

How may Air Pollution Affect Bike-sharing Choice?

A Mode Choice Behaviour Study in a Developing Country with Policy Implications

- TRB 2017 -

Weibo Li & Maria Kamargianni Energy Institute, University College London

Objectives

- Investigate the factors affecting mode choice behaviour in China with a focus on bike-sharing
- Quantify the modal splits under several possible policy
 pathways aiming at increasing bike-sharing ridership

Background

Urban mobility challenges in developing countries

- Car ownership
- Congestion & Air pollution

Role of bike-sharing

- Avoid parking troubles with private bikes
- Connection to public transport
- Travel time and cost reduction
- Open opportunities for more social and leisure purposes

Background

Bike-sharing in developing countries

- Plenty of schemes
- Lack of research:
 - Mode choice behaviour
 - Impact of air pollution

Case Study: Taiyuan

Case Study: Taiyuan

Popular bike-sharing -used 0.45 billion times in total -highest daily demand 0.57 million -average daily demand 0.4 million -a bike used 10.24 times per day *data from 09/2012 to 06/2016*

Severe & seasonal air pollution

Survey Design

Questionnaire

- Personal socio-economic characteristics
- Household socio-economic characteristics
- Trip dairy
- Attitudes and perceptions
- Retrospective survey
- Stated preference experiment

Stated Preference Experiment

An example

Your c

(please

Scenario: travel within 2km, to work/education, sunny day, 10° C, with light pollution

	Car	E-bike	Bus	Car share	Bike share	Walk
	Drive 3 min	Ride 5 min	Drive 5 min	Drive 7 min	Ride 8 min	Walk 20 min
	Fuel ± 1.2		Ticket ¥1	Cost ¥3	Cost ¥0	
	Easy to park car					
	Parking ¥5/h					
			Walk 5 min to station	Walk 5 min to station	Walk 2 min to station	
			Every 2 min			
			With app	With app	With app	
hoice e tick)						

Data Collection

- Pilot survey in January 2015
- Summer data collection 2015: 15000 paper questionnaires distributed, 9499 individuals provided valid data
- Winter data collection 2016: 492 individuals provided valid data
- Air pollution data
- Weather condition data

Modelling Framework

Modelling Framework

$$U_{in} = \sum_{k=1}^{K} \beta_k X_{ink} + \sigma_i \eta_{in} + \varepsilon_{in}$$

One multinomial logit (MNL) model, two mixed MNL models SP data of the **short-distance trips** (9,499 individuals & 15,878 SP observations)

Results: bike-sharing part

	MNL		MMNL (across al	MMNL (correlation across alternatives)		MMNL (alternative specific variance)	
	Coef.	t-stat	Coef.	t-stat	Coef.	t-stat	
α_{bikesh}	1.16	2.63	1.16	2.63	1.16	2.63	
Commute-bike share	- 0.42	- 4.32	- 0.42	- 4.32	- 0.55	- 4.95	
Rain-bike share	- 1.06	- 6.00	- 1.06	- 6.00	- 1.12	- 5.56	
Snow-bike share	- 0.78	- 7.38	- 0.78	- 7.38	- 0.87	- 7.00	
Temperature-bike share	0.0027	0.65	0.0027	0.65	0.0017	0.37	
Air pollution-bike share	- 0.0025	- 5.08	- 0.0025	- 5.08	- 0.0025	- 4.32	
Travel time-bike share	0.06	1.22	0.06	1.22	0.13	2.48	
Travel cost-bike share	- 0.36	- 3.49	- 0.36	- 3.49	- 0.50	- 4.41	
Walk time-bike share	- 0.08	- 4.57	- 0.08	- 4.57	- 0.11	- 5.12	
App availability-bike share	- 0.28	- 3.71	- 0.28	- 3.71	- 0.39	- 4.42	
Male-bike share	0.02	0.42	0.02	0.42	- 0.02	- 0.34	
Age (lower)-bike share	- 0.10	- 1.29	- 0.10	- 1.29	- 0.06	- 0.73	
Income (lower)-bike share	0.08	1.11	0.08	1.11	0.15	1.54	
Education (lower)-bike share	0.02	0.46	0.02	0.46	0.01	0.14	

Results: model comparisons

	MNL		MMNL (correlation across alternatives)		MMNL (alternative specific variance)	
	Coef.	t-stat	Coef.	t-stat	Coef.	t-stat
$\sigma_{_{share}}$			0.09	0.34		
$\sigma_{\scriptscriptstyle auto}$			0.01	0.05		
$\sigma_{_{walk}}$					1.51	5.73
$\sigma_{\scriptscriptstyle bikesh}$					0.03	0.07
$\sigma_{_{ebike}}$					0.00	-
$\sigma_{\scriptscriptstyle bus}$					0.85	3.50
$\sigma_{\it carsh}$					7.66	2.35
$\sigma_{\scriptscriptstyle car}$					0.91	1.70
Number of observations	15878		15878		15878	
Final log-likelihood	- 23458.0		- 23457.9)	- 23428.6	
Likelihood ratio test	3155.4		3155.5		3214.2	

Result Summary (short-distance trips)

- As air pollution levels increase, the possibilities of choosing walk, bike-sharing and electric bike decrease. The slower the mode, the more it will be affected by air pollution.
- Shared modes are not preferred for commute trips.
- Negative willingness to pay for transport services is discovered.

Result Summary (short-distance trips)

- The younger generation do not prefer bike-sharing, walk or electric bike and would rather choose car-sharing or bus.
- Lower income groups prefer bike-sharing and car-sharing.
- Travellers with higher educational levels are more likely to choose new mobility services.

Policy Impact Simulation

	Policies					
P1	20% air quality increase					
P2	50% air quality increase					
P3	50% air quality increase + 20% bike-sharing cost reduction					
P4	50% air quality increase + 50% bike-sharing cost reduction					
P5	50% air quality increase + 50% bike-sharing cost reduction + 20% walk time decrease to bike-sharing					
	station					
P6	50% air quality increase + 50% bike-sharing cost reduction + 50% walk time decrease to bike-sharing					
	station					

	Bike-sharing	Walk	Electric bike	Bus	Car-sharing	Car		
Baseli ne	13.8%	27.4%	10.3%	27.3%	11.1%	10.1%		
P1	13.9%	28.9%	10.3%	26.3%	10.9%	9.7%		
P2	14.0%	31.3%	10.1%	24.8%	10.7%	9.1%		
P3	14.2%	31.2%	10.1%	24.7%	10.7%	9.1%		
P4	14.6%	31.1%	10.0%	24.5%	10.7%	9.1%		
P5	15.6%	30.7%	9.9%	24.2%	10.7%	8.9%		
P6	17.1%	30.2%	9.6%	23.7%	10.6%	8.8%		

Model Splite

Policy Impact Simulation: insights

- For short-distance trips, reducing air pollution has limited effect, but still, an opportunity for a virtuous circle.
- For short-distance trips, reducing walking distance is more effective than reducing price.
- If policies focus only on bike-sharing, its market share increase mainly comes from the shrinking bus demand instead of a significant decrease in private car usage.

Future Research (bike-sharing)

- Medium- & long-distance trips
- Analysis based on RP data (i.e. seasonal comparison between summer and winter)
- Latent variables

Thank you! Weibo Li <u>weibo.li.10@ucl.ac.uk</u>