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Summary
Schizophrenia (SCZ) is a severe, highly heritable psychiatric disorder. Elucidation

of the genetic architecture of the disorder will facilitate greater understanding of the

altered underlying neurobiological mechanisms. The aim of this study was to identify

likely aetiological variants in subjects affected with SCZ.

Exome sequence data from a SCZ cas–control sample from Sweden was analysed for

likely aetiological variants using a weighted burden test. Suggestive evidence impli-

cated the UNC-51-like kinase (ULK1) gene, and it was observed that four rare vari-

ants that were more common in the Swedish SCZ cases were also more common in

UK10K SCZ cases, as compared to obesity cases. These three missense variants and

one intronic variant were genotyped in the University College London cohort of 1304

SCZ cases and 1348 ethnically matched controls.

All four variants were more common in the SCZ cases than controls and combining

them produced a result significant at P = 0.02.

The results presented here demonstrate the importance of following up exome

sequencing studies using additional datasets. The roles of ULK1 in autophagy and
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mTOR signalling strengthen the case that these pathways may be important in the

pathophysiology of SCZ. The findings reported here await independent replication.
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association, olanzapine, burden analysis

1 INTRODUCTION

Schizophrenia (SCZ) is a serious psychiatric disorder with

an estimated lifetime prevalence of 1% (Merikangas et al.,

2011, Shivashankar et al., 2013). The main clinical features

of SCZ are hallucinations, delusions, and disorganized speech

and behaviour (McGuffin et al., 2003; Cardno & Gottesman,

2000). SCZ may give rise to severe debilitating clinical mani-

festations that impact affected individuals, their families, and

their caregivers (Nurnberger & Berrettini, 2012). Evidence for

the heritability of SCZ has been provided by twin and fam-

ily studies. As stated in a recent review, the estimated genetic

heritability for SCZ is between 60% and 90% (Neale & Sklar,

2015).

Genome-wide association (GWA) studies have been widely

used to identify genetic risk factors of small to medium

effect size in genetically complex disorders. This approach has

proved successful in the study of SCZ (Neale & Sklar, 2015).

However, rare single base changes of large effect size have

proved more difficult to identify. A study of exome-sequenced

Swedish SCZ subjects and controls revealed an excess of rare

coding variants among cases and was able to implicate partic-

ular enriched gene sets, but no single gene achieved statistical

significance after correction for multiple testing (Purcell et al.,

2014).

We had previously applied weighted burden analysis tests

to whole exome sequencing data from these 5090 Swedish

SCZ case and control subjects and to data from a UK-based

case–case sample from the UK10K project, consisting of 982

obese cases and 1392 SCZ cases (Curtis, 2015; Curtis &

UK10K Consortium, 2016). This method of analysis tested

for an excess of variants that had been weighted according to

rarity and predicted effects on function, such that stop vari-

ants were weighted more highly than nonsynonymous (NS)

changes, which were weighted more highly than synonymous

variants and the like . The scores for each variant are summed

within subjects and a t-test is carried out to see if the total

scores are higher in cases than controls. The weight of evi-

dence implicating a gene is reported as the signed log P-value

(SLP), which is the base 10 logarithm of the P-value given a

positive sign if the excess of variants is in cases and a negative

sign if the excess is in controls. Three sets of analyses were

performed including either all variants, all NS variants, or all

rare (MAF< 0.1) NS variants. In the analysis of the Swedish

dataset, the UNC-51-like kinase (ULK1) produced SLPs of

3.1, 3.0, and 3.1 and was ranked 14 of 20,267 genes in the

analysis using only rare NS variants. These gene-wise results

were largely driven by three NS variants (rs145451295,

rs55815560, and rs145279005), and it was noted that an

intronic variant (rs188342389) was also more common in

cases than controls (Table 1). As shown in the same table, the

first two of these variants were also more common in the SCZ

than obese UK10K cases, although the gene-wise results did

not demonstrate a significant excess of rare, likely functional,

variants in ULK1, with SLPs of 0.13, 0.14, and 0.25.

Taking together the gene-wise results from the Swedish

dataset and the fact that two of the variants were commoner

in schizophrenia cases in both datasets, we sought to follow

up these results by genotyping the variants in our own case–

control sample.

2 MATERIALS AND METHODS

The potential aetiological impact of the three NS variants

was assessed using SIFT (Sorting Tolerant From Intolerant)

(Sim et al., 2012), PolyPhen-2 (polymorphism phenotyping)

(Adzhubei et al., 2010), and MutationTaster (Schwarz et al.,

2014) as shown in Table 1.

We proceeded to genotype three NS and one intronic vari-

ants in the ULK1 gene in the University College London

(UCL) dataset of SCZ cases and controls that have been

described previously (Fiorentino et al., 2014; O'Brien et al.,

2014). Briefly, the cases and controls were unrelated individ-

uals of white British ancestry. The 1304 SCZ cases had their

diagnoses confirmed according to the Research Diagnostic

Criteria (Spitzer, Endicott, & Robins, 1978) after having been

interviewed with the lifetime version of the Schizophrenia and

Affective Disorders Schedule (SADS-L) (Spitzer & Endicott,

1977). The controls comprised 868 subjects recruited with an

absence of personal history of mental illness as well as an

absence of mental illness in first-degree relatives. An addi-

tional 480 controls consisted of random blood donors whose

cell-line DNA was purchased from the European Collection of

Authenticated Cell Cultures, Public Health England, Porton

Down, UK). DNA from case and control subjects collected by

us was derived from whole blood and saliva samples. DNA

extraction was performed using standard techniques. DNA
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T A B L E 1 Genotype counts and allele frequencies in the Swedish schizophrenia exome samples and the UK10K severe childhood onset obesity

cases and schizophrenia cases

Variant Swedish exomes UK10K
Position on chromosome 12 (hg19); predicted effect Controls SCZ cases Obese cases SCZ cases
SIFT; PolyPhen2; Mutation Taster

rs145451295 CC 2523 2510 971 1374

132394378; T242I CT 4 16 1 11

Tolerated; Benign; Polymorphism MAF (%) 0.079 0.32 0.051 0.40

rs55815560 CC 2538 2533 978 1379

132401058; S665L CT 3 9 4 10

Tolerated; Benign; Polymorphism MAF (%) 0.059 0.18 0.20 0.36

rs145279005 CC 2535 2526 977 1384

132401539; A705V CT 10 19 5 6

Deleterious; Probably damaging; Disease causing MAF (%) 0.20 0.37 0.25 0.22

rs188342389 CC 2528 2523 969 1369

132405837; intronic CT 13 20 13 22

N/A; N/A; Polymorphism MAF (%) 0.26 0.39 0.66 0.79

The effect of the variant is shown as the amino acid change at the relevant peptide position of ULK1 (NP_003556.1).

was quantified using fluorimetry (Qubit, ThermoFisher, Pais-

ley, UK)

Genotyping was performed using a competitive Allele-

Specific PCR system (KASPar, LGC Genomics, Hoddesdon,

UK) on a LightCycler480 real- time PCR machine (Roche,

Burgess Hill, UK). Tests of allelic association were performed

using Fisher's exact tests with the “fisher.test” commands in

R (R Core Team, 2014). We also noted the frequencies of

these variants in the European 1000 Genomes subjects and in

the non-Finnish European subjects from the ExAC “nonpsy-

chiatric” cohorts (1000 Genomes Project Consortium et al.,

2012, Lek et al., 2016).

3 RESULTS

The results for those subjects successfully genotyped are pre-

sented in Table 2, which shows that all four variants were

more common in the SCZ cases than controls. No variant was

individually statistically significant, but no subject carried

more than one of them so the counts could be combined and

overall 32 cases and 17 controls carried one of these vari-

ants, a result with one-tailed significance of P = 0.02. How-

ever, it should be noted that although the allele frequencies

were higher in cases than controls, for all four variants the

frequency was higher still among ExAC subjects, and, with

the exception of rs188342389, for the 1000 Genome subjects.

4 DISCUSSION

The results we present demonstrate a consistent effect across

different samples. In the Swedish SCZ exomes we noted sug-

gestive evidence for an increase in rare, functional variants in

ULK1 with a gene-wise SLP of 3.1. Four variants commoner

in cases were jointly observed to be more common in UK10K

SCZ cases than obesity cases and in our own SCZ cases than

controls. However, we note that in two reference datasets,

1000 Genomes and ExAC, the variants were commoner than

in the UCL controls and in some instance commoner than the

cases. This might reflect that our result is a false positive or

may be an artefact of differences in ethnicity and/or genotype

calling methodologies. ULK1 was not specifically highlighted

in the original analysis of the Swedish dataset nor in the larger

follow-up analysis, both of which reported results only for

variants predicted to disrupt gene functioning, which would

not included the variants we genotyped (Purcell et al., 2014;

Genovese et al., 2016).

The ULK1 gene codes for a 1050 amino acid ser-

ine/threonine kinase protein. There is evidence that the phos-

phorylation status of ULK1 mediates the protein's regulation

of autophagy. Amongst the proteins and compounds that have

been shown to alter phosphorylation (either directly or indi-

rectly) of ULK1 is AMP-activated protein kinase (AMPK), a

cellular energy sensor that phosphorylates ULK1 under con-

ditions of glucose starvation. ULK1 phosphorylation is coun-

terbalanced by the protein's interaction with mechanistic tar-

get of rapamycin kinase (mTOR) complex 1 (mTORC1; a

downstream component of the rapamycin sensitive mTOR

signalling system) under conditions of nutrient sufficiency

(Kim, Kundu, Viollet, & Guan, 2011). However, the mech-

anism by which ULK1 promotes autophagy remains unclear

(Egan et al., 2015). Interestingly, it has been suggested that

both autophagy and disruption of the mTOR signalling system

may play a role in the pathophysiology of SCZ (Merenlender-

Wagner et al., 2013; Gururajan & van den Buuse, 2014). The
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T A B L E 2 Genotype counts and allele frequencies in the UCL schizophrenia case-control sample and allele frequencies in the European subjects

from 1000 Genomes project and from the non-Finnish European subjects in the “nonpsychiatric” ExAC cohorts

Variant UCL Controls UCL SCZ cases 1000 Genomes ExAC
rs145451295 CC 1243 1250 497 17,671

CT 2 5 6 114

MAF (%) 0.080 0.20 0.60 0.26

rs55815560 CC 1265 1270 500 19,776

CT 5 9 3 149

MAF (%) 0.20 0.35 0.30 0.37

rs145279005 CC 1250 1277 498 19,622

CT 1 4 5 100

MAF (%) 0.040 0.16 0.50 0.25

rs188342389 CC 1251 1264 498 20,390

CT 9 14 5 246

MAF (%) 0.36 0.55 0.50 0.60

The overall number of cases compared with controls carrying one of these variants is significant at P = 0.02 (one-sided)

antipsychotic olanzapine drug has also been shown to activate

both the AMPK and the mTOR signalling pathways (Schmidt

et al., 2013).

It is expected that exome sequencing studies of complex

diseases will reveal rare variants, which, with current sample

sizes, will fail to generate results of strong enough statisti-

cal significance to definitively implicate specific genes. How-

ever, if such variants are genotyped in additional samples, as

we have done, then cumulative evidence will eventually allow

the identification of those results which are true positives.

Although our results are only of borderline significance, we

recommend that the variants reported here should be studied

in additional datasets. Only by following such an approach

will it become possible to decide which genes should be inves-

tigated using functional studies.
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