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Abstract
1.	 To	prevent	 further	 global	 declines	 in	 biodiversity,	 identifying	 and	understanding	 key	
habitats	is	crucial	for	successful	conservation	strategies.	For	example,	globally,	seabird	
populations	are	under	threat	and	animal	movement	data	can	identify	key	at-sea	areas	
and	provide	valuable	information	on	the	state	of	marine	ecosystems.	To	date,	in	order	to	
locate	these	areas,	studies	have	used	global	positioning	system	(GPS)	to	record	position	
and	are	sometimes	combined	with	time–depth	recorder	(TDR)	devices	to	identify	diving	
activity	associated	with	foraging,	a	crucial	aspect	of	at-sea	behaviour.	However,	the	use	
of	additional	devices	such	as	TDRs	can	be	expensive,	logistically	difficult	and	may	ad-
versely	affect	the	animal.	Alternatively,	behaviours	may	be	resolved	from	measurements	
derived	from	the	movement	data	alone.	However,	this	behavioural	analysis	frequently	
lacks	validation	data	for	locations	predicted	as	foraging	(or	other	behaviours).

2.	 Here,	we	address	these	issues	using	a	combined	GPS	and	TDR	dataset	from	108	
individuals	by	training	deep	learning	models	to	predict	diving	 in	European	shags,	
common	guillemots	and	razorbills.	We	validate	our	predictions	using	withheld	data,	
producing	quantitative	assessment	of	predictive	accuracy.	The	variables	used	 to	
train	these	models	are	those	recorded	solely	by	the	GPS	device:	variation	in	longi-
tude	and	latitude,	altitude	and	coverage	ratio	(proportion	of	possible	fixes	acquired	
within	a	set	window	of	time).

3.	 Different	combinations	of	these	variables	were	used	to	explore	the	qualities	of	differ-
ent	models,	with	the	optimum	models	for	all	species	predicting	non-diving	and	diving	
behaviour	correctly	over	94%	and	80%	of	the	time,	respectively.	We	also	demonstrate	
the	superior	predictive	ability	of	these	supervised	deep	learning	models	over	other	
commonly	used	behavioural	prediction	methods	such	as	hidden	Markov	models.

4.	 Mapping	these	predictions	provides	useful	insights	into	the	foraging	activity	of	a	
range	 of	 seabird	 species,	 highlighting	 important	 at	 sea	 locations.	 These	models	
have	the	potential	to	be	used	to	analyse	historic	GPS	datasets	and	further	our	un-
derstanding	of	how	environmental	changes	have	affected	these	seabirds	over	time.
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1  | INTRODUCTION

Marine	 ecosystems	 are	 under	 threat	 from	 anthropogenic	 pres-
sures	 such	 as	 climate	 change,	 ocean	 acidification	 and	 overfishing	
(Frederiksen,	Edwards,	Richardson,	Halliday,	&	Wanless,	2006;	Furness	
&	 Camphuysen,	 1997;	 Halpern	 et	al.,	 2008).	 Seabirds	 are	 the	most	
threatened	 bird	 taxa	 globally	 (Croxall	 et	al.,	 2012),	 with	 population	
sizes	declining	by	69.7%	between	1950	and	2010	in	response	to	these	
threats	(Paleczny,	Hammill,	Karpouzi,	&	Pauly,	2015).	As	seabirds	have	
a	 low	 reproductive	output,	 high	 survival	 rate	 and	deferred	maturity	
(Gaston,	2004),	they	can	be	slow	to	recover	from	population	crashes.

Gaining	the	information	required	for	successful	conservation	strat-
egies	can	be	difficult	in	highly	mobile	and	broad-	ranging	species,	such	
as	pelagic	seabirds.	Compared	with	the	extent	of	protected	area	desig-
nation	of	colonies	on	land,	seabirds	are	less	well	protected	at	sea,	and	
marine	nature	reserves	are	most	frequently	designated	directly	around	
colonies	 (Guilford	 et	al.,	 2008).	 However,	 foraging	 areas	 are	 known	
to	be	vital	for	breeding	success	in	seabirds	(Thaxter	et	al.,	2012)	and	
potential	marine-	protected	 areas	 (MPAs)	 can	 be	 identified	 (Guilford	
et	al.,	2009)	by	monitoring	seabird	movements.	BirdLife	International’s	
Important	Bird	Area	(IBA)	Programme,	a	stepping	stone	to	designating	
MPAs,	provides	a	list	of	criteria	and	protocols	for	identifying	areas	crit-
ical	for	seabirds,	which	includes	assessment	through	tracking	(BirdLife	
International,	 2010).	 Additionally,	 seabirds	 are	 valuable	 biological	 
indicators	 for	 the	 marine	 environment,	 providing	 information	 on	 
ecosystem	health	(Einoder,	2009;	Furness	&	Camphuysen,	1997).	The	
movements	of	these	wide-	ranging	birds	can	inform	us	about	the	con-
dition	of	large	parts	of	the	often	inaccessible	ocean	(Mallory,	Robinson,	
Hebert,	&	Forbes,	2010),	and	seabirds	are	easy	to	monitor	as	during	
the	breeding	season,	they	return	to	the	same	colony	(Einoder,	2009).

Traditional	 methods	 of	 monitoring	 movements	 and	 populations	
of	 elusive	 seabirds	 include	 ringing	 recoveries	 and	 at-	sea	 surveys.	
However,	these	methods	do	not	provide	detailed	information	on	be-
haviour	 or	movements	 at	 important	 locations	 (Guilford	 et	al.,	 2009;	
Maclean,	 Rehfisch,	 Skov,	 &	 Thaxter,	 2013).	 Advances	 in	 telemetry	
and	biologging	systems	have	made	it	possible	to	monitor	pelagic	sea-
birds	in	more	detail.	Initially,	only	larger	species	over	1,000g,	such	as	
albatrosses,	were	tracked	(Weimerskirch	et	al.,	2002).	The	recent	re-
duction	in	size	of	devices	has	enabled	the	tracking	of	smaller	species,	
such	as	the	Manx	shearwater	 (Puffinus puffinus)	 (c.	400g)	and	Black-	
legged	Kittiwake,	Rissa tridactyla,	(c.	400g)	using	GPS	loggers	(Guilford	
et	al.,	2008,	2009;	Kotzerka,	Garthe,	&	Hatch,	2009).	Early	methods	
of	 determining	 depth	 use	 by	 seabirds	 only	 allowed	 the	 maximum	
depths	reached	to	be	recorded.	More	recently,	however,	time–depth	
recorder	(TDR)	devices	have	been	used	to	record	dive	profiles	contin-
uously	(Dean	et	al.,	2012;	Shoji	et	al.,	2015;	Wanless,	Harris,	Burger,	&	
Buckland,	1997).

Much	 of	 the	 information	 about	 foraging	 behaviour	 has	 been	
gained	through	the	combined	use	of	GPS	and	TDR	devices;	the	latter	
cost	up	to	ten	times	as	much	as	GPS	devices.	The	quantity	of	data	a	
tracking	device	is	able	to	collect	has	risen	sharply	in	recent	years,	lead-
ing	to	challenges	in	how	to	analyse	big	data	(Urbano	et	al.,	2010).	The	
use	of	several	devices	further	exacerbates	the	problem,	increasing	the	

amount	of	data	a	single	study	produces.	While	we	have	learnt	a	great	
deal	about	seabird	distribution,	much	of	the	potential	information	that	
may	 be	 gleaned	 from	 tracking	 studies	 about	 animal	movements	 re-
mains	unutilised	and	there	 is	a	substantial	amount	of	historical	GPS	
tracking	data.	Additionally,	despite	the	reductions	in	size	of	transmit-
ters	and	 loggers,	adverse	effects	may	still	be	observed	 in	study	ani-
mals.	Animal	ethics	are	an	important	consideration	in	tracking	studies	
(Kays,	Crofoot,	Jetz,	&	Wikelski,	 2015),	 using	more	 than	one	 logger	
increases	total	mass,	as	well	as	significantly	increasing	handling	time.	
Therefore,	developing	accurate	methods	to	identify	foraging	locations	
from	a	single	device	remains	important.

There	are	several	ways	in	which	previous	studies	have	attempted	
to	identify	foraging	behaviour	in	seabirds,	such	as,	multiscale	straight-
ness	 index	 (Postlethwaite,	 Brown,	 &	 Dennis,	 2013),	 first	 passage	
time	(Fauchald	&	Tveraa,	2003),	positional	entropy	(Roberts,	Guilford,	
Rezek,	&	Biro,	2004),	tortuosity	(Benhamou,	2004;	Dicke	&	Burrough,	
1988),	speed	(Meier	et	al.,	2015)	or	tortuosity	and	speed	(Dean	et	al.,	
2015;	Freeman	et	al.,	2013;	Guilford	et	al.,	2008).	Periods	of	low	speed	
are	generally	associated	with	resting	and	high-	speed	directed	move-
ment	with	travel	between	foraging	or	resting	locations	and	the	colony.	
Tortuous	movements	at	high	speed	are	usually	considered	to	be	asso-
ciated	with	 foraging	behaviour	 (Freeman	et	al.,	2013;	Guilford	et	al.,	
2008).	 Additionally,	 modelling	 methods	 have	 been	 used	 to	 predict	
when	particular	behaviours	occur	in	space	and	time	such	as	Gaussian	
mixtures	 (Guilford	 et	al.,	 2008)	 or	 hidden	 Markov	 models	 (HMMs)	
(Dean	 et	al.,	 2012;	 Roberts	 et	al.,	 2004).	 The	 latter	 are	 state-	space	
models,	which	 can	 be	 used	 to	 predict	 the	 sequence	 of	 behavioural	
states	and	account	 for	 the	non-	independent	nature	of	 tracking	data	
(Jonsen,	Myers,	&	Flemming,	2003;	Patterson,	Basson,	Bravington,	&	
Gunn,	2009)	and	have	been	widely	used	to	classify	animal	behaviours	
from	 tracking	 data	 (e.g.	 Block	 et	al.,	 2011;	 Breed,	 Costa,	 Jonsen,	
Robinson,	&	Mills-	Flemming,	2012;	Breed,	Jonsen,	Myers,	Bowen,	&	
Leonard,	2009;	Breed	et	al.,	2017;	Forester	et	al.,	2007;	Maxwell	et	al.,	
2011;	Royer,	Fromentin,	&	Gaspar,	2005).	However,	 few	studies	are	
able	to	validate	their	predictions	with	true	dive	locations	or	with	data	
withheld	from	predictive	models.	Dean	et	al.	 (2012)	withheld	a	sub-
section	of	their	data	on	which	to	validate	their	predictions	for	foraging	
behaviour	in	Manx	shearwaters	using	known	dive	locations	recorded	
by	TDRs,	revealing	that	their	predictions	were	accurate.

Several	studies	have	successfully	used	supervised	machine	learn-
ing	(ML)	methods	(where	a	labelled	dataset	is	used	to	learn	to	identify	
known	classes)	to	predict	animal	behaviours	from	accelerometry	data	
such	 as	 in	 cows	 (Martiskainen	 et	al.,	 2009),	 cheetahs	 (Grünewälder	
et	al.,	 2012)	 and	 penguins	 (Carroll,	 Slip,	 Jonsen,	 &	Harcourt,	 2014).	
Nathan	 et	al.	 (2012)	 compare	 five	 supervised	 learning	 algorithms—
SVMs,	 linear	 discriminant	 analysis,	 random	 forest	 (RF),	 classification	
and	regression	trees	and	artificial	neural	networks	(ANN)—to	predict	
behavioural	 modes	 in	 vultures	 from	 GPS	 and	 accelerometer	 data.	
Unsupervised	 approaches	 (where	 self-	similar	 patterns	 are	 identified	
within	a	dataset)	such	as	hidden	Markov	models	or	Gaussian	mixture	
models	have	also	been	used	extensively	in	identifying	and	modelling	
biologging	 and	 telemetry	 data	 (e.g.	 Breed	 et	al.,	 2012;	 Gibb	 et	al.,	
2017;	Langrock	et	al.,	2012;	Michelot,	Langrock,	&	Patterson,	2016;	
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Patterson	et	al.,	2009).	Across	many	of	these	cases,	particular	features	
(reduced	metrics	derived	from	the	raw	data)	were	extracted	from	the	
data	to	simplify	the	predictive	task.	This	can	be	a	laborious	process	and	
is	often	overlooked	in	the	complexity	of	implementing	such	models.

Deep	neural	networks	(a	more	complex,	recent	form	of	ANNs)	can	
be	used	with	very	large	input	feature	sets	(e.g.	complete	pixel	arrays	
for	images	or,	as	here,	x/y	values),	often	reducing	the	need	for	complex	
feature	identification.	This	more	automated	form	of	feature	extraction	
has	been	successfully	applied	in	speech,	audio	and	image	recognition	
where	 they	 have	 outperformed	 other	 machine	 learning	 techniques	
(see	 LeCun,	Bengio,	&	Hinton,	 2015	 for	 a	 review).	Deep	 learning	 is	
a	 relatively	new	ML	 technique	 that	 to	our	 knowledge	has	not	been	
applied	to	animal	tracking	data	or	animal	behavioural	studies	to	date,	
but	that	has	been	suggested	to	be	a	potentially	useful	tool	(Valletta,	
Torney,	Kings,	Thornton,	&	Madden,	2017).

Since	2010,	the	Royal	Society	for	the	Protection	of	Birds	 (RSPB)	
has	been	carrying	out	an	extensive	seabird-	monitoring	project	around	
the	 UK	 and	 Ireland	 as	 part	 of	 the	 Future	 of	 the	 Atlantic	 Marine	
Environment	(FAME,	www.fameproject.eu)	and	Seabird	Tracking	and	
Research	 (STAR)	projects.	 Included	 in	 these	studies	are	 three	diving	
species:	razorbills	Alca torda,	and	common	guillemots	Uria aalge	(here-
after	guillemots),	members	of	the	auk	family	 (Alcidae),	and	European	
shags	Phalacocorax aristotelis (hereafter	shags),	a	member	of	the	cor-
morant	 family	 (Phalacrocoraidae).	 The	 foraging	 strategies	 of	 these	
three	 species	 all	 differ	 slightly	 as	 they	 utilise	 different	 portions	 of	
the	water	 column	 to	 find	prey:	 razorbills	 feed	within	 the	water	 col-
umn	(Thaxter	et	al.,	2010),	whereas	guillemots	and	shags	are	benthic	
feeders	(Thaxter	et	al.,	2010;	Wanless	et	al.,	1997),	although	the	latter	
has	been	suggested	to	have	a	flexible	foraging	strategy	(Wanless	et	al.,	
1997).

Here,	we	aim	to	explore	whether	the	location	of	diving	behaviour	
can	be	predicted	purely	from	GPS	data	across	three	seabird	species.	
We	 accomplish	 this	 using	 supervised	 deep	 learning	 models.	 Deep	

learning	is	a	newly	developed	method	of	supervised	learning,	by	which	
the	 relationships	within	data	may	be	 found	without	prior	manipula-
tion	 (LeCun	 et	al.,	 2015).	 Our	 predictions	 are	 then	 validated	 using	

F IGURE  1 The	locations	of	colonies	where	European	shags	(a),	common	guillemots	(b)	and	razorbills	(c)	were	tracked	using	either,	GPS	and	
TDR	devices	(yellow	stars)	or	just	GPS	devices

F IGURE  2 Example	of	an	interpolated	GPS	track	collected	from	
a	single	razorbill	nesting	on	Colonsay	Island	off	the	east	coast	of	
Scotland	(RAZO0668).	The	location	of	the	colony	in	relation	to	the	
UK	is	shown.	The	green	dots	are	interpolated	GPS	locations,	and	the	
blue	open	circles	are	locations	where	dives	were	recorded	by	the	
TDR device

http://www.fameproject.eu
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information	 collected	 by	 the	 concurrently	 deployed	 TDR	 devices.	
Additionally,	we	compare	the	performance	of	our	models	with	that	of	
other	commonly	used	predictive	methods	such	as	HMMs	and	a	naïve	
Bayes	classifier.

2  | MATERIALS AND METHODS

2.1 | The dataset

Data	 used	were	 collected	 between	 2010	 and	 2014	 from	108	 indi-
viduals	(15	shags,	31	guillemots	and	62	razorbills;	see	Table	1)	tracked	
at	eight	 locations	 (Fair	 Isle,	Colonsay,	Fowlsheugh,	Orkney,	Skomer,	
Rathlin	 Island,	Great	Saltee	 Island	and	Whinnyfold)	 fitted	with	both	
GPS	 and	 TDR	 devices	 (Figure	1).	 Additionally,	 data	 were	 retrieved	
from	291	individuals	tracked	with	only	GPS	devices	(80	shags,	81	guil-
lemots	and	130	razorbills).

TDR	and	GPS	devices	were	attached	to	birds	using	the	methods	
described	in	Dean	et	al.	(2012)	or	Shoji	et	al.	(2016).	GPS	devices	were	
attached	to	individuals’	backs	using	cloth-	backed	tape.	The	TDRs	were	
attached	either	to	a	plastic	ring	on	the	leg,	tail-	mounted,	taped	directly	
to	 the	GPS	 tags	 or	 attached	 to	 the	 tail	 feathers	 (Shoji	 et	al.,	 2016).	
CEFAS	TDR	loggers	(Cefas	G5,	Cefas	Technology	Ltd)	recorded	pres-
sure	data	every	second	and	temperature	data	either	every	second	or	
every	15	s,	whereas	GPS	devices	collected	data	roughly	every	100	s.	
Due	to	gaps	in	the	GPS	data	acquisition,	the	tracks	were	interpolated	
using	 a	 linear	method	 to	 generate	 points	 every	 100	s	 (see	 Figure	2	

for	 an	example	 interpolated	GPS	 track).	While	previously	 the	 curvi-
linear	method	has	been	shown	to	accurately	interpolate	tracking	data	
(Tremblay	 et	al.,	 2006),	 here	we	 found	 it	 often	 produced	 erroneous	
interpolations	where	GPS	data	were	lost	for	a	number	of	minutes.	We	
discuss	the	impact	of	using	a	linear	method	in	Appendix	S2,	supporting	
information,	as	well	as	the	impacts	more	commonly	used	interpolation	
methods	had	on	the	data	and	model.

2.2 | Model data

The	maximum	 depth	 in	 each	 interpolated	 100-	s	window	 (note	 this	
is	 different	 to	 the	 window	 referred	 to	 below)	 was	 calculated	 from	
the	TDR	data.	As	the	TDR	device	recorded	depth	in	decibar,	the	re-
corded	pressures	were	multiplied	by	1.01974	 to	 convert	 to	metres	
(Cefas	Technology	Ltd,	2012)	(see	Appendix	S1).	Windows	containing	
dives	where	 the	maximum	depth	was	greater	 than	3	m	were	classi-
fied	as	containing	diving	behaviour	(although	we	explored	the	impact	
of	 this	 threshold,	 see	Appendix	S3).	This	minimised	 the	 inclusion	of	
non-	foraging	dives,	where	birds	may	be	bathing	or	carrying	out	other	
activities	(Thaxter	et	al.,	2010).	The	percentage	of	 interpolated	fixes	
that	were	recorded	as	dives	(>3	m)	were	18.7%,	14.1%	and	14.3%	for	
guillemots,	shags	and	razorbills,	respectively	(Table	1).	As	such,	around	
81%–86%	of	each	track	contains	non-	diving	behaviour.	Two	birds	(a	
shag	and	razorbill)	were	removed	from	the	dataset	due	to	erroneous	
data,	where	the	TDR	device	apparently	malfunctioned	and	recorded	
depths	of	over	200	m.	We	also	calculated	the	coverage	ratio	(hereafter	

F IGURE  3 Schematic	of	deep	learning	model,	showing	the	window	of	50	points	and	the	structure	of	the	neural	network	with	three	hidden	
layers	of	500	nodes
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referred	to	as	coverage),	defined	as	the	number	of	fixes	acquired	by	
the	GPS	over	the	number	that	could	have	been	recorded	for	a	given	
time	period.	A	 value	of	 1	would	 indicate	no	 fixes	 had	been	missed	
and	0	would	indicate	all	possible	fixes	were	missed.	All	analyses	were	
carried	out	using	the	computer	programme	r	versions	3.1.2–3.4.2	(R	
Core	Team,	2017).

The	projection	of	the	longitude	and	latitude	recorded	by	the	GPS	
devices	was	projected	using	the	Universal	Transverse	Mercator	(UTM)	
projection,	giving	an	X	and	Y	coordinate	for	each	point	and	allowing	
distances	to	be	calculated	in	metres.

2.3 | Model training

Deep	learning	models	were	used	to	predict	behavioural	states.	H2O	
(Aiello,	 Kraljevic,	&	Maj,	 2015),	 an	 open-	source	 platform,	was	 used	
in r	 to	construct	an	artificial	neural	network	and	perform	predictive	
modelling.	A	random	hyperparameter	search	was	conducted	to	deter-
mine	the	optimum	model	structure.	The	number	of	layers	and	hidden	
nodes	per	layer	were	varied,	from	one	to	four	layers	and	from	20	hid-
den	nodes	to	1,000.	The	hyperparameter	search	was	allowed	to	run	
for	24	hr,	and	automatically	stopped	when	the	top	ten	models	had	a	

log	loss	of	at	most	0.001.	This	resulted	in	an	optimum	neural	network	
structure	of	on	input	layer,	three	layers	of	500	hidden	nodes	(rectifier	
nodes),	followed	by	a	softmax	binary	output	layer.

The	 size	 of	 the	 input	 layer	 depended	 on	 the	 number	 of	 input	
variables	being	used	 (we	explored	the	 impact	of	withholding	certain	
variables	on	the	predictive	accuracy).	 In	total,	we	consider	four	vari-
ables.	These	variables	were	defined	as:	variation	in	X and Y	(hereafter	
referred	to	as	Xbar and Ybar,	respectively),	over	a	window	of	5,000	s	
(50	points	in	interpolated	data—giving	a	total	of	100	values	here),	raw	
altitude	 over	 50	 points	 and	 the	 coverage	 over	 50	 points	 (Figure	3).	
Therefore,	 models	 including	 all	 variables	 used	 200	 input	 neurons,	
those	with	three	variables	used	150	input	neurons	and	so	on.	x̄ and ȳ 
were	calculated	as	xi	minus	the	mean	of	xi	to	xi+w	(from	i	to	i	plus	the	
window	length,	w)	of	interpolated	data,	where	i	is	the	value	of	X or Y 
at	a	given	point.

Importantly,	the	variables	used	in	the	input	layer	were	only	those	
collected	by	the	GPS	logger—TDR	data	were	subsequently	used	to	val-
idate	predictions.	Models	were	trained	on	species	individually,	with	all	
colonies	grouped	together,	using	different	input	combinations	of	these	
variables	to	determine	which	might	best	predict	non-	diving	and	diving	

x̄i=xi−μ
(

xi:x(i+w)
)

TABLE  1 The	total	number	of	birds	tracked	with	both	GPS	and	TDR	devices,	interpolated	fixes,	the	percentage	of	fixes	where	dives	deeper	
than	3	m	were	recorded	and	the	percentage	of	dives	recorded	during	the	day	for	European	shags,	common	guillemots	and	razorbills,	and	
maximum	mean	maximum	dive	depth

Species
Number of 
birds

Number of 
interpolated fixes Dives (%)

Dives during the 
day (%)

Maximum dive 
depth (m)

Mean maximum 
dive depth (m)

European	shag 15 37,379 14.08 75.77 64.88 38.46

Common	guillemot 31 63,925 18.66 78.29 132.43 65.56

Razorbill 62 1,62,413 14.34 76.76 88.59 20.07

TABLE  2 The	mean	results	of	the	10-	fold	cross-	validated	models	that	produced	the	optimal	predictions	for	common	guillemots,	European	
shags	and	razorbills.	PPV	is	the	positive	predictive	value;	NPV	is	the	negative	predictive	value

Species Model inputs Training AUC
Validation 
AUC Sensitivity Specificity PPV NPV

Common	guillemot Coverage,	Xbar,	Ybar 0.99 0.96 80.26% 95.22% 0.74 0.97

Altitude,	Xbar,	Ybar 0.98 0.94 74.61% 93.56% 0.66 0.96

Coverage 0.95 0.91 72.67% 92.91% 0.70 0.94

Altitude,	coverage 0.97 0.93 71.67% 94.93% 0.70 0.95

European	shag Altitude,	coverage,	
Xbar,	Ybar

0.99 0.97 86.87% 96.76% 0.81 0.98

Coverage,	Xbar,	Ybar 0.99 0.97 84.21% 95.90% 0.76 0.98

Xbar,	Ybar 0.98 0.95 77.16% 94.78% 0.70 0.96

Coverage 0.97 0.93 74.14% 93.74% 0.65 0.96

Razorbill Altitude,	coverage,	
Xbar,	Ybar

0.98 0.95 80.74% 94.14% 0.76 0.96

Coverage 0.98 0.95 82.97% 92.82% 0.73 0.96

Coverage,	Xbar,	Ybar 0.97 0.94 78.67% 92.75% 0.71 0.95

Altitude,	coverage 0.86 0.84 72.78% 78.11% 0.44 0.93
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events.	The	impact	of	window	size	was	explored;	increasing	it	consis-
tently	increases	model	performance	(see	Appendix	S4).

The	data	for	each	model	were	randomly	split	into	10	equal	parts	
for	k-	fold	cross-	validation.	Each	model	was	then	trained	on	90%	of	the	
data	and	validated	on	the	remaining	10%;	this	was	performed	for	each	
tenth	of	the	data.	Additionally,	 to	determine	how	well	 these	models	
might	perform	on	data	collected	on	birds	 from	different	colonies	or	
studies,	 leave-	one-	out	cross-	validation	was	also	carried	out.	This	 in-
volved	removing	a	single	bird	from	the	dataset	for	each	species,	train-
ing	the	model	on	the	other	birds,	and	then	validating	the	model	on	the	
single	bird.

The	area	under	the	receiving	operating	characteristic	curve	(AUC)	
for	training	and	validation	data	and	sensitivity	and	specificity	for	each	
model	was	calculated,	as	were	the	positive	predicted	value	(PPV)	and	
negative	predicted	value	(NPV).	Sensitivity	and	specificity	are	the	pro-
portion	 of	 positives	 and	 negatives	 correctly	 identified,	 respectively,	
in	 the	withheld	data.	PPV	 is	 the	number	of	 true	predicted	positives	
divided	by	all	predicted	positives	and	NPV	is	the	number	of	true	neg-
atives	divided	by	all	predicted	negatives.	A	perfect	model,	therefore,	
would	 have	 high	 sensitivity,	 specificity,	 PPV	 and	NPV.	These,	 along	
with	validation	AUC,	were	used	to	determine	the	optimal	model	 for	
each	species.	The	models	were	then	used	to	predict	the	diving	loca-
tions	of	birds	monitored	with	only	GPS	devices.

2.4 | Alternative prediction methods

To	 compare	 predictions	 obtained	 from	 deep	 learning	 models	 with	
methods	 used	 in	 previous	 studies	 classifying	 foraging	 behaviour	 in	
seabirds	HMMs,	a	naïve	Bayes	classifier	and	speed	and	tortuosity	pre-
dictions	were	implemented	on	the	data	(see	Appendix	S8,	supporting	
information	for	details	of	the	latter).	The	Naïve	Bayes	classification,	a	
supervised	 learning	method,	was	 implemented	 in	r	using	the	e1071	
package	 (Meyer,	 Dimitriadou,	 Hornik,	Weingessel,	 &	 Leisch,	 2015).	
The	inputs	were	the	same	as	used	in	the	H2O	model,	and	the	depend-
ent	variable	 (variable	 to	be	predicted)	was	 the	binary	dive/not	dive	
column.

HMMs	are	 an	unsupervised	 learning	method	 that	 identifies	 dis-
crete	states	within	time-	series	data	and	have	been	used	extensively	
to	 model	 animal	 movement	 data	 (Franke,	 Caelli,	 &	 Hudson,	 2004;	
Patterson	et	al.,	2009).	Here,	we	wished	to	explore	how	well	an	HMM	
would	capture	our	independently	recorded	dive	bouts	from	the	TDR	
data	(note:	these	are	unsupervised	models,	where	we	wish	to	assess	
how	 well	 the	 independently	 predicted	 states	 capture	 diving).	 We	
trained	HMMs	on	the	GPS	data	(longitude,	 latitude)	of	each	bird	for	
each	species	using	the	moveHMM	package	in	r	(Michelot	et	al.,	2016)	

F IGURE  4 Box	plots	of	results	of	the	10-	fold	cross-	validation	
optimal	models	for	(a)	guillemots,	trained	using	coverage,	Xbar and 
Ybar,	and	(b)	shags	and	(c)	razorbills,	trained	using	altitude,	coverage,	
Xbar and Ybar.	T_AUC	is	the	training	AUC,	V_AUC	is	the	validation	
AUC,	PPV	is	the	positive	predicted	value	and	NPV	the	negative	
predicted	value.	The	solid	line	in	the	middle	of	the	boxes	represents	
the	mean	for	that	value
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and	explored	how	well	each	state	predicted	diving.	In	this	case,	step	
length	 and	 turning	 angle	 are	 derived	 from	 location	 information	 and	
used	 to	 construct	 the	models.	We	 initially	 tested	between	 two	and	
eight	 states,	generally	 finding	 that	 three-	state	models	produced	 the	
lowest	AICs.	We	then	constructed	two-		and	three-	state	models,	and,	
in	 each	 case,	 recorded	 the	 scores	of	 the	most	 accurately	predicting	
state	 (as	 states	 are	 unlabelled	 and	may	 be	 disordered	 across	 birds),	
therefore	choosing	the	most	generous	prediction	of	diving	from	the	
two-		and	three-	state	models.

3  | RESULTS

3.1 | Model results

3.1.1 | 10- fold cross- validation

Nearly	all	models	had	high	mean	specificity	values	above	90%,	mean-
ing	 they	 predicted	 non-	diving	 events	with	 high	 accuracy,	 and	most	
had	mean	sensitivity	values	above	70%,	indicating	they	also	predicted	
diving	 events	 well	 (Table	2;	 see	 Appendix	 S5,	 supporting	 informa-
tion	 for	 the	 full	 results).	 The	 optimal	 models	 were	 used	 to	 predict	
diving	 locations	 from	 birds	 tracked	 only	 with	 GPS	 devices	 (Figure	
S7.1).	 In	 shags	 and	 razorbills,	 the	models	 trained	with	 all	 four	 vari-
ables	(altitude,	coverage,	Xbar and Ybar)	produced	the	most	accurate	
predictions	with	the	highest	validation	AUC	values	of	0.97	and	0.95,	
respectively	(Figure	4).	In	shags,	86.9%	and	96.7%	of	diving	and	non-	
diving	 events	 were	 correctly	 predicted,	 respectively.	 In	 razorbills,	
80.7%	 and	 94.1%	 of	 diving	 and	 non-	diving	 events	 were	 correctly	

predicted,	respectively.	However,	coverage	alone	 in	razorbills	was	a	
more	accurate	predictor	of	dives	(83.0%	correct),	but	non-	dives	were	
predicted	92.8%	correctly.	Coverage,	Xbar and Ybar	were	 the	most	
accurate	predictors	for	dives	and	non-	dives	in	guillemots,	with	80.3%	
and	95.2%,	respectively	(Figure	4).	Altitude	alone	was	a	poor	predictor	
for	all	species,	although	for	razorbills,	Xbar and Ybar	were	the	model	
inputs	that	produced	the	poorest	results.

Figure	5	shows	an	example	of	guillemot	data	at	Orkney	in	Scotland	
and	the	correct	predictions	produced	from	the	model	trained	with	all	
variables.	The	locations	with	the	highest	number	of	correctly	predicted	
dives	match	the	locations	with	the	greatest	number	of	true	dives.	The	
false	positives	and	negatives	are	also	shown,	demonstrating	the	accu-
racy	of	the	model.

3.1.2 | Leave- one- out cross- validation

The	 results	 of	 models	 trained	 with	 leave-	one-	out	 cross-	validation	
showed	increased	variation	and	slightly	reduced	accuracy	compared	
to	10-	fold	cross-	validated	models	(Table	3;	see	Appendix	S6,	support-
ing	information	for	full	results).	In	razorbills,	the	variation	was	greatest,	
although	the	mean	model	output	values	were	higher,	particularly	for	
dive	prediction	accuracy	(Figure	6).	The	models	trained	with	altitude,	
Xbar and Ybar	performed	the	best	for	shags	(mean	validation	AUCs	of	
0.85	and	PPV	0.51)	(Table	3);	 in	guillemots,	the	models	trained	with	
coverage,	Xbar and Ybar	had	the	highest	mean	validation	AUC	(0.87)	
and	 coverage	 alone	 was	 the	 variable	 which	 produced	 the	 optimal	
model	for	razorbills	with	a	mean	validation	AUC	of	0.88	and	a	PPV	of	
0.62	(Figure	6c	and	Table	3).	Like	with	10-	fold	cross-	validation,	there	

TABLE  3 The	mean	results	of	the	leave-	one-	out	cross-	validated	models	that	produced	the	optimal	predictions	for	common	guillemots,	
European	shags	and	razorbills	PPV	is	the	positive	predictive	value;	NPV	is	the	negative	predictive	value

Species Model inputs Training AUC Validation AUC Sensitivity Specificity PPV NPV

Common guillemot Coverage,	Xbar,	Ybar 0.90 0.87 73.15% 86.94% 0.59 0.93

Coverage 0.82 0.80 63.99% 80.23% 0.46 0.93

Altitude,	coverage 0.81 0.81 67.89% 78.24% 0.45 0.93

Xbar,	Ybar 0.78 0.78 67.17% 77.88% 0.42 0.95

European shag Altitude,	coverage 0.88 0.85 66.69% 88.12% 0.51 0.95

Altitude,	coverage,	
Xbar,	Ybar

0.91 0.84 65.15% 88.72% 0.50 0.95

Xbar,	Ybar 0.86 0.82 68.80% 82.46% 0.39 0.94

Coverage 0.89 0.78 65.21% 81.80% 0.44 0.94

Razorbill Coverage 0.91 0.88 72.63% 87.58% 0.62 0.93

Coverage,	Xbar,	Ybar 0.91 0.88 71.25% 88.59% 0.61 0.93

Altitude,	coverage,	
Xbar,	Ybar

0.89 0.87 73.95% 85.70% 0.61 0.93

Altitude,	coverage 0.77 0.77 82.49% 63.91% 0.35 0.95

F IGURE  5 Maps	showing	the	distribution	of	common	guillemot	points	around	the	colony	at	Orkney	in	Scotland	(a)	from	the	GPS	and	model	
predictions,	darker	shades	indicate	a	greater	number	of	locations.	All	recorded	locations	are	shown	in	(b),	dive	locations	are	shown	in	blue	(c,	
e,	g)	and	non-	dives	in	red	(d,	f,	h).	The	true	locations,	recorded	by	the	TDRs,	of	dives	and	non-	dives(c	and	d),	the	true	predicted	locations	(true	
positives	and	negatives)	(e	and	f)	and	the	false	predicted	locations	(false	positives	and	negatives,	e.g.	where	no	dive	occurred	but	the	model	
predicted	one)	(g	and	h)	are	shown.	Note	the	different	scales	of	the	number	of	locations
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was	 variation	 in	 the	 optimum	 models	 between	 species;	 however,	
altitude	 and	 coverage	 together	were	 also	good	predictors	of	diving	
behaviour	in	all	species	(Table	3).	The	weakest	models	remained	the	
same	as	those	using	10-	fold	cross-	validation	(Appendix	S6).

3.2 | Alternative prediction methods

For	several	individuals	of	each	species,	the	HMMs	collapsed	for	both	
three-		and	two-	state	models.	This	meant	that	predictions	were	made	
for	31	and	26	guillemots,	11	and	9	 shags	and	41	and	37	 razorbills,	
for	 two-		 and	 three-	states,	 respectively.	 Two-	state	models	were	 as-
sumed	to	represent	rest	and	foraging—or	diving	and	non-	diving-	,	and	
three-	state	models	included	an	intermediate	state.	The	HMMs	did	not	
predict	diving	behaviour	as	accurately	as	 the	deep	 learning	models.	
Specificity,	sensitivity,	PPV	and	NPV	were	consistently	 lower	for	all	
species	using	both	two-		and	three-	state	models	 (Table	4).	The	high-
est	 sensitivity	was	81.41%	 for	 shags	using	 a	 three-	state	HMM	and	
specificity	was	77.50%	using	two	states.	There	was	a	trade-	off	where	
increasing	the	number	of	states	increased	sensitivity,	so	increasing	the	
accuracy	of	dive	behaviour	prediction,	but	a	decrease	in	non-	diving	or	
resting	behaviour	predictions,	the	specificity.

The	 predictions	 made	 using	 Naïve	 Bayes	 were	 poor	 for	 dives	
across	all	three	species	and	variable	combination,	although	non-	dives	
were	predicted	well,	with	most	 specificity	values	between	0.85	and	
0.96.	The	sensitivity	was	highest	for	guillemots	and	shags	using	alti-
tude	and	coverage	at	0.40.	However,	for	razorbills,	all	variable	combi-
nations	resulted	in	sensitivity	values	of	0.70	and	0.90.

4  | DISCUSSION

Using	the	combined	information	from	GPS	and	TDR	devices,	we	were	
able	to	train	deep	neural	networks	to	predict	the	diving	behaviour	of	
shags,	guillemots	and	razorbills.	The	predictions	are	strong	and	well	
validated	with	 known	dive	 locations	 collected	by	TDR	 loggers.	Our	
results	 show	that	we	can	correctly	automatically	predict	non-	diving	
events	over	92%	of	the	time	and	diving	events	over	80%	of	the	time	
in	shags,	guillemots	and	razorbills.	The	use	of	Xbar,	Ybar,	altitude	and	
coverage	to	predict	diving	shows	how	GPS	data	can	be	used	to	moni-
tor	foraging	successfully.	Furthermore,	both	using	10-	fold	and	leave-	
one-	out	cross-	validation	we	demonstrate	 that	 these	predictions	are	
robust	across	the	dataset.	We	also	show,	for	the	species	considered,	
that	our	method	produces	more	accurate	predictions	than	commonly	
used	behavioural	classification	methods	such	as	HMMs.

F IGURE  6 Box	plots	of	the	optimum	models	for	(a)	guillemots	
trained	with	coverage,	Xbar and Ybar	(b)	shags	trained	with	altitude	
and	coverage	and	(c)	razorbills	trained	with	coverage,	using	leave-	
one-	out	cross-	validation.	T_AUC	is	the	training	AUC,	V_AUC	is	the	
validation	AUC,	PPV	is	the	positive	predicted	value	and	NPV	the	
negative	predicted	value.	The	solid	line	in	the	middle	of	the	boxes	
represents	the	mean
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Under	both	cross-	validation	methods,	the	strongest	models	in	all	
species	 used	 various	 combinations	 of	 the	 variables,	 from	 coverage	
alone	to	all	four.	This	flexibility	allows	for	the	use	of	these	models	in	
a	wider	range	of	tracking	studies	as	the	data	obtained	can	vary.	For	
instance,	the	sampling	rate	of	the	logger	may	be	unknown	making	the	
use	of	coverage	not	possible.	Models	using	coverage,	altitude	or	only	
Xbar/Ybar	have	predictive	utility	(see	Appendices	S5,S6).	Altitude	was	
included	in	the	models	as	it	may	contain	useful	dive	information,	but	
inaccurate	altitudes	 (often	 found	with	GPS	devices)	may	make	pre-
dictions	here	harder.	However,	it	seems	clear	that	combining	altitude	
with	other	variables	produces	 robust	models	 that	can	predict	more	
accurately.	 We	 hypothesised	 that	 coverage	 would	 be	 a	 powerful	
predictor	as	missed	fixes	may	be	indicative	of	diving	and	the	models	
trained	with	coverage	alone	were	in	the	top	four	for	all	three	species.	
Indeed	for	razorbills,	all	the	top	models	included	coverage	as	an	input.	
It	should	be	noted	that	the	coverage	was	calculated	over	a	window	
of	10	possible	points	(1,000	s),	whereas	the	window	the	model	pre-
dicted	dives	in	was	50	points	(5,000	s).	This	implies	that	there	is	some	
interaction	between	the	coverage	over	a	10-	point	window	within	a	
50-	point	window	the	model	is	able	to	discover;	however,	due	to	the	
‘black	box’	nature	of	the	method,	it	is	not	clear	what	this	is.

Such	‘black	box’	limitations	are	common	to	many	supervised	ma-
chine	 learning	 models,	 including	 some	 of	 the	 alternative	 methods	
presented	here.	While	the	complexity	and	volume	of	animal	tracking	
data	can	hinder	the	use	of	more	traditional	statistical	methods,	it	lends	
itself	well	to	these	more	data-	intensive	machine	learning	approaches.	
However,	structured	models,	such	as	HMMs,	do	present	excellent	op-
portunities	for	understanding	some	of	the	processes	and	mechanisms	
underlying	 the	 recorded	 data	 (e.g.	 extraction	 of	 behaviours).	 Here,	
however,	we	focus	on	the	predictive	power	using	a	‘black	box’	method,	
demonstrating	that	diving	is	highly	predictable,	and	thus	highlighting	
the	need	for	further	understanding	the	processes	that	may	underpin	
this	 relationship.	 In	 performing	 other	 supervised	 and	 unsupervised	
learning	methods	to	predict,	we	further	demonstrate	the	value	of	deep	
learning	for	predicting	analysis	of	animal	behaviour.	Previous	studies	
have	used	methods	such	as	HMMs	and	speed	and	tortuosity	to	locate	
foraging	patches	in	other	seabird	species	and	other	animals,	but	these	
predictions	frequently	lack	validation	(Breed	et	al.,	2009;	Dean	et	al.,	
2012;	Freeman	et	al.,	2013;	Guilford	et	al.,	2008).	However,	by	vali-
dating	predictions	made	using	HMMs,	here	we	show	that	our	model	is	
superior	in	predictive	power	for	both	diving	and	non-	diving	behaviour	
in	 the	 species	 considered.	The	 alternative	methods	 considered	 also	
produced	poorer	behavioural	predictions,	 further	demonstrating	 the	

promising	application	of	deep	learning	methods	for	analysing	animal	
movement	datasets.

The	computational	power	requirements	and	perceived	complexity	
of	constructing	deep	learning	networks	may	have	hindered	their	use	in	
previous	studies;	Valletta	et	al.	(2017)	in	their	review	highlight	the	po-
tential	for	using	deep	learning	methods	in	predictive	animal	behaviour	
studies,	but	conclude	that	they	must	be	packaged	more	accessibly	be-
fore	wider	uptake.	We	argue	that	this	is	no	longer	a	barrier	and	deep	
learning	models	may	be	 relatively	easily	 implemented	using	existing	
r	packages	and	hope	there	will	be	further	studies	using	this	method.

As	the	cost	and	size	of	GPS	devices	decreases,	there	 is	an	ever-	
growing	 archive	 of	 GPS	 tracking	 data	 (see	 Kays	 et	al.,	 2015	 for	 a	
review)	 that	 remains	 largely	unutilised,	not	only	 for	 seabirds	but	 for	
other	 taxa	as	well.	The	robust	deep	 learning	models	presented	here	
may	be	used	on	much	of	this	historical	GPS	data	in	order	to	determine	
foraging	locations,	providing	valuable	insight	into	patch	use	variation	
over	time	and	indicating	seabird	responses	to	environmental	change.	
Accurately	mapping	these	sites	is	key	for	identifying	candidate	MPAs	
and	informs	marine	developments	such	as	the	positioning	of	offshore	
wind	farms	(Thaxter	et	al.,	2012).
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Species
Number of 
states Sensitivity Specificity PPV NPV

Common guillemot 2 67.13% 53.02% 0.87 0.28

3 84.39% 42.49% 0.87 0.32

European shag 2 56.97% 77.50% 0.95 0.32

3 81.41% 59.84% 0.93 0.34

Razorbill 2 56.72% 61.63% 0.87 0.22

3 75.11% 46.45% 0.88 0.23

TABLE  4 The	results	of	two-		and	
three-	state	hidden	Markov	models.	PPV	is	
the	positive	predicted	value,	and	NPV	is	
the	negative	predicted	value
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comparative	modelling.	E.B.	and	R.F	wrote	the	manuscript.	All	authors	
contributed	to	editing	of	the	manuscript.	R.F.	and	M.B.	supervised	this	
work.
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