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Abstract 

Objective: Sickle cell disease is a genetic red blood cell disorder that often leads to 

stroke and executive dysfunction in school-age children and adults. This study aimed 

to characterise the development of the neural correlates of selective attention, an early 

component of executive function, in preschool children with sickle cell disease. 

Methods: Auditory event-related potentials were recorded while children attended to a 

story stream in one ear and ignored a second story in the other ear interchangeably. 



Twelve patients (mean age = 5.5, 7 males) and 22 typically developing children (mean 

age = 4.4, 10 males) were included in the final analyses. Results: By 100 ms, more 

positive ERP amplitudes were observed for attended relative to unattended stimuli in 

typically developing children but not those with sickle cell disease, suggesting deficits 

in the ability to focus attention. Reduced attention effects were associated with lower 

performance IQ. Conclusion: There are deficits in early attention modulation in young 

children with sickle cell disease.  

Key words: Sickle cell disease, Neuropsychology, Attention, Developmental 

Disabilities, Academic Functioning 
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Sickle cell disease (SCD) is a blood disorder that can result in a global pattern of diffuse 

brain injury, thought in part to be secondary to chronic anaemia and hypoxia (Baldeweg 

et al., 2006; Steen et al., 2005). Clinical stroke, a focal neurological event lasting more 

than 24 hours, and silent stroke, which results in small lesions that can only be observed 

through structural magnetic resonance imaging (MRI), are commonly reported in 

patients with SCD, but volumetric differences can also be observed in quantitative 



imaging studies even when structural MRI appears normal (Jordan & DeBaun, 2017; 

Land et al., 2015). The frontal lobes have a protracted period of development and the 

fronto-parietal regions, supplied by the internal carotid artery and the middle and 

anterior cerebral arteries, are most commonly affected by stroke in SCD (Ohene-

Frempong et al., 1998). There is also evidence for abnormal cerebral blood flow despite 

normal MRI (Prohovnik, Hurlet-Jensen, Adams, De Vivo, & Pavlakis, 2009). As a 

result, the frontal lobe and its connections are thought to be the most susceptible areas 

to SCD related pathology.  

The frontal cortex plays a prominent role in the brain network underlying 

executive skills, the cognitive domain most affected in children with SCD with or 

without visible tissue injury (Hogan, Telfer, Kirkham, & de Haan, 2013; Schatz, Finke, 

Kellett, & Kramer, 2002; Wang et al., 2001; Watkins et al., 1998).  Neurocognitive 

deficits appear early in development impacting IQ and school readiness, however the 

developmental trajectory of executive skills in children with SCD compared with their 

peers remains unclear (Hogan et al., 2013; Noll et al., 2001; Steen et al., 2002; Tarazi, 

Grant, Ely, & Barakat, 2007; Thompson, Gustafson, Bonner, & Ware, 2002). 

 Selective attention is the ability to enhance the processing of relevant stimuli, 

while suppressing the processing of irrelevant or distracting stimuli (Desimone & 

Duncan, 1995; Hillyard, Hink, Schwent, & Picton, 1973). The ability to selectively 

attend to target stimuli and ignore irrelevant environmental information is present from 

early in life but the speed and efficiency of these processes increase with age 

(Ridderinkhof & van der Stelt, 2000). Selective attention and the neural systems that 

underlie this process undergo significant development in the preschool years (Rueda, 

Posner, & Rothbart, 2004; Rueda, Rothbart, McCandliss, Saccomanno, & Posner, 

2005). As well as laying down a foundation for the development of later emerging 



executive skills, selective attention also plays a role in other cognitive domains such as 

language, writing, and mathematics (Engle & Kane, 2004; Stevens & Bavelier, 2012), 

and is an important predictor of school readiness and academic achievement (Duncan 

et al., 2007; Rueda, Checa, & Rothbart, 2010).  Few studies have attempted to study 

selective attention skills in detail in SCD. A recent study found specific selective 

attention deficits on the Test of Everyday Attention in a sample of adults with SCD as 

compared to matched controls, despite no evidence of MRI pathology (Vichinsky et al., 

2010).  Many developmental models of executive function depict it as a process of 

simpler skills, such as selective attention, emerging first which are then bootstrapped 

into more complex executive skills (Anderson, 2002).  Understanding when deficits 

emerge may be a first step to preventing potential snowballing effects of early skill 

deficits impacting the emergence of more complex skills.   

The use of event-related potential (ERP) and electroencephalography (EEG) 

techniques offers a window into potential differences in the brain functions 

underlying executive skills such as selective attention. EEG is the measurement of 

continuous electrical activity in the brain while the ERP is a voltage change that is 

time-locked to a specific stimulus. An ERP is acquired by averaging multiple trials so 

that the EEG signal of interest can be isolated from other brain activity (Taylor & 

Baldeweg, 2002). ERP components are averaged waveforms that have been attributed 

to a certain cognitive or sensory process (Downes, Bathelt, & de Haan, 2017).  ERPs 

have high temporal resolution, are not prone to examiner bias, and offer the 

opportunity to conduct robust investigations of executive functions using a multi-level 

methodology (Astle & Scerif, 2009).  

Hillyard and colleagues first identified the ERP index of selective auditory 

attention in adults using a dichotic listening task where the adults were instructed to 



pay attention to a series of tones presented in one ear and to ignore tones in the other 

ear (Hillyard et al., 1973). In response to these tones, adults typically show an early 

positivity (P1) followed by a negative component (N1) at about 100 milliseconds and 

a second positivity (P2) at approximately 200 milliseconds (Nager, Estorf, & Münte, 

2006).  Selective attention is observed in adults as a larger N1 for the attended stimuli 

relative to the unattended stimuli.  

Instead of the P1-N1-P2 response observed in adults, children tend to show an 

elongated broad positivity that starts at approximately 100 milliseconds in the same 

conditions (Sharma, Kraus, McGee, & Nicol, 1997). ERP research using dichotic 

listening paradigms has shown that children as young as three years can selectively 

attend to one auditory source while ignoring another (Sanders et al., 2006; Sanders & 

Zobel, 2012). In response to probe stimuli, preschool children from 3-years-old have 

been found to produce a broad positivity that extends from 100 to approximately 300 

milliseconds while 6 to 8-year-olds show a shorter positivity from 100 to 200 

milliseconds (Sanders et al., 2006). This positivity is observed to have larger 

amplitudes in response to attended stimuli.  The extended effect in younger children 

could reflect a prolonged influence of attention on neural processing and variability 

between and within children (Stevens & Bavelier, 2012). In a recent study, the 

transitions from the neurophysiological response observed in young children to the 

adult P1-N1-P2 response was investigated and it was found that the P1-N1-P2 

complex emerges in early adolescence (Karns, Isbell, Giuliano, & Neville, 2015). 

Initial evidence of the earlier P1 can be observed from 10 years of age but is not 

present in younger children (Karns et al., 2015). The P1-N1-P2 complex has a 

protracted developmental course and changes in functional development likely reflect 

the slow development of the fronto-parietal network (Ponton et al., 2000; Yurgelun-



Todd, 2007). 

The aim of this study is to explore potential neurophysiological differences in 

selective auditory attention in preschool children with SCD using an ecologically valid 

dichotic listening paradigm that was developed based on previous studies with 

preschool children (Isbell et al., 2016; Sanders et al., 2006). It is hypothesised that 

children with SCD will show less pronounced amplitudes as compared to the typically 

developing children in the attended condition and thereby demonstrate less of an  

attention effect. The attention effect, or the mean amplitude difference between the 

attended and the unattended condition, has been previously explored in this age range 

as an index of attention control (Isbell, Hampton Wray, & Neville, 2015). Given that 

the ERP response elicited in this task is an internal and measurable aspect of cognitive 

control (Anokhin, Heath, & Myers, 2004; Van Beijsterveldt & Van Baal, 2002), a 

secondary aim is to look at associations between neural modulation and performance 

on behavioural tasks of non-verbal IQ and executive attention. It is hypothesised that 

the children with the poorest executive scores on the neuropsychological assessments 

will show the smallest attention effect in the ERP response.  

Methods 

Participants  

Patients were informed of the study by their consultant haematologist at XXX 

during their routine clinical visit if they met the inclusionary criteria. Inclusionary 

criteria for the patient group and the control group included being aged between 36 and 

72 months, fluent in English, and no history of stroke, brain MRI investigations, known 

neurological issues, other disorders, or pre-term delivery. A diagnosis of SCD based on 

genotype was required. The participation rate for patients was approximately 85%. 

Reasons for non-participation included unavailability or a lack of response after 



referral. Three families cancelled the scheduled session. Control children were recruited 

through the same clinics as the patients and through local advertisement. Twenty-four 

patients (23 HbSS genotype and 1 HbSC genotype; FSIQ=98.8) and 38 typically 

developing control children (FSIQ=108.7) were recruited. All children spoke English 

as their first language. Mean averaged maximum velocity in the middle cerebral artery 

for patients at the most recent clinical visit was 155.3 (21.3) cm/sec; no patients had 

abnormal transcranial Doppler recordings (velocity >200 cm/sec). Five patients were 

currently on blood transfusion, four patients were being treated with hydroxyurea, and 

no patients reported experiencing current pain.  

Thirty-four EEG datasets were available for analysis after pre-processing (12 

patients (1 HbSC) and 22 comparison children; Table 1). Two patients and five controls 

were excluded due to EEG system error. Additionally, two patients and five controls 

were excluded due to removal of sensor net and/or headphones during the session. One 

control child had thick braids that prevented successful application of the apparatus. It 

was disclosed during assessment that a control child was born extremely pre-term and 

so was excluded from analysis. Additionally, one patient was diagnosed with SLI 

between recruitment and assessment, and one patient did not pass the training phase 

due to poor comprehension of instruction. Six patients and four controls were removed 

for not meeting the minimum criteria of 25 stimuli per condition after pre-processing. 

Final groups, including 12 patients and 22 control children, were matched for age, full 

scale IQ, socioeconomic status, and gender (Table 1), although only 36% of the control 

group was matched for ethnicity (Black British). 

Selective auditory attention task 

The ERP paradigm and processing pipeline was piloted with adults and two 

preschool-age children. Several measures were taken to make this task more age 



appropriate including the development of training and practice phases. Custom static 

low-detail visual cues for on-screen presentation were developed to match the story to 

be attended. Arrows were created for on-screen presentation to reduce memory load. 

Fifteen short stories from Aesop’s classical fables were adapted to be age-appropriate. 

All stories were recorded in a male and a female voice so that the child was always 

attending to a male and a female voice concurrently, helping them to differentiate 

between the two auditory streams. Sound recordings were edited using Audacity 

software to remove gaps longer than 100 ms and to make the recordings comparable 

for loudness. Story narrators were instructed to keep their tone and pitch at a 

consistent level.  

Auditory and visual stimuli were presented through age-appropriate adjustable 

headphones and on a Dell Optiplex (Dell Inc., TX) computer screen running 

Windows XP using a script programmed via Matlab 2012 R2012b (The MathWorks, 

MA) and Psychtoolbox V3 (Kleiner et al., 2007). The child watched a cartoon while 

the net was positioned. This was followed by a training session. The child was 

instructed to touch the ear that corresponded with the side that the arrow on the screen 

was pointing towards. After the training phase, the child undertook a practice session 

before EEG recording began. Participants were cued to selectively attend to one of 

two simultaneously presented stories that differed in location (left/right), voice 

(male/female), and content. The stimuli of interest, pure tone bursts of white noise 

with a length of 500ms, were randomly inserted into the attended and unattended 

streams at the same loudness level as the stories. At the beginning of each story the 

child heard “Are you ready?” and the researcher pressed a key to proceed. After each 

story, the child was asked questions relating to the attended story. The offset latency 

for the pure tone bursts of white noise was measured as 23 milliseconds using the EGI 



latency-testing device. There was a maximum of 14 story trials that were each up to 

one minute in duration. The inter-stimulus-interval was 1.5 seconds. If the child 

expressed a request to end the testing session, the researcher asked if they would like 

to attempt one more story trial and terminated the session if the child did not agree. 

Table 2 shows the average number of story trials completed for each group. 

ERP Recording and Analysis 

EEG data were obtained and recorded using NetStation V4.1.2 (Electrical 

Geodesics Inc., OR) on Mac OS 10.3.9 software. A NetAmps 200 amplifier and 

HydroCel Geodesic EEG was recorded using the Electrical Geodesics sensor net 

system from 128 electrodes and digitized at 250 Hz with a bandwidth of 0.1-100 Hz. A 

ground electrode was in place and the vertex electrode (Cz) was used as an online 

reference. Channel impedances were adjusted where necessary and appropriate to 

levels below 50kΩ. An electroculogram was recorded for the detection of eye-related 

artefacts. Electrodes were positioned above and below and to the side of both eyes. 

Offline, data were filtered with finite impulse response filters at a high-pass frequency 

of 0.1Hz and a low-pass frequency of 30Hz in EEGLAB 11.0.3 (Delorme et al., 2011). 

The EEG signal was epoched at 200 milliseconds before the stimulus event (the pure 

tone bursts of white noise) to 600 milliseconds after stimulus presentation. Automatic 

epoch rejection of bad epochs occurred at a threshold of plus or minus 100 microvolts. 

The average voltage of the 200 milliseconds segment before stimulus onset was set as 

the baseline. Visual inspection was used to remove artefacts such as eye blinks, 

saccades, muscle activity, and skin potentials (Luck, 2005). The data were re-

referenced from the vertex reference to an average montage. The time window of 

interest (100 to 300 milliseconds) was chosen based on a review of the relevant 

literature for this age (Coch et al., 2005; Karns et al., 2015; Sanders, Stevens, Coch, & 



Neville, 2006; Sanders & Zobel, 2012; Stevens, Sanders, & Neville, 2006; Stevens et 

al., 2009). The mean peak amplitude for this time window was investigated. Trials were 

averaged together to acquire a single averaged segment for the ignore and attend 

condition for each participant. A criterion of a minimum of 25 artefact-free trials in 

each condition after all pre-processing steps was imposed. This figure is within the 

range of minimum number of trials required in similar ERP studies with young children 

(Coch, Sanders, & Neville, 2005; de Haan, Pascalis, & Johnson, 2002; Sanders et al., 

2006). It has been recommended that studies with young children should include at 

least ten to twenty trials per condition to obtain a reliable estimation of the ERP 

component under investigation (Cuevas, Cannon, Yoo, & Fox, 2014; DeBoer, Scott, 

Nelson, & de Haan, 2007). Each child completed up to 14 story sessions so participants 

had up to 160 events (12 to 15 per story session) before processing. Children were 

reminded to fixate on the screen and to sit still between each story to maximize the 

number of artefact-free trials and were offered a teddy bear to hold if they struggled to 

stay still. To further improve signal-to-noise ratio, several channels were combined for 

channel-level analyses (Coch et al., 2005; Sanders & Zobel, 2012; Strait, Slater, 

Abecassis, & Kraus, 2014).  Four electrode groupings (figure 1) are defined based on 

previous studies with similar age groups and paradigms and a topographical 

investigation of the current population (Coch et al., 2005; Sanders et al., 2006; Isbell et 

al., 2016).  

Wechsler Preschool and Primary Scale of Intelligence  

The Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III-UK) 

(population mean=100, SD=15) was administered to obtain IQ (Wechsler, 2002). The 

IQ scores for the final groups were slightly higher than the original group means for 

both groups although executive scores were similar in the final group (Table 1) to that 



observed for the original groups.  Children were required to have a verbal IQ greater 

than 75 to proceed to the ERP task.  This threshold was implemented to ensure that 

children could comprehend task instruction. The chosen cut-off was based on 

language cut-offs used in similar studies that used ERP paradigms to investigate 

attention in preschool-age children (Stevens, Lauinger, & Neville, 2009). 

NIH toolbox test of attention control 

The standardised NIH toolbox (NIHTB) test of attention control (population 

mean=100, SD=15) was administered. Poorer scores in the NIHTB task reflect longer 

reaction time and incorrect responses. The NIHTB task has been validated from three 

years of age (Zelazo et al., 2013). Five control participants had missing NIHTB data 

due to technical difficulties during data collection. 

Doggie Deletion Task for Preschoolers 

The Doggie Deletion Task for Preschoolers (DDTP), a revised cancellation 

task, was also used to measure attention control (Byrne, Bawden, DeWolfe, & Beattie, 

1998). More omissions and commissions on the DDTP reflect poorer attention control. 

The DDTP task was previously developed with typically developing children at the 

XXX (Downes, Kirkham & de Haan, 2014).  

Procedure 

Ethical approval was obtained from the XXX NHS committee and site-

specific approval was obtained from XXX. Written informed consent was obtained 

from each parent and verbal assent was obtained from each child. The testing session 

took place in the XXX. All consent procedures and data collection was conducted in 

English by the same researcher (MD). All children first completed the WPPSI-III-UK, 

followed by the DDTP and the NIHTB test of attention control, in that order. After a 



scheduled break the child then completed the EEG session, which lasted 

approximately 30 minutes. 

Results 

ERP Behavioural Results  

There were no group differences between the total number of completed story 

trials, number of correctly attended story trials, number of events before pre-processing 

or final number of events (Table 2).  

Group differences  

As expected, the control group showed a broad positivity peaking at 

approximately 150-200 ms post-stimulus onset. However, this was not observed for the 

patient group who showed a less pronounced and inconsistent amplitude (figure 2).  

Overall group differences for attended and unattended conditions were further 

explored across the four frontal clusters of interest using a multivariate analysis of 

variance (ANOVA). Consistent with previous studies, the control group showed the 

attention effect (a larger response to the attended signal) to be greatest at the 

frontomedial site in comparison to the other three sites of interest, however this did not 

reach significance (F (2.2,46.19) =2.164,p=.10). In contrast to the control group, the 

patients did not show as strong an effect for the attended condition at any of the sites 

(see figure 3). The control group showed a significant difference in the mean peak 

between the attended and unattended condition (t=2.2, p=.04) but this was not observed 

for the patients (t=.60, p=.56). The frontomedial electrode grouping was chosen from 

the four clusters of interest for further analysis. Mean amplitudes were analysed using 

a two-way univariate ANOVA with group (patient vs control) and condition (attended 

vs unattended) as the between-subject factors and the mean amplitudes at the 

frontomedial site as the within subject factor. The two mechanisms underlying attention 



modulation in this task, enhancement of the amplitude in the attended condition and 

suppression of the amplitude in the unattended condition, were analysed. Significant 

group differences were observed between groups for amplitude in the attended 

condition at the frontomedial site with the control group showing larger mean 

amplitudes (t=2.2, p=.03), but no group differences were observed for the unattended 

condition (t=-.12, p=.91). Table 3 shows that, although there was greater mean 

amplitudes for the control group in the attended condition on the other sites, this did 

not reach significance (F (4,29) =1.72, p=.16) and there was no trend observed at any 

site for the unattended condition.  

The Attention Effect and removal of outliers 

Near significant group differences were observed for the magnitude of the 

attention effect (the difference between the attended and unattended conditions) at the 

fronto-medial site (t=1.8, p=.07). Group analyses were repeated to ensure that the three 

outliers in the negative range for the attention effect in the control group (all three-year-

olds- suggesting more variability in the youngest children) and the main outlier in the 

patient group were not having effect on group differences.  The group difference for 

the attention effect (attended-unattended) reached significance (p=.006) after removal 

of outliers. The post-hoc group difference observed for the attended condition also 

increased in significance (p=.013) although the lack of a group difference observed for 

the unattended condition remained the same. 

Associations with cognitive measures  

There was no relation observed between performance IQ and the attention effect 

using Pearson’s correlations although a greater positivity in the attended condition was 

significantly associated with performance IQ (r=.483, p=.004; figure 4 A). When the 

groups were separated, this association remained significant for the patients (r=.619, 



p=.040) but became a near significant trend for the control children (r=.415, p=.055). 

Associations with omissions and commissions on the DDTP were explored using 

Spearman’s correlations (as scores were not normally distributed) and it was found that 

children with larger peaks in the unattended condition made more omissions across 

both groups (rho=.465, p=.02, n=23; figure 4 B) and for the control group (rho=.583, 

p=.036) and patient group separately (rho=.717, p=.045). No associations with 

commissions were observed. The significance of the DDTP findings did not change 

when outliers were removed. No significant correlations emerged for the NIH attention 

control task.  

Discussion 

Previous research with preschool children in special populations who have 

known executive deficits has found evidence for altered neural processing in auditory 

attention modulation (Stevens et al., 2006; 2009). Here, we extend this research to 

children with SCD. The main finding is that children with SCD show a less pronounced 

positive amplitude to stimuli in the attended stream and have a poorer ‘difference score’ 

or attention effect. This study provides novel evidence for specific deficits in attention 

modulation in the neurophysiological response of young children with SCD. These 

results align with the behavioural findings of poorer executive function, particularly 

attention control, in older children with SCD (Daly, Kral, & Tarazi, 2011).  

The current findings are also in line with two previous ERP studies in SCD that 

found more diminished and variable ERP responses on tasks of executive skills 

(Colombatti et al., 2015; Hogan et al., 2006).  Hogan and colleagues measured ERP 

components related to performance monitoring in children with SCD between 11 and 

23-years-old, with and without evidence of silent lesions, and found that children with 

SCD showed some evidence for executive deficits in comparison to typically 



developing controls, even in the absence of stroke, as demonstrated by a reduced error 

related negativity amplitude which reflects reduced unconscious processing of errors 

(Downes, Bathelt, & de Haan, 2017). They also administered a battery of behavioural 

executive tasks where both sickle groups showed significantly poorer scores across 

several domains, including selective attention. Colombatti and colleagues investigated 

the P3 using an auditory oddball paradigm in children with SCD between 6 and 15-

years-old who had no history of stroke. The P3, a positive ERP component that reflects 

information processing during tasks that involve attending to and discriminating 

between target stimuli and distracting stimuli, was found to be more protracted and 

variable in the children with SCD. 

In the present study there was no difference between groups in the amount of 

trials completed or the amount of correctly attended stories, despite the difference in 

the underlying neural processes, highlighting the sensitivity of ERPs to processing 

differences. Stevens, Sander, and Neville (2006) reported similar findings for their 

cohort of children with specific language impairment (SLI), who also showed 

equivalent behavioural performance. Hogan et al. (2006) also reported no group 

differences in task performance on their performance-monitoring task in children with 

SCD despite neurophysiological differences. 

The pattern for larger amplitudes in the attended condition for the control group, 

and their absence in the SCD patient group, suggests that the SCD group had difficulties 

with signal enhancement rather than distractor suppression in attention modulation 

(Stevens et al., 2009; Stevens, Sanders, & Neville, 2006). Although attenuated ERPs 

were anticipated for patients in the attended condition, the lack of any significant 

response was not expected. Previous research on auditory attention allocation in 

children with autism and ADHD has also found it to be absent, attenuated, or 



inconsistent in multiple studies, even when compared with typically developing 

children (Donkers et al., 2015; Gomes et al., 2012; Loiselle, Stamm, Maitinsky, & 

Whipple, 1980).  The lack of a response in the attended condition may suggest that 

patients are allocating limited attention resources, are less automatic in the allocation 

of these resources, or alternatively, that there is a dampening of information, more 

limited activation, or immature neural synchronization (Gilley, Sharma, Dorman, & 

Martin, 2005). Thus, children with SCD may have less established neural sources of 

attentional modulation and the lack of neurophysiological modulation reflects poorly 

attuned attentional control.  

In the current study, there was an association observed between non-verbal IQ 

and the ERP amplitude in the attended condition, but not for the attention effect.  A 

relation between the attention effect and non-verbal IQ has been reported in preschool 

children from low SES backgrounds, while additional studies have shown a relationship 

between the ERP amplitude in the unattended condition and parent-reports of executive 

function (Isbell et al., 2016; Lackner et al., 2013).  Associations with the ERP were 

only observed for one of the two attention control tasks in our battery, where children 

with larger peaks in the unattended condition made more omission errors. Missing data 

or differences in task demands could have contributed to the lack of relation with 

behaviour performance on the NIHTB task. Behavioural tasks measure multiple steps 

of cognitive processing whilst ERP measures have the advantage of breaking down 

these steps into a series of components, which makes it more difficult to draw 

associations between the two. The behavioural attention tasks were also limited as they 

were both visual; an auditory task may have been more informative for direct 

comparison.  

Limitations 



One limitation of this study is the lack of neuroimaging, which means that 

although patients with a known history of stroke were excluded, some children may 

have had undetected silent stroke. Another limitation of this study is the small 

population. Nevertheless, the current patient population size was larger than the only 

previous published ERP studies in SCD (Colombatti et al., 2015; Hogan et al., 2006). 

A further limitation of this study was the high attrition rate, which resulted in only 34 

datasets in the final analysis, representing only 55% of the children recruited for the 

study. High attrition rates of up to 45% in EEG and ERP studies are typical for this age 

range and are related to refusal to wear the EEG cap and excessive movement during 

the session (Cuevas et al., 2012; Morasch & Bell, 2011; Wolfe & Bell, 2007). Finally, 

as observed in previous ERP attention studies with this young age range, there was 

variability within each group (Isbell et al., 2016; Stevens, Sanders, & Neville, 2006). 

Five patients (42%) and three children from the control group (14%) had attention 

effects greater than one standard deviation below the control group mean. Noisy ERP 

data in younger participants could have precluded the detection of stronger relations 

with behavioural measures. 

Future Investigations 

An advantage of the current paradigm is that it can be applied across a wide age 

range allowing for the developmental tracking of neural markers of attention (Kral et 

al., 2015; Strait et al., 2014). Future studies should apply this paradigm in older school-

age children and adolescents to ascertain whether the lack of response in the current 

study is a developmental delay that eventually catches up over time or whether it is an 

early indicator of an altered course of functional neural development. Additionally, 

there is currently no published evidence of classical attention ERP paradigms, such as 

the auditory oddball paradigm, in infants and young children with SCD. Future research 



applying this paradigm with young children will help elucidate whether the early 

attention deficit in the current study is also evident in more basic attention experiments, 

or unique to the complex stimuli in the current study that require the exertion of more 

executive control. It is important to determine the role of early attention deficits in the 

development of well-established later executive deficits in older children with SCD 

(Schatz & Roberts, 2007). Similar to Barkley’s developmental model of executive 

function for children with ADHD, where primary deficits in inhibition are proposed to 

have knock-on effects for later emerging executive domains, it may be that poor 

attention control in young children with SCD impairs the emergence of higher-order 

executive functions (Barkley, 1997).   

Recent research suggests that ERPs can be used to index improvements in 

cognitive interventions with preschool children, potentially indicating better 

recruitment of neural systems important for selective attention (Espinet, Anderson, & 

Zelazo, 2013; Isbell et al., 2016; Neville et al., 2013; Rueda, Checa, & Cómbita, 2012; 

Stevens et al., 2012; Strait et al., 2015). Future research should consider using ERP 

responses in dichotic listening tasks as an end point in treatment trials of young children 

with SCD. 

Conclusion 

Taken together, these findings contribute to the elucidation of differences in the 

development of the neural underpinnings of selective attention in preschool children 

with SCD. Children with SCD specifically show poorer signal enhancement with 

attention. Further research is warranted to investigate potential differences in source 

localisation and to determine whether group differences would be evident on other 

attention paradigms, such as the oddball paradigm. Future applications of the current 

paradigm in older children with SCD is also required in order to determine whether this 



group difference can still be observed. Nevertheless, the current study provides initial 

evidence for an altered neurophysiological response to selective attention in children 

with SCD, pinpointing a lack of signal enhancement, and also contributes further 

evidence for the relationship between behavioural performance and neural markers of 

attention.  
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List of Figure Legends 

Figure 1: Electrode sites 

The Geodesic Sensor Net 128 channel layout in accordance to the 10-20 system of 

electrode placement. Data were averaged across four channels at each site to increase 

the signal-to noise ratio. The four channel cluster sites are located over the mid frontal, 

left frontal, right frontal, and frontocentral sites and are illustrated in black, green, 

orange, and purple respectively.  

Figure 2: ERP waveforms for both groups 

Grand average ERP plots. Plots show attended (green) and unattended (purple) 

waveforms for the SCD group over the right frontal (A), left frontal (B), centrofrontal 

(C), and frontomedial (D) sites and for the typically developing children over the right 

frontal (E), left frontal (F), centrofrontal (G) and frontomedial (H) sites, showing 

differences in the area of interest (shaded grey area). 

Figure 3: Topographical maps for both groups 

Topographic two-dimensional voltage maps show scalp-potential distributions 

averaged over a 200ms time-window. Figures indicate magnitude and ranges of ERPs 

elicited for A: Attended condition, B: Ignored condition and C: the Attention effect 

(difference wave = attended-unattended) for SCD patients and D: Attended condition, 

E: Ignored condition, and F: Attention effect for typically developing control children 

at 100-300ms. Red depicts the highest amplitude in voltage distribution. Maxima 

corresponding to frontal effects are evident for the typically developing children in the 

attended condition (D) but are not as perceptible for the control children (A). A larger 

attention effect or difference wave in the frontal region can be observed for the controls 

(F) than for the patients (C). 

 



Figure 4: ERP and behaviour  

The relations between ERP and cognitive tasks. A: Association between the ERP for 

the attended condition and performance IQ and B: Association between the ERP for 

the unattended condition and number of omissions. 

 

 

List of Tables



Table 1: Group Descriptives  

Variable Patient Group 

(n=12) 

Control Group 

(n=22) 

P-value 

Age (mean; SD) 5.0 (.96) 4.4 (.92) .1 

FSIQ (mean; SD) 101.2 (10.5) 109.0 (14.3) .1 

VIQ 101.1 (10.9) 112.4 (11.5) .01 

PIQ 99.3 (12.3) 105.6 (15.5) .2 

NIHTB attentional 

control 

94.7 (24.4) 102.3 (17.5) (n=17) .3 

DDTP omissions 23.4 (19.6) 

(n=10) 

23.4 (15.7) (n=13) .9 

DDTP commissions 72.8 (121.6) 

(n=10) 

12.03 (21.7) (n=13) .1 

Male 7 10 .4 

Ethnicity    

Black British 12 8  

White British 
 10  

Asian British/Other   4  

Socioeconomic 

Status (by income) 

Lowest 

Middle 

Highest 

No information 

 

 

3 

6 

3 

0 

 

 

4 

10 

6 

2 

.7 



Maternal Education 

Secondary level 

Third level 

No information 

 

5 

6 

1 

 

7 

10 

5 

.5 

Pearsons’s Chi-Square used for category comparison and independent t-tests for 

comparison of continuous variables. FSIQ=full scale IQ VIQ=verbal IQ PIQ= 

performance IQ* Some of the participants did not complete the paper-based DDTP task 

due to task modification in the pilot phase (seven control children), timing issues (two 

patients/one control child), and experimenter error (one control child). Five of the 

control children did not complete the NIHTB task due to equipment issues. 

 

 

Table 2: Group comparison on behavioural task performance and number of 

usable events 

 

Variable Patient Group Control Group P-value 

Total number of 

story trials 

completed Mean 

(SD) 

10.7 (3.7) 10.8 (3.2) .92 

Percentage of 

correct/attended 

story trials Mean 

(SD) 

82.5 (18) 89.7 (17) .27 



Number of events 

before processing 

Mean (SD) 

107.5 (35) 123.4 (38) .17 

Number of events 

after processing 

Mean (SD; N) 

81 (35; 12) 86 (23; 22) .63 

 

 

  



Table 3: Mean amplitude of the early frontal positivity (100-300ms) in the 

medialfrontal, left frontal, right frontal, and central sites for both conditions. Significant 

group differences (p< .05) are shown in bold and trends for group differences (p<.1) 

are shown in italics. 

 

 

Group Condition Medial 

frontal 

Left 

frontal 

Right 

frontal 

Frontocentral 

  M (SE) M (SE) M (SE) M (SE) 

Patient 

Group 

Attended -.229 (.57) .381 (.47) -.071 (.59) .386(.41) 

 Unattended .249 (.49) .462 (.43) .282 (.38) .649 (.43) 

Control 

Group 

Attended 1.637 

(.58) 

1.389 

(.48) 

.662 (.29) 1.234 (.49) 

 Unattended .167 (.46) .369 (.57) .282 (.37) .555 (.41) 

 

 

  



Table 4: Associations between the behavioral variables and the neurophysiological 

correlates of attention control 

 

Measur

e 

 Patie

nt 

Grou

p 

  Cont

rol 

Grou

p 

  Total  

 Atten

tion 

Effec

t 

(atte

nd-

unatt

end) 

Atten

ded 

Cond

ition 

Unatte

nded 

Condit

ion 

Atten

tion 

Effec

t 

(atte

nd-

unatt

end) 

Atten

ded 

Cond

ition 

Unatte

nded 

Condit

ion 

Atten

tion 

Effec

t 

(atte

nd-

unatt

end) 

Atten

ded 

Cond

ition 

Unatte

nded 

Condit

ion 

DDTP 

Omissio

ns* 

.150 .517 .717* .149 .501 .583* .128 .449 .465* 

DDTP 

Commis

sions* 

.192 -.268 -.603 .186 .081 -.025 -.047 -.258 -.235 

NIH 

Inhibitor

y 

Control 

.242 .485 .174 .023 -.309 -.364 .165 .097 -.144 



*Spearman’s correlations used due to non-normal distribution of the DDTP variables; 

*p<.05 


