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ABSTRACT  

Background. Ischaemic preconditioning (IPC) is an endogenous cardioprotective 

phenomenon, which can limit infarct size following ischaemia-reperfusion injury (IRI) 

through the activation of intracellular signalling pathways, such as the PI3K kinase cascade. 

Little is known about the individual roles of PI3K isoforms in IRI. This thesis aimed to 

elucidate the role of PI3Kα in cardioprotection.  

Methods and Results. Initial studies focussed on establishing the Langendorff-perfused 

isolated heart model of mouse IRI, and the relative contribution of different lengths of 

ischemia and reperfusion to myocardial infarction was rigorously determined. The PI3K 

signalling cascade and its interaction with other pathways were also dissected before 

evaluating the role of PI3Kα. 

PI3Kα was shown to be critical in mediating IPC-induced heart protection against IRI. Using 

the ex vivo model of myocardial infarction, we showed that PI3Kα is required during the IPC 

reperfusion phase to reduce myocardial infarct size, whilst not mediating the effect during 

the trigger phase. These findings were confirmed in an in vivo setting. Using insulin as a 

canonical activator of PI3K, we also demonstrated that this isoform is not only necessary 

for IPC to confer cardioprotection, but sufficient for its specific activator to promote 

myocardial salvage against IRI. PI3Kα activation mediates its effect through the end-effector 

namely the mitochondrial permeability transition pore, as demonstrated by delaying its 

opening in primary isolated cardiomyocytes. Importantly, the PI3Kα protein levels are 

comparable between mouse and human heart tissue, and its activation can be modulated 

in both tissues. These last observations highlights the potential ability of PI3Kα to be 

translated into the clinical setting. 

Conclusions. These studies have clearly demonstrated that PI3Kα plays a crucial role at 

reperfusion. This suggests that strategies specifically enhancing the α isoform of PI3K, at 

reperfusion, could provide a direct target for clinical treatment of IRI. 
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Chapter 1 GENERAL INTRODUCTION  

1.1 Epidemiology of coronary artery disease 

The Global Burden of Disease study has recently estimated 422.7 million cases of 

cardiovascular disease and 17.92 million cardiovascular deaths worldwide in 2015 (1). 

Coronary artery disease (CAD) is the leading cause of cardiovascular health lost globally and 

also one of the major causes of mortality and morbidity when compared to non-

cardiovascular diseases (2,3). By way of illustration, about 16 million people have CAD and 

around 8 million have had an acute myocardial infarction (AMI) in the United States.  

Furthermore there are about 735,000 AMIs every year, which translates into someone 

having an AMI every 43 seconds in the USA (4).  

ST-segment elevation acute myocardial infarction (STEMI) is a major manifestation 

of CAD, usually precipitated by an abrupt occlusion of an epicardial coronary artery due to a 

sudden rupture of an atherosclerotic plaque (5). As a result, the myocardium distal to the 

occlusion site becomes ischaemic and its outcome depends on subsequent spontaneous or 

interventional coronary reperfusion (6). Early reperfusion by primary percutaneous 

coronary intervention (PPCI) limits myocardial infarct size (IS) and changes the fate of the 

infarcted area (7,8). The process of restoring blood flow to the ischaemic myocardium 

induces additional myocardial damage, known as “myocardial ischaemia-reperfusion injury 

(IRI)”(9,10), that negatively impacts on IS as well as on death and disability rates. The 

concept of myocardial IRI is further explained in sections 1.2 and 1.3. 

The implementation of PPCI and chronic evidence-based medications in the last 20 

years have resulted in a widespread improvement in prognosis in Western countries (11–

14). Overall, in-hospital death rates for STEMI have dropped over the last few decades (12). 

However, morbidity and mortality still remain unacceptably high in STEMI patients, with 1-

year death rate reported in 7-11% and heart failure in 22% (15,16). Moreover, the 

increased cardiovascular risk burden and the incidence of AMI is growing 

disproportionately in some geographic regions, turning STEMI into a major health problem 

in developing countries (17,18). 



17 

 

 

To improve outcomes in patients with STEMI, further efforts are needed in two 

main non-mutually exclusive directions. On one hand, there is still room to improve both 

the implementation and the timings of PPCI (19), though this might not apply to all regions 

worldwide – in countries where the time from ambulance arrival to re-opening the 

occluded coronary artery in a catheterization laboratory has shortened to about 90 

minutes, further shortening of this time has not demonstrated to improve mortality (20).  

On the other hand, novel therapies targeting myocardial IRI are needed to be 

administered as adjuncts to PPCI in order to improve patient survival and prevent the onset 

of heart failure. This last point describes the work as outlined in this thesis - i.e. to 

investigate a molecular target that when activated at reperfusion ameliorates the impact of 

myocardial IRI, reducing the resultant infarct size, with an improvement in clinical outcome. 

 

1.2 Brief historical perspective on cardioprotective therapies and 

reperfusion injury concepts 

The major determinants of myocardial IS following an AMI were historically 

considered only as a function of the duration of ischaemia, area at risk and collateral blood 

flow (21,22). In 1971, Braunwald et al proposed that the extent and severity of myocardial 

tissue damage after coronary occlusion could be modified by therapeutic manipulations 

applied during ischaemia (23). This work was the starting signal for studies examining 

therapies designed to limit myocardial IS, known generally as cardioprotective therapies. 

Therapies able to reduce IS have been tested under the hypothesis that smaller infarctions 

will result in fewer adverse clinical events in the long-term (24–26).  

Many attempts to limit myocardial IS by pharmacotherapy in the absence of 

reperfusion (pre thrombolytic era)  dominated research in the 1970s (27), although the 

concept of cardioprotection eventually evolved to those therapies aimed at the attenuation 

of injurious results of myocardial IRI (28). 

Myocardial reperfusion injury was first postulated in 1960 by Jennings et al., 

describing landmark histologic features of reperfused ischaemic canine myocardium, such 
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cell swelling, contracture of myofibrils, disruption of the sarcolemma and the appearance of 

intra-mitochondrial calcium phosphate particles (29,30). However, it was in 1985 when 

Braunwald and Kloner wrote that myocardial reperfusion may be viewed as a double-edged 

sword(31), putting this subject on the research agenda. 

Table 1-1 presents an overview of landmark studies in IRI and cardioprotection. 
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Year Author Achievement 

1972 Maroko et al. (32) 
First evidence that reperfusion limits extent of 

necrosis 

1977 Reimer et al. (22) 
Description of the wavefront progression of necrosis 

(from endocardium to epicardium) 

1986 Murry et al. (33) 
First evidence that ischaemic preconditioning 

reduces IS (first window of protection) 

1993 Marber et al. (34) Description of the second window of protection 

1993 Przyklenk et al. (35) 
First evidence that remote ischaemic 

preconditioning reduces IS 

2002 Schulman et al. (36) 
Description of the Reperfusion Injury Salvage Kinase 

(RISK) pathway 

2003 Zhao et al. (37) 
First evidence that ischaemic postconditioning 

reduces IS 

Table 1-1: Landmark studies in IRI and conditioning-related cardioprotective therapies 

Some of the most relevant studies in the field of myocardial IRI and cardioprotective 
therapies based on the conditioning phenomena. 

Abbreviations: IS, infarct size. 
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1.3 Pathophysiology of myocardial ischaemia/reperfusion injury 

Time is muscle in patients undergoing an STEMI: the less time the coronary artery is 

occluded, the smaller the IS and the better the outcome for the patient (38,39). Although 

myocardial reperfusion is essential to salvage viable myocardium, it comes at a price. 

Hence, myocardial reperfusion paradoxically damages the vulnerable post-ischaemic 

myocardium. Studies in animal models of AMI suggest that reperfusion injury may account 

for up to 50% of the final myocardial IS (10), as Figure 1-1 illustrates. Hence, the prognosis 

after an STEMI is greatly dependent on the IS resulting from both ischaemia and 

reperfusion induced injury (25,26). 

 

 

Figure 1-1: Reperfusion injury contributes to myocardial infarct size after therapeutic 

restoration of blood flow 

Rough representation of the contribution of reperfusion injury to overall IS in STEMI 
patients. Reproduced with permission from authors (40). 
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Myocardial reperfusion injury can manifest in several forms (10,40): 

A) Myocardial stunning. This is a reversible mechanical dysfunction that usually lasts 

for a few days after restoration of normal coronary flow. It is usually self-

terminating, and is believed to result from oxidative stress and intracellular calcium 

(41). 

B) The no-reflow phenomenon, also known as microvascular obstruction. It refers to 

the impedance of microvascular blood flow encountered after opening the infarct-

related coronary artery, and its aetiology is multifactorial, including capillary 

damage, external capillary compression by endothelial cells, cardiomyocyte 

swelling, micro-embolization and neutrophil plugging (42). 

C) Reperfusion arrhythmias. Usually idioventricular rhythm and ventricular 

arrhythmias, most of them self-terminating or easily managed from a clinical 

perspective. 

D) Lethal reperfusion injury. This is the main cause of reperfusion-induced death of 

cardiomyocytes that have been reversibly injured during the ischaemia. Lethal 

reperfusion injury is the death of cardiomyocytes either as a consequence of 

reperfusion-triggered cell death and/or as a consequence of some event occurring 

during ischaemia that manifests during the reperfusion phase. Those phenomena 

triggering lethal reperfusion injury have been described elsewhere (10,41) and 

might be summarized as a cytosolic and mitochondrial calcium overload, oxidative 

stress and rapid restoration of intracellular pH which result in the opening of the 

mitochondrial permeability transition pore (mPTP) (described below).  

Timely reperfusion is the most effective intervention to treat acute myocardial 

infarction - it has demonstrated to improve the prognosis of STEMI patients and its use is 

currently indicated in this context. However, reperfusion itself is a double-edged sword that 

represents an unmet clinical need. Further development of interventions targeting 

reperfusion injury are needed to reduce both mortality and morbidity following an acute 

myocardial infarction. 

 



22 

 

 

1.4 Cardioprotection via ischaemic conditioning  

In 1986, Murry et al. published a seminal study demonstrating that several short (5 

min) cycles of non-injurious ischaemia and reperfusion render the myocardium significantly 

protection from a subsequent sustained ischaemic insult (33). This phenomenon whereby 

the myocardium can endogenously be protected from lethal IRI was defined as “ischaemic 

preconditioning” (IPC). This finding, firstly described in dogs, has been subsequently 

replicated in numerous pre-clinical studies (43), as well as in other organs (44). The 

mechanism of protection conferred by IPC is described in next sections 1.5 and 1.6. 

The concept of IPC has evolved into “ischaemic conditioning”, a broader term that 

encompasses a number of related endogenous cardioprotective strategies, applied either 

to the heart (ischaemic preconditioning or postconditioning) or from afar (remote 

ischaemic pre-, per- or postconditioning). Table 1-1 provides a chronological summary of 

the evolution of the concept “ischaemic conditioning”, which is further elaborated in the 

subsequent paragraphs.  

In 1993, Przyklenk et al. applied four episodes of 5 min circumflex coronary artery 

occlusion separated by 5 min of reperfusion, before subjecting the left anterior descending 

(LAD) artery to 1 h sustained occlusion and subsequent 4.5 h reperfusion in a canine model 

(35), finding a 10% reduction myocardial IS in those circumflex preconditioned dogs. This 

phenomenon was termed “protection at a distance”  later to be called remote ischaemic 

conditioning (RIC) and has been shown similar cardioprotective effects when applied to 

other remote organs and tissues, such as kidneys and skeletal muscle (41,45,46). In 1997, 

Birnahum et al. demonstrated that the application of short cycles of ischaemia and 

reperfusion to a rabbit limb (a RIC manoeuvre) remotely conferred protection to the heart 

(45). This finding boosted both pre-clinical and clinical research, as it meant that 

cardioprotection could be easily translated to the clinical arena by inflating a blood 

pressure cuff on the arm (47). 

In 2003, Zhao et al. described a similar reduction in myocardial IS following the 

application of brief cycles of ischaemia/reperfusion in the same coronary artery either 

before or after the index ischaemia (37). The novelty of this intervention applied in a canine 
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model was the use of repetitive ischaemia/reperfusion stimulus in early reperfusion of the 

LAD territory. This intervention was named ischaemic postconditioning (37). 

The translational potential of IPC is inevitably limited by the necessity to apply the 

intervention before the index ischaemia, which is unpredictable in many clinical scenarios 

such as the STEMI. Ischaemic postconditioning has been already tested in the clinical 

setting with mixed results (48–51). However, ischaemic postconditioning involves an 

invasive approach associated with peri-procedural risks, including coronary artery 

dissection or perforation, access site complications or stroke (13). On the contrary, RIC has 

emerged as a non-invasive alternative that can be applied either before (52–54), during 

(55–57) or after (58,59) index ischaemia (named remote pre-, per- or postconditioning, 

respectively).  

Overall, large clinical trials assessing the impact of RIC on hard endpoints in the 

context of cardiac surgery have been disappointing (52,53). One of the main reasons that 

can potentially explain the disconnect between pre-clinical and clinical findings is the 

amount of myocardium at risk. Whilst STEMI patients (and particularly those with an 

anterior infarct) have a large territory at risk and therefore may potentially benefit from 

cardioprotective therapies, patients undergoing cardiac surgery have shorter ischaemic 

times, and their myocardium at risk is already subjected to cardioprotective procedures 

such as cardioplegia and hypothermia, therefore leaving little room to further protect the 

tissue. In fact, the term “infarct size” is usually referred to the consequence of having an 

STEMI, whilst “peri-procedural  myocardial injury” is the concept used in the context of 

cardiac surgery (60). A deeper analysis on why some cardioprotective interventions have 

failed to be translated into the clinics can be found in some of our reviews and editorials 

(61,62), as well as elsewhere (13,63,64). With  regard to the ultimate  application of RIC in 

STEMI patients, there is great expectation for the outcome of the combination of two large 

ongoing clinical trials, namely the CONDI2/ERIC-PPCI study (57), which is a European 

(Denmark, Serbia, Spain, and UK respectively) prospective, randomized, controlled, clinical 

trial involving 5300 STEMI patients undergoing PPCI with the aim of evaluating  the 

improvement of long-term clinical outcomes following the application RIC. 

Figure 1-2 depicts the wide spectrum of ischaemic conditioning interventions and 

summarizes all the potential clinical scenarios where  these therapies might be applied 
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(10,65). STEMI patients undergoing PPCI represent the most promising population that 

could benefit from cardioprotection, however other situations, where the heart is 

subjected to acute global IRI, such in cardiac surgery, cardiac transplantation and cardiac 

arrest, are also targetable. 

In this thesis, the focus is on “classic” IPC, whereby brief cycles of coronary 

occlusion and reperfusion elicits protection from prolonged IRI. Despite acknowledging that 

this form of conditioning is non-translatable itself, the elucidation of signalling pathways 

underlying classic ischaemic conditioning should help to identify molecular targets 

amenable to pharmacological manipulation.  
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Figure 1-2: Ischaemic conditioning forms 

This illustration depicts the different forms of ischaemic conditioning, and their timing with 
regard to the index myocardial ischaemia and reperfusion insult.  

Cardioprotection can be induced by applying short cycles of ischaemia and reperfusion 
directly to the heart either: (1) 24–48 h prior the myocardial index ischaemia (Second 
window or delayed ischaemic pre-conditioning); (2) within 3 h of the index myocardial 
ischaemia (IPC); (3) within 1 min of reperfusion following the index myocardial ischaemia 
(postconditioning); and (4) 15–30 min after the onset of myocardial reperfusion following 
the index myocardial ischaemia (delayed ischaemic post-conditioning).  

Cardioprotection can also be elicited by applying brief cycles of ischaemia and reperfusion 
to a remote organ or tissue (such as the arm or leg) either: (1) 24–48 h prior the index 
myocardial ischaemia (delayed remote ischaemic pre-conditioning); (2) within 3 h of the 
index myocardial ischaemia (remote IPC); (3) during the index myocardial ischaemia 
(remote ischaemic perconditioning); (4) within 1 min of reperfusion following the index 
myocardial ischaemia (remote postconditioning); (5) 15–30 min after the onset of 
myocardial reperfusion following the index myocardial ischaemia (delayed remote 
postconditioning).  

Two other forms of conditioning have been also described: (1); based on drugs mimicking 
the activation of pro-survival pathways (pharmacological conditioning); and (2) based on a 
daily application of the stimulus for a long period – i.e. 1 month (chronic conditioning).  

Below, in purple, the clinical settings in which they have been tested (dark shading) or 
those in which there is potential for application (light shading). Reproduced with permission 
from authors(41).  

Abbreviations: PCI, percutaneous coronary intervention; STEMI, ST-segment elevation 
myocardial infarction 
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1.5 Ischaemic preconditioning 

Besides reperfusion itself, IPC is considered the most powerful intervention available to 

protect the heart against myocardial IRI and has become the paradigm for cardioprotection 

(66). This intervention whereby brief cycles of coronary occlusion and reperfusion elicits 

protection has also been proved to be present in humans (67). After more than three 

decades of research on preconditioning, significant advances have been made in our 

understanding of both the mechanisms underlying IRI and the cardiac endogenous 

protection conferred by IPC.  

1.5.1 Mechanisms of signal transduction in IPC 

There is a consensus to recognize three hierarchical levels of signal transduction(28,68): 

triggers (usually sarcolemmal membrane receptors), intracellular mediators (the signalling 

cascades that help initiate and propagate the signal) and end-effectors (mechanisms that 

actually cause the attenuation of cellular injury and death during the lethal ischaemic 

insult). Figure 1-3 presents few examples of this signal transduction pattern. 

This classification of IPC signalling is based on a causal/temporal sequence of 

events. The IPC stimulus initially results in production of triggers from the cardiomyocyte 

(such as acetylcholine, adenosine, bradykinin and opioids) (69). These stimuli, also known 

as “autocoids”, bind to their respective sarcolemmal surface receptors to initiate the 

preconditioning signalling.  These receptors are on the plasma membrane of 

cardiomyocytes and are usually G-protein-coupled receptors (GPCRs), such as adenosine A1 

receptors(70), bradykinin B2 receptors (71) and δ-opioid receptor (72,73). In addition to 

GPCRs, some receptor tyrosine kinase (RTKs) can also mediate this autocoid-induced 

signalling, as some of these receptor agonists have been demonstrated to trigger the 

preconditioning response. This is evident in the case of insulin (74) or Fibroblast Growth 

Factor-2 (75). Of note, therapeutic approaches pharmacologically targeting these receptors 

would be expected to yield a meaningful cardioprotective effect.  

The activation of the receptors on the plasma membrane of cardiomyocytes results 

in the recruitment of the mediators, consisting of two main protein kinases cascades that 
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help to propagate the precondioning signal and eventually converge on the mitochondria 

(76,77). These two signalling pathways underlying cardioprotection are the Reperfusion 

Injury Salvage Kinase (RISK) pathway (comprising PI3K–Akt and MEK1/2–ERK1/2) and the 

Survivor Activator Factor Enhancement (SAFE) pathway (comprising TNFα and JAK-STAT3) 

(78–81). Some have advocated a third signalling cascade based on the protein kinase G 

(PKG) and involving nitric oxide (82). Figure 1-4 depicts by colours the spatiotemporal 

pattern of these two main signalling cascades mediating cardioprotection in an archetypal 

cardiomyocyte. These prosurvival pathways have been shown to inhibit downstream 

mediators such as glycogen synthase kinase (GSK-3β), and activate endothelial nitric oxide 

synthase (eNOS) and protein kinase C ε (PKCε), which then mediate an inhibitory effect on 

mitochondrial permeability transition pore (mPTP) opening.  

The last link of the chain of this sequential-step process to promote cellular salvage 

against lethal reperfusion injury are the end-effectors. The most important known end-

effector is the mPTP, which seems to be a common final step for all the above mentioned 

cardioprotective signalling cascades (83). Thus, the inhibition of mPTP opening at the onset 

of reperfusion appears to underpin the IS-limiting effects of IPC and other endogenous 

cardioprotective therapies (84,85). This is further explained in section 1.5.4. 

There have been attempts to pharmacologically manipulate these three levels of 

the signal transduction cascade. At the trigger level, Liu et al. demonstrated for the first 

time in 1991 that the preconditioned state can be achieved administering autocoids: 

infusing adenosine or adenosine A1 receptor-selective agonist into the coronary flow for 5 

min prior to a long occlusion put the heart into an IPC-like protected state, whilst the 

adenosine receptor antagonist blocked the IPC protective effect (70). At mediator level, 

insulin have demonstrated to protect the heart through the activation of PI3K pro-survival 

kinase (86), a well-recognized mediator. At end-effector level, cyclosporine A has shown 

cardioprotective effect through the inhibition of mPTP opening (87). The concept of 

modulating the IPC-induced molecular signalling pattern is known as pharmacologic 

conditioning and will be discussed further in next sections.  
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Figure 1-3: Hierarchical levels of signal transduction in cardioprotection 

Abbreviations: IGF1, insulin-like growth factor-1; mPTP, mitochondrial permeability 
transition pore; RISK, Reperfusion Injury Salvage Kinase; TNF, Tumour necrosis factor; SAFE, 
Survivor Activator Factor Enhancement. 

The cellular mechanisms of classical preconditioning can be classified in terms of triggers, 
mediators and effectors. IPC triggers a change in the myocardium, rendering it resistant to 
a subsequent infarction. This effect is mediated by a series of signal transduction pathways, 
which in turn end up on one or more end-effectors. The effectors are responsible for 
actually providing the protection during the subsequent prolonged ischaemia/reperfusion 
insult. This figure in not comprehensive and only depicts a few examples of triggers, 
mediators and effectors involved in cardioprotection. 
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Figure 1-4: Simplified scheme of cardioprotective signal transduction. 

The RISK pathway is displayed in yellow in the middle, the SAFE pathway in red on the right 
side, whilst the eNOS/PKG pathway is shown in green on the left side. Reproduced from 
Circulation Research. 2015;116:674-699 (78). 

Abbreviations: Akt, protein kinase B; AMPK, cyclic adenosine monophosphate–activated 
kinase; BNP, brain natriuretic peptide; cAMP, cyclic adenosine monophosphate; cGMP, 
cyclic guanosine monophosphate; COX, cyclooxygenase; Cx 43, connexin 43; DAG, 
diacylglycerol; EGFR, epidermal growth factor receptor; ERK, extracellular regulated kinase; 
FGF, fibroblast growth factor; Gs/Gi/q, stimulatory/inhibitory G protein; GPCR, G protein-
coupled receptor; gp130, glycoprotein 130; GSK3β, glycogen synthase kinase 3 β; H2S, 
hydrogen sulfide; H11K, H11 kinase; HIF1α, hypoxia inducible factor 1α; IGF, insulin-like 
growth factor; iNOS, inducible NO synthase; IP3, inositoltrisphosphate; JAK, Janus kinase; 
KATP, ATP-dependent potassium channel; Na+/H+, sodium/proton-exchanger; NPR, 
natriuretic peptide receptor; pGC, particulate guanylate cyclase; p38, mitogen-activated 
protein kinase p38; NO, nitric oxide; eNOS, endothelial nitric oxide synthase; PI3K, 
phosphatidylinositol 3-kinase; PKC, protein kinase C; PKG, protein kinase G; PLC, 
phospholipase C; PTEN, phosphatase and tensin homolog; PTK, protein tyrosin kinase; ROS, 
reactive oxygen species; sGC, soluble guanylate cyclase; SR, sarcoplasmic reticulum; STAT, 
signal transducer and activator of transcription; and TNFα, tumor necrosis factor α.  
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1.5.2 Pro-survival pathways in IPC: RISK and SAFE pathways 

The RISK and the SAFE pathways are the IPC mediators that have received more 

attention and are currently better understood, particularly the former. Following an IPC 

stimulus, the activation of both cascades has been demonstrated to occur at two time-

points, following a biphasic pattern response (88), as exemplified in Figure 1-5. These two 

pathways are activated: (1) during the preconditioning cycles, prior to the index ischaemic 

episode, this phase known as “trigger phase”; and (2) during the onset of reperfusion, 

known as the early phase of reperfusion or the “mediator phase” (10,66). The last concept, 

that IPC mediators are actually activated at the onset of reperfusion was unknown 15 years 

ago and came from a seminal observation made at The Hatter Cardiovascular Institute (see 

section 1.6.1). Of note, the importance of this finding is its potential translational power – 

this molecular signalling can be mimicked by pharmacological agents to produce benefits 

for patients undergoing myocardial IRI, either in the ambulance or the cath lab.  

 

Trigger phase

IPC 4 cycles 

Mediator phase

ReperfusionIndex ischaemia

 

Figure 1-5: The activation of pro-survival pathways follow a biphasic pattern 

In orange (top of the illustration), the names for each part of a given experiment simulating 
the application of 4 cycles preconditioning followed by a prolonged IRI protocol. Black 
boxes represent periods of ischaemia and white boxes represent periods of perfusion. In 
blue (bottom of the illustration), the time-periods where the pro-survival pathways are 
activated, namely the trigger phase (during the IPC protocol) and the “mediator” phase (at 
the onset of reperfusion). 
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In 2002, Yellon’s group coined the term Reperfusion Injury Salvage Kinase (RISK) 

pathway to refer to a group of pro-survival protein kinases, which confer cardioprotection 

when activated specifically at the time of reperfusion (36,89,90), providing an amenable 

pharmacological target for cardioprotection. This pathway, which is actually a combination 

of two parallel cascades, PI3K-Akt and MEK1-ERK1/2, was thoroughly dissected through a 

series of elegant pharmacological studies where the protective effect of several 

interventions were blocked with the co-administration of both PI3K and ERK inhibitors at 

different time points (89). The importance of the RISK pathway lies is two main concepts: 

(1) this pathway must be activated at the time of early reperfusion for IPC to protect 

against IRI; and (2) the RISK pathway may be recruited not only by ischaemic conditioning, 

but also by other pharmacological agents such insulin, adenosine or statins (86,91). As the 

focus of this thesis is on further mapping the RISK pathway, this concept is further 

elaborated in section 1.6.  

In 2005, Lecour et al. demonstrated that the administration of TNF-α before index 

ischaemia (used as pharmacologic IPC-mimetic) was cardioprotective  without involving the 

RISK signalling cascade (92). Four years later, they described that the administration of TNF-

α at reperfusion was recruiting a RISK-independent alternative pathway, coined as the SAFE 

pathway (81,93,94), and they also linked the activation of this pathway with 

preconditioning (95). Less is known about this signalling cascade: TNF-α binds TNF receptor 

2 thus activating Janus Kinase (JAK) and Signal transducer and activator of transcription 3 

(STAT3). Interestingly, STAT3 is a classical transcription factor that it also seen to have an 

immediate impact on mitochondrial respiration, improving complex I respiration and 

inhibiting mPTP opening (96). Few experimental studies have linked the activation of this 

pathway with the cardioprotective effect of melatonin(97) and lipoproteins(98). In humans, 

it seems that STAT5, instead of STAT3, may play a relevant role in cardioprotection 

(99,100). 

In summary, multiple protective pathways seems to be involved in IPC. The RISK 

pathway has a major role as a mediator of the protective of IPC and its signalling 

architecture is currently relatively well understood. In contrast, RISK-independent 

pathways, such as SAFE and PKC/eNOS cascades, are yet to be fully elucidated, but also 

seem to have a relevant role in cardioprotection. Of note, cardioprotective signalling 
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cascades have been mostly simplified in the literature, partly to make its logical order more 

understandable, and partly because the fragmented knowledge in which it is based. 

However, these cascades are believed to be highly interactive. Crosstalk between the two 

components of the RISK pathway (101,102) and between the RISK and the SAFE pathways 

(95,103) have been already described in a few studies.  

1.5.3 Role of mPTP in IPC 

The mPTP is considered  the most important end-effector, as it has been suggested 

to be a point of convergence of most cardioprotective pathways (78). It was first described 

in the late 1970’s by Hayworth and Hunter as a calcium-sensitive mitochondrial pore able to 

modify mitochondrial membrane permeability (104–106). Several structural components 

have been proposed to be part of the mPTP, such as the inner membrane transport protein 

adenine nucleotide translocase, the outer membrane voltage-dependent anion channel, 

and the mitochondrial phosphate carrier. However, most of them have been discredited as 

essential components of the pore and the mPTP structure still remains largely unknown. 

What is known about the mPTP is that it is a nonselective channel of the inner 

mitochondrial membrane (107) which is formed under conditions of cellular stress or injury, 

such as the circumstances surrounding IRI. During myocardial ischaemia, the mPTP remains 

closed, only to open within the first few minutes after myocardial reperfusion in response 

to mitochondrial Ca2+ overload, oxidative stress (108), restoration of a physiologic pH and 

ATP depletion (83,109). When opened for a long term, results in the mitochondrial 

membrane potential collapse, oxidative phosphorylation uncoupling, the rupture of the 

outer mitochondrial membrane and the release of cytochrome c from the intermembrane 

space into the cytosol, where it activates proteolytic processes (110) resulting in cell death 

(83).  

The mPTP is regulated by cyclophilin D, which decreases the threshold for mPTP 

opening in response to calcium and inorganic phosphate (111). Using cyclosporine A (CsA), 

a lipophilic cyclopeptide drug which inhibits cyclophilin D, Hausenloy et al. reported in the 

isolated rat heart model that IPC protect the myocardium by inhibiting mPTP opening at the 

onset of reperfusion (87), therefore demonstrating that mPTP inhibition underpins the IS-
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sparing protective effect elicited by IPC (84,85). Using  sanglifehrin-A, they also 

demonstrated that mPTP opening could be pharmacologically induced (112).  

Overall, there is a growing body of evidence suggesting the importance of the mPTP 

in IRI. On one hand, the genetic ablation of cyclopholin D has been associated to the 

reduction of myocardial IS (107,111). On the other hand, the pharmacologic inhibition of 

cyclophilin D with CsA has been demonstrated to prevent mPTP opening (113). Despite the 

publication of a positive proof-of-concept study in patients with STEMI demonstrating for 

CsA to have an impact on surrogate endpoints (myocardial IS and ventricular remodelling) 

(114,115), the subsequent larger randomized clinical trial (“Does Cyclosporine Improve 

Clinical Outcome in ST-Elevation Myocardial Infarction Patients”, or CIRCUS trial) assessing 

clinical outcomes failed to show benefits for CsA (116). In another study published later, the 

“CYCLosporinE A in reperfused acute myocardial infarction” or CYCLE trial, the primary 

endpoint of improving ST-segment resolution was also proved neutral (117). Other drugs 

aimed at mPTP inhibition in STEMI patients have also failed in demonstrate superiority in 

surrogate endpoints (118). Overall, these neutral results are more likely explained by both 

the ineffective mPTP inhibition provided by the drug itself and its inability to reach the 

jeopardized myocardium (discussed elsewhere in (119,120)) rather than the mPTP lacking 

importance in IRI in the clinical setting. The need for alternative drugs with increased 

specificity for the mPTP is still considered a viable option for developing novel 

cardioprotective therapies. 

1.5.4 Cellular targets for conditioning 

As reviewed above, a wide range of triggers, mediators and end-effectors have 

already been identified as part of the recruitment conditioning process. It has been largely 

assumed that the conditioning phenomenon applies to all cell types in the heart, or at least 

specifically to the cardiomyocyte (121). Cardiomyocyte death is the main cause of heart 

failure, arrhythmias and death in patients with STEMI. Further, cardiomyocytes have 

become central to recapitulate reductionist models of preconditioning against IRI through 

hypoxia/reoxygenation experiments. However, it remains largely unknown to what extent 

other cells can contribute in the conditioning phenomena on top of cardiomyocytes. There 
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are some evidence pointing to a role for platelets, endothelial cells and fibroblasts in 

cardioprotection. 

By volumetric determination, cardiomyocytes represents around 75-80% of the total 

myocardium, whilst other cells appears to contribute little to the volume – endothelium by 

3% and fibroblasts by 2% (121). This is important because the gold-standard measure of 

area at risk and infarct size, by Evans blue and Triphenyl Tetrazolium Chloride (TTC) 

respectively, is based in volumetric measures. However, when it comes to numbers, the 

proportions are slightly different and the adult myocardium is composed of ~56% 

myocytes, 27% fibroblasts, 7% endothelial cells, and 10% vascular smooth muscle cells, with 

a similar percentages in the left ventricle, right ventricle and septa, as demonstrated by 

Banerjee et al. (122). What has not been explored in great detail yet is whether 

preconditioning can elicit its effect through processes dependent of non-cardiomyocyte cell 

populations. 

Due to the high metabolic demand, the heart has an extensive microvascular blood 

supply system. Some advocate that the endothelium might have a relevant role in 

cardioprotection due to both its optimal situation to interact with blood signals and its 

paracrine capacity/ability. As first point of contact between the myocardium and humoral 

factors, the endothelium constitutes a “blood-heart barrier” (123). There is some evidence 

demonstrating that the eluent collected from preconditioned endothelial cells is able to 

provide some protection against IRI in naïve primary cardiomyocytes (124). In the same 

vein, Teng et al. demonstrated with a transgenic mouse model, which restricted the 

expression of EPO receptor to hematopoietic and endothelial cells, that hearts from these 

mice can still be pharmacologically conditioned by the administration of EPO, therefore 

suggesting a major role for the endothelial cell response to EPO to achieve an acute 

cardioprotective effect (125). As a paracrine organ, the endothelium has been 

demonstrated to trigger protection in cardiomyocytes through receptor/ligand interaction 

and gaseotransmitter. Endothelin-1 (ET1) receptor and bradykynin B(2) receptor are both 

present in cardiomyocytes (126,127) and when pharmacologically activated both trigger a 

preconditioning-like effect (126,128). In regard to gaseous signals, nitric oxide has been 

long associated with ischaemic conditioning though the role of eNOS (the endothelial 

isoform of nitric oxide synthase), as demonstrated in eNOS knockout mice (129). 



35 

 

 

Besides being a provider of protective triggers and mediators to cardiomyocytes, 

there is also the possibility for the endothelium to be a target itself for cardioprotection. 

The signalling pathways and end-effector mechanisms described in cardioprotection are 

not specific to cardiomyocytes. Some publications have shown a higher vulnerability to IRI 

of the endothelium when compared to cardiomyocytes (130,131). Targeting endothelial 

receptors through adenosine agonists A1 and A3 or angiotensin II (132) preserve not only 

the endothelium-dependent vasodilation, but also cardiomyocyte viability. Indeed 

preserving microvascular function will provide further blood supply to the injured 

cardiomyocytes. In the clinical setting, pre-infarct angina (a preconditioning clinical 

manifestation) has been associated with attenuation of no-reflow in STEMI patients 

undergoing PPCI (133).  

Other cells can also be relevant in cardioprotection, such as platelets, where recent 

experimental data have demonstrated that P2Y12 inhibitors are protective at the onset of 

reperfusion through RISK activation(134–136), or neutrophils, that can be targeted by 

metoprolol to inhibit neutrophil-platelet interaction (137).  

1.5.5 Windows of protection 

As described in section 1.4 and Figure 1-2, the ischaemic conditioning phenomenon 

is an endogenous form of cardioprotection that can be expressed in several ways. IPC, 

specifically, comes in two different temporal forms of protection, also known as “windows” 

(34). The first window of protection begins immediately following the stimulus and lasts for 

2–3 h, after which cardioprotection declines (termed “classical IPC” or “acute IPC”). The 

second window follows 12-24h later, and lasts 48–72 h (termed “delayed IPC” or “second 

window of protection”), although its magnitude of effect appears to be less robust (88). 

The first window of protection has been described in previous sections, and 

consists in the activation of several protein kinases through their phosphorylation. In the 

second window, these protein kinases activate gene transcription factors, such HIF-1α and 

STAT 1/3, which facilitate the synthesis of distal mediators, such as COX-2, HSP72 and iNOS, 

which enables the effects of the IPC stimulus to persist into the following 2-3 days. 
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The second window of protection was described by Marber et al. in 1993. Before, 

some publications had suggested the protective role of heat stress proteins when induced 

by both myocardial ischaemia and whole body stress (138,139). To avoid the deleterious 

extra-cardiac response inherent to whole body heart stress, they applied a standard IPC 

stimulus in an in vivo rabbit model and demonstrated myocardial IS reduction 24 h later 

through elevation of the myocardial heat stress proteins HSP70 and HSP60 (34). The same 

year, Kuzuya et al. reported similar results using an in vivo canine model (140). In 2003, 

Yellon’s group further described an essential role for the activation of the PI3K-Akt-p70s6k 

signalling cascade during the preconditioning cycles in a rabbit model of IPC-delayed 

cardioprotection (141). However, it was later when they (Bell et al.) linked this “delayed 

preconditioning” to the recruitment of the RISK pathway at reperfusion (142). Using 

angiotensin II as preconditioning mimetic, they demonstrated RISK activation following 1, 6 

and 24 h of reperfusion, although the protective effect was only observed at 1 and 24h. An 

extensive review of  the second window of preconditioning can be found elsewhere (76). 

1.5.6 Clinical manifestations of IPC 

Although IPC has been demonstrated to be highly protective, its clinical application 

is limited by both the need for its use before the index ischaemia and the necessity of an 

invasive coronary approach. In the clinical arena, two main spontaneous clinical 

manifestations of myocardial IPC can be observed: 

- “Warm-up angina” refers to the phenomenon of increased exercise tolerance 

following an episode of angina (143) 

- “Pre-infarct angina”, defined as the cardioprotective effect of antecedent angina 

before an AMI resulting in smaller IS and improved clinical outcomes (144,145). 
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1.6 The RISK pathway: a unified signalling cascade for cardioprotection 

1.6.1 Origins of the finding of the RISK pathway: necrosis vs apoptosis 

There is more than one mode of cellular death as a result of IRI: both apoptosis and 

necrosis are thought to play a relevant role (146). At the early exposure to IRI, there is a 

significant increase in both apoptosis and necrosis, as evidenced by TUNEL and TTC staining, 

although it seems that necrosis may contribute more to the final infarct size when the 

tissue is exposed to IRI for longer (146,147). 

Necrosis is the form of cell death that occurs following severe cellular damage, 

includes uncontrolled disruption of organelles, membrane rupture, and does not require 

ATP (148,149). On the other hand, apoptosis is the ATP-dependent programmed cell death. 

Apoptosis involves cytochrome-c release from injured mitochondria or autocoid cell-surface 

receptor (Fas Ligand) activation followed by the downstream propagation of the signal via 

caspases and other signalling proteins, which in turn cause the formation of nonselective 

pores in the outer mitochondria or the opening of the mPTP, as well as the DNA cleavage 

and nuclear degradation(149). Unlike necrosis, apoptosis does not result in the release of 

cellular content into the extracellular milieu. Pro-apoptotic proteins were the object of 

study to develop new targets against IRI under the hypothesis that it would be possible to 

salvage cardiomyocytes already committed to die when the signal of programmed cell 

death is potentially interrupted. It was therefore demonstrated that inhibiting caspases 

limits infarct size in animal models (150), although the pharmacologic inhibition of the 

apoptotic signalling cascade has been reported to attenuate both the apoptotic and 

necrotic component of the cell death secondary to  lethal reperfusion injury (66). Besides 

reducing cell death through the inhibition of pro-apoptotic caspases, the focus was also put 

on antagonizing the apoptotic process through the activation of pro-survival proteins (90) - 

PI3K and ERK 1/2 prosurvival kinases attracted the attention of researchers as a way to 

preserve ischaemic myocardium. 

The RISK pathway was first described by Yellon’s group in 2002 whilst assessing the 

mechanisms underlying the cardioprotective effect induced by urocortin (36): the use of 

this growth factor reduced myocardial infarct size and increased the phosphorylation of 
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ERK 1/2 when administered upon reperfusion, whilst these effects were abolished by the 

co-administration of PD98059 (ERK 1/2 inhibitor) also at reperfusion. 

In April 2017, Weil et al. (151) reported in a swine model that a single brief episode 

of 10 min myocardial ischaemia and 24 h reperfusion (like 1 cycle of IPC) produced an 

increase in serum cardiac troponin I, which was justified by the observation of transient 

regional apoptosis of single dispersed cardiomyocytes stained by TUNEL (148,152). The 

activation of the apoptotic process following a preconditioning stimulus should be put 

alongside the well-recognized activation of pro-survival pathways following a short protocol 

of IR injury. Therefore, it seems that both pro-apoptotic and pro-survival pathways are 

activated following such a stimulus, maybe as a counter-regulatory process. Despite it 

seeming contradictory, one might speculate that if the stimulus is left for longer, apoptosis 

contributes alongside necrosis to the final infarct size (146), whilst if left only for a shorter 

period, the IR injury actually leaves a “footprint”, a sort of memory in form of activated pro-

survival pathways, to protect the heart when a prolonged injury comes later.  

1.6.2 Key signalling proteins involved in the RISK pathway 

IPC-induced molecular signalling is considered the paradigm for cardioprotection. 

The RISK pathway, which has been demonstrated to mediate the IPC protective effect, is 

therefore considered a universal signalling cascade, a common pathway, shared by most 

cardioprotective therapies (153). The importance of comprehending this complex 

molecular architecture lies in the unmet clinical need of developing pharmacological agents 

specifically targeting pro-survival kinases to promote myocardial salvage. Figure 1-6 depicts 

the temporal sequence of signal transduction mediating cardioprotection. As described for 

IPC in section 1.5.1, the RISK pathway (a universal mediator) is activated by some triggers 

(in the case of IPC were autocoids, whilst in the case of pharmacological conditioning are 

drugs with the potential to bind either GPCRs or RTKs). Once recruited, the RISK pathway, 

inhibits the mPTP opening, hence delaying cell death. 
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Figure 1-6: Simplified schema of the recruitment process induced by a given 

cardioprotective therapy 

The recruitment of the RISK pathway is a three-step process. The first step is usually 
characterised by receptor/ligand interaction, either derived from an autocrine source (1a—
for example, adenosine), or an exogenous/paracrine (1b—for example bradykinin or 
insulin). Once the receptor is activated, the RISK pathway is recruited (2). In the third step, 
the activated kinases eventually impact upon end-effector mechanisms, such as the mPTP, 
that increase resistance to IRI (3).  

Reproduced from Bell & Yellon (121). 
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  As a parallel cascade to PI3K-Akt, ERK 1/2 contributes to the cardioprotection 

elicited by all forms of ischaemic conditioning. In IPC studies, ERK1/2 appears to mediate its 

IPC-induced protective effect in a biphasic fashion. The activation of ERK during the trigger 

phase has been demonstrated to confer protection in most of the studies (89,154), 

although not all (155), whilst its activation at the onset of reperfusion is more clearly 

established (89,154). In both ischaemic postconditioning (156) and pharmacological 

conditioning (157), there is also a consensus on ERK 1/2 involvement at early reperfusion. 

In 2000, Tong et al. demonstrated for the first time that the IPC-induced 

cardioprotective effect was mediated through the PI3K-Akt pathway in a Langendorff-

perfused rat heart model (158). The prottective effect of IPC was abolished with the 

administration of the PI3K pharmacological inhibitor wortmannin during the 

preconditioning phase (trigger phase). Subsequent studies corroborated the essential role 

of PI3K-Akt when recruited at the trigger phase (69,155). The Hatter Cardiovascular 

Institute was the first laboratory to report that PI3K-Akt is also recruited at the time of 

reperfusion (mediator phase) (89). Later, it was also demonstrated in IPC studies, in isolated 

perfused rabbit hearts, that PI3K-Akt recruitment occurs for up to 1 h following reperfusion 

for preconditioning to protect the heart (159). Of note, both phases of PI3K-Akt activation 

are needed for IPC to confer protection, as inhibiting either phase of activation abolishes 

the IS-sparing effect of IPC (155). PI3K-Akt is also involved in other forms of ischaemic 

conditioning (160) . 

PI3K has several downstream molecular targets, such as phosphoinositide-

dependent kinase-1 (PDK1), Akt, mTOR, p70s6k and GSK3β. 

PDK1 is a ubiquitously expressed 67 kDa kinase that phosphorylates and activates 

several kinases including Akt, protein kinase C and p70S6K. 

Akt is a serine/threonine protein kinase family comprising thee different Akt 

isoforms, Akt1/PKBα, Akt2/PKB, Akt3/PKBβγ, each of which is encoded by a separate gene 

(101). Its activity is primary controlled by PI3K and Phosphatase and Tensin homologue 

deleted on chromosome 10 (PTEN) through the modulation of PIP3 levels. This is further 

explained in section 1.7.1. 
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Full activation of Akt happens via a sequential two-step process involving 

recruitment of Akt to the plasma membrane through its pleckstrin homology domain, 

followed by phosphorylation of a Thr-308 residue in the catalytic domain by PDK1 and a 

Ser-473 residue by the mTOR2. Akt is directly inactivated following dephosphorylation of 

the two regulatory sites by the serine-threonine phosphatase, protein phosphatase 2A 

(PP2A). Activated Akt phosphorylates various downstream targets including mTOR, p70s6k, 

GSK3β and eNOS (161). 

All three known Akt isoforms are expressed in the myocardium, with the Akt1 and 

Akt2 being the most abundant. In fact, Akt1 is ubiquuitously expressed in all tissues and 

Akt2 is present mainly in insulin-responsive tissues. 

 mTOR is a serine/threonine kinase that is inhibited by the drug rapamycin. When 

activated, by Akt or other stimulants, it phosphorylates and activates p70S6K, which is a 

short isoform of the ribosomal S6 kinase (S6K1) and is involved in regulation of several 

signalling pathways such as the transcription of certain factors. Insulin administered upon 

reperfusion has shown ability to induce phosphorylation of both Akt and p70S6K, 

implicating them in the cell survival signalling cascade promoting reperfusion 

cardioprotection (86). 

GSK-3β is a serine/threonine kinase originally identified to inactivate glycogen 

synthase by phosphorylation. GSK-3β is expressed in the heart and is active in unstimulated 

cells, where it phosphorylates targets such cyclin D, c-Jun, NFAT, in addition to glycogen 

synthase (162). In response to PIP3 increase, phosphorylation of serine-9 residue in the N-

terminal regions of GSK-3β by Akt inhibits GSK-3β, leading to improved cell survival and 

hypertrophy. The importance of GSK3β in ischaemic conditioning is still contentious – i.e. 

two different studies using the same transgenic mouse model of a dominant negative 

GSK3β variant found this protein mantadory (163) or not (164) for postconditioning to 

confer protection. 
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1.6.3 Importance of isoforms in cardioprotection 

A protein isoform, also known as "protein variant", is a member of a family of 

proteins with highly similar structure. These different forms of a protein may be produced 

either from different genes or from the same gene by alternative splicing, and can confer 

different biological effect. Some examples have been appreciated in cardioprotection. 

Yellon’s lab studied the role of two Akt isoforms, concluding that, Akt1, but not 

Akt2, was essential mediator of IPC (101). In another  study, GSK-3β, but not GSK-3α, was 

phosphorylated after preconditioning (164). Protein kinase C, another prosurvival protein 

kinase, represents a paradigm for the importance of the isoforms in cardioprotection: in 

animal models of myocardial IRI, the activation of the protein kinase C ε isoform is 

protective, whilst the activation of the δ isoform is deleterious (165). Taking into account 

the roles of each isoform, a combined treatment with an ε-PKC activator before ischaemia 

and δ-PKC inhibitor at the onset of reperfusion was proved to induce greater protection 

against IRI than the treatment with each peptide alone (166).   

1.6.4 Targeting the RISK pathway in cardioprotection 

The ability to manipulate and up-regulate the RISK pathway during the early 

reperfusion phase may provide a potential approach to limiting reperfusion-induced cell 

death. Indeed, the use of pharmacological agents targeting the RISK pathway is a feasible 

intervention which can be applied at the onset of myocardial reperfusion for patients 

presenting with an STEMI, either in the ambulance or the cath lab. Therefore, strategies 

enhancing the RISK activity are an attractive target to develop adjuvant therapies to be 

used alongside cardiac catheterization. 

In the laboratory setting, several drugs have been already demonstrated to protect 

the heart against IRI through the activation of the RISK pathway: insulin (86), statins (91), 

bradykinin (129), GLP-1 analogues (167), erythropoietin (168), atrial natriuretic peptide 

(169), metformin (170,171), dipeptidyl peptidase-IV inhibitors (172) and pioglitazone (173). 

The translation of most of these medications to the clinical setting has been overall 

disapointing - the reasons are widely discussed elsewhere (28,61,145,174). However, there 
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are some promising drugs which have been demonstrated to reduce myocardial IS in 

patients, such as exenatide (175,176), metoprolol (177–179) and atrial natriuretic peptide 

(180). Regarding mechanical interventions, remote ischaemic conditioning has also solidly 

demonstrated to be effective in the clinical setting (55,59). 

Time is important when it comes to pharmacologic conditioning for three reasons:  

(1) The recruitment of pro-survival kinases are protective when acutely activated, 

whilst their chronic activation seems to be harmful in the long-term.  In the 

experimental setting, the chronic activation of the PI3K-Akt cascade is 

deleterious, inducing cardiac hypertrophy (101,181). In the clinical setting, ERK 

and Akt are chronically activated in the failing heart (182). 

(2) Many pharmacological agents have proved effective only in those patients 

presenting shorter periods of ischaemia. In a subgroup analysis of the Acute 

Myocardial Infarction Study of Adenosine-II (AMISTAD-II) (183), patients 

reperfused within less than 3.2 h of symptom onset (median time to reperfusion) 

showed that adenosine reduced the composite endpoint of death and congestive 

heart failure (184). In the same vein, Exenatide was proved to be more effective 

in STEMI patients with shorter ischaemic time from onset of symptoms (175) 

(3) The longer the cardioprotective therapy is on board, the more effective it is 

reducing IS. Both RIC (47) and metoprolol (185) have demonstrated that the 

sooner the intervention is applied in the course of the infarction, the better the 

surrogate outcome. 
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1.7 PI3K  

1.7.1 PI3K is part of the RISK pathway activated by IPC 

1.7.1.1 Phosphatidylinositols, PI3K and PTEN are part of the RISK pathway 

Phosphatidylinositols (PtdIns) are phospholipids that comprise a phosphoglyceride 

esterified to the hydroxyl group of an inositol ring which can be phosphorylated and 

dephosphorylated at several positions by lipid kinases and phosphatases, respectively 

(186). Phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3, also known as PIP3] is a 

short-lived second messenger, produced from phosphatidylinositol (4,5)-bisphosphate 

[PtdIns(4,5)P2, also known as PIP2]. The lipid kinase PI3K and the  phosphatase PTEN are 

the primary regulators of these two PtdIns: PI3K produces PIP3 from PIP2, and PTEN 

counter-regulates the reaction, dephosphorylating PIP3 on the D3 position (187). 

PI3K activity is required to protect the heart against IRI in all forms of ischaemic 

conditioning (188). As discussed in section 1.5, the IPC stimulus promote the release of 

triggers which activate either GPCR or RTKs, in turn activating signalling cascades, such as 

the RISK pathway. As a result of this PI3K activation, PIP3 production leads to the 

recruitment and activation of Akt and PDK1, and subsequently to a phosphorylation of a 

wide range of pro-survival downstream targets such a p70S6, eNOS and GSK3β (186). 

Despite the growing interest in the importance of protein isoforms in 

cardioprotection (see section 1.6.3), little is known about the specific role of the PI3K 

variants in IRI and ischaemic conditioning. PI3K is of significant importance within the RISK 

pathway, and its upstream position governs the other important downstream kinases. To 

elucidate the role of each isoform may eventually allow us to optimize pharmacological 

interventions selectively thereby targeting specific PI3K isoforms. 
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1.7.2 Structure and function of class I PI3K 

PI3K isoforms have been divided into three classes (class I, class II, class III) based 

on structural features and lipid substrate preferences (189).  This thesis focuses specifically 

on class I PI3K, particularly in PI3Kα. 

Class I PI3Ks are a family of lipid kinases activated by cell membrane receptors, 

either receptor tyrosine kinases or G protein-coupled receptors, to catalyse the production 

of PIP3 from PIP2 (187,190). These enzymes are heterodimers composed by a regulatory 

subunit (either p85 or p101/p84 family) and one of four catalytic subunit (p110α, p110β, 

p110γ or p110δ), forming PI3Kα, β, γ or δ, respectively (189). Structural differences at the 

N-terminal portion of p110 subunits allow a further subdivision in class IA and class IB. Class 

IA members (p110α, p110β and p110δ) form heterodimers with p85 regulatory subunit, 

and usually are thought to be activated downstream of receptor tyrosine kinase, although 

there is  evidence associating PI3Kβ with GPCR (191). In contrast, the only p110γ forms 

heterodimers with either p84 or p101, and selectively respond to GPCR signalling, with 

some recent evidence suggesting a potential Ras-mediated activation. 

1.7.3 PI3K isoforms: genetic disruption studies vs pharmacological studies 

Two general approaches can be performed to identify the roles and mechanisms of 

action of PI3K isoforms in normal cardiovascular physiology and disease: genetic disruption 

studies and pharmacological studies targeting specific PI3K isoforms.  

Mouse mutants lacking PI3Kα or PI3Kβ have shown embryonic lethal phenotype 

(192,193), whilst mice lacking either PI3Kγ or PI3Kδ reach adulthood (194). Transgenic mice 

with cardiac-specific expression of a constitutively active p110α (caPI3Kα) display increased 

heart and cardiomyocyte size (195). In contrast, cardiac-specific expression kinase-dead 

version of p110α reduces heart size. Further examples can be found in PI3K downstream 

effector Akt isoforms (196,197). It is not always clear whether the reported phenotypes and 

molecular signalling alterations of genetic modified models can be directly attributed to the 

the targeted gene, or if they are actually the result of “knock on” effects on other PI3K 
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isoforms and the signalling pathways they control. In other words, the activation of 

compensatory signalling pathways other than the one being under study. 

Genetic approaches needs to be complemented with pharmacological studies using 

isoform-specific inhibitors. Cell permeable inhibitors make it possible to directly assess the 

phenotypic consequences of acutely inhibiting a kinase with a drug at a given time point in 

a physiologically relevant model. For instance, pharmacological studies with pan-specific 

PI3K inhibitors (LY-294002 and Wortmannin) strongly support the notion that class I PI3Ks 

are key mediators of cardioprotection imparted by insulin (86) and IPC (89) at reperfusion; 

but these inhibitors are not isoform specific (198).  

A significant development over the past ten years has been the development of 

highly isoform-specific, small molecule, class I PI3K inhibitors. These inhibitors, which are 

available either commercially or through collaborations with the Cancer Institute at 

University College London, permit the assessment of the role of the two predominant 

cardiac isoforms, namely PI3Kα and PI3Kβ, in cardioprotection. This pharmacological 

strategy provides a physiological model which replicates the effects of small molecule 

kinase inhibitors more closely than classical gene knockout approaches in an acute model, 

such as the IRI model of myocardial infarction(199). The development of compensatory 

adaptions might be avoided using potent and highly selective isoform-specific PI3K 

inhibitors in this acute setting. 

1.7.4 Comparison of features and properties between PI3K isoforms  

1.7.4.1 Similar structure, different function 

The triggers released as a consequence of an IPC stimulus (i.e growth factors) elicit 

their effect by transient alterations in the levels of PIP3, the levels of which are very low in 

quiescent cells but rise swiftly following growth-factor stimulation (200). This rise of PIP3 

induced by the activation of PI3K mediate a broad range of cellular functions. The catalytic 

p110 isoforms of Class IA PI3K have a highly homologous structure, interact non-selectively 

with the different p85 regulatory subunits and have the same lipid substrate preference 

(201). Therefore, a substantial functional overlap may be expected. However, there is a 

growing body of evidence suggesting distinct roles for each isoform in the cell. This is 
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particularly highlighted by the finding that ablation of either p110α or p110β gene is 

developmentally lethal (192,193), indicating that the non-deleted isoform cannot fully 

substitute for the ablated (200). Moreover, experiments using gene-targeted mice and 

p110 isoform-selective inhibitors have uncovered non-redundant functions of the p110 

isoforms – i.e. p110α is involved in insulin signalling (202,203), p110β in integrin signalling 

(204,205), and p110δ in leukocitary signalling (206). Some key parameters have been 

investigated to differentiate the role played by each isoform, as explained in subsequent 

sections. 

1.7.4.2 Mechanism of activation 

Class I PI3K four isoforms are highly homologous in structure, but they have distinct 

mechanisms of activation. Class IA PI3Ks (α, β and δ) are activated through RTKs, whilst 

PI3Kγ acts downstream to GPCRs (207). However, there is compelling evidence 

demonstrating that both RTK and GPCR can engage PI3Kβ, (191,208), placing this isoform 

between the two subclasses. Moreover, it has been suggested that PI3Kβ in synergistically 

activated by both receptors (209). Kulkarni et al. have demonstrated PI3Kβ to play a major 

role in determining the sensitivity of neutrophil activation by immune complexes in 

enabling a synergistic activation through both RTK and GPCRs (210). In the same way, 

Houslay et al. have recently reported a synergistic PIP3 formation by PI3Kβ in response to 

the co-activation of both GPCR and RTK in myeloid cells (211). Altogether, this need for 

cooperative signalling may indicate that the activation of PI3Kβ requires coincident 

signalling inputs to be fully activated (209). 

Relevant to this thesis, RTK ligands (such as PDGF, insulin and insulin-like growth 

factor-1, IGF-1) have been demonstrated to activate Akt through PI3Kα, whilst several GCPR 

ligands has been proposed to mediate Akt activation through PI3Kβ, such as SDF-1α, 

sphingosine-1-phosphate and lysophosphatidic acid (191,208,210,212).  

1.7.4.3 Lipid- and protein-kinase activities 

Class I PI3K have two kinase functions: (1) the lipid-kinase activity mediates the 

phosphorylation of phosphoinositides on the D-3 position of the inositol ring (i.e. PIP2  

PIP3), therefore activating Akt and other PIP3-binding molecules, such as PDK1 and 

mTORC2; and (2) the protein-kinase activity causing the autophosphorylation of the 
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regulatory subunit p85α at Ser608, which in turn downregulates the lipid-kinase activity of 

PI3K (213,214).  

Significant differences in the kinetic properties of p110α and p110β catalytic 

subunits have been described so far (215). Beeton et al. measured both PI3K lipid-kinase 

activity (using two different methods in several cell lines) and PI3K protein-kinase activity 

(with only one assay) (200). They concluded that: (1) p110β has a lower lipid kinase activity 

than p110α; (2) at low lipid concentration p110β is more active than p110α, whilst the 

reverse occurs at higher lipid concentration; (3) p110β also displayed a lower protein kinase 

activity (lower p85 phosphorylation). Altogether, p110β demonstrated less overall lipid- 

and protein-kinase activity compared to p110α.In that article, the authors speculate that 

the differences being reported in p110α and p110β kinetic properties would mean that 

these isoforms could be maximally effective in different cellular locations (200), based on 

the availability and concentrations of the substrate phosphoinositides. A few years later, 

the same group confirmed these differences in the regulation of PI3K by its intrinsic serine 

kinase activity in vivo – p110α possesses a higher protein kinase activity phosphorylating a 

serine residue in p85, whereas p110β is less effective in this phosphorylation (216).  

Differences in kinase activity between PI3K isoforms have been also reported by 

Vanhaesebroeck’s group, which evaluated lipid kinase activity in both endothelial cells and 

human umbilical vein endothelial cells (HUVECs), confirming that p110α is also the most 

active isoform in these cell types (217). With regard to PI3Kγ, Perino et al. have reported 

that p110γ lipid kinase activity is negligible in cardiomyocytes in physiological conditions, 

but results dramatically upregulated under adrenergic stress, such as that occurring in 

chronic congestive heart failure (218). 

1.7.4.4 Expression and location 

Some studies have quantified the amount of PI3K isoforms in several non-cardiac 

mouse tissues. Vanhaesebroeck’s group have determined that the most abundant catalytic 

subunits were p110β (in liver, brain and fat) or p110δ (in spleen), with a lower abundance 

of 110α in most tissues tested (206). Only the muscle (the heart was not tested) showed a 

predominance of PI3Kα. The same group studied the expression for each class IA isoform in 

both mouse cardiac endothelial cells (MCECs) and HUVECs, demonstrating a similar 
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qualitative expression of p110α and p110β, and a very low expression of p110δ, particularly 

when these cells were compared with leukocytes (217). Few studies have suggested 

subcellular localization of PI3K isoforms as a major mechanism to determine specific 

functions and govern cell responses, as p110β, but not p110α, localizes to the nucleus in 

several cell types (219,220). 

In the heart, the most highly expressed p110 catalytic subunit are p110α and p110β 

(221), although little is known about their absolute and relative amounts. 

1.7.5 Class I PI3K isoforms 

1.7.5.1 PI3Kα 

PI3Kα can be exclusively activated by RTKs. Cardiomyocyte PI3Kα is mostly 

activated by the receptors of insulin or IGF-1, whilst other myocardial cell types such as 

endothelial cells or fibroblasts are engaged mostly by vascular endothelial growth factor 

(VEGF) or fibroblast growth factor (FGF). PI3Kα has a major role in cardiomyocyte growth 

and survival and this explains why systemic knockout of PI3Kα is embryonic lethal (192).  

Genetic disruption in animal models have revealed a critical role for PI3Kα-Akt 

cascade in promoting cardiomyocyte postnatal growth and survival. In a cardiac-specific 

transgenic mouse model expressing a constitutively active (ca) PI3Kα mutant: PI3Kα activity 

was increased 6.5-fold, heart size was approximately 20% higher and cardiac function and 

lifespan were normal (195). On the other hand, in a cardiac-specific mouse model 

expressing a dominant negative (dn) PI3Kα mutant, PI3Kα activity was reduced by 77% and 

hearts size were reduced by approximately 20%. Under basal conditions, alterations of 

PI3Kα influences heart size without gross changes in cardiac contractility (222). In both 

animal models, ca PI3Kα and dnPI3Kα, the number of cardiomyocytes is unchanged if 

compared to controls, thus supporting the idea that the α isoform of PI3K controls 

cardiomyocyte size but not the number (222). Further, the upstream cardiac-specific IGF-1 

receptor overexpression also leads to cardiac hypertrophy through the activation of PI3Kα 

(223). Notably, PI3Kα promotes physiological hypertrophy and sustained systolic function. 

In a series of articles, McMullen and colleagues have demonstrated that PI3Kα-Akt can 

promote physiological exercise-induced growth (224), but antagonize pathological growth 
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in a transgenic mouse model of dilated cardiomyopathy  or a mouse model subjected to 

pressure overload through a constricted aorta (225,226). Altogether, these studies suggest 

that PI3Kα is essential to maintain cardiac function unaltered in response to a pathological 

cardiac insult. 

With regard to myocardial infarction, little research has been undertaken to date. 

Lin et al. have demonstrated that PI3Kα is crucial for protecting the heart against 

pathological remodelling and failure (227). They have demonstrated that increased PI3Kα 

activity can protect the heart against dysfunction following a chronic myocardial infarction 

(227). In this myocardial infarct-induced heart failure model, designed to  cause  cardiac 

dysfunction, as a consequence of a chronic coronary occlusion (without reperfusion), 

caPI3Kα mice demonstrated less function impairment when compared to controls (227).  

In addition to its involvement in physiological cardiac growth and protecting the 

heart against pathological remodelling following an AMI, PI3Kα is also critically involved in 

cardiac contractility. Temporally controlled overexpression of cardiac-specific PI3Kα 

enhances contractility in the Langendorff-perfused mouse model (228), whilst the 

overexpression of dnPI3Kα reduces basal contractility (229). It has been suggested that L-

type voltage gated calcium channels are involved in the mechanism for PI3Kα to contribute 

in cardiac contractility (230). 

Mutations in PI3KCA, the gene coding for PI3Kα, are associated with oncogenic 

transformation. Hence, the therapeutic potential of PI3Kα inhibitors has generated great 

interest in cancer patients, but also some challenges regarding their potential side-effects 

on the heart. Mice deficient in PI3Kα displayed an accelerated heart failure in response to 

dilated or hypertrophic cardiomyopathy – these results might explain the association of 

cardiomyopathy in cancer patients given tyrosine kinase inhibitors and raise concerns for 

the use of PI3Kα inhibitors in cancer patients (231). 

1.7.5.2 PI3Kβ 

PI3Kβ is centrally involved in Akt activation in platelets, and in thrombus formation 

and maintenance. This has been demonstrated in mice with targeted deletion of p110β, 

and by the use of a selective PI3Kβ inhibitor (204,205). It is also highly expressed in 
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cardiomyocytes, although no evidence has been reported on its involvement in IRI and 

cardioprotection.  

1.7.5.3 PI3Kγ 

Unlike PI3Kα, PI3Kγ is not ubiquitously expressed but enriched in specific subsets of 

cells, including leukocytes and cardiac cells. PI3Kγ expression is upregulated in mouse 

models of atherosclerosis as a result of massive leukocyte infiltration (187). Beyond 

atherosclerosis, PI3Kγ has emerged as a critical modulator of cardiac function (207).  

PI3Kγ is known to interact with agonist-activated GPCRs. As IPC is mostly mediated 

by GPCR ligands, this isoform have raised the interest of some researchers. In 2004, Tong et 

al. postulated PI3Kγ as a mediator of the protection afforded by IPC (232). In transgenic 

mice with cardiac-specific overexpression of a catalytically inactive mutant of PI3Kγ, they 

observed the IPC protective effect to be lost, therefore suggesting a central role of PI3Kγ in 

the IPC-protective effect. Consistently, Ban et al. demonstrated the importance of the PI3Kγ 

signalling cascade in IPC, as PI3Kγ knockout mice (PI3Kγ-/-) displayed poorer functional 

recovery and greater tissue injury (measured by lactate dehydrogenase release) compared 

to the wild-type and PI3Kγ-/+ counterparts in a Langendorff-perfused mouse model. They 

also showed similar functional data on adenosine-mediated pharmacological 

preconditioning, suggesting PI3Kγ involvement in the protection conferred by adenosine, 

on the basis of GPCR activation in IPC. 

PI3Kγ has also been associated with other heart diseases. In 2017, a research group 

from Italy demonstrated PI3Kγ to have a central role in diabetic-induced cardiomyopathy. 

Using both a pharmacological approach with the GE21 PI3Kγ inhibitor and a genetic 

approach with both knock-out and kinase-dead mice, they observed an improved cardiac 

function when compared to non-manipulated mice (233), therefore suggesting that PI3Kγ 

inhibition has the potential to be translated to patients with diabetic cardiomyopathy. 

1.7.5.4 PI3Kδ 

PI3Kδ is highly expressed in leukocytes, but is also present in other tissues such as 

neurons. Its predominant expression in the haematopoietic compartment correlates with a 

variety of immune functions, mainly in the adaptive immune system, with important roles 
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in B and T cells, as well as in mast cells and myeloid cells (190). Little is known about its 

potential role in the physiology and disease of the cardiovascular system. 

Overall, this section lays the foundation for the investigation of specific isoforms 

that may play a relevant role in cardioprotection. 
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Chapter 2 HYPOTHESES AND AIMS  

 

The overall aim of this PhD is to investigate the potential role of PI3Kα as mediator 

in cardioprotection. The principle objective and specific research aims addressed are 

outlined below and described with further details in subsequent chapters. 

 

Objective (1) – To characterise the isolated perfused mouse heart model using global 

ischaemia-reperfusion injury (Chapter 4) 

Aim 1:  Determine whether infarct size (IS) is dependent on both the duration of ischaemia 

and length of the reperfusion period 

Aim 2:  Describe the lactate dehydrogenase release pattern during reperfusion as an index 

of injury 

Aim 3:  Describe the impact of IPC on IS and lactate dehydrogenase release after long 

reperfusion 

Aim 4:  Determine any correlation between IS and lactate dehydrogenase release 

 

 

Objective (2) – To select the IPC protocol (Chapter 5) 

Aim 1:  Compare the effect of 1-cycle vs 4-cycle of IPC to protect the heart against 

ischaemia/reperfusion injury 

Aim 2:  Compare the effect of 1-cycle vs 4-cycle IPC to activate the survival kinases, Akt and 

ERK 
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Objective (3) – To characterise the role of PI3K prosurvival cascade in preconditioned 

mouse hearts (Chapter 6) 

Aim 1:  Investigate whether the pan-specific PI3K inhibitor wortmannin abrogates the 

cardioprotective effect of IPC when applied either during the trigger phase or the 

mediator phase 

Aim 2:  Mapping prosurvival cascades at the trigger phase and at reperfusion following 

PI3K inhibition in preconditioned hearts 

 

Objective (4) –  To characterise the expression of the α and β isoform of PI3K in cardiac 

tissue and cells (Chapter 7) 

Aim 1:  Investigate PI3Kα protein expression in mouse and human heart tissue, as well as in 

primary isolated cardiomyocytes and endothelial mouse cardiac cells 

Aim 2:  Investigate PI3Kβ protein expression in mouse and human heart tissue, as well as in 

primary isolated cardiomyocytes and endothelial mouse cardiac cells 

 

Objective (5) - To investigate the role of PI3Kα in IPC (Chapter 8) 

Aim 1:  Select PI3Kα inhibitors dose 

Aim 2:  Investigate the role of PI3Kα in the IPC “trigger” phase in the ex vivo model 

Aim 3:  Investigate the role of PI3Kα in the IPC “mediator” phase in the ex vivo model 

Aim 4:  Investigate the role of PI3Kα in the IPC “mediator” phase in the in the in vivo model  

Aim 5:  Evaluate Akt activation following PI3Kα inhibition in both the IPC “trigger” phase 

the IPC “mediator” phase 
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Objective (6) - To investigate the pharmacological activation of PI3Kα at reperfusion 

(Chapter 9) 

Aim 1:  Assess the role of PI3Kα activation to protect the heart against IRI using both its 

canonical activator and its specific pharmacologic inhibitor 

Aim 2:  Demonstrate Akt phosphorylation in response to PI3Kα pharmacological activation 

and inhibition 

 

Objective (7) - To investigate the pharmacological activation of PI3Kα in several cell types 

and tissues, as well as the mitochondrial Permeability Transition Pore (mPTP) inhibition as a 

potential end-effector (Chapter 10) 

Aim 1:  Assess whether PI3Kα can be activated in both primary adult mouse cardiomyocyte 

and mouse cardiac endothelial cell line 

Aim 2:  Determine the effect of PI3Kα activation and inhibition on the susceptibility of 

cardiomyocytes to form the mPTP. 

Aim 3:  Assess whether the overall results can potentially be extrapolated to humans, 

activating and inhibiting PI3Kα in both mouse and human heart tissue. 

 

Objective (8) - To preliminary investigate PI3Kβ activation (Chapter 11) 

Aim 1:  Demonstrate Akt phosphorylation in response to PI3Kβ activation using SDF1α in 

mouse isolated Langendorff-perfused hearts  

Aim 2:  Demonstrate Akt phosphorylation in response to PI3Kβ activation using SDF1α in a 

mouse cardiac endothelial cell line 
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Chapter 3 GENERAL RESEARCH METHODS 

3.1 Experimental use of animals 

All experiments described within this thesis were performed at The Hatter 

Cardiovascular Institute, University College London, and carried out under the Home Office 

guidelines for the Animals (Scientific Procedure) Act 1986. 

Animals used were male C57BL/6 mice (9-12 weeks, 24–28 g weight), all of them 

obtained pathogen-free from one supplier (Charles River, UK) and housed in 12 h light/dark 

cycles under identical conditions. All standard care was provided by the Biological Services 

Unit (BSU) at University College London (UCL). Before performing a given experiment, each 

animal was inspected for any adverse features, such as reduced weight gain or piloerection, 

and subsequently excluded before randomization if signs of not well-being. 

The mouse model was chosen due to its value to elucidate the cellular mechanisms 

underlying those cardioprotective therapies being studied (234). Furthermore, the use of 

this species allows both a pharmacological and genetic approach to be undertaken. 

Deleting or over-expressing specific components of those signalling pathways involved in 

cardioprotecion, allows us also to identify specific gene products. However, interpretation 

of these results should be taken cautiously given that other genes may be either silenced or 

upregulated in compensation. In contrast, a pharmacological approach is a more 

translational means to study not only mechanisms, but also potential drug applications. 

Nevertheless, drug pharmacokinetics and pharmacodynamics should also be considered 

when interpreting the results. Overall, the potential use of both approaches in combination 

was the central reason to choose this animal model. In the end, it was not possible to 

obtain transgenic mice overexpressing PI3Kα from the Cancer Institute at UCL, hence this 

thesis is based on a pharmacological approach. To date, the colony of these transgenic mice 

(activated p110α colony) is being expanded and they will hopefully be available in the near 

future. 
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A variety of experimental models were used in this thesis, which are described in 

more detail in the following sections of this chapter. The specific experimental protocols 

are described in the relevant chapters. 

 

3.2 Drugs 

The Table 3-1 below summarizes the pharmacologic treatments being used across this 

thesis. 

 

Drug Company (catalog number) Concentration 

Wortmannin Merck Millipore (681675) 100 nM 

Insulin Sigma-Aldrich (I9278) 
100 nM 

5 mU/L 

Alpelisib (BYL719) Selleck Chemicals (S2814-SEL) 1 and 3 μM 

G326 Genentech Inc. (N/A) 1 and 3 μM 

Human SDF-1α  Miltenyi Biotec Inc. (130-093-997) 25 and 100 ng/mL 

Table 3-1: Overview of drugs and their relevant concentration 
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The Table 3-2 below summarizes the selectivity of the PI3Kα inhibitors used in this thesis. 

BYL719 is a potent and selective PI3Kα inhibitor, which has demonstrated to be reversible 

with its interruption. Its characteristics are fully described elsewhere (235,236). GDC-0326 

is also a very selective PI3Kα inhibitor and its properties are fully described by Heffron et al. 

(237). 

 

 
BYL719 

(Stratech Scientific) (236) 

G-326 

(Genentech) (237) 

PI3Kα 4.6 nM 0.2 nM 

PI3Kβ 1156 nM 133 nM 

PI3Kδ 290 nM 20 nM 

PI3Kγ 250 nM 51 nM 

Table 3-2: Selectivity of PI3Kα inhibitors 

This table illustrates the IC50 (concentration producing 50% inhibition of the enzymatic 

activity) of PI3Kα inhibitors demonstrating isoform specificity (236, 237). 
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Ex vivo isolated perfused mouse heart model of global IRI 

This ex vivo model is also known as Langendorff-perfused model (238).  

3.2.1 Preparation of hearts for perfusion 

Mice were given terminal anaesthesia with an intra-peritoneal injection of 60 

mg/kg sodium pentobarbitone (Animalcare, UK).  Heparin 100 IU was co-administered to 

prevent thrombus formation in either coronary arteries or inside the ventricles. Once 

consciousness was lost, both forelimbs and the left hind limb were secured with small tape 

strips. Surgery was started after confirming the abolishment of the right hind limb 

withdrawal reflex to pain. 

Upon the confirmation of deep anaesthesia, the heart was then harvested and 

immediately submerged in ice-cold modified Krebs-Henseleit buffer (composed of 118 

mmol/L NaCl, 25 mmol/L NaHCO3, 11 mmol/L glucose, 4.7 mmol/L KCl, 1.22 mmol/L 

MgSO4.7H20, 1.21 mmol/L KH2PO4, and 1.84 mmol/L CaCl2.2H20). A timer was started 

immediately to record the time taken for the heart from being removed to being perfused. 

The remaining lung and mediastinal tissues were dissected in the dish filled with ice-cold 

buffer. The heart was then swiftly cannulated with a 21-gauge cannula and fixed to the 

cannula with a 5/0 silk tie, to be thereafter transferred to the murine Langendorff perfusion 

rig and be perfused at 80 mmHg pressure. Great care was taken to avoid air bubbles in the 

cannula and the Langendorff apparatus, as well as to shorten as much as possible the time 

to cannulation to avoid ischaemic preconditioning due to perfusion delay (239). 

3.2.2 Langendorff perfusion 

The principles of isolated mouse perfusion were described by Langendorff in 1895 

(240). The heart is perfused retrogradely through an aortic cannula, inserted above the 

sinuses of Valsalva. The aortic valves are forced closed as they remain in diastole by the 

weight of the perfusate column, therefore allowing the buffer to flow and irrigate the 

coronary vasculature to be eventually drained via the coronary sinus of the right atria. 

Perfusate pressure can be maintained either via constant pressure (gravity from a fixed 
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height reservoir) or via constant flow (peristaltic pump). Using this perfusion technique, a 

heart may be maintained with oxygenated buffer for hours (241). 

Heart isolation and Langendorff perfusion were carried out with filtered modified 

Krebs-Henseleit buffer (see previous section for composition) aerated with a mixture of O2 

(95%) and CO2 (5%) in order to maintain pH at 7.42 ± 0.3, as previously described (238). The 

pH was checked at regular intervals using a blood gas analyser (ABL90 FLEX). In the 

experiments described in this thesis, perfusion took place at constant hydrostatic pressure 

(~80 mm Hg) using a set height column of fluid above the cannulated heart. 

The temperature of the circulating perfusion buffer was adjusted in order to 

maintain the myocardium at 37.0 ± 0.5 °C. A heated glass water jacket were used to assist 

in controlling any smaller temperature fluctuations of the heart. Besides, the temperature 

was maintained along the entire protocol by submerging the heart in an organ bath 

containing anoxic modified Krebs solution at 37°C, in order to avoid protect the heart 

through a cold-conditioning phenomenon (135,242,243). 

After commencing retrograde aortic perfusion hearts were allowed to stabilise for 

20 min. Pre-defined exclusion criteria were checked during this period (see Table 3-3), 

before starting with the experimental protocol.  

Global ischaemia was achieved with the cessation of coronary flow by switching off 

the perfusion circuit. In a similar way, switching the tap leading to the heart changes the 

source of perfusate from modified Krebs-Henseleit buffer to that containing the drug of 

interest – i.e. PI3Kα inhibitors. Figure 3-1 provides an overview of the Langendorff 

apparatus and the components needed for drug administration. 

Several endpoints may be used in the isolated perfused mouse heart model of 

global IRI, such as myocardial IS, lactate dehydrogenase (LDH) release, left ventricular 

pressure and electrical activity (244). In this thesis, the Langendorff was used either to 

collect proteins or to perform IRI experiments. In the latter case, the endpoints being 

studied were myocardial IS and LDH release.  
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MEASUREMENT INCLUSION CRITERIA 

Time from extracting the heart to perfusion ≤ 4 min 

Coronary flow 1.0 – 6.0 mL/min 

Temperature 37.0 ± 0.5 °C 

Table 3-3: Inclusion criteria for isolated hearts undergoing Langendorff perfusion 

These parameters were checked during a stabilisation – if these criteria was not meet the 
heart was excluded from further study.  

 

 



62 

 

 

Cannula

Suture around aorta

Mouse heart (beating)

Modified Krebs-Henseleit buffer

Organ bath (heated)

A. Reservoir for modified Krebs-Henseleit buffer

B. Reservoir for drug diluted in modified Krebs-Henseleit buffer

Outlet tube from B

Outlet tube from A

Organ bath

Tap to switch 
between A and B

B

A

 

Figure 3-1: Overview of the Langendorff isolated perfused mouse heart apparatus 

The top half of the illustration (panel A) depicts the Langendorff setup components needed 
for drug administration: a reservoir containing Krebs for normal perfusion, a reservoir used 
to contain drug of choice are both, the outlet tubes from both of reservoirs and the tap to 
switch between them (all of the indicated by arrows). 

The bottom half of the illustration (panel B) shows a cannulated mouse heart through the 
aorta, on Langendorff apparatus. The heart is perfused with modified Krebs-Henseleit 
buffer and submerged in the same buffer in the organ bath at 37 ºC. 

 



63 

 

 

3.3 Analysis of Infarct size 

After global normothermic ischaemia and reperfusion, IS was determined by 

injecting 5 mL of 2,3,5-triphenyltetrazolium chloride (TTC) in phosphate buffered saline 

through the aortic cannula and incubating the heart for 10 minutes at 37°C in order to 

demarcate the infarcted (white) versus viable (red) tissue (245). After the incubation, the 

heart was weighed and then frozen overnight at -20°C. Following this, it was sectioned 

perpendicular to the long axis into 5-7 sections > 1mm thick and the slices transferred into 

10% neutral formalin buffer for 1 h. Heart slices were afterwards compressed between two 

Plexiglas plates and scanned using an Epson Perfection V100 Photo scanner with its 

corresponding Epson software. Images were taken and coded in order to blind the analyser. 

Planimetry analysis using Image J version 1.47 (NIH, Bethesda, MD) was carried out to 

accurately quantify the percentage IS in each heart as a proportion of the total heart 

volume. 

TTC staining method has been validated against the gold-standard histological 

assessment of necrosis in the early phase following an AMI (246). Figure 3-2 depicts an 

example of heart sliced TTC staining. 

A. Control heart

B. Preconditioned heart

 

Figure 3-2: Examples of heart 2,3,5-triphenyltetrazolium chloride (TTC) staining 

Infarcted tissue is white, whilst viable tissue was stained in red.  
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3.4 Measurement of LDH activity 

LDH is an unbound intracellular enzyme localized in the cytosol, released to the 

extracellular compartment by sarcolemmal membrane damage. LDH is thereafter a 

commonly used as a surrogate marker of cellular injury in cardiovascular research(247–

249).  

To study LDH activity in the isolated perfused mouse heart model, samples of 

coronary perfusate were collected and stored in ice until the end of the experiment, 

avoiding freezing at –80 °C (250).  Lactate activity in the perfusate was determined by 

means of a commercially available assay kit (CytoTox 96® Non-Radioactive Cytotoxicity 

Assay, Promega, UK).  

The CytoTox 96® Assay quantitatively measures LDH with a 30-minute coupled 

enzymatic assay, which results in the conversion of a tetrazolium salt (INT) into a red 

formazan product. The amount of colour formed is proportional to the number of dead 

cells. Visible wavelength absorbance data are collected using a standard 96-well plate 

reader at an absorbance of 490 nm (FLUOstar Omega microplate reader, BMG Labtech). 

The general chemical reactions of the CytoTox 96® Assay are as follows: 

 

LDH 

NAD+ + lactate → pyruvate + NADH 

 

NADH dehydrogenase 

NADH + INT → NAD+ + formazan (red) 
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A dose-response curve with LDH positive control provided by the kit (and gradually 

diluted with PBS) was constructed to infer LDH concentration from the absorbance 

arbitrary units. The measured concentration of LDH was corrected for coronary flow and 

heart weight, according to previous studies (244,248,251). Thus, it was calculated as the 

product of effluent concentrations (pg x mL-1) x coronary flow (ml x min-1 x g-1) [LDH 

concentration x coronary effluent / weight] and consequently expressed as pg x g-1 x min-1. 

 

3.5 In vivo murine model of regional IRI 

These experiments aimed to corroborate one specific observation found in the ex 

vivo isolated heart model (role of PI3Kα in the IPC mediator phase) and were performed by 

Dr David He (postdoctoral research fellow at the Hatter Cardiovascular Institute). I 

contributed with the experimental design, statistical analysis and critical interpretation of 

the data.  

The primary endpoint of this in vivo mouse model of regional IRI was myocardial IS. 

Briefly, C57Bl/6 mice were anaesthetized by intraperitoneal injection of 80 mg/kg 

pentobarbitone at a concentration of 20 mg/ml in 0.9% (w/v) saline and maintained at 36.5 

± 0.5°C on a heating mat. Surgery was started after confirming the abolishment of pedal 

and tail reflexes. Mice were intubated using a 19G cannula and ventilated with room air 

using a MiniVent, type 845, Small Animal Ventilator (Harvard Apparatus, Kent, UK), at a 

flow rate of 1.0 l/min with 2 cm H2O PEEP, stroke volume 200 μl at 130 strokes/min. All 

mice were subjected to the occlusion of the left anterior descending (LAD) for 40 min, 

which was verified by ST elevation in the electrocardiogram and by the presence of 

hypokinesia and pallor in the heart, followed by 2 h reperfusion. The animals were then 

killed by exsanguination via thoracic aorta. Afterwards, myocardial IS was measured by 

tetrazolium staining and expressed as a percentage of area at risk, determined using Evan's 

blue.  
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3.6 Isolation of adults mouse cardiomyocytes 

Adult mouse ventricular cardiomyocytes were isolated using liberase heart 

digestion as described previously (252,253). Before proceeding with the heart removal, the 

perfusion buffer was prepared (consisted of NaCl 113 mmol/L, KCl 4.7 mmol/L, KH2PO4 0.6 

mmol/L, Na2HPO4 0.6 mmol/L, MgSO4-7H2O 1.2 mmol/L, NaHCO3 12 mmol/L, KHCO3 10 

mmol/L, Hepes Na salt 0.922 mmol/L, Taurine 30 mmol/L, 2,3-butanedione-monoxime 10 

mmol/L and Glucose 5.5 mmol/L) and stirred for 20 min. Its pH was corrected to 7.4 before 

filter sterilizing into a sterile bottle. The pre-heated isolation rig was then filled with 

perfusion buffer and air bubbles were carefully removed from the tubing. The solution was 

lightly bubbled with pure O2 in the reservoir. 

Once the Langendorff setup was ready, hearts were excised (as explained in section 

3.2.1) and cannulated through the aorta before retrograde perfusion on the Langendorff 

apparatus at 37 ºC. Following perfusion with buffer for 5 min to clear residual blood, 

enzymatic digestion was performed using 30 mL perfusion buffer with 5 mg Liberase 

(Roche, UK) and 12.5 μmol/L CaCl2 for about 20 min. The perfusion rate provided by the 

peristaltic pump was 3 mL/min. During this 20 min period, several parameters were used to 

monitor the digestion, such as the progressive paling and swelling of the heart, as well as 

the softness of the tissue, which was assessed by touch. 

At the end of enzymatic digestion, the heart was removed and placed in a single 

well dish where both ventricles were isolated and mechanically disaggregated in a gentle 

manner. A Pasteur pipette was used to tease apart and mix the remaining non-fully 

digested tissue. The resulting cell suspension was filtered through a mesh and transferred 

for enzymatic inactivation to a tube with 10 mL of stopping buffer (perfusion buffer 

supplemented with fetal bovine serum 10%), and Ca2+ was gradually re-introduced with a 

three-step increasing CaCl2 concentration. Cells were allowed to pellet for 10 min after each 

CaCl2 addition until all Ca2+ was re-introduced. Cells were then re-suspended in M199 

(Invitrogen, UK) supplemented with L-Carnitine (2 mmol/L), Creatine (5 mmol/L), Taurine (5 

mmol/L), Penicillin (100 IU/ml), Streptomycin (100 IU/ml) and 25 μmol/L Blebbistatin. 
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3.7 Mouse cardiac endothelial cell culture 

Immortalized Mouse Cardiac Endothelial Cell (MCEC) are derived from microvascular 

neonatal mouse cardiac endothelial cells.  

MCECs were stored at -80 ºC, and after thawing were cultured with Dulbecco's 

Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum. To passage 

the cells, a PBS-wash removed all culture medium, dead cells and debris before the addition 

of 1-2 mL of 0.25% trypsin, incubated at 37 ºC for 2-3 minutes. Once the adhered MCECs 

were displaced, the cells were re-suspended in 10 mL of DMEM to inactivate the trypsin. 

When being seeded for experiments, MCECs were cultured at 80-90% confluence in 

supplemented DMEM. The cells were kept in an incubator at 37 ºC, with 95% O2 and 5% 

CO2. 

MCECs were used to quantify the protein levels of PI3Kα and β as well as to study 

their response to the pharmacological activation and inhibition of PI3Kα.  

 

3.8 Experiments in human right atrial tissue 

Human atrial tissues were collected from Barts Heart Centre at St Bartholomew’s 

Hospital. The study received Local Research Ethics Committee approval (REC No. 00/0275) 

and was carried out in accordance with the University College London Hospitals NHS Trust 

guidelines. All patients were provided with a Patient Information Sheet and a verbal 

explanation of the study, in line with Good Clinical Practice guidelines. All patients provided 

written informed consent and were free to participate in the Barts Cardiovascular Registry. 

All patients were aged 18–80 years and their baseline characteristics were recorded 

upon consent. Patients with impaired renal or ventricular function, dilated left atria or a 

history of arrhythmias or on rhythm stabilising medications were excluded. 

Right atrial appendage samples were harvested from patients undergoing 

cannulation for cardiopulmonary bypass either for coronary artery bypass grafting (CABG) 

or valve replacement. Once the cardiac surgeon provided the atrial tissue, samples were 



68 

 

 

placed in ice-cold, oxygenated modified Tyrode’s buffer (NaCl 118.5 mM, KCl 4.8 mM, 

NaHCO3 24.8 mM, KH2PO4 1.2 mM, MgSO4.7H2O 1.44 mM, CaCl2.2H2O 1.8 mM, glucose 10.0 

mM, pyruvic acid 10 mM, pH 7.4) and transferred promptly to The Hatter Cardiovascular 

Institute. 

Right atrial appendage samples were used for both assessing the basal protein 

expression of PI3Kα and β and undertaking a pharmacologic approach with both PI3Kα 

activator and inhibitor. 

 

3.9 Analysis of protein levels 

3.9.1 Obtaining protein samples from heart tissue and protein quantification 

Mouse hearts and human right atrial tissues were obtained according to the 

relevant protocol and prepared for Western blot analysis. Tissue samples were snap-frozen 

in liquid nitrogen after their collection and stored at -80ºC until further processing. The 

tissue was homogenized in protein lysis buffer, containing Tris pH 6.8 [100 mM], NaCl [300 

mM], NP40 0.5%, Halt protease inhibitor cocktail, Halt phosphatase inhibitor cocktail, 5 mM 

EDTA (all from Thermo Scientific, UK) and adjusted to pH 7.4. One mL of lysis buffer per mg 

of tissue was used to obtain an adequate protein concentration. Homogenates were 

incubated on ice for at least 15 min and gently vortexed before proceeding to a brief 

sonication to eventually centrifuge the sample at 4ºC to remove debris and DNA.  

Protein content was then determined using bicinchoninic acid (BCA) protein assay 

reagent (Sigma, UK) and protein levels corrected accordingly to ensure equal protein 

loading. Briefly, this 96-well plate colorimetric assay uses bicinchoninic acid and copper 

sulphate at ratio of 50:1. A set of bovine serum albumin (BSA) at known concentrations was 

used as protein standard samples. Two µl of each sample was then added into 198 µl of 

BCA/copper sulphate mix per well and incubated for 15 minutes at 37°C. FLUOstar Omega 

microplate reader (BMG Labtech, UK) was used to measure the read out of the samples. 

The protein concentrations of the samples were then interpolated by plotting the 

absorbance results against the protein standard curve. From this, the samples were 
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accordingly diluted to load the same amount of protein in each gel well. If not specified in 

subsequent sections, 25 μg was the standard protein load. 

NuPAGE LDS Sample Buffer (4X) (Thermofisher Scientific, UK) plus 5% β-

mercaptothanol were added and the samples were denaturated by heating to 90-100 ºC for 

10 min. Prepared samples were either run immediately or stored at – 20 ºC until use. 

3.9.2 Western blot analysis 

NuPAGE Novex 10% Bis-Tris protein gels (Thermofisher scientific, UK) were used for 

electrophoresis using the Mini Protean III system (Bio-Rad, UK) filled with NuPAGE™ MOPS 

SDS running buffer (Thermo Scientific, UK). The first lane of each gel was loaded with 6 μL 

molecular weight marker (Precision Plus Protein™ Dual Color Standards, from Bio-Rad, UK) 

and the remaining lanes were loaded with the samples of interest under the same protein 

concentration. The chamber was surrounded by ice and the gel was run first at 65 V for 10 

min, and thereafter at 100 V for 2-3 h. 

Using wet transfer in a Bio-Rad Mini Trans-Blot, proteins were transferred either 

onto Immobilon-FL hydrophobic Polyvinylidene Fluoride (PVDF) transfer membrane 

(MerckMillipore, UK), or onto nitrocellulose blotting membrane (GE Healthcare Life 

Sciences, UK). Prior to use, membranes were activated for 2 min with 100% methanol or 

transfer buffer (containing 25 mM Tris base, 200 mM glycine and 20% methanol) 

respectively. The transfer was run at 100 V and 0.35 mA for 1h and confirmed visualizing 

protein ladder transfer.  

Membranes were blocked for 1 h by incubating in 2.5% bovine serum albumin/PBS 

tween with gentle rocking, and subsequently incubated with appropriate primary 

antibodies at 4 ºC overnight. The antibodies used and their concentrations are outlined in 

Table 3-4. The day after, the membrane was probed with secondary antibodies at 1:10000 

dilution in 50% PBS tween and 50% Odyssey® Blocking Buffer (LI-COR, UK) for 1h with 

gentle rocking. Usually, green fluorescent antibodies were used for loading protein and the 

red antibodies for the protein of interest. Levels of protein were finally quantified using the 

Odyssey imaging system from Li-Cor Biosciences (Image Studio Lite Ver 5.2). 
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Antibody Company (reference) Concentration 

Akt Cell Signaling Technology (#9272) (1:1000) 

Phospho-Akt (Ser473) Cell Signaling Technology (#9271) (1:1000) 

Phospho-Akt (Thr308) Cell Signaling Technology (#2965) (1:1000) 

p44/42 MAPK (Erk1/2) Cell Signaling Technology (#9102) (1:1000) 

Phospho-p44/42 MAPK 

(Erk1/2) (Thr202/Tyr204) 
Cell Signaling Technology (#9101) (1:1000) 

GSK-3β Cell Signaling Technology (#9315) (1:1000) 

Phospho-GSK-3β  (Ser9) Cell Signaling Technology (#5558) (1:1000) 

Stat3 Cell Signaling Technology  (#9139) (1:1000) 

Phospho-Stat3 (Tyr705) Cell Signaling Technology (#9145) (1:1000) 

Phospho-PTEN (Ser380) Cell Signaling Technology  (#9551) (1:1000) 

GAPDH (Loading Control) Abcam (#9484) (1:20000) 

PI3K p110α Cell Signaling Technology (#4249) (1:1000) 

PI3K 110β Santa Cruz (sc-602). (1:500) 

Table 3-4: Summary of antibodies and concentrations used for Western blot analyses 

This table presents each of the antibodies used in this thesis, including the company, the 
catalogue number in brackets and the relevant concentration. 
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3.10 Assay of mPTP opening 

The sensitivity of the mPTP to opening was assayed using a well-characterized 

cellular model of reactive oxygen species (ROS)-mediated mPTP opening(109). Briefly, 

tetra-methyl rhodamine methyl ester (TMRM, from S Sigma-Aldrich, UK), a lipophilic cation 

which is very positively charged, accumulates selectively into the negatively charged 

mitochondrial matrix. At high concentration (such as 12 μM), TMRM becomes quenched at 

the mitochondria. Constant confocal laser stimulation (at 543 nm wavelength) of TMRM 

generates ROS within the mitochondria thereby simulating mitochondrial ROS production 

during reperfusion. After few minutes of continual confocal laser scanning, ROS induces 

mPTP opening, producing a drop in mitochondrial membrane potential and resulting in the 

dequenching of TMRM, which in turn  relocates to the cytoplasm (254). This leak of the dye 

from the mitochondria to the cytosol increases the detectable fluorescent signal, which is 

used as surrogate marker for mPTP opening. 

Adult mouse ventricular cardiomyocytes were isolated as previously described in 

section 3.6. Live cardiomyocytes were incubated with the fluorescent dye TMRM at 12 μM 

for 15 min in Hepes based recording buffer (NaCl156 mM, KCl 3 mM, MgSO4.7H20 2 mM, 

K2HPO4 1.25 mM, CaCl2 2 mM, HEPES 10 mM and D-Glucose 10 mM; pH 7.4), then washed 

and randomly treated for 15 min with the relevant intervention (see Chapter 10). Once 

washed for second time, mouse cardiomyocytes were stimulated with laser illumination 

and imaged using confocal microscopy. The time to reach half peak signal was recorded in 

seconds and compared across groups.  

 

3.11 Design and statistical analysis of experiments  

All research was performed and recorded according to main guidelines and other 

recommendations (255,256). Briefly, the objectives and/or hypotheses to be tested were 

always pre-specified. If possible, positive and negative controls were added to each set of 

experiments (also respecting the principles of the 3Rs: Replacement, Reduction and 

Refinement). Sample calculations for those experiments aimed to measure myocardial IS or 

mPTP opening were estimated beforehand and reported accordingly in each relevant 
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chapter, whilst the sample size for Western blot studies were left in line with convention 

(n=5/group for most of the experiments). Statistical methods were pre-specified, ensuring 

compliance with the original design and statistical plan (257). All image assessment were 

performed blinded when possible. All results were reported according to the ARRIVE 

(Animal Research: Reporting of In Vivo Experiments) guidelines, which consists of a 

checklist of 20 items describing the minimum information that all scientific publications 

reporting research using animals should include (258).  

Data is presented as mean ± standard error of the mean (SEM). The statistical test 

used to analyse the results of a given experiment is reported in the relevant chapter. 

Normal distribution of the data was tested for each dataset. N values are either displayed in 

the figure or described in the figure legend for each experiment. Statistical significance was 

reported if P<0.05 using the following nomenclature: *P<0.05, **P<0.01 and ***P<0.001. A 

P>0.05 was reported as non-significant (ns).  

IBM SPSS Statistics software, v.20.0 (IBM Corp Armonk, New York), STATA software, 

version 13.1 (Stata Corp, College Station, Texas) and GraphPad Prism version 6.00 

(GraphPad Software, La Jolla California) were used to perform both the analyses and the 

graphics. 
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Chapter 4 CHARACTERTERISATION OF THE ISOLATED PERFUSED MOUSE 

HEART MODEL OF GLOBAL ISCHAEMIA-REPERFUSION INJURY 

 

Most of the content of this chapter has been already published as a single piece of research: 

Rossello X, Hall AR, Bell RM, Yellon DM. Characterization of the Langendorff Perfused Isolated 
Mouse Heart Model of Global Ischaemia–Reperfusion Injury: Impact of Ischaemia and 
Reperfusion Length on Infarct Size and LDH Release J Cardiovasc Pharmacol Ther. 2016;21: 286-
295 

 

4.1 Introduction 

The Langendorff isolated perfused  mouse heart is an invaluable tool in 

cardiovascular research, particularly for assessing the cardioprotective efficacy of novel 

therapies (259). Though technically challenging, the mouse Langendorff model has become 

particularly popular in the last decades due to the availability of transgenic mice either 

overexpressing or disrupting specific gene products, and therefore providing a powerful 

tool to elucidate the role of signalling cascades involved in IRI.  

Thorough characterization and validation of this ex-vivo model of IRI is an essential 

but frequently neglected step prior to important conclusions being drawn from the data 

they generate. Although the ex vivo model has excellent inter-operator reproducibility 

provided consistent ischaemia and reperfusion times are applied (259,260), it is worth 

noting that different lengths of the ischaemia and reperfusion periods vary considerably 

between different laboratories (261–263). Such discrepancies emphasise the need to better 

characterise the perfused murine model, even more considering that such methodological 

details have rarely been published (244,251).  

Although the impact of the ischaemia duration on final IS is well-described, little is 

known about the optimal duration of the reperfusion period. A small number of studies 

have attempted to characterise the effects of ischaemia and reperfusion length as 
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independent variables in the isolated mouse heart model(251,264,265), concentrating on 

either varying the length of ischaemia or the length of reperfusion. Even fewer studies have 

monitored the injury wavefront by measuring the release of surrogate biomarkers, such as 

LDH, which compared to infarct staining, offers the advantage of tracking the injury along 

the time line within the same heart. 

In order to study the IRI associated with acute myocardial infarction, a reproducible 

model of injury and measurement is required. This chapter focuses upon the 

characterization of the ex vivo Langendorff-perfused mouse heart model of global IRI to 

select a suitable protocol upon which cement further investigations within this thesis. 

 

4.2 Research objectives and aims 

Can myocardial infarct size be modified by both ischaemia and reperfusion length? Is LDH 

an adequate surrogate for myocardial infarct size? 

Hypothesis  

Myocardial infarct size will be larger with the increase in both the duration of the ischaemic 

insult and its subsequent reperfusion. LDH will be correlated with infarct size, adding the 

possibility to monitor the wave of myocardial injury in an isolated perfused mouse heart 

model of global ischaemia-reperfusion injury 

Experimental aims 

The overall aim was to select a protocol of ischaemia/reperfusion for subsequent 

experiments related to the thesis. In order to provide a step-by-step description of the 

Langendorff perfused isolated mouse heart model, a factorial experimental design using 

two endpoints was developed with the following aims:  

Aim 1:  Determine whether infarct size is dependent on both the duration of ischaemia and 

length of the reperfusion period 

• Subject mouse Langendorff to ischaemia-reperfusion and subsequently quantify 
myocardial infarct size. 
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Aim 2:  Describe the lactate dehydrogenase release pattern during reperfusion as an index 

of injury  

• Collect coronary effluent samples from mouse hearts subjected to 9 protocols of IRI 
and measure LDH concentration using a commercially available assay kit. 

Aim 3:  Describe the impact of Ischaemic preconditioning on IS and lactate dehydrogenase 

release after long reperfusion 

• Collect coronary effluent samples from mouse hearts subjected to IPC 4 cycles in 3 
different protocols of IRI and measure LDH concentration using a commercially 
available assay kit. 

Aim 4:  Determine any correlation between IS and lactate dehydrogenase release 

• Plot myocardial infarct size results against area under the curve (AUC) LDH release 
using the appropriate statistical test.  

 

4.3 Methods and Materials 

4.3.1 Study protocol 

A total of 65 male C57BL/6 mice (9-12 weeks, 24–28 g weight) were used, although 

8 were excluded before randomization as they were outside pre-defined exclusion criteria. 

Before starting the study protocol, 57 animals were allocated according to a randomized 

complete block design. 

The study was divided into three consecutive parts, as illustrated in Figure 4-1: 

1) Effect of ischaemia and reperfusion length on IS (Figure 4-1A). Thirty-six mice were 

divided into 9 groups in a 3x3 factorial design, including three categories of 

ischaemic length (25, 35 and 45 minutes) and three periods of reperfusion length 

(60, 120 and 180 minutes);each group containing 4 mice. LDH release during 

reperfusion were measured in coronary effluent aliquots sampled at selected time 

points in mice that underwent 180 min of reperfusion (n=12), in order to determine 

the release pattern, AUC and peak of LDH. 
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2) Effect of ischaemia length on IS and release kinetics of LDH on preconditioned 

hearts (Figure 4-1B). Twelve mice were subjected to ischaemic IPC at different 

ischaemic periods lasting for 25, 35 or 45 minutes (n=4 per group). IPC consisted of 

4 cycles of 5 minutes of global ischaemia and 5 minutes of reperfusion prior to 

index the ischaemia. 

3) IS and LDH assessment in negative and positive controls (Figure 4-1C). A negative 

control (n=3) was performed in order to assess the final IS and the surrogate LDH 

release under no ischaemic insult and maximum length of reperfusion (180 

minutes). Two positive controls were allocated into two groups (60 and 180 

minutes of reperfusion, n=3 per group), in order to assess the effect of reperfusion 

length on final IS after a maximal prolonged ischaemic insult (90 minutes), designed 

to mediate 100% IS and maximal LDH release. 

The sample size for groups 1 and 2 was determined for IS as primary outcome 

(expressed as a percentage of the global myocardium at risk), based on previous results 

from our laboratory (266,267).  
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Figure 4-1: Study design 

Overview of the study including subgroups and experimental protocols. The black cross 
indicates that LDH samples were collected. A black box represents a period of ischaemia 
and a white box represents a period of perfusion with Krebs-Henseleit buffer at 80 mm Hg. 
Abbreviations: IPC, ischaemic preconditioning; LDH, lactate dehydrogenase. 
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4.3.2 Langendorff-isolated perfused mouse heart 

Hearts were retrogradely perfused on a murine Langendorff perfusion apparatus at 

80 mmHg pressure with filtered modified Krebs-Henseleit buffer (see section 0 in Methods 

for further details). After observing for exclusion criteria in an initial stabilization period of 

20 min, the hearts were subjected to the experimental protocols, as illustrated in Figure 

4-1. 

4.3.3 Myocardial infarct size 

After global normothermic ischaemia, IS was determined by injecting 5 mL of TTC in 

phosphate buffered saline (see Methods section 3.3 for further details). 

4.3.4 Release of LDH 

LDH was measured for dynamic monitoring of cellular damage with the 

experiments lasting 180 minutes of reperfusion. Coronary effluent samples were collected 

at 5, 10 and 15 minutes from start of reperfusion, and then every 15 minutes until minute 

180. A total of 14 samples were collected per heart. The flow rate was measured each time 

a LDH sample was collected. The measured concentration was corrected for coronary flow 

and heart weight, according to previous studies (244,248,251). The  

Table 4-1 provide the raw data on the basis of which the adjusted LDH was 

calculated. Further details can be found in Methods, section 3.4. 
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Table 4-1: LDH concentration, flow rate and weight in mice that underwent 180 minutes of reperfusion 

 25 minutes (I) 35 minutes (I) 45 minutes (I) Controls 

 Control (N=4) IPC (N=4) Control (N=4) IPC (N=4) Control (N=4) IPC (N=4) 0 minutes (N=3) (I) 90 minutes (N=3) (I) 

Weight 0.13±0.01 0.12±0.00 0.14±0.01 0.13±0.00 0.14±0.01 0.13±0.01 0.11±0.00 0.16±0.00 

Time LDH FR LDH FR LDH FR LDH FR LDH FR LDH FR LDH FR LDH FR 

5 1.0±0.22 2.0±0.38 0.5±0.09 2.9±0.18 1.0±0.32 1.7±0.20 1.0±0.21 2.2±0.24 1.3±0.15 1.8±0.11 0.7±0.19 2.1±0.19 0.0±0.00 2.7±0.20 6.9±0.73 0.4±0.13 

10 1.0±0.18 1.8±0.23 0.5±0.14 2.9±0.30 1.3±0.39 1.6±0.23 0.9±0.15 2.0±0.28 2.0±0.28 1.6±0.16 1.0±0.23 2.0±0.20 0.0±0.00 3.4±0.30 6.0±1.12 0.5±0.16 

15 1.2±0.15 1.6±0.24 0.6±0.27 2.2±0.16 1.4±0.38 1.5±0.22 0.9±0.12 1.9±0.24 2.4±0.42 1.5±0.14 1.0±0.19 1.8±0.19 0.0±0.00 2.6±0.37 5.3±1.28 0.5±0.14 

30 1.3±0.30 1.5±0.15 0.6±0.36 1.9±0.17 1.4±0.27 1.5±0.24 0.9±0.09 1.8±0.18 2.0±0.46 1.5±0.14 1.1±0.14 1.7±0.23 0.0±0.00 1.8±0.68 3.4±0.98 0.5±0.17 

45 0.8±0.27 1.4±0.11 0.4±0.23 1.8±0.13 0.9±0.12 1.5±0.19 0.8±0.16 1.7±0.16 1.0±0.21 1.6±0.15 0.7±0.04 1.7±0.24 0.0±0.00 1.6±0.57 2.5±0.97 0.6±0.17 

60 0.9±0.26 1.6±0.18 0.2±0.12 1.7±0.12 0.5±0.05 1.4±0.17 0.6±0.12 1.6±0.15 0.5±0.07 1.5±0.16 0.3±0.02 1.6±0.26 0.0±0.00 1.1±0.14 1.8±0.71 0.6±0.18 

75 0.6±0.21 1.5±0.11 0.3±0.30 1.6±0.12 0.3±0.07 1.4±0.14 0.4±0.10 1.4±0.15 0.4±0.05 1.5±0.16 0.2±0.03 1.6±0.20 0.0±0.00 1.0±0.12 1.1±0.36 0.7±0.16 

90 0.4±0.18 1.2±0.05 0.2±0.12 1.3±0.06 0.3±0.08 1.3±0.14 0.3±0.10 1.3±0.16 0.3±0.04 1.4±0.22 0.2±0.04 1.5±0.18 0.0±0.00 1.1±0.23 1.0±0.35 0.7±0.17 

105 0.3±0.15 1.2±0.05 0.1±0.05 1.3±0.06 0.3±0.07 1.2±0.13 0.3±0.12 1.3±0.15 0.3±0.05 1.4±0.20 0.2±0.05 1.4±0.20 0.0±0.00 0.9±0.24 0.8±0.26 0.7±0.18 
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 25 minutes (I) 35 minutes (I) 45 minutes (I) Controls 

 Control (N=4) IPC (N=4) Control (N=4) IPC (N=4) Control (N=4) IPC (N=4) 0 minutes (N=3) (I) 90 minutes (N=3) (I) 

Weight 0.13±0.01 0.12±0.00 0.14±0.01 0.13±0.00 0.14±0.01 0.13±0.01 0.11±0.00 0.16±0.00 

Time LDH FR LDH FR LDH FR LDH FR LDH FR LDH FR LDH FR LDH FR 

135 0.3±0.15 1.0±0.07 0.0±0.03 1.2±0.11 0.2±0.11 1.1±0.07 0.1±0.04 1.0±0.13 0.7±0.37 1.3±0.17 0.2±0.06 1.2±0.15 0.0±0.00 0.9±0.06 0.5±0.16 0.8±0.18 

150 0.2±0.10 1.0±0.04 0.0±0.02 1.1±0.13 0.2±0.12 1.0±0.08 0.1±0.03 1.1±0.17 0.4±0.11 1.2±0.15 0.2±0.05 1.4±0.20 0.0±0.00 0.9±0.08 0.5±0.13 0.8±0.15 

165 0.2±0.08 0.9±0.06 0.0±0.01 0.9±0.02 0.2±0.13 1.0±0.06 0.0±0.02 1.0±0.11 0.3±0.05 1.2±0.15 0.1±0.04 1.1±0.17 0.0±0.00 1.7±0.75 0.4±0.12 0.8±0.15 

180 0.1±0.07 0.9±0.05 0.0±0.02 0.9±0.12 0.2±0.13 1.0±0.08 0.0±0.01 1.0±0.15 0.3±0.03 1.2±0.16 0.1±0.04 1.3±0.20 0.0±0.00 0.9±0.10 0.4±0.11 0.8±0.16 

 

The LDH concentration was corrected for coronary flow and heart weight, according to previous studies(244,248,251). Thus, it was calculated as 
the product of effluent concentrations (pg x mL-1) x coronary flow (ml x min-1 x g-1). This table provide the crude data on the basis of which the 
adjusted LDH was calculated. 

Units: weight (g), time (min), LDH concentration (pg x mL-1) and flow rate (ml x min-1). Abbreviations: I, ischaemia; IPC, ischaemia preconditioning; 
LDH, lactate dehydrogense; FR, flow rate. 
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4.3.5 Factorial study design  

A complete factorial design was used in order to assess the effect of two factors 

(the independent variables), known as ischaemia and reperfusion length and each one 

represented by three equally spaced categories (25, 35 and 45 min, and 60, 120 and 180 

min, respectively), on the final IS measured by TTC staining (dependant variable). The 

observations were summarized in a two-way table (Table 4-2), where each entry is the 

mean of all observations and all combination of categories are represented equally (n=4). 

This harmonic design is useful to estimate the following paramenters (268): 

1) Estimate the separate effects on IS between different categories of one of the 

factors, but within the same category of the other factor, i.e. – to compare the IS 

between different ischaemia length within the 60 minutes of reperfusion length. 

These effects are represented by the pale grey boxes in the Table 4-2. 

2) Estimate the main effect of each one of the factors, represented by the row and 

column averages shown in the margin of the Table 4-2 (highlighted in dark grey). 

The main effect of ischaemia (averaged over the three categories of reperfusion) 

was defined as the difference that can be observed with the row averages at the 

right of the Table 4-2, and vice versa with reperfusion (column averages at the 

bottom). In other words, it was estimated whether the effects of the two factors 

are additive and they are interacting independently of one another. 

3) Calculate the interaction between both factors to be explored. The two-factor 

interaction ischaemia x reperfusion determines whether the effect of ischaemia is 

the same for all categories of reperfusion, that is whether the change of increasing 

ischaemia length is constant along the different reperfusion durations, and vice 

versa. Of note, the pre-specified sample was underpowered for this purpose.  

4) Estimate the overall significance of a model (black box of the Table 4-2), formed by 

the two main effects and their interaction. The overall model is a simple equation, 

summarized as: 

 

IS = (β1) Ischaemia + (β2) Reperfusion + (β3) (Ischaemia x Reperfusion) + error  
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The final output of the equation is the amount of IS determined by the parameters 

included into the equation. Although this might seem very attractive, the 

extrapolation of such results should be taken cautiously, since only ischaemia 

duration and reperfusion length were considered as determinants of IS, whilst in 

the clinical setting other factors play an important role – i.e. presence of collaterals. 

To summarise, although the degree of symmetry of our design offers a hierarchical 

model of multiple comparisons, the aim of this study was to assess the separate and main 

effects rather than the interaction effect and the model as a whole. 

4.3.6 Statistical analyses 

All values are presented at mean ± standard error of the mean.  Normal 

distribution was assessed by means of the Kolmogorov-Smirnov test. Linear trend test was 

used for comparisons on IS between groups (%), as well as to compare AUC and peak of 

LDH between groups. The interaction and the overall effect of the model were assessed by 

means of a general linear model. The Student’s t test was used to compare IS (%) between 

control and IPC groups in the cohort of 180 minutes of reperfusion. Association between IS 

and peak or AUC LDH were analysed by the Pearson correlation coefficient test. A P-value 

<0.05 was considered significant. IBM SPSS Statistics software, v.20.0 (IBM Corp. Armonk, 

NY) was used for the main statistical analysis. STATA software, version 13.1 (Stata Corp, 

College Station, TX, USA) was used to generate the randomization sequence and to 

calculate and compare the AUC between groups. GraphPad Prism version 6.00 (GraphPad 

Software, La Jolla California, USA) was used to perform the graphics.  
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4.4 Results 

4.4.1 Effect of ischaemia and reperfusion length on IS measured by TTC staining 

All the results obtained by the 3x3 factorial study are outlined in Table 4-2.  

In summary:  

1) The impact of ischaemic and reperfusion duration, as illustrated by the pale grey 

entries in the Table 4-2, show that there is a positive trend towards an increased IS 

when the ischaemia and reperfusion lengths are progressively prolonged. Table 4-2 

reflects the consistency of the results in each of the six comparisons, showing how 

IS increased from the top-left of the Table 4-2 to the bottom-right. Figure 4-2 

graphically illustrates the same trend. 

2) The main effect of each one of the factors is represented by the row and column 

averages shown in the margin of the Table 4-2 (highlighted in dark grey). The 

length of ischaemia has an impact on the final IS independently of the length of 

reperfusion. In the same way, the length of reperfusion has also a systematic 

impact on the final IS in each of the ischaemia duration groups. In other words, IS 

increases significantly with the duration of ischaemia, irrespective of reperfusion 

length, and vice versa. 

3) No interaction was observed between ischaemia and reperfusion (p=0.773), 

meaning that the effect of ischaemia and reperfusion lengths have an increasing 

but proportional impact in all categories as the length is increased, although the 

observed power to assess this interaction was poor (13.8%). 

4) Finally, the overall model, including ischaemia length, reperfusion duration and 

their interaction significantly explains the dependent variable of the equation, 

which is myocardial IS (p=0.001). 
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  Reperfusion length (min)   

  60’ 120’ 180’ 
Row 

average 
P-value 

Is
ch

ae
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) 

25’ 10.4 ± 4.4 18.7 ± 3.9 25.2 ± 4.9 18.1 ± 2.9 0.041 

35’ 18.7 ± 4.0 36.1 ± 7.2 44.9 ± 5.2 33.2 ± 4.4 0.009 

45’ 31.6 ± 6.0 49.7 ± 7.6 58.7 ± 3.6 46.7 ± 4.6 0.011 

 
Column 

average 
20.2 ± 3.7 34.8 ± 5.1 42.9 ± 4.8 32.7± 3.0 0.001 

 P-value 0.013 0.029 0.001 <0.001 0.001 

Table 4-2: Effect of ischaemia and reperfusion length on myocardial infarct size (%) 

Each of the relevant numbers in the reperfusion to ischaemia two-way table corresponds to 
the mean percentage IS of 4 animals. Data is expressed as mean ± standard error of the 
mean.  The pale grey entries illustrates the separate effects, while the dark grey represents 
the main effects and the black colour illustrates the mean IS of all the animals and the P-
value of the overall model. 
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Figure 4-2: Effect of ischaemia and reperfusion length on myocardial infarct size (%) 

Scatter dot blots: black lines represent mean ± SEM for infarct size (%) and circles represent 
individual animal data. Infarct size consistently increased with increasing durations of 
ischaemia and reperfusion in control hearts. Abbreviations: I, ischaemia; R, reperfusion. 

4.4.2 LDH release after 180 minutes of reperfusion 

LDH release during reperfusion was measured in mice that underwent 180 minutes 

of reperfusion (n=12). Figure 4-3 shows the LDH pattern release for each group of 

ischaemia length, as well as the AUC and the peak comparison between groups. 

A progressive increase of LDH occurred during the first 10-15 minutes of 

reperfusion, followed by a progressive decline after reaching this peak. A consistent second 

LDH peak was observed at 60 minutes of reperfusion but only in the group of 25 minutes of 

ischaemia. At 90 minutes of reperfusion, a plateau release phase was observed in all 

groups. 
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Unlike IS measured by TTC staining, the AUC of the LDH did not differ significantly 

between groups. Nevertheless, the peak of the LDH was associated with the ischaemia 

length, meaning the greater the ischaemic duration, the greater the peak of LDH release. 
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Figure 4-3: Lactate dehydrogenase release during reperfusion in hearts under 180 

minutes of reperfusion 

Comparison between LDH release in hearts underwent different ischaemia lengths and 180 
minutes of reperfusion. Each point represents four animals and is plotted with their mean 
and SEM. AUC and peak between groups were compared by mean of a linear trend test. 
Abbreviations: AUC, area under the curve, LDH: lactate dehydrogenase. 
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4.4.3 Effect of IPC on IS and release kinetics of LDH 

Twelve mice were subjected to IPC before different ischaemic periods lasting for 

25, 35 or 45 minutes (n=4 per group), all of them underwent 180 minutes of reperfusion. 

Ischaemic preconditioning (4 cycles of 5 min of ischaemia and 5 min of reperfusion) 

resulted in reduction of infarct size in all ischaemic duration groups: 25 minute ischaemia 

(25.2±4.90 vs 11.9±1.99, p=0.045); 35 minute ischaemia (44.9±5.15 vs 25.6±6.91, p=0.066) 

and 45 minute ischaemia (56.7±3.63 vs 38.5±3.09, p=0.006) (Figure 4-4). 

Pattern of LDH release, AUC and peak of LDH were compared in control and IPC 

hearts that underwent 180 minutes of reperfusion, as shown in Figure 4-5. Noteworthy, IPC 

significantly attenuated the AUC in the 25 minutes index ischaemia group, whilst in this 

group the peak showed a reduction towards significance in the IPC group compared to 

control. AUC and peak of LDH release were not different in statistical terms after IPC in 

both groups of 35 and 45 minutes of ischaemia. 

4.4.4 Correlation analysis between LDH assessment with myocardial IS 

In all mice that underwent 180 minutes of reperfusion (n=24), a correlation was 

used in order to evaluate the strength of the association between the IS measured by TTC 

staining and the AUC and peak of LDH.  

Figure 4-6 shows the correlation between the AUC of LDH release and myocardial IS. 

Although the association was statistically significant (R = 0.664, p<0.001), the strength of 

the correlation was moderate. The relation between the LDH peak and myocardial IS was 

even weaker (r = 0.547, p=0.006).  
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Figure 4-4: Effect of ischaemia length and ischaemic preconditioning on myocardial 

infarct size 

IS was increased with increasing durations of ischaemia in both control and preconditioned 
hearts, although IPC systematically showed a lower IS at all ischaemia lengths. 
Abbreviations: I, ischaemia; IPC, ischaemic preconditioning, R, reperfusion. 
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Figure 4-5: Lactate dehydrogenase release during 180 minutes of reperfusion in control 

and IPC hearts 

Comparison between LDH release in control and preconditioned hearts, allocated in 
different groups of ischaemia lengths. Each point represents four animals and is plotted 
with their mean and SEM. AUC and peak between groups were compared by a t test in 
each group. Abbreviations: AUC, area under the curve; IPC, ischaemic preconditioning; LDH, 
lactate dehydrogenase. 
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Figure 4-6: Correlation analysis between LDH AUC and peak with myocardial infarct size 

The scatter plot (n=24) shows a positive correlation between the AUC of LDH release and 
myocardial IS while a weaker association was found between LDH peak and IS. 
Abbreviations: AUC, area under the curve; LDH, lactate dehydrogenase. 
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4.4.5 IS and LDH assessment in negative and positive controls 

Negative controls without index ischaemia (n=3), but after 4 hours and 45 minutes 

of Langendorff perfusion, presented an IS of 3.1 ± 0.51 %, with a small and constant release 

of LDH (AUC of 12.67±0.67 and peak of 0.5 ±0.16 pg x g-1 x min-1). These data are consistent 

with the anticipated slow deterioration of an isolated-perfused organ system, but 

demonstrate that perfusion alone does not represent a significant contribution to the final 

infarct size. 

Positive controls that underwent 90 minutes of index ischaemia were allocated into two 

groups: mice under 60 minutes of reperfusion presented an IS of 58.9 ± 3.85 %, whilst in 

mice with 180 minutes of reperfusion IS was 92.6 ± 1.59%. The post-ischaemic enzyme 

leakage calculated in these mice was lower than any of the 25, 35 or 45 minutes of 

ischaemia index control groups (AUC=938.3±37.26; peak 16.7 ± 2.80 pg x g-1 x min-1). 

Despite the absolute LDH release concentration being relatively high (see  

Table 4-1), the coronary flow was further impaired, affecting the final result of the 

concentration adjusted by the coronary flow.  

Perhaps somewhat paradoxically, post-ischaemic AUC enzyme leakage was not 

increased in the positive control, after 90 minutes of ischaemia. This might be explained as 

an artefact of the formula to calculate the LDH concentration: the longer the ischaemic 

duration, the lower the coronary flow rate during reperfusion. This was particularly 

prominent following 90 minutes of ischaemia, raising the possibility that LDH wash-out 

might be impaired following 90 minutes of infarction and the formula to adjust the LDH 

was highly affected by this denominator, reflecting an underestimated value when the flow 

rate is extremely low.  
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4.5 Discussion 

4.5.1 Main findings 

This chapter describes important methodological aspects of the mouse ex vivo 

model of IRI and provide evidence that: 

1) The percentage of myocardial IS measured by TTC staining depends both on 

duration of ischaemia and reperfusion lengths.  

2) After 180 minutes of reperfusion, there was no difference in the LDH release 

pattern or the AUC, although the peak of LDH was significantly different 

between groups.  

3) After 180 minutes of ischaemia, IPC showed protection at different ischaemic 

lengths compared to control hearts in terms of IS, although there were no 

differences in the LDH release pattern. Only the 25 minute preconditioned 

hearts showed a reduction in the AUC and peak compared to their controls. 

4) AUC and peak of LDH have a positive correlation with myocardial IS, though it 

was not strong enough to be used as an accurate surrogate biomarker. 

4.5.2 Effect of ischaemia and reperfusion length on IS measured by TTC staining 

Using a 3x3 factorial design, this systematic approach shows a mutual impact of 

ischaemia and reperfusion length on myocardial IS in mice ex vivo. Only one previous study 

used a similar factorial design in order to study the interdependency of ischaemia and 

reperfusion in an in vivo mouse model (269). Compared to the one factor at a time 

approach of previous studies (248,251,265,270), the factorial design presents the 

advantage of streamlining the analysis of the impact of each different periods of ischaemia 

and reperfusion, as the results can be interpreted from two separate perspectives.  

Myocardial infarct size, measured by TTC staining, is independently associated with 

the durations of both ischaemia and reperfusion. The fact that increasing the duration of 

index ischaemia increases the IS is well known and it is considered the main determinant of 

the IS in the clinical setting (6,10,25,28). More controversial is the observation that 
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myocardial IS increases with prolonged periods of reperfusion. Some authors reported that 

1 hour of reperfusion in a rat model was sufficient to demarcate infarct zones, with longer 

periods of reperfusion not adding further damage (270,271). Nevertheless, the majority of 

studies in different species published previously are in accordance with our finding 

(248,272). Of note, a plateau of IS was not reached, suggesting that even 180 minutes was 

not the maximum infarct size achievable. However, it should also be noted that other 

limitations are present with longer reperfusion periods in the Langendorff model, as the 

fate of the ex vivo heart is inevitable to die in the short-term.  

At this point, a discussion about the optimal duration of ischaemia and reperfusion 

in experimental protocols is needed. Our results in Table 4-2 show consistent differences 

between protocols, which appear to be linear and quite equidistant, suggesting that any 

ischaemia/reperfusion duration protocol can be appropriate dependent upon the 

hypotheses one wishes to interrogate. To mimic the clinical scenario, where infarcts are 

typically comparatively small (around 20-30% of total left ventricular mass (178)), the use 

of an experimental infarction protocol that results in an equivalent injury might be 

appropriate to test an cardioprotective therapy that has already been experimentally 

demonstrated, while a protocol leading to larger infarcts, with a greater chance to reduce 

myocardial IS, might be useful to test a completely novel therapy in the experimental 

setting. Nevertheless, within 180 minutes of reperfusion, IPC was shown to be 

cardioprotective in both 25 and 45 minutes of ischaemia, and was shown also a trend 

towards significance in the 35 minutes of ischaemia, which might become significant if the 

sample size was increased. The demonstration of the effectiveness of IPC in the 

experimental groups tested means that it is possible to apply different index ischaemic 

protocols to the cardioprotective intervention being investigated, although Murry et al. 

demonstrated that IPC effectiveness is lost after too prolonged ischaemia in the in vivo 

canine model (33). 

This systematic approach was not designed to establish the presence of an 

interaction between ischaemia and reperfusion and the results cannot be interpreted in 

this way since the observed power is too small. However, no extensive interaction is 

suspected since the absolute change in IS between different ischaemia and reperfusion 

lengths are quite parallel and constant. 
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4.5.3 LDH release after 180 minutes of reperfusion  

The enhanced leakage of LDH following IRI was evaluated, showing the pattern, 

AUC and peak after different ischaemia lengths and following IPC. 

The pattern of the LDH release presented an early peak at 10-15 minutes of 

reperfusion, followed by a progressive declining release until a plateau phase is reached at 

90 minutes of reperfusion. This result contradicts  a recent study by Botker’s group showing 

a biphasic pattern of LDH release after ischaemia in isolated, perfused rat hearts, with the 

second phase modifiable by IPC (248). Despite the apparent disagreement between their 

observation (in rats) and the findings being presented in this chapter (in mice), Botker’s 

group confirmed to us (personal communication, unpublished data) that they obtained 

similar results in the 35 and 45 minute index ischaemia in their studies with mice. We might 

speculate that this difference may purely be a species effect with the mouse having less 

coronary flow than the rat, therefore the increased wash-out period of LDH might blunt the 

second smaller peak of LDH release. In contrast to the monophasic pattern of LDH 

following either 35 or 45 minutes of ischaemia, a consistent bi-phasic LDH release pattern 

was observed following 25 minutes of global ischaemia in mouse, observing the second 

phase of release at 60 min reperfusion.  Therefore it appears that the biphasic LDH release 

pattern, seen so clearly in the rat, is only observed in mouse heart following less injurious 

ischaemic insult durations. Why this might be the case is unclear, but may be an important 

observation when considering the use of AUC LDH as a surrogate for histological-based cell 

death assays. 

In contrast to the AUC of LDH release, the peak of the LDH release curve was 

associated with the duration of ischaemia. The optimum sampling time point for peak LDH 

release in the evaluation of myocardial IRI has recently been proposed to be 60 minutes 

(270). In accordance, the LDH release time-course presented in this chapter revealed a 

major leakage occurring predominantly between 60-90 minutes in both controls and IPC 

treated hearts. 

Curiously, despite IPC significantly attenuating IS as determined by TTC, no 

significant reduction of either AUC or peak of LDH following more prolonged (35 or 45 min) 

ischaemic lengths was found. Only following the less injurious 25 minute ischaemic insult a 
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significant attenuation of LDH AUC with IPC was observed, whilst the LDH peak fell just 

short of statistical significance. These observations are again consistent with previous 

reports demonstrating  that enzyme efflux tends to match IS outcome following short 

ischaemic periods, but not following more injurious ischaemic insults (251).   

4.5.4 LDH assessment and myocardial IS correlation – Is LDH a good surrogate 

marker of IS? 

Development of models with various end-points of injury may result in a more 

comprehensive characterization of the myocardial insult, enabling a multi-endpoint 

approach. Tetrazolium staining is the most popular method to assess IS, and consequently 

to test the efficacy of cardioprotective therapies. Other surrogate end-points have been 

used – i.e. enzyme release, post ischaemic function recovery and arrhythmias assessment. 

In this chapter, the LDH AUC demonstrated a better correlation than the LDH peak 

as a surrogate of myocardial IS, but only in experiments with a less injurious ischaemic 

duration. Moreover, the strength of the correlation was not enough to be comparable to 

an unequivocal endpoint such TTC staining, making LDH assessment unsuitable to be used 

as a biomarker to test cardioprotective therapies. From a technical point of view, the 

moderate correlation between IS and LDH AUC or peak could be explained as: 1) The 

considerable variability and large standard errors in absolute LDH concentration; 2) The 

dependence on coronary flow effluent; 3) The fact that LDH release occurs mostly within 

the first 90 min of reperfusion, making subsequent sample collection largely superfluous.  

In my hands, IS was proportional to the duration of reperfusion. These data suggest 

that there is either evidence of on-going and accumulative “wave of reperfusion injury” in 

this model, or more likely, there is a problem with the methods being used to determine 

the infarct size. Given that the release of LDH appears to have largely abated after 90 

minutes of reperfusion supports the latter explanation: TTC staining relies on the ability of 

dehydrogenase enzymes and cofactors in the tissue to react with tetrazolium salts to form 

a formazan pigment (245) and needs a sufficient period of wash-out. Following an 

ischaemic insult of 90 minutes, our results show a greater IS after 180 minutes of 

reperfusion length, compared to the IS after 60 minutes of reperfusion, suggesting that the 
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positively stained tissue is probably not healthy and may die later or that the wash-out did 

not take place yet or was not sufficient and as such gave a false positive result, although a 

“no-reflow” phenomenon cannot be excluded. In agreement with the literature (272), the 

longer the reperfusion period after an ischaemic insult, the more reliable the method 

becomes for discriminating between dead and viable tissue. 

4.5.5 Study limitations 

An isolated unloaded, ventricular empty mice heart model was used. Whether the 

same release pattern applied to other animal species and other models is unknown. The 

high heart rate of the mouse should be taken into account because it might have an impact 

on the wash-out and the subsequent TTC staining and calculation of LDH release.  

No functional assessment was used in order to assess the effect of ischaemia and 

reperfusion length, avoiding potential manipulation injury. This might be considered as a 

limitation, since many groups use an intraventricular balloon in such studies. However  it 

has been shown that an intraventricular balloon can influence pro-survival salvage 

pathways (273). Following the same rationale of avoiding any additional stress, no heart 

rhythm was recorded and consequently, no heart rate exclusion criteria was applied. 

Finally, the no-reflow phenomenon has been well reported in isolated heart models in 

which hearts are perfused only with crystalloid (42,274) and the fact TTC staining might not 

be reaching some no-reflow area cannot be discarded. 

4.5.6 Conclusions 

This chapter presents a thorough characterization of the Langendorff isolated 

perfused mouse heart following IRI. Myocardial IS measured by triphenyltetrazolium 

staining depends on both the duration of ischaemia and length of the reperfusion period. 

Thus, the longer the reperfusion length, the greater the infarct size, even after a prolonged 

ischaemic insult. Moreover, LDH assessment may not be the most reliable tool to assess 

infarct size and/or to examine cardioprotective effectiveness, at various times of ischaemia. 
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Although any protocol could be actually chosen to perform subsequent 

experiments throughout my PhD, the 35 min ischaemia and 120 min reperfusion protocol 

was the one eventually selected. First, we ruled out those protocols causing “too little” 

infarct, as for the aim of this PhD was crucial to demonstrate the efficacy of IPC (and the 

involvement of its signalling pathways) and we needed enough tissue at risk to confer a 

meaningful protection. Second, we discarded those protocols resulting in a too impaired 

tissue, particularly those protocols with long reperfusion. Third, we preferred to keep at 

least 120 min of reperfusion, as it is still unknown whether there is an on-going wave of 

reperfusion injury. Based on this criteria, we selected a standard protocol of IRI, also well 

reported in the literature, of 35 min ischaemia and 2 h reperfusion. 
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Chapter 5 SELECTION OF IPC PROTOCOL 

5.1 Background 

Myocardial ischaemic preconditioning whereby non-lethal episodes of coronary 

occlusion do not cause tissue necrosis by themselves, but render  protection to a 

subsequent lethal ischaemia/reperfusion insult, has been the object of intense research, 

resulting in over 10,000 publications in the literature (88). Most of this research has 

focused on describing the cellular and molecular mechanisms involved in eliciting 

cardioprotection as well as on translating the protective effect to the clinical arena using 

other forms of ischaemic conditioning. In comparison, relatively little attention has been 

given to the assessment of the dose-response characteristics of IPC. 

Dose-response characteristics of IPC have been investigated without much notice 

over the past 30 years. Some studies have sought to determine the “minimum” dose 

(translated in number and/or duration of cycles) of ischaemia/reperfusion transient 

episodes to confer cardioprotection. Other have studied the temporal relationship 

between the application of the protocol and the duration of its effect on the subsequent 

sustained insult – estimated in 2-3 h for the acute effect (275). Further, the consequences 

of overreaching the top threshold of the conditioning phenomenon when a large number 

of transient ischaemia/reperfusion cycles are applied, known as hyperconditioning, has also 

been studied (276). 

Soon after the landmark publication by Murry et al. describing the IPC phenomenon 

(33), a study suggested that preconditioning was an all-or-nothing phenomenon, 

demonstrating protection when a single cycle was undertaken (277). Despite this first 

publication, most of the subsequent research papers suggest a steady graded phenomenon 

conferring summative protection by supplementary cycles (278), with a top limit where an 

excessive number of cycles can be associated with loss of protection (279). Moreover, the 

protection associated with IPC has been hypothesised to have a “trigger” threshold, and is 

therefore dependent on the combination of the number and duration of IPC cycles, which 

is translated in turn as whether this transient stimulus has been able to release sufficient 
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autocoids (or “triggers” of the three-step signalling process activated by IPC described in 

1.5.1) to eventually activate downstream kinase cascades and confer protection. 

Once having selected the IRI protocol as per Chapter 4, the focus was next upon the 

selection of the IPC protocol to be used in subsequent experiments, through the 

comparison between the application of 4 cycles of IPC (based on Murry’s original 

publication) (33) with the minimum of 1 cycle algorithm. 

 

5.2 Research objective and experimental aims 

Can infarct size be reduced to the same extent when a protocol of 1 cycle IPC is compared 

with a 4 cycle protocol? 

Hypothesis  

4-cycle IPC protocol will further reduce myocardial infarct size when compared to a shorter 

protocol of 1-cycle IPC.  

Experimental aims 

The overall aim was to select a protocol of IPC for subsequent experiments related to the 

thesis. Below is an overview of the main aims, including the proposed models related to the 

research question of this chapter: 

Aim 1:  Compare the effect of 1-cycle vs 4-cycle IPC to protect the heart against 

ischaemia/reperfusion injury.  

• Subject mouse Langendorff to ischaemia-reperfusion and subsequently quantify 
myocardial infarct size. 

Aim 2:  Compare the effect of 1-cycle vs 4-cycle IPC to activate the survival kinases, Akt and 

ERK 

• Collect protein from mouse hearts subjected to IPC protocols and use Western blot 
analysis to measure levels of Akt and ERK activation.  
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5.3 Methods 

5.3.1 Experimental design and study protocols  

According to aim 1 and 2, two sets of experiments were performed. C57BL/6 mice 

were divided into 3 study groups in order to examine myocardial IS reduction. Hearts in the 

IPC 1 cycle group underwent 1 cycle of 5 min ischaemia and 5 min reperfusion, whilst 

hearts in the IPC 4 cycle group were subjected to 4 repeated cycles (total duration of the 

protocol was 40 min). Hearts in the control group received no intervention, being perfused 

in time matched fashion (60 min). Figure 5-1 illustrates the study design and experimental 

protocols. Secondly, Akt and ERK activation were assessed using Western blot analysis in 

perfused mouse hearts subjected to the IPC protocols being investigated. Figure 5-2 

summarizes this second study design. 

 Details on the protocol of both the ex vivo Langendoff-perfused mouse model and 

the Western blot technique being developed can be found in section 0 and section 3.9, 

respectively. Regarding the latter, proteins were transferred onto Immobilon-FL 

hydrophobic Polyvinylidene Fluoride (PVDF) transfer membrane (MerckMillipore, UK) and 

primary antibodies used were acquired from Cell Signaling Technology: Akt (#9272), 

Phospho-Akt (Ser473)  (#9271),  Phospho-Akt  (Thr308)  (#2965) and  ERK1/2  (#9102),  

Phospho-ERK1/2 (Thr202/Tyr204). 

5.3.2 Sample size calculation 

Based on our previous publication characterizing the model (280), the sample size 

for this experiment was estimated for performing a two-sided test for k-independents 

samples (ANOVA) following 2 pairwise comparisons (25% minimum expected effect size, 

common SD of 13%, α=0.05 and β=0.20, ~15% expected losses). Therefore, 21 animals 

were allocated according to a pre-specified randomization sequence (seed 554, STATA 

software version 13.1). Three animals were excluded as they failed to meet inclusion 

criteria, hence each group encompassed 6 animals. 
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Sample size was not estimated beforehand for Western blot analyses, in which five 

animals per group were used in line with convention (257). However, hearts were randomly 

assigned to each rig using the same pre-specified randomization sequence.  

 

 

Figure 5-1: Study design for perfusion protocols to determine the effect of two different 

ischaemic preconditioning (IPC) protocols on myocardial infarct size. 

Three different experimental protocol were tested: 1) control; 2) IPC 1 cycle of 5 min 
ischaemia and 5 min reperfusion; and 3) IPC 4 cycles of 5 min 5 min ischaemia and 5 min 
reperfusion. Black boxes represent periods of ischaemia and white boxes represent periods 
of perfusion with Krebs-Henseleit buffer at 80 mm Hg. 

 

 

Figure 5-2: Study design for Akt and ERK phosphorylation analysis using Western blot 

Three different experimental protocol were tested: 1) control; 2) IPC 1 cycle of 5 min 
ischaemia and 5 min reperfusion; and 3) IPC 4 cycles of 5 min 5 min ischaemia and 5 min 
reperfusion. Black boxes represent periods of ischaemia and white boxes represent periods 
of perfusion with Krebs-Henseleit buffer at 80 mm Hg. Black arrows depict the time-point 
of sample collection. 
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5.3.3 Data analysis 

Infarct size data is expressed as mean ± SEM, whilst Western blot data is described as 

increase fold. Normal distribution of the data was determined using the Kolmogorov-

Smirnov test for both data sets. One-way ANOVA parametric analyses were performed for 

the overall comparisons between groups, whilst a Dunnet’s multiple comparison post-test 

was used to compare the groups of interest to the control group. IBM SPSS Statistics 

software, v.20.0 (IBM Corp. Armonk, NY) was used for the statistical analysis. STATA 

software, version 13.1 (Stata Corp, College Station, TX, USA) was used to generate the 

randomization sequence. GraphPad Prism version 6.00 (GraphPad Software, La Jolla 

California, USA) was used to perform the graphics. 

 

5.4 Results 

IPC was examined using 2 different patterns to determine the optimal strategy (1 vs 

4 cycles of 5 min ischaemia and 5 min reperfusion). As described in Figure 5-3, IPC 4 cycles 

resulted in significant reduction of IS  when compared to control group (21.1 ± 3.23 % vs 

38.0 ± 1.72 %, P=0.006), whilst IPC 1 cycle did not demonstrate to be effective (34.3 ± 4.60, 

P=0.665 compared to control group). 

Phospho-serine 473 and –threonine 308 Akt levels were increased in IPC 4 cycles 

compared to control group (P=0.019 and 0.041 respectively), whilst IPC 1 cycle Akt 

phosphorylation did not demonstrate significant phosphorylation in any of these two 

substrates (P=0.562 and P=0.325 respectively). Figure 5-4 and Table 5-1 present this 

Western blot data. 

Phospho-Thr202/Tyr204 ERK 1/2 was increased in IPC 4 cycles compared to control 

group (P=0.045), but no significant effect was detected when a protocol of 1 cycle was used 

(P=0.780). 
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Figure 5-3: Effect of two ischaemic preconditioning protocols on myocardial infarct size 

(%) 

Scatter dot blots: black lines represent mean± SEM and circles represent individual animal 
data. Myofarcial infarct size was significantly smaller with IPCx4 (mean ± SEM): control 38.0 
± 1.72%, IPC 1 cycle 34.3 ± 4.60 %, IPC 4 cycles 21.1 ± 3.23%. The overall P-value for the 
ANOVA was 0.008, whilst the Dunnett’s multiple comparison test demonstrated a 
significant difference for IPC 4 cycles (P=0.006) and a non-significant result for IPC 1 cycle 
(P=0.665) compared to control group. 
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Figure 5-4: Effect of IPC protocols on Akt and ERK 1/2 phosphorylation 

Bar graph shows the percentage of phosphorylation in all groups compared to the control 
group, expressed as mean ± SEM (% of relative phosphorylation, normalized by its total), 
n=5 per group. 

 

 Control IPC 1 cycle IPC 4 cycles 

Akt (Ser473) phosphorylation 1 1.4 ± 0.2 3.1 ± 0.9* 

Akt (Thr308) phosphorylation 1 1.7 ± 0.2 1.9 ± 0.3* 

ERK (T202/Y204) phosphorylation 1 1.2 ± 0.2 1.9 ± 0.6* 

Table 5-1: Raw data for IPC protocol selection 

Raw data related to Figure 5-4. Asterisks refers to comparison with control group: * P<0.05, 
** P<0.01, *** P<0.001. 
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5.5 Discussion 

The aim of this short study was to examine whether the number of cycles affected 

the efficacy of IPC, and whether this effect was also mirrored by the activation of pro-

survival kinases at the “trigger” phase. The protocol of IPC 4 cycles resulted in a robust 

means of preconditioning the mouse isolated perfused heart, whilst IPC 1 cycle failed to 

consistently reduce myocardial IS. Accordingly, the protocol with higher number of cycles 

was associated with a significant increased phosphorylation of Akt and ERK, whilst IPC did 

not show pro-survival kinases activation. As a result, the IPC 4 cycle algorithm was selected 

to be subsequently used in the remaining experiments of this thesis. 

5.5.1 The larger the number of IPC cycles, the higher the protection rendered 

The ischaemic preconditioning regime of 4 cycles of 5 min ischaemia/reperfusion 

was selected to be tested. This was all based on the original protocol of IPC reported by 

Murry et al. in their first description of the phenomenon (33), as well as on the remote 

ischaemic conditioning algorithm reported in the original study by Przyklenk et al. (35). 

Other subsequent publications have also demonstrated its efficacy (281). In previous thesis 

undertaken at The Hatter Cardiovascular Institute, Dr Mark Sumeray (282,283) and Dr 

Robert Bell (266), both found a protocol of 2 cycles of 10 min ischaemia and 10 min 

reperfusion to be protective.  Li et al. demonstrated in anaesthetized dogs that 

preconditioning with one brief ischaemic interval was as effective as preconditioning with 

multiple ischaemic periods (277). In 1997, Iliodromotitis et al. demonstrated in 

anaesthetized rabbits that there is little difference in the degree of protection obtained 

with either a protocol of 1, 2 or 4 cycles, whilst the protection was proved to be lost when 

applying 6 or 8 cycles (279). In the first-in-man experiment of IPC in humans, Yellon et al. 

reported an effective 2-cycle protocol of 2 min ischaemia and 3 min reperfusion (67), whilst 

in the first publication using the human atrial trabeculae model, Yellon and colleagues also 

successfully applied a protocol of 3 minutes simulated ischaemia and 7 minutes 

reoxygenation (284). Therefore, both protocols being tested in this chapter, 1-cycle vs 4-

cycle, and many others, have shown to be protective in several experimental settings.  
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Further to the discussion above it is also important to appreciate that there is a 

general consensus demonstrating that the number of cycles follow a steep dose-response 

relationship (71,285,286) until reaching a turning point where the protection can be lost 

(78,276,287). Furthermore, a study published in 2014 demonstrated further increase in IS-

sparing effect of IPC with a novel stepwise ischaemic preconditioning protocol applied in 

rabbits (278). In accordance with the steep dose-response relationship, the results being 

presented in this chapter shows a small but non-significant reduction of myocardial IS in 

IPC 1 cycle, compared to a solid significant reduction in IPC 4 cycles. Within the IPC 1 cycle 

group, two hearts seem to be protected, whilst four show a similar IS in comparison to the 

control heart. One might speculate that this “biological variability” might be explained by 

these hearts to be on the threshold of reaching the preconditioning status (see next section 

for this hypothesis). Also, based on the experience accumulated in The Hatter 

Cardiovascular Institute, it seems that the ex vivo heart model is hardest to precondition 

when compared to the in vivo model (unpublished data), probably due to the nature of 

their experimental conditions (denervation, lack of immune response…). 

5.5.2 Triggering the preconditioning response: the IPC threshold hypothesis 

To confer protection, IPC is associated with the release of “triggers”, including 

adenosine, bradykinin, opioids and angiotensin that act upon cell sarcolemmal receptors to 

activate the preconditioning response. These triggers have been administered exogenously 

to pharmacologically mimic the IPC response (129,275). In characterizing these 

“preconditioning mimetics”, a non-linear dose-response relationship has been observed 

between the exogenous trigger (or receptor agonist) and myocardial IS reduction. As a 

matter of fact, triggering of preconditioning seems to have dose-response threshold: if the 

duration or numbers of transient ischaemia/reperfusion cycles, or the dose of the 

preconditioning mimetic is insufficient, no resistance to lethal IRI is observed. By 

progressive increment of the stimulus, a threshold is crossed and the IPC response 

involving protein kinase cascades consequently activated. This hypothesis, known as 

“preconditioning threshold”, is supported by observations in both rabbit (71,288) and 

human myocardium (289).  
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 A “classic” example of the “preconditioning threshold” theory is based on the role 

of bradykinin in IPC. It is well established that bradykinin is released endogenously by the 

endothelium under ischaemic conditions (290). It is also known that angiotensin converting 

enzyme (ACE) inhibitors attenuate bradykinin breakdown, therefore increasing their levels 

in the extra cellular milieu. In the human atrial trabeculae model, Yellon’s group 

demonstrated that either a subthreshold preconditioning stimulus or the administration of 

ACE inhibitors (captopril and lisinopril) were not able to confer protection in terms of 

contractile function recovery when administered separately, whilst the combination of 

both interventions (ACE inhibitors captopril + subthreshold preconditioning stimulus) 

showed a significant protective effect (289). This protection was abolished with the use of 

Hoe 140, a specific bradykinin B2 receptor antagonist, hence suggesting an increase in 

bradykinin levels as responsible to breach the preconditioning threshold (289). Miki et al., 

presented similar results using captopril and a sub-threshold protocol of 2 min ischaemia/5 

min reperfusion in an in vivo rabbit model of IRI, backing the idea that the sub-threshold 

level achieved by a short IPC protocol can be augmented by the increase in bradykinin 

levels. 

5.5.3 Similar findings in remote ischaemic preconditioning 

Our results are in agreement with previous publications regarding remote 

ischaemic preconditioning (RIPC). In an in vivo mouse model testing for RIPC, Botker’s 

group observed no protection with two cycles, but similar robust protection either with 

four, six or eight cycles of 5 min. In the same vein, Lu et al. did not find cardioprotection by 

one, but by three cycles when applied remotely in the hind-limb in an in vivo rat model 

(291). Interestingly, they were able to demonstrate that morphine reduces the threshold of 

cardioprotection produced by RIPC, as the addition of morphine 0.1 mg/Kg to RIPC 1 cycles 

significantly reduced myocardial IS, whilst any of these interventions did not when applied 

separately. These results seem to prove the threshold hypothesis also in remote 

preconditioning. 
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5.5.4 Limitations 

The influence of other protocols with either different number of cycles, or distinct 

ischaemic duration within each IPC cycle, was not investigated. Therefore, a steep dose-

response relationship cannot be drawn from these results. Mouse hearts obtained for 

Western blot analysis were not collected at reperfusion (“mediator” phase), but 

immediately after finishing the IPC protocol. Although it is known that both Akt and ERK are 

activated at both phases (66), we cannot strictly speak of activating the RISK pathway as 

this cascade was described to be recruited at reperfusion (36,90). 

5.5.5 Conclusions 

The protocol of IPC 4 cycles demonstrated to reduce myocardial infarct size and 

activate both Akt and ERK pro-survival kinases, whilst IPC 1 cycle showed neutral results in 

both endpoints. Therefore, an algorithm of IPC 4 cycles was selected to be subsequently 

used in this thesis. 
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Chapter 6 ROLE OF PI3K IN MYOCARDIAL ISCHAEMIC PRECONDITIONING 

Most of the content of this chapter has been already published as a single piece of research: 

Rossello X, Riquelme J, Davidson S, Yellon DM. Role of PI3K in myocardial ischemic 

preconditioning: mapping prosurvival cascades at the trigger phase and at reperfusion. Journal 

of Cellular and Molecular Medicine (2017, in press). 

6.1 Background 

Ischaemic preconditioning, consisting of transient cycles of coronary occlusion and 

reperfusion, is considered the most powerful intervention available to protect the heart 

against myocardial ischaemia/reperfusion injury, other than reperfusion itself, and has 

become the paradigm for cardioprotection (66). 

IPC results in the recruitment of signalling pathways comprising protein kinases and 

phosphatases that converge on the mitochondria (41). The Reperfusion Injury Salvage 

Kinase (RISK) pathway is considered a central prosurvival kinase cascade mediating the IPC-

induced protective effect. This pathway actually encompasses two parallel signalling 

cascades: PI3K-Akt and MEK1-ERK1/2 (66). RISK recruitment not only mediates the 

protection induced by IPC, but also by other forms of conditioning (pre-, post-, remote and 

pharmacological conditioning), and therefore appears to be a universal signalling paradigm 

for cardioprotection. Other alternative pathways, such as the Survivor Activator Factor 

Enhancement (SAFE) pathway comprising TNFα/STAT3, have also been proposed as IPC-

induced protection mediators (92). 

The RISK pathway has demonstrated a biphasic activation pattern, occurring first 

during the preconditioning cycles (or “trigger” phase) and then again during the first few 

minutes of reperfusion (“mediator” phase) (10,66,292). Although the relevance of the RISK 

pathway is a well-established concept in cardioprotection, the relative importance of the 

activation of these kinases and phosphatases, either at the trigger phase or exclusively at 

the mediator phase, remains to be fully elucidated. In IPC studies, the activation of both 

RISK and SAFE pathways has been demonstrated to occur at these two time-points (88), 
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but there is a lack of comprehensive studies assessing the integrative role of these 

signalling cascades in this setting. Cardioprotective signalling cascades have mostly been 

simplified in the literature, and crosstalk between the two components of the RISK 

pathway (101,102) and between the RISK and the SAFE pathways (95,103) have been 

described in only a few studies.  

Once having selected the IRI protocol as per Chapter 4 and the IPC protocol as per 

Chapter 5, the focus was next turned to the description of the PI3K-Akt cascade following 

an IPC stimulus. The central scope of this thesis is to elucidate the role of PI3Kα to confer 

protection against myocardial IRI, therefore a thorough description of PI3K downstream 

and parallel kinases and phosphatase activation appears to be a necessary and inevitable 

point to be addressed before further studying specific PI3K isoforms. 

 

6.2 Research objectives and aims 

What role plays PI3K in the protective effect elicited by IPC?  

Hypothesis  

PI3K activity is required during both the trigger and mediator phases for IPC to limit the 

infarct size. 

Experimental aims 

The aim of this chapter is to systematically characterize the role of the PI3K-Akt component 

of the RISK pathway, as well as its counter-regulatory protein, PTEN in mediating the IPC 

cardioprotective effect during both the trigger phase and the reperfusion stage. In 

principle, both the activation (phosphorylation) of PI3K and the inactivation (also through 

phosphorylation) of PTEN should be expected to activate Akt and thus induce 

cardioprotection. Besides, the aim is to further investigate the interplay between the PI3K-

Akt pathway and their parallel ERK and STAT3 cascades at both time-points. Below is an 

overview of the main aims, including the proposed models related to the research question 

of this chapter: 
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Aim 1:  Investigate whether the pan-specific PI3K inhibitor wortmannin abrogate the 

cardioprotective effect of IPC when applied either during the trigger phase or the 

mediator phase.  

• Subject mouse Langendorff to ischaemia-reperfusion and subsequently quantify 
myocardial infarct size. 

Aim 2:  mapping prosurvival cascades at the trigger phase and at reperfusion following 

PI3K inhibition in preconditioned hearts 

• Collect protein from mouse hearts subjected to IPC protocols and use Western blot 
analysis to measure levels of Akt, PTEN, GSK3β, ERK and STAT3 phosphorylation.  

 

6.3 Methods 

6.3.1 Experimental design and study protocols 

A total of 58 animals were used, although 3 hearts were excluded before 

randomization as they failed the predefined exclusion criteria (see below). Therefore, 55 

animals were randomly allocated to treatment groups in two separate experiments: 

1) Study of infarct size. The effect on myocardial IS following IPC 4 cycles was studied 

using wortmannin 100 nM administered during the IPC protocol, or at reperfusion. 

The IPC protocol consisted of 4 cycles of 5 min ischaemia and 5 min reperfusion 

and was chosen based on previous publications demonstrating a reduction of 

myocardial IS (252,280) (Figure 6-1). 

2) Study of phosphorylated protein levels. Activated levels of kinases and 

phosphatases involved in IPC-induced cardioprotection were systematically studied 

in two blocks, as summarized in Figure 6-2. In the first, phosphorylated proteins 

were measured at the trigger phase in three treatment groups: a) control; b) IPC; 

and c) wortmannin plus IPC. In the second block, phosphorylated kinases were 

measured after 5 min reperfusion in four treatment groups: a) control; b) IPC; c) 
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IPC plus wortmannin during trigger phase; and d) IPC plus wortmannin during 

mediator phase. 

In comparison to the protocols aimed at assessing myocardial IS, for those 

experiments aimed to evaluate protein phosphorylation levels the period of ischaemia was 

reduced to 15 minutes and reperfusion shortened to 5 min. Shorter protocols are well 

accepted in the literature (293) on the basis of (1) obtaining enough non-necrotic tissue to 

evaluate kinase activation, and (2) the protection elicited by kinase activation and mPTP 

opening delay occurs at the onset of reperfusion (86,112).  

Animals used were male C57BL/6 mice (9-12 weeks, 24-28 g weight), all of them 

obtained pathogen free from one supplier and housed under identical conditions. 

Wortmannin, CAS 19545-26-7,  the PI3 kinase inhibitor, was purchased from Merck 

Millipore (Nottingham, UK) and its concentration dose was chosen based on previous 

publications (95,155). Dimethyl sulfoxide from BDH (Poole, UK) was used as the solvent for 

Wortmannin at a final concentration in the perfusion buffer of not more than 0.01%, as 

well as a vehicle control for the rest of the groups. 

 Details on the protocol of both the ex vivo Langendorff-perfused mouse model and 

the Western blot technique being developed can be found in section 0 and section 3.9, 

respectively. Regarding the latter, proteins were transferred onto nitrocellulose blotting 

membrane (GE Healthcare Life Sciences, UK) using wet transfer and primary antibodies 

used were acquired either from Abcam, in the case of the loading control anti-GAPDH 

(mAbcam, #9484), or from Cell Signaling Technology: Akt (#9272), Phospho-Akt (Ser473) 

(#9271), Phospho-Akt (Thr308) (#2965), ERK1/2 (#9102), Phospho-ERK1/2 (Thr202/Tyr204) 

(#9101), GSK-3β (#9315), Phospho-GSK-3β (Ser9) (#5558), Stat3 (#9139), Phospho-Stat3 

(Tyr705) (#9145) and Phospho-PTEN (Ser380) (#9551).  
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N

20’5 35’ 120’IPC

5Control 60’ 35’ 120’

5Wortmannin 100 nM + IPC 20’ 35’ 120’

5IPC + Wortmannin 100 nM 20’ 35’ 90’30’

 

Figure 6-1: Study design for IS determination protocols in the context of IPC and 

wortmannin before and after index ischaemia. 

Four different experimental protocols were tested: 1) control; 2) IPC 4 cycles of 5 min 
ischaemia and 5 min reperfusion per cycle; 3) IPC 4 cycles in the context of Wortmannin 
administered during the stabilization period and IPC protocol; and 4) IPC 4 cycles plus the 
administration of Wortmannin upon reperfusion. Black boxes represent periods of 
ischaemia, white boxes represent periods of perfusion with Krebs-Henseleit buffer at 80 
mm Hg and green boxes represent the perfusion of Wortmannin 100 nM.  

 

N

5Control 20’

5IPC 4 cycles + Wort 100 nM 20’

5IPC 4 cycles 20’ 5’15’

5’15’

5IPC 4 cycles + Wort 100 nM 20’ 5’15’

5’15’

 

Figure 6-2: Study design to compare Akt and ERK phosphorylation analysis using Western 

blot 

Four different experimental protocols were tested: 1) control; 2) IPC 4 cycles of 5 min 
ischaemia and 5 min reperfusion per cycle; 3) IPC 4 cycles in the context of Wortmannin 
administered during the stabilization period and IPC protocol; and 4) IPC 4 cycles plus the 
administration of Wortmannin upon reperfusion. Black boxes represent periods of 
ischaemia, white boxes represent periods of perfusion with Krebs-Henseleit buffer at 80 
mm Hg and green boxes represent the perfusion of Wortmannin 100 nM. Arrows represent 
the moment where samples were collected (in red all samples collected after IPC protocol, 
in green all samples collected at reperfusion). 
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6.3.2 Sample size 

The necessary sample size for the evaluation of the potential abolition of 

cardioprotective effect using wortmannin either before ischaemia or upon reperfusion was 

calculated using a two-sided test for k-independents samples (ANOVA) following 3 pairwise 

comparisons.  

Based on the results of the comparison between IPC protocols and considering the 

literature regarding the effect of wortmannin, a 18% minimum expected effect size and a 

common SD of 8% were applied, in addition to a significance level of 5% (α=0.05) and 80% 

power (β=0.2). Hence, the estimated sample size required was 20 animals, five per group. 

Mice were subsequently allocated by blocks according to a pre-specified randomization 

sequence (seed 4857, STATA software version 13.1) which assigned each animal into its 

correspondent experimental group and rig. 

Sample size was not calculated beforehand for Western blot experiments, in which 

five animals per group were used in line with convention (257). However, hearts were 

randomized by blocks for each rig using a reproducible randomization sequence (seed 

45733, STATA software version 13.1). 

6.3.3 Data analysis 

Normal distribution of each data subset was tested using graphical methods and the 

Kolmogorov –Smirnov method. All values are presented as mean ± standard error of the 

mean. If normally distributed, continuous data were compared using one-way analysis of 

variance followed by post hoc pairwise comparisons to the control group using the 

Dunnett's test. If highly skewed distributed, the non-parametric Kruskal–Wallis test was 

used with subsequent post hoc pairwise comparisons to the control group adjusted by the 

Dunn’s test. A P value of less than 0.05 was considered statistically significant. STATA 

software, version 13.1 (Stata Corp, College Station, TX, USA) and GraphPad Prism version 

6.00 (GraphPad Software, La Jolla California, USA) were used to perform the analysis and 

the graphics.  
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6.4 Results 

6.4.1 PI3K mediates the IPC protective effect against myocardial IRI 

To investigate the role of the PI3K-AKT cascade in IPC-induced cardioprotection, 

isolated perfused mouse hearts were subjected to 35 min global ischaemia, followed by 2 h 

reperfusion. IPC resulted in reduction in IS compared with the control group (21 ± 4 vs 59 ± 

5 %, P < 0.001). Administration of wortmannin either during the trigger phase of the IPC 

protocol or during the mediator phase abrogated its IS-limiting effect when compared to 

control group (46 ± 5 %, P = 0.158; and 46 ± 4, P = 0.154, respectively) (Figure 6-3). 
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Figure 6-3: Role of PI3K in the protective effect of IPC at the trigger phase and at 

reperfusion. 

Scatter dot blots: black lines represent mean ± SEM and circles represent individual animal 
data. Myofarcial infarct size was significantly smaller with IPC compared to control group 
and either the administration of Wortmannin before or after ischaemia index abolished the 
cardioprotective effect of IPC. 
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6.4.2 PI3K mediates IPC-induced activation of Akt 

To confirm the activation of Akt during the IPC trigger phase and the early phase of 

reperfusion both of the main Akt phosphorylation sites (Ser-473 and Thr-308) were studied. 

As expected, IPC increased Akt phosphorylation in the trigger phase at both sites (Ser-473: 

2.6 ± 0.5 –fold, P=0.010 vs control; and Thr-308: 2.6 ± 0.5 –fold vs control, P=0.034), and 

phosphorylation was prevented when wortmannin was applied during the IPC trigger phase 

(Figure 6-4A and Figure 6-4C). Likewise, IPC increased the phosphorylation of Akt during the 

mediator phase of reperfusion (Ser-473: 2.4 ± 0.6 –fold vs control, P<0.001; and Thr-308: 

3.1 ± 0.7 -fold vs control, P=0.001). However, this phosphorylation was consistently 

abrogated when wortmannin was administered either during the trigger or mediator phase 

(Figure 6-4B and Figure 6-4D).  

6.4.3 IPC phosphorylates GSK3β at the trigger phase, but not the mediator phase 

To explore the downstream targets activated by PI3K-Akt both at the trigger phase 

and upon reperfusion, we investigated the role of the serine/threonine kinase GSK3β. In 

contrast to many protein kinases, GSK3β is active in resting cells and inactivated by 

phosphorylation(164). On stimulation, GSK3β is phophorylated at serine 9, resulting in 

inhibition of its kinase activity. As illustrated in Figure 6-4E, IPC caused an increase in GSK3β 

phosphorylation during the trigger phase (3.2 ± 0.9 -fold vs control, P = 0.007), which was 

blocked by wortmannin. On the contrary, GSK3β was not significantly phosphorylated at 

reperfusion in preconditioned hearts compared to control group (1.4 ± 0.2 -fold vs control, 

P = 0.742). Moreover, the administration of wortmannin either during the trigger phase or 

mediator phase did not affect GSK3β phosphorylation levels when measured at reperfusion 

(Figure 6-4F). 

6.4.4 IPC phosphorylates PTEN through a PI3K-independent mechanism 

PTEN is a phosphatase that counter-regulates the PI3K/AKT signalling 

pathway(294). While phosphorylation of PIP2 by PI3K stimulates Akt activity, PTEN 

dephosphorylates PIP3 and downregulates Akt activity. The phosphorylated form of PTEN is 
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considered inactivated, and is therefore a major negative regulator of the RISK 

pathway(186). PTEN phosphorylation was significantly increased immediately following an 

IPC stimulus (1.5 ± 0.2 -fold vs control, P=0.009). Interestingly, this was not affected by the 

administration of wortmannin (Figure 6-4F). IPC was also associated with an increase in 

phosphorylated PTEN during the mediator phase (1.6 ± 0.1 -fold vs control, P = 0.047), and 

again, this was not affected by the presence of wortmannin during either the trigger or 

mediator phases (Figure 6-4H). 

6.4.5 IPC-induced ERK activation involves PI3K during the trigger phase, but not at 

reperfusion 

During the IPC trigger phase, phosphorylated levels of ERK were significantly 

increased by IPC (3.0 ± 0.6 -fold times compared to control, P = 0.016). This was partially 

abrogated by wortmannin, such that there was no longer a significant increase in ERK 

phosphorylation during the trigger phase after IPC (Figure 6-5A). IPC also caused a 

significant increase in ERK phosphorylation during the mediator phase (2.6 ± 0.6-fold 

increase for IPC, P=0.016), but in contrast to the response observed in the trigger phase, 

this was unaffected by the administration of wortmannin (IPC + wortmannin during trigger 

phase: 2.7 ± 0.2 -fold, P=0.009; IPC + wortmannin during the mediator phase: 2.3 ± 0.3 -

fold, P = 0.031) (Figure 6-5B). 

6.4.6 IPC activates STAT3 through a PI3K-independent mechanism 

The SAFE pathway, which involves TNFα, JAK and STAT3, has been described as an 

alternative RISK-independent cascade that may be important for mediating the 

cardioprotective effect elicited by IPC in some circumstances(95,99). We found that IPC 

significantly increased levels of phosphorylated STAT-3 (Tyr705) during the trigger phase 

(3.6 ± 1.6 -fold vs control, P = 0.009) (Figure 6-5C). The administration of wortmannin 

during the trigger phase did not alter levels of phosphorylated STAT3. Similarly, IPC 

increased levels of phosphorylated STAT3 in the mediator phase (2.6 ± 0.5 -fold vs control, 

P = 0.049), and this was unchanged by the administration of wortmannin during either the 

trigger or mediator phase (Figure 6-5D).  
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Figure 6-4: Impact of PI3K inhibition in IPC activated signalling cascades 

Bar graph shows the percentage of phosphorylation in all groups compared to the control 
group, expressed as mean ± SEM (percentage of relative phosphorylation), n=5 per group. 
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Figure 6-5: Impact of PI3K inhibition in IPC activated ERK and STAT3 

Bar graph shows the percentage of phosphorylation in all groups compared to the control 
group, expressed as mean ± SEM (percentage of relative phosphorylation, normalized by its 
total), n=5 per group. 
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6.5 Discussion 

In the first block of experiments, PI3K activity was confirmed to be required during 

both the trigger phase and mediator phase in order for IPC to reduce the infarct size. As 

expected, IPC increased the levels of Akt phosphorylation during both the trigger and 

mediator phases. Interestingly, Akt phosphorylation during both phases was completely 

abrogated by PI3K inhibition during just the trigger phase or the mediator phase, 

suggesting the existence of a memory effect. In contrast, one of the kinases downstream of 

the PI3K/Akt pathway, GSK3β, was phosphorylated only during the trigger phase after IPC. 

PTEN was phosphorylated during both the trigger and mediator phases after IPC, but this 

was independent of PI3K. IPC increase ERK phosphorylation during both phases, but was 

only PI3K-dependent during the trigger phase. Finally, STAT3, the kinase mediator of the 

SAFE pathway, was activated by IPC in both the trigger phase and mediator phase, and this 

phosphorylation was independent of PI3K activity. All these observations are as 

summarized in Figure 6-6. 

 

 

Figure 6-6: Summary of findings 

IPC increased the levels of Akt phosphorylation during both the trigger and mediator 

phases. On the contrary, GSK3β was phosphorylated only during the trigger phase. The 

phosphatase PTEN was phosphorylated during both the trigger and mediator phases after 

IPC and this was not affected by PI3K inhibition. ERK was phosphorylated by IPC during 

both phases, but was only PI3K-dependent during the trigger phase. STAT3 was activated in 

both the trigger and mediator phases, and this phosphorylation was independent of PI3K. 
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6.5.1 Role of PI3K in the protective effect of IPC at the trigger phase and at 

reperfusion 

IPC protects against myocardial IRI by activation of the RISK pathway (10,155). The 

data being presented in this chapter confirm the pivotal role of PI3K as mediator of IPC, as 

its pharmacological inhibition either during the trigger phase or at reperfusion abolished 

the IS-limiting effect provided by IPC. It has to be taken into account that wortmannin is a 

cell-permeable fungal metabolite that acts as a selective and irreversible inhibitor of the 

PI3K catalytic activity that has been widely used in pharmacological cardioprotection 

studies, although similar results have also been demonstrated using the reversible inhibitor 

LY294002 (155). 

The fundamental concept of the RISK pathway has been described previously in 

section 1.6, but may be briefly summarized in two ways: 1) short-term activation of these 

kinases is protective triggering prosurvival pathways, whilst long-term activation may have 

detrimental effects such as cell growth and hypertrophic tissue (101,181); and 2) their 

activation occurs both during the preconditioning phase (275) and at reperfusion (89), also 

known as the trigger and the mediator phase, respectively. These two phases are crucial to 

mediate protection, as both of them can be pharmacologically intervened (159). Dissecting 

the key signalling events occurring at both phases when abolishing PI3K phosphorylation is 

of the utmost importance, as the IPC signalling architecture can be extrapolated to most 

cardioprotective therapies (78). 

PI3K-Akt, one of the parallel cascades involving the RISK pathway, has been 

described to activate a kinases cascade. The activation of PI3K by IPC promotes the 

phosphorylation of PDK1, which in turn activates Akt in order to subsequently recruit a 

wide range of pro-survival downstream targets such a GSK3β, p70s6k and eNOS(186). On 

the contrary, PTEN counter-regulates the action of PI3K by dephosphorylating its product 

phosphatidylinositol(3,4,5)phosphate (abbreviated as PIP3). The activation of the PI3K/Akt 

pathway inhibits mPTP opening, which is considered the major downstream end-effector of 

the RISK pathway (10,254).  
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6.5.2 Impact of PI3K inhibition in IPC activated signalling cascades 

Akt is a serine/threonine protein kinase. Its activity is primarily controlled by PI3K 

and PTEN through the modulation of PIP3 levels (295). Full activation of Akt happens 

through the phosphorylation of a Thr-308 residue in the catalytic domain by PDK1 and a 

Ser-473 residue by  mTOR2, whilst its inactivation is mediated through dephosphorylation 

of the two regulatory sites by the serine-threonine phosphatase PP2A. Akt is widely used as 

surrogate marker for PI3K activation (296). Akt phosphorylation at both residues was 

abrogated in all preconditioned hearts treated with wortmannin. Therefore, in 

preconditioned hearts treated with the PI3K inhibitor, the abolishment of IS-sparing effect 

was mirrored by lack of Akt phosphorylation. 

GSK3β is a serine/threonine kinase that has been proposed to be the downstream 

point of convergence of the RISK pathway, which when phosphorylated (and thus inhibited) 

at serine-9 by Akt in reponse to PIP3 increase (293), inhibits the mPTP opening (297), 

enhancing cell survival (164). Our data suggest that GSK3β is phosphorylated at the trigger 

phase as a consequence of PI3K activation, but this status is lost at the early reperfusion 

stage. In agreement with our results, Tong et al. (293) have reported increased 

phosphorylated levels of GSK3β following an IPC protocol, which were blocked by 

wortmannin. Moreover, pretreatment with GSK3β inhibitors also mimicked the protective 

effect of IPC through a reduction on myocardial IS(293). In another study,  pharmacologic 

and genetic ablation of GSK3β failed to abrogate the protective effect conferred by IPC 

(297). Similarly, mice with a knockin of GSK3β mutated at ser9 and ser21 remained 

amenable to protection by IPC (164). Overall, it seems that inhibition of GSK3β may play an 

important role during the IPC protocol, but not afterwards. However, future studies need 

to clarify the contentius role of GSK3β in cardioprotection.  

The activation of prosurvival protein kinases has been studied in great detail in the 

context of preconditioning. However, little is known about the role of their counter-

regulator phosphatases in this setting. Inhibition of phosphatases (PP1 and PP2A) during 

the preconditioning phase have been shown to abolish the protective effect of 

preconditioning, whilst its activation during reperfusion improved protection in 

preconditioned hearts (298). The ability to up-regulate the RISK pathway by the use of 
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phosphatase inhibitors during the early reperfusion phase remains largely unexplored 

despite being an attractive approach to limiting IRI. 

PTEN is a dual lipid and protein phosphatase that antagonizes PI3K/AKT signalling 

pathway. Whereas PI3K activity results in an increased production of the second messenger 

PIP3 to activate the prosurvival downstream cascade, PTEN dephosphorylates PIP3 to PIP2 

to downregulate Akt activation. The phosphorylated form of PTEN is considered inactive. 

After dephosphorylation, PTEN is activated but is also degraded rapidly as its half-life is 

substantially reduced (299). Therefore, the phosphorylation (inactivation) of PTEN should 

be expected to induce cardioprotection following an IRI insult, whilst its dephosphorylated 

(activated) status should be expected to be detrimental (300,301). Interestingly, our results 

suggest that IPC induces inhibition of negative regulator PTEN. This observation is in line 

with the study of  Cai and Semenza who identified a reduction in the activity of PTEN 

following IRI in an isolated perfused rat heart model (299). In the same vein, PTEN 

haploinsufficiency in mice has been shown to reduce the threshold of protection in IPC 

(281). This result suggest that IPC not only activates prosurvival kinases, but also inhibits 

their major counter-regulators (i.e. PTEN, PP1 and PP2A). Additionally, IPC-mediated PTEN 

phosphorylation appears to be independent of PI3K, suggesting that both activation of PI3K 

and inactivation of PTEN can work in unison, which may suggest that pharmacological 

intervention of both proteins at the same time may produce synergistic effect in the 

context of cardioprotection. Further studies need to be undertaken to explore this 

hypothesis. 

6.5.3 Impact of PI3K inhibition in IPC activated ERK and STAT3 

The molecular pathways involved in cardioprotection have been reported as highly 

interactive (78). Within the RISK pathway, some studies have suggested crosstalk between 

the PI3K-Akt and the ERK1/2 cascades (102). Our study shows that ERK is phosphorylated 

following an IPC stimulus, but partially inhibited after the administration of the PI3K 

inhibitor wortmannin. These results may suggest a PI3K predominance during the IPC early 

trigger phase, although they contrast with the lack of effect of the PI3K inhibitor on ERK 

phosphorylated levels at reperfusion. Using a pharmacological approach with specific PI3K 

and ERK inhibitors in the isolated perfused rat heart model, a previous study from The 
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Hatter Cardiovascular Institute suggested that the crosstalk between PI3K/Akt and ERK is 

not balanced, with the PI3K cascade playing a more determinant role in mediating cellular 

survival (102). 

The SAFE pathway, which involves TNFα, JAK and STAT3, has been described as an 

alternative RISK-independent cascade mediating the cardioprotective effect elicited by IPC. 

The cardioprotective effect of STAT3 is believed to be partly related to its translocation to 

the mitochondria by modulating respiration and inhibiting the mPTP opening (302). Like 

the RISK  pathway, the SAFE pathway is also activated during both the trigger and the 

mediator phase of reperfusion to protect the heart against IRI (92,95). In this study, STAT3 

have demonstrated to be activated following an IPC protocol, irrespective of the inhibition 

of PI3K. Interestingly, upon administration of wortmannin, the protective effect elicited by 

IPC was lost despite the STAT3 pathway being activated. Our results differ from those 

described by Lecour et al. (95) in adult mouse cardiomyocytes, in which wortmannin 

administered during the IPC trigger phase decreased STAT-3 phosphorylation, abolishing 

the protection afforded by IPC. However, in our study the mean infarct size for hearts 

treated with PI3K inhibitor are approximately in a half-way point between the 

preconditioned and the non-preconditioned hearts. This difference has been enough to 

lose  statistical significance, but one might speculate on the involvement of more than one 

signalling cascade to promote maximal protection, as it has been demonstrated that using 

a STAT-3 inhibitor also abolishes the protective effect of IPC (95). Rather than contradict, 

our results seems to complement the concept of having multiple protective pathways, 

namely both RISK and RISK-independent pathways. This may be important in establishing a 

multi-pathway stratagem when testing for further cardioprotective therapies (174). 

In the light of these data, PI3K can be hypothesized to have a dominant role to 

mediate the IPC protective effect. On close examination, the activation of the p85 

regulatory subunit of PI3K has been demonstrated to control the serine phosphorylation of 

STAT3, a critical step for the formation of stable STAT3 homodimers (303). STAT3 activation 

has also been shown to be dependent on PI3K recruitment in endothelial cells subjected to 

hypoxia/reoxygenation injury (304), thus suggesting that PI3K can regulate STAT3 

phosphorylation. Despite this evidence supporting a predominant role for PI3K in IPC, other 

alternative pathways have been demonstrated to be involved in a RISK-independent 
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manner. Hence, cardiac-specific STAT3 deficient mice have been unable to show Akt 

phosphorylation following an IPC stimulus, and the pharmacologic preconditioning induced 

by TNFα have demonstrated protection through STAT3 phosphorylation without involving 

PI3K activation (92). It is understood that the activation of both the RISK and the SAFE 

pathway can occur concomitantly either in IPC or in pharmacologic conditioning (103), as 

they are not mutually exclusive., although it is unknown whether activation of the two 

pathways provides an additive effect to maximize the protection.  

6.5.4 Limitations 

Only one PI3K inhibitor was used, and its effect when administered alone was not 

tested, although many previous studies have shown that wortmannin does not have major 

effects on myocardial IS and protein phosphorylation by itself (86,155). Wortmannin may 

inhibit other kinases such as myosin light chain kinase or PI 4-kinase at concentrations 

higher than that required for inhibition of PI3K. With regard to protein analyses, not all 

phosphorylated residues were studied here - ie PTEN possesses three phosphorylation sites 

(Ser380, Thr382, and Thr383) and STAT3 can be phosphorylated at both its serine 727 and 

tyrosine 705 residues. Of note, many other kinases and proteases remain to be explored in 

this setting. 

6.5.5 Summary and conclusions 

In summary, PI3K activity is required during both the trigger and mediator phases 

for IPC to limit the infarct size. IPC increased the levels of Akt phosphorylation during both 

the trigger and mediator phases and this effect was fully abrogated by PI3K inhibition in 

both phases, whilst its downstream GSK3β was phosphorylated only during the trigger 

phase after IPC. Both PTEN and STAT3 were phosphorylated during both the trigger and 

mediator phases after IPC, but this was independent of PI3K. IPC increase ERK 

phosphorylation during both phases, being only PI3K-dependent during the trigger phase.  

In conclusion, the PI3K cascade has a central role within the RISK pathway. This 

pro-survival kinase cascade is considered a unifying signalling pathway, as it is recruited not 

only by IPC, but also by pharmacological agents (66). Further elucidation of the 
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mechanisms underlying the IPC-induced protective effect is expected to reveal novel 

targets to promote myocardial salvage. Particularly, those mediators activated at early 

reperfusion have the potential to be modulated by pharmacological agents to benefit 

patients undergoing acute myocardial infarction (174). In this respect, the study of PI3K 

isoforms appears of utmost importance to identify specific molecular targets in 

cardioprotection. As it happens with PKC isoforms, where the ε isoform has demonstrated 

to be protective in the mediator phase (hence targetable using a ε-PKC activator) and the δ 

isoform has shown to be deleterious in the trigger phase (then targetable using δ-PKC 

inhibitors) (165,166,305), it may well be that PI3K isoforms have also an antagonistic role in 

this setting. The next chapters focus on the role of a specific isoform of PI3 kinase in 

cardioprotection, namely the PI3Kα  
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Chapter 7 DIFFERENTIAL PI3Kα AND PI3Kβ EXPRESSION IN HEART                

TISSUE AND CELLS 

7.1 Background 

Class I PI3K is a family of isoenzymes which produce the lipid second messenger PIP3 

and transduce signals that control a variety of cellular events, such as cell survival. In the 

heart, multiple PI3K isoforms are expressed, each playing potentially distinct roles (207). 

Isoform selective inhibition is likely to show future important outcomes in the field of 

cardioprotection. Once the central role of PI3K in the cardioprotective effect conferred by 

IPC is elucidated (see Chapter 6), the question arises as to whether there is any isoform-

specificity for the protective effect mediated by the RISK pathway. 

As discussed in section 1.5.4, cardiomyocytes have largely been assumed to have a 

central role in cardioprotection. However, the premise of other cardiac cells either 

providing protection or being protected through cardioprotective interventions (i.e. 

conditioning phenomenon) seems equally plausible (121). Although the protective effect of 

the RISK pathway activation have been mostly attributed to occur in cardiomyocytes, little 

is known about its impact on other relevant cell types. 

PI3K isoform expression in the heart has received little attention so far. The most 

highly expressed PI3K isoforms in the heart seems to be the α and β isoforms (206). Both α 

and β variants are expressed in both mouse cardiomyocytes (306) and endothelial cells 

(217), but no protein quantification have been reported to adequately compare their 

expression levels between cell types. Further, specific information is needed with regard to 

whether PI3K isoform expression pattern is comparable between species. In order to 

extrapolate future findings, differences in the expression of PI3K isoforms in mouse and 

human heart tissue should be brought into comparison; this information being largely 

lacking in the literature. 

This chapter focuses upon the characterization of mouse PI3K α and β isoforms 

expression under basal conditions in both cardiomyocytes and mouse cardiac endothelial 

cells (MCECs), as well as in both mouse and human heart tissue. 
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7.2 Research objectives and experimental aims 

Are PI3Kα and PI3Kβ expressed in mouse and human tissue? In which cell types?  

Hypothesis  

To support the hypothesis that a given PI3K isoform protects the myocardium from IRI, it is 

necessary to first demonstrate its expression in the mouse cardiac tissue. To determine 

whether these results can potentially be extrapolated to the clinical arena, it is important 

to ascertain whether its expression occurs in heart human tissue. Furthermore to evaluate 

whether this effect is cardiomyocyte or endothelial cell-dependent, it is also required to 

study PI3K isoforms expression in both cell types. 

Experimental aims 

The aim of this section is to characterize the protein levels of both PI3Kα and β in both 

mouse and human heart tissue as well as in both primary isolated cardiomyocytes and 

mouse cardiac endothelial cells. Below is an overview of the main aims, including the 

proposed models related to the research question of this chapter: 

Aim 1:  Investigate the percentage of PI3Kα protein in mouse and human heart tissue as 

well as in primary isolated cardiomyocytes and endothelial mouse cardiac cells 

• Collect protein from tissue/cell types not being subjected to IRI protocols and use 
Western blot analysis to measure protein basal levels of PI3Kα, running the 
samples alongside p110α purified protein to extrapolate and quantify the amount 
of protein in each sample. 

Aim 2:  Investigate the percentage of PI3Kβ protein in mouse and human heart tissue as 

well as in primary isolated cardiomyocytes and endothelial mouse cardiac cells 

• Collect protein from tissue/cell types not being subjected to IRI protocols and use 
Western blot analysis to measure protein basal levels of PI3Kβ, running the 
samples alongside p110β purified protein to extrapolate and quantify the amount 
of protein for each sample. 
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7.3 Methods 

7.3.1 Experimental design and study protocols 

A total of 20 samples were used for this experiment: 

1)  Mouse heart tissue. Five animals were perfused for 30 min in the Langendorff 

apparatus with modified Krebs-Henseleit buffer, without applying any intervention.  

2) Human heart tissue. Five right atrial appendage samples were collected from 

patients undergoing cannulation for cardiopulmonary bypass either for CABG or 

valve replacement at submerged in Tyrode’s buffer for 30 min (see section 3.8 for 

further details). 

3) Adult mouse ventricular cardiomyocytes. Five samples of primary cardiomyocytes 

were isolated using liberase according to the protocol described in section 3.6. 

Once stabilized for 30 min, cells were collected for protein analysis. 

4) Mouse cardiac endothelial cells (MCEC, immortalized line). Five samples of MCEC 

were passaged and subsequently cultured for 30 min according to the protocol 

described in section 3.7. 

Once collected, samples were added to protein lysis buffer and the tissues were 

homogenized before proceeding to BCA protein quantification. Details on the Western blot 

protocol be found in section 3.9. A nitrocellulose blotting membrane (GE Healthcare Life 

Sciences, UK) was used for protein transfer. Primary antibodies used were: PI3 Kinase 

p110α (Cell Signaling, #4249), PI 3-Kinase p110β (Santa Cruz Biotechnology, sc-602) and 

anti-GAPDH (mAbcam 9484). The dilutions being used for each antibody were 1:1000, 

1:500 and 1:20000, respectively. 
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7.3.2 Quantification of basal PI3Kα and PI3Kβ protein expression 

In order to quantify protein expression, three different amounts of purified protein 

(1, 3 and 10 ng for PI3Kα and 5, 10, 20 ng PI3Kβ, both obtained from Merck Millipore) were 

loaded in the gels alongside the samples of interest. After being transferred, membranes 

were probed with specific primary antibodies for PI3Kα and PI3Kβ. For each membrane, 

PI3Kα and PI3Kβ values were extrapolated using a linear regression. Results were 

expressed as a percentage of the amount of protein studied out of total protein loaded. 

7.3.3 Data analysis 

Western blot data is described as the percentage of the PI3K isoform ± SEM. 

Normal distribution of the data was determined using the Shapiro-Wilk test for both data 

sets. Highly skewed distributed data was compared using the non-parametric Mann-

Whitney test, whilst normal distributed data were compared using unpaired t test. STATA 

software, version 13.1 (Stata Corp, College Station, TX, USA) was used for the statistical 

analysis. GraphPad Prism version 6.00 (GraphPad Software, La Jolla California, USA) was 

used to perform the graphics. 

 

7.4 Results 

The basal expression of α and β isoforms of PI3K were studied in several tissues and 

cells. In order to assess the potential translation ability of subsequent results, we first 

examined the myocardial content of PI3Kα and PI3Kβ in both mouse and human heart 

tissue. PI3Kα is expressed in a similar proportion in both tissues (0.019 ± 0.003 % of total 

protein in the mouse sample was PI3Kα, whilst 0.021 ± 0.004 % of total protein in the 

human tissue was PI3Kα, P=0.767). In contrast, the myocardial content of PI3Kβ differed 

between groups, this isoform being having a ~3-fold increase in the mouse tissue (0.019 ± 

0.005% of total protein was PI3Kβ for mouse tissue vs. 0.006 ± 0.003% for human tissue, 

P=0.039). Therefore, the α isoform of PI3K seem approximately equally abundant in both 
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tissues, unlike the β isoform which is further expressed in the mouse tissue. Figure 7-1 

graphically illustrates these data, whilst Table 7-1 shows the overall raw data. 

In order to study the type of cells potentially involved in PI3Kα- and/or PI3Kβ-

mediated protective effect, the levels of these isoforms were then compared between 

adult ventricular mouse cardiomyocytes and mouse cardiac endothelial cells. Using this 

quantitative approach, mouse cardiac endothelial cells demonstrated higher PI3Kα levels in 

comparison to adult ventricular mouse cardiomyocytes (0.012 ± 0.001% of total protein 

was PI3Kα for cardiomyocytes vs. 0.029 ± 0.009 % for endothelial cells, P=0.047). 

Interestingly, PI3Kβ levels in mouse cardiac endothelial cells were also higher when 

compared to adult ventricular mouse cardiomyocytes, following a similar pattern (0.010 ± 

0.004 % of total protein was PI3Kβ for cardiomyocytes vs. 0.036 ± 0.004 % for endothelial 

cells, P=0.001). 
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Figure 7-1: PI3Kα and PI3Kβ expression 

PI3Kα expression in mouse and human tissues is depicted in panel A, whilst illustrated in 
panel B for cells. Panel C and D refer for PI3Kβ expression in tissues and cells respectively. 
Each bar represents an n=5. *P<0.05, **P<0.01, ***P<0.001, and ns, non-significant. 
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Mouse heart 

tissue 
Human atrial 

tissue 
P-value 

Adult mouse 
ventricular 

cardiomyocite 

Mouse cardiac 
endothelial 

cell line 
P-value 

PI3Kα (%) 0.019 ± 0.003 0.021 ± 0.004 0.767 0.012 ± 0.001 0.029 ± 0.009 0.047 

PI3Kβ (%) 0.019 ± 0.005 0.006 ± 0.003 0.039 0.010 ± 0.004 0.036 ± 0.004 0.001 

Table 7-1: Raw data for protein expression of PI3Kα and PI3Kβ 

Raw data related to Figure 1A to D. 

Results are presented as mean ± SEM and expressed as percentage of protein (PI3Kα or β) 
relative to total protein in the sample.  

 

7.5 Discussion 

The main findings of this study can be summarized as follows: (1) PI3Kα is 

expressed in the same proportion in both mouse heart and human atrial tissue; (2) PI3Kα 

levels are higher in mouse cardiac endothelial cells than in adult ventricular mouse 

cardiomyocytes; (3) PI3Kβ protein content is higher in mouse heart tissue than in human 

atrial tissue; and (4) PI3Kβ is expressed in higher amount in mouse cardiac endothelial cells 

than in adult ventricular mouse cardiomyocytes. 

As this PhD does not involve transgenic mice models (such as caPI3Kα or dnPI3Kα), 

but a more physiological approach using pharmacological inhibitors, it is important to 

actually quantify the expression of PI3Kα and PI3Kβ isoforms in the heart. Future results on 

the α isoform can be reasonably extrapolated from mouse to human based on the 

presence of similar amounts of the isoform, whilst caution should be taken when 

extrapolating the results obtained exploring the role of PI3Kβ. In subsequent experiments, 

Akt instead of PI3K will be assessed to evaluate PI3K activation. This is because it would be 

needed a convenient read-out of PI3K activation, and expression levels do not necessarily 

reflect the activity. Moreover, the catalytic subunit (p110) of PI3K, which determines the 
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isoform of the protein, is actually regulated by the regulatory subunit p85, which is 

phosphorylated when activated. Akt is a well-characterized shared target of PI3K, which is 

not isoform-specific. Therefore, Akt can be used routinely as a surrogate for PI3K activation 

and inhibition in line with most publications (194,212,225,307), and the PI3K isoform 

activity will be determined either using specific activators or inhibitors. 

Beyond the importance of the comparison in the expression of PI3Kα and PI3Kβ 

between mouse and human tissue, other relevant subjects needs to be discussed, such as 

the differential expression of PI3K isoforms in non-cardiac and cardiac cells and tissues, as 

well as the novel findings on PI3K isoforms specific sub-cellular location. 

7.5.1 Differential PI3K isoform expression in non-cardiac cells and tissues 

Vanhaesebroeck and colleagues have tried to gain insight into the apparent non-

redundant biological roles of class IA PI3K isoforms assessing their absolute protein amount 

in several mouse tissues (206) including muscle, liver, fat brain and spleen. They 

determined that the most abundant catalytic subunits were p110β (in liver, brain and fat) 

or p110δ (in spleen), with a lower abundance of 110α in most tissues tested (206). 

Unfortunately, they did not evaluate heart tissue. However, they observed two interesting 

findings in muscle tissue: (1) the absolute protein amount of PI3K in the muscle was clearly 

lower when compared with the rest of the tissues; and (2) the muscle was the only tissue 

showing PI3Kα as the predominant isoform, followed at short distance by PI3Kβ. Taking this 

observation with caution due to the gap between skeletal and cardiac muscle tissue, our 

results can be considered in the same line. In a separate study examining the specificity of 

insulin for the PI3Kα-Insulin receptor substrate activation, Foukas et al. performed 

quantitative immunoblot analysis of p110α and p110β expression in mouse liver, muscle 

and fat (202). They demonstrated that p110α levels were twofold higher than p110β in 

liver and muscle, but similar in adipose tissue. 

7.5.2 Differential PI3K isoform expression in cardiac cells 

Few publications have specifically determined the expression of PI3K isoforms in 

cardiac cell types. Two main studies have assessed differential PI3K isoform expression, one 
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in primary cardiomyocytes and the other in endothelial cells. Wenzel et al. demonstrated 

that all four class I PI3K isoforms are expressed in cardiomyocytes on the mRNA and 

protein level, although neither quantifications nor comparisons between levels of each 

isoform were performed (306). Vanhaesebroeck’s group studied both the kinase activity 

and expression for each class IA isoform in mouse endothelial cells. They reported that 

p110α kinase activity is particularly high when compared to other isoforms, and 

preferentially induced by tyrosine kinase ligands (insulin), whilst p110β signals downstream 

of GPCR ligands, such as SDF1α (217). Using a qualitative assessment, p110α, p110β and 

p110δ protein expression was studied in both MCECs and HUVECs, demonstrating a similar 

qualitative expression of p110α and p110β, and a very low expression of p110δ, 

particularly when these cells were compared with leukocytes (217). 

In comparison to the aforementioned studies, our results offer a quantitative 

assessment of the PI3Kα and PI3Kβ isoform and demonstrate that both isoforms are 

expressed in higher amount in mouse cardiac endothelial cells that in primary isolated 

cardiomyocytes. 

7.5.3 Differential PI3K isoform sub-cellular location 

Further layers of complexity can be added to PI3K isoform expression in cells by the 

existence of differences in their subcellular location and its degradation along an IRI insult. 

Some publications suggest a differential subcellular location of PI3K isoforms. In 

mouse sympathetic and sensory neurons, p110α have been found predominantly localized 

at the plasma membrane, whilst p110β have been localized in the perinuclear region (308), 

therefore suggesting that the PI3K isoforms may be targeted to different subcellular 

organelles and may then mediate different physiological functions. In an in vitro cell model, 

Kumar et al. have suggested that nuclear, but not cytosolic PI3Kβ has an essential role in 

cell survival, through the association of the p85β regulatory subunit with the p110β 

catalytic subunit (220). Unfortunately, we did not test for the sub-cellular location of the 

PI3Kα and PI3Kβ isoforms in our study. 

The protein levels of the catalytic subunit p110γ have been studied in a 

Langendorff mouse perfusion model at two time-points: following an 
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ischaemia/reperfusion insult and following an IPC stimulus. Interestingly, there was a 

drastic reduction in p110γ following IRI. In contrast, there was less protein levels reduction 

with IPC, suggesting that a potential mechanism of myocardial IRI is the selective 

degradation of p110γ, given that no changes in protein levels of other catalytic subunits 

p110α and p110β, or the class IA regulatory subunit p85 were observed following IRI or IPC 

(309).  

7.5.4 Potential implications of the findings on cardioprotection 

Temporally controlled overexpression of cardiac-specific PI3Kα have demonstrated 

to enhance contractility in the Langendorff-perfused mouse model (228). Moreover, the 

PI3Kα-Akt pathway can promote physiological exercise-induced growth (225). In a 

myocardial infarct-induced heart failure model, constitutively active PI3Kα has 

demonstrated to improve left ventricular function when compared to controls (227). All 

these observations, on top of the results being exposed in this chapter, suggest that PI3Kα 

may have a relevant role in cardioprotection. PI3Kβ is less expressed in human tissue, and 

therefore its future related results should be taken more cautiously if the aim is to translate 

the findings to the clinical setting. 

7.5.5 Limitations 

Western blot analyses were performed separately by two blocks according to 

isoform groups: samples for PI3Kα were run in the same gels, whilst samples for PI3Kβ 

were run in separate gels. This means that, despite being a quantitative assessment, only 

samples which were run in the same gels should be strictly compared – hence the amount 

of protein can be compared within cells and tissues for each isoform, but not between 

groups (i.e. the amount of PI3Kα should not be compared with PI3Kβ levels in a given cell or 

tissue). Moreover, it is needed to take into account that the PI3K antibodies used might 

have had different affinities for mouse and human PI3K isoforms, which would impact on 

the accuracy of the comparisons of isoform expression between human and mouse tissues 

presented above. 
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The method of protein quantification is based on a linear regression relationship 

between the amount of purified protein being loaded and their corresponding band 

intensity in the membrane. The values are extrapolated from this linear correlation and 

potentially subjected to some kind of systematic error. Therefore, differences between 

groups (i.e. mouse vs human heart tissue) should be more accurate than the absolute 

quantification of protein levels (i.e. 0.019 ± 0.003% for PI3Kα levels in mouse heart tissue). 

Human heart tissue was obtained from the right atrium. Patients with arrhythmias 

were excluded based on a previous publication demonstrating that  PI3K activation in atrial 

appendages from patients with atrial fibrillation was lower compared with tissue from 

patients in sinus rhythm (310). Despite carefully selecting patients without arrhythmias, 

some might argue that left ventricular tissue would better represent the human model.  

Caution should be taken when extrapolating the results on an immortalized cell line 

(mouse cardiac endothelial cells) to a more physiological setting. 

In this chapter, the focus was on the comparison of the class IA PI3K isoforms 

p110α and p110β. There is nonetheless an additional class IA isoform, p110δ, and the 

closely related class IB p110γ isoform that should be also taken into account. Although 

interesting, this is beyond the scope of this thesis. 

7.5.6 Summary and conclusions 

To our knowledge, this is the first study reporting comparisons in protein levels of 

PI3Kα and PI3Kβ between mouse and human heart tissue. PI3Kα is expressed in a similar 

proportion in both mouse heart and human atrial tissue, whilst PI3Kβ protein content is 

higher in mouse heart tissue than in human atrial tissue. These observations set PI3Kα as a 

potential target with translational value in cardioprotection.  

Differences in protein levels between cardiomyocytes and mouse cardiac 

endothelial cells have also been reported. In general, cardiac endothelial cells present a 

higher content of either PI3Kα or PI3Kβ when compared with cardiomyocytes. 
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Chapter 8 ROLE OF PI3Kα IN ISCHAEMIC PRECONDITIONING 

8.1 Background 

Ischaemic preconditioning is a potent cellular endogenous protective mechanism 

consisting of transient cycles of sub-lethal coronary occlusion (ischaemia) and reperfusion 

(33). Its signalling architecture is considered the paradigm for cardioprotection (66) and has 

been extrapolated to most cardioprotective interventions. 

The cellular mechanisms underlying the protection elicited by IPC against 

myocardial IRI have been the subject of intense research. Work has focused on identifying 

novel targets at different levels e.g triggers, mediators and end-effectors of IPC has been 

studied in the hope of producing agents mimicking their action. The mediators affording 

IPC have received special attention. Although several signal transduction pathways have 

been described (78,92), the RISK pathway is considered the central prosurvival kinase 

cascade mediating the IPC-induced protective effect. This pathway actually encompasses 

two parallel signalling cascades: PI3K-Akt and MEK1-ERK1/2 (66).  

Within the RISK pathway, PI3K plays a dominant role in mediating the IPC 

protective effect, as illustrated in Chapter 6. Inhibitors of PI3K such as wortmannin (89) and 

LY294002 (155) have been very helpful for probing the function of PI3K in IPC, but as with 

all pharmacological inhibitor studies questions of specificity as to which specific isoform are 

being inhibited at the dosages being used are a concern. In recent years, isoform-specific 

PI3K inhibitors have been developed in the field of oncology (190) but these yet to been 

explored in the context of cardioprotection, which could aid in the development of PI3K 

isoform-specific agents enhancing  such protection. 

Class I PI3K is a family of lipid and protein kinases that phosphorylate PIP2 to form 

PIP3 to mediate cellular actions. Within this class, PI3Kα and PI3Kβ are well expressed in 

the heart (see Chapter 7), the former binding RTKs and the latter both RTK and GCPRs. PI3K 

isoforms convey distinct roles in cardiac physiology. PI3Kα has emerged as a key player in 

cardiac physiology, enhancing contractility (228,230), and promoting physiological exercise-
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induced growth, but not pathological hypertrophy (226), whilst PI3Kβ has been mainly 

related to platelet biology (311).  

In IPC, there is biphasic activation of PI3K signalling, first during the preconditioning 

cycles (or “trigger” phase) and then again during the first few minutes of reperfusion 

(“mediator” phase) (10,66,292). Insights into the role of PI3K isoforms in each phase can be 

gained by the use of isoform-specific pharmacological inhibitors (235–237). As it happens 

with PKC isoforms, where the ε isoform has demonstrated to be protective in the mediator 

phase (hence targetable using a ε-PKC activator) and the δ isoform has shown to be 

deleterious in the trigger phase (then targetable using δ-PKC inhibitors) (165,166,305), PI3K 

isoforms could potentially have either synergistic or antagonistic roles in IPC phases of 

cardioprotection.  

Once having elucidated the role of PI3K in IPC as per Chapter 6 and the PI3K isoforms 

protein content in the heart as per Chapter 7, this chapter focuses on the identification of 

the specific role of PI3Kα in the protective effect elicited by IPC. 

 

8.2 Research objectives and experimental aims 

Is PI3Kα involved in the cardioprotective effect elicited by IPC either in the “trigger” or 

the “mediator” phase? 

Hypothesis  

As demonstrated in Chapter 6, PI3K is involved in the IS-sparing effect of IPC in both the 

“trigger” and the “mediator” phase. The hypothesis is that PI3Kα may have a different role 

(even antagonistic) in each crucial phase where the PI3K-Akt is activated following an IPC 

stimulus. 

Experimental aims 

The aim of this section is to systematically evaluate the role of PI3Kα in IPC at both time-

points in both the ex vivo and in vivo models. Below is an overview of the main aims, 

including the proposed models related to the research question of this chapter: 
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Aim 1:  Select PI3Kα inhibitors dose  

• Collect protein from mouse hearts exposed to the PI3Kα canonical activator 
(insulin) and to several doses of two inhibitors to measure levels of Akt activation.  

Aim 2:  Investigate the role of PI3Kα in the IPC “trigger” phase in the ex vivo model  

• Subject Langendorff-perfused mouse heart to ischaemia-reperfusion and 
subsequently quantify myocardial infarct size. 

Aim 3:  Investigate the role of PI3Kα in the IPC “mediator” phase in the ex vivo model 

• Subject mouse Langendorff-perfused heart to ischaemia-reperfusion and 
subsequently quantify myocardial infarct size. 

Aim 4:  Investigate the role of PI3Kα in the IPC “mediator” phase in the in the in vivo model  

• Subject mouse Langendorff-perfused heart to a non-recovery in vivo ischaemia-
reperfusion and subsequently quantify myocardial infarct size. 

Aim 5:  Evaluate Akt activation following PI3Kα inhibition in both the IPC “trigger” phase 

the IPC “mediator” phase 

• Collect protein from Langendorff-perfused mouse hearts subjected to IPC protocols 
and use Western blot analysis to measure levels of Akt activation.  

 

8.3 Methods 

8.3.1 Experimental design and study protocols 

Below is an outline of the experimental designs being presented in this chapter. 

Further details and sample size estimations can be found subsequently in their 

corresponding figures and footnotes. 
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1) Selection of PI3Kα inhibitors dose. In order to study the role of PI3Kα in IPC using a 

pharmacologic approach, it is first necessary to determine the appropriate 

concentration of inhibitors that is effective in the Langendorff-perfused mouse 

heart model. The effect of PI3Kα inhibition was evaluated through its impact on Akt 

phosphorylation in response to the PI3Kα canonical activator, insulin. Langendorf-

isolated mouse hearts were perfused during 15 min with modified Krebs and 

during 15 min more with one the following protocols using PI3Kα activator and 

inhibitors (3 animals per group): (1) Control (only modified Krebs); (2) Insulin 100 

nM; (3) Insulin 100 nM with the co-administration of wortmannin 100 nM; (4) 

Insulin 100 nM with the co-administration of G326 1 μM; (5) Insulin 100 nM with 

the co-administration of G326 3 μM; (6) G326 3 μM; (7) Insulin 100 nM with the co-

administration of BYL719 1 μM; (8) Insulin 100 nM with the co-administration of 

BYL719 3 μM; and (9) BYL719 3 μM. Samples were collected after finishing the 

protocol and processed to study Akt phosphorylation by Western blot analysis. 

Figure 8-1 illustrates the related study protocols.  

2) PI3Kα inhibition to abolish the IPC-induced cardioprotective effect on myocardial 

infarct size (ex vivo). In the Langendorff-perfused mouse model, isolated hearts 

subjected to 35 min ischaemia and 2 h reperfusion received either G326 or BYL719 

during the IPC protocol (which consisted of 4-cycles of 5 min ischaemia and 5 min 

reperfusion), or at reperfusion. G326 and BYL719 concentrations (3 μM) were 

chosen based on both previous publications (312–314) and in our dose-response 

characterization. Figure 8-2 and Figure 8-3, and their relevant footnotes summarize 

the study design for each set of experiments. 

3) PI3Kα inhibition to block the IPC-induced cardioprotective effect (in vivo). We 

used an in vivo mouse model of myocardial infarction (40 min ischaemia and 120 

min reperfusion) subjected to a 3-cycle IPC protocol, in the presence or absence of 

the PI3Kα inhibitor G326, administered through external jugular vein at 

reperfusion. Figure 8-4 outlines all the relevant information. 

4) Impact of PI3Kα inhibition in IPC-induced Akt phosphorylation (ex vivo).  In the 

Langendorff-perfused mouse model, hearts subjected to 15 min ischaemia and 5 

min reperfusion, receiving either G326 or BYL719 during the IPC protocol or at 
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reperfusion. Akt phosphorylation were assessed separately for each set of 

experiments. Figure 8-5 and its corresponding footnote outlines the study design.
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Figure 8-1: Overview of protocols aimed to select PI3Kα inhibitors dose 

Overview of protocols performed to assess Akt phosphorylation using Western blot 
analysis. White empty boxes represent periods of perfusion with modified Krebs-Henseleit 
buffer at 80 mm Hg, whilst white written boxes represent periods of perfusion with the 
same buffer and the corresponding drug. No protocol of ischaemia/reperfusion injury was 
applied. Arrows represent the moment where samples were collected. 

Akt and ERK phosphorylation levels were systematically studied in nine separate groups: (1) 
vehicle control; (2) insulin 100 nM; (3) insulin 100 nM in hearts pre-treated with 
wortmannin 100 nM; (4) insulin 100 nM in in hearts pre-treated with G-326 1 μM; (5) 
insulin 100 nM in in hearts pre-treated with G-326 3 μM; (6) BYL7193μM without insulin; 
(7) insulin 100 nM in in hearts pre-treated with BYL719 1 μM; (8) insulin 100 nM in in hearts 
pre-treated with G-326 3 μM; and (9) BYL719 3μM without insulin. 

A sample size of 3 animals/group was pre-defined considering both the exploratory 
purpose of the experiment and the principles of the 3Rs (Replacement, Reduction and 
Refinement) for humane animal research. 

 



145 

 

 

 

Figure 8-2: Study design for the assessment of PI3Kα inhibition during the IPC protocol 

Overview of the Langendorff-perfused mouse protocols aimed to determine the effect on 
infarct size of PI3Kα inhibition at the “trigger phase” in preconditioned hearts. A black box 
represents a period of ischaemia and a white box represents a period of perfusion with 
modified Krebs-Henseleit buffer at 80 mm Hg.  

Following 20 min stabilization, six different experimental protocols were tested:  (1) vehicle 
control; (2) IPC 4 cycles of 5 min ischaemia and  5 min reperfusion per cycle; (3) G326 3 μM 
administered during 60 min; (4) IPC 4 cycles in the context of G326 3 μM administered 
during the stabilization period and  IPC protocol; (5) BYL719 3 μM administered during 60 
min; and (6) IPC 4 cycles in the context of BYL719 3 μM administered during the 
stabilization period and  IPC protocol.   

Based on previous results from our laboratory, the sample size for this experiment was 
estimated for performing a two-sided test for k-independents samples (ANOVA) following 5 
pairwise comparisons (18% minimum expected effect size, common SD of 8%, α=0.05 and 
β=0.15, ~15% expected losses). Therefore, 42 animals were allocated according to a pre-
specified randomization sequence (seed 588130, STATA software version 13.1). Three 
animals were excluded as they failed to meet inclusion criteria, hence each group included 
6-7 animals. 
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Figure 8-3: Study design for the assessment of preconditioned hearts with PI3Kα 

inhibition at reperfusion 

Overview of the Langendorff-perfused mouse protocols aimed to determine the effect on 
infarct size of PI3Kα inhibition at the “mediator” phase in preconditioned hearts. A black 
box represents a period of ischaemia and a white box represents a period of perfusion with 
modified Krebs-Henseleit buffer at 80 mm Hg.  

Following 20 min stabilization, six different experimental protocols were tested:  (1) vehicle 
control; (2) IPC 4 cycles of 5 min ischaemia and 5 min reperfusion per cycle; (3) G326 3 μM 
administered upon reperfusion for 30 min; (4) IPC 4 cycles plus G326 3 μM administered at 
reperfusion for 30 min; (5) BYL719 3 μM administered upon reperfusion for 30 min; and (6) 
IPC 4 cycles in the context of BYL719 3 μM administered at reperfusion for 30 min.   

Based on previous results from our laboratory, the sample size for this experiment was 
estimated for performing a two-sided test for k-independents samples (ANOVA) following 5 
pairwise comparisons (18% minimum expected effect size, common SD of 8%, α=0.05 and 
β=0.20). In order to produce groups with equal numbers, animals were randomized after 
checking for the exclusion criteria. Therefore, 30 animals (n=5/group) were allocated 
according to a pre-specified randomization sequence (seed 93055, STATA software version 
13.1). Two animals were excluded as they failed to meet inclusion criteria. 
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Figure 8-4: Study design for infarct size assessment protocols in preconditioned hearts in 

the context of PI3Kα inhibitors at the “mediator” phase (in vivo model) 

Overview of the protocols related to the in vivo mouse model of ischaemia/reperfusion 
injury aimed to determine the effect on infarct size of PI3Kα inhibition at the “mediator” 
phase in preconditioned hearts. A black box represents a period of LAD occlusion 
(ischaemia) and a white box represents a period of LAD-non-occlusion 
(perfusion/reperfusion).  

Following 20 min stabilization, four different experimental protocols were tested:  (1) 
vehicle control; (2) IPC 3 cycles of 5 min ischaemia and 5 min reperfusion per cycle in the 
LAD; (3) IPC 3 cycles plus G326 3 μM administered at reperfusion; and (4) G326 3 μM 
administered at reperfusion. 

IPC was induced by applying 3 cycles of 5 minutes ischaemia and 5 minutes reperfusion in 
the LAD. Vehicle control and IPC mice received 50 μl of 6% DMSO in saline (vehicle). G326 
was dissolved in DMSO and injected via external jugular vein (6 μg per ~25g mouse) at 
reperfusion in groups 3 and 4.  

Based on our previous experience and the results in the ex vivo model, the sample size for 
this experiment was pre-defined in six animals per group. Animals were randomized 
accordingly until reaching the planned sample size. Seven animals were excluded as they 
failed to meet inclusion criteria. A total of 33 mice were used for infarct experiments and 
were randomly assigned to treatment group. Seven mice died during the procedure and 
were therefore excluded from analyses (3 in control group, 3 in IPC and 1 in IPC+G326), 
hence each group included six animals. 
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Figure 8-5: Study design and protocols to collect tissue for Western blot analyses to 

evaluate the role of PI3Kα in ischaemic preconditioning 

Overview of protocols performed to assess Akt and ERK phosphorylation using Western 
blot analysis. Black boxes represent periods of ischaemia, white boxes represent periods of 
perfusion with Krebs-Henseleit buffer at 80 mm Hg and coloured boxes represent the 
perfusion of a given drug (turquoise for G326 and salmon for BYL719). Arrows represent 
the moment where samples were  collected  (in red all samples collected after  IPC  
protocol,  known as “trigger” phase; in green all samples collected at reperfusion, known as 
“mediator” phase).  

Akt and ERK phosphorylation levels were systematically studied in two sections. In the first, 
samples were collected after finishing the IPC protocol (see red arrows in figure) and were 
classified into four groups: (1) vehicle control; (2) IPC 4 cycles; (3) IPC 4 cycles in the context 
of G326 3 μM; and (4) IPC 4 cycles in the context of BYL719 3 μM. In the second section, 
samples were collected after finishing a short protocol of ischaemia-reperfusion injury (see 
green arrows in figure) and were classified into six groups: (1) control; (2) IPC 4 cycles; (3) 
IPC 4 cycles with the administration of G326 3 μM during the “trigger” phase; (4) IPC 4 
cycles with the administration of BYL719 3 μM during the “trigger” phase; (5) IPC 4 cycles 
with the administration of G326 3 μM during the “mediator” phase; and (6) IPC 4 cycles 
with the administration of BYL719 3 μM during the “mediator” phase. 

A sample size of 5 animals/group was pre-defined in line with convention (257). Hearts 
were randomly assigned to each rig using a reproducible randomization sequence (seed 
224466 for STATA version 13.1). 
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8.3.2 Data analysis 

Infarct size data is expressed as mean±SEM, whilst protein phosphorylation data is 

reported in increase fold. Normal distribution of the data was determined using the 

Shapiro-Wilk test. Continuous data were compared either using one-way analysis of 

variance if normally distributed, or using the non-parametric Kruskal–Wallis test if highly 

skewed distributed. P-values for post hoc pairwise comparisons to the control group were 

adjusted using the Dunnett's test if normally distributed, or the Dunn’s test if non-normally 

distributed. A P value of less than 0.05 was considered statistically significant. STATA 

software version 13.1 (Stata Corp, College Station, TX, USA), SPSS Statistics version 21 (IBM, 

Armonk, NY, USA) and GraphPad Prism version 6.00 (GraphPad Software, La Jolla California, 

USA) were used to perform the analyses and the graphics.  

 

8.4 Results 

8.4.1 Selection of PI3Kα inhibitors dose  

To select adequate doses of PI3Kα inhibitors to be used, we applied a dose-response 

curve using G326 and BYL719, two distinct PI3Kα-selective inhibitors in the context of 

stimulation with insulin, a known canonical activator of PI3Kα. The results of these 

experiments indicate that the higher dose (3µM) of each drug is enough to inhibit 

Akt(Ser473) and Akt(Thr308) phosphorylation, when co-administered with its activator 

insulin. Hence, a similar phosphorylation to that observed without insulin or in presence of 

a pan-PI3K inhibitor, is observed when applying 3µM of the specific PI3Kα inhibitors (Figure 

8-6). We therefore used these concentrations in the next experiment, either before or after 

global ischaemia/reperfusion to determine the relevance of the PI3Kα isoform 

phosphorylation in preconditioning. 
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Figure 8-6: Effect of PI3Kα inhibitors on Akt phosphorylation 

Panel A and B displays the effect of PI3Kα inhibitors on Akt phosphorylation(Ser473) and 
Akt phosphorylation(Thr308), respectively. Panel C displays a representative example of 
Western blot 

Bar graph showing the percentage of phosphorylation increased in all groups compared to 
the control group, expressed as mean ± SEM (% of relative protein phosphorylation, 
normalized by its total), n=3 mice per group. Non-statistical differences were detected after 
using the Dunnett’s post-hoc test. **P<0.01; ***P<0.001 

Abbreviations: B, BYL719; C, control; G, G326; I, insulin, W, wortmannin. 
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8.4.2 PI3Kα inhibition in IPC 

In the isolated Langendorff-perfused ex vivo mouse model, IPC reduced myocardial 

IS compared to control (49±4% vs 23±2%, P<0.001). When PI3Kα inhibition was undertaken 

during the IPC protocol, protection was not abolished neither with G326 (26±3%, P<0.001) 

nor with BYL719 (25±3%, P<0.001) (Figure 8-7). Neither drug affected IS on its own (G326: 

52±4%, P<0.959; BYL719: 48±5%, P<0.997). In contrast, these same isoform inhibitors did 

block protection when given at reperfusion (G326: 50±3% and BYL719 47±4%, both non-

significant when compared to their control group) (Figure 8-8).  

This latter observation was confirmed in the in vivo setting when using the PI3Kα 

isoform inhibitor at reperfusion to block IPC protection (control 56±5% vs IPC+G326 60±5%, 

P=0.931, whilst IPC 29±6%, P=0.003) (Figure 8-9).  

 

Table 8-1 summarizes the results of this section. 

 Control IPC G326 3μm 
IPC + 
G326 

BYL719 3μm 
IPC + 

BYL719 

PI3Kα inhibition 
during IPC ex 
vivo () 

49.4±3.5 23.0± 1.8*** 52.3±3.5 25.5±3.2*** 47.9±4.5 25.0±3.0*** 

PI3Kα inhibition 
at reperfusion ex 
vivo () 

47.4±4.8 19.2±2.7 46.5±4.7 50.2±3.2 49.9±3.7 46.9±3.9 

PI3Kα inhibition 
at reperfusion in 
vivo () 

56.3±4.6 29.4±5.8** 59.7±4.9 56.7±4.9   

Table 8-1: Raw data on myocardial infarct size following IPC and PI3Kα inhibition 

Results are presented as mean ± SEM and comparisons were made against the 
corresponding control group (*P<0.05, **P<0.01, ***P<0.001). 
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Figure 8-7: Impact on myocardial infarct size of PI3Kα inhibition during the IPC protocol 

(ex vivo) 

Scatter dot blots: black lines represent mean ± SEM and circles represent individual animal 
data. 
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Figure 8-8: Impact on myocardial infarct size of PI3Kα inhibition at reperfusion (ex vivo) 

Scatter dot blots: black lines represent mean ± SEM and circles represent individual animal 
data. 
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Figure 8-9: Impact on myocardial infarct size of PI3Kα inhibition at reperfusion (in vivo) 

Scatter dot blots: black lines represent mean ± SEM and circles represent individual animal 
data. 

 

 

8.4.3 Akt phosphorylation following PI3Kα inhibition in preconditioned hearts  

In isolated Langendorff-perfused hearts, IPC increased Akt phosphorylation both 

after finishing the IPC protocol and at reperfusion (Figure 8-10). Unlike the results observed 

with regard to myocardial infarct size, PI3Kα inhibition blocked Akt phosphorylation also at 

both phases of PI3K activation. 



154 

 

 

 

Figure 8-10: Akt phosphorylation following PI3Kα inhibition in preconditioned hearts 

Panels A, C and E illustrate Akt activity measured after IPC in the presence or absence of 
PI3Kα inhibitors (ie: during the “trigger” phase), whilst Panels B, D and F illustrate Akt 
activity measured at reperfusion following PI3Kα inhibition during either the trigger phase 
only (“drug + IPC”), or at reperfusion (“IPC + drug”). 
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8.5 Discussion 

The main objective of this chapter was to assess whether PI3Kα inhibitors BYL719 

and G326 abrogate the cardioprotective effect of IPC either in the trigger or the mediator 

phase of its biphasic response. Using a targeted pharmacological approach, we have shown 

that the PI3Kα isoform is required during the reperfusion phase to reduce myocardial 

infarct size, as it has been demonstrated with IPC in both the ex vivo and the in vivo model 

of myocardial infarction. Interestingly, IPC-induced protection was not abolished when 

PI3Kα inhibitors were administered during the trigger phase despite the phosphorylation of 

AKT being inhibited. 

8.5.1 PI3K isoforms in IPC 

PI3K activation is crucial in IPC-induced cardioprotection (Chapter 6). Despite the 

great body of evidence demonstrating the importance of PI3K as mediator of IPC, very little 

information is available on the particular roles played by its different isoforms in ischaemic 

conditioning. In the past, the signalling pathways recruited by IPC have been dissected 

using pharmacological approaches with broad-spectrum PI3K inhibitors wortmannin and 

LY294002, which when applied abrogated the IPC-induced protective effect (74,155). Both 

agents are highly selective for PI3K (315), although neither drug is isoform-specific. The 

specific role of the PI3K isoforms initiating receptor-mediating signalling in IPC have 

received little attention to date, these studies being based on genetically modified animal 

models. The number of pharmacological PI3Kα inhibitors that have been developed to treat 

cancer (231) have provided a unique tool to explore the role of this isoform in myocardial 

IRI and IPC. 

In the field of cardiovascular physiology and disease, PI3Kα has been the focus of 

research in the subject of cardiac growth. McMullen’s group have actively investigated this 

topic, concluding that PI3Kα-Akt promotes physiological exercise-induced growth, but 

antagonize pathological growth in a model of pressure overload or a transgenic mouse 

model of dilated cardiomyopathy (223–226). Interestingly, both the cardiac growth and 

pro-survival actions have been intimately related in the kinases being recruited in 

cardioprotection. In fact, Akt and ERK awoke the interest by Yellon’s group about 15 years 
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ago due to their dual activity (see the origins of the RISK pathway in section 1.6.1). 

Following the same reasoning, PI3Kα isoform, which is known to have an important role in 

cardiac growth, becomes an attractive target to be used acutely in the setting of 

cardioprotection. 

To our knowledge, there is only one study evaluating the importance of PI3Kα in 

the context of myocardial infarction. In a heart failure model induced by myocardial 

infarction, Lin et al. have demonstrated that increased PI3Kα activity can protect the heart 

against left ventricular dysfunction following a chronic myocardial infarction (227). Of note, 

this study was not evaluating PI3Kα after an IRI insult, but its role in improving the 

subsequent pathological remodelling and heart failure that results from the chronic 

coronary occlusion without reperfusion (227). In this study, caPI3Kα mice demonstrated 

less function impairment when compared to controls (227). Our observations showing that 

PI3Kα can reduce myocardial infarction, and their observation demonstrating that the 

activation PI3Kα can improve ventricular remodelling in the infarct tissue appears to be 

additive. In a sense, PI3Kα has been demonstrated to be protective acutely (against IRI) and 

chronically (against negative myocardial remodelling). 

It is important to take into account that other PI3K isoforms have been postulated 

to play a relevant role in IPC. PI3Kγ has been shown to mediate the IPC-protective effect 

elicited by IPC. First, Tong et al. observed that transgenic mice with cardiac-specific 

overexpression of a catalytically inactive mutant PI3Kγ lose the protective effect conferred 

by IPC (232). Later, Ban et al. confirmed the importance of the PI3Kγ signalling cascade in 

IPC using PI3Kγ knockout mice (PI3Kγ-/-) in a Langendorff-based model. They observed that 

mice lacking the γ isoform which underwent IPC resulted in a poorer functional recovery 

and greater tissue injury (measured by LDH release) compared to their wild-type and PI3Kγ-

/+ counterparts. Based on the importance of GPCR in IPC and the well-known protective 

effect of adenosine through GPCRs, they also studied the adenosine-mediated 

pharmacological preconditioning, suggesting PI3Kγ as its main mediator (309). To put the 

counterpoint, they also demonstrated in the same article that mice expressing a cardiac-

specific kinase-deleted PI3Kα (PI3KαDN) were resistant to IRI, showing an already 

“preconditioned” status. This paper, which contradicts most of the results being exposed in 

these chapter, has several limitations: (1) the endpoint demonstrating myocardial injury 
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was not infarct size, but a less robust endpoint of functional recovery and LDH release, 

which cannot be fully correlated with the gold-standard infarct size as reported in Chapter 

4; (2) In PI3Kγ-/- mice, IPC resulted in a statistically significant increase in LDH release 

compared to their PI3Kγ-/- littermates not subjected to IPC, therefore suggesting that IPC is 

deleterious in the absence of the γ isoform; and (3) the compensatory role of other 

isoforms cannot be ruled out in such a transgenic model, as the targeted isoform is 

chronically removed from their natural environment. Unlike genetic approaches, 

pharmacological strategies are able to provide novel information by permitting temporally 

restricted inhibition during either the trigger phase or at reperfusion. As IPC is mostly 

mediated by GPCR ligands at the trigger phase and the genetically modified animals have 

“chronically” deleted PI3Kγ, we might speculate that PI3Kγ, which involves GPCR-ligand 

activation, may mediate IPC in the “trigger phase”, whilst PI3Kα, which involves tyrosine 

kinase activation, mediates IPC at reperfusion. Further studies are needed to confirm this 

hypothesis. 

8.5.2 PI3Kα activity is abrogated at both IPC phases 

Due to the technical challenges of directly measuring the PI3K product, PIP3, the 

phosphorylation of the downstream effector Akt has historically been used to indirectly 

assess the activity of PI3K, based on the assumption that this readout is proportional to 

PIP3 levels (312). In this study, Akt is used as a surrogate for PI3K activation and inhibition 

in line with published previous publications (194,212,225,307). 

In this study, PI3Kα inhibitors did not abrogate the myocardial IS-limiting effect of 

IPC when used before index ischaemia, although they abolished its effect when used at 

reperfusion. In contrast, Akt phosphorylation was abrogated when PI3Kα was inhibited 

either before or after index ischaemia. This apparent conflicting data deserves further 

discussion. Assuming that the specific-PI3Kα inhibitors do not block other isoforms, it might 

happen that PI3Kα-induced Akt phosphorylation is not relevant to promote myocardial 

salvage during the trigger phase.  

According to the results reported in Chapter 6, PI3K mediates both the trigger and 

the mediator phase of IPC. The primary action of PI3K is to rise PIP3 levels, which in turn 
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activates PDK1 and MTORC2 to actually phosphorylate Akt. It may well happen that the 

increase of PIP3 following PI3K activation by IPC do not only translate in Akt 

phosphorylation (which might be irrelevant in this phase), but in other unrevealed cellular 

mechanisms. 

8.5.3 Limitations 

These data predominantly rely on pharmacological manipulation, with all the 

inherent problems of target selectivity (199). Although it could be argued that genetically-

modified animal models could also have been used to further examine the role of PI3Kα 

this would not have been possible due to the chronic deletion of the protein which would 

not allow us to focus on specific phases of the conditioning process - i.e. before ischemia 

and at reperfusion. To overcome the risk of off-target effects with inhibitors, we used two 

structurally unrelated inhibitors and saw the same results. 

8.5.4 Conclusions 

Our present results on the isoform specificity of PI3K in IPC strongly suggest that 

PI3Kα is critical for IPC-induced heart protection against IRI. In the ex vivo model of 

myocardial infarction, it has been demonstrated that PI3Kα is required during the IPC 

reperfusion phase to reduce myocardial infarct size, whilst this same isoform is not 

mediating the effect during the trigger phase. The importance of PI3Kα activation at 

reperfusion in IPC was confirmed in the in vivo setting. 
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Chapter 9 PI3Kα PHARMACOLOGICAL ACTIVATION AT REPERFUSION 

9.1 Background 

The ability to manipulate and up-regulate the RISK pathway during the early 

reperfusion phase may provide a potential approach to limiting reperfusion-induced cell 

death. From early studies, insulin has been shown to to mimic the IPC protective effect, 

hence becoming a promising pharmacological agent in the field of cardioprotection 

(316,317).  

Insulin has been demonstrated to promote myocardial salvage when administered 

at reperfusion through the activation of the pro-survival kinase PI3K (86). The broad-

spectrum PI3K inhibitor wortmannin has been useful to implicate PI3K as the main 

mechanism of the insulin-induced cardioprotective effect, either in in vitro model using rat 

neonatal cardiomyocytes subjected to simulated hypoxia/reoxygenation (318), the ex vivo 

model of Langendorff-perfused rat heart (86) and the in vivo rat model of acute myocardial 

infarction (319). 

Importantly PI3Kα (and not PI3Kβ) has been identified as primarily responsible for 

the effects of insulin signalling (311). Despite PI3Kβ often being expressed at higher levels 

in insulin-responsive tissues (202), Foukas et al. reported an isoform-selective role of PI3Kα 

in insulin-signalling using mice expressing a kinase-dead version of the endogenous PI3Kα. 

The underlying mechanism proposed was a selective recruitment and activation of the 

catalytic subunit p110α over p110β to insulin receptor complexes (202). Knight et al. (203) 

used pharmacological tools to reach similar conclusions regarding the selectivity of insulin 

for PI3Kα signalling  - when adipocyte cells were stimulated with insulin, Akt 

phosphorylation still occurred despite PI3Kβ pharmacological inhibition (203). Further, Jia 

et al. observed little impact on Akt phosphorylation in response to insulin stimulation in 

mouse embryonic fibroblasts lacking PI3Kβ (212). Taken together, the findings of these 

studies support the concept of insulin activating Akt through PI3Kα, with no involvement of 

PI3Kβ. 
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After having elucidated the central role of PI3Kα in IPC in Chapter 8, this chapter 

focuses on the ability to protect the heart against IRI with PI3Kα activation at reperfusion. 

9.2 Research aims and objectives 

Can myocardial infarct size be reduced by targeting PI3Kα through its canonical activator 

at reperfusion? 

Hypothesis  

Activating PI3Kα activity upon reperfusion will phosphorylate Akt and therefore reduce 

myocardial infarct size. 

Experimental aims 

The overall objective of this chapter was to evaluate whether the pharmacological 

activation of PI3Kα through the exogenous administration of its canonical activator (insulin) 

confers a protective effect. Below is an outline of the main aims, including the proposed 

models related to the research question of this chapter:  

Aim 1:  Assess the role of PI3Kα activation to protect the heart against IRI using both its 

canonical activator and its specific inhibitor 

• Subject mouse Langendorff-perfused hearts to ischaemia-reperfusion and 
subsequently quantify myocardial infarct size. 

Aim 2:  Demonstrate Akt phosphorylation in response to PI3Kα pharmacological activation 

and inhibition 

• Collect protein from mouse Langendorff-perfused hearts subjected to ischaemia 
followed by reperfusion, and use Western blot analyses to measure 
phosphorylation levels of Akt and ERK.  
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9.3 Methods 

9.3.1 Experimental design and study protocols 

A total of 43 animals were used, although 3 hearts were excluded before 

randomization as they failed the predefined exclusion criteria (see below). Therefore, 41 

animals were randomly allocated to treatment groups in two separate experiments: 

1) Study of infarct size. Twenty-six animals were used to study the effect on 

myocardial IS of PI3Kα activation through insulin and PI3Kα inhibition through 

G326, at the dose determined in Chapter 8. Figure 9-1 presents an overview of the 

study protocols. 

2) Study of phosphorylated protein levels. Fifteen animals were used to study the 

phosphorylated levels of Akt and ERK following PI3Kα pharmacological activation 

and inhibition, as summarized in Figure 9-2. 

Animals used were male C57BL/6 mice (9-12 weeks, 24-28 g weight), all of them 

obtained pathogen free from one supplier and housed under identical conditions. G326 

was obtained from Genentech through the Cancer Institute at UCL. Insulin solution human 

was purchased from Sigma-Aldrich and its concentration dose was chosen based on 

previous publications (74,86). Dimethyl sulfoxide from BDH (Poole, UK) was used as the 

solvent for G326, as well as a vehicle control for the rest of the groups. 

 Details on the protocol of both the ex vivo Langendorff-perfused mouse heart 

model and the Western blot technique being developed can be found in section 0 and 

section 3.9, respectively. Regarding the latter, proteins were transferred onto nitrocellulose 

blotting membrane (GE Healthcare Life Sciences, UK) using wet transfer and primary 

antibodies used were acquired either from Abcam, in the case of the loading control anti-

GAPDH (mAbcam, #9484), or from Cell Signaling Technology: Akt (#9272), Phospho-Akt 

(Ser473) (#9271) and Phospho-Akt (Thr308) (#2965). 
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N

6Control 20’ 35’ 120’

6Bradykinin 100 nM 20’ 35’ 90’

7Insulin 5 mU/mL 20’ 35’ 90’

30’

7Insulin 5 mU/mL+G326 3 μM 20’ 35’ 90’

35’ 30’

30’

 

Figure 9-1: Study design and protocols aimed to evaluate the effect on myocardial infarct 

size of PI3Kα activation and inhibition in an ex vivo model of IRI 

Overview of the Langendorff-perfused mouse heart protocols aimed to determine the 
effect on infarct size of PI3Kα activation at reperfusion. A black box represents a period of 
ischaemia and a white box represents a period of perfusion with modified Krebs-Henseleit 
buffer at 80 mm Hg. Following 20 min stabilization, four different experimental protocols 
were tested:  1) control; 2) bradykinin (well accepted pharmacological positive 
control)(252) for 30 min; 3) insulin (PI3Kα canonical activator) at a 5 mU/mL concentration 
for 30 min; and 4) insulin 5 mU/mL and G326 3 μM co-administered upon reperfusion for 
30 min. 

Colour code: coloured boxes represent the perfusion of a given drug (orange for 
bradykinin, yellow for insulin and turquoise for the co-administration of insulin and G326). 

 

N

5Control 20’

5Insulin 5 mU/mL + G326 3 μM

5Insulin 5 mU/mL

5’15’

20’ 5’15’

20’ 5’15’

 

Figure 9-2: Study design for Akt and ERK phosphorylation analysis using Western blot 

Three different experimental protocol were tested: 1) control; 2) Insulin 5 mU/mL at 
reperfusion for 5 min reperfusion; and 3) Insulin 5 mU/mL with the co-administration of the 
PI3Kα inhibitor G326 3 μM at reperfusion for 5 min reperfusion. Black boxes represent 
periods of ischaemia and white boxes represent periods of perfusion with Krebs-Henseleit 
buffer at 80 mm Hg. Green arrows depict the time-point of sample collection. 
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9.3.2 Sample size 

The sample size for the experiment aimed to evaluate myocardial infarct size was 

estimated for performing a two-sided test for k-independents samples (ANOVA) following 3 

pairwise comparisons (15% minimum expected effect size, common SD of 8%, α=0.05 and 

β=0.20, ~15% expected losses). Therefore, 28 animals were allocated according to a pre-

specified randomization sequence (seed 9147, STATA software version 13.1). Two animals 

were excluded as they failed to meet inclusion criteria, hence each group included 6-7 

animals.  

For Western blot experiments, a sample size of 5 animals/group was pre-defined in 

line with convention (257). Hearts were randomly assigned to each rig using a reproducible 

randomization sequence (seed 333 for STATA version 13.1). 

9.3.3 Data analysis 

Normal distribution of each data subset was confirmed using the Shapiro-Wilk 

method and continuous data were therefore compared using one-way analysis of variance 

followed by post hoc pairwise comparisons to the control group using the Dunnett's test. 

All values are presented as mean ± standard error of the mean. A P-value of less than 0.05 

was considered statistically significant. GraphPad Prism version 6.00 (GraphPad Software, 

La Jolla California, USA) was used to perform both the analysis and the graphics.  

 

9.4 Results 

Once having established that PI3Kα is necessary to mediate the protection 

provided by preconditioning in Chapter 8, we evaluated whether activation of PI3Kα at 

reperfusion was sufficient to elicit a protective effect and examined whether insulin would 

mimic the cardioprotective effect afforded by IPC. When given at reperfusion, the canonical 

PI3Kα activator (insulin) reduced myocardial IS compared to control (25±2 vs 55±4%, 

P<0.001) and this protection was abolished by G326 (48±3%, P=0.687 compared to 
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control), as depicted in Figure 9-3. Accordingly, Akt was activated by insulin and blocked 

when G326 was co-administered at reperfusion following a protocol of IRI (Figure 9-4). 

 

 

Figure 9-3: Impact of pharmacological PI3Kα activation at reperfusion on myocardial 

infarct size 

Scatter dot blots: black lines represent mean ± SEM and circles represent individual animal 
data. When compared to control group (55.3±4.37), myocardial infarct size was significantly 
smaller with the administration of insulin (24.5 ±1.98, P<0.001) or the positive control 
bradykinin (22.4±2.67, P<0.001). The co-dministration of G326 and insulin abrogated the 
cardioprotective effect of the latter (48.4±2.66, P=0.687). 



165 

 

 

 

Figure 9-4: Impact of pharmacological PI3Kα activation at reperfusion on Akt 

phosphorylation 

Panels A and B illustrate Western blot analyses for Akt(S473) and Akt(T308) respectively. 
Compared to control, insulin increased 10.0±2.2 –fold and 9.6±2.0-fold Akt(S473) and 
Akt(T308) respectively, although this effect was abolished with the co-administration of 
G326 (0.4±0.1 –fold and 0.3±0.6-fold, respectively) *P<0.05, **P<0.01, ***P<0.001, and ns, 
non-significant. 



166 

 

 

9.5 Discussion 

The main findings of this study can be summarized as follows: (1) the exogenous 

administration of the PI3Kα canonical activator (insulin) at reperfusion reduced myocardial 

infarct size; (2) this cardioprotective effect was abolished with the co-administration of a 

PI3Kα specific inhibitor; and (3) the PI3Kα-induced protective effect is associated with Akt 

phosphorylation. 

9.5.1 Insulin in previous cardioprotective studies: an historical perspective 

The potential therapeutic use of insulin to protect ischaemic cardiomyocytes was 

proposed several decades ago by Sodi Pallares (320). This protective effect was first 

attributed to its ability to modulate glucose metabolism. The infusion of glucose-insulin-

potassium (GIK), known as metabolic cocktail, was evaluated in acute myocardial infarction 

experimental models under the hypothesis that GIK reduces free fatty acids metabolism, 

therefore providing an optimal metabolic milieu to resist both ischaemic and reperfusion 

injury (321). However, research from Yellon, Jonassen and colleagues demonstrated later a 

“metabolically-independent” mechanism of GIK in protecting the heart. They hypothesized 

that the mitogen insulin, itself, promotes tolerance against IRI through the activation of 

innate cell-survival pathways in the heart, such as PI3K-Akt (316). 

The case for insulin in cardioprotection greatly evolved at the turn of the century. 

In 1999, Baines et al. demonstrated that the activation of the insulin receptor reduced 

myocardial infarct size in the isolated rabbit heart when initiated at reperfusion and 

suggested the involvement of PI3K (74). In 2000, Jonassen and co-workers compared the 

temporal effects of administering GIK in an in vivo rat model of myocardial infarction and 

found that GIK therapy given at the onset of reperfusion reduced infarct size to the same 

extent as when GIK was administered throughout the entire ischaemia/reperfusion period 

(322). The same year (2000), Jonassen & Yellon demonstrated in simulated 

ischaemia/reoxygenation experiments in rat neonatal cardiomyocytes that the 

administration of insulin at the onset of reoxygenation enhances myocardial cell viability 

through anti-apoptotic effects mediated via tyrosine kinase and PI3K signalling pathways 

(318). In 2001, the same group demonstrated that insulin (and not glucose) was the major 
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component of the metabolic cocktail conferring cardioprotection, as they replaced glucose 

by pyruvate in the buffer of their isolated rat heart model of IRI (86). They also 

demonstrated that early administration of insulin during reperfusion (first 15 min) is 

enough to elicit protection against IRI (86). Taken together, these studies brought into 

question the exclusivity of the metabolic hypothesis concerning GIK combination’s 

cardioprotective effects and placed insulin as an independent cardioprotective therapy. 

The contribution of the data being presented in this chapter to this story is modest. 

In our study, PI3Kα has been revealed to be the specific PI3K isoform mediating the 

cardioprotective effect of insulin. On one hand, it was already known that insulin 

phosphorylated Akt through PI3Kα (202,203). On the other hand,  it was also known that 

insulin was a cardioprotective agent (319,323–325). Using broad-spectrum PI3K inhibitors, 

it was demonstrated that this protective effect was mediated through PI3K in both in vitro 

and in vivo models (319,322). To our knowledge, this is the first study using a specific PI3Kα 

inhibitor to block the protective effect elicited by insulin against IRI. 

9.5.2 Insulin: lost in translation? 

A number of early clinical studies evaluating the effect of the metabolic cocktail 

yielded promising results in the “pre-reperfusion era”, and a subsequent meta-analysis 

suggested that GIK therapy may reduce in-hospital mortality after acute myocardial 

infarction (326). In fact, this meta-analysis suggested that GIK could save 49 lives per 1000 

patients treated for myocardial infarction (316,326). However, subsequent clinical trials 

failed to demonstrate the effect of insulin in the setting of acute myocardial infarction 

(327). 

The cardioprotective potential of the GIK cocktail was examined in the large multi-

centred randomized clinical trial comprising 20,201 patients undergoing PCI or 

thrombolysis for an STEMI, and was found to confer no beneficial effect in terms of 

mortality, cardiac arrest, cardiogenic shock and re-infarction at 30 days (328). This 

ambitious attempt to test the efficacy of GIK in acute myocardial infarction patients has 

been criticised for many reasons (reviewed elsewhere by Apstein & Opie) (329), the main 

being: (1) 17% of patients did not receive reperfusion therapy, (2) GIK was started late and 
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often post-reperfusion; and (3) the overall mortality was abnormally high (Killip class I 

reperfused patients presented with a mortality rate of 7.1%), six-fold higher than in 

contemporary studies (329). 

The Immediate Myocardial Metabolic Enhancement During Initial Assessment and 

Treatment in Emergency Care (IMMEDIATE) trial recruited patients with suspected acute 

coronary syndrome and randomized them to GIK or placebo during transfer to the hospital. 

This trial also failed to demonstrate efficacy in its primary endpoint, although in the 

subgroup of patients presenting with STEMI, GIK significantly reduced cardiac magnetic 

resonance-evaluated infarct size (330). 

In parallel to these clinical studies, further experimental research has been carried 

to assess the cardioprotective effect of insulin. In studies published in 2015 and 2017, 

insulin has been demonstrated to be effective in the swine model of IRI (331,332). 

Interestingly, one of these studies have shown insulin to have additive effects with remote 

ischaemic conditioning on infarct size reduction (332). The fact that we have identified 

PI3Kα to mediate the insulin-induced protective effect can move the focus from the use of 

insulin (a “dirty” drug with many side-effects, such as hypoglycaemia, hypokalemia, and 

catecholamine elevation) to the development of pharmacological agents specifically 

targeting PI3Kα. We are not proposing insulin to come to the fore again, but to take 

advantage of the the overwhelming evidence demonstrating its protective effect to further 

improve how to target its downstream signalling. 

9.5.3 Limitations 

These data entirely rely on a pharmacological approach, with all the inherent 

problems of target selectivity (199). Glucose could be replaced by pyruvate in the Krebs 

buffer to ensure insulin was the only protective agent, as Jonassen et al. did before (86). 

However, we preferred to be consistent with our isolated mouse heart model and infuse 

the same buffer that was administered in other experiments. 
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9.5.4 Conclusions 

Taken together the conclusions drawn from Chapter 8 and Chapter 9, this thesis is 

the first example to show that PI3Kα is necessary and sufficient to confer cardioprotection: 

it is necessary for IPC to mediate cardioprotection, and it is sufficient for its activator insulin 

to promote myocardial salvage against IRI. The development of therapeutic agents that 

target downstream insulin-activated signalling molecules should be expected to promote 

myocardial salvage in patients with acute myocardial infarction. 
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Chapter 10 MECHANISM AND CLINICAL POTENTIAL UNDERLYING THE 

PROTECTIVE EFFECT OF PI3Kα 

10.1 Background 

 Insulin has cardioprotective effects against myocardial IRI, as demonstrated in 

Chapter 9. Although the impact of insulin on cell viability has been studied in rat neonatal 

cardiomyocytes (318) and primary isolated cardiomyocytes (324) subjected to simulated 

hypoxia/reoxygenation, it has been always assumed that cardioprotective therapies, such 

as insulin, target mostly cardiomyocytes, although other cardiac cells may play an 

important role. In the same way, it has been always assumed that the signalling cascade 

orchestrating the cardioprotective effect of insulin in mouse models can be extrapolated to 

human models, although little is known in this regard. 

Understanding the intracellular signalling pathways that control cardiomyocyte 

survival has been the focus of research in cardioprotection for many years. The end-

effector of cardioprotection, namely the mitochondrial permeability transition pore (mPTP) 

has been identified as the molecule where several pathways eventually converge to protect 

against myocardial IRI (83,333). The mPTP is a non-specific pore of the inner mitochondrial 

membrane, which on opening causes cell death. Opening the mPTP permits water and 

solutes to enter the mitochondria, increasing matrix volume, and rupturing the outer 

mitochondrial membrane, leading to release of intermembrane cytochrome C release, 

which in turn initiates the necrosis and apoptosis. Further, its opening uncouples 

mitochondria, leading to ATP hydrolysis and collapse of the mitochondrial membrane 

potential (87). The mPTP is closed during ischaemia and only opens in the first few minutes 

of reperfusion, when the conditions for its opening are present: high concentration of 

mitochondrial calcium, ATP depletion, oxidative increase and increased matrix pH (84,109). 

The mPTP has been considered the central end-effector of the cell death-induced by IRI. It 

was initially shown that inhibiting mPTP opening at reperfusion with pharmacological 

agents (cyclosporine A and sanglifehrin-A) was protective (112,113). IPC was then shown to 

also have a protective effect which was mediated through mPTP inhibition (84,87). Later, it 

was demonstrated that the activation of PI3K-Akt pro-survival kinase pathway inhibits the 
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opening of the mPTP (254). Taken together, there is solid evidence demonstrating the link 

between the activation of these prosurvival kinase pathways (i.e. RISK pathway) and the 

mPTP to protect from myocardial IRI.  

This chapter focuses upon elucidating whether PI3Kα can be manipulated in two 

cardiac cell types, as well as in human heart tissue. Further, the role of the end-effector 

mPTP following PI3Kα activation was also evaluated. 

 

10.2 Research objectives and experimental aims 

Is PI3Kα activated in both cardiomyocytes and endothelial cells?  

Is the mPTP the end-effector of  the cardioprotective effect of PI3K? 

Are these findings of potential clinical relevance? 

Hypothesis  

Activating PI3Kα activity upon reperfusion phosphorylates downstream Akt and therefore 

reduces myocardial infarct size. The hypotheses we investigated are: (1) PI3Kα activation 

occurs specifically in either cardiomyocytes or MCECs, or non-specifically in both; (2) mPTP 

is the end-effector of the PI3Kα-Akt cascade; and (3) PI3Kα can be activated not only in 

mouse hearts, but also in human heart tissue. 

Experimental aims 

To investigate the pharmacological activation of PI3Kα in several cell types and tissues, as 

well as mitochondrial Permeability Transition Pore inhibition being a potential end-effector. 

Below is an outline of the main aims, including the proposed models related to the 

research question studied: 
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Aim 1:  Assess whether PI3Kα can be activated in both primary adult mouse cardiomyocyte 

and mouse cardiac endothelial cells (immortalized cell line) 

• Apply a pharmacological approach with both PI3Kα activator and inhibitor in both 
cell types, and use Western blot analyses to measure phosphorylation levels of Akt. 

Aim 2:  Determine the effect of PI3Kα activation and inhibition on the susceptibility of 

cardiomyocytes to form the mPTP. 

• Use the TMRM-based confocal assay to quantify the time taken for the mPTP to 
open in isolated mouse cardiomyocytes in the context of a pharmacological 
approach with PI3Kα canonical activator and high-specific inhibitor. 

Aim 3:  Assess whether the overall results can potentially be extrapolated to humans, 

activating and inhibiting PI3Kα in both mouse and human heart tissue. 

• Apply a pharmacologic approach with both PI3Kα activator and inhibitor in both 
cell types, and use Western blot to measure phosphorylation levels of Akt. 

 

10.3 Methods 

10.3.1 Experimental design and study protocols 

The experiments in these chapter can be outlined in three blocks: 

1) PI3Kα activation in cardiomyocytes and MCECs. Akt phosphorylation was 

evaluated by Western blot analyses after the pharmacological activation and 

inhibition of PI3Kα in the following cell types: 

o Adult mouse ventricular cardiomyocytes. Five samples of primary 

cardiomyocytes were isolated using liberase according to the protocol 

described in section 3.6. Once stabilized for 30 min, cells incubated for 15 

min according to the following interventions: (1) vehicle control (0.01% 
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DMSO); (2) Insulin (5 mUl/l); (3) Insulin 5 mUl/l with 30 min pretreatment 

G326 3 μM; and (4) G326 3 μM. 

o Mouse cardiac endothelial cells (MCEC, immortalized line). Five samples 

of MCEC were passaged and subsequently cultured according to the 

protocol described in section 3.7. Prior to being subjected to 

pharmacologic stimulation, MCECs were deprived of serum for 2 h. As with 

cardiomyocytes, MCECs were incubated for 15 min with: (1) vehicle control 

(0.01% DMSO); (2) Insulin (5 mUl/l); (3) Insulin 5 mUl/l with 30 min 

pretreatment G326 3 μM; and (4) G326 3 μM. 

2) PI3Kα translational ability. Akt phosphorylation was evaluated by Western blot 

analyses after the pharmacological activation and inhibition of PI3Kα in the 

following tissues: 

o Mouse heart tissue. Five mouse Langendorff-perfused hearts were 

stabilized for 20 min using the Langendorff apparatus and then perfused 

for 15 min with: (1) vehicle control (DMSO) perfusion; (2) Insulin (5 mUl/l); 

(3) Insulin 5 mUl/l and G326 3 μM; and (4) G326 3 μM. 

o Human heart tissue. Five right atrial appendage samples were collected 

from patients undergoing cannulation for cardiopulmonary bypass either 

for CABG or valve replacement (see section 3.8 for further details). After 

being collected in the operating theatre, human atrial tissue was dissected 

into four pieces and swiftly submerged in previously oxygenated Tyroids’ 

modified buffer (118.5 mM NaCl, 24.8 mM NaHCO3, 4.7 mM KCl, 1.44 mM 

MgSO4.7H20, 1.2 mM K2HPO4, 1.8 mM CaCl2, 10 mM pyruvate, 10 mM D-

Glucose) for 30 min in the presence of: (1) vehicle control (DMSO); (2) 

Insulin (5 mUl/l); (3) Insulin 5 mUl/l and G326 3 μM; and (4) G326 3 μM. Of 

note, the tissue was not perfused, but superfused and under ongoing 

temporal hypoxia. 

Once collected, samples from the above blocks were added to protein lysis 

buffer and the tissues were homogenized before proceeding to BCA protein 

quantification. Details on the Western blot protocol be found in section 3.9. A 
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nitrocellulose blotting membrane (GE Healthcare Life Sciences, UK) was used for 

protein transfer. Primary antibodies used were Akt (#9272, Cell Signaling 

Technology), Phospho-Akt (Ser473) (#9271, Cell Signaling Technology), and anti-

GAPDH (#9484, Abcam).  

 

3) Impact of PI3Kα activation on the end-effector mPTP. The sensitivity of the mPTP 

to opening was assayed using a well-characterised and reproducible cellular model 

of ROS-mediated mPTP opening (334), described in detail in section 3.10. Adult 

mouse ventricular cardiomyocytes were isolated as described. Live cardiomyocytes 

were incubated with the fluorescent dye TMRM at 12 μM for 15 min in Hepes 

based recording buffer (NaCl 156 mM, KCl 3 mM, MgSO4.7H20 2 mM, K2HPO4 1.25 

mM, CaCl2 2 mM, HEPES 10 mM and D-Glucose 10 mM; pH 7.4), then washed and 

randomly treated for 15 min into the following groups: (1) Vehicle control; (2) 

insulin 5 mU/mL; (3) insulin 5 mU/mL with G326 3μM; and (4) G326 3μM alone. 

Once washed for a second time, mouse cardiomyocytes were stimulated with laser 

illumination and imaged using confocal microscopy. The time to reach half peak 

signal was recorded in seconds and compared across groups. A total of 19 ± 2 

cardiomyocytes were analyzed for each intervention in each experiment (n=8 

mice). 

10.3.2 Sample size and data analysis 

The sample size for the assay evaluating the sensitivity of the mPTP to opening was 

estimated for performing a two-sided test for k-independents samples (ANOVA) following 3 

pairwise comparisons (25% minimum expected effect size, common SD of 15%, α=0.05 and 

β=0.20). Therefore, 8 successful cardiomyocyte isolations were needed to make solid 

conclusions. Three isolations were needed to set up the model, and three further isolations 

were excluded to either poor quality or quantity. For Western blot  analyses, a sample size 

of 5 per group was pre-defined in line with convention (257).  

Normal distribution of each data subset was tested using graphical methods and the 

Kolmogorov –Smirnov method. All values are presented as mean ± standard error of the 
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mean. If normally distributed, continuous data were compared using one-way analysis of 

variance followed by post hoc pairwise comparisons to the control group using the 

Dunnett's test. If highly skewed distributed, the non-parametric Kruskal–Wallis test was 

used with subsequent post hoc pairwise comparisons to the control group adjusted by the 

Dunn’s test. A P value of less than 0.05 was considered statistically significant. GraphPad 

Prism version 6.00 (GraphPad Software, La Jolla California, USA) was used to perform both 

the analyses and the graphics.  

 

10.4 Results 

10.4.1 PI3Kα can be activated in mouse cardiomyocytes and cardiac endothelial 

cells 

Once the central role of PI3Kα in cardioprotection had been established, we aimed 

to study whether the activation of the α isoform of PI3K was specific for cardiomyocytes or 

whether it could be extended to the mouse cardiac endothelial cells. As illustrated in Figure 

10-1A and Figure 10-1B, PI3Kα activation was approximately twofold higher in the 

immortalized endothelial cells compared to the primary isolated cardiomyocytes. These 

results are in accordance with the higher protein content demonstrated in MCECs in 

Chapter 7. 

10.4.2 PI3Kα can be activated in mouse and atrial human tissue 

In order to assess the potential translation ability of PI3Kα activation, we collected 

human right atrial appendage samples and tested whether the PI3Kα pathway could be 

stimulated (patient baseline characteristics are outlined in Table 10-1). Human tissue was 

proven to respond to PI3Kα activation and inhibition, although to a less extent that the 

mouse heart tissue (Figure 10-1C and Figure 10-1D). Of note, the human tissue was not 

perfused, but superfused, and under ongoing temporal hypoxia whilst being transferred to 

the laboratory (Akt was therefore already activated in controls), whilst mouse heart tissue 

was perfused with modified Krebs buffer and controlled under non-ischaemic conditions. 
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10.4.3 PI3Kα activation delays the mPTP opening 

The sensitivity of the mPTP to opening was assayed in adult mouse ventricular 

cardiomyocytes using a well-characterized cellular model of ROS-mediated mPTP opening. 

In the presence of insulin, the time taken to induce mPTP opening (a surrogate for cell 

death) was significantly increased compared to the control (571±30 s vs 459±25 s, P< 

0.013), whilst the treatment with the PI3Kα inhibitor G326 no longer delayed the time 

taken to induce mPTP opening (455±24 s, P=0.999) (Figure 10-2). The drug had no effect on 

its own (467±25 s, P=0.993). These results suggest that PI3Kα kinase cascade promotes 

cardiomyocyte survival through the inhibition of the end-effector, mPTP. 
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Figure 10-1: Pharmacological PI3Kα activation in cells and tissues 

A pharmacological approach with the PI3Kα canonical activator and the G326 α-specific 
inhibitor was applied in adult mouse ventricular cardiomyocytes (Panel A), mouse cardiac 
endothelial cells (Panel B), isolated-perfused mouse heart tissue (Panel C) and human atrial 
tissue (Panel D). *P<0.05, **P<0.01, ***P<0.001, and ns, non-significant. 
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Figure 10-2: Effect of PI3Kα activation and inhibition on mPTP opening in primary isolated 

mouse cardiomyocytes 

This  figure  depicts  the  graphical  representation  of  the  calculated  time  for  mPTP 
opening  in  each  group.  Isolated mouse cardiomyocytes were loaded with 12 µM TMRM, 
and randomized into 4 groups (control; insulin 5 mU/mL; insulin 5 mU/mL in G326 3 µM 
pre-treated cells; and G326 3 µM; n=8/group) and exposed to constant confocal laser 
illumination.  *p<0.05. 
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 Total patients (n=5) 

Age 64.2 ± 18.6 

Gender (male) 4 (80%) 

Diabetes mellitus 1 (20%) 

Dyslipidemia 2 (40%) 

Hypertension 5 (100%) 

Smoking history 1 (20%) 

Prior cardiovascular disease 2 (40%) 

Preserved LVEF (>50%) 4 (80%) 

Sinus rhythm 5 (100%) 

Surgery  

CABG 3 (60%) 

AVR 1 (20%) 

CABG + AVR 1 (20%) 

Medications  

Beta blocker 4 (80%) 

ACE inhibitor 2 (40%) 

Calcium channel blocker 1 (20%) 

Statin 4 (80%) 

Antiplatelet therapy 4 (80%) 

Table 10-1: Patient baseline characteristics 

Data expressed as number (%) or mean ± SD. 

AVR, aortic valve replacement; CABG, coronary artery bypass graft; LVEF, left ventricular 
ejection fraction. 
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10.5 Discussion 

The main findings of this study can be summarized as follows: (1) PI3Kα canonical 

activator (insulin) increased the phosphorylation of Akt, which was abolished using the 

specific-PI3Kα inhibitor G326, in both primary cardiomyocytes and mouse cardiac 

endothelial cells; (2) in adult mouse ventricular cardiomyocytes, PI3Kα activation delays the 

mPTP opening time, which is abolished using the specific-PI3Kα inhibitor G326; and (3) 

PI3Kα can potentially be activated in human heart tissue. 

10.5.1 PI3Kα can be modulated in both cardiomyocytes and mouse cardiac 

endothelial cells 

As discussed in Chapter 10, insulin has previously demonstrated to mediate its 

cardioprotective effect through PI3K in in vitro (318), ex vivo (86) and in vivo models (319). 

Broad-spectrum PI3K inhibitors have been used to evaluate this acute effect. At cellular 

level, insulin can protect rat neonatal cardiomyocytes (318) and primary isolated 

cardiomyocytes (324) subjected to simulated hypoxia/reoxygenation. There is little 

information regarding the specific role of the endothelial cells in the insulin-induced 

protective effect, although the involvement of the eNOS isoform (highly expressed in these 

cells) in in vivo experiments suggest its potential implication. In this study, we have 

demonstrated that PI3Kα can be modulated (activated and inhibited) in primary isolated 

cardiomyocytes and immortalized mouse cardiac endothelial cells, although we lack 

evidence on to wehter insulin increases cell viability in MCECs. 

The next step was to study the impact of PI3Kα activation in cell survival through its 

end-effector mPTP. In 2006, work carried out in The Hatter Cardiovascular Institute 

unveiled the relationship between the activation of the pro-survival kinase pathway by 

insulin and the probability of mPTP opening upon reperfusion. Using TMRM to induce 

oxidative stress in primary isolated adult rat ventricular cardiomyocyctes, they 

demonstrated that insulin delays mPTP opening and that this effect is prevented by 

wortmannin or by LY294002 (broad-spectrum PI3K inhibitors), by SH-6 (Akt inhibitor) and 

by L-NAME (inhibitor of nitric oxide production) (254). Further, the expression of a 

dominant negative construct of Akt abolished the effect of insulin in delaying mPTP 
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opening in a cardiac cell line (HL-1) and the overexpression of constitutively active Akt was 

sufficient to mimic the insulin-induced effect (254). Taken together, this seminal study 

linked the pro-survival pathway PI3K-Akt (considered a mediator according to the signal 

transduction pattern of cardioprotection described in section 1.5.1) and the mPTP 

(considered an end-effector). Our modest contribution to this story is to have taken 

advantage of the both the reports linking insulin with PI3Kα (202,203) and the 

development of PI3Kα specific inhibitors (231) to selectively target this isoform. Our results 

suggest that PI3Kα signalling promotes cardiomyocyte survival through the inhibition of the 

end-effector mPTP. In a simulated model of reperfusion injury, PI3Kα activation impacts on 

mPTP opening, delaying cell death.  

10.5.2 PI3Kα fits the translational RISK profile for cardioprotection 

The translational perspective of our results are highlighted by the observation that 

PI3Kα is expressed in human heart tissue and can be stimulated by its canonical activator. 

Given that this isoform is involved in the cardioprotection rendered by IPC and insulin at 

reperfusion, future therapeutic strategies could selectively target this α isoform of PI3K to 

enhance its protective effect against IRI. Thus, further studies with specific PI3Kα activators 

should be tested in both small- and large-animal models, before being eventually 

translated in STEMI patients who undergo coronary revascularization.  

10.5.3 Limitations 

The sensitivity of the TMRM assay simulates the ROS-mediated mPTP opening that 

occurs at reperfusion. Although this model has been widely used in this context (254,334), 

it could be argued that does not represent a true physiological scenario. Further, the 

TMRM model is known to have an usually high biological variation, particularly relying on 

the quality of the cells being isolated. 

Human heart tissue was obtained from the right atrium. Despite carefully selecting 

patients without arrhythmias, we appreciate that left ventricular tissue would better 

represent the human model. Caution should be taken when extrapolating the results on an 

immortalized cell line (mouse cardiac endothelial cells) to a more physiological setting. 
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10.5.4 Conclusions 

PI3Kα activation can be modulated in both primary cardiomyocytes and mouse 

cardiac endothelial cells, demonstrating its protective effect to be mediated through the 

delay in mPTP opening. Interestingly, PI3Kα can be activated in human heart tissue. 
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Chapter 11 IS THERE A ROLE FOR PI3Kβ? A PRELIMINARY INVESTIGATION 

11.1 Background 

The class IA PI3K family is composed by PI3Kα, PI3Kβ and PI3Kδ. Whilst the two 

former are ubiquitously expressed, the latter is more abundant in hematopoietic cells 

(335). Despite the similarity in sequence and regulatory subunits, the catalytic subunit 

p110α and p110β have distinct functions. Their different role in cell function can be 

explained by their differential expression between tissues, their subcellular location and 

their lipid-kinase properties, as explained in section 1.7.4. Importantly, PI3Kβ can be 

engaged either by RTK and GPCRs, whilst PI3Kα activation is exclusively mediated through 

RTK receptors. Further, there is growing evidence that PI3Kβ is synergistically activated by 

both receptors, acting in concert for cooperative signalling of (210). 

In previous chapters, insulin has been studied as PI3Kα canonical activator, 

phosphorylating the p110α catalytic subunit and enhancing Akt activity through RTK 

signalling.  In contrast, in studies in mouse embryonic fibroblasts, PI3Kβ has been shown to 

be insensitive to activation by growth factors that act through classical  RTK signalling, such 

as insulin, but has been demonstrated to mediate  PI3K signalling downstream of certain 

GCPR ligands, such as Stromal cell-derived factor-1 (SDF1α) (191,208,210,212).  

SDF-1α (or CXCL12) is a chemokine of 10 kDa that is induced by hypoxia and 

recruits stem cells, but also has been demonstrated to be cardioprotective against IRI, 

particularly through its receptor CXCR4 (336). Using an elegant approach, Yellon and 

colleagues reported that: (1) remote ischaemic conditioning increased SDF-1α plasma 

levels; (2) the exogenous administration of SDF1α increases functional recovery in an ex 

vivo rat papillary muscle; and (3) this protective effect was mediated through CXCR4, as it 

can be blocked using the CXCR4 inhibitor AMD3100 (337). In other studies, Hu et al., not 

only demonstrated SDF1α release in isolated cardiomyocytes following an 

hypoxia/reoxygenation insult, but also reported that the exogenous administration of 25 

nmol/l of SDF1α for 10 min results in increased phosphorylation of Akt (338). In chronic 

infarct models (coronary occlusion without reperfusion), the intracardiac injection of SDF1α 

has been demonstrated to increase angiogenesis through a PI3K-Akt mediated mechanism 
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(339), whilst the overexpression of SDF1α through adeno-associated virus has been shown 

to enhance cardiac stem cells migration and engraftment, and reduce infarcted size via 

CXCR4/PI3K pathway (340). Furthermore, Yellon & colleagues also demonstrated to mimic 

the protective effect elicited by IPC with the administration of SDF1α in a model of 

simulated IRI using isolated human atrial trabeculae muscle (341). Altogether, there is a 

growing body of evidence demonstrating that SDF1α is cardioprotective, and that this 

protection might be conferred through Akt activation.  

As exposed in the previous two paragraphs, SDF-1α has been demonstrated in 

separate studies to both activate Akt through PI3Kβ and to be cardioprotective, hence 

suggesting a potential link between PI3Kβ and cardioprotection, SDF1α. This would be 

reinforced by the fact that IPC is believed to be mostly mediated by GPCRs, rather than 

RTKs. 

The role of PI3Kα in cardioprotection has been described in Chapters 8 to 10. The 

focus of this chapter is to begin to try and understand whether there is a possible role for 

PI3Kβ in cardioprotection.  We sought to do this by using the potential PI3K agonist, 

SDF1α, as a means of elucidating a potential role for PI3 kinase 

 

11.2 Research objectives and experimental aims 

Is SDF1α able to activate AKT through PI3Kβ?  

Hypothesis  

In order to test the role of PI3Kβ in cardioprotection, it is needed to demonstrate an 

adequate pharmacological activation and inhibition of this kinase. SDF1α has been 

described as PI3Kβ activator(191,217), therefore the hypothesis was to demonstrate the 

activation of Akt (as surrogate for PI3Kβ) following the administration of SDF1α. 
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Experimental aims 

To preliminary investigate PI3Kβ activation with the purpose of subsequently testing PI3Kβ-

specific inhibitors when available. Below is an overview of the main aims, including the 

proposed models related to the research question of this chapter: 

 

Aim 1:  Demonstrate Akt phosphorylation in response to PI3Kβ activation using SDF1α in 

mouse isolated Langendorff-perfused hearts  

• Apply two separate doses of SDFα in Langendorff-perfused mouse hearts and use 
Western blot analyses to measure phosphorylation levels of Akt. 

Aim 2:  Demonstrate Akt phosphorylation in response to PI3Kβ activation using SDF1α in a 

mouse cardiac endothelial cell line 

• Apply two separate doses of SDFα in mouse cardiac endothelial cells (immortalized 
line) and use Western blot analyses to measure phosphorylation levels of Akt. 

 

11.3 Methods 

11.3.1 Experimental design and study protocols 

Two experimental groups were performed to study Akt phosphorylation: 

1)  Mouse heart tissue. Nine male C57BL/6 mice (9-12 weeks, 24-28 g weight) were 

perfused for 15 min in the Langendorff apparatus with modified Krebs-Henseleit 

buffer, and subsequently randomized to 15 min extra perfusion with: (1) vehicle 

control; (2) SDF 25 ng/mL; and (3) SDF 100 ng/mL. 

2) Mouse cardiac endothelial cells (MCEC, immortalized line). Three passages of 

MCEC were cultured and randomized into the following groups (1) vehicle control; 

(2) SDF 25 ng/mL for 5 min; (3) SDF 100 ng/mL for 5 min; (4) SDF 25 ng/mL for 15 

min; and (5) SDF 100 ng/mL for 15 min. 
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Once collected, the samples were introduced into protein lysis buffer, the tissue 

was homogenized and the protein extracted from either cells or tissue and analysed via the 

BCA method. Details on protein quantification and Western blot protocol can be found in 

section 3.9. Proteins were transferred onto nitrocellulose blotting membrane (GE 

Healthcare Life Sciences, UK) using wet transfer. The primary antibodies used were 

acquired either from Abcam, in the case of the loading control anti-GAPDH (mAbcam, 

#9484), or from Cell Signaling Technology: Akt (#9272), Phospho-Akt (Ser473) (#9271) and 

Phospho-Akt (Thr308) (#2965). Recombinant human SDF-1α was obtained from Miltenyi 

Biotec Inc.  

The concentration of SDF-1α used in these cardioprotective studies was 25 ng/mL 

(337,341,342). A higher concentration was also tested based on the assumption that a 

higher concentration may be required to allow sufficient activation in an ex vivo model. 

11.3.2 Data analysis 

Normal distribution of each data subset was tested using the Shapiro-Wilk method. 

Data was non-normally distributed, therefore the non-parametric Kruskal–Wallis test was 

used to compare means. As none of the comparisons resulted in statistical significance, no 

further post hoc tests were performed. All values are presented as mean ± standard error 

of the mean. A P-value of less than 0.05 was considered statistically significant. STATA 

software, version 13.1 (Stata Corp, College Station, TX, USA) and GraphPad Prism version 

6.00 (GraphPad Software, La Jolla California, USA) were used to perform the analysis and 

the graphics.  

 

11.4 Results 

The results of the protein analyses are depicted in Figure 11-1 for mouse cardiac 

tissue and Figure 11-2 for mouse cardiac endothelial cells, and a breakdown of the results 

can be found in the corresponding footnote. Overall, SDF1α does not increase Akt 

phosphorylation. 
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Figure 11-1: Akt response to SDF1α in mouse cardiac tissue 

Bar graph shows the percentage of phosphorylation in all groups compared to the control 
group, expressed as mean ± SEM (percentage of relative phosphorylation), n=3 per group. 
For Akt(S473) phosphorylation (panel A), the fold-increase of SDF1α groups when 
compared to vehicle control was: SDF1α 25 ng/mL 0.9 ± 0.5 and SDF1α 100 ng/mL 1.1 ± 0.5 
(P=0.301). For Akt(T308) phosphorylation (panel B), the fold-increase of SDF1α groups 
when compared to vehicle control was: SDF1α 25 ng/mL 0.8 ± 0.2 and SDF1α 100 ng/mL 
1.1 ± 0.4 (P=0.252). 

 

Figure 11-2:  Akt response to SDF1α in mouse cardiac endothelial cells 

Bar graph shows the percentage of phosphorylation in all groups compared to the control 
group, expressed as mean ± SEM (percentage of relative phosphorylation), n=3 per group. 
For Akt(S473) phosphorylation, the fold-increase of SDF1α groups when compared to 
vehicle control was: SDF1α 25 ng/mL (5 min) 1.1 ± 0.3, SDF1α 100 ng/mL (5 min) 0.6 ± 0.1, 
SDF1α 25 ng/mL (15 min) 1.0 ± 0.2, and SDF1α 100 ng/mL (15 min) 1.1 ± 0.2 (P=0.429).  
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11.5 Discussion 

This chapter aimed to lay the ground to investigate the role of PI3Kβ in 

cardioprotection in the future studies. However, these preliminary experiments failed to 

demonstrate SDF1α as a reliable agonist of PI3Kβ at the doses used in the isolated perfused 

mouse heart and the mouse endothelial cell line. Further experiments will be needed to 

determine a reliable PI3Kβ agonist (or an appropriate SDF1α dose), and then to elucidate 

the appropriate concentration of the PI3Kβ inhibitors (i.e. TGX-155). 

Although the sample size for each group is small; these being only preliminary 

results, there is no hint towards SDF1α being a good PI3Kβ activator. To interpret these 

results, several considerations need to be taken into account, such as the dose of SDF1α, 

the tissue and cell type being tested and the features of PI3Kβ activation.  

There is solid evidence demonstrating that SDF1α is cardioprotective (336–

338,341). Despite the aforementioned study published by Hu et al. demonstrating Akt 

activation following the exogenous administration of SDF1α in primary cardiomyocytes 

(338), others have involved further mechanisms to justify the protective effect elicited by 

SDF1α. Huang et al. found that SDF1α improves functional recovery in isolated mouse 

hearts subjected to IRI through the upregulation of STAT3 (342), a central mediator of the 

SAFE pathway (81). Interestingly, in this study they failed to demonstrate either an increase 

in Akt phosphorylation or attenuation of the protective effect using the PI3K pan-inhibitor 

LY294002 (342). In an ex vivo Langendorff model of IRI, Jang et al. demonstrated both 

myocardial infarct size reduction and ERK activation at early reperfusion with the 

administration of SDF1α  given 10 min before reperfusion to 30 min after (343). Therefore, 

these results should not be interpreted as SDF1α not being cardioprotective, but rather not 

activating Akt at the doses being given. 

The doses of SDF1α tested in this study (25 ng/mL and 100 ng/mL) were based on 

what had previously been reported in the literature. Previous publications can be classified 

into those proving SDF-1α as a cardioprotective therapy and those demonstrating the 

interaction SDF-1α-PI3Kβ through a GPCR, but no publications reporting PI3Kβ as mediator 

for SDF1α-induced protective effect has to date been published.  Those studies focused on 

testing the cardioprotective effect of SDF1α used a dose of 25 ng/mL dissolved in saline 
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vehicle, although other have used lower amounts of the chemokine when applied to 

cardiomyocytes (338). Huang et al. (342) in a Langendorff-perfused mouse heart model 

undertook a dose-response curve using doses of 5, 15 and 25 ng/mL of SDF1α, eventually 

selecting the latter. In studies undertaken in the Hatter Cardiovascular Institute using a 

superfused human atrial trabeculae, 25 ng/mL of  SDF-1α also proved to be protective 

(341). On the other hand, those studies using SDF-1α as tool to describe PI3Kβ signalling 

features have applied a dose of 30 ng/mL in a variety of cells (191,217), which are within 

the range of the doses being tested here. Interestingly, these studies have shown SDF1α to 

activate the PI3Kβ pathway in NIH 3T3 mouse embryonic fibroblast cells (191) and in aortic 

ring tissue (217). In the former study, SDF-1α increased the phosphorylation of Akt, which 

was abolished by the application of either the pan-specific PI3K inhibitor LY294002 and the 

PI3Kβ inhibitor TGX-155, therefore suggesting a predominant PI3Kβ effect, whilst in the 

same setting, insulin also activated Akt, and this effect was abolished by the broad-

spectrum PI3K inhibitor, but not by the PI3Kβ inhibitor, therefore suggesting that the β 

isoform is not involved in the insulin Akt-mediated effect (191). In the latter study , SDF1α 

was demonstrated to induce microvessel outgrowth of aortic rings through p110β and 

downstream Akt activation, without involving p110α (217). Although our results do not 

point towards the same conclusions, it may well be that SDF1α, at these doses, only 

activates PI3Kβ in certain cell types and tissues (i.e. different expression or receptor 

sensitivity), whilst different doses are required in the heart. 

Since SDF1a is only a GPCR ligand, stimulating this receptor may not be sufficient to 

activate PI3Kβ. As described in other settings, the synergistic action of both RTK and GPCRs 

might be required to activate PI3Kβ (209,210,214). Finally, it should not be ruled out that 

SDF1α does not activate PI3Kβ. Other GPCRs ligands which have demonstrated to mediate 

the activation of Akt through PI3Kβ could potentially be tested, such as sphingosine-1-

phosphate and lysophosphatidic acid (191). If one of them are shown to activate Akt, a set 

of experiments with pan-specific PI3K inhibitors (i.e. wortmannin) and PI3Kβ-specific 

inhibitors (i.e. TGX155) should be carried out to determine the specific dose required for 

PI3Kβ inhibition to be eventually tested, in experiments testing cardioprotective therapies 

such as ischaemic preconditioning. 
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If the role of specific PI3K isoforms are determined by their predominant 

expression in the tissue, rather than by its biochemical differences amongst other isoforms, 

then PI3Kα should play a central role when compared to PI3Kβ. The relative low levels of 

the PI3Kβ isoform shown in Chapter 7, and particularly the differences in PI3Kβ expression 

between mouse and human heart tissues, are not at this stage indicative for PI3Kβ  having 

relevant role of in human tissue. 

11.5.1 Limitations 

Only two doses were applied in these experiments. It is unknown whether a longer 

(or shorter) period of SDF1α exposure might change the results. The small sample size 

should be taken into account when interpreting these results.  

11.5.2 Conclusions  

SDF-1α does not activate Akt at 25 ng/mL and 100 ng/mL neither in Langendorff-

perfused isolated mouse heart nor in mouse cardiac endothelial cells. The potential for the 

PI3K isoform is still unclear and requires much further studying including a need to 

identify a reliable PI3Kβ activator in this setting. 
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Chapter 12 OVERALL CONCLUSIONS 

12.1 Summary of findings 

Acute myocardial infarction is the leading causes of mortality and morbidity 

worldwide. To improve clinical outcomes in patients with myocardial infarction, we need to 

both improve the implementation and timings of reperfusion therapy and to address the 

paradoxical injury induced by reperfusion. The use of cardioprotective interventions 

administered as adjunct to reperfusion in this regard are an unmet clinical need. 

Ischaemic preconditioning is the most powerful cardioprotective intervention 

known and its underlying signalling has become the paradigm for cardioprotection. The 

infarct size-sparing effect elicited by IPC is mediated by endogenous pro-survival signalling 

pathways, such as the RISK pathway, which encompasses both PI3K and ERK cascades.  The 

aim of this project was to investigate the role of the specific PI3Kα isoform in 

cardioprotection. 

Before studying the role of PI3Kα, we first provide a thorough characterization of 

the ischaemia/reperfusion model in the ex vivo Langendorff-perfused isolated mouse heart 

model, dissecting the contribution of the length of ischaemia and reperfusion to the final 

myocardial infarct size. Then, we undertook a systematic analysis of the kinases involved 

within the PI3K-Akt pathway including an assessment of the phosphatase, PTEN, concluding 

that PI3K plays a pivotal role in the protective effect elicited by IPC.  

Before evaluating the protective effect of PI3Kα against IRI, we quantified the 

protein levels of the two main cardiac isoforms. To our knowledge, this thesis provides the 

first quantification of the amount of PI3Kα and PI3Kβ in mouse and human heart tissue, as 

well as the comparison between endothelial cells and cardiomyocytes. Importantly, the 

protein levels of PI3Kα are comparable between mouse and human heart tissue, whilst 

human tissue expresses proportionally less PI3Kβ compared with mouse.  

In subsequent experiments, we demonstrated that PI3Kα is critical for IPC-induced 

heart protection against IRI. In the ex vivo model of myocardial infarction, we showed that 
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PI3Kα is required during the IPC reperfusion phase to reduce myocardial infarct size, whilst 

this same isoform is not mediating the effect during the trigger phase. The importance of 

PI3Kα activation at reperfusion in IPC was confirmed in the in vivo setting. Using insulin as 

canonical activator, we also showed that PI3Kα is not only necessary for IPC to confer 

cardioprotection, but sufficient for its activator to promote myocardial salvage against IRI.  

Furthermore, we also confirmed that PI3Kα activation delays mPTP opening in 

primary isolated cardiomyocytes. Finally, we showed that PI3Kα can be modulated in both 

cardiomyocytes and immortalized mouse cardiac endothelial cells, as well as in mouse and 

human heart tissue. This last observation highlights the potential ability of PI3Kα to be 

translated into the clinical setting. 

In regards to SDF1α, further experiments are indeed required to strengthen our 

preliminary data. Nonetheless, although our results do not challenge the fact that SDF1α 

has cardioprotective properties, they suggest that this effect is not mediated by Akt, and 

therefore it seems very unlikely to be mediated by PI3Kβ. 

 

12.2 Clinical implications 

The translational outlook of our results is highlighted by the observation that PI3Kα 

is expressed in human heart tissue and can be modulated by its canonical activator. Taking 

into account that this isoform is mediating the IPC-induced protective effect against IRI, 

and its activation through insulin at reperfusion is sufficient to confer cardioprotecton, 

future therapeutic strategies could selectively target this α isoform of PI3K to enhance its 

activity promoting myocardial salvage. Further studies with specific PI3Kα activators should 

be tested in large-animal models, before being eventually translated in STEMI patients who 

undergo coronary revascularization.  
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12.3 Further investigations & future directions 

Use of genetically modified animal models 

This thesis predominantly relies on pharmacological manipulation, with all the 

inherent problems of target selectivity (199). Confirming these results in genetically-

modified animal models would make our conclusions more solid, although this type of 

approach would not allow us to focus on specific phases of the conditioning process - i.e. 

before ischemia and at reperfusion.  

 

Linking PI3Kα activation to the protection elicited by remote ischaemic conditioning 

We have demonstrated in the current study that, within the RISK pathway, PI3Kα 

plays a major role in the cardioprotective effect of both ischaemic preconditioning and 

insulin administration. There is solid evidence demonstrating that remote ischaemic 

conditioning consistently results in activation of the RISK pathway (344), although the 

mechanisms underlying the effect afforded by remote conditioning are overall less known. 

Further research needs to be undertaken to conduct a solid approach demonstrating that 

this other form of conditioning is also mediated by PI3Kα. This would broaden the clinical 

interest on this particular isoform, as remote conditioning has a great potential to be 

translated into the clinical setting. 

 

Development of specific pharmacological agents targeting PI3Kα at reperfusion 

In this thesis, insulin has been used as canonical activator for PI3Kα. Taken into 

account that this metabolic agent has multiple targets and can be considered a “dirty” drug 

with many side-effects (i.e. hypoglycaemia, hypokalemia, and catecholamine elevation), it 

would be useful to actually develop a pharmacological agent specifically targeting PI3Kα. 

The focus of this thesis is not to return life to insulin as a cardioprotective agent, but to 

take advantage of the overwhelming evidence demonstrating its protective effect to 

further improve how to target its downstream signalling. 
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Effects of the upregulation or abolishment of other isoforms on ischaemia/reperfusion 

experimental models 

If an alternative ligand to SDF1α is found to activate Akt through PI3Kβ, it would be 

interesting to evaluate its potential cardioprotective role, and if proved, whether using a 

combination of the two isoforms is additive. Considering that mostly GPCRs mediate the 

protective effect of the autocoids released by IPC, it would be actually very interesting to 

study whether either PI3Kβ or PI3Kγ (both of them downstream of GCPRs) are also involved 

in the “trigger” phase of IPC. One might speculate that activating both GPCRs and RTK can 

act synergistically to promote myocardial salvage against IRI. 
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