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ABSTRACT	1 

Mobility	is	one	of	the	most	important	processes	shaping	spatio-temporal	patterns	of	2 

variation	in	genetic,	morphological	and	cultural	traits.	However,	current	approaches	3 

for	inferring	past	migration	episodes	in	the	fields	of	archaeology	and	population	4 

genetics	lack	either	temporal	resolution	or	formal	quantification	of	the	underlying	5 

mobility,	are	poorly	suited	to	spatially	and	temporarily	sparsely	sampled	data,	and	6 

permit	only	limited	systematic	comparison	between	different	time	periods	or	7 

geographic	regions.	Here	we	present	a	new	estimator	of	past	mobility	that	addresses	8 

these	issues	by	explicitly	linking	trait	differentiation	in	space	and	time.	We	9 

demonstrate	the	efficacy	of	this	estimator	using	spatiotemporally	explicit	10 

simulations	and	apply	it	to	a	large	set	of	ancient	genomic	data	from	Western	Eurasia.	11 

We	identify	a	sequence	of	changes	in	human	mobility	from	the	Late	Pleistocene	to	12 

the	Iron	Age.	We	find	that	mobility	among	European	Holocene	farmers	was	13 

significantly	higher	than	among	European	hunter-gatherers	both	pre-	and	postdating	14 

the	Last	Glacial	Maximum.	We	also	infer	that	this	Holocene	rise	in	mobility	occurred	15 

in	at	least	three	distinct	stages:	the	first	centering	on	the	well-known	population	16 

expansion	at	the	beginning	of	the	Neolithic,	and	the	second	and	third	centering	on	17 

the	beginning	of	the	Bronze	Age	and	the	late	Iron	Age,	respectively.	These	findings	18 

suggest	a	strong	link	between	technological	change	and	human	mobility	in	Holocene	19 

Western	Eurasia	and	demonstrate	the	utility	of	this	framework	for	exploring	changes	20 

in	mobility	through	space	and	time.	21 

22 
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SIGNIFICANCE	STATEMENT	1 

Migratory	activity	is	a	critical	factor	in	shaping	processes	of	biological	and	cultural	2 

change	through	time.	We	introduce	a	new	method	to	estimate	changes	in	underlying	3 

migratory	activity	that	can	be	applied	to	genetic,	morphological	or	cultural	data,	and	4 

is	well-suited	to	samples	that	are	sparsely	distributed	in	space	and	through	time.	By	5 

applying	this	method	to	ancient	genome	data	we	infer	a	number	of	changes	in	6 

human	mobility	in	Western	Eurasia,	including	higher	mobility	in	pre-	than	post-Last	7 

Glacial	Maximum	hunter-gatherers,	and	oscillations	in	Holocene	mobility	with	peaks	8 

centering	on	the	Neolithic	transition,	the	beginnings	of	the	Bronze	Age	and	the	Late	9 

Iron	Age.	10 

11 
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INTRODUCTION	1 

One	of	the	major	goals	of	population	history	inference	is	to	assess	the	role	played	by	2 

past	mobility	in	shaping	patterns	of	genetic,	phenotypic	and	cultural	variation.	It	is	3 

well	recognized	that	the	past	movement	of	people	shapes	geographic	patterns	of	4 

genetic	variation	(1)	and	the	subsequent	ecological	and	evolutionary	properties	of	5 

populations	(2).	This	is	due	to	the	fact	that	gene	flow	changes	allele	frequencies,	6 

shapes	genetic	drift,	and	can	affect	(3)	or	even	mimic	(4)	natural	selection	processes.	7 

It	is	also	recognized	that	migration	activity	can	influence	cultural	evolutionary	8 

processes	(5,	6).	However,	despite	the	general	agreement	that	mobility	has	played	9 

an	important	role	in	shaping	past	and	present	patterns	of	genetic,	phenotypic	and	10 

cultural	variation	among	humans,	relatively	little	is	known	about	its	temporal	and	11 

geographic	variation	in	the	past	(7).		12 

Inferring	past	mobility	is	challenged	by	the	sparseness	and	unevenness	of	sampling	13 

in	time	and	space.	As	a	result,	studies	of	prehistorical	mobility	are	typically	limited	to	14 

descriptive	approaches,	where	major	attested	migration	episodes	or	events	are	used	15 

as	a	proxy	for	general	mobility.	Data	sources	such	as	stable	isotopes	have	enabled	16 

some	quantification	of	mobility	by	allowing	researchers	to	identify	individuals	within	17 

an	archaeological	community	who	have	migrated	into	a	region	during	their	lifetime	18 

(e.g.	8).	The	underlying	logic	behind	this	approach	is	that	differences	between	19 

isotope	ratios	–	particularly	strontium	–	within	organisms	reflect	the	isotope	ratios	20 

acquired	from	the	local	environment	(as	a	result	of	variation	in	underlying	geology)	21 

(9).	However,	it	is	challenging	to	extrapolate	within-community	mobility	rates	to	22 

migration	rates	across	larger	geographic	regions	or	over	long	time	periods.	23 

Furthermore,	isoscapes	are	still	often	poorly	characterized,	and	isotope	ratios	can	be	24 

relatively	constant	over	large	areas	(9,	10),	and	so	are	not	always	informative.	25 

Most	standard	population	genetic	tools	used	for	quantifying	population	structure,	26 

such	as	ADMIXTURE	analysis	(11),	f-statistics	(12),	and	TREEMIX	(11)	are	poorly	27 

suited	for	estimating	underlying	mobility	change	through	time.	In	classical	28 

population	genetic	analysis,	estimators	of	migration	rates	between	hypothesized	29 

sub-populations	have	been	developed,	including	statistics	such	as	FST	(13).	Some	of	30 
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these	statistics	have	also	been	applied	to	large	sets	of	quantitative	trait	data,	such	as	1 

variation	in	craniometric	morphology	(e.g	14,	15).	However,	such	statistics	quantify	2 

differentiation	among	a	set	of	contemporaneous	samples,	and	only	inform	on	3 

migration	rates	under	idealized	demographic	scenarios	–	such	as	gene	flow	between	4 

discrete	sub-populations	–	and	are	also	influenced	by	other	factors,	such	as	5 

subpopulation	split	times	and	population	size	fluctuations.	Furthermore,	these	6 

estimators	reflect	past	migration	between	hypothesized	sub-populations	over	large	7 

periods	of	time,	and	therefore	lack	temporal	resolution.	Some	researchers	interpret	8 

the	estimated	ages	and	geographic	distribution	of	clades	on	a	phylogenetic	tree	of	9 

uniparental	genetic	systems	(mtDNA	or	the	Y	chromosome)	as	proxies	for	the	rate	of	10 

spread	of	populations	(e.g.	16).	However,	such	approaches	do	not	permit	a	formal	11 

quantification	of	mobility	and	have	been	criticized	as	a	tool	for	demographic	12 

inference	(17–19).		13 

Thus,	existing	methods	allow	us	to	identify	migration	episodes	to	some	extent,	but	14 

lack	the	temporal	resolution	and	formal	quantification	of	underlying	mobility,	are	15 

poorly	suited	to	spatially	and	temporarily	sparsely	sampled	data,	and	do	not	permit	16 

systematic	comparison	between	different	time	periods	or	geographic	regions.	To	17 

overcome	these	problems,	we	present	a	new	estimator	of	past	mobility	that	is	18 

particularly	suited	to	sparsely	distributed	morphological,	cultural	or	genetic	variation	19 

data,	and	provide	a	first	application	to	a	large	set	of	genome-wide	data	from	ancient	20 

individuals	from	across	Western	Eurasia.	We	define	mobility	as	the	average	distance	21 

moved	by	entities	in	a	given	time	period.	22 

Estimating	past	migration	rates		23 

Under	a	general	model	of	identity-by-descent	with	modification	and	isolation	by	24 

distance	(20,	21),	trait	(genetic,	morphological	or	cultural)	differences	between	any	25 

two	entities	(individuals	or	populations)	increase	monotonically	as	a	function	of	both	26 

the	temporal	and	spatial	distance	between	them.	We	therefore	expect	that	trait	27 

differences	between	entities	correlate	with	temporal	as	well	as	spatial	distances.	28 

However,	the	extent	to	which	spatial	and	temporal	differences	explain	observed	trait	29 

variation	depends	on	the	level	of	spatial	population	structure,	and	therefore	on	the	30 
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level	of	mobility.	If	mobility	was	low	(i.e.	strong	spatial	structure)	then	we	would	1 

expect	differences	between	entities	to	be	more	strongly	correlated	with	space,	2 

relative	to	time,	while	if	mobility	was	high	we	would	expect	time	to	explain	a	3 

relatively	larger	proportion	of	differences	between	entities	(because	of	the	4 

homogenizing	effects	of	high	mobility	across	space).		5 

Given	that	both	spatial	and	temporal	distances	are	expected	to	correlate	with	trait	6 

differences	among	entities,	a	matrix	combining	both	spatial	and	temporal	distance	7 

information	should	give	a	stronger	correlation	than	either	matrix	alone	(extra	8 

correlation,	EC).	However,	since	spatial	and	temporal	distances	are	measured	in	9 

different	units	(e.g.	km	and	years),	combining	them	requires	a	scaling	factor	(S).	10 

Here,	we	show	that	the	scaling	factor	value	(Smax)	that	maximizes	the	correlation	11 

between	a	trait	difference	matrix	and	a	Euclidian	distance	matrix	combining	the	12 

spatial	and	temporal	distance	matrices	provides	an	estimator	of	mobility	over	the	13 

period	and	region	covered	by	the	data	(figure	1,	see	Materials	and	Methods).	For	14 

convenience,	we	use	a	geometric	interpretation	of	the	scaling	factor	Smax	as	an	angle,	15 

α,	in	the	plane	defined	by	the	spatial	and	temporal	distances	(α	=	atan(Smax),	16 

illustrated	in	the	inset	of	figure	1;	see	Materials	and	Methods).	17 

To	test	the	reliability	and	the	robustness	of	Smax	in	recovering	information	about	past	18 

mobility,	we	simulated	data	under	a	spatio-temporally	explicit	two-dimensional	19 

model,	which	includes	simple	population	dynamics	with	population	growth,	density	20 

dependence	and	mobility	(modeled	as	a	Gaussian	random	walk)	and	generated	21 

variation	data	under	different	mobility	parameter	values	(see	Materials	and	22 

Methods).	We	assessed	the	ability	of	Smax	to	infer	simulated	mobility	values	by	23 

correlation	across	simulations.	We	found	a	strong,	positive	linear	relationship	24 

between	the	simulated	average	migration	distance	(i.e.	mobility)	and	values	of	Smax	25 

(figure	2,	R2	=	0.8),	thus	demonstrating	the	utility	of	this	statistic	as	an	estimator	for	26 

relative	mobility.	However,	for	this	result	to	hold	it	is	important	that	the	trait	27 

differences	are	generated	under	an	approximately	constant	mutation	rate	and	vary	28 

neutrally	within	a	population.		29 

30 
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Migration	rates	among	Pleistocene	hunter-gathers	and	early	farmers		1 

Recent	advances	in	sequencing	technologies	have	allowed	genomic	data	retrieval	2 

from	a	large	sample	of	past	individuals	(e.g.	(22–26).	Although	these	studies	have	3 

not	explicitly	quantified	underlying	mobility	in	the	past	they	have	suggested	several	4 

periods	of	large-scale	population	turnover	in	Western	Eurasia.	5 

Given	that	the	Smax	statistic	is	able	to	recover	information	on	past	mobility	in	6 

simulated	data,	we	applied	the	method	to	a	sample	(N	=	329)	of	previously	published	7 

genome-wide	genotype	data	covering	a	time	period	from	the	beginning	of	the	Upper	8 

Palaeolithic	to	the	Iron	Age	to	explore	changes	in	past	human	mobility	in	Western	9 

Eurasia	(see	Materials	and	Methods).	We	also	constructed	non-parametric	10 

confidence	intervals	to	account	for	date	and	sampling	uncertainty,	and	estimated	p-11 

values	for	the	Smax	statistic	by	permutation	under	the	null	hypothesis	of	no	isolation	12 

by	distance	in	space	and	time,	which	allowed	us	to	quantify	the	robustness	of	our	13 

estimates	and	identify	time	periods	during	which	data	are	too	sparse	for	the	Smax	14 

statistic	to	be	informative	(see	Material	and	Methods).	First,	we	explored	the	extent	15 

to	which	mobility	differed	between	pre-	and	post-Last	Glacial	Maximum	(LGM)	16 

hunter-gatherers	(figure	3).	We	found	the	average	(median)	mobility	rates	to	be	17 

higher	(α	=18.1;	95%	CI:	14.9–87.7;	p	=	0.08)	among	pre-LGM	hunter-gatherers	18 

temporally	ranging	from	37,000	to	26,000	years	ago	compared	to	post-LGM	hunter-19 

gatherers	(α	=9.9;	95%	CI:	9.5–10.9;	p	=	0.03),	temporally	ranging	from	19,000	to	20 

5,000	years	ago.	We	also	estimated	mobility	rates	for	Holocene	farmers,	temporally	21 

ranging	from	10,000	to	1,000	years	ago	and	found	even	higher	values	(α	=34.8;	95%	22 

CI:	33.9	–	35.3;	p	<	0.0001)	than	for	both	hunter-gatherer	groups	(see	supplementary	23 

table	2	for	full	results).	24 

Because	Holocene	western	Eurasia	is	particularly	well	sampled	for	ancient	genomic	25 

DNA,	we	performed	a	sliding	window	analysis	to	explore	changes	in	mobility	over	26 

the	last	14,000	years	in	more	detail	(figure	4),	using	4,000	year-wide	windows	to	27 

ensure	sufficient	temporal	signal	within	each	window.	We	inferred	a	reduction	in	28 

mobility	rate	between	14,000	and	9,000	years	ago,	prior	to	the	start	of	the	Neolithic	29 

transition	(figure	4a).	However,	throughout	most	of	this	period	the	p-values	are	not	30 
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significant	(see	figure	4b).	Because	of	the	small	sample	size	in	the	windows	covering	1 

this	time	period	(figure	4c)	there	is	no	significant	correlation	between	genetic	and	2 

temporal	distances,	and	as	a	result	we	do	not	observe	any	extra	correlation,	and	so	3 

lack	power	to	estimate	mobility	(see	Materials	&	Methods	and	figure	S3).	We	4 

consequently	treat	the	inferred	decline	in	mobility	in	this	time	range	with	caution.	5 

Second,	we	infer	a	substantial	increase	in	mobility	centered	on	the	beginning	of	the	6 

Neolithic,	with	a	peak	centered	around	7,500	years	ago	(figure	4a).	Notably,	the	7 

inferred	mobility	rate	does	not	remain	at	this	level	throughout	the	Holocene.	8 

Instead,	we	infer	a	Late	Neolithic	drop	in	mobility	before	a	second	increase	centered	9 

on	the	beginning	of	the	Bronze	Age,	around	5,000	years	ago,	then	a	decline	in	the	10 

Late	Bronze	Age	and	Early	Iron	Age,	before	a	final	increase	centered	on	the	Late	Iron	11 

Age	(figure	4a	and	supplementary	table	3	for	full	results	for	each	window).		12 

To	validate	the	efficacy	of	our	method	to	identify	changes	in	migration	rate	on	the	13 

time	scales	found	in	the	empirical	dataset	(figure	4),	we	modified	our	simulations	to	14 

represent	a	population	experiencing	two	changes	in	migration	rate,	resulting	in	three	15 

episodes	of	constant	migration	rate.	We	observe	a	good	correspondence	between	16 

changes	in	Smax	and	the	simulated	migration	rate	(figure	S4),	supporting	our	17 

interpretation	of	the	empirical	results	in	figure	4.	18 

Finally,	we	compare	the	performance	of	the	Smax	statistic	to	a	simple	Isolation	By	19 

Distance	(IBD)	though	time	approach,	where	(the	slope	of)	the	linear	relation	20 

between	the	genetic	distances	and	geographic	distances	is	used	as	an	indicator	of	21 

the	level	of	past	migratory	activity:	high	level	of	migration	corresponds	to	shallow	22 

IBD	patterns.	We	observe	a	trend	of	decreasing	spatial	structure,	consistent	with	the	23 

cumulative	effects	of	a	series	of	high	migratory	activity	episodes	over	this	period.	24 

However,	this	approach	fails	to	recover	the	timing	of	those	changes	in	migratory	25 

activity	in	specific	periods	(figure	S5).	Our	method	overcomes	this	lack	of	power	to	26 

identify	changes	in	migratory	activity	by	explicitly	considering	the	temporal	27 

dimension	of	the	data.28 
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DISCUSSION	1 

Through	spatio-temporally	explicit	simulations,	we	have	shown	that	the	Smax	statistic	2 

can	be	used	as	a	reliable	proxy	for	the	underlying	relative	mobility	of	individuals	3 

within	a	given	time	period	and	geographic	region.	Because	our	statistic	is	based	on	4 

correlations,	it	is	well	suited	for	analyzing	data	from	archeological	and	5 

palaeontological	contexts,	where	the	preservation	can	vary	significantly	across	6 

different	geographical	areas	and	temporal	ranges,	and	samples	are	commonly	7 

sparsely	distributed	across	space	and	time.		Nevertheless,	in	the	extreme	case	of	just	8 

a	small	number	of	sites	from	different	geographic	locations	or	temporal	periods,	9 

spurious	estimates	of	migratory	activity	may	arise.	The	permutation	procedure	10 

introduced	in	this	study	can	be	used	to	identify	when	the	Smax	estimator	is	11 

uninformative.	We	choose	only	to	consider	relative	changes	in	the	value	of	the	Smax	12 

estimator	and	do	not	attempt	to	interpret	its	values	in	absolute	terms.	This	is	13 

because,	whilst	our	intuition	is	that	mutation	rate	and	population	size	will	not	affect	14 

the	relationship	between	absolute	values	of	the	Smax	estimator	and	the	true	mobility	15 

rate,	we	admit	the	possibility	that	other	factors	may.	Selection	in	response	to	16 

ecological	and	environmental	factors	could	also	reduce	the	utility	of	the	Smax	statistic	17 

as	a	proxy	for	mobility	because	local	selection	can	create	confounding	spatial	or	18 

temporal	population	structure.	However,	this	is	a	common	problem	for	any	analysis	19 

assuming	neutral	evolution,	and	can	be	dealt	with	by	focusing	on	putatively	neutrally	20 

varying	traits	or	loci.			21 

The	Smax	statistic	offers	a	robust	alternative	to	existing	methods	for	the	22 

quantification	of	isolation	by	distance	patterns	in	temporally	heterogeneous	23 

datasets.	In	population	genetics,	correlations	between	trait	differences	and	24 

geographic	distances	are	commonly	used	to	infer	past	population	structure	and	25 

connectivity	between	populations	(27).	In	such	approaches,	temporal	structure	in	26 

data	is	usually	either	ignored	or	mathematically	controlled	for	using	partial	least	27 

squares	(e.g.	28),	but	both	of	these	practices	have	been	criticized	(29–31),	and	we	28 

show	that	while	such	approaches	can	inform	on	the	cumulative	effects	of	migration	29 

in	terms	of	structure	reduction,	they	are	unable	to	recover	temporal	changes	in	30 
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migratory	activity.	Partial	least	squares	analysis	assumes	that	the	effect	of	time	on	1 

genetic	differences	can	be	decoupled	from	the	effect	of	space,	which	is	generally	not	2 

the	case.	We	avoid	this	problem	by	integrating	space	and	time	into	a	single	distance	3 

measure.	Finally,	because	the	statistic	contains	information	about	both	spatial	and	4 

temporal	structuring	of	the	populations,	it	can	be	used	as	a	potentially	informative	5 

summary	statistic	in	quantitative	model	fitting	frameworks	such	as	Approximate	6 

Bayesian	Computation	(32).	7 

Using	the	Smax	statistic	on	ancient	genomic	data,	we	identified	a	sequence	of	changes	8 

in	human	mobility	from	late	Pleistocene	to	the	Iron	Age	in	western	Eurasia.	We	find	9 

some	support	for	reduced	mobility	in	west	Eurasian	post-LGM	hunter-gatherers	10 

compared	to	pre-LGM	populations.	The	reasons	for	this	result	are,	as	yet,	unclear,	11 

although	possible	explanations	include	reduced	resource	availability	in	Pre-LGM	12 

Western	Eurasia,	requiring	larger	foraging	ranges	compared	to	Post-LGM	conditions	13 

(33,	34)	and/or	residual	post-LGM	population	structure	following	recolonization	of	14 

northern	latitudes	from	LGM	southern	refugia	(35).	Using	a	sliding	window	analysis,	15 

we	find	some	suggestion	of	a	decline	in	post-LGM	hunter-gatherer	mobility	leading	16 

up	to	the	Neolithic	transition.	However,	we	caution	against	over-interpretation	of	17 

this	result	as	the	estimated	p-values	for	the	Smax	statistic	under	the	null	hypothesis	of	18 

no	EC	are	mostly	not	significant.	We	find	strong	support	for	a	rise	in	mobility	during	19 

the	Neolithic	transition	in	western	Eurasia,	likely	corresponding	to	a	well-established	20 

demic	expansion	of	farmers,	originating	in	the	Middle	East	and	resulting	in	the	21 

spread	of	farming	technologies	throughout	most	of	Western	Eurasia	(36–38).	This	is	22 

followed	by	an	inferred	mobility	decline	towards	the	end	of	the	Neolithic,	possibly	23 

related	to	the	terminal	phase	of	the	spread	of	farming	culture	across	most	of	24 

Western	Eurasia,	and	increased	sedentism	(39,	40).	We	also	find	strong	support	for	a	25 

rise	in	mobility	centered	on	the	onset	of	the	Bronze	Age.	From	previous	ancient	DNA	26 

studies,	this	period	has	been	associated	with	large-scale	migration	of	Eurasian	27 

steppe	populations,	particularly	those	related	to	the	Yamnaya	culture,	into	Central	28 

and	Northern	Europe	(22,	23).	However,	the	emergence	of	the	first	civilizations	and	29 

the	concomitant	establishment	of	far	reaching	trade	networks,	as	well	as	30 

technological	innovations	such	as	horse-based	transport	(41),	could	also	explain	this	31 
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increase	in	mobility	(42).	Finally,	our	sliding	window	analysis	indicates	a	mobility	1 

reduction	centered	on	the	Late	Bronze	Age	and	Early	Iron	Age,	starting	around	3,000	2 

years	ago,	before	a	final	increase	centered	on	the	Late	Iron	Age	in	Western	Eurasia	3 

(figure	4a).	One	possible	explanation	for	this	pattern	is	a	significant	increase	in	trade	4 

and	warfare	during	that	period	(43–45).	Overall,	our	analysis	suggests	a	strong	link	5 

between	technological	change	and	human	mobility	in	Holocene	Western	Eurasia.	6 

However,	it	should	be	noted	that	we	have	used	wide	windows	(4,000	years),	which	7 

necessarily	reduces	chronological	resolution.	8 

A	major	strength	of	our	method	is	its	applicability	to	any	set	of	neutrally	evolving	9 

heritable	traits	where	differences	between	individuals	can	be	quantified	and	10 

increase	monotonically	with	geographic	distance	and	temporal	difference.	This	11 

means	that,	in	principle,	the	Smax	statistics	could	allow	the	quantification	of	12 

migratory	activity	in	temporal	and	environmental	contexts	where	obtaining	ancient	13 

genetic	data	is	not	feasible,	by	using	phenotypic	data	such	as	variation	in	cranial	14 

morphology,	which	has	been	shown	to	fit	the	pattern	of	neutral	evolution	and	15 

closely	follow	the	patterns	observed	in	analyses	of	neutral	genetic	data	in	humans	16 

(46,	47).	Another	exciting	possibility	is	the	quantification	of	movement	based	on	17 

cultural	variation	data,	provided	that	appropriate	near-neutral	traits	are	used	(e.g.	18 

(48–50).	Whilst	it	should	not	be	assumed	that	the	movement	of	artefacts	always	19 

coincides	with	that	of	people,	contrasting	measures	of	movement	based	on	genetics	20 

and	cultural	artefacts	obtained	under	the	same	conceptual	framework	would	allow	21 

quantification	of	demic	vs	cultural	diffusion	processes.	This	might	permit	22 

identification	periods	and	regions	where	genetic,	phenotypic	and	cultural	processes	23 

are	coupled,	or	decoupled.	Given	its	robustness	and	flexibility,	we	anticipate	that	the	24 

Smax	estimator	will	be	applicable	to	a	wide	range	of	genetic,	phenotypic,	and	cultural	25 

traits,	allowing	the	quantification	of	mobility	in	a	wide	variety	of	scenarios	in	which	26 

this	type	of	analysis	has	previously	been	challenging.		27 

28 
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MATERIALS	AND	METHODS	1 

The	proposed	migration	rate	estimator,	Smax,,	is	the	value	of	a	scaling	factor	2 

combining	spatial	and	temporal	distance	matrices	into	a	single	distance	matrix	that	3 

maximizes	its	correlation	with	a	matrix	of	trait	distances.	In	order	to	estimate	that	4 

value,	the	geographical,	temporal	and	trait	distance	matrices	are	calculated	as	5 

described	below.		6 

Geographic,	temporal	and	trait	distances	7 

The	geographic	distance	between	all	sample	pairs	was	calculated	in	kilometers	using	8 

the	Haversine	Formula	(51)	to	account	for	the	curvature	of	the	Earth	as	follows:		9 

𝐺!" = 2𝑟 arcsin sin 𝜑! − 𝜑! 2 ! + cos 𝜑! cos 𝜑! sin (𝜆! − 𝜆!) 2
!

	[1]	10 

Where	G	is	the	distance	in	kilometers	between	individuals	i	and	j;	φi	and	φj	are	the	11 

latitude	coordinates	of	individuals	i	and	j,	respectively;	λi	and	λj	are	the	longitude	12 

coordinates	of	individuals	i	and	j,	respectively;	and	r	is	the	radius	of	the	earth	in	13 

kilometers.		14 

Temporal	distances	between	samples	were	calculated	as	time	in	years	between	15 

sample	pairs.	Previously	reported	date	ranges	based	on	stratigraphy	or	direct	16 

radiocarbon	dating	were	used	for	all	individuals	(See	supplementary	table	S1).	In	all	17 

analyses,	sample	dates	were	randomly	drawn	from	a	uniform	distribution	18 

corresponding	to	the	upper	and	lower	bounds	of	a	time	period	for	a	given	specimen.	19 

Genetic	distances	were	calculated	as	pairwise	proportion	of	alleles	that	are	not	20 

identical	by	state	(pairwise	heterozygosity),	using	the	function	ibs.dist	from	the	21 

Bioconductor	package	SNPstats	v.1.18.0	(52)	in	the	R	statistical	analysis	environment	22 

v3.2.2	(53).		23 

The	Smax	Estimator	24 

In	order	to	consider	the	full	range	of	scaling	factors	on	a	finite	interval,	we	choose	to	25 
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represent	S	as	the	tangent	of	an	angle	α	between	0	and	90	degrees,	where	α	=	0	1 

corresponds	to	S	=	0	(geographic	variation	alone	explains	the	observed	trait	2 

distances	between	entities)	and	α	=	π/2	corresponds	to	S	=	∞	(temporal	variation	3 

alone	explains	the	observed	trait	distances	between	entities).	Formally,	the	time-4 

space	product	matrix	(D)	was	calculated	as	follows:			5 

𝐷!" = 𝐺!"! + 𝑆𝑇!"
!
	[2]		6 

where	i	and	j	are	the	specimens	considered,	D	is	the	time-space	product	matrix,	G	is	7 

the	geographical	distance	matrix,	T	the	temporal	distance	matrix	(given	by	the	8 

difference	in	age	of	the	samples);	and	S	is	the	scaling	factor	(S	=		tan(α)).		9 

To	find	the	scaling	factor,	Smax,	that	maximizes	the	correlation	between	the	trait	10 

distance	matrix	and	D,	the	time-space	product	matrix,	we	calculated	the	Pearson	11 

correlation	coefficient	between	these	matrices	for	200	(500	for	the	simulated	data)	12 

scaling	factor	values	(see	figure	1).	The	scaling	factor	value	in	the	time-space	product	13 

matrix	that	produced	the	strongest	correlation	with	the	trait	distance	matrix	is	14 

recorded	as	Smax,	the	mobility	estimator.	15 

Simulation	tests	16 

The	reliability	and	the	robustness	of	the	Smax	statistic	in	recovering	information	17 

about	past	mobility	was	explored	using	a	spatiotemporally	explicit	simulation	model.	18 

The	simulation	world	consists	of	a	grid	of	8000	by	8000	demes.	Each	simulation	19 

starts	with	one	entity	placed	in	a	randomly	chosen	deme,	and	lasts	20,000	20 

generations.	The	model	simulated	exponential	population	growth	to	a	carrying	21 

capacity	of	10,000	entities,	followed	by	a	stochastic	birth-death	process	(Moran,	22 

1958),	mobility	and	trait	mutation.	We	generated	spatiotemporal	trait	variation	data	23 

under	different	mobility	parameter	values	using	the	same	Smax	estimation	protocols	24 

as	described	above	for	each	data	set.	10,000	independent	replicates	of	the	25 

simulations	and	analyses	were	generated,	and	the	utility	of	the	Smax	statistic	in	26 

recovering	information	about	mobility	was	assessed	by	correlation.		27 
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The	migratory	process	was	modeled	as	Gaussian	random	walks:	In	each	generation	1 

each	entity	moves	independently	in	the	x	and	y	directions	by	distances	picked	2 

randomly	from	a	normal	distribution	with	mean	=	0	and	standard	deviation	=	σmig.	3 

This	corresponds	to	the	average	distance	moved	in	a	single	step	(dmig)	of	 𝜋/2 σmig	=	4 

1.2533	σmig.	Thus,	dmig	is	the	parameter	of	interest.	We	choose	1,000	random	values	5 

of	dmig	from	a	uniform	distribution	with	range	1	to	100.	We	modelled	drift	as	a	6 

Moran-type	birth-death	process	(Moran,	1958).	At	each	generation	each	entity	7 

undergoes	binary	fission	with	probability	p	=	0.1,	creating	a	duplicate	of	itself	at	the	8 

same	location.	The	two	entities	subsequently	move	and	evolve	independent	of	each	9 

other.	When	the	number	of	entities	reaches	or	exceeds	the	carrying	capacity	10 

(10,000),	excess	entities	are	deleted	at	random	among	all	entities	present	in	that	11 

generation.	Mutation	was	modelled	as	a	one-dimensional	Gaussian	random	walk	for	12 

each	trait	(Ntraits	=	50).	Each	trait	was	assigned	an	initial	value	of	1000	and	new	13 

(mutated)	values	picked	from	a	random	normal	distribution	with	mean	equal	to	the	14 

current	value	and	standard	deviation	fixed	at	0.05	15 

Following	a	burn-in	period	of	10,000	generations,	entities	were	sampled	from	16 

simulations	with	a	probability	of	0.00001	at	each	generation.	The	x	and	y	17 

coordinates,	time	of	sampling	in	generations	and	the	values	for	the	50	traits	were	18 

recorded	for	all	sampled	entities.		19 

Pairwise	trait	distances	between	all	sampled	entities	in	each	of	the	simulated	20 

datasets	were	calculated	using	the	Euclidean	distance	formula	as	follows:		21 

𝑀!" = 𝑑!" − 𝑑!"
!!

!!! 	[3]	22 

Where,	Mij	is	the	distance	between	the	two	entities	i	and	j;	dik	and	djk	are	the	values	23 

of	the	trait	k	for	individuals	i	and	j	respectively,	and	n	is	the	number	of	recorded	24 

traits.	25 

Out	of	10,000	simulations	9866	(98.66%)	resulted	in	extra	correlation	greater	than	26 

zero.	In	order	to	match	the	simulated	data	with	the	empirical	data	we	filtered	the	27 

simulated	data	based	on	the	measured	EC	values	and	removed	all	simulations	that	28 
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produced	an	EC	value	smaller	than	0.001.	This	resulted	in	9155	simulations	being	1 

used	in	the	correlation	analysis.	2 

In	order	to	assess	the	reliability	of	the	Smax	statistic	in	recovering	information	about	3 

mobility,	R2	values	were	calculated	for	the	correlation	between	the	simulated	dmig	4 

values	and	their	corresponding	Smax	values.	5 

Human	mobility	in	late	Pleistocene	and	Holocene.	6 

We	considered	genome-wide	data	comprising	354,199	SNPs	typed	in	329	West	7 

Eurasian	(i.e.	west	of	the	Ural	mountains)	individuals	(see	supplementary	figure	2)	8 

temporally	ranging	from	approximately	39,000	to	1,000	years	before	present	see	9 

supplementary	figure	2).	We	merged	the	overlapping	SNPs	typed	in	archaeological	10 

samples	published	in	(22–26,	54–60)	(see	supplementary	table	S1	for	list	of	samples	11 

and	references)	that	met	the	geographic	and	temporal	criteria	described	above.	No	12 

additional	bioinformatic	processing	of	the	data	was	carried	out	for	this	study.		13 

The	329	individuals	were	assigned	to	one	of	following	three	groups	based	on	their	14 

estimated	age,	and	subsistence	strategy	based	on	their	archaeological	context:	Pre-15 

LGM	hunter-gathers	N	=	19	(temporally	ranging	from	39,000	years	BP	to	26,000	16 

years	BP);	post-LGM	hunter-gathers	N=	47,	temporally	ranging	from	19,000	years	BP	17 

to	5,000	years	BP;	and	Holocene	farmers	N	=	263,	temporally	ranging	from	10,000	18 

years	BP	to	500	years	BP.		19 

Sliding	window	analysis	was	performed	on	all	individuals	in	the	dataset	postdating	20 

16,000	years	B.P.	The	Smax	statistic	was	estimated	for	121	overlapping	4,000	year	21 

windows,	each	differing	by	100	years.		22 

To	take	age	uncertainty	into	account,	we	report	the	mean	scaling	factor	angle	from	23 

10,000	replicates	with	sample	dates	randomly	resampled	from	their	age	ranges.	95%	24 

confidence	intervals	were	estimate	through	a	jackknifing	procedure	in	which	a	25 

randomly	chosen	sample	in	each	window	was	removed	from	analysis,	and	the	0.025	26 

and	0.095	quantiles	were	calculated	from	the	resulting	distribution.	27 
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To	estimate	the	Isolation	By	Distance	(IBD)	signal	through	time	we	fitted	a	linear	1 

model	of	genetic	distances	as	a	function	of	geographic	distances	in	each	time	2 

window	(with	sample	jackknifing	and	age	resampling	as	before,	using	the	lm	function	3 

from	the	R	package	base	version	3.2.2.	(53)),	and	reported	the	slope	of	the	line.	4 

Confidence	intervals	and	robustness	of	Smax	estimator			5 

We	tested	the	assumption	that	there	is	an	isolation	by	distance	pattern	by	6 

correlating	the	genetic	(trait)	distance	matrices	in	all	time-bins	and	in	all	windows	7 

with	the	respective	geographic	distance	matrices	and	the	date-resampled	temporal	8 

distance	matrices	and	calculated	the	p-values	for	these	correlations.	We	find	a	9 

positive	and	statistically	significant	isolation	by	distance	pattern	in	space	in	all	10 

windows	(figure	S3a	and	S3b,	respectively	and	figure	S6).	The	isolation	by	temporal	11 

distance	pattern	is	positive	and	significant	for	most	windows,	but	some	windows	12 

show	negative	correlations	or	are	not	significant.	We	find	that	these	windows	13 

correspond	to	time	periods	where	we	observe	low	extra	correlation	(figure	S3c)	and	14 

also	low	p-values	for	the	extra	correlation	(figure	4b).	15 

To	account	for	the	uncertainty	in	sample	ages	we	calculated	the	scaling	factor	angle	16 

10,000	times	using	dates	resampled	at	random	from	a	uniform	distribution	for	each	17 

sample,	as	described	above,	and	report	the	average	of	the	scaling	factor	angle	of	the	18 

given	distribution	as	a	point	estimate.	19 

We	also	performed	a	leave-one-out	analysis	(10,000	replicates,	combined	with	20 

sample	date	resampling)	to	explore	the	combined	effect	of	sampling	and	dating	21 

uncertainty,	and	constructed	approximate	equal-tailed	95%	confidence	intervals	for	22 

all	groups	and	windows.	23 

To	assess	the	statistical	significance	of	Smax	estimates	we	consider	the	extra	24 

correlation	(EC);	defined	as	the	Pearson	correlation	coefficient	between	the	trait	25 

difference	matrix	and	the	time-space	product	matrix	when	S	=	Smax,	minus	the	26 

Pearson	correlation	coefficient	between	the	trait	difference	matrix	and	either	the	27 

temporal	or	geographical	distance	matrix	alone,	whichever	is	higher.		28 
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To	obtain	a	null-distribution	of	EC,	we	permuted	trait	data	for	individuals	among	the	1 

spatiotemporal	sample	locations	10,000	times	and	calculated	EC	for	each	2 

permutation,	as	described	above.	Finally,	we	calculate	the	proportion	of	EC	values	3 

from	the	permuted	datasets	that	are	equally	high	or	higher	than	that	obtained	from	4 

the	observed	data.	This	permutation	test	permits	assessment	of	how	frequently	the	5 

extra	correlation	(EC)	for	the	observed	data	is	produced	by	chance	alone	or,	6 

alternatively,	as	the	result	of	method	used	for	estimating	the	Smax	statistic.	The	7 

resultant	p-value	is	the	probability	of	observing	an	equally	high	or	higher	EC	value	in	8 

permuted,	supposedly	signal-less	data,	and	provides	an	indication	of	the	information	9 

content	of	each	dataset.	10 

Simulated	scenario	of	changing	migration	rate	11 

We	modified	our	simulations	to	represent	a	population	experiencing	two	changes	in	12 

migration	rate,	resulting	in	three	episodes	of	constant	migration	rate.		We	assumed	13 

a	generation	time	of	25	years	and	chose	the	effective	population	size	to	be	2Ne	=	14 

10,000,	standard	figures	in	population	genetic	models	of	European	populations	(62).	15 

We	next	chose	three	levels	of	migration	with	relative	magnitude	on	par	with	what	16 

was	inferred	from	the	empirical	data:	m1=0.0002,	m2=0.01,	m3=0.05.	To	ensure	17 

equilibrium	conditions	during	the	start	of	the	sampling	period,	we	discarded	the	first	18 

10,000	steps	of	the	simulation	(using	migration	rate	m1).	We	then	simulated	a	time	19 

period	of	20,000	years,	divided	into	three	episodes	with	constant	migration	rate:		m1	20 

for	25,000-15,000	years	ago,	m2	for	15,000-10,000	years	ago	and	m3	for	the	last	21 

5,000	years	of	the	simulation.	This	roughly	corresponds	to	the	time	spans	associated	22 

with	Mesolithic	hunter-gatherers,	Neolithic	farmers,	and	post-Neolithic	cultures	in	23 

our	empirical	data	set.	From	a	population	genetic	point	of	view,	whole	genome	data	24 

as	used	in	the	empirical	estimates	correspond	to	a	large	number	of	approximately	25 

independent	replicates.	Because	our	model	does	not	include	recombination,	we	26 

accounted	for	this	effect	by	increasing	the	sample	size	to	10,000	individuals.	Figure	27 

S4	shows	the	migration	rate	estimation	using	the	Smax	statistic	using	a	4,000	year	28 

wide	sliding	window.		29 

R	version	3.2.2	(53)	was	used	for	analyses	throughout	this	manuscript.	The	30 
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correlations	between	temporal,	geographic	and	trait	distance	matrices	were	1 

calculated	using	the	mantel	(method	=	“pearson”)	function	in	R	package	Vegan	2 

version	2.3.0	(61).	The	permutation	and	bootstrap	tests	were	performed	using	the	3 

function	sample	in	the	R	package	base	version	3.2.2.	(53).		4 

The	R	code	used	for	analyses	is	available	from	the	GitHub	repository	(XXXX)	and	5 

upon	request	from	the	corresponding	authors.		6 

7 



	 19	

Author	Contributions	1 

M.G.T.	devised	the	approach	in	discussion	with	M.M.L.;	L.L.	&	M.G.T.	developed	the	2 

method	with	input	from	A.E.;	M.K.,	A.E.	&	M.G.T.	developed	the	simulation	code	3 

with	input	from	L.L.;	L.L.	performed	the	analyses	with	input	from	A.E.	&	M.G.T.;	L.L.,	4 

A.E.	&	M.G.T.	wrote	the	paper	with	input	from	M.M.L,	M.K.	&	A.M.	5 

Acknowledgements	6 

The	authors	are	very	grateful	to	Robert	Foley	for	valuable	discussions	during	the	7 

formulation	of	the	approach,	to	Mike	Parker-Pearson	for	advice	on	Holocene	8 

migration	processes,	and	to	Tamsin	O’Connell	for	advice	on	stable	isotopes.	L.L	was	9 

supported	by	Natural	Environment	Research	Council,	UK	(grant	numbers	10 

NE/K005243/1,	NE/K003259/1)	and	European	Research	Council	grant	(339941-11 

ADAPT).	M.G.T.	was	supported	by	Wellcome	Trust	Senior	Investigator	Award	(grant	12 

number	100719/Z/12/Z)	and	Leverhulme	Trust	(grant	number	RP2011-R-045).	A.M.	13 

&	A.E.	were	supported	by	a	European	Research	Council	Consolidator	grant	(grant	14 

number	647787-LocalAdaptation).	M.M.L.	was	supported	by	a	European	Research	15 

Council	Advanced	grant	(grant	number	295907,	In-Africa).	M.K.	was	funded	by	the	16 

Engineering	and	Physical	Sciences	Research	Council	(EPSRC)	through	the	Centre	for	17 

Mathematics	and	Physics	in	the	Life	Sciences	and	Experimental	Biology	(CoMPLEX).		18 

Bibliography:	19 

1.		 Hanski	I,	Gilpin	M	(1991)	Metapopulation	dynamics:	brief	history	and	20 
conceptual	domain.	Biol	J	Linn	Soc	42(1–2):3–16.	21 

2.		 Lande	R	(1988)	Genetics	and	demography	in	biological	conservation.	22 
Science	241(4872):1455–1460.	23 

3.		 Itan	Y,	Powell	A,	Beaumont	MA,	Burger	J,	Thomas	MG	(2009)	The	Origins	of	24 
Lactase	Persistence	in	Europe.	PLoS	Comput	Biol	5(8):e1000491.	25 

4.		 Klopfstein	S,	Currat	M,	Excoffier	L	(2006)	The	Fate	of	Mutations	Surfing	on	26 
the	Wave	of	a	Range	Expansion.	Mol	Biol	Evol	23(3):482–490.	27 

5.		 Powell	A,	Shennan	S,	Thomas	MG	(2009)	Late	Pleistocene	Demography	and	28 
the	Appearance	of	Modern	Human	Behavior.	Science	324(5932):1298–29 
1301.	30 



	 20	

6.		 Kline	MA,	Boyd	R	(2010)	Population	size	predicts	technological	complexity	1 
in	Oceania.	Proc	R	Soc	Lond	B	Biol	Sci	277(1693):2559–2564.	2 

7.		 Cox	MP,	Hammer	MF	(2010)	A	question	of	scale:	Human	migrations	writ	3 
large	and	small.	BMC	Biol	8:98.	4 

8.		 Gregoricka	LA	(2013)	Residential	mobility	and	social	identity	in	the	5 
periphery:	strontium	isotope	analysis	of	archaeological	tooth	enamel	from	6 
southeastern	Arabia.	J	Archaeol	Sci	40(1):452–464.	7 

9.		 Makarewicz	CA,	Sealy	J	(2015)	Dietary	reconstruction,	mobility,	and	the	8 
analysis	of	ancient	skeletal	tissues:	Expanding	the	prospects	of	stable	9 
isotope	research	in	archaeology.	J	Archaeol	Sci	56:146–158.	10 

10.		 Bowen	GJ	(2010)	Isoscapes:	Spatial	Pattern	in	Isotopic	Biogeochemistry.	11 
Annu	Rev	Earth	Planet	Sci	38(1):161–187.	12 

11.		 Pickrell	JK,	Pritchard	JK	(2012)	Inference	of	Population	Splits	and	Mixtures	13 
from	Genome-Wide	Allele	Frequency	Data.	PLoS	Genet	8(11).	14 
doi:10.1371/journal.pgen.1002967.	15 

12.		 Patterson	N,	et	al.	(2012)	Ancient	Admixture	in	Human	History.	Genetics	16 
192(3):1065–1093.	17 

13.		 Wright	S	(1990)	Evolution	in	mendelian	populations.	Bull	Math	Biol	52(1–18 
2):241–295.	19 

14.		 Relethford	JH	(1994)	Craniometric	variation	among	modern	human	20 
populations.	Am	J	Phys	Anthropol	95(1):53–62.	21 

15.		 Betti	L,	Balloux	F,	Hanihara	T,	Manica	A	(2010)	The	relative	role	of	drift	and	22 
selection	in	shaping	the	human	skull.	Am	J	Phys	Anthropol	141(1):76–82.	23 

16.		 Underhill	PA,	Kivisild	T	(2007)	Use	of	Y	Chromosome	and	Mitochondrial	24 
DNA	Population	Structure	in	Tracing	Human	Migrations.	Annu	Rev	Genet	25 
41(1):539–564.	26 

17.		 Goldstein	DB,	Chikhi		and	L	(2002)	HUMAN	MIGRATIONS	AND	27 
POPULATION	STRUCTURE:	What	We	Know	and	Why	it	Matters.	Annu	Rev	28 
Genomics	Hum	Genet	3(1):129–152.	29 

18.		 Nielsen	R,	Beaumont	MA	(2009)	Statistical	inferences	in	phylogeography.	30 
Mol	Ecol	18(6):1034–1047.	31 

19.		 Pinhasi	R,	Thomas	MG,	Hofreiter	M,	Currat	M,	Burger	J	(2012)	The	genetic	32 
history	of	Europeans.	Trends	Genet	28(10):496–505.	33 

20.		 Wright	S	(1943)	Isolation	by	Distance.	Genetics	28(2):114–138.	34 

21.		 Nei	M	(1972)	Genetic	Distance	between	Populations.	Am	Nat	35 
106(949):283–292.	36 



	 21	

22.		 Allentoft	ME,	et	al.	(2015)	Population	genomics	of	Bronze	Age	Eurasia.	1 
Nature	522(7555):167–172.	2 

23.		 Haak	W,	et	al.	(2015)	Massive	migration	from	the	steppe	was	a	source	for	3 
Indo-European	languages	in	Europe.	Nature	522(7555):207–211.	4 

24.		 Mathieson	I,	et	al.	(2015)	Genome-wide	patterns	of	selection	in	230	ancient	5 
Eurasians.	Nature	528(7583):499–503.	6 

25.		 Fu	Q,	et	al.	(2016)	The	genetic	history	of	Ice	Age	Europe.	Nature	7 
534(7606):200–205.	8 

26.		 Lazaridis	I,	et	al.	(2016)	Genomic	insights	into	the	origin	of	farming	in	the	9 
ancient	Near	East.	Nature	536(7617):419–424.	10 

27.		 Manel	S,	Schwartz	MK,	Luikart	G,	Taberlet	P	(2003)	Landscape	genetics:	11 
combining	landscape	ecology	and	population	genetics.	Trends	Ecol	Evol	12 
18(4):189–197.	13 

28.		 Reyes-Centeno	H,	et	al.	(2014)	Genomic	and	cranial	phenotype	data	support	14 
multiple	modern	human	dispersals	from	Africa	and	a	southern	route	into	15 
Asia.	Proc	Natl	Acad	Sci	111(20):7248–7253.	16 

29.		 Depaulis	F,	Orlando	L,	Hänni	C	(2009)	Using	Classical	Population	Genetics	17 
Tools	with	Heterochroneous	Data:	Time	Matters!	PLoS	ONE	4(5):e5541.	18 

30.		 Guillot	G,	Rousset	F	(2013)	Dismantling	the	Mantel	tests.	Methods	Ecol	Evol	19 
4(4):336–344.	20 

31.		 Skoglund	P,	Sjödin	P,	Skoglund	T,	Lascoux	M,	Jakobsson	M	(2014)	21 
Investigating	Population	History	Using	Temporal	Genetic	Differentiation.	22 
Mol	Biol	Evol	31(9):2516–2527.	23 

32.		 Beaumont	MA,	Zhang	W,	Balding	DJ	(2002)	Approximate	Bayesian	24 
Computation	in	Population	Genetics.	Genetics	162(4):2025–2035.	25 

33.		 Foley	RA,	Lahr	MM	(2001)	The	anthropological,	demographic	and	ecological	26 
context	of	human	evolutionary	genetics.	Genes,	Fossils,	and	Behaviour:	An	27 
Integrated	Approach	to	Human	Evolution,	p	258.	28 

34.		 Collard*	IF,	Foley	RA	(2002)	Latitudinal	patterns	and	environmental	29 
determinants	of	recent	human	cultural	diversity:	do	humans	follow	30 
biogeographical	rules?	Evol	Ecol	Res	4(3):371–383.	31 

35.		 Miller	R	(2012)	Mapping	the	expansion	of	the	Northwest	Magdalenian.	Quat	32 
Int	272–273:209–230.	33 

36.		 Menozzi	P,	Piazza	A,	Cavalli-Sforza	L	(1978)	Synthetic	maps	of	human	gene	34 
frequencies	in	Europeans.	Science	201(4358):786–792.	35 



	 22	

37.		 Skoglund	P,	et	al.	(2012)	Origins	and	Genetic	Legacy	of	Neolithic	Farmers	1 
and	Hunter-Gatherers	in	Europe.	Science	336(6080):466–469.	2 

38.		 Hofmanová	Z,	et	al.	(2016)	Early	farmers	from	across	Europe	directly	3 
descended	from	Neolithic	Aegeans.	Proc	Natl	Acad	Sci	113(25):6886–6891.	4 

39.		 Bocquet-Appel	J-P,	Naji	S,	Linden	MV,	Kozlowski	JK	(2009)	Detection	of	5 
diffusion	and	contact	zones	of	early	farming	in	Europe	from	the	space-time	6 
distribution	of	14C	dates.	J	Archaeol	Sci	36(3):807–820.	7 

40.		 Isern	N,	Fort	J	(2012)	Modelling	the	effect	of	Mesolithic	populations	on	the	8 
slowdown	of	the	Neolithic	transition.	J	Archaeol	Sci	39(12):3671–3676.	9 

41.		 Warmuth	V,	et	al.	(2012)	Reconstructing	the	origin	and	spread	of	horse	10 
domestication	in	the	Eurasian	steppe.	Proc	Natl	Acad	Sci	109(21):8202–11 
8206.	12 

42.		 Warmuth	VM,	et	al.	(2013)	Ancient	trade	routes	shaped	the	genetic	13 
structure	of	horses	in	eastern	Eurasia.	Mol	Ecol	22(21):5340–5351.	14 

43.		 Sherratt	S,	Sherratt	A	(1993)	The	growth	of	the	Mediterranean	economy	in	15 
the	early	first	millennium	BC.	World	Archaeol	24(3):361–378.	16 

44.		 Collis	J	(2003)	The	Celts:	origins,	myths	&	inventions	(Tempus).	17 

45.		 Beaujard	P	(2010)	From	Three	Possible	Iron-Age	World-Systems	to	a	Single	18 
Afro-Eurasian	World-System.	J	World	Hist	21(1):1–43.	19 

46.		 Roseman	CC,	Weaver	TD	(2007)	Molecules	versus	morphology?	Not	for	the	20 
human	cranium.	BioEssays	News	Rev	Mol	Cell	Dev	Biol	29(12):1185–1188.	21 

47.		 von	Cramon-Taubadel	N,	Weaver	TD	(2009)	Insights	from	a	quantitative	22 
genetic	approach	to	human	morphological	evolution.	Evol	Anthropol	Issues	23 
News	Rev	18(6):237–240.	24 

48.		 Shennan	S	(2000)	Population,	Culture	History,	and	the	Dynamics	of	Culture	25 
Change.	Curr	Anthropol	41(5):811–835.	26 

49.		 Eerkens	JW,	Lipo	CP	(2007)	Cultural	Transmission	Theory	and	the	27 
Archaeological	Record:	Providing	Context	to	Understanding	Variation	and	28 
Temporal	Changes	in	Material	Culture.	J	Archaeol	Res	15(3):239–274.	29 

50.		 Lycett	SJ,	Norton	CJ	(2010)	A	demographic	model	for	Palaeolithic	30 
technological	evolution:	The	case	of	East	Asia	and	the	Movius	Line.	Quat	Int	31 
211(1–2):55–65.	32 

51.		 Sinnott	R	(1984)	Virtues	of	the	Haversine.	Sky	Telesc	68(2):159.	33 

52.		 Clayton	D	(2014)	SnpStats:	SnpMatrix	and	XSnpMatrix	classes	and	methods	34 
Available	at:	35 



	 23	

https://www.bioconductor.org/packages/release/bioc/html/snpStats.html1 
.	2 

53.		 R	Core	Team	(2015)	R:	A	language	and	environment	for	statistical	3 
computing.	(R	Foundation	for	Statistical			Computing,	Vienna,	Austria.)	4 
Available	at:	https://www.R-project.org/.	5 

54.		 Keller	A,	et	al.	(2012)	New	insights	into	the	Tyrolean	Iceman’s	origin	and	6 
phenotype	as	inferred	by	whole-genome	sequencing.	Nat	Commun	3:698.	7 

55.		 Gamba	C,	et	al.	(2014)	Genome	flux	and	stasis	in	a	five	millennium	transect	8 
of	European	prehistory.	Nat	Commun	5:5257.	9 

56.		 Lazaridis	I,	et	al.	(2014)	Ancient	human	genomes	suggest	three	ancestral	10 
populations	for	present-day	Europeans.	Nature	513(7518):409–413.	11 

57.		 Olalde	I,	et	al.	(2014)	Derived	immune	and	ancestral	pigmentation	alleles	in	12 
a	7,000-year-old	Mesolithic	European.	Nature	507(7491):225–228.	13 

58.		 Seguin-Orlando	A,	et	al.	(2014)	Genomic	structure	in	Europeans	dating	back	14 
at	least	36,200	years.	Science	346(6213):1113–1118.	15 

59.		 Skoglund	P,	et	al.	(2014)	Genomic	Diversity	and	Admixture	Differs	for	16 
Stone-Age	Scandinavian	Foragers	and	Farmers.	Science	344(6185):747–17 
750.	18 

60.		 Jones	ER,	et	al.	(2015)	Upper	Palaeolithic	genomes	reveal	deep	roots	of	19 
modern	Eurasians.	Nat	Commun	6:8912.	20 

61.		 Oksanen	J,	et	al.	(2015)	vegan:	Community	Ecology	Package	Available	at:	21 
http://CRAN.R-project.org/package=vegan.	22 

62.		 Gronau	I,	Hubisz	MJ,	Gulko	B,	Danko	CG,	Siepel	A	(2011)	Bayesian	inference	23 
of	ancient	human	demography	from	individual	genome	sequences.	Nat	24 
Genet	43(10):1031–1034.	25 

26 



	 24	

Figures:	1 

	2 

Figure	1:	Illustration	of	the	principle	of	maximum	time-space	correlation.	The	black	3 

dots	show	a	typical	dependence	of	the	correlation	between	genetic	and	time-space	4 

distances	on	the	scaling	factor	angle	α	(in	degrees).	Here	space	alone	(α	=0)	is	a	5 

better	predictor	of	genetic	differences	than	time	alone	(α	=90),	but	the	best	6 

predictor	(highest	correlation)	is	found	at	an	intermediate	angle,	indicated	by	the	7 

vertical	red	line.	Inset:	Geometrical	interpretation	of	the	Scaling	Factor	(Smax)	as	an	8 

angle	(α).	9 
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	1 

Figure	2:	Correlation	between	simulated	movement	rate	(dmig)	and	estimated	scaling	2 

factor	(Smax).	Each	black	circle	represents	a	single	simulation.	The	colors	correspond	3 

to	the	density	of	circles	(see	the	color	scale	bar).	The	black	line	shows	the	best	linear	4 

fit	between	dmig	and	Smax		(R2	=	0.8),	demonstrating	that	the	scaling	factor	captures	5 

the	underlying	mobility	in	the	simulated	world.	6 
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	1 

Figure	3:	Boxplot	showing	the	mobility	rate	estimates	(from	jackknifing	and	date	2 

resampling)	among	pre-LGM	hunter-gatherers	temporally	ranging	from	37,000	to	3 

26,000	years	ago	(N	=	19),	post	LGM	hunter-gatherers	temporally	ranging	from	4 

19,000	to	5,000	years	ago	(N	=	47)	and	Holocene	farmers	temporally	ranging	from	5 

10,000	to	1,000	years	ago	(N=	263).	The	black	solid	lines	are	the	medians	of	the	6 

distributions.	The	boxes	represent	the	interquartile	ranges	and	the	whiskers	show	7 

the	spans	of	the	distributions.	8 
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	1 

 Figure	4:	Estimation	of	mobility	through	time	from	empirical	data.	(a)	Relative	2 

mobility	rate	estimates	in	Western	Eurasia	over	the	last	14,000	years,	using	a	4,000	3 

year	sliding	window	(121	windows).	The	solid	black	line	represents	the	mean	α	value	4 

from	10,000	date	resampled	iterations;	The	colored	area	represent	the	95%	5 

confidence	intervals	of	the	jackknife	distribution.	(b)	p-values	for	each	4,000	year	6 

window	under	the	null-hypothesis	of	no	Extra	Correlation	(EC),	constructed	by	7 

calculating	the	proportion	of	permuted	datasets	where	the	calculated	EC	value	was	8 

as	high	or	higher	than	the	average	EC	value	from	the	empirical	dataset	(see	Material	9 

and	Methods).	The	red	dotted	line	represents	the	level	above	which	5%	or	more	of	10 

the	permuted	datasets	result	in	EC	values	as	high	or	higher	than	the	empirical	11 

dataset.	(c)	Sample	size	for	each	4,000	year	windows,	averaged	over	10,000	date	12 

resampled	iterations.		13 
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