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We derive cosmological constraints from the probability distribution function (PDF) of evolved large-scale
matter density fluctuations. We do this by splitting lines of sight by density based on their count of tracer
galaxies, and by measuring both gravitational shear around and counts-in-cells in overdense and underdense
lines of sight, in Dark Energy Survey (DES) First Year and Sloan Digital Sky Survey (SDSS) data. Our
analysis uses a perturbation theory model [O. Friedrich et al., Phys. Rev. D 98, 023508 (2018)] and is
validated using N-body simulation realizations and log-normal mocks. It allows us to constrain cosmology,
bias and stochasticity of galaxies with respect to matter density and, in addition, the skewness of the matter
density field. From a Bayesian model comparison, we find that the data weakly prefer a connection of
galaxies and matter that is stochastic beyond Poisson fluctuations on ≤ 20 arcmin angular smoothing
scale. The two stochasticity models we fit yield DES constraints on the matter density Ωm ¼ 0.26þ0.04

−0.03 and

Ωm ¼ 0.28þ0.05
−0.04 that are consistent with each other. These values also agree with the DES analysis of galaxy

and shear two-point functions (3x2pt, DES Collaboration et al.) that only uses second moments of the PDF.
Constraints on σ8 are model dependent (σ8 ¼ 0.97þ0.07

−0.06 and 0.80þ0.06
−0.07 for the two stochasticity models), but

consistent with each other and with the 3 x 2pt results if stochasticity is at the low end of the posterior range.
As an additional test of gravity, counts and lensing in cells allow to compare the skewness S3 of the matter
density PDF to its ΛCDM prediction. We find no evidence of excess skewness in any model or data set, with
better than 25 per cent relative precision in the skewness estimate from DES alone.
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I. INTRODUCTION

Measurements of the two-point correlation function of
the evolved matter density field have provided competitive
constraints on fundamental cosmological parameters. In
combination with cosmic microwave background (CMB)
and other geometric data, they are stringent tests of ΛCDM
predictions on the evolution of structure over cosmic time
[1–5]. Ostensibly, larger studies of this kind are the primary
goal of the upcoming ambitious ground-based and space-
based surveys by Euclid, LSST, and WFIRST.
On a given smoothing scale, one can describe a field

locally by its PDF. An example of this is the PDF of
fluctuations of the mean matter density inside spherical or
cylindrical volumes. The variance, or second moment, of the
PDF is measured by two-point statistics. For Gaussian distri-
butions, this captures all the information in all the moments
of the PDF. But when the field is non-Gaussian, the third
moment (skewness) can take any value—therefore it con-
tains information that is not contained in two-point statistics.
Unlike the primordial CMB, which is extremely close to

a Gaussian random field, the density distribution in the
evolved Universe has been driven away from Gaussianity
by gravitational collapse. Third and higher order moments
arise on any scale. Two-point measurements are therefore
inherently very incomplete pictures of the matter density
field. Even the full hierarchy of N-point correlations ceases
to fully describe its statistics [6–8]. This is unfortunate in
two ways: (1) A lot of information on cosmology, and (2) a
lot of opportunities to test additional, independent ΛCMB
predictions of the growth of structure beyond its variance,
are lost by looking at two-point functions alone.
There are other reasons that make two-point correlations

a somewhat blunt tool. First, the information to be gained
from galaxy auto- or cross-correlations must be related to
the clustering of matter by a bias model, i.e., a description
of how galaxies trace matter density. Yet the information on
the bias model that is available from two-point functions
alone is limited. The primary reason for the success of joint
probes is that they can partially break these degeneracies.
For instance, the joint analysis of galaxy clustering and
galaxy-galaxy lensing can constrain two combinations of
σ8, galaxy bias, and galaxy stochasticity. As one pushes to
smaller scales where a lot of the cosmological constraining
power resides, a linear bias model without stochasticity is
not sufficient. The resulting degeneracies thus largely
annihilate the information that is gained. Second, the
information on the variance of the matter density field
can be used only if that variance can be modeled—on
nonlinear scales, complex physics that involve baryons and
neutrinos begin to influence any moment of the matter
density field. Using two-point functions, these complex
physics can be constrained [9,10], although (for the same
reason as for the bias model) only with limited discrimi-
nating power. If we could recover small scale information
with models that can be trusted, the ability of presently and

imminently available data sets to confirm or reduce
tensions between the CMB and evolved power spectrum
would immediately be boosted.
For these reasons, studies of the cosmic density PDF,

which address these problems from a different and com-
plementary direction, have gained interest over the last
years. The full shape of the joint matter and galaxy density
PDF depends on moments of the matter density field and
parameters of the bias model that are degenerate in
correlation function measurements. Numerical simulations
[11–13], tree-level perturbation calculations [14,15], and
extensions of theory beyond that [16], have been shown to
provide accurate predictions for the matter density PDF.
Parameter forecasts show that PDF measurements on data
are promising [17–19] due to the complementary informa-
tion, different degeneracies, and different dependence on
observational systematics—factor-of-two improvements in
constraining power can be achieved in joint measurements
of PDF and two-point functions. While the galaxy count
PDF alone can be used to break degeneracies of cosmo-
logical and bias parameters [20], gravitational lensing
greatly complements this by measuring the actual matter
density PDF. Practical application of shear PDF statistics to
data has been made with DES [21,22], yet so far with
limited use for quantitative constraints.
In this paper, we use the smoothed, joint, projected

galaxy count and matter density PDF to constrain cosmo-
logical parameters and a galaxy bias model. Our basic
concept is to (1) split the sky by the count of tracer galaxies
in a top-hat aperture and extended redshift range into
quantiles of density, and to (2) measure the gravitational
shear around each of the quantiles to reconstruct the matter
density PDF. These measurements are a generalization of
trough lensing, introduced in Gruen et al. [23] (see also
[24–26]). They are also closely related to the galaxy-matter
aperture statistics of Simon et al. [27]. We make them on
Dark Energy Survey Year 1 (DES Y1) and SDSS DR8 data.
The measurements are analyzed with a tree-level per-

turbation theory prediction for the joint statistical properties
of lensing convergence and density contrast and galaxy bias
models of varying complexity (cf. our companion paper
Friedrich et al.). We use the analysis not just to provide an
independent measurement of cosmological parameters, but
also to confront the ΛCDM prediction for the skewness of
the matter density field with data, in a model independent
test of structure formation. That is, we measure the
asymmetry of the low and high density tails of the
distribution of matter density in the Universe. Two-point
statistics, which only measure the width of the matter
density distribution, discard this information.
This paper is structured as follows. We describe the

data we use and our measurement methodology in Sec. II.
Our modeling of these measurements, based on Friedrich
et al. [28], is summarized in Sec. III. The covariance
matrix we estimate is described in Sec. IV. We combine
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measurements, model, and covariance into an inference
framework in Sec. V. Results are presented in Sec. VI, and
we conclude in Sec. VII. Several tests and technical aspects
of this work are detailed in the Appendix.

II. MEASUREMENT

In the following section, we first describe our method of
splitting lines of sight by density based on counts of a tracer
galaxy sample (Sec. II A). The REDMAGIC tracer catalogs
we use to do this in DES and SDSS and their redshift
distribution calibration are presented in Sec. II B 1 and
Sec. II C 1. Details on our DES and SDSS source shape
and photometric redshift catalogs are given in Sec. II B 2
and Sec. II C 2. The measurement of shear and counts-in-
cells signals is described in Sec. II D.

A. Splitting the sky by density

The basic idea of this study is to split the sky into lines of
sight of different density.
To this end, we use a sample of foreground galaxies as

tracers of the matter field (the REDMAGIC galaxies at 0.2<
zT <0.45 described in Sec. II B 1 and II C 1). We count
these galaxies within circular top-hat apertures with a range
of radii θT¼100;200;300;600, centered on a regular HEALPIX
[29] grid of Nside ¼ 1024 (3.4 arcmin grid spacing).
We then assign each line of sight to one of five density

quintiles by sorting all lines of sight by galaxy count. The
20 percent of lines of sight with the lowest galaxy count are
what we will call the lowest density quintile 1 (or troughs,
cf. [23]). The 20 percent of lines of sight with the highest
galaxy count (quintile 5) we will denote as overdense lines
of sight.
Compared to Gruen et al. [23], we apply a more

elaborate scheme of accounting for varying fractions of
masked area within the respective survey region. A mask
accompanying the REDMAGIC [30] catalog that we will
use as our tracers (Sec. II B 1) indicate what fraction of the
area inside each pixel in a Nside ¼ 4096 HEALPIX map is
covered by DES Y1 Gold photometry [31] to sufficient
depth for detecting REDMAGIC galaxies out to at least
z ¼ 0.45. For each line of sight, we estimate the fraction of
masked area fmask within the corresponding top-hat aper-
ture from the REDMAGIC masks. Centers with more than a
fraction fmax

mask of area within the aperture lost to masking are
discarded.
The depth of SDSS is very uniform, with the REDMAGIC

sample being complete to z ¼ 0.45 everywhere. In this
case, we use fmax

mask;SDSS ¼ 0.1. Despite its greater overall
depth, DES Y1 [32] is generally more inhomogeneous than
the final SDSS imaging data. Where the REDMAGIC
sample is not complete to z ¼ 0.45, we remove all tracer
galaxies and define the area to be fully masked. Due to the
larger fraction of masked area, we use fmax

mask;DES ¼ 0.2,
above which we discard lines of sight.

To account for residual differences in fmask we apply the
following probabilistic scheme of quintile assignment. For
each line of sight i with masking fraction fmask;i and raw
tracer galaxy count Nraw;i, we define Ni as a draw from a
binomial distribution with Nraw;i repetitions and success
probability pi ¼ 1 − ðfmax

mask − fmask;iÞ,

PðNijNraw;i; fmask;iÞ ¼
�
Nraw;i

Ni

�
pNi
i ð1 − piÞNraw;i−Ni :

ð2:1Þ
This emulates the masking of a fixed fraction fmax

mask of area
within each aperture. It preserves the expectation value of
galaxy count in an aperture, regardless of its masking
fraction. Under the assumption that galaxies or masked
pixels do not cluster, and that galaxy count is not stochastic
beyond Poissonian noise, this masking procedure would
preserve the full distribution of galaxy counts at fixed
matter density (see Appendix A). The latter conditions are
not true in practice, which is why the degree and spatial
distribution of masking still affects the width of PðNiÞ at
fixed expectation value. Tests of likelihood runs and the
masked PðNÞ in the Buzzard simulations (see Appendix E
and [28]) indicate that this is not a major concern for our
analysis.
We assign a line of sight i to a density quintile based on

many random realizations of Ni. Different realizations of Ni
can cause different quintile assignments. To account for this,
we define a weight wq

i , proportional to the number of times
Ni is in quintile q. This weight is assigned to line of sight i
when measuring the signal, e.g., the mean tangential shear,
of quintile q.
Figure 1 shows the result of this quintile assignment

procedure for the joint region covered by DES Y1
and SDSS.

B. Dark Energy Survey Y1 data

The Dark Energy Survey data we use in this work is from
the SPT region of the first year of science observations (Y1)
performed between 31 August 2013 and 9 February 2014.
Details of the data and photometric pipeline are described
in Drlica-Wagner et al. [31].
We use catalogs of luminous red galaxies (REDMAGIC

galaxies) as tracers of the foreground matter density field
and galaxy shape and photometric redshift catalogs for
measuring its gravitational shear signal, all of which are
described briefly below and in detail in Elvin-Poole et al.
[30], Hoyle et al. [33], Zuntz et al. [34].
In all likelihood analyses run on data in this work, we

propagate the three most relevant calibration uncertainties
of these catalogs:

(i) the multiplicative bias of the shear signal, charac-
terized as m ¼ γobs=γtrue − 1,

(ii) the bias in mean redshift of each source bin i,
characterized by a Δzis which we use to evaluate
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nisðzÞ ¼ ni;PZs ðz − ΔzisÞ, where ni;PZs is the photo-
metric estimate of the source redshift distribu-
tion, and

(iii) the bias in mean redshift of the tracer galaxy sample,
characterized by a Δzl which we use to evalu-
ate nlðzÞ ¼ nredMaGiC

l ðz − ΔzlÞ.
The derivation of priors on these calibration uncertainties is
described or referenced in Sec. V B.

1. Tracer catalog

The REDMAGIC [35] algorithm identifies a sample of red
galaxies with constant comoving density and fixed lumi-
nosity threshold. This is done by fitting the DES photom-
etry of each galaxy in the survey to find its maximum
likelihood luminosity and redshift under the assumption of
the redMaPPer [36] red sequence template. Galaxies are
removed from the REDMAGIC catalog if their fitted
luminosity falls below a threshold (0.5L⋆ for the high
density run used in this work). The catalog is further pruned
to retain a fixed number density of galaxies per comoving
volume element, keeping those that are best fit (in terms of
photometric χ2) by the red sequence template. The resulting
galaxy density is 10−3h3 Mpc−3 in the case of the high
density catalog.
This procedure was run on two different photo-

metric measurements of DES Y1 galaxies, one with the
SEXTRACTOR MAG_AUTO method and one performing a
joint fit to the multiepoch data of multiple overlapping

objects (MOF). Potential correlation of the surface density
of REDMAGIC galaxies with observational systematics in
DES Y1 have been extensively tested in Elvin-Poole et al.
[30] for both versions of the catalog. They found that in the
redshift range used for the tracer galaxies, the MAG_AUTO
version of the REDMAGIC catalog shows smaller correla-
tions with observational systematics.
We hence adopt MAG_AUTO REDMAGIC with high

density as our fiducial tracer catalog. In a trade-off of signal
and noise, we choose zT ¼ 0.2–0.45 as the tracer redshift
range. We derive weights for the correction of REDMAGIC
density for the effect of systematics as in Elvin-Poole et al.
[30]. We find significant correlations of REDMAGIC density
with r band exposure time and seeing, and with i band sky
brightness. In the algorithm described in Sec. II A, we have
applied these by dividing the fraction of good area in each
pixel by the systematics weight that decorrelates REDMAGIC
density with these survey properties.
We do, however, test whether the choice of photometry

pipeline (MAG_AUTO or MOF) and the choice of whether
we apply the systematics weight in our density splitting
procedure makes a difference to our analysis. These tests
are detailed in Appendix C and show that the effect on the
amplitude of our measured signals is negligible.
The redshift distribution of the tracer galaxy population,

estimated by convolving the photometric redshift of each
REDMAGIC galaxy with its error estimate σz ≈ 0.017 ×
ð1þ zÞ [30], is shown as the grey contour in Fig. 2.

FIG. 1. Overdense (red) and underdense (cyan) lines of sight in the DES Y1 (south/bottom) and SDSS (north/top) survey regions. Five
quintiles of density of the zT ¼ 0.2–0.45 REDMAGIC tracer galaxy sample smoothed within a θT ¼ 300 radius are shown in the same
color scheme as in Fig. 3. Pixels are drawn in the color of the quintile with the highest probability/weight wq (see Sec. II A). Graticule
shows lines of ΔRA;Δdec ¼ �30°, centered on ðRA; decÞ ¼ ð0; 0Þ.
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Note that due to scatter in photo-z this extends beyond the
redshift range zT ¼ 0.2–0.45 inside which these galaxies
were selected.
As for other uses of REDMAGIC for cosmology

[1,30,37], we limit the catalog to the contiguous DES-
SPT area of 1321 deg2.

2. Lensing source catalogs

Detailed descriptions and tests of the DES Y1 lensing
source catalogs are presented in Zuntz et al. [34], Troxel
et al. [4] and Prat et al. [37], and the redshift distributions of
source galaxies are estimated and calibrated in Davis et al.
[38], Gatti et al. [39], Hoyle et al. [33]. We only give a brief
summary of the two independent shape catalogs from DES
Y1 here.
The fiducial catalog with the larger number of source

galaxies is based on the METACALIBRATION method [40,41].
In this scheme, a Gaussian, convolved with the individual
exposure point-spread function, is fit jointly to all single-
epoch r, i, and z-band images of each galaxy. Galaxies are
selected by the size and signal-to-noise ratio of the best fit,
and the ellipticity of the Gaussian is used as an estimate of
shear. Multiplicative biases in mean shear are caused by
both the galaxy selection (selection bias) and the use of a
maximum likelihood estimator with a simplified model
(noise and model bias). In METACALIBRATION, these are
calibrated and removed using a repetition of the Gaussian
fit on versions of the galaxy images that have been
artificially sheared by a known amount.
As a second catalog, we use IM3SHAPE, which produces a

maximum likelihood estimate of shear based on a bulge or

disc fit to all DES Y1 r band images of each galaxy.
Multiplicative biases in these estimators are calibrated
using realistic images simulations of DES Y1 [34,42].
Our estimator of tangential shear around overdense and

underdense lines of sight, including the bias corrections,
is described in Sec. II D 1. We use the galaxy selection
criteria recommended in Zuntz et al. [34]. We split
galaxies into redshift bins using the mean z of the
individual galaxy pðzÞ as estimated by the Bayesian
Photometric Redshift code (BPZ) [33,43]. We note that
for the METACALIBRATION catalog, we run BPZ on
METACALIBRATION measurements of galaxy fluxes (both
on the original and artificially sheared images) to be able to
correct for photo-z related shear selection biases (see also
Sec. 3.3 of Hoyle et al. [33] and Sec. IV.A.1 of Prat et al.
[37]). The three source redshift bins we use are identical to
the three highest redshift bins of Hoyle et al. [33], i.e.,
with sources at mean z ¼ 0.43–0.60; 0.60–0.93; 0.93–1.30.
Their redshift distributions, as estimated by BPZ using
MOF photometry, are shown in Fig. 2.
Uncertainties on residual multiplicative shear bias and on

the mean values of the binned redshift distributions
[33,34,38,39] are marginalized over in our analysis (see
Sec. V B).

C. SDSS DR8 data

1. REDMAGIC tracer catalog

The tracer population in SDSS is the REDMAGIC [35]
high density sample, selected by SDSS photometry and cut
to the same redshift range zT ¼ 0.2–0.45. Despite this
similarity, we will not assume in this work that SDSS and
DES REDMAGIC galaxies are the exact same populations.
SDSS has the benefit of an overlapping sample of galaxies

with spectroscopic redshifts. We use this to calibrate the mean
of the redshift distribution with clustering redshifts, indepen-
dent of the photometric estimate, in Appendix F 1.We find no
significant bias, yet marginalize over the uncertainty in the
analyses presented herein (see Sec. V B).

2. Lensing source catalogs

We use the shape and photometric redshift pðzÞ catalog
of Sheldon et al. [44] with minor modifications, identical
to those in Clampitt and Jain [45]. We refer to these papers
for details, but describe our source selection and priors
on systematic uncertainties of shears and photometric
redshifts below.
Due to the lower observational depth, the SDSS shape

catalog peaks at much lower redshift than the one from
DES Y1. The source redshift dependence of the trough
lensing signal (cf. Fig. 2) and complications arising from
significant overlap of sources with the tracer redshift
range lead us to only use sources with a mean redshift
estimate of 0.45 ≤ z < 1.0. We split these into four bins of
z ¼ 0.45–0.5; 0.5–0.55; 0.55–0.6 and 0.6–1.0. Within

FIG. 2. The redshift distributions of the DES source redshift
bins (violet, red, yellow dashed lines) and SDSS sources (blue,
dotted line), and of the REDMAGIC tracer galaxies (grey shaded
area) including scatter in their photometric redshift estimates. The
dependence of predicted amplitude of the trough lensing signal
on source redshift is shown by the black curve. Grey marks on
upper axis indicate nominal redshift range of tracers galaxies
zT ¼ 0.2–0.45. Lines are normalized to match maxima and the
trough signal is evaluated at θ ¼ 2θT , although the dependence of
source redshift scaling on angular distance is minor.
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each of these bins, each individual source is assigned a
minimum-variance relative weight (cf. [45]) of

wi ¼ ½σ2i;shape;meas þ 0.322�−1: ð2:2Þ

Due to the moderate signal-to-noise ratio and redshift
range of sources, we combine the four source redshift bins
into one for the purpose of our final data vector. In this, we
apply an optimal relative weighting of the bins as follows.
The predicted amplitude of shear around our troughs at

zT ¼ 0.2–0.45 (see black line in Fig. 2) scales with source
redshift approximately as the amplitude of gravitational
shear Σ−1

crit [see Eq. (2.4)] due to a lens at zd ¼ 0.36. We use
the value of hΣ−1

criti estimated for zd ¼ 0.36 and the stacked
pðzÞ of each of these four bins to apply a relative weight of
Wbin ¼ 1, 1.30, 1.56, and 1.81 to each of them. Because
the number density of sources is steeply falling with source
redshift in this range, the effective total relative weights of
the four bins (equal to thisWbin times the sum of all source
wi) are 1,0.697,0.453, and 0.202. We use these effective
weights to combine the measured shear signal and the nsðzÞ
from each of the four bins into a single source sample.
As a calibration of the photometric estimate, the mean

redshift of the sources is constrained by their angular cross-
correlation with galaxies with known spectroscopic redshift
(Appendix F 2).

D. Measured signals

Our data vector in this work contains two components,
the modeling of which was extensively tested in Friedrich
et al. [28]. In Sec. II D 1, we describe the measurement of
gravitational shear signals around overdense and under-
dense lines of sight. Section II D 2 details our measurement
of mean counts-in-cells in each density quintile in the
presence of masking.
All measurements are made in jackknife resamplings of

the survey. The covariance model constructed in Sec. IV
can therefore be compared to an jackknife covariance.
These were made based on 100 and 200 patches in the DES
and SDSS footprint, respectively, defined by k-means
clustering1 of the tracer galaxies, an algorithm that splits
the tracer galaxies into spatially compact subsets by their
distance to the nearest among a set of centers, optimizing
the center positions to minimize these distances.

1. Shear

The ellipticity of a galaxy is a pseudovector with two
components, e1 and e2 that, for any lens position, can
equivalently be described by a component tangential to a
circle around a lens (et) and by a component rotated by π=4
relative to that (e×).

Gravitational shear due to any single lens only affects the
mean component of et for an ensemble of sources sampling
a full annulus around the lens. As a function of angular
separation θ from the lens, this effect is described by the
tangential shear profile γtðθÞ. For a single lens, the
tangential shear profile is directly related to the azimuthally
averaged, projected surface mass density ΣðθÞ of the lens,
i.e., the projected mass per physical area, as

γtðθÞ ¼ ½hΣið< θÞ − ΣðθÞ� × Σ−1
crit ≡ hκið< θÞ − κðθÞ;

ð2:3Þ

where, in a flat universe,

Σ−1
crit ¼

4πG
c2

χdðχs − χdÞ
χsð1þ zdÞ

ð2:4Þ

is the inverse of the critical surface mass density and χd;s is
the comoving distances to the deflector at redshift zd and
the lensed source, respectively. For a set of lenses along the
line of sight, the signal on any source is close to the sum of
the effects of all lenses. One can still define a convergence κ
related to mean gravitational shear as in Eq. (2.3), although
it is no longer relatable to a uniformly weighted surface
mass density [see Eq. (3.7)].
The relation between tangential shear and measured

tangential ellipticity is less straightforward and depends
on the implementation of the selection and measurement of
source ellipticities. For the two schemes used on DES Y1,
the responsivity R ¼ dheti=dγt of observed ellipticity to
applied tangential shear is calibrated very differently: for
METACALIBRATION, it is estimated from versions of the
actual galaxy images sheared with image manipulation
algorithms; for IM3SHAPE, it is estimated from realistic
simulations of DES imaging data (and usually defined as
m ¼ R − 1). Both types of calibration contain an explicit or
implicit correction for selection biases, i.e., the shear
dependence of the choice of whether to include a galaxy
in the source sample.
For METACALIBRATION, we define the estimator γ̂qt of

mean tangential shear around lines of sight i with prob-
ability wq

i to be in a given density quintile q as

γ̂qt ¼ γ̂q;signalt − γ̂randomt ¼
P

i;jw
q
i eij;t

R
P

i;jw
q
i

−
P

i;jeij;t
R
P

i;j1
; ð2:5Þ

where eij;t is the ellipticity of source j in the tangential
direction around line of sight i, the sums run over all lines
of sight i in the mask of the density-split sky and all sources
j in an angular bin around each line of sight. The second
term subtracts shear around random lines of sight—for our
statistic, these are all healpix pixels around which the
masked fraction of area fmask < fmax

mask (cf. Sec. II A). R is
the sum of shear and selection responsivity,1https://github.com/esheldon/kmeans_radec.
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R ¼ Rγ þ RS ¼ 1

2

�
eþ1 − e−1
2Δγ1

þ eþ2 − e−2
2Δγ2

�

þ 1

2

�he1iþ − he1i−
2Δγ1

þ he2iþ − he2i−
2Δγ2

�
; ð2:6Þ

where superscripts � on e indicate an ellipticity measured
on an image artificially sheared by Δγ in the same
component and superscripts � on h…i indicate an average
taken on an ensemble of source selected by quantities
measured on an image artificially sheared by Δγ.
We note that this is identical to the methodology for DES

Y1 galaxy-galaxy lensing employed in Prat et al. [37],
except that we estimate the responsivity separately for the
source galaxies in each radial bin around the cluster, rather
than as a global scalar. The scale dependence, however, is
negligible—the METACALIBRATION R is equal to within 0.5
per-cent for any two angular bins. As in other DES Y1
lensing analyses [4,37], we weight all sources in a bin
uniformly—using the inverse variance of the shape meas-
urement underlying the METACALIBRATION scheme as a
weight would require a rederivation of the redshift cali-
bration [33] and additional bookkeeping for selection bias
correction, yet increases signal-to-noise ratio only mildly.
For IM3SHAPE, we use the source weights Wj defined in

Zuntz et al. [34] to first measure the weighted mean R of the
source sample, then define the estimator for tangential
shear as

γ̂qt ¼
P

i;jw
q
i Wjeij;t

R
P

i;jw
q
i Wj

−
P

i;jWjeij;t
R
P

i;jWj
: ð2:7Þ

The IM3SHAPE e are defined with the calibration correction
for additive bias already applied.
For SDSS, multiplicative bias is already corrected in

the source catalog. We therefore measure tangential shear
with the above equation by setting R ¼ 1, and use weights
Wj¼wj×Wbin [see Eq. (2.2) and subsequent description].
The measured shear signals are shown for DES in Fig. 3,

slicing the data by density percentile, source redshift, and
smoothing scale of the tracer galaxy field. SDSS signals are
in Fig. 4.

2. Counts-in-cells

The discriminating power of density split lensing signals
for cosmological parameters and parameters describing the
connection of galaxies and matter is greatly improved by
adding some degree of information of galaxy clustering or
bias. Here, we use a very basic statistic, the mean tracer
galaxy overdensity in our density quintiles, that was exten-
sively tested in Friedrich et al. [28]—other signals could
significantly improve the constraining power in the future.
Operationally, we define the mean tracer galaxy over-

density in all quintiles q as follows. We convert the raw
tracer galaxy count Nraw

i within the aperture radius around

each line of sight i to a stochastically masked countNi with
fixed masking fraction by a Bernoulli draw (Sec. II A and
Appendix A). We then order lines of sight by Ni and take
the mean of Ni in each quintile q of that list as hNiiq. The
mean tracer galaxy overdensity in quintile q is

Cq ¼ hNiiq
hNii

; ð2:8Þ

where the average in the denominator runs over all lines
of sight.
We note that this does account for the fact, in a stochastic

fashion, that a given line of sight can end up in different
density quintiles depending on the realization on masking
that decides the galaxy count.
Figure 5 shows the full PðNÞ distribution in both DES

and SDSS, alongside a model evaluated at the maximum
likelihood parameter values fit to the shear signal and mean
tracer galaxy overdensity in quintiles. The model not only
fits these mean overdensities, but also the full PðNÞ extre-
mely well: absolute differences in probabilities of findingN
galaxies in a random line of sight, jPmodel − Pdataj, are
below 10−3 and 3 × 10−4 for any N in DES and SDSS, res-
pectively. The bias model used for the plot is one with two-
parametric stochasticity (called b; α0; α1 in Sec. III C),
although even a simpler model can reproduce the PðNÞwell.

III. MODEL

In order to describe our signal as a function of
(i) cosmological parameters,
(ii) parameters that connect galaxy counts to the matter

(over)density, and
(iii) nuisance parameters,

we use the model developed and tested in Friedrich et al.
[28]. We only briefly summarize it here, with an emphasis
on required extensions for the use on observational data,
and refer the reader to that paper for details.
Let n̂ be a unit vector on the sky. The signal we have to

predict in this work is the shear profile around lines of sight
that fall into a certain quintile of foreground tracer density.
Also, our data vector includes the average tracer density
contrast in each of those density quintiles. To model these
two parts of our data vector, we have to consider the
following fields on the sky:

(i) δm;2Dðn̂Þ: the line-of-sight density contrast under-
lying our tracer galaxies. Given the redshift distri-
bution nlðzÞ of our tracer sample, this is given by

δm;2Dðn̂Þ ¼
Z

dχqlðχÞδm;3Dðwn̂; χÞ; ð3:1Þ
where χ is comoving distance and the projection
kernel qlðχÞ is given in terms of nlðzÞ as

qlðχÞ ¼ nlðz½χ�Þ
dz½χ�
dχ

: ð3:2Þ
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(ii) δm;Tðn̂Þ: the result of smoothing the field δm;2Dðn̂Þ
with a circular top-hat aperture T.

(iii) NTðn̂Þ: the number of tracer galaxies in the aperture
T around the line-of-sight n̂

(iv) κ<θðn̂Þ: the convergence inside an angular radius θ
around the line-of-sight n̂.

Because the Universe is isotropic, we will omit the
dependence on n̂, i.e., only consider a single line of sight.

FIG. 3. Shear signal around overdense and uncerdense lines of sight in DES Y1, split by line-of-sight density quintile (top row), source
redshift zs (central row) from BPZ run on METACALIBRATION (left) and MOF (right) photometry, and aperture radius (bottom panel). Our
fiducial data vector is the shear around the most underdense and most overdense quintile of θT ¼ 200 lines of sight as seen by sources in
zs ¼ 0.63–0.90. Left-hand panels: measurements with METACALIBRATION shears. Right-hand panels: measurements with IM3SHAPE.
Error bars are from 100 jackknife resamplings of the survey, consistent with our model covariance (Sec. IV). Dotted lines indicate model
prediction at maximum likelihood parameters (Sec. VI) and are a good fit to the data (χ2 ¼ 171 (METACALIBRATION) and 201
(IM3SHAPE) for ≈200 d:o:f:, as determined only after unblinding).
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As detailed in Friedrich et al. [28], the density split
lensing signal can be calculated from the convergence
profile around lines of sight with a fixed value of NT . This
profile can be computed as

hκ<θjNTi ¼
Z

dδm;Thκ<θjδm;Tipðδm;T jNTÞ ð3:3Þ

where Bayes’ theorem can be used to express the PDF of
δm;T at fixed NT as

pðδm;T jNTÞ ¼
PðNT jδm;TÞpðδm;TÞ

PðNTÞ
: ð3:4Þ

Here pðδm;TÞ is the overall PDF of δm;T , PðNT jδm;TÞ is
the probability of finding NT in a line-of-sight with fixed
δm;T and

PðNTÞ ¼
Z

dδm;TPðNT jδm;TÞpðδm;TÞ: ð3:5Þ

From the convergence profile hκ<θjNTi the corresponding
shear profile can be computed as (cf. Friedrich et al.)

hγtðθÞjNTi ¼
cos θ − 1

sin θ
d
dθ

hκ<θjNTi ð3:6Þ

and the shear profile around a certain quintile of tracer
density is given by the average of hγtðθÞjNTi over the
values NT occurring in that quintile (cf. Friedrich et al. for
further details). Fundamentally, we therefore have to model

(i) pðδm;TÞ, the PDF of matter density smoothed inside
our aperture,

(ii) hκð< θÞjδm;Ti, the expectation value of convergence
inside an angular radius θ around a line-of-sight with
given density contrast δm;T inside our aperture, and

(iii) PðNT jδm;TÞ, the probability of finding NT galaxies
in an aperture, given its density contrast is δm;T .

We describe our approaches on each of these ingredients
in the following subsections, and close with a description of
how we account for biases in source redshift and shear
estimates, and overlap of the source redshift distribution
with the tracer redshift distribution.
In all these steps, in order to predict the nonlinear 3D

matter power spectrum, we use the Takahashi et al. [46]
halofit approximation with the Eisenstein and Hu [47]
transfer function with baryonic features, which is suffi-
ciently accurate given our large scale binning.

A. PDF of matter density contrast

The PDF pðδm;TÞ can be computed from its cumulant
generating function (CGF). This function can be derived at
tree-level in perturbation theory with the help of the
cylindrical collapse model ([28], see also pioneering work
on the computation of the CGF in [14,15,48]).
The computations are numerically involved and, at least

in our implementation, too slow for application in a
likelihood analysis. We however show in Friedrich et al.
that, on the scales used in this work, the perturbation theory
computation of pðδm;TÞ is well approximated by a log-
normal distribution that matches the second and third
moments hδ2m;Ti and hδ3m;Ti of the perturbation theory
approach. We use this log-normal model [Sec. 4.1.1 in
[28]] for the smoothed, projected matter density field in
this work.

FIG. 4. Shear signal around overdense and uncerdense lines of
sight in SDSS, shown for all quintiles, with θT ¼ 200 and a single
source bin of zs ¼ 0.45–1. Error bars are from 200 jackknife
resamplings of the survey. Dotted lines indicate model prediction
at maximum likelihood parameters (Sec. VI) and are a good fit to
the data (χ2 ¼ 81 for ≈70 d:o:f:, as determined only after
unblinding). For comparison with Fig. 3, note the changed γt
axis scale.

FIG. 5. Counts-in-cells distribution for REDMAGIC zT ¼
0.2–0.45 galaxies in circular θT ¼ 200 top-hat apertures for
DES with 20 per cent masking fraction (blue) and SDSS with
10 per cent masking fraction (red). Lines indicate prediction of
PðNÞ for the maximum likelihood model fit to the lensing and
counts-in-cells data in the ðb; α0; α1Þ bias model. The color of the
line denotes quintiles, in the color scheme of Fig. 4, i.e., the
integral under each colored segment is 0.2. The mean count in
each quintile is part of the data vector and consistent with our
best-fit model, as checked via its χ2 after unblinding.
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B. Mean convergence around apertures
with fixed density contrast

We now turn to the convergence field κ, defined as

κðn̂Þ ¼
Z

dχWsðχÞδm;3Dðχn̂; χÞ; ð3:7Þ

where the lensing efficiency Ws is given by

WsðχÞ ¼
3ΩmH2

0

2c2

Z
∞

χ
dχ0

χðχ0 − χÞ
χ0aðχÞ qsðχ0Þ; ð3:8Þ

and

qsðχÞ ¼ nsðz½χ�Þ
dz½χ�
dχ

ð3:9Þ

is the line-of-sight density of the sources. As before, denote
by κ<θ the result of smoothing the convergence field over
circles of angular radius θ.
As described in Friedrich et al. [28] [see also 9, and

references therein], the expectation value of κ<θ around
lines of sight with fixed values of δm;T is mostly determined
by the moments

hδ2m;Ti; hδ3m;Ti ð3:10Þ

as well as the mixed moments

hδm;Tκ<θi; hδ2m;Tκ<θi: ð3:11Þ

In a similar way as for the projected density PDF, a full tree-
level computation of hκ<θjδm;Ti can be replaced by a log-
normal approximation that involves the above moments
(cf. Friedrich et al. for details of this). We want to stress,
that this does not mean that we employ a log-normal
approximation for the joint PDF of δm;T and κ<θ. E.g.,
Xavier et al. [49] have shown that such an approximation
can be inaccurate if the lensing kernel WsðχÞ and the line-
of-sight distribution of tracers qlðχÞ have strongly different
widths in co-moving distance. Rather, we model the
convergence field as a sum of two fields, one of which
is a log-normal random field and one of which is Gaussian
and uncorrelated to δm;T . Also, unlike for a joint log-normal
distribution, we allow the log-normal parameter of κ<θ, i.e.,
the minimum allowed value of κ<θ, to depend on the scale
θ. In Friedrich et al. [28] we have shown that this indeed
gives a good approximation to the joint statistical properties
of convergence and density contrast.

C. Probability of galaxy counts in apertures
with fixed density contrast

Finally, we need to model the probability of finding NT
galaxies inside an aperture given the matter density contrast
δm;T . As defined in Friedrich et al. [28], we consider three

models of increasing complexity. All of them assume bias
to be linear, i.e., the mean count of galaxies to be propor-
tional to the overdensity of matter in the large aperture
volumes we consider. They differ, however, in their para-
metrization of stochasticity [50]. We note that the latter may
arise from nonlinear biasing on scales smaller than our
apertures or from truly non-Poissonian noise in galaxy
density at fixed matter density that is present in subhalo
distributions [51–53].
In all equations below, N̄ denotes the mean count of

tracer galaxies inside apertures after masking a fraction
fmax
mask of area, and the generalized Poisson distribution that

is also defined for noninteger arguments is

PoissonðN; N̄Þ ¼ exp½N ln N̄ − N̄ − lnΓðN þ 1Þ�; ð3:12Þ

with the Gamma function Γ.
Our three models are
(i) bias only: b model—as in Gruen et al. [23], one

could assume PðNTÞ to be a Poisson distribution of a
nonstochastic tracer population with bias b,

PðNT jδm;TÞ ¼ PoissonðNT; N̄ð1þ bδm;TÞÞ: ð3:13Þ

(ii) bias and stochasticity: b, r model—in this case, the
galaxy count is assumed to be distributed as

PðNT jδg;TÞ ¼ PoissonðNT; N̄ð1þ δg;TÞÞ; ð3:14Þ

where δg;T is an auxiliary galaxy density field with

hδng;Ti ¼ bnhδnm;Ti: ð3:15Þ

The auxiliary field is correlated with the smoothed
matter density field with a correlation coefficient r.
Setting r ¼ 1 reduces this to the b model with no
stochasticity.

(iii) bias and density dependent non-Poissonianity:
b; α0; α1 model—because it introduces independent
scatter, stochasticity with r < 1 boosts the shot noise
in galaxy count at fixed matter density; yet a
dependence of this super-Poissonianity on matter
density that may be present in the data need not be
fully described by the b, rmodel; to account for this,
we use a more general model defined in Friedrich
et al. [28]. Here,

PðNT jδm;TÞ ¼ α−1ðδm;TÞ × Poisson½NT=αðδm;TÞ;
N̄ð1þ bδm;TÞ=αðδm;TÞ�: ð3:16Þ

We note that this model can be related to the halo
count and occupation distributions [54]. Our ansatz
can be thought of as a model of Poisson-distributed
haloes with α REDMAGIC galaxies in each one of
them, similar to e.g., the relation of Poissonian
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photon and non-Poissonian electron shot noise in
CCD detectors, described by a gain factor α. It could
similarly accommodate non-Poissonianity in halo
counts [55]. We allow for α to be different in higher
and lower density regions, e.g., because more
massive haloes might be more common in the
former, by means of a linear dependence of α on
δm;T as

αðδm;TÞ ¼ α0 þ δm;Tα1: ð3:17Þ

We note that a bias model without stochasticity is a
common assumption made for the galaxy distribution on
large scales [e.g., [1]]. MacCrann et al. [56] show that in
the Buzzard simulations, large scale stochasticity is
present. From the combination of probes with different
sensitivity to b and r, such as the three galaxy and
convergence auto- and cross-correlation functions, the
two parameters could be disentangled. Density split
statistics, in addition, are sensitive to differences in higher
moments of the galaxy and matter density field, and can
test and, potentially, constrain, more complex models such
as b; α0;α1.

D. Nuisance effects on data

In all runs on data, biases Δz in the means of redshift
distributions in DES and SDSS are accounted for at the
level of the model: we marginalize over lens redshift and
(multiple, in the case of a tomographic analysis) source
redshift bias parameters Δz by shifting the tracer galaxy
and source galaxy redshift distributions accordingly before
computing predictions for the signals. Likewise, we scale
the predicted shear signal by (1þm) to account for
multiplicative shear biases m.
A more complex issue arises from the clustering of

sources with the overdense and anticorrelation of sources
with the underdense lines of sight. This is a common
problem in cluster lensing or galaxy-galaxy lensing,
accounted for by so-called boost factors [57,58].
In the case of density split lensing, we apply the

assumption of linear bias to predict the radius dependence
of boost factors and their effect, given the non-thin lenses,
on our model predictions. For a given tracer redshift
distribution and a the matter field at redshift zs, the angular
clustering wqðθ; zsÞ of quintile q with matter can be
calculated with the same formalism as the convergence
in Sec. III B. Assuming a linear bias of source galaxies bs,
their redshift distribution at separation θ from quintile q
changes due to clustering to

nsðzÞ → ns;qðz; θÞ ¼ ½1þ bswqðθ; zÞ�nsðzÞ

×

�Z
dzs½1þ bswqðθ; zsÞ�nsðzsÞ

�
−1
:

ð3:18Þ

The lowest redshift bin in DES Y1 or the Buzzard
simulations and the sources in SDSS have sufficiently
strong overlap with the lens redshift distribution that we
include this effect in the modeling and marginalize over bs
in the analysis. This means that we use a different source
redshift distribution for predicting each point of the density
split, radially binned shear signal data vector. While bs is in
reality a function of zs, one can very accurately describe the
deboosting of the lensing signals by an effective bs because
the radial profile shape of the shear signal is almost
independent of source redshift.
We note that in this derivation we neglect a second, but

likely subdominant effect: the source redshift dependence
of the probability of failing to include a source in the DES
shape catalogs due to blending, that might cause a similar
density dependence of source nsðzÞ.
A potential spurious signal is due to intrinsic alignment

of physical source galaxy shapes with the underdense or
overdense lines of sight due to gravitational interactions
(see [59,60] for a review). For cross-correlations between
the positions of object and gravitational shear, such as
counts and lensing in cells, intrinsic alignments affect only
the signal from source galaxies that are physically asso-
ciated with the lensing objects, i.e., if redshift distributions
of source galaxies and lensing objects overlap. This is the
case primarily in the lowest redshift bin for DES Y1. Hence
test (4) in Sec. V D, which demonstrates the robustness of
the results to removing the lowest source redshift bin from
the data vector, indicates that the current analysis is at most
weakly affected by intrinsic alignments. This is in agree-
ment with our expectation that the tidal alignment of
galaxies with the comparatively small mean over- and
underdensities of our density quintiles is small at θ > 200
separation.
On small scales, baryonic effects can modify the matter

power spectrum from its dark matter only prediction,
primarily by affecting overdense regions. For our statistic,
this could be absorbed by the bias model on scales smaller
than the top-hat aperture θT . The shear signal is used on
scales larger than θT ¼ 200 only, and parameter constraints
are robust to a more conservative scale cut of θ > 400
(Sec. V D). We hence do not expect a significant impact of
baryonic effects on the parameter constraints at the accu-
racy level of the current analysis, but note that these effects
require further study for future, more constraining analyses.

IV. COVARIANCE

In order to interpret our measurements, we need an
accurate description of their covariance. We construct this
covariance from a large number of mock realizations of our
data vectors. In that, we make use of the fact that the noise
in our measurements can be separated into two compo-
nents: a contribution from shape noise and a contribution
from large scale structure and shot noise in the galaxy
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catalog. This approach is similar to the one of Murata
et al. [61].
In the following, we describe how we measure these

contributions, and how we combine them into a covariance
matrix.
We assume in all following analyses that the signals

measured in SDSS and DES Y1 are uncorrelated, justified
by the fact that the survey footprints (using only the
contiguous SPT region of DES) are well separated.

A. Shape noise

The primary contribution to the shape we measure for
any individual galaxy in our survey is the sum of its
intrinsic shape and measurement noise, not the weak
gravitational shear that distorts the galaxy image.
Because of this dominance of the noise over the signal,

and because the intrinsic shapes of neighboring galaxies are
almost uncorrelated, we can measure shape noise by
rotating each galaxy in our shape catalog by an independent
random angle. The shear signal around our actual under-
dense and overdense lines of sight as measured from these
rotated source catalogs represents a random realization of
the shape noise (cf., e.g., [62], for a similar technique for
shear peak statistics, [63] for void lensing, and [61] for
cluster lensing).
In measuring the signals on the rotated catalogs, we take

care to use the same methodology as for the measurements
on data. That means we use each randomly rotated source
catalog for cross-correlation with all of the maps contrib-
uting to our data vector. As on the data, we subtract the
mean shears measured around random points, for which we
simply use the centers of all HEALPIX pixels that are used as
lines of sight in any density quintile. The subtraction of
shear around random points considerably reduces shape
noise on large scales (see Fig. 6, and refer to [64] for a
detailed study of the effect).

B. Cosmic variance and shot noise

Two additional effects cause our signal to deviate from
its expectation value:

(i) The cosmic density field present in our survey
volume is a random realization. This is true both
for the volume in which our tracer galaxies are
located (and in which the signal of troughs and
overdense lines of sight originates) and for the
redshift range along the line of sight in between
us and the source galaxies that is not contained in
that volume. This causes there to be noise in the true
convergence around the lines of sight we identify,
and in the counts-in-cells distribution.

(ii) In a given realization of the matter density field,
tracer galaxies could be placed differently (for
instance, according to Poisson noise around their
expectation value in any given volume). Which of
these possible galaxy catalogs is realized causes
there to be a different true shear signal around what
we identify as troughs and overdense lines of sight,
and a different counts-in-cells distribution.

On the scales we care about in this work, we can measure
the sum of both contributions to the covariance, to good
approximation, from log-normal simulations of the related
matter and convergence fields and Poissonian realizations
of the tracer galaxy catalog. We do this by generating a
large number of realizations of these fields and catalogs
with FLASK [49].
We note that this part of the covariance is dependent on

cosmology and the parameters describing the connection of
galaxies and matter. For the covariance in this work, wewill
assume the settings of the Buzzard simulations, namely a
fiducial flat ΛCDM cosmology with Ωm;0¼0.286, σ8¼
0.82, Ωb ¼ 0.047, ns¼ 0.96 and H0¼ h×100 kms−1

with h ¼ 0.7.
For the matter and associated galaxy field in the tracer

redshift range, we use the power spectrum with a linear bias
of b ¼ 1.54, a redshift distribution, and a mean density of
the tracer galaxy population as in the Buzzard-v1.1 suite of
simulations. We assume Poissonianity of the galaxy count
at fixed density, i.e., the b model (Sec. III C). Note that the
relation of galaxies and matter in the Buzzard simulations
[56] and, potentially, the actual Universe is more complex
than that. We ensure, using mock likelihood runs on
Buzzard, that this does not mean our covariance from
the log-normal mocks is significantly underestimated (see
Appendix E). To set the log-normal parameter of the
projected matter field (i.e., the minimum allowed value
of δm ≥ −δ0), we use the methodology of Friedrich et al.
[28]. In the Buzzard cosmology and at a top-hat smoothing
scale of 20 arcmin, this yields δ0 ¼ 0.669. Details are given
in Appendix B.
For the source redshift distributions of the simulated

convergence fields, we use those estimated for the source
samples in our data.

FIG. 6. Variance of the shear signal around troughs due to shape
noise in DES Y1 METACALIBRATION zs ¼ 0.63–0.9 galaxies.
Subtracting the shape noise around random points (cross sym-
bols), as we also do in our data, lowers the variance considerably
on scales above 300 arcmin.
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We separate the convergence field into two parts: a
component correlated with the matter field that our tracer
galaxies populate, and an uncorrelated component (mostly
comprised of the parts of the lensing kernel in front and
behind our tracer galaxies). The correlated component is
modeled as a log-normal field with cross-power spectrum
and κ0 set to match the perturbation theory predictions for
hδκi and hδ2Tκi at a fiducial smoothing scale. This con-
strains the auto power spectrum of this component to be
only a fraction of the total convergence power spectrum.
The uncorrelated component is then simulated as a
Gaussian random field that is uncorrelated to all other
fields and whose power spectrum is chosen to give the
correct total convergence power spectrum (see Appendix B
for the details of the procedure).
We apply the same mask to the tracer galaxies as in our

data (or in our simulations, for the mock analysis described
in Appendix E), and the same prescription for splitting the
survey into lines of sight of different density.
We then measure tangential shear signals, as in our data,

yet on the noiseless shear maps output by FLASK at Nside ¼
4096 resolution. In order to sample the density fields as in
our data, we use the sum of weights of sources in our actual
shear catalogs situated in a pixel as the weight of the shear
signal in that pixel. We do this both for the correlated and
the uncorrelated part of the convergence field (see above)
and coadd the two signals. In addition, as in our data, we
measure the mean tracer galaxy overdensity in our density
quintiles.
On scales much smaller than the aperture radius θT¼200,

a checkerboard pattern in the off-diagonal shape noise
covariance is apparent (see Fig. 7). We find that this is due
to an interference of the HEALPIX grid we use to sample the
density field and the angular binning scheme for our shear
signal—for adjacent HEALPIX pixels, sources move from
one angular bin to the next and their intrinsic shape
orientation changes relative to the pixel centers. Since
these effects are present in the data as well (as seen from the
jackknife covariance) and only significant on angular scales
below our scale cut, we do not attempt to address them
further.

C. Constructing the covariance matrix

We create 1000 realizations of both the shape noise and
the large scale structure and shot noise contributions to the
covariance. Despite this relatively large number, there is
noise in our estimated covariance matrix. When inverting
the covariance matrix to calculate χ2 values and run a
likelihood analysis, this noise has two consequences.
First, the inverse of a noisy estimate of the covariance

matrix is a biased estimate of the inverse covariance matrix.
We follow the correction described in Hartlap et al. [65] to
correct for this effect, i.e., we multiply the χ2 calculated

FIG. 7. Covariance of shear signal around SDSS troughs from
shape noise (top), large scale structure and shot noise (second
from top, note the different scale). The model (third from top) is
the sum of these two and closely matches the jackknife
covariance (bottom). White lines indicate aperture radius
θT ¼ 200—only data above that is used in the likelihood.
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with the inverse of our estimated covariance matrix by a
factor

fAH ¼ Ncov − Ndata − 2

Ncov − 1
: ð4:1Þ

The number of entries in our data vector is at most
Ndata ¼ 208 in the fiducial DES analysis and we use
Ncov ¼ 960 realizations of the log-normal field to estimate
the covariance, which means fAH is 0.78 or larger for all
our likelihood runs. We confirm, using independent log-
normal mock realizations of our data vector, that the inverse
covariance matrix rescaled such does lead to a consistent χ2

distribution of residuals (Appendix D).
Second, the noise in the inverse variance leads to

additional scatter in the best fit we find [66–68]. Under
the assumption that the model is linear in all parameters
within the range probed, this can be compensated by
multiplying χ2 with a factor

fDS ¼
�
1þ ðNdata − NparÞðNcov − Ndata − 2Þ

ðNcov − Ndata − 1ÞðNcov − Ndata − 4Þ
�−1

;

ð4:2Þ

where Npar is the number of free parameters in the model.
These corrections are only appropriate for a monolithic

covariance estimated from a fixed number of independent
realizations. From the previous subsections, we can get
independent, unbiased estimates of the two contributions,
Covshape and CovLSS. The sum of Covshape þ CovLSS would
be an unbiased and less noisy estimate of the total
covariance. But to apply the above corrections, we need
to resort to coadding shape noise and cosmic variance
realizations before estimating the full covariance matrix.
In addition to the 960 realizations used to estimate the

covariance, we use 40 independent realizations to confirm
that our prediction indeed matches the mean signal mea-
sured from the log-normal simulations at the expected
χ2 ≈ Ndata. This is a test of both the numerical scheme
employed by FLASK and the implementation of the
analytical calculations of Friedrich et al. [28]. We find
that the two are in excellent agreement, except for a small
offset of the predicted and measured counts-in-cells sta-
tistic. The mean tracer galaxy overdensities (Sec. II D 2) we
measure in log-normal mocks are offset from the predic-
tions at most at the 10−3 level. We hypothesize that this is
due to resolution effects of the simulations, but cannot
exclude that similar effects could also present in the data.2

To compensate for this, we boost the variance of each of the
four counts-in-cells entries in our data vector by 0.0022.

FIG. 8. Covariance of tomographic shear signal around DES
density quintiles (20’, lowest to highest density quintile, then
lowest to highest redshift source bin, division indicated by white
lines) and counts in cells (last 5 bins) from shape noise (top),
large scale structure and shot noise (second from top, note the
different scale), and the full model from the sum of these two
(third from top). Bottom panel: diagonal of shear around troughs
in intermediate source redshift bin. Counts in cells residuals have
been rescaled by factor 1=50 to match a common color scale.

2We confirm, however, that the mean tracer galaxy over-
densities in our data are well fit by the model at its maximum
likelihood parameters.
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Using this covariance and fAH (but not fDS) as defined
above, the mean of all realizations with no shape noise
matches the predicted signal at the true input parameters at
total χ2 ¼ 0.19 with 208 degrees of freedom, proving the
numerical accuracy of the prediction code at a sufficient
level. Additional tests of our likelihood pipeline run on the
40 log-normal realizations are shown in Appendix D.

D. Comparison with jackknife covariances

From jackknife resamplings of our data, we can inter-
nally estimate the covariance matrix. While more care
would have to be taken for applying this estimate of the
covariance matrix in a likelihood analysis [69], it does
provide confirmation of our scheme to compare the jack-
knife estimate to the covariance estimated above.
Figure 7 shows the shape noise and cosmic varianceþ

shot noise components of the covariance matrix and com-
pares their sum to the jackknife covariance, for the shear
signal around underdense lines of sight in SDSS. The same
for the full density and source-redshift tomographic covari-
ance matrix of DES, including counts-in-cells, is displayed
in Fig. 8.

V. LIKELIHOOD

We compare our data to model predictions M in a
Bayesian fashion, i.e., we sample the posterior distribution
of model parameters p with a Monte Carlo Markov Chain
(MCMC) run on the likelihood

−2 lnL ¼ fAHfDS½D −MðpÞ�TC−1½D −MðpÞ�
þ PriorðpÞ: ð5:1Þ

For our fiducial likelihood analysis, we remove the
following parts of the full data vector:

(i) lensing andcounts-in-cells signal for any aperture radii
other than θT ¼ 200—on smaller smoothing scales,
small but significant deviations of our model and
measurements in N-body simulations appear [28].
Smoothing on larger scales than 20’ yields signals
with errors that are highly correlated to the 20’ mea-
surements, thus adding little independent information.

(ii) lensing signal on scales smaller than θT ¼ 200—
small but significant deviations of our model and
measurements in N-body simulations are present on
scales smaller than the aperture radius θT ¼ 200. The
lensing signal on these scales has low signal-to-noise
ratio. In addition, shape noise in adjacent small-scale
bins is anticorrelated, visible as the checkerboard
pattern in the lower left of Fig. 7. This is due to
interference of the radial binning scheme with the
HEALPIX grid of lines of sight: when we measure the
contribution of a source galaxy to the shear signal
around two adjacent lines of sight, its intrinsic
orientation relative to a line of sight and its distance

from the line of sight change coherently. While the
effect is consistently seen in jackknife and model
covariance, it makes these small scale lensing
signals numerically redundant. This leaves 17 an-
gular bins in each shear profile.

(iii) signal for quintile 3—the signals we use are not
linearly independent between all quintiles; we there-
fore discard the signal in the median quintile, which
is close to zero by construction anyway.

Therefore, in all of the following, unless otherwise noted,
D contains the shear signals measured at θ ¼ 20–6000 and
the relative overdensity of tracer galaxy count for the lower
two and upper two quintiles of galaxy count, measured in
θT ¼ 200 apertures. For the source tomographic DES Y1
analysis, these are 208 entries (72 for SDSS).
The precision matrix C−1 is estimated as detailed

in Sec. IV.
In the following subsections, we describe our choice of

parametrization, the nuisance parameters and associated
priors, and the consistency tests we perform before
unblinding the estimated cosmological parameters.

A. Cosmological parameters

Since this is our first cosmological analysis of counts and
lensing in cells, we choose to only vary a minimal set of
cosmological parameters, adopting fixed priors for ones
that the density split lensing and counts signal is not very
sensitive to. For the fiducial run of our likelihood, we
validate this approach by marginalizing over these param-
eters with informative external priors.
All likelihoods assume a flat ΛCDM cosmology. The

main parameters we wish to constrain are the matter density
in units of the critical density Ωm, and the amplitude of
structure in the present day Universe, parametrized as the
RMS of overdensity fluctuations on 8h−1 Mpc scale, σ8.
In an alternate run of our likelihoods, we will also leave

free the parameter S3 that describes the skewness of the
matter density field when smoothed over the given aperture
and redshift range,

S3 ¼ hδ3i=hδ2i2: ð5:2Þ

S3 was first defined by Peebles [70], who derived a pertur-
bation theory prediction S3 ¼ 34=7 for the unsmoothed
matter density field, and later generalized to top-hat
smoothed fields and higher orders [48,71,72]. Perturbation
theory predicts also the smoothed S3 to be almost indepen-
dent of Ωm and σ8 and to only vary slowly with redshift or
scale. A skewness S3 that is inconsistent with these
predictions could be caused either by non-Gaussian initial
density fluctuations (although CMB limits set tight con-
straints on these [73]) or by physics beyond gravity that
affect collapse either in the overdense or underdense regime.
We assume wide, flat priors for Ωm, σ8 and, in the

likelihood runs that vary it, S3 that do not limit the range
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sampled by the likelihoods. We fix the Baryon density
Ωb ¼ 0.047, the spectral index of primordial density fluc-
tuations ns ¼ 0.96, and a dimensionless Hubble parameter
h ¼ 0.7, equal to the values used in the Buzzard simulations
and consistentwith best constraints. For the transfer function
of primordial to initial matter power spectrum, we assume a
radiation density Ωrh2 ¼ 4.15 × 10−5. The evolution of
expansion and growth of structure in the late universe
assumes only matter and a cosmological constant.
An overview of these choices is given in Table I.

B. Nuisance parameters

In our likelihoods, we apply three different models to
describes the distribution of REDMAGIC galaxy count NT
inside an aperture at given mean matter overdensity δm;T,
PðNT jδm;TÞ. Details of this are described in Sec. III C, and
sampling ranges for the parameters b, ðb; rÞ, or ðb; α0; α1Þ,
designed to span any physically sensible configurations, are
listed in Table I.
Similar to previous cosmological constraints derived

from DES Y1 data, we assume and always marginalize
over nuisance parameters describing photometric redshift

and shear biases in our measurements. The nuisance
parameter for the redshift bias of REDMAGIC sources in
the zT ¼ 0.2–0.45 redshift range that is constrained from
cross-correlations with a sample of galaxies with spectro-
scopic redshifts as in Cawthon et al. [74]. Specifics of this
are described in Appendix F 1.
The photometric redshift biases and multiplicative shear

biases of source galaxies are described by two parameters
in each redshift bin. The three bins we use, i.e., all but the
lowest redshift bin of DES Collaboration et al. [1], are
labeled as i ¼ 2, 3, 4 in Table I. Priors on the redshift biases
are taken from the combination of the redshift distributions
of a matched sample of galaxies in the COSMOS survey
and angular cross-correlation with REDMAGIC galaxies
[38,39,75] as described in detail in Hoyle et al. [33]. The
priors on multiplicative shear bias in DES Y1 are described
in detail in Zuntz et al. [34]. Both of these priors are widened
in our analysis to account for their potential correlation
between bins [see Appendices of [33,34]], conservatively
assuming comparable signal-to-noise ratio in each bin.
Multiplicative bias in an independent SDSS shear

catalog that is consistent with the one we use [76] was
investigated in detail in Mandelbaum et al. [3]. The authors
in that paper find a Gaussian uncertainty related to
multiplicative shear calibration of σm ¼ 0.037, in addition
to photometric redshift biases over which we marginalize
separately. We assume a slightly more conservative
Gaussian uncertainty of σm ¼ 0.05 for the multiplicative
shear bias in the SDSS catalog used in this work.
These priors are also summarized in Table I.

C. Sampling and evidence

To sample the posterior likelihoods efficiently, we
employ both the EMCEE [77] and the MULTINEST [78]
algorithm. The latter has the advantage of also estimating
Bayesian evidences E,

E ∝ pðDjmodelÞ ¼
Z

dμpðDjmodel; μÞpðμjmodelÞ;

ð5:3Þ
where μ are the parameters of the model.
Knowing the evidence of two models 1 and 2 allows

comparing them with the Bayes factor, E1=E2. If the latter
ratio exceeds 3.2 or 10, the evidence for model 1 over
model 2 can be considered substantial or strong in the
nomenclature of Jeffreys [79].
We confirm in the tests performed in Appendices D

and E that both sampling algorithms and the analysis of
their outputs with CHAINCONSUMER [80] and custom codes
yield reliable parameter constraints and test results.

D. Blinding and tests

Since most of the tests in this paper were performed after
the scaling factors of the initial, blinded shear catalogs had

TABLE I. Priors for likelihood runs.

Parameter Prior

Cosmology
Ωm flat (0.1, 0.9)
σ8 flat (0.2, 1.6)
S3 fixed to PT/flat

Ωb fixed (0.047)
h fixed (0.70)
Ωrh2 fixed (4.15 × 10−5)

Tracer galaxies
b flat (0.8, 2.5)
r flat (0, 1)
α0 flat (0.1, 3.0)
α1 flat ð−1.0; 4.0Þ

Tracer galaxy photo-z shift
Δzl;DES Gauss (0.003, 0.008)
Δzl;SDSS Gauss (0.002, 0.006)

Source photo-z shift
Δz2s;METACALIBRATION Gauss (−0.019, 0.018)
Δz3s;METACALIBRATION Gauss (þ0.009, 0.016)

Δz4s;METACALIBRATION Gauss (−0.018, 0.031)
Δz2s;IM3SHAPE Gauss (−0.024, 0.018)
Δz3s;IM3SHAPE Gauss (−0.003, 0.016)
Δz4s;IM3SHAPE Gauss (−0.057, 0.031)
Δzs;SDSS Gauss (−0.014, 0.011)

Shear calibration
mi

METACALIBRATIONði ¼ 2; 3; 4Þ Gauss (0.012, 0.023)
mi

IM3SHAPEði ¼ 2; 3; 4Þ Gauss (0.0, 0.029)
mSDSS Gauss(0.0, 0.05)
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been revealed [34], we primarily rely on parameter level
blinding. This means that we do not compare measure-
ments on data to predictions in a known cosmology before
the following tests are passed:
(1) Log-normal simulations show χ2 values of data vs.

model at the input set of parameters consistent with a
fiducial χ2 distribution with the appropriate number
of d.o.f. Likelihood runs on mock data have a
coverage within expectations (i.e., the input cosmol-
ogy lies within the confidence interval the expected
fraction of times). Results are unremarkable and
described in Appendix D.

(2) Bayesian model comparisons run on log-normal sim-
ulations without stochasticity do not provide evidence
for more complex models. We find that this require-
ment ismet, both for theb, rmodel of stochasticity and
models with free skewness S3, in Appendix D.

(3) 21 independent Buzzard N-body realizations of our
data vector give consistent χ2 relative to the model
evaluated at the input cosmology and independently
measured nuisance parameters. Their coverage in
likelihood runs, i.e., the number of times the input
cosmology is within derived confidence limits, is
within expectations only for the b; α0; α1 model of
bias and stochasticity (Appendix E). The fact that
the most complex bias model is required may be
particular to these mock galaxy catalogs, which may
have different relations to matter density than real
REDMAGIC galaxies. We still take this as evidence
that the most general stochasticity model, unless
disfavored by the data, needs to be considered in
our analysis.

(4) Likelihood runs on N-body realizations are insensi-
tive to replacing true source redshift distributions
with source redshift distributions estimated from
BPZ and marginalizing over Δz uncertainties. Re-
sults: we find that the mean shifts in cosmological
parameters are at or below the ten percent level of
their statistical uncertainty, and that the statistical
uncertainty increases by less than five per cent due to
marginalization over Δz, both tested with the
b; α0; α1 model for the galaxy-matter connection.

Once these tests are successful, we continue to make
tests on likelihood analyses run on the data itself. To ensure
that these do not introduce experimenter bias, before
looking at any chains we shift all cosmological parameters
by a constant unknown vector, uniformly distributed
between þ2 and −2 standard deviations of the parameters
as found from N-body simulations. We then proceed with
the following tests, the results of which are shown in Fig. 9:
(5) Cosmological constraints from the data are consis-

tent between the fiducial METACALIBRATION and
additional IM3SHAPE measurements. For models
including galaxy stochasticity (lower two panels
of Fig. 9) this is the case to a fraction of the

FIG. 9. Likelihoods run on variants of the data to test
robustness to analysis choices. Use of IM3SHAPE shape catalogs
(turquoise), removal of the highest (orange) or lowest (violet)
source redshift bin, use of a direct estimate of source redshift
distributions from COSMOS instead of BPZ (magenta), re-
moval of small (green) or large scales (yellow) in the lensing
data or neglect of the clustering of sources in the lowest
redshift bin with the lenses (brown) do not have an effect on
recovered parameters beyond their statistical uncertainty. Con-
tours are centered on the fiducial result in the b model. The
same likelihood run on fully independent SDSS data vectors
(grey) yields consistent results. Panels show different models
for the connection of galaxies and matter (top: b only, center:
b, r, bottom: b; α0; α1).
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statistical uncertainty. For the b only model (top
panel), IM3SHAPE constraints on Ωm are offset by
≈σ=2. Accounting for the fact that shape noise is
largely uncorrelated between the two catalogs, is
possible that this is simply a statistical fluctuation.
We note, however, that DES Collaboration et al. [1]
found a similar discrepancy, likely attributed to the
multiplicative bias or source redshift calibration of
the IM3SHAPE highest source redshift bin.

(6) Cosmological constraints are robust to removing the
lowest or highest source redshift bin from the data
vector. This is the case for all models, indicating that
the calibration of METACALIBRATION catalogs is
consistent between bins.

(7) Cosmological constraints are robust to replacing the
source redshift distributions estimated by BPZ by
ones directly estimated from COSMOS. Again, this
is the case for all models, with a noticeable but
insignificant offset in the b only model.

(8) Cosmological constraints are robust to cutting scales
smaller than 2 × θT or larger than 250’ from the shear
signal. Removal of small scale shear information
shifts σ8 in the b; α0; α1 model by approximately 1σ.
Given the cosmic variance in large-scale modes and
the unremarkable result of all other variants of the
scale cut test, this does not pose a significant issue.

(9) Cosmological constraints are robust to not correcting
for clustering of the overlapping source redshift bins
with the matter distributions around overdense and
underdense lines of sight. While this is not necessary
a null test—it could be possible that we need to
account for the effect—we find that marginalizing
over bs, the source bias in the lowest redshift source
bin, neither significantly widens nor shifts the
contours in either model.

(10) Cosmological constraints are consistent between
DES and SDSS. We note that these are completely
independent data sets, i.e., have no cross-covariance,
and thus we a priori expect larger offsets between
the two than in the other tests. We find that
constraints on Ωm are very similar and σ8 is offset
by ≈1σ, both consistent with these expectations.

In addition, we confirm that the central value of the
nuisance parameter priors (multiplicative shear bias, tracer,
and source galaxy redshift biases as defined in Hoyle et al.
[33], Zuntz et al. [34] Appendices F 1 and F 2) is within the
1σ confidence interval of the posteriors for both DES
and SDSS.
Only after unblinding do we test whether the model at its

maximum likelihood parameters is a good fit to the data.
For the tomographic data vector of DES Y1, there are 208
elements fit with 13 parameters in the ðb; α0; α1Þ model.
Because the model is not linear in the parameters, the
number of degrees of freedom and expectation value
for the χ2 distribution is not known precisely [81], but
likely between 208 − 13 and 208. Its standard deviation is

σχ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nd:o:f:

p
≈ 20. The data vectors for the two shear

pipelines have a χ2METACALIBRATION ¼ 171 and χ2IM3SHAPE ¼
201, respectively, both consistent with expectations for
multivariate Gaussian noise around a signal that is correctly
described by our model. The b only and ðb; rÞ models give
equally acceptable fits. For the SDSS single source bin data
vector with 72 entries and 9 parameters in the ðb; α0; α1Þ
model, we find χ2 ¼ 81, and equally acceptable results for
the other models.
We also perform a run of the fiducial DES Y1 data vector

with a full cosmological model that marginalizes, in addi-
tion, over baryon density Ωb, spectral index of primordial
density fluctuations ns and Hubble parameter hwith the flat
priors also used in DESCollaboration et al. [1]. We find that
this does not shift or increase the uncertainty on the reported
parameters at a discernible level in any of the models for the
connection of galaxies and matter.

VI. COSMOLOGICAL CONSTRAINTS

We perform likelihood analyses, i.e., we determine the
probability of finding our fiducial data vectors (Sec. II) as a

FIG. 10. Constraints on matter density Ωm, amplitude of late-
time structure formation σ8, and galaxy bias of the REDMAGIC
tracer galaxies. Shown are results for three different models for
the connection of matter density and galaxy density on the scales
of our apertures: linearly biased tracers with Poissonian noise
(black, b); biased, stochastic tracers (green, b, r); and biased
tracers with density-dependent stochasticity (orange, b; α0; α1).
The Bayes factors of these different models indicate substantial
evidence that stochasticity of galaxy count is required to model
the measurements. Constraints from DES galaxy and shear auto-
and cross-two-point correlation functions for fixed neutrino mass
are shown as blue, dotted contours [1].
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function of the parameters of our model (Sec. III) and given
their covariance (Sec. IV). We use models of different com-
plexity for the connection of galaxies and matter density—
one with linear bias only (b), one adding stochasticity (b, r),
and one allowing for density dependence of stochasticity
(b; α0; α1) (for details see Sec. III C). Our philosophy,
decided with parameters still blinded, will be to compare
these models via their Bayesian evidence (Sec. V C) and
report the results for models that are supported by the data.
Figure 10 shows constraints on the matter density Ωm,

the amplitude of late-time structure formation σ8, and
galaxy bias of the REDMAGIC tracer galaxies, when
marginalizing over all remaining model parameters.
Confidence limits are summarized in Table II. The sto-
chastic models, favored by the data (see next subsection),
constrain the matter density consistently as Ωm ¼ 0.26þ0.04

−0.03
for the ðb; rÞ model and Ωm ¼ 0.28þ0.05

−0.04 for the ðb; α0; α1Þ
model from DES data. The degeneracy directions of Ωm-σ8
for the two stochasticity models are different, thus leading
to a higher central value of σ8 ¼ 0.97þ0.07

−0.06 for ðb; rÞ and a
lower σ8 ¼ 0.80þ0.06

−0.07 for ðb; α0; α1Þ.
Bias models and cosmology are thus interdependent: a

prior, even a weak one, on the values of stochasticity
parameters would significantly improve these cosmological
constraints—if galaxies have less stochasticity, the relevant
regions of the green and orange contours in Fig. 10 are
closer to the black region. Likewise, external information
on cosmological parameters allows to constrain bias
parameters and, potentially, even choose between the bias
models. If the true cosmology is Ωm ¼ 0.3 and σ8 ¼ 0.8,
both the b and the b, r model are ≈2σ off, while the
b; α0; α1 model is consistent.
For a sense of how these results compare to two-point

function measurements, Fig. 10 contains constraints from
the three tomographic auto- and cross-correlation func-
tions of DES REDMAGIC galaxy positions and source
galaxy shapes [3x2pt, [1]].3 The 3x2pt contours are

tighter than the constraints that counts and lensing in
cells yield. This is due to the wide freedom on stochas-
ticity parameters and models that we have allowed: if we
could fix the stochasticity (such as in the black contour
with r ¼ 1), the smaller scale density PDF measurements
would yield highly competitive cosmological constraints.
It is clear from this and the different degeneracies that a
joint analysis would result in improved constraints—yet
we are lacking a covariance matrix and inference pipeline
to perform this at this point. Prima facie, the 3x2pt
constraint is consistent with any of the bias models, and
indicates a relatively small stochasticity, i.e., a point in
parameter space close to where the black, green, and
orange contours intersect.
Finally, we compare the results from our DES Y1 and

SDSS analysis. Within their mutual uncertainty, the two
independent data sets provide consistent measurements of
cosmological parameters. It is less clear whether the bias
model of REDMAGIC galaxies in SDSS and DES is
identical, a question we turn to in the following
subsection.

A. Results on bias and stochasticity

The Bayes factors for the stochastic models, i.e., the
ratio of their evidence over the evidence of the b only
model, are 3.6 (b, r) and 2.5 (b; α0; α1). This means that
there is substantial evidence, as defined by the Jeffreys
scale, for stochasticity in the count of REDMAGIC
galaxies at fixed projected matter density within 20’
apertures and with a redshift range of zT ¼ 0.2–0.45.
Similar observations are made in SDSS, with Bayes
factors 2.8 and 4.5 for the introduction of the stochastic
models. The data thus prefers a model with stochasticity,
but at an odds ratio of ≈3∶1, the preference is not very
conclusive.
The DES constraint on r is r ¼ 0.77þ0.10

−0.13 . In likelihood
runs of the ðb; rÞ model on log-normal mocks with no
stochasticity (Appendix D), we find smaller central
values for r than this in 3 out of 40 independent
realizations.
We note that this finding is not in conflict with the

nondetection of stochasticity in the DES Collaboration
et al. [1] 3x2pt analysis, and the associated explicit tests

TABLE II. Constraints from counts and lensing in cells likelihood runs. Bayes factors are quoted relative to the b, rmodel. Results for
the b only likelihoods are not shown, since this simpler model is disfavored by the data. Constraints on cosmological parameters and
REDMAGIC bias in z ≈ 0.2–0.45 from two-point functions are reproduced from DES Collaboration et al. [1] for comparison.

Data Model Bayes factor S8 Ωm σ8 b r α0 α1

DES b, r ≡1.0 0.90þ0.11
−0.08 0.26þ0.04

−0.03 0.97þ0.07
−0.06 1.45þ0.10

−0.11 0.77þ0.10
−0.13 � � � � � �

SDSS b, r ≡1.0 0.78þ0.13
−0.08 0.25þ0.05

−0.04 0.86þ0.06
−0.05 1.48þ0.09

−0.09 0.70þ0.16
−0.14 � � � � � �

DES b; α0; α1 0.7 0.78þ0.05
−0.04 0.28þ0.05

−0.04 0.80þ0.06
−0.07 1.75þ0.22

−0.26 � � � 1.5þ0.4
−0.6 1.7þ1.1

−0.9
SDSS b; α0; α1 1.6 0.76þ0.08

−0.07 0.28þ0.07
−0.05 0.80þ0.08

−0.11 1.18þ0.37
−0.23 � � � 2.3þ0.3

−0.5 2.9þ1.1
−1.0

3 × 2pt, fixed ν 0.80þ0.02
−0.02 0.26þ0.02

−0.03 0.85þ0.06
−0.05 1.54þ0.09

−0.10 DES Collaboration et al. [1]

3We use the version of the likelihood that does not vary
neutrino mass, as in our counts and lensing in cells analysis. The
galaxy bias parameter plotted is the mean bias of REDMAGIC
galaxies in the first two bins (z ¼ 0.15–0.3 and 0.3–0.45),
weighted 1∶2, which is not quite the same as the bias of our
single zT ¼ 0.2–0.45 lens bin.
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for consistency of the clustering and galaxy-galaxy
lensing constraints on bias [30,37]. Those analyses use
significantly larger scales (> 270 and > 450 in the lowest
lens redshift bins, corresponding to > 8h−1 comoving
Mpc for clustering, and > 12h−1 comoving Mpc for
galaxy-galaxy lensing), on which stochasticity, if present,
is expected to be small. Our statistic in sensitive to
stochasticity on scales smaller or equal to the radius
θT ¼ 200 of the apertures inside which we count tracer
galaxies. Physically, this corresponds to ≲3.5–7h−1
comoving Mpc in the zT ¼ 0.2–0.45 redshift range.
Uncertainty as to whether the nonstochastic bias model
would be sufficient on these smaller scales was a primary
reason for the conservative 3x2pt scale cuts [82].
Figure 11 shows constraints on S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, bias

and stochasticity of the tracer galaxies, in both DES and
SDSS. The deviation of r from unity is at the ≈2σ level.
Individual parameter constraints are consistent, while
there is a hint for a lower value of r in SDSS at fixed
cosmology. Note that the primary degeneracy of S8 is not
with bias, but with stochasticity—even a mildly inform-
ative prior on r would significantly lower uncertainty on
S8. For cosmological constraints close to those of the
3x2pt analysis (S8 ¼ 0.80� 0.02 for the run with fixed ν
mass), the counts and lensing in cells data is well fit by
small stochasticity.
For the more complex α0, α1 model of density

dependent stochasticity, which is not significantly pre-
ferred to r by the data anywhere, the situation is
qualitatively similar. The SDSS data does not constrain
these parameters very well, especially α1 (cf. Table II),

but there is an indication of super-Poissonian scatter in
galaxy count at fixed matter density, the amplitude of
which increases with density, broadly consistent with
the effect of a single stochasticity parameter r [[28]
their Fig. 6].
It is difficult to compare this tentative detection of

stochasticity on the ≲7h−1 comoving Mpc aperture scale
to the literature. Various works have found levels of
stochasticity that are broadly consistent, using a range
of samples and scales in numerical simulations [e.g.,
[83,84]] and data [e.g., [85–90]]. The comparison of low-
z galaxy clustering and galaxy-galaxy lensing in DES SV
on scales above 4h−1 comoving Mpc provided similar
hints of r < 1 ([91,92], see also [93]). Even those studies
that found no evidence for r ≠ 1 do not exclude a mild
stochasticity on the relevant scales within their uncertain-
ties [94,95]. Most of these studies use two-point correla-
tions, which means their results on stochasticity would
have to be transformed to aperture statistics using a
numerical model or simulations.
Note that we do not attempt to combine the DES

and SDSS results because, without more detailed study,
it is not certain that the REDMAGIC samples trace the
exact same galaxy populations. A larger stochasticity of
REDMAGIC galaxies in SDSS, if at all significant, could
also be due to correlations of the REDMAGIC density
with SDSS observational systematics that, unlike in the
case of DES [30], has not been removed.

B. Test for excess skewness of matter density

As described in Sec. VA, we can allow for the skewness
of the projected, smoothed matter density field, S3, to be a
free parameter in our likelihood, rather than predicting it
from perturbation theory. Parameter constraints from these
likelihood runs are shown in Table III.
We first test whether the introduction of this additional

parameter to our model is justified by the data. The Bayes
factor of the extended models with ΔS3 as a free parameter,
relative to any of the three models for the connection of
galaxies and matter with fixed S3, is smaller than unity,
both on DES and on SDSS runs. This indicates no evidence
that such an extension is required.
If we still perform a likelihood analysis of the

extended models despite of this, we can find constraints
on S3. For the ðb; rÞ model, these are shown in Fig. 12.
DES Y1 and SDSS provide independent constraints, both
of which are consistent with ΔS3 ¼ 0. The DES con-
straint, ΔS3=S3 ¼ −0.08þ0.25

−0.20 is significantly tighter, pri-
marily due to the fact that the lensing signal that breaks
the degeneracy of bias and skewness is measured with
higher signal-to-noise ratio.
Generalizing the likelihood to a two-parametric α0, α1

model for stochasticity and leaving S3 free yields similarly
tight constraints on from DES data, again consistent with
no excess skewness at ΔS3 ¼ −0.18þ0.25

−0.22 . In SDSS, the

FIG. 11. Constraints on S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, bias and stochas-

ticity of the REDMAGIC tracer galaxies from density split lensing
and counts-in-cells in DES Y1 (blue) and SDSS (red).
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posterior distribution of α1 is not constrained in this model
within our sampling range.
The joint interpretation of these results is that we find no

hints for an excess or deficit in skewness of the matter
density relative to our ΛCDM perturbation theory predic-
tion. This conclusion is largely independent of the bias
model we choose, and tested at the 20 per cent level. Future
analyses with larger data sets or joint constraints from
counts and lensing in cells and additional probes could
provide much tighter constraints on S3.

VII. CONCLUSIONS

We perform the first cosmological analysis using counts
and lensing in cells, a method that constrains the matter
density PDF with the combination of counts-in-cells and
gravitational lensing signals around low and high density

lines of sight. We do this by creating quintiles based on the
galaxy counts in apertures and evaluating the stacked
lensing for each quintile.
This analysis is tested extensively, using the per-

turbation theory model of Friedrich et al. [28], by
applying it to log-normal density fields and realistic
N-body mock catalogs from the Buzzard simulations.
Robustness to systematics in the data and choices in the
analysis is confirmed by a series of tests, performed
while blind to the cosmological parameter values con-
strained by our data.
Applying the analysis to data vectors from DES and

SDSS, we find that
(i) The data prefer stochasticity (beyond Poisson

sampling) in galaxy count at fixed matter density,
on the < 200 or < 3.5–7h−1 comoving Mpc
smoothing scale of our aperture. This is indicated

FIG. 12. Constraints on excess skewness of the projected matter density field ΔS3, amplitude of structure S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, bias and

stochasticity of the REDMAGIC tracer galaxies from density split lensing and counts-in-cells in DES Y1 (blue) and SDSS (red). Bayesian
model comparison indicates that the introduction of S3 as a free parameter, rather than fixing it from perturbation theory calculations (the
ΔS3 ¼ 0 indicated by dashed lines), is not necessary to describe the data.
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by a Bayesian model comparison of bias para-
metrizations, whose odds ratios of ≈3–4∶1 in
favor of stochastic models represent substantial
evidence on the Jeffreys scale. Our data does not
discriminate between the two different models of
stochasticity we apply, one with the correlation
coefficient of galaxy and matter density r as a free
parameter, and one with two parameters α0, α1 that
allow for a density dependent deviation from
Poissonian noise.

(ii) Either of these models yields consistent DES
constraints on the cosmic matter density, Ωm ¼
0.26þ0.04

−0.03 for the ðb; rÞ model and Ωm ¼ 0.28þ0.05
−0.04

for the ðb; α0; α1Þ model. These are consistent with,
and not much less constraining than, results from
the three tomographic auto- and cross-two-point
correlation functions of galaxy counts and gravita-
tional shear (3x2pt) in DES Collaboration et al.
[1], Ωm ¼ 0.26þ0.02

−0.03 .
(iii) The degeneracy direction of Ωm and σ8 and best-fit

values of σ8 depend on the stochasticity model—for
ðb; rÞ we find a higher amplitude σ8 ¼ 0.97þ0.07

−0.06 and
σ8 ¼ 0.86þ0.06

−0.05 from DES and SDSS than for the
ðb; α0; α1Þ model. The latter has a central value of
σ8 ¼ 0.80 and somewhat larger uncertainty. In turn,
this means that external constraints on cosmology
would yield an improved model selection and
posterior on stochasticity and vice versa. For small
stochasticity, both models are consistent with each
other and with the 3x2pt constraint. The assumption
of linear bias with no stochasticity, which is however
mildly disfavored by the data, would allow con-
straints from the matter PDF that are competitive
with 3x2pt. Thus if we could use prior knowledge to
select a particular model or a narrower range of
possible bias parameter values, this would greatly
improve the constraining power on cosmological
parameters.

(iv) Because counts and lensing in cells measure the
width and skewness of the matter PDF independ-
ently, they can be used to constrain S3 ¼ hδ2i2=hδ3i,
for which ΛCDM and gravitational collapse make a
very stable prediction. We find that the deviation
from this prediction,ΔS3=S3, is consistent with zero,
within 20-30 per cent uncertainty, in any bias and
stochasticity model.

This analysis of the density PDF opens several avenues
for future research:

(i) Towards tightly constraining cosmological parame-
ters and performing model independent tests on
higher moments of the matter density PDF generated
by gravity—this could be achieved best with ex-
ternal priors or data on stochasticity or bias, or in the

regime of larger scales or larger tracer density, where
predicted signals are less sensitive to the bias model.

(ii) Towards discriminating between and constraining
parameters of bias and stochasticity models—
optimally by analyzing smaller scales, which will
require improved models of the matter density PDF
and baryonic effects on it.

(iii) Towards joint analyses, e.g., with two-point func-
tions or CMB lensing data, that can break cosmo-
logical, galaxy bias parameter and nuisance
parameter degeneracies.

Given a suitable model and analysis framework, counts
and lensing in cells with present and imminently avail-
able data will allow tight constraints on cosmological
parameters and the hierarchy of moments of the matter
density field.

ACKNOWLEDGMENTS

D. G. thanks Yao-Yuan Mao, Cora Uhlemann, Zvonimir
Vlah, and numerous members of the DES WL, LSS and
Theory working groups for helpful discussions. Support
for D. G. was provided by NASA through Einstein
Postdoctoral Fellowship Grant No. PF5-160138 awarded
by the Chandra X-ray Center, which is operated by the
Smithsonian Astrophysical Observatory for NASA under
contract NAS8-03060. O. F. acknowledges funding by SFB-
Transregio 33 ‘The Dark Universe’ by the Deutsche
Forschungsgemeinschaft (DFG) and the DFG Cluster of
Excellence ‘Origin and Structure of the Universe.’ Funding
for the DES Projects has been provided by the U.S.
Department of Energy, the U.S. National Science
Foundation, the Ministry of Science and Education of
Spain, the Science and Technology Facilities Council of
the United Kingdom, the Higher Education Funding Council
for England, the National Center for Supercomputing
Applications at the University of Illinois at Urbana-
Champaign, the Kavli Institute of Cosmological Physics
at the University of Chicago, the Center for Cosmology and
Astro-Particle Physics at the Ohio State University, the
Mitchell Institute for Fundamental Physics and
Astronomy at Texas A&M University, Financiadora de
Estudos e Projetos, Fundação Carlos Chagas Filho de
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APPENDIX A: BERNOULLI MASKING
OF A COUNT WITH POISSONIAN NOISE

Assume that the true number of galaxiesN in a randomly
selected volume follows a Poisson distribution around the

expectation value N̄ (which is conditional on the matter
density inside the volume),

PðNÞ ¼ e−N̄

N!
× N̄N: ðA1Þ

If incompleteness and masking act on each galaxy with
some detection probability p, then the observed number of
galaxies in that volume Nobs is related to N by a Bernoulli
process,

PðNobsjNÞ ¼ N!

Nobs!ðN − NobsÞ!
pNobsð1 − pÞN−Nobs : ðA2Þ

The resulting probability distribution for Nobs,

PðNobsÞ ¼
X
N

PðNobsjNÞPðNÞ

¼ e−N̄

Nobs!
ðpN̄ÞNobs

X∞
N¼Nobs

½ð1 − pÞN̄�N−Nobs

ðN − NobsÞ!

¼ e−pN̄

Nobs!
ðpN̄ÞNobs ; ðA3Þ

is again Poisson-distributed around the expectation value
pN̄. Masking-induced scatter in Nobs is therefore cor-
rectly described by Poisson noise. This justifies the
accounting for masking used in Sec. II A. Note that
we have implicitly assumed intrinsic Poisson noise and
independent random removal of galaxies due to masking,
when in fact clustering implies a more complex form of
Eqs. (A1) and (A2), yet at a level not relevant at
first order.

APPENDIX B: CHOICE OF LOG-NORMAL
PARAMETERS FOR THE SIMULATED
DENSITY AND CONVERGENCE FIELDS

In this Appendix, we describe how we chose the log-
normal parameters (i.e., the minimum allowed values of
the log-normal PDFs) and power spectra for generating
simulated convergence and density fields that closely
match the 2-point and 3-point auto- and cross-correlation
statistics we expect from our fiducial model.

1. Configuration of FLASK maps
of simulated density contrast

As we have shown in Friedrich et al. [28], at a scale of
θA ¼ 200 the PDF of the smoothed matter density contrast
δm;T is well described by a zero-mean shifted log-normal
distribution, when the parameters of the log-normal PDF
are chosen such as to match the variance and skewness of
δm;T . For the cosmological parameters and redshift
distributions of REDMAGIC galaxies in the Buzzard
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simulations, the variance and perturbation theory predic-
tion for skewness result in a log-normal shift parameter
of δ0 ¼ 0.669.
We input this parameter and an angular power spec-

trum computed by Limber’s approximation from our
fiducial matter power spectrum to the FLASK tool to
generate maps of projected density contrast. FLASK
will generate HEALPIX maps of δm;2D such that on the
pixel scale of these maps δm;2D is a log-normal random
variable with δ0 ¼ 0.669. In our case, the pixel scale is
much smaller than the smoothing scale θ ¼ 200 for
which we determined the log-normal parameter. For-
tunately, a limit theorem derived by Szyszkowicz and
Yanikomeroglu [96] ensures that a smoothed version of a
log-normal random field, while not formally log-normal,
is still well described by a log-normal field with the same
shift parameter. We have verified this approximation to
be accurate in our situation.

2. Configuration of FLASK maps
of simulated convergence fields

For the convergence field κ, defined in Eq. (3.7), we
again need to fix the parameters of the log-normal
simulations. The expectation value of κθ around overdense
or underdense lines of sight with given matter contrast
δm;T is fully determined by the moments hδnm;Ti and joint
moments hδnm;Tκθi, n ≥ 1.
Hence, the expectation value of the density split lensing

signal obtains contributions only from those redshifts
where the distribution of tracers and the lensing efficiency
kernel WsðwÞ overlap. The covariance of the signal,
however, also has contributions from foreground and
background structures at distances where only WsðwÞ is
non-zero.
As pointed out by, e.g., Xavier et al. [49], 2D

projections of the 3D density contrast such as δm;T
and κθ are not well described by a joint log-normal
distribution if the kernels of their projection have a very
different width along the line-of-sight. In our situation,
the lensing kernel WsðwÞ is significantly broader than the
distribution in co-moving distance of our tracer galaxies.
In order to still accurately match the higher-order
statistics of δm;θ and κθ with the FLASK log-normal
simulations, we split κ into a contribution from the
overlap of tracers and WsðwÞ and a contribution from
foreground and background structures, i.e.,

κðn̂Þ ¼ κoverlapðn̂Þ þ κnonoverlapðn̂Þ ðB1Þ

with

κoverlapðn̂Þ ¼
Z

wmax

wmin

dwWsðwÞδm;3Dðwn̂; wÞ ðB2Þ

and

κnonoverlapðn̂Þ ¼
Z

wmin

0

dwWsðwÞδm;3Dðwn̂; wÞ

þ
Z

∞

wmax

dwWsðwÞδm;3Dðwn̂; wÞ: ðB3Þ

Here, wmin and wmax are the minimum and maximum
comoving distances of our tracer population. We sepa-
rately compute the power spectra of κoverlap and κnonoverlap
using Limber’s approximation and our fiducial matter
power spectrum.
Instead of approximating the distribution of κoverlap and

δm;T with a joint log-normal distribution, we point out in
Friedrich et al. [28] that it is better to further split κoverlap
into two contributions as

κoverlap ¼ κlog−normal þ κuncorr; ðB4Þ

where only κlog−normal is a log-normal variable and κuncorr is
assumed to be completely uncorrelated with δm;T . The
reason for this is the following: The density split lensing
signal mainly depends on the moments hδ2m;Ti and hδ3m;Ti as
well as hδm;Tκoverlapi and hδ2m;Tκoverlapi. Requiring our
simulated convergence fields to obey our analytic predic-
tions of these moments would already fix the log-normal
PDF for κoverlap. Importantly, it would also fix the variance
hκ2overlapi. And in general, this variance will disagree with
the variance of κoverlap as defined in Eq. (B2) that is
predicted from our power spectrum. Splitting κoverlap into
κlog−normal and κuncorr solves this disagreement, since we can
use the above moments to fix the log-normal PDF of
κlog−normal and attribute part of the variance of κoverlap to
κuncorr to keep the total variance in agreement with our
power spectrum. We then use FLASK to simulate the
contributions to κoverlap as two distinct random fields. We
assume that κlog−normal and κuncorr are uncorrelated and that
their power spectra are simply proportional to that of
κoverlap. The proportionality factors are determined such
that the two power spectra sum up to the total power
spectrum of κoverlap and also such that the variance of
κlog−normal is indeed the one predicted by its log-
normal PDF.
Finally, while in Friedrich et al. [28] we allow the log-

normal PDF to vary depending on the scale θ of the
convergence field, we have to choose a fixed scale in
order to generate log-normal random fields with FLASK.
We consider θ ¼ 200 as a reasonable choice. At larger
scales the log-normal PDF of our formalism quickly
transitions to a Gaussian PDF anyway, and we do not
consider smaller scales in our analysis. The log-normal
shift parameters we get this way are κ0 ¼ 0.0088, 0.0150,
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0.0181 for our three DES source redshift bins and 0.0094
for the SDSS sources. The remaining ingredient needed
by FLASK to generate the field κlog−normal is its cross
power spectrum with δm;2D. Since we assume all other
contributions to the convergence to be uncorrelated to the
tracer density contrast, this is just the cross power
spectrum of the total convergence and δm;2D. Also, the
theorem by Szyszkowicz and Yanikomeroglu [96]
ensures that generating log-normal fields with the above
values of κ0 at the pixel scale is sufficient to obtain the
same log-normal properties also on larger smoothing
scales.
The contributions κuncorr and κnonoverlap enter the covari-

ance of our signal via 2-point statistics only. Hence, we just
use the sum of their power spectra to generate a single
Gaussian random field, i.e., no log-normal shift parameters
have to be determined for these components. Since we
include 3 source bins in our analysis, we also have to
include their cross-power spectra in our FLASK con-
figuration. The cross-power spectra of the nonoverlap
contributions to the convergence can be computed straight-
forwardly using Limber’s approximation. The cross-power
spectra of κoverlap between different source bins are split to
cross-power spectra of the fields κlog−normal and the fields
κuncorr in a similar way as the auto-power spectra for
identical source bins: this time we assume that δm;2D and
the two convergence fields κlog−normal;i and κlog−normal;j

corresponding to source bins i and j have a joint log-normal
distribution. We then compute their combined third order
moment with the method presented in Friedrich et al. [28],

which fixes this PDF and allows us to compute the
covariance of κlog−normal;i and κlog−normal;j. The cross power
spectra are then split between the κlog−normal and κuncorr
contributions such that they add up to the total cross power
spectrum of κoverlap;i and κoverlap;j while also giving the
correct covariance between the κlog−normal contributions in
each source bin. No cross-correlation is assumed for
κlog−normal and κuncorr between any combination of
source bins.

APPENDIX C: DEPENDENCE OF SIGNAL ON
REDMAGIC VARIANT

As discussed in Sec. II B 1, there are two variants of
REDMAGIC catalogs in DES Y1 (based on either
MAG_AUTO or MOF photometry), and either can optionally
be corrected with a set of weights that removes the
correlation of galaxy density with observational systemat-
ics. Our fiducial choice, as in Elvin-Poole et al. [30] for the
redshift range we use, is the MAG_AUTO catalog with these
weights applied. In this appendix, we repeat our measure-
ments with the remaining three variants of the REDMAGIC
catalogs to see whether there are appreciable differences in
the recovered signals.
Results from this are shown in Table IVand, for selected

samples, in Fig. 13. We find that the ratios of shear signals
between the variants are consistent with unity, with a hint of
lower signals in the MOF variant when not applying the
weights to correct for systematics related density variations.
This is consistent with the analysis of Elvin-Poole et al.

TABLE IV. Shear ratios of REDMAGIC variants.

zs bin Variant γt ratio-1 ½10−2� γt;0 ratio-1 ½10−2� γt;4 ratio-1 ½10−2�
0.43–0.63 COADD, no corr. −0.2� 2.7 0.7 −1.1
0.63–0.90 COADD, no corr. 0.6� 1.2 2.0 0.9
0.90–1.30 COADD, no corr. −1.2� 1.3 −0.2 −2.2
0.43–0.63 MOF, corr. −4.1� 7.1 7.5 −15.7
0.63–0.90 MOF, corr. −2.2� 3.9 −5.7 −1.2
0.90–1.30 MOF, corr. −1.2� 4.3 5.5 −7.8
0.43–0.63 MOF, no corr. −6.3� 7.4 3.6 −16.2
0.63–0.90 MOF, no corr. −3.5� 4.1 −7.3 0.4
0.90–1.30 MOF, no corr. −2.7� 4.7 3.6 −9.0

TABLE III. Constraints from counts and lensing in cells likelihood runs with skewness of the matter density field S3 as a free
parameter. Bayes factors are quoted relative to the b, r model without free S3. SDSS does not constrain the two-parametric stochasticity
model α0, α1 within our sampling range.

Data Model Bayes factor S8 Ωm σ8 b r α0 α1 ΔS3=S3
DES b; r;ΔS3 0.3 0.91þ0.10

−0.10 0.26þ0.07
−0.05 0.96þ0.17

−0.13 1.37þ0.32
−0.27 0.72þ0.14

−0.10 � � � � � � −0.08þ0.25
−0.20

SDSS b; r;ΔS3 0.4 0.76þ0.12
−0.09 0.28þ0.09

−0.07 0.72þ0.17
−0.13 1.64þ0.44

−0.46 0.73þ0.15
−0.15 � � � � � � 0.06þ0.40

−0.27
DES b; α0; α1;ΔS3 0.3 0.80þ0.06

−0.05 0.26þ0.07
−0.05 0.86þ0.10

−0.13 1.48þ0.41
−0.32 � � � 1.7þ0.4

−0.6 2.0þ1.1
−0.9 −0.18þ0.25

−0.22
SDSS b; α0; α1;ΔS3 0.6 0.78þ0.07

−0.08 0.27þ0.09
−0.05 0.80þ0.14

−0.12 0.98þ0.49
−0.17 � � � 2.5þ0.3

−0.5 >2.1 (68% c.l.) −0.14þ0.44
−0.39
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[30], who found larger, significant correlations of galaxy
density with observational systematics in this catalog.

APPENDIX D: MOCK ANALYSIS
OF LOG-NORMAL SIMULATION

We perform a set of tests of our model prediction code,
our covariance estimation and likelihood pipeline using
log-normal realizations of our data vector.
We first check that the χ2 distributions of residuals of the

individual log-normal realizations follow expectations. To
this end, we add realizations of shape noise from random
rotations of our actual source catalog to the log-normal data
vectors. We have used Nreal ¼ 960 out of 1000 realizations
of the sum of cosmic variance and shape noise to estimate
the covariance matrix, and for these the mean χ2 when
evaluated with the inverse of the estimated covariance
matrix is equal, within uncertainties, to the number of
degrees of freedom. For the additional 40 realizations that

we have reserved for the purpose of testing, the mean χ2 is
larger by a factor consistent with the inverse of Eq. (4.1)
[65,97]. We apply this factor to our estimated covariance
matrix for all following analyses. We also confirm that this
correction is not appropriate when estimating the cosmic
variance and shape noise parts of our covariance inde-
pendently and coadding them in the end, which is why we
do not apply this (statistically desirable) procedure [but cf.
[67]] for a possible way out].
The mean data vector of all 1000 log-normal realizations

is described well by the analytical prediction of Friedrich
et al. [28]. The total χ2 of the residual of the mean vs. the
model, at our fiducial scale cuts and for the DES analysis
with three source redshift bins with 208 d.o.f., evaluated at
the input cosmology and galaxy bias and the covariance
matrix of Sec. IV, is 0.19, without the increase in the
diagonal of the counts-in-cells covariance discussed in
Sec. IV C. This is well below the statistical uncertainty	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½χ2208 d:o:f:�
q

> 20


and confirms that the analytical

calculations used in Friedrich et al. [28] to get from input
power spectra and skewness parameters for the matter and
convergence fields to a prediction of our signals are derived
and implemented correctly and to sufficient precision in
our codes.
Next, we run a full likelihood analysis on the 40 reserved

realizations to check the coverage, i.e., whether the 68 per
cent confidence contour contains the input cosmology in a
sufficient fraction of cases. Since nuisance parameters for
measurement systematics are fixed to zero in these data
vectors, we only vary b; α0;α1;Ωm; σ8, and in an additional
run ΔS3 in these analyses.
Figure 14 shows the resulting confidence contours. The

fraction of times that these contain the true input cosmol-
ogy (horizontal/vertical lines) is consistent with 68 percent.
This statement is also true when adding the additional
parameter ΔS3. The mean half-width of the marginalized
confidence intervals for ðΩm; σ8Þ are (0.05, 0.07) and for
ðΩm; σ8;ΔS3Þ are (0.07, 0.10, 0.28).
We repeat the test for the ðb; rÞmodel, finding consistent

coverage for σ8 and marginally low coverage for Ωm,
potentially related to the asymmetry of the flat prior around
r, which is correlated with Ωm (and which cannot physi-
cally take a value larger than 1, its true value in the log-
normal simulations).
Finally, to test our methodology of model comparison

with Bayes factors, we sample these likelihoods again with
the MULTINEST algorithm. We first confirm that parameter
constraints derived from MULTINEST and EMCEE closely
match each other. We then determine ratio of Bayesian
evidence between complex models and the most simple run
(linear bias with no stochasticity, ΔS3 ¼ 0). Since the log-
normal simulations should be fully described by this simple
model, there should be no evidence for any more complex
model. We show in Fig. 15 that this is indeed the case.

FIG. 13. Ratio of tangential shear measured around troughs
(cyan) and overdense lines of sight (red), identified using
different variants of the REDMAGIC catalog. The fiducial variant
is based on co-add MAG_AUTO photometry and corrects tracer
density for its correlation with observational systematics. The top
and bottom panel compare this to REDMAGIC runs on the same
photometry and multi-epoch MOF photometry, both without
correcting for the correlation with systematics.
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APPENDIX E: MOCK ANALYSIS OF
BUZZARD SIMULATIONS

We repeat the steps of Appendix D, but instead of log-
normal realizations using density split lensing and counts-
in-cells signals measured on the Buzzard suite of N-body
simulations.
The Buzzard simulations are a suite of mock galaxy

catalogs built on top of darkmatter onlyN-body simulations.
We describe only the essential details here and refer the
reader to more complete descriptions in DeRose et al. [98].
Each set of 6 Buzzard DES Y1 catalogs is generated from a
combination of 3 N-body lightcones runs using L-Gadget2,
a version of Gadget2 [99] optimized for memory efficiency.
2nd order Lagrangian perturbation theory initial conditions
were generated using 2LPTIC [100]. The lightcones were
produced on the fly as the simulations ran from boxes of
volumes 10503, 26003, and 40003 ðh−1 MpcÞ3 and mass
resolutions of 2.7 × 1010, 1.3 × 1011, 4.8 × 1011h−1M⊙
respectively. The light cones are joined at redshifts 0.34

FIG. 14. Realizations of likelihoods on 40 log-normal mocks, sampled with EMCEE, with the input parameters given by the dashed
black lines. The coverage of these mock likelihoods is within expectations, i.e., any input parameter lies within its marginalized 1σ
confidence interval ≈68 per cent of the times.

FIG. 15. Model comparison based on the Bayes factor, i.e., the
ratio of evidences of the more complex over the less complex
model, from likelihoods run on log-normal mocks. These mocks
contain no stochasticity and no ΔS3 and hence should not favor
the more complex models. Dotted and solid vertical lines indicate
the Jeffreys scale for substantial and strong evidence, showing
that this is indeed the case.
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and 0.9, and arranged such that the highest resolution
simulations are used at lower redshifts.
Galaxy catalogs are produced from the dark matter

lightcones using the ADDGALS algorithm [101].
ADDGALS uses the relation between large scale density
and r-band absolute magnitude determined from a subhalo
abundance matching [102–104] algorithm run on a high
resolution N-body simulation to place galaxies with magni-
tudes into a low resolution density field. Galaxies are then
assigned SEDs from SDSS DR7 [105] based on the distance
to their fifth nearest neighbor. DES griz fluxes are generated
from these SEDs and photometric noise is added to them
using the DES Y1 depth map. These galaxies are then lensed
using the multiple plane raytracing algorithm CALCLENS
[106] which uses a spherical harmonic transform Poisson
solver allowing for curved sky boundary conditions. Two
different versions of ADDGALS were used to create the
catalogs referred to as Buzzard-v1.1 and Buzzard-v1.6
below. The main differences come from changes to the
assumed luminosity function of galaxies, the evolution of the
red fraction of galaxies with redshift and the use of different
depth maps to produce photometric noise.
In order to obtain a simulated REDMAGIC galaxy

sample, we run the REDMAGIC algorithm on the simu-
lations with the same configuration as the data, yielding
very similar photometric redshift and clustering properties
to those found in DES Y1. A METACALIBRATION like
sample is created by making signal to noise cuts in order
to approximate the source density found in the data.
While the true input cosmology is known and identical

between versions 1.1 and 1.6 of the Buzzard mock catalogs,
their model for early-type galaxy SEDs vary, and thus the
REDMAGIC selection is not the same. Consequently, we
cannot use the values for bias and stochasticity parameters
determined in Friedrich et al. [[28], their Secs. 4.3.1 and
4.3.2] for version 1.1 as truth inputs for version 1.6. We
repeat the analysis performed there to find that REDMAGIC
galaxies in z ¼ 0.2–0.45 have a somewhat larger bias and
stochasticity in version 1.6 (b; α0; α1 ¼ 1.72, 1.36, 0.29)
than in version 1.1 (b; α0; α1 ¼ 1.54, 1.26, 0.29). The same
is true in the simpler parametrization with (b, r ¼ 1.84, 0.96
vs. 1.62,0.96). We note that the finding that these galaxies in
the Buzzard-v1.6 simulation show large-scale stochasticity is
in line with the analysis of MacCrann et al. [56].
The masks of the Buzzard-v1.1 simulations cover a

somewhat smaller sky area (cf. Friedrich et al., their Fig. 1)
than the full DES-SPT footprint (cf. Fig. 1). We therefore
generate a separate covariance matrix for Buzzard-v1.1 by
cutting the mask of the FLASK realizations accordingly and
repeating theprocedure ofSec. IV B.The larger galaxybias in
Buzzard-v1.6 causes a larger cosmic variance than the one
derived in Sec. IV for Buzzard-v1.1 parameters. We account
for this by simply re-scaling the Buzzard-v1.6 covariance
matrix by a factor 1.05 that brings themean χ2 of theBuzzard-
v.1.6 and v1.1 simulations to agreement.

We split the survey area by density and measure counts-
in-cells and lensing signals in Buzzard-v1.1 and Buzzard-
v1.6 mock catalogs as described in Sec. II. As source
galaxies, we use the approximated lensing source sample
described above. For source redshift tomography, we
define three bins based on BPZ redshift expectation
values at zs ¼ 0.43–0.70; 0.70–0.78; 0.92–1.30 in v1.1
and zs ¼ 0.43–0.66; 0.66 − 0.76; 0.76 − 1.00. These limits
were defined such that the mean true redshift matches that
of the three highest redshift source bins in Hoyle et al. [33].
In measuring tangential shear profiles, we use true shear
information from raytracing in Buzzard [107]. Shape noise
is added at the level of the data vector using measurements
of density split lensing made with randomly rotated source
galaxy catalogs on DES Y1 data itself that were not used
for estimating the covariance matrix (Sec. IVA). We
generate 62 data vectors in total, 28 (7 different shape
noise realizations each) based on the 4 Buzzard-v1.1

FIG. 16. Residuals of measurements of lensing and counts-in-
cells signal in Buzzard relative to model evaluated at true
parameters of the simulations. Top panel: χ2 of each realization
with 208 entries in the data vector. Bottom panel: Residuals of
individual data points in units of their expected standard
deviation. Black lines indicate expected distributions. The figures
use 62 realizations based on 21 independent N-body mocks from
the Buzzard-v1.1 and v1.6 runs, to which different realizations of
Y1 METACALIBRATION shape noise were added.
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N-body mocks and 34 (2 different shape noise realiza-
tions each) from 17 Buzzard-v1.6 mocks. Caution must
be taken in interpreting results, especially on coverage,
due to the fact that these realizations are not completely
independent.
For a test of our model and the covariance matrix, we

predict the signal, using the model of Friedrich et al. [28],
with the true input parameters for cosmology and the
directly measured parameters for the b; α0; α1 model of
galaxy biasing. In this, we use the mean true redshift
distributions of REDMAGIC and lensing source galaxies,
and the mean REDMAGIC counts in the v1.1 or v1.6 sets of
Buzzard simulations. For the source bias of the lowest
redshift bin, we assume bs1 ¼ 0.5.
From the residuals of this model relative to the 62

realizations with 208 data points each, we generate the
statistics shown in Fig. 16. The distribution of χ2 is
consistent with expectations (left panel). The root-mean-
square of individual data point residuals in units of the

expected standard deviation according to the covariance
matrix is slightly larger than unity, but by less than 5 per cent
(right panel). We have confirmed that in the case of the
Buzzard-v1.1 simulations it is indeed consistent with unity,
and suspect that the small increase in Buzzard-v1.6 might be
due to the larger cosmic variance caused by the increased
REDMAGIC galaxy bias, which we have not fully accounted
for in the covariance matrix (see discussion above). There is
thus no apparent non-Gaussianity in the distribution of
residuals [108]. These statistics look very similar when
using the b, r instead of the b; α0; α1 model, i.e., the
prediction evaluated at the true cosmology and directly
measured stochasticity is a good fit to the simulations.
For a test of our inference methodology, we run mock

likelihood chains on these Buzzard realizations, with
Ωm; σ8; b, stochasticity parameters, and galaxy bias of
sources in the lowest redshift bin bs1 as free parameters.
All other parameters are fixed to their input values, and we
use true redshift distributions for the predictions.

FIG. 17. Realizations of likelihoods on 34 mock realizations based on the Buzzard-v1.6 catalogs with the true parameters given by the
dashed black lines. The coverage of these mock likelihoods is within expectations, i.e., any input parameter lies within its marginalized
1σ confidence interval ≈68 per cent of the times. Likelihoods are sampled with MULTINEST, which is a significant improvement in speed.
While the appearance is more patchy, results are consistent with long EMCEE chains, as we have checked from a subset of dual runs on
identical simulations.
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Figure 17 shows the most relevant run, of the fiducial
b; α0; α1 biasing model on the 17 independent Buzzard-v1.6
realizations with 2 independent versions of shape noise
each. Coverage of cosmological parameters is within
expectations for 17 independent realizations (58 per cent
for Ωm, 62 per cent for σ8). We find a mean source bias
of bs1 ¼ 0.62.
For the b, r model, in contrast, coverage of σ8 is low

(only 18 percent) because σ8 is biased high (with the best fit
being 0.93 on average, significantly above the true input
0.82). We confirm that this is not only caused by the
asymmetry of the allowed parameter range around the
directly measured r ¼ 0.96: allowing linear extrapolation
of the model to r > 1 still yields a coverage of only 33
percent in σ8. We also confirm that the same low coverage
is found regardless of whether we use EMCEE or
MULTINEST as a sampler.
Some understanding might be gained from the Bayesian

model comparison we perform in Fig. 18. While the
Buzzard simulations should not prefer a model with free
ΔS3, it is up to tests like this to determine what level of
complexity is needed to describe the stochasticity in the
galaxy count distribution. Notably, in some cases the
b; α0; α1 model is strongly preferred to the b, r model,
and in one case the b, r model prefers the introduction of
ΔS3 as a free parameter, potentially to compensate for the
excess skewness in a galaxy count distribution with
density-dependent stochasticity. Both could be an indica-
tion of density dependent stochasticity actually being
present in Buzzard-v1.6. In this case, the high bias of σ8
in the b, r model seen in the coverage tests could be a
partial compensation of the missing variance.
We conclude that the b; α0; α1 model is required

for describing the galaxy distribution in Buzzard-v1.6

sufficiently well. In this framework, the coverage test and
model comparison test for adding ΔS3 as a free param-
eter have results that are within expectations for a reliable
inference scheme. Whether or not the complexity in
Buzzard is realistic or caused, in part, by peculiarities
of the simulations (such as the stitching of simulation
boxes or the placement of galaxies) is not clear at this
point [56].
Finally, we test how well the Buzzard realizations of our

data vector are fit in a model in which the smoothed matter
field δm;T is assumed to be Gaussian with the variance
predicted by the power spectrum, i.e., to have no skewness.
This is a model that provided a reasonable fit to the data in
Gruen et al. [23]. Figure 19 shows the χ2 of the residuals of
data and Gaussian model, where we have used true
cosmology and directly measured galaxy bias ðb; α0;α1Þ
parameters for the latter. Even for the least χ2 among the 62
realizations, the large χ2 allows us to exclude the Gaussian
model at p < 0.001.

APPENDIX F: CLUSTERING CONSTRAINTS
ON SOURCE AND LENS REDSHIFT

DISTRIBUTIONS

For both our REDMAGIC tracer population and our
lensing source galaxies, we calibrate the mean value of
redshift distributions using clustering redshifts. In these,
excess angular correlations with thinly-sliced spectroscopic
or spectroscopic-like samples are used to determine the
redshift distributions [38,39,74,75,109,110].
For the case of DES Y1, this calibration and its

systematic uncertainties are described in Cawthon et al.
[74], Davis et al. [38], Gatti et al. [39]. Here, we give the
missing details relevant to the specific tracer galaxy
selection in DES and the tracer and source samples in
SDSS not described in those papers.

FIG. 19. χ2 of comparing Buzzard realizations of the data
vector to a model of the signal in which the skewness of the
matter density field was set to 0, i.e., the smoothed matter density
field was assumed to be Gaussian. In all realizations, the
Gaussian model is excluded at more than 3σ.

FIG. 18. Model comparison based on the Bayes factor, i.e., the
ratio of evidences of the more complex over the less complex
model, from likelihoods run on Buzzard-v1.6mocks. These mocks
contain no ΔS3 but do show a complex relation of galaxy count
and matter density and hence may favor the more complex models.
Dotted and solid vertical lines indicate the Jeffreys scale for sub-
stantial and strong evidence, showing that this is indeed the case.
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1. REDMAGIC galaxies

We perform a clustering redshift analysis to assess the
accuracy of the REDMAGIC photometric redshift algorithm.
In this, we follow the same techniques as described in
Cawthon et al. [74], yet with a different redshift cut on the
REDMAGIC sample.
We cross-correlate the SDSS and DES REDMAGIC

high density sample, selected by the photometric estimate
zred ¼ 0.2–0.45, with the BOSS spectroscopic samples
LOWZ and CMASS [111]. The clustering redshift
measurement follows the method described in Schmidt
et al. [112], using physical scales of 0.5 to 1.5 Mpc.
Statistical error estimates are from jackknife resampling.
As described in Cawthon et al. [74], the main

systematic to this measurement is the redshift evolution
of the galaxy bias of the two samples across the redshift
bin. We can measure the evolution of the spectroscopic
samples using autocorrelations. The amplitude of the
autocorrelations of REDMAGIC though will be impacted
by photo-z errors. Results in Cawthon et al. [74] suggest
that the quantity bl

ffiffiffiffiffiffiffiffiffi
wmm

p
, where bl is the galaxy bias of

REDMAGIC and wmm is the autocorrelation of the matter
density on the scales we measure, shows very little
evolution with redshift for REDMAGIC. We parameterize
the galaxy bias evolution with bl

ffiffiffiffiffiffiffiffiffi
wmm

p ∝ ð1þ zÞγ . In
Cawthon et al. [74], we assumed that γ is in the range
0.0� 2.0, but found that is shows less spread around 0
for wider redshift bins. Since the redshift range zT ¼
0.2–0.45 used in this work is significantly wider than
that used in the bins of Cawthon et al. [74], we assume
γ ¼ 0� 1.5 here. These choices of γ range broadly fit
the various estimates of γ from the auto-correlations of
REDMAGIC on the full DES sample, the Stripe 82
sample which contains the galaxies that overlap with

BOSS, and simulations as measured in Cawthon
et al. [74].
After the galaxy bias correction is selected, the

clustering measurement is also narrowed to �2.5σ
around the mean of the clustering redshift distribution
estimate, with σ being the standard deviation of that
estimate. This cut is indicated in Figs. 20 and 21. This
is done since the clustering measurement can be noisy
and biased where the signal is low. We then fit for a
single photometric bias parameter, Δz ¼ z − zphot, where
z is the clustering redshift mean and zphot is the

FIG. 21. Clustering measurements on a subset of the SDSS lens
sample that has spectroscopic measurements. (79; 583; 4.9% of
the full sample.) The clustering measurement contains a correc-
tion for the evolution of galaxy bias, γ ¼ −1.4 which best fits the
true redshift distribution mean. This subsample gives a photo-z
bias of −0.0015.

FIG. 20. Comparison of the distribution of DES (left panel) and SDSS (right) REDMAGIC photometric redshifts with the
estimated redshift distribution from clustering using SDSS DR12 LOWZ and CMASS as a reference sample. By shifting the
photo-z distribution to fit the mean of the clustering estimate, we estimate the photometric bias to be Δz ¼ 0.003� 0.008 (DES) and
Δz ¼ 0.002� 0.006 (SDSS).
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photometric redshift mean over the redshift range
selected by the �2.5σ cut.
The results of this analysis are shown in Table V and

Figs. 20. The measurement on DES REDMAGIC can
only be done on a subsample of 20,347 galaxies in
Stripe 82, which has overlap with the BOSS spectroscopic
samples. For this reason, the statistical uncertainty on the
DES measurement is significantly larger than on SDSS
REDMAGIC. For both samples, the dominant systematic
error is the uncertainty in the REDMAGIC galaxy bias
evolution parameterized by γ. The uncertainty in γ of �1.5
leads to approximately an uncertainty of Δz of �0.006.
Figure 21 shows the cross correlation redshift estimate
using just a subsample of SDSS REDMAGIC that has
spectra. This is a biased sample that is brighter and likely
has a different photo-z bias and galaxy bias, though it
appears to confirm some similar trends seen in Fig. 20,
such as a lower galaxy density around z ¼ 0.4 and higher
density around z ¼ 0.3 compared to the photo-z code.

2. SDSS source galaxies

We measure the excess angular clustering from 500 to
1500 kpc between SDSS source galaxies selected and
weighted as in Sec. II C 2 and the SDSS DR12 spectroscopic
galaxy sample. This method is similar to that detailed in
Ménard et al. [109]. Statistical errors in clustering-z are
estimated by jackknife resampling. We find that reliable
clustering signal can only be recovered over a subset of the
sample, from 0.32 < z < 0.80, but this is sufficient to
calibrate the photo-z distribution with our method, where
we assume the shape of the source nðzÞ is correctly estimated
by photo-z and only determine its shift. More details for the
calibrationproceduremay be found inDavis et al. [38] aswell
as in Gatti et al. [39] and Cawthon et al. [74].
We fit a relative redshift bias, z → z − Δz in the photo-z

distribution, and parametrize the clustering bias evolution
in the clustering-z as a power-law with free exponent,
bPZbspectra ∝ ð1þ zÞγ . As we found in Gatti et al. [39] we
expect that systematic uncertainties in modeling the under-
lying bias evolution to dominate over our statistical uncer-
tainties. Systematic uncertainties in Gatti et al. [39] are
of the order σΔz ≈ 0.01, while our statistical uncertainty is
σΔz ¼ 0.002. In quadrature, these combine to be an uncer-
tainty of σΔz ¼ 0.011. Clustering constraints on the redshift
distribution are shown in Fig. 22. We find Δz ¼ −0.014�
0.011 and γ ¼ −2.0� 0.6, indicating only a marginal
preference for a mean offset in redshift, and moderate
combined bias evolution. We note that the bias evolution
measured is the product of the bias evolutions of the lens and
source samples, and so the bias evolution measured here will
likely differ from the calibration of the lens bin even though
both use the same reference galaxies and scales.
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