.

intensity and wave energy) in the main pulmonary artery was
significantly greater in PH patients compared with controls
indicating increased RV work, whereas there was no signif-
icant difference between the PAH and CTEPH patients
(Table 2).

Backward waves were observed in mid-systole. In control
participants, an identifiable BCW was present in mid-systole in
7 cases, whereas a BDW was present in 3 cases in the main
pulmonary artery. WRI, which expresses the fraction of the
FCW energy that is reflected, was ~4%. In PH patients, a
substantial BCW in mid-systole was observed in all the
patients indicating vascular impedance mismatch. BDW was
not observed in systole in any of the patients. WRI in the main
pulmonary artery was ~25% and ~30% in PAH and CTEPH
patients, respectively, which was significantly higher com-
pared with controls. The arrival time of the BCW was not
significantly different between PAH (63 ms [range: 55—
85 ms]) and CTEPH (70 ms [range: 60—100 ms]) patients.

Similar findings were observed in the branch pulmonary
arteries (Table 2). The observed differences in wave propa-
gation among the 3 study groups persisted when nonnormal-
ized WIA data were examined (data not shown). Moreover,
WIA parameters of PAH patients treated with specific PAH
drugs (n=7) were comparable to patients not on PAH
treatment (data not shown).

RV Wave Power to Stroke Power Ratios

RV stroke power and energy densities are defined as the
steady-flow power and energy, respectively, delivered by the

right ventricle to generate the stroke volume per unit by
cross-sectional area of the artery. They were significantly
higher in PH patients compared with controls, whereas there
were no significant differences between PAH and CTEPH
patients (Table 2).

FCW to RV power and energy density ratios were
significantly lower in the PAH group than both the control
and CTEPH groups, whereas there were no significant
differences between the 2 latter groups (Figure 5A and 5B).
Moreover, FCW to RV power and energy density ratios showed
significant discriminatory capacity between CTEPH and PAH
patients (Figure 5C and 5D).

Correlation Analyses

Correlation analyses between wave intensity indices from the
main pulmonary artery and conventionally used clinical
parameters to evaluate PH were performed by pooling
together the data from all PH patients (Table 3). The
association of wave speed, magnitude of the waves, and
wave reflection with conventionally used hemodynamic mea-
surements, echocardiographic parameters reflecting RV func-
tion, and BNP (B-type natriuretic peptide) was investigated.
Because the data from the controls and from PH patients
were very different, the control data were excluded from the
correlation analysis to avoid bias.

There was a significant association between wave speed
and the dynamic parameters of the RV workload—global
pulmonary compliance (p=—0.62, P<0.01) and pulmonary
arterial pulse pressure (p=0.78, P<0.01)—and with the
steady flow parameters PAPm (p=0.62, P<0.01) and pul-
monary vascular resistance (p=0.46, P=0.05) and a significant
association with the tricuspid annular plane systolic excursion
(p=—0.58, P<0.01). In addition, there was a significant
correlation between the magnitude of FCW—both peak wave
intensity and wave energy—and pulmonary arterial pulse
pressure.

In contrast to wave speed, there was no significant
association between the magnitude of BCW and WRI and any
of the conventionally used hemodynamic, echocardiographic,
and biochemical parameters. In fact, patients with mildly
elevated PAPm had similar WRI compared with patients with
moderately and severely elevated PAPm (Figure 6).

Discussion

In the present study, we applied WIA in the main and branch
pulmonary arteries to characterize the interaction between
the right ventricle and pulmonary artery in participants with
and without PH. We observed similar wave intensity patterns
in the main and branch pulmonary arteries within each group.
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Figure 3. Pressure and flow velocity profile (upper panel) and wave intensity pattern (lower panel) for a control participant (A), a pulmonary
arterial hypertension (PAH) patient (B), and a chronic thromboembolic pulmonary hypertension (CTEPH) patient (C). There is minimal backward
wave intensity in the control subject. The wave intensities of the forward waves increased in the pulmonary hypertension patients, and there is a
distinctive BCW present in mid-systole. Red line outlines the net wave intensity profile. BCW indicates backward compression wave (dark green);
FCW, forward compression wave (dark blue); FDW, forward decompression wave (light blue); P, pressure; U, velocity.

Consistent with a previous short report,’* we observed that
wave speed, magnitude of waves, and WRI were significantly
greater in PH patients compared with control participants,
demonstrating increased arterial stiffness, RV work, and
vascular impedance mismatch, respectively. Furthermore,

FCW to RV power and energy density ratios were significantly
reduced in PAH patients compared with CTEPH patients and
controls. Finally, we observed that there was no strong
association between WRI and the conventionally used hemo-
dynamic measurements, echocardiographic parameters, BNP,
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Table 2. Magnitude of the Separated Waves in the Main and Branch Pulmonary Arteries

Control PAH CTEPH P Value
Main pulmonary artery
FCW intensity, 10 W/m? 8.70 (5.95-10.9) 11.2 (8.5-15.0) 13.3 (11.6-16.0) 0.027*
FCW energy density, 10° J/m? 3.95 (3.51-4.66) 5.83 (3.95-6.82) 6.20 (5.07-8.51) 0.041*
FDW intensity, 10* W/m? 2.33 (1.29-3.06) A1 (2.77-5.92) 4.21 (2.56-5.65) 0.044*
FDW energy density, 10 J/m? 1.55 (1.04-1.94) 1.88 (1.51-3.02) 2.96 (2.00-3.77) 0.18"
BW intensity, 10* W/m? 0.48 (0.35-0.54) 3.18 (2.46-4.70) 2.45 (1.68-5.92) <0.001*
BW energy density, 10° J/m? 0.16 (0.14-0.21) 1.51 (0.82-1.80) 1.08 (0.73-2.72) <0.001*
Wave reflection index, % 3.93 (3.38-6.78) 25.1 (19.3-29.6) 30.2 (11.8-35.5) <0.001*
Branch pulmonary artery
FCW intensity, 10* W/m?2 8.01 (4.40-15.1) 14.1 (10.1-21.2) 9.66 (9.21-14.4) 0.12%
FCW energy density, 10° J/m? 4.48 (1.75-5.49)% 6.43 (4.17-9.34)° 4.11 (3.94-7.25) 0.107
FDW intensity, 10* W/m? 1.68 (1.05-3.38) 3.90 (2.46-7.72) 2.74 (1.64-2.24) 0.018*
FDW energy density, 10° J/m? 1.26 (0.73-1.88)° 2.41 (1.35-3.71)° 1.33 (0.58-1.55) 0.098"
BW intensity, 10* W/m? 0.35 (0.19-0.89) 3.07 (2.26-5.90) 2.80 (1.78-4.10) <0.001*
BW energy density, 10° J/m? 0.16 (0.13-0.31)" 1.70 (1.06-2.02)" 1.31 (1.01-1.87) <0.001*
Wave reflection index, % 6.36 (3.20-9.09)° 24.7 (18.9-32.6)° 31.8 (25.8-36.6) <0.001*

Data are presented as median (25-75% quartile). Backward waves appear as backward decompression waves in 3 of the control participants and as backward compression waves in the
rest of the control participants and in all pulmonary hypertension patients. BW indicates backward wave; CTEPH, chronic thromboembolic pulmonary hypertension; FCW, forward

compression wave; FDW, forward decompression wave; PAH, pulmonary arterial hypertension.

*Control significant different from PAH and CTEPH.
TCTEPH significantly different from control.

PAH significant different from control.

SPreviously published data.?®

IBranch significantly different from main pulmonary artery.
YPAH significantly different from control and CTEPH.

or PH severity. Consequently, this study revealed distinct
differences in arterial wave propagation between persons with
and without PH.

RV Hydraulic Power

PH is a progressive disease of the pulmonary vasculature that
often leads to right heart failure?'; therefore, it is important to
understand the interaction between the right ventricle and the
pulmonary circulation. Consistent with the low-pressure, low-
resistance, and high-compliance nature of the right-sided
system, the magnitude of the waves and the wave speed were
low in the control participants. As PH develops, the pulmonary
artery becomes a high-pressure, high-resistance, and low-
compliance system resembling the hemodynamic properties
of the systemic arterial system. This is reflected not only in
the pulmonary pressures and resistance but also in the wave
characteristics.?%?® Wave speed, ie, local arterial stiffness,
increased 4- to 5-fold in PH patients, and the increase in wave
speed was related to decreased global pulmonary compliance
and cardiac function. The magnitude of FCW increased ~1.5-
fold in PH patients, indicating greater RV work to

accommodate increased workload. However, it might not
always be the case to find increased FCW intensity in PH
patients; for instance, as the disease advances and the
ventricular performance and cardiac output decrease, the
magnitude of FCW may be reduced.'®

The conventional calculation of RV work accounts for the
steady-flow fraction of RV stroke work.'® We described RV
stroke power and energy densities, which are useful dimen-
sions for comparison with WIA parameters. It may seem
strange that wave power and energy exceed the total steady
hydraulic power and energy; however, this is the result of the
definition of normalized wave intensity, in which the number
of samples is squared. We have demonstrated that the
fraction of wave power and energy relative to the mean
hydraulic power and energy, as expressed by FCW to RV
power and energy density ratios, reduced in PAH patients. The
oscillatory power fraction of total RV power has been shown
to be reduced in PH in previous studies?*?° and this has been
interpreted as an efficient RV adaption to increased afterload,
as the oscillatory power is considered an unavoidable
“waste.”?® This may explain the reduced wave power fraction
in PAH. Although not directly related to RV oscillatory power,
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Figure 4. Wave speed was significantly higher in patients with pulmonary hypertension compared with
controls. There was no significant difference between patients with pulmonary arterial hypertension (PAH)
and chronic thromboembolic pulmonary hypertension (CTEPH) or between main and branch pulmonary

artery.

wave power is associated with the generation of pulse waves
and was significantly correlated to the pulmonary pulse
pressure. However, there is also evidence suggesting con-
served?” or increased?® ratio of oscillatory power to mean
hydraulic power in PAH. It is unclear why these studies differ,
but differences may relate to methodological differences.

In contrast to PAH, we observed that the fraction of wave
power and energy in CTEPH patients was not significantly
different compared with controls. The lower FCW to RV power
and energy ratios in PAH compared with CTEPH suggests
differences in the intrinsic and/or extrinsic components of
the RV load. RV remodeling is triggered by pressure overload
in both CTEPH and PAH, but the disease mechanisms differ.
CTEPH is characterized by elevated pressure after an episode
(or multiple episodes) of pulmonary embolism in the proximal
pulmonary arterial segments,”® whereas PAH is caused by
gradual changes in the distal pulmonary vasculature.®®
Although not statistically significant, the wave speed (ie,
proximal arterial stiffness) was greater and yet the total
pulmonary vascular resistance and PAPm were lower in the
CTEPH group in comparison to the PAH group. The differences
in the fraction of wave power and energy may thus reveal
subtle dissimilarities in the altered RV afterload between the 2
diseases. Albeit less likely, another possibility is that it
reflects differences in RV adaptation. RV remodeling in
response to pressure overload is complex,®' for instance,
pressure overload states such as Eisenmenger syndrome and
congenital pulmonary stenosis are better tolerated than other
causes of PAH, and RV failure occurs late in the course of
disease, demonstrating different RV adaptation.®? Whether
the mechanism of RV remodeling in CTEPH differs from that in

PAH is unclear. Our findings may reflect a more rapid (in most
cases) RV adaptation to a sudden change in pressure load, as
it is in CTEPH, versus gradual alteration over time in PAH.

Wave Reflection

Reflected waves are generated when there are changes in the
energy transmission properties of the vessels, that is, altered
cross-sectional area or arterial stiffening, causing impedance
mismatch between the proximal and distal vasculature.? In
the control participants, wave reflection was practically
negligible (WRI of 3—6%). This suggests that there is no single
distinct reflection site in the normal pulmonary vasculature,
supporting the theory that the pulmonary arterial tree is
constructed in a way that facilitates the propagation of
forward-traveling waves optimally while minimizing wave
reflection and thereby minimizing the ventricular workload.>?
In contrast to previous studies in open-chested canine
models®**3° and a recent magnetic resonance imaging—based
study in humans,'® we did not consistently observe a BDW in
mid-systole that accelerated pulmonary flow in control
participants. One participant aged 46 years and another aged
55 years showed an evident BDW (WRI >5%). It has been
shown that the pulmonary artery stiffens with age®®; there-
fore, it is conceivable that a more prominent BDW may be
present in younger healthy persons.

In PH patients, a large BCW (ie, a reflection wave) was
present in mid-systole, indicating a mismatch in pulmonary
vascular impedance. Previous studies in animal models®*®’
and humans'*'® have used the local wave speed and half the
traveling time between the peak of FCW to BCW to give an
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Figure 5. Wave to RV power and energy density ratios. Forward compression wave (FCW) to right
ventricular (RV) power (A) and energy (B) density ratios in the 3 groups and receiver operating
characteristics analysis (C and D) for distinguishing chronic thromboembolic pulmonary hypertension
(CTEPH) from pulmonary arterial hypertension (PAH) are shown. AUC indicates area under the curve.

estimate of the reflection site; however, this calculation is
based on the assumption that the local wave speed is
constant throughout the circulation, which is unlikely. Apply-
ing the calculation in the PAH group and CTEPH group in this
study, for instance, would give a reflection site of ~40 and
~56 cm, respectively, downstream of the main pulmonary
artery, both of which are anatomically implausible.

We found no significant differences in the wave reflection
pattern between the PAH and CTEPH patients, and the
differences remained insignificant even after excluding the 2
nonoperable CTEPH patients. As discussed, PAH is considered
a disease of the distal pulmonary artery, whereas CTEPH is
regarded as a disease of the more proximal segments.
Previous studies have suggested that earlier and larger wave
reflection, as assessed by inflection time and augmentation
index, respectively, applied to the pressure waveform,*®%? is
present in CTEPH patients and may be used as an additional
marker to differentiate between the 2 diseases; however, the

use of this method to evaluate wave reflection in the systemic
circulation has been questioned.*® A recent study suggests
that the energy of BCW is increased in CTEPH patients with
proximal clots compared with PAH patients'®; however, we
did not observe any significant differences in reflection time,
magnitude of the reflective wave, or WRI between the 2
groups, suggesting that the main apparent reflection site is
similar in the 2 types of PH. CTEPH patients are characterized
by chronic thrombi in the pulmonary artery, and wave
behavior in the vicinity of the thrombi is unknown. As CTEPH
advances, progressive pulmonary vascular remodeling in the
small vessels and changes in pulmonary microcirculation
including plexiform lesions occur, much like the pathology of
PAH,?’ which may explain the similarity in the wave reflection
pattern between the 2 groups of patients.

There was no strong association between pulmonary WRI
and conventionally used hemodynamic, echocardiographic, or
biochemical parameters, that is, the degree of vascular

DOI: 10.1161/JAHA.117.006679

Journal of the American Heart Association 10

HDOYVHASHY TVYNIDIYO



WIA in Pulmonary Artery Su et al

Table 3. Spearman Rank Correlation Between Wave Intensity Indices and Conventionally Used Clinical Values

Wave Speed FCW Intensity FCW Energy BCW Intensity BCW Energy WRI

p P Value p P Value p P Value p P Value p P Value p P Value
PAPm 0.62* <0.01* 0.14 0.56 0.14 0.58 0.26 0.29 0.07 0.79 —0.08 0.74
RA pressure 0.35 0.15 0.07 0.78 —0.05 0.83 —0.05 0.83 —0.03 0.89 —0.05 0.83
PAPp 0.78* <0.01* 0.48* 0.04* 0.54* 0.02* 0.14 0.58 —0.01 0.96 —0.20 0.41
Cp —-0.62* <0.01* 0.09 0.71 0.22 0.36 0.07 0.76 0.20 0.41 0.26 0.27
Cl —0.26 0.29 0.08 0.75 0.32 0.19 —0.18 0.45 —0.07 0.77 —0.07 0.78
RVSVI —0.31 0.20 0.20 0.41 0.38 0.1 0.03 0.91 0.1 0.66 0.06 0.81
PVRI 0.46* 0.05* —-0.02 0.93 —0.19 0.45 0.17 0.48 0.02 0.95 —-0.07 0.78
RA index —0.10 0.69 0.18 0.45 0.13 0.60 0.06 0.79 0.19 0.43 0.05 0.84
RV/LV 0.26 0.29 0.10 0.68 —0.03 0.89 017 0.48 0.06 0.81 0.04 0.87
RV FAC —0.18 0.46 0.13 0.59 —0.05 0.84 —0.36 0.13 —0.29 0.22 —0.25 0.29
TAPSE —0.58* 0.01* —0.07 0.79 —0.14 0.58 —0.01 0.96 0.07 0.79 0.20 0.40
BNP 0.21 0.38 0.31 0.19 012 0.64 0.1 0.65 0.20 0.40 0.04 0.89

In contrast to wave speed, there was no strong association between pulmonary WRI and conventionally used hemodynamic, echocardiographic, or biochemical parameters. BCW indicates
backward compression wave; BNP, B-type natriuretic peptide; Cl, cardiac index; Cp, global pulmonary compliance; FCW, forward compression wave; PAPm, mean pulmonary arterial
pressure; PAPp, pulmonary arterial pulse pressure; PVRI, indexed pulmonary vascular resistance; RA index, indexed right atrium area; RA, right atrium; RV FAC, right ventricular fractional
area change; RV/LV, right:left ventricular area ratio; RVSVI, indexed right ventricular stroke volume; TAPSE, tricuspid annular plane systolic excursion; WRI, wave reflection index.

*P<0.05.

impedance mismatch (as expressed by WRI) was not related
to the dynamic and steady-flow components of the RV
workload, nor was it associated with measures of RV function.
The lack of correlation among WRI, pulmonary artery compli-
ance, and resistance suggests that these parameters repre-
sent different manifestations of pulmonary vascular disease
and thus different components of the RV workload. The
normal adult pulmonary circulation is a low-pressure, high-
compliance system with a large vascular reserve in the form
of nonperfused vessels.*’ Consequently, increased PAPm
(>25 mm Hg) occurs relatively late in the progression of
disease when damage to the vasculature is advanced*?;
therefore, PAPm may not reveal the true severity of pulmonary
vascular disease. Early diagnosis of pulmonary vascular
disease before an increase in resting PAPm may be advan-
tageous in patients at high risk of PH, for example, patients
with systemic sclerosis,*® patients with persistent symptoms
after acute pulmonary embolism,** or first-degree family
members of patients with heritable PAH.*® Early detection of
pulmonary vascular disease remains a great challenge.
Potential clinical techniques for early detection such as
stress Doppler echocardiography, magnetic resonance imag-
ing adenosine stress test, and invasive cardiopulmonary
exercise test still lack validation.***® The current study
showed minimal wave reflection in persons without pulmonary
vascular disease, whereas in patients with mildly elevated
PAPm, WRI was ~30%, similar to patients with severely
elevated PAPm. Furthermore, WRI of patients treated with

specific PAH drugs was comparable to that of patients not on
PAH treatment. Thus, progressive vascular impedance mis-
match in the pulmonary artery must occur in the initial phase
of pulmonary vascular disease, maybe even before a rise in
PAPm is detectable. Although WRI does not serve as an
indicator of the degree of PH or RV dysfunction in established
disease, it may be possible that increased WRI, in the
presence of normal PAPm and RV function, is an early marker
of disease in the pulmonary vasculature. WIA as a technique
for early detection of disease does not require exposing
patients to additional stress in the form of hypoxia or
exercise, as it is the case with stress echocardiography and
invasive cardiopulmonary exercise. Conversely, it would be
interesting to apply WIA during interventions that are likely to
alter the RV workload, such as cardiopulmonary exercise and
nitric oxide inhalation; however, this is beyond the scope of
this paper, and further studies are required to determine the
clinical usefulness of pulmonary WIA.

Study Limitations

The number of study participants was small; therefore, some
of the statistical comparisons may be underpowered. For the
same reason, we have abstained from performing multivari-
able analysis. Although unlikely, we cannot exclude the
possibility that the uneven distribution in of men and women
may have a small influence on the observed differences in
wave characteristics among the 3 groups. The aim of this
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Figure 6. Wave speed and wave reflection in relation to mean pulmonary arterial pressure. Pulmonary
hypertension patients were assigned as having mildly elevated mean pulmonary arterial pressure
(PAPM=25-34 mm Hg), moderately elevated pressure (PAPm=35-44 mm Hg), or severely elevated
pressure (PAPm >45 mm Hg). In contrast to the wave speed (A), the degree of vascular impedance
mismatch, as expressed by wave reflection index (WRI, B) was shown to be unrelated to the severity of

pulmonary hypertension.

study, however, was to apply WIA in health and disease, and
the wave intensity pattern was consistent for all participants
in each group. The numbers of patients recruited from the 2
centers were not equally distributed. Consequently, care was
taken to avoid measurement bias, as mentioned. To recruit
completely healthy control participants in a catheterization
laboratory was not feasible; however, we included only
individuals without any risk factors for pulmonary vascular
disease in the form of lung diseases, left ventricular
dysfunction, or valvular diseases. Likewise, PAH and CTEPH
are both rare diseases; therefore, recruiting PH patients
without other cardiovascular or respiratory morbidities was
challenging.

We do not have simultaneous recordings from the right
ventricle; therefore, interpretation of the forward-traveling
waves in relation to the temporal RV function are assumptions
based on knowledge of physiological events. Acquiring high-
quality velocity measurements was challenging. This is
especially the case for PH patients, in whom the pulmonary
flow may be highly disturbed,** which induces signal noises
and artefacts on the Doppler flow tracings. Vibration and axial
movements of the catheter and occasional positioning of the
catheter against the vessel wall also introduce signal
artefacts. Thus, careful manipulation of the catheter during
the procedure and meticulous post hoc data processing were
necessary. Rather than making measurements in both branch
pulmonary arteries of each control participant and PAH
patient, we acquired data from either the left or right

pulmonary artery, depending on which artery the catheter
most easily advanced into, consistent with common clinical
practice; however, we do not expect asymmetric hemody-
namics in these participants. In CTEPH patients, it would be
ideal to obtain data from both pulmonary branches to assess
whether there is asymmetry in wave characteristics; however,
good-quality velocity data were not obtainable from the left
pulmonary artery in several patients, and because all patients
either had bilateral thrombi or solely right-sided thrombi, we
chose to focus our data analyses on the main and right
pulmonary arteries.

Conclusion

WIA in the pulmonary artery revealed distinct differences in
arterial wave propagation between persons with and without
PH. Wave reflection was minimal in those without pulmonary
vascular disease, whereas large wave reflection was observed
in patients with PH, indicating downstream vascular impe-
dance mismatch. In contrast to wave speed, the magnitude of
wave reflection was unrelated to disease severity. Conse-
quently, although WRI does not serve as an indicator of the
degree of PH or RV dysfunction in established disease, it may
be that increased WRI, in the presence of normal PAPm and
RV function, is an early marker of disease in the pulmonary
vasculature.

In addition, FCW to RV power and energy density ratios
differ between PAH and CTEPH patients, suggesting
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differences in the intrinsic and/or extrinsic RV load. Differ-
entiation between PAH and CTEPH in clinical practice is
mainly based on medical history and imaging. Although this is
unlikely to change, we demonstrated that FCW to RV power
and energy ratios display significant discriminatory capacity to
distinguish between CTEPH and PAH. Characterizing the
pathophysiological differences between the 2 diseases may
contribute to our understanding of disease progression and
treatment responses, whether in terms of the pulmonary
vasculature or the right ventricle.

The complex nature of data acquisition and processing may
limit the use of WIA in clinical settings at present; however,
recent advances in multisensor catheters, magnetic reso-
nance imaging technologies, and automated data processing
could facilitate future use of pulmonary WIA.
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