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a b s t r a c t

This paper considers the identification of treatment effects on conditional transition
probabilities. We show that even under random assignment only the instantaneous av-
erage treatment effect is point identified. Since treated and control units drop out at
different rates, randomization only ensures the comparability of treatment and controls
at the time of randomization, so that long-run average treatment effects are not point
identified. Instead, we derive bounds on these average effects. Our bounds do not impose
(semi)parametric restrictions, for example, proportional hazards.We also explore assump-
tions such as monotone treatment response, common shocks and positively correlated
outcomes that tighten the bounds.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Weconsider the effect of an intervention if the outcome is a transition froman initial to a destination state. The population
of interest is a cohort of units that are in the initial state at the time zero. Treatment is assigned to a subset of the population
either at the time zero or at some later time. Initially we assume that the treatment assignment is random. One main point
made in this paper is that even if the treatment assignment is random, only certain average effects of the treatment are
point identified. This is because the random assignment of treatment only ensures comparability of the treatment and
control groups at the time of randomization. At later points in time treated units with characteristics that interact with the
treatment to increase/decrease the transition probability relative to similar control units leave the initial state sooner/later
than comparable control units, so that these characteristics are under/over represented among the remaining treated relative
to the remaining controls and this confounds the effect of the treatment.

The confounding of the treatment effect through selective dropout is usually referred to as dynamic selection. Existing
strategies that deal with dynamic selection rely heavily on parametric or semi-parametric model restrictions. An example
is the approach of Abbring and Van den Berg (2003) who use the Mixed Proportional Hazard (MPH) model. In this model,
the instantaneous transition or hazard rate is written as the product of a time effect, the effect of the intervention and an
unobservable individual effect. As shown by Elbers and Ridder (1982), the MPH model is nonparametrically identified, so
that if the multiplicative structure is maintained, identification does not rely on arbitrary functional form or distributional

* Corresponding author.
E-mail addresses: johan.vikstrom@ifau.uu.se (J. Vikström), ridder@usc.edu (G. Ridder), m.weidner@ucl.ac.uk (M. Weidner).

https://doi.org/10.1016/j.jeconom.2017.11.012
0304-4076/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).

https://doi.org/10.1016/j.jeconom.2017.11.012
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2017.11.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:johan.vikstrom@ifau.uu.se
mailto:ridder@usc.edu
mailto:m.weidner@ucl.ac.uk
https://doi.org/10.1016/j.jeconom.2017.11.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J. Vikström et al. / Journal of Econometrics 205 (2018) 448–469 449

assumptions beyond the assumed multiplicative specification. A second example is the approach of Heckman and Navarro
(2007) who start from a threshold crossing model for transition probabilities. Again they establish semi-parametric
identification, although their model requires the presence of additional covariates, besides the treatment indicator, that
are independent of unobservable errors and have large support.

In this paper, we ask what can be identified if the identifying assumptions of the semi-parametric models do not hold.
We show that, because of dynamic selection, we cannot point identify most average treatment effects of interest even under
randomassignment. However,we derive bounds onnon-point-identified treatment effects, and showunderwhat conditions
they are informative. Our bounds are general, since beyond random assignment, we make no assumptions on functional
form and additional covariates, and we allow for arbitrary heterogeneous treatment effects as well as arbitrary unobserved
heterogeneity. The bounds can also be applied if the treatment assignment is unconfounded by creating bounds conditional
on the covariates (or the propensity score) that are averaged over the distribution of these covariates (or the propensity
score).

Besides these general bounds, we derive bounds under additional (weak) assumptions likemonotone treatment response
and positively correlated outcomes. We relate these assumptions to the assumptions made in the MPH model and to
assumptions often made in discrete duration models and structural models. The additional assumptions often tighten the
bounds considerably. We also discuss how to apply our various identification results to construct asymptotically valid
confidence intervals for the respective treatment effects.

There are many applications in which we are interested in the effect of an intervention on transition probabilities/rates.
The Cox (1972) partial likelihood estimator is routinely used to estimate the effect of an intervention on the survival rate of
subjects. Transition models are used in several fields. Van den Berg (2001) surveys the models used and their applications.
These models have also been used to study the effect of interventions on transitions. Examples are Ridder (1986), Card and
Sullivan (1988), Bonnal et al. (1997), Gritz (1993), Hamand LaLonde (1996), Abbring andVan den Berg (2003), and Heckman
and Navarro (2007) . A survey of models for dynamic treatment effects can be found in Abbring and Heckman (2007).

An alternative to the effect of a treatment on the transition rate is its effect on the cdf of the time to transition or its inverse,
the quantile function. This avoids the problem of dynamic selection. From the effect on the cdf we can recover the effect on
the average duration, but we cannot obtain the effect on the conditional transition probabilities, so that the effect on the cdf
is not informative on the evolution of the treatment effect over time. This is a limitation since there are good reasons as to
whywe should be interested in the effect of an intervention on the conditional transition probability or the transition/hazard
rate. One important reason is the close link between the hazard rate and economic theory (Van den Berg (2001)). Economic
theory often predicts how the hazard rate changes over time. For example, in the application to a job–bonus experiment
considered in this paper, labor supply and search models predict that being eligible for a bonus if a job is found, increases
the hazard rate from unemployment to employment. According to these models there is a positive effect only during the
eligibility period, and the effect increases shortly before the end of the eligibility period. The timing of this increase depends
on the arrival rate of job offers and is an indication of the control that the unemployed has over his/her re-employment time.
Any such control has important policy implications. This can only be analyzed by considering how the effect on the hazard
rate changes over time.

The evolution of the treatment effect over time is of key interest in different fields. For instance, consider two medical
treatments that have the same effect on the average survival time. However, for one treatment the effect does not change
over time while for the other the survival rate is initially low, e.g., due to side effects of the treatment, while after that
initial period the survival rate is much higher. As another example, research on the effects of active labor market policies
often documents a large negative lock-in effect and a later positive effect once the program has been completed, see e.g. the
survey by Kluve et al. (2007).

We apply our bounds and confidence intervals to data from a job–bonus experiment previously analyzed byMeyer (1996)
among others. As discussed above economic theory has specific predictions for the dynamic effect of a re-employment bonus
with a finite eligibility period. Meyer (1996) estimates these dynamic effects using an MPH model. We study what can be
identified if we rely solely on random assignment and some additional (weak) assumptions.

In Section 2 we define the treatment effects that are relevant if the outcome is a transition. Section 3 discusses their point
or set identification in the case that the treatment is randomly assigned. This requires us to be precise on what we mean by
random assignment in this setting. In Section 4 we explore additional assumptions that tighten the bounds. In Section 5 we
derive the confidence intervals. Section 6 illustrates the bounds for the job–bonus experiment. Section 7 concludes.

2. Setup

2.1. Motivating example

In this paper we consider identification of the effect of a treatment on the conditional transition probability, usually
referred to as the transition rate or the hazard rate. Effects on transition rates are important in many applications. The
Illinois job–bonus experiment that we re-consider in the application in this paper is one example. The experiment that was
conducted between mid-1984 and mid-1985 paid re-employment bonuses to unemployed individuals in the randomized
treatment group who found employment within the first 11 weeks of unemployment. The fact that the bonus is only paid
during the first 11 weeks has several interesting implications. Standard labor supply and search models predict that being
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eligible for the bonus should increase the transition rate from unemployment to employment during the 11 week eligibility
period, but should have no effect after the end of the eligibility period. Another prediction is that the transition rate should
increase shortly before the end of the eligibility period, as the unemployed run out of time to collect the bonus. These
theoretical predictions can only be studied by examining how the effect of the job–bonus varieswith time in unemployment,
that is by studying the effect on the transition rate during the eligibility period, shortly before the end of the eligibility period
and after the end of the eligibility period. Effects on the transition rate are also relevant inmany other applications, including
evaluations of medical treatments and active labor market policies.

The job–bonus experiment includes random treatment assignment, which ensures comparability of the treatment group
and the control group at the time of randomization. At later time points some unemployed individuals have found a job,
and this creates dynamic selection, that even under the initial random assignment might confound the comparability of the
treatment and control groups. This is most easily seen if the fraction that has found a job differs between the two groups,
and if those who have found a job have more favorable characteristics than those who remain unemployed. Under these
conditions the remaining individuals in the treatment groupwill be negatively (positively) selected if the fraction remaining
in unemployment is lower (higher) in the treatment group than in the control group. Moreover, even if the fraction still
unemployed is the same in the treatment group and the control group we might still face a selection problem. In the job–
bonus experiment, it could, for instance, be the case that individuals that respond to the bonus come from different parts
of the ability distribution compared to those who find a job without the bonus. The implication of this is that the ability
distribution differs between the treatment and the control groups, even if the fraction that has found a job is the same in the
two groups. All this constitutes the dynamic selection problem that is addressed in this paper.

Previous studies that dealwith the dynamic selection problemhavemostly used parametric and semi-parametricmodels.
For instance, Meyer (1996) uses a proportional hazard (PH) model to study how the effect of the job–bonus experiment
considered in this paper varies before and after the 11 week eligibility period. A more general alternative to the PH model
is to use a Mixed Proportional Hazard (MPH) model. In this model the instantaneous transition or hazard rate is written
as the product of a time effect, the effect of the intervention and an unobservable individual effect. This model, however,
imposes a multiplicative structure, a homogeneous treatment effect as well as other restrictions. In this paper we instead
consider what can be identified if we rely solely on random assignment and do not impose the parametric restrictions that
are implicit in the MPH model and other parametric and semi-parametric models.

2.2. Average treatment effect on transitions

We discuss the definition and identification of treatment effects on transition rates in discrete time with transitions
occurring at times t = 1, 2, . . ..1 We assume that treatment is assigned at the beginning of the first period and that each
unit is either always treated or always non-treated. In Section 3.1 we generalize these results by allowing the treatment to
start in any time period. Let the potential outcome Y 1

t be the indicator of a transition in period t if treated and similarly Y 0
t

be the potential outcome if non-treated.
In any definition of the causal effect of a treatment on the transition rate we must account for the dynamic selection that

was discussed in the previous subsection. If we do not specify a model for the transition rate we need to find another way
to maintain the comparability of the treatment and control groups over time. The approach that we take in this paper is to
consider average transition rates where the average is taken over the same population for both treated and controls (or in
general for different treatment arms).We initially propose to average over the subpopulation of individuals whowould have
survived until time t if treated. This is the analogue of the average effect on the treated considered in the static treatment
effect literature. This leads to the following definition.

Definition 1. The causal effect on the transition probability of the treated survivors in t is the Average Treatment Effect on
Treated Survivors (ATETS) defined by

ATETSt = E
(
Y 1
t |Y 1

t−1 = 0, . . . , Y 1
1 = 0

)
− E

(
Y 0
t |Y 1

t−1 = 0, . . . , Y 1
1 = 0

)
.

The differential selection only starts after the first period and the ATETSt controls for that by comparing the transition
rates for individuals with a common survival experience.2

Note that we are only concerned with the comparability of the treatment and control groups over the spell, i.e. with the
different levels of dynamic selection in the two groups. If we keep the treatment and control groups comparable over time,
there is still the question of how to interpret the time path of the average treatment effect over the spell. In this paper we do
not try to decompose this path into the average treatment effect for a population of unchanging composition and a selection
effect relative to this population. We do not define the treatment effect for this population of unchanging composition, but
rather for a population with a composition that changes over time due to dynamic selection. The dynamic selection is made
equal in the treatment and control groups, so that the treatment effect is not confounded by dynamic selection. Again this
is analogous to the difference between the Average Treatment Effect and the Average Treatment Effect on the Treated in the
case of a static treatment effect where the latter is defined for the population selected for treatment and the treatment effect
is for this selective population.

1 The definition of causal effects in continuous time adds technical problems (see e.g. Gill and Robins (2001)) that would distract from the conceptual
issues.

2 In Appendix C we also consider the average effect for the subpopulation of individuals who would have survived until t under both treatment and no
treatment.
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Table 1
For the case T = 2 there are sixteen possible realizations for the potential outcomes Y 1

1 , Y
1
2 , Y

0
1 , Y 0

2 , and the corresponding probabilities are given in the
table. The table also shows the row- and column-sums that are point identified from the data (‘‘observable’’). The four underlined probabilities are those
that enter into the numerator of E

(
Y 0
2

⏐⏐Y 1
1 = 0

)
, see Eq. (4) in the main text.

Y 0
= (0, 0) Y 0

= (0, 1) Y 0
= (1, 0) Y 0

= (1, 1) Observable (row sum)

Y 1
= (0, 0) p00,00 p00,01 p00,10 p00,11

}
Pr
(
Y = (0, 0)

⏐⏐D = 1
)

Y 1
= (0, 1) p01,00 p01,01 p01,10 p01,11

}
Pr
(
Y = (0, 1)

⏐⏐D = 1
)

Y 1
= (1, 0) p10,00 p10,01 p10,10 p10,11

}
Pr
(
Y1 = 1

⏐⏐D = 1
)

Y 1
= (1, 1) p11,00 p11,01 p11,10 p11,11

        
Observable Pr

(
Y = (0, 0)

⏐⏐D = 0
)

Pr
(
Y = (0, 1)

⏐⏐D = 0
)

Pr
(
Y1 = 1

⏐⏐D = 0
)

(col. sum)

3. Bounds on average treatment effects on transitions

We now consider identification of the ATETSt under random treatment assignment. Let D be the indicator of treatment
status, and Yt be the observed indicator of a transition in period t . The observed outcomes are related to the potential
outcomes by the observation rule3

Yt = DY 1
t + (1 − D)Y 0

t . (1)

We make the following random assignment assumption.

Assumption 1 (Random Assignment of Treatment).

D⊥
{
Y 1
t , Y 0

t : t = 1, 2, . . .
}
.

In the first period t = 1 no dynamic selection has taken place, yet, so subjects are fully randomized. Under Assumption 1
we therefore have the usual result, for d ∈ {0, 1},

E(Y d
1 ) = E(Y1|D = d), (2)

implying that we can point identify the instantaneous treatment effect:

ATETS1 = E(Y 1
1 ) − E(Y 0

1 ) = E(Y1|D = 1) − E(Y1|D = 0).

Next, we consider the identification of ATETSt for t = 2. We discuss this two period case in detail, because the main
results of this paper can be understood in this two period setting, where the transition occurs in period 1, period 2 or after
period 2. The two period dynamic treatment effect is defined by

ATETS2 = E(Y 1
2 |Y 1

1 = 0) − E(Y 0
2 |Y 1

1 = 0). (3)

Under Assumption 1 we again have, for d ∈ {0, 1},

E(Y d
2 |Y d

1 = 0) = E(Y2|Y1 = 0,D = d).

Thus, the first term in ATETS2 is point identified from the data, and we can also point identify E(Y 0
2 |Y 0

1 = 0). However, in
this last expression the conditioning is on the survivors under non-treatment instead of under treatment, so this is not the
second term in ATETS2. It turns out that E(Y 0

2 |Y 1
1 = 0) is only partially identified from the data, and the goal in the following

is therefore to derive bounds on this conditional expectation.
For every member of the population we have a vector of four binary potential outcomes Y 1

1 , Y
1
2 , Y

0
1 , Y

0
2 , for which

there are 24
= 16 possible realizations. We denote the probability of (Y 1

1 , Y 1
2 , Y 0

1 , Y 0
2 ) = (d1, d2, d3, d4) by pd1d2,d3d4 .

Table 1 shows those sixteen population probabilities, using the two-vector notation Y = (Y1, Y2) and Y d
= (Y d

1 , Y d
2 ).

From the data we can identify the transition probabilities Pr
(
Y1 = 1

⏐⏐D = d
)
(transition in t = 1 under treatment d), and

Pr
(
Y = (0, 1)

⏐⏐D = d
)
(transition in t = 2 under treatment d), and Pr

(
Y = (0, 0)

⏐⏐D = d
)
(transition after t = 2 under

treatment d). Those ‘‘observable’’ transition probabilities are obtained in Table 1 as row- and column-sums, for example
we have Pr

(
Y = (0, 0)

⏐⏐D = 1
)

= p00,00 + p00,01 + p00,10 + p00,11.
Notice that Y d

= (1, 1) is included as a potential outcome here, that is, we allow for multiple transitions. Multiple
transitions cannot occur if the destination state is absorbing, as in the job–bonus experiment. In that case we know that
the probabilities in the last row and column of Table 1 are zero, that is,

p11,00 = p11,01 = p11,10 = p11,10 = p11,11 = p00,11 = p01,11 = p10,11 = 0.

3 In applications with at most a single transition per individual (where the destination state is absorbing), as in the job–bonus experiment, we have∑
tYt ≤ 1, but we still consider future Yt to be observed, even after the transition occurred.
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This information could sharpen the lower bound on the treatment effect, but wewill not derive separate bounds for the case
of an absorbing destination state. The bounds for the non-absorbing destination state are conservative if the destination is
indeed absorbing.

With those definitions we obtain4

E
(
Y 0
2

⏐⏐Y 1
1 = 0

)
= Pr

(
Y 0
2 = 1

⏐⏐Y 1
1 = 0

)
=

p00,01 + p00,11 + p01,01 + p01,11
Pr
(
Y1 = 0

⏐⏐D = 1
) . (4)

The denominator of the last expression is identified from the data. What is left to do is to provide bounds on the numerator
in terms of the six observable transition probabilities Pr

(
Y1 = 1

⏐⏐D = d
)
, Pr

(
Y = (0, 1)

⏐⏐D = d
)
, and Pr

(
Y = (0, 0)

⏐⏐D = d
)
,

d ∈ {0, 1}. The four probabilities that enter into this numerator are underlined in Table 1.
Thus, the question is what values for p00,01 + p00,11 + p01,01 + p01,11 are feasible, subject to the positivity condition

pd1d2,d3d4 ≥ 0 for all (d1, d2, d3, d3) ∈ {0, 1}4, and subject to the constraint that the row- and column sums in Table 1 equal
to the six observable transition probabilities. Two upper bounds are given by

p00,01 + p00,11 + p01,01 + p01,11 ≤ 1 − Pr
(
Y1 = 1

⏐⏐D = 1
)
,

p00,01 + p00,11 + p01,01 + p01,11 ≤ 1 − Pr
(
Y = (0, 0)

⏐⏐D = 0
)
.

(5)

Here, the first upper bound follows from the row-sum conditions in Table 1, which require that p00,01+p00,11+p01,01+p01,11
is smaller than Pr

(
Y = (0, 0)

⏐⏐D = 1
)
+Pr

(
Y = (0, 1)

⏐⏐D = 1
)
, which equals 1−Pr

(
Y1 = 1

⏐⏐D = 1
)
. Analogously, the second

upper bound follows from the column-sum conditions in Table 1, which require that p00,01+p00,11+p01,01+p01,11 is smaller
than Pr

(
Y = (0, 1)

⏐⏐D = 0
)
+ Pr

(
Y1 = 1

⏐⏐D = 0
)
, which equals 1 − Pr

(
Y = (0, 0)

⏐⏐D = 0
)
. Note that if the destination state

is absorbing, the second upper bound in (5) is Pr(Y = (0, 1)|D = 0) which is smaller than for the non-absorbing case.
Regarding the lower bound, notice that p00,01 +p01,01 cannot be arbitrarily small, because when shifting probability mass

within the columnof Table 1 that corresponds to Pr
(
Y = (0, 1)

⏐⏐D = 0
)
, we cannot increase the other elements in this column

(i.e. p10,01 + p11,01) to more than Pr
(
Y1 = 1

⏐⏐D = 1
)
, since we would otherwise violate the corresponding row-constraint. By

that argument we find the bound p00,01 + p01,01 ≥ Pr
(
Y = (0, 1)

⏐⏐D = 0
)
− Pr

(
Y1 = 1

⏐⏐D = 1
)
. Together with the positivity

condition on all probabilities we thus obtain

p00,01 + p00,11 + p01,01 + p01,11 ≥ max
{
0, Pr

(
Y = (0, 1)

⏐⏐D = 0
)
− Pr

(
Y1 = 1

⏐⏐D = 1
)}

. (6)

The lower bound is the same if the destination state is absorbing. Combining (3)–(6), gives the bounds onATETS2 summarized
in the following theorem.5 We find it convenient to present the theorem for the case of ATETSt for arbitrary t . For this we
introduce the notation Y t−1 = (Y1, . . . , Yt−1), and we write 0 for the vector of zeros.

Theorem 1 (Bounds on ATETS). Suppose that Assumption 1 holds. Let t ∈ {2, 3, 4, . . .}. If Pr
(
Y t−1 = 0 | D = 1

)
= 0, then

ATETSt is not defined. If Pr
(
Y t−1 = 0 | D = 1

)
> 0, and also Pr(D = 1) > 0 and Pr(D = 0) > 0, then we have the bounds

LBt ≤ ATETSt ≤ UBt ,

where

LBt ≡ Pr(Yt = 1 | Y t−1 = 0,D = 1)

− min

{
1,

1 − [1 − Pr(Yt = 1 | Y t−1 = 0,D = 0)] Pr
(
Y t−1 = 0 | D = 0

)
Pr(Y t−1 = 0 | D = 1)

}
,

UBt ≡ Pr(Yt = 1 | Y t−1 = 0,D = 1)

− max

{
0,

Pr(Yt = 1 | Y t−1 = 0,D = 0) Pr
(
Y t−1 = 0 | D = 0

)
− 1

Pr(Y t−1 = 0 | D = 1)
+ 1

}
.

Proof. See Appendix A.

4 We have

Pr
(
Y 0
2 = 1

⏐⏐Y 1
1 = 0

)
=

Pr
(
Y 0
2 = 1& Y 1

1 = 0
)

Pr
(
Y 1
1 = 0

) =
Pr
{[

Y 0
= (0, 1) or (1, 1)

]
&
[
Y 1

= (0, 0) or (0, 1)
]}

Pr
(
Y1 = 0

⏐⏐D = 1
) ,

where we also used the random assignment assumption.
5 Combining (4)–(6) and Pr

(
Y1 = 1

⏐⏐D = 1
)

= 1 − Pr
(
Y1 = 0

⏐⏐D = 1
)
we obtain

max
{
0,

Pr
(
Y = (0, 1)

⏐⏐D = 0
)
− 1

Pr
(
Y1 = 0

⏐⏐D = 1
) + 1

}
≤ E

(
Y 0
2

⏐⏐Y 1
1 = 0

)
≤ min

{
1,

1 − Pr
(
Y = (0, 0)

⏐⏐D = 0
)

Pr
(
Y1 = 0

⏐⏐D = 1
) }

.

Also using (3) and E(Y 1
2 |Y 1

1 = 0) = Pr
(
Y2 = 1

⏐⏐Y1 = 0,D = 1
)
, and rewriting Pr

(
Y = (0, 1)

⏐⏐D = 0
)
and Pr

(
Y = (0, 0)

⏐⏐D = 0
)
as products of one-step

ahead conditional transition probabilities gives the bounds in Theorem 1 for the case t = 2.
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Notice that the bounds in Theorem 1 require no assumptions beyond random assignment. They allow, for instance,
for arbitrary heterogeneity in treatment response. The bounds exist as long as Pr

(
Y t−1 = 0 | D = 1

)
> 0, because if this

probability is zero, then the subpopulation for which ATETSt is defined has no members.6 The conditions Pr(D = 1) > 0
and Pr(D = 0) > 0 guarantee that both treated and untreated individuals are observed, which is an obvious condition for
any treatment effect estimation.

Next, consider the intuition behind these bounds using the job–bonus experiment as an illustration. Both the upper and
the lower bound are increasing in the observed transition probability from unemployment to employment in the treatment
group in period t, Pr(Yt = 1 | Y t−1 = 0,D = 1). This follows directly from the fact that we consider the average effect for
treated individuals that remain in unemployment until time t . The bounds also depend on the observed transition probability
in the control group, Pr(Yt = 1 | Y t−1 = 0,D = 0), but this relationship is more complicated than the relationship between
the bounds and Pr(Yt = 1 | Y t−1 = 0,D = 1). In general we have that both the upper and the lower bound are decreasing
in Pr(Yt = 1 | Y t−1 = 0,D = 0). The reason for this is that a high transition rate among the unemployed individuals in the
control group allows for a larger counterfactual outcome under no treatment. Another important determinant of the bounds
is the fraction in the treatment group that remains in unemployment until time t , Pr(Y t−1 = 0 | D = 1). If this survival
probability is small, there is more selection in the group of treated that remains in unemployment, i.e. more pronounced
dynamic selection, leading to a larger difference between the upper and the lower bound.

From Theorem 1we also have several other implications. Corollary 1 shows that if the survival rates under treatment and
control both equal one, i.e., if Pr(Y t−1 = 0 | D = 0) = 1 and Pr(Y t−1 = 0 | D = 1) = 1, then the dynamic treatment effect
ATETSt is point identified. If everyone survives the first t −1 periods we have under random treatment assignment in period
1 two groups of equal composition even in period t .

Corollary 1 (Point Identification). ATETSt is point identified if both Pr(Y t−1 = 0 | D = 0) = 1 and Pr(Y t−1 = 0 | D = 1) = 1.

The information in the bounds depends on thewidth of the implied interval. The best case is that the restrictions imposed
by the max and min in LBt and UBt above are non-binding, and the width of the bounds then becomes

UBt − LBt =
2 − Pr(Y t−1 = 0 | D = 1) − Pr(Y t−1 = 0 | D = 0)

Pr(Y t−1 = 0 | D = 1)
.

This expression shows that the width of the bound is decreasing in Pr(Y t−1 = 0 | D = 1) and Pr(Y t−1 = 0 | D = 0). In
the job–bonus application this implies that the width of the bound is directly related to the probability that unemployed
individuals in the treatment group and in the control group remain in unemployment until time t .

3.1. Arbitrary time to treatment

So far we have considered the case with treatment assignment at the beginning of the first period. We now consider a
more general case in which the treatment can start in any time period. We assume that any treated unit remains treated in
the subsequent periods, that is, we assume that treatment is an absorbing state. Let the potential outcome Y k

t be an indicator
of a transition in period t if the treatment started in period k ≤ t , and since treatment is assumed to be an absorbing state
this means that the unit is treated in all subsequent periods. The potential outcome if non-treated is denoted by Y 0

t .
7

Let Dt be the indicator of treatment in period t so that a unit with Dt = 1 could either be treated or non-treated before
t . We use the notation Dt−1 = (D1, . . . ,Dt−1) and write 1 and 0 for the vector of ones and zeros. Note that because the
treatment state is absorbing we have that Dt−1 = 1 ⇔ Dt = 1.

With treatment assignments in all periods we need a different randomization assumption. The relevant random
assignment assumption is

Assumption 2 (Sequential Randomization Among Survivors). For all t ,

Dt ⊥
{
Y k
s : k, s = t, t + 1, t + 2, . . .

} ⏐⏐⏐⏐ Dt−1 = 0, Y 0
t−1 = · · · = Y 0

1 = 0.

This assumption implies that treatment is assigned randomly among survivors that have not been treated before.8

6 The bounds in Theorem 1 also involve conditioning on the event Y t−1 = 0 and D = 0, but we do not need to impose Pr
(
Y t−1 = 0 | D = 0

)
> 0,

because all expressions involving that conditioning set can be rewritten, for example, we have [1− Pr(Yt = 1 | Y t−1 = 0,D = 0)] Pr
(
Y t−1 = 0 | D = 0

)
=

Pr(Yt = 0 & Y t−1 = 0 |D = 0).
7 Under the no-anticipation assumption in Abbring and Van den Berg (2003), Y 0

t corresponds to the potential outcome if never-treated, since no-
anticipation assures that the non-treated potential outcome at t equals the potential outcome at t if never-treated.Without the no-anticipation assumption
the potential outcome, Y 0

t , corresponds to the potential outcome if non-treated up until t , including any anticipatory responses to information about
treatments after t .

8 Sequential randomization occurs in medical studies in the Sequential Multiple Assignment Randomized Trial (SMART) design, see Murphy and
Bingham (2009) and Murphy (2005).
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The treatment effect at t of a treatment started in k ≤ t is9

ATETSt (k) = E
(
Y k
t

⏐⏐⏐ Y k
t−1 = 0,Dk−1 = 0

)
− E

(
Y 0
t

⏐⏐⏐ Y k
t−1 = 0,Dk−1 = 0

)
. (7)

where we average over the subpopulation that started treatment in k and was not treated before k. For the instantaneous
treatment effect (if there is no anticipation effect, the outcome in k − 1 and earlier is the non-treated outcome)

ATETSk(k) = E
(
Y k
k

⏐⏐⏐ Y 0
k−1 = 0,Dk−1 = 0

)
− E

(
Y 0
k

⏐⏐⏐ Y 0
k−1 = 0,Dk−1 = 0

)
.

Under sequential randomization as in Assumption 2 we have

ATETSk(k) = E
(
Y k
k

⏐⏐⏐ Y 0
k−1 = 0,Dk = 1,Dk−1 = 0

)
− E

(
Y 0
k

⏐⏐⏐ Y 0
k−1 = 0,Dk = 0,Dk−1 = 0

)
=

E
(
Yk

⏐⏐⏐ Y k−1 = 0,Dk = 1,Dk−1 = 0
)

− E
(
Yk

⏐⏐⏐ Y k−1 = 0,Dk = 0,Dk−1 = 0
)

so that the instantaneous effect of a treatment starting at k is point identified.
For the ATETSt (k) in (7) we derive the bounds as in Theorem 1 with k the first period and time of randomization, i.e. in

the role of period 1, and at time kwe consider the observations with Y
0
k−1 = 0,Dk−1 = 0, i.e. the survivors if not treated that

did not receive treatment before k which is the same as Y k−1 = 0,Dk−1 = 0. For this subpopulation the data that enter the
bounds are the transition probabilities in t given treatment starting in k (and continuing until t) and given being assigned
to the control group at k (and remaining in the control group until t). The bounds of Theorem 1 apply directly with obvious
changes in the conditioning sets of the probabilities (condition on Y k−1 = 0,Dk−1 = 0 in addition to the conditioning
variables in the bounds of Theorem 1).

4. Bounds on treatment effects on transitions under additional assumptions

The bounds in the previous section did not impose any assumptions beyond random assignment. In this section, we
explore the identifying power of additional assumptions. For sake of presentationwewill focus on identification of ATETSt .10
The assumptions that we make are implicit in parametric models such as the MPH model, and also in the discrete duration
models and structural models presented in this section.

As a background consider the following discrete duration model for the control and treated outcomes, for individual i in
period t ,

Y 0
it = I(αt + Vi − ε0

it ≥ 0),

Y 1
it = I(αt + γit + Vi − ε1

it ≥ 0). (8)

This discrete duration model has a composite error that is the sum of unobserved heterogeneity Vi and a random shock
εit . Here, αt is a time specific effect, and γit drives the systematic differences between treated and non-treated outcomes.
The model allows for different random shocks under control, ε0

it and treatment, ε1
it . These random shocks are assumed to be

independent, but even in this case the potential outcomes are positively correlated through their dependence on Vi. A more
traditional model has the same random shock under control and treatment, εit , but this is a more restrictive model. In the
sequel we start from the more general model in (8) to illustrate the additional assumptions.

4.1. Monotone treatment response

The first assumption is Monotone Treatment Response (MTR). The assumption is that the effect is either positive or
negative for all units in all periods. In terms of the discrete duration model example in (8), the assumption is that γit ≤ 0 for
all i, t or γit ≥ 0 for all i, t . That is, we do not assume a specific direction of the effect, merely that the effect goes in the same
direction for all units. For the job–bonus experiment considered in this paper this assumption rules out that the bonus offer
increases the transition rate for some unemployed individuals and decreases the transition rate for others. The assumption
is similar to the MTR assumption introduced by Manski (1997) and Manski and Pepper (2000).

To formally define MTR in our framework we denote the event of survival under treatment and no-treatment by St , that
is, St is the event that Y

1
t = 0 and Y

0
t = 0. We have

Assumption 3 (Monotone Treatment Response (MTR)). Either

Pr
(
Y 1
t = 1

⏐⏐ St−1, V
)

≥ Pr
(
Y 0
t = 1

⏐⏐ St−1, V
)
,

9 Note that ATETSt (k) with k = 1 is identical to ATETSt considered above. Here, we use the more general notation, ATETSt (k), to define the average
effects when treatment could start in any period.
10 Assumptions that tighten ATETSt (k) with k > 1 follow using similar reasoning.
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for all t , or

Pr
(
Y 1
t = 1

⏐⏐ St−1, V
)

≤ Pr
(
Y 0
t = 1

⏐⏐ St−1, V
)
,

for all t . Here, V can be any known or unknown vector of individual specific characteristics (both observed and unobserved)
that are constant over time.11

This assumption can be relaxed at the expense of more complicated bounds. The assumption is that the effect goes in
the same direction for all units. This is consistent with a discrete duration model that allows the random and independent
shocks ε1

it and ε0
it to differ, but restricts the sign of γit .

4.2. Common shocks

The next assumption restricts the joint distribution of potential outcomes in the treatment arms. The assumption
essentially imposes that the outcomes in both treatment arms involve the same random shock. In terms of the discrete
duration model example in (8), the assumption is that ε1

it = ε0
it = εit , so that the random shock εit is the same for both

treatment states. Thus, if γit ≤ 0 then the treated have a larger survival probability in t . Therefore the event that i survives
in t if not treated, i.e. Y 0

it = 0, is equivalent to εit ≥ αt + Vi, so that this event implies that εit ≥ αt + γit + Vi ≥ 0, i.e. Y 1
it = 0.

In a structural model the random shocks often satisfy this restrictions, as is illustrated in a simple job search model below.
The formal statement of the assumption is as follows.

Assumption 4 (Common Shocks (CS)). For all t

Pr(Y 1
t = 0|St−1, V ) ≥ Pr(Y 0

t = 0|St−1, V ) ⇒ Pr(Y 1
t = 0|St−1, Y 0

t = 0, V ) = 1,

Pr(Y 1
t = 0|St−1, V ) ≤ Pr(Y 0

t = 0|St−1, V ) ⇒ Pr(Y 0
t = 0|St−1, Y 1

t = 0, V ) = 1.

Here, again, V can be any known or unknown vector of individual specific characteristics (both observed and unobserved)
that are constant over time.12

In the job–bonus application the intuition behind this assumption is that CS implies that all random events leading to
a job offer and employment are the same irrespective if a specific unemployed individual is randomized to the treatment
group or to the control group.

Assumption 4 is satisfied in many standard structural models. Consider for instance a non-stationary job search model
for an unemployed individual as in Van den Berg (1990) or Meyer (1996). The treatment is a re-employment bonus as
discussed in Section 5 below. In each period a job offer is obtained with probability p(t, Vi). Let Yof ,it be the indicator of an
offer in period t and Yof ,it = I(εof ,it ∈ A(t, Vi)) with A(t, Vi) a set. If the job offer is not under control of i, the arrival process
is the same under treatment and control. The reservation wage is denoted by ξ 1

it for the treated and ξ 0
it for the controls. In

general (see Meyer (1996) ) ξ 1(t, Vi) ≤ ξ 0(t, Vi), so that if H is the wage offer c.d.f. we have the acceptance probabilities
1 − H(ξ 1(t, Vi)) ≥ 1 − H(ξ 0(t, Vi)). The acceptance indicators are Y 0

ac,it = I(εw,it ≥ ξ 0(t, Vi)) and Y 1
ac,it = I(εw,it ≥ ξ 1(t, Vi))

with εw,it the wage offer. Because Y 0
it = Yof ,itY 0

ac,it and Y 1
it = Yof ,itY 1

ac,it , we have

Y 1
it = 0 ⇒ Y 0

it = 0,

so that Assumption 4 is satisfied.

4.3. Positively correlated outcomes

The third assumption concerns the relation between the counterfactual outcomes over time. Let us introduce the
assumption for the two period case. If we compare the transition probability Pr(Y 0

2 = 1|Y 1
1 = 0, Y 0

1 = 0) to Pr(Y 0
2 = 1|Y 1

1 =

1, Y 0
1 = 0), i.e. the probability of a transition in period 2 if no treatment was received in periods 1 and 2 given survival

with or without treatment in period 1 to the same probability given survival without but not with treatment in period 1,
then it is reasonable to assume that the former probability is not larger than the latter. Individuals with Y 1

1 = 0, Y 0
1 = 0

have characteristics that make them not leave the initial state as opposed to individuals with Y 1
1 = 1, Y 0

1 = 0 that have
characteristics that make them leave the initial state if treated in period 1. If the variables that affect the transition out of
the initial state are positively correlated between periods, then

Pr(Y 0
2 = 1|Y 1

1 = 0, Y 0
1 = 0) ≤ Pr(Y 0

2 = 1|Y 1
1 = 1, Y 0

1 = 0). (9)

11 In particular, V could identify the individual i uniquely. In that case the assumption simply becomes that we have either Pr
(
Y 1
it = 1

⏐⏐ Si,t−1
)

≥

Pr
(
Y 0
it = 1

⏐⏐ Si,t−1
)
, for all i, t , or Pr

(
Y 1
it = 1

⏐⏐ Si,t−1
)

≤ Pr
(
Y 0
it = 1

⏐⏐ Si,t−1
)
, for all i, t . This was the formulation of the assumption used in a previous version

of this paper.
12 In particular, V could identify the individual i uniquely. In that case the assumption simply becomes that for i we have Pr(Y 1

it = 0|Si,t−1) ≥ Pr(Y 0
it =

0|Si,t−1) ⇒ Pr(Y 1
it = 0|Si,t−1, Y 0

it = 0) = 1, and Pr(Y 1
it = 0|Si,t−1) ≤ Pr(Y 0

it = 0|Si,t−1) ⇒ Pr(Y 0
it = 0|Si,t−1, Y 1

it = 0) = 1.
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As before we motivate the assumption using the discrete duration model in (8). Consider (9). By the discrete duration
model the conditioning events are if no transition (i.e., if Y 1

1 = 0, Y 0
1 = 0 )

Vi − ε0
i1 < −α1, Vi − ε1

i1 < −α1 − γi1,

and if a transition in 1 if treated (i.e., if Y 1
1 = 1, Y 0

1 = 0)

Vi − ε0
i1 < −α1, Vi − ε1

i1 ≥ −α1 − γi1.

Thus, if Vi − ε0
i1 is positively correlated with Vi − ε0

i2, then (9) holds, since then Pr(Y 0
2 = 1) is at least as large for

the subpopulation with Y 1
1 = 0, Y 0

1 = 0 as for the subpopulation with Y 1
1 = 1, Y 0

1 = 0. We call this positively
correlated outcomes. An analogous argument can be made for the relation between Pr(Y 0

2 = 1|Y 1
1 = 0, Y 0

1 = 1) and
Pr(Y 0

2 = 1|Y 1
1 = 0, Y 0

1 = 0), as well as for Pr(Y 1
2 = 1) for different subpopulations.

Formally, for arbitrary t we have

Assumption 5 (Positively Correlated Outcomes (PCO)). For allm = 1, . . . , t − 1

Pr(Y 0
t = 1|Y 1

m = 1, Y
1
m−1 = 0, Y

0
t−1 = 0) ≥ Pr(Y 0

t = 1|Y
1
t−1 = 0, Y

0
t−1 = 0),

Pr(Y 1
t = 1|Y 1

m = 1, Y
1
m−1 = 0, Y

0
t−1 = 0) ≥ Pr(Y 1

t = 1|Y
1
t−1 = 0, Y

0
t−1 = 0),

Pr(Y 0
t = 1|Y

1
t−1 = 0, Y 0

m = 1, Y
0
m−1 = 0) ≥ Pr(Y 0

t = 1|Y
1
t−1 = 0, Y

0
t−1 = 0),

Pr(Y 1
t = 1|Y

1
t−1 = 0, Y 0

m = 1, Y
0
m−1 = 0) ≥ Pr(Y 1

t = 1|Y
1
t−1 = 0, Y

0
t−1 = 0).

For the job–bonus application PCO has several implications. As an illustration, consider two groups consisting of
unemployed who find and unemployed who do not find employment in the first period if non-treated. In this case PCO
implies that in the second period, the transition rate under treatment on average is weakly larger in the former group
compared to the latter. This holds if the ranking of the unemployed individuals in terms of the characteristics that determine
job offers, such as ability, experience and job search effort, remains the same during the entire unemployment spell.

Note that the motivating example above shows that PCO does not imply nor is implied by MTR or CS. The CS assumption
is on the contemporaneous correlation of random shocks while PCO relates to a (positive) relation of the combined random
error over time. Since the latter in general contains an important individual effect, positive correlation is not a strong
assumption.

4.4. Bounds under the additional assumptions

We now obtain bounds on ATETS for arbitrary t when we compare a treatment started in period 1 to no treatment in
all periods. Bounds under MTR and CS are given in Theorems 2 and 3 provides bounds under PCO. Bounds under all three
additional assumptions are in Theorem 4.

Theorem 2 (Bounds on ATETS Under MTR and CS for t Periods). Let Assumptions 1, 3 and 4 hold. Let t ∈ {2, 3, 4, . . .}. If
Pr
(
Y t−1 = 0|D = 1

)
= 0, then ATETSt is not defined.

If Pr
(
Y t−1 = 0|D = 1

)
> 0, and also Pr(D = 1) > 0 and Pr(D = 0) > 0, then we have the bounds

LBt ≤ ATETSt ≤ UBt ,

where

LBt = Pr(Yt = 1|Y t−1 = 0,D = 1)

− min

{
1, 1 +

Pr(Yt = 1|Y t−1 = 0,D = 0) Pr
(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

−
min

{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

}
Pr(Y t−1 = 0|D = 1)

}
,

UBt = Pr(Yt = 1|Y t−1 = 0,D = 1)

− max

{
0 ,

[Pr(Yt = 1|Y t−1 = 0,D = 0) − 1] Pr
(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

+
min

{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

}
Pr(Y t−1 = 0|D = 1)

}
.

Proof. See Appendix A.
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Assumption 3 states that the treatment effect is either non-negative or non-positive for all i. Since in period 1 we can
estimate the ATETS directly because there is no dynamic selection yet, the possibility that MTR holds with a non-positive
effect, can be excluded if the ATETS in period 1 is non-negative. If we make the stronger assumption that the effect has the
same sign for all i and for all t then a non-negative ATETS in period 1 excludes non-positive MTR in all periods. In that case
the ATETS is non-negative in all time periods and this improves the lower bound on the ATETS, but has no effect on the upper
bound that is between 0 and 1. The lower bound on the ATETS if non-negative MTR holds is13:

LBt = max

{
0, Pr(Yt = 1|Y t−1 = 0,D = 1)

−
Pr(Yt = 1|Y t−1 = 0,D = 0) Pr

(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

}
.

If MTR can change sign between periods we would require prior knowledge of the sign in each time period to improve on
the bounds in Theorem 2.

Theorem 3 (Bounds on ATETS Under PCO for t Periods). Let Assumptions 1 and 5 hold. Let t ∈ {2, 3, 4, . . .}. If Pr(Y t−1 = 0|D =

1) = 0, then ATETSt is not defined.
If Pr

(
Y t−1 = 0|D = 1

)
> 0 and Pr(Ys = 0|Y s−1 = 0,D = 1)+Pr(Ys = 0|Y s−1 = 0,D = 0)−1 > 0 for all s = 1, . . . , t−1,

and also Pr(D = 1) > 0 and Pr(D = 0) > 0, then we have the bounds

LBt ≤ ATETSt ≤ UBt ,

where

LBt = Pr(Yt = 1|D = 1, Y t−1 = 0) − 1 +
1 − Pr(Yt = 1|Y t−1 = 0,D = 0)

Pr(Y t−1 = 0|D = 1)

×

t−1∏
s=1

[Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1],

UBt = Pr(Yt = 1|D = 1, Y t−1 = 0)

− max

{
0,

(Pr(Yt = 1|Y t−1 = 0,D = 0) − 1) Pr
(
Y t−1 = 0|D = 0

)∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1]

+ 1

}
.

If Pr
(
Y t−1 = 0|D = 1

)
> 0 and Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1 ≤ 0 for some s ≤ t, then we

have the bounds

Pr(Yt = 1|Y t−1 = 0,D = 1) − 1 ≤ ATETSt ≤ Pr(Yt = 1|Y t−1 = 0,D = 1).

Proof. See Appendix A.

Theorem 4 (Bounds on ATETS Under MTR, CS and PCO for t Periods). Let Assumptions 1 and 3–5 hold. Let t ∈ {2, 3, 4, . . .}. If
Pr
(
Y t−1 = 0|D = 1

)
= 0, then ATETSt is not defined.

If Pr
(
Y t−1 = 0|D = 1

)
> 0, and also Pr(D = 1) > 0 and Pr(D = 0) > 0, then we have the following bounds

LBt ≤ ATETSt ≤ UBt ,

where

LBt = Pr(Yt = 1|D = 1, Y t−1 = 0) − 1 +
1 − Pr(Yt = 1|Y t−1 = 0,D = 0)

Pr(Y t−1 = 0|D = 1)
× min

{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

}
,

UBt = Pr(Yt = 1|D = 1, Y t−1 = 0)

− max

{
0,

(Pr(Yt = 1|Y t−1 = 0,D = 0) − 1) Pr
(
Y t−1 = 0|D = 0

)
min

{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

} + 1

}
.

Proof. See Appendix A.

13 In the sameway, if the ATETS in period 1 is non-positive, the possibility that MTR holds with a non-negative effect can be excluded, affecting the upper
bound in an obvious way.
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5. Inference

Initially, for a given time period t , we consider inference on θ0 = ATETSt based on the identification result in Theorem 1.
We assume that Pr(Y t−1 = 0|D = 1) > 0 . The bounds in the theorem can then be expressed as

max(a1, a2) =: ℓ ≤ θ0 ≤ u := min(a3, a4), (10)

with

a1 = a3 − 1,

a2 = a3 −
1 − [1 − Pr(Yt = 1|Y t−1 = 0,D = 0)]Pr(Y t−1 = 0|D = 0)

Pr(Y t−1 = 0|D = 1)
,

a3 = Pr(Yt = 1|Y t−1 = 0,D = 1),

a4 = a3 − 1 +
1 − Pr(Yt = 1|Y t−1 = 0,D = 0)Pr(Y t−1 = 0|D = 0)

Pr(Y t−1 = 0|D = 1)
.

If we observe an iid sample {(Yi1, Yi2, . . . , Yit ,Di), i ∈ 1, . . . , n}, then the sample analog of a = (a1, a2, a3, a4)′ can easily be
constructed, for example

â3 =

1
n

∑n
i=1 1(Yit = 1, Yi1 = 0, Yi2 = 0, . . . , Yi,t−1 = 0,Di = 0)
1
n

∑n
i=1 1(Yi1 = 0, Yi2 = 0, . . . , Yi,t−1 = 0,Di = 0)

, â1 = â3 − 1,

and analogously for â2 and â4. It is easy to show that as the sample size n goes to infinity
√
n(̂a − a) ⇒ N (0, Σa), (11)

and we can construct a consistent estimator Σ̂a of the 4 × 4 matrix Σa (for example, we use bootstrapping to calculate Σ̂a
in our application in Section 6). In the following we assume that Σa,kk > 0 for all k = 1, 2, 3, 4.14

The identification results in Theorem 2 for θ0 = ATETSt can also be expressed as max(a1,min(a2, a3)) ≤ θ0 ≤

min(a4,max(a5, a6)), with appropriate definition of a = (a1, a2, a3, a4, a5, a6)′, whose estimator is again jointly normally
distributed asymptotically, and the inference discussion below can be easily generalized to this case. Similarly with
Theorems 3 and 4.

5.1. Connection to the moment inequality literature

The inference problem for θ0 that is summarized by (10) and (11) is asymptotically equivalent to an inference problem
on a finite number of moment inequalities that is well-studied in the literature, for example in Chernozhukov et al. (2007),
Romano and Shaikh (2008), Rosen (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), and Andrews
and Barwick (2012). To make this connection explicit we define

m(θ ) :=

⎛⎜⎜⎜⎜⎜⎝
Σ

−1/2
a,11 (a1 − θ )

Σ
−1/2
a,22 (a2 − θ )

Σ
−1/2
a,33 (θ − a3)

Σ
−1/2
a,44 (θ − a4)

⎞⎟⎟⎟⎟⎟⎠ , m̂(θ ) :=

⎛⎜⎜⎜⎜⎜⎝
Σ̂

−1/2
a,11 (̂a1 − θ )

Σ̂
−1/2
a,22 (̂a2 − θ )

Σ̂
−1/2
a,33 (θ − â3)

Σ̂
−1/2
a,44 (θ − â4)

⎞⎟⎟⎟⎟⎟⎠ .

The bounds (10) can then equivalently be expressed as m(θ0) ≤ 0, which is analogous to imposing four moment
inequalities.15 For convenience we have normalized m(θ ) such that each component of

√
n [m̂(θ ) − m(θ )] has asymp-

totic variance equal to one. Using (11) we obtain
√
n [m̂(θ ) − m(θ )] ⇒ N (0, Σm), where Σm = AΣaA, with A =

diag(Σ−1/2
a,11 , Σ

−1/2
a,22 , −Σ

−1/2
a,33 , −Σ

−1/2
a,44 ). An estimator Σ̂m can be constructed analogously.

All the papers onmoment inequalities cited above start from choosing an objective function (or criterion function, or test
statistics), whose sample version we denote by Q̂ (θ ), and then construct a confidence set for θ0 as

Θ̂(C1−α) = {θ ∈ R : nQ̂ (θ ) ≤ C1−α}, (12)

14 Since â1 and â3 are perfectly correlated we have Σav = 0 for the vector v = (1, −1, 0, 0)′ , implying that rank(Σa) ≤ 3, but this rank deficiency turns
out not to be important for our purposes.
15 m(θ ) is not actually a moment function, but has a slightly more complicated structure (e.g. a3 is a conditional probability that can be expressed as

the ratio between two moments). This, however, does not matter for the asymptotic analysis since the estimator m̂(θ ) has the same first order asymptotic
properties as it would have in the moment inequality case. We can therefore fully draw on the insights of the existing literature.
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where C1−α ≥ 0 is a critical value that is chosen such that confidence 1 − α is achieved asymptotically, i.e. limn→∞Pr(θ0 ∈

Θ̂(C1−α)) ≥ 1−α.16 Various objective functions have been considered in the literature. For example, the objective function
considered in Chernozhukov et al. (2007) reads in our notation Q̂ (θ ) = ∥[m̂(θ )]+∥

2, where ∥.∥ refers to the Euclidian norm,
and [m̂(θ )]+ := max(0, m̂(θ )), applied componentwise to the vector m̂(θ ).

5.2. Construction of confidence intervals

Our specific inference problem is easier than the general inference problem for moment inequalities, because in our case
the parameter θ0 is just a scalar, and the total number of inequalities is relatively small. Our goal in the following is therefore
to outline a concrete method of how to construct a confidence interval in that special case.

We choose the objective function Q̂ (θ ) = ∥[m̂(θ )]+∥
2
∞
, where ∥.∥∞ is the infinity norm,17 i.e. we have Q̂ (θ ) =

max{0, m̂1(θ ), m̂2(θ ), m̂3(θ ), m̂4(θ )}2. This objective function is convenient for our purposes, because the confidence set
defined above then takes the intuitive form

Θ̂(C1−α)

=

[
max

(̂
a1 −

c1−αΣ̂
1/2
a,11

√
n

, â2 −
c1−αΣ̂

1/2
a,22

√
n

)
,min

(̂
a3 +

c1−αΣ̂
1/2
a,33

√
n

, â4 +
c1−αΣ̂

1/2
a,44

√
n

)]
, (13)

where c1−α :=
√
C1−α . This confidence interval can be constructed very easily.

Most robust critical value
The critical value c1−α still needs to be chosen. The problem with choosing the critical value in moment inequality

problems is that this choice depends on the unknown slackness vector m(θ0), which indicates whether each inequality
mk(θ0) ≤ 0 is binding, close to binding, or far from binding. It is known, however, that the largest (‘‘worst case’’) critical
value needs to be chosen if m(θ0) = 0, i.e. if all moment inequalities are binding at the true parameter. To find this critical
value one can use the fact that in this worst case nQ̂ (θ ) is asymptotically distributed as ∥[Z]+∥

2
∞
, where Z ∼ N (0, Σm) is

a random four vector. Using the estimator Σ̂m one can simulate this distribution. However, it can easily be shown that the
1 − α quantile of ∥[Z]+∥

∞ is always smaller or equal to the following conservative critical value

c1−α = Φ−1
(
1 −

α

4

)
, (14)

where Φ−1 is the quantile function (the inverse cdf) of the standard normal distribution. The factor 1/4 that appears here
reflects the fact that we have four moment inequalities. Combining Eqs. (13) and (14) provides a confidence interval that is
uniformly valid, i.e. whose asymptotic size is bounded by α, independent of what the true values of a1, a2, a3 and a4 are.

Critical value for the case ℓ ≪ u
The critical values based on the ‘‘worst case’’ where all inequalities are binding (m(θ0) = 0) can be very conservative if

one or multiple inequalities are far from binding (mk(θ0) ≪ 0).18 Furthermore, for the inference on θ0 = ATETSt based on
Theorem 1, with a’s as given above, it can easily be shown that if Pr(Y t−1 = 0|D = 1) > 0 and Pr(Y t−1 = 0|D = 0) < 1,
then we have max(a1, a2) =: ℓ < u := min(a3, a4) , implying that m(θ0) = 0 is impossible. However, what matters for the
coverage rate of the confidence interval for a finite sample is not whether ℓ < u, but whether the difference u − ℓ is large
relative to the standard deviations Σ

1/2
a,kk of the âk, k = 1, 2, 3, 4 . This is what we mean by ℓ ≪ u in the subsection title

above.
To formalize this one can consider a pretest of the hypothesis H0 : ℓ = u, against the alternative Ha : ℓ < u, with pretest

size α
pre
n chosen to be very small, e.g. αpre

n = 0.001 ≪ α.19 If the pretest is not rejected, then the critical value (14) should
be chosen. If the pretest is rejected, then the two problems of choosing a suitable lower and upper bound for the confidence
interval Θ̂ completely decouple, because with high confidence we know that for any θ only one of those bounds can be
binding at the same time, implying that at most two of the moment inequalitiesm(θ0) ≤ 0 can be binding. In this latter case
we can therefore choose the less conservative critical value

c1−α = Φ−1
(
1 −

α

2

)
, (15)

when computing the confidence interval (13).

16 As discussed in e.g. Andrews and Soares (2010), it is important that the coverage probability is asymptotically bounded by 1 − α uniformly over θ0
and over the distribution of the observables. We have only formulated the pointwise condition here to keep the presentation simple.
17 This is special case of the ‘‘test function’’ S3(m, Σ) introduced in equation (3.6) of Andrews and Soares (2010), with p1 = 1 and v = 0 in their notation.
18 In addition, the formula (14) only provides an upper bound for the optimal critical value at m(θ0) = 0, but this second issue is often not very severe.

For example, for α = 0.05 and Σm = I4 one finds by simulation that the 0.95 quantile of ∥[Z]+∥
∞ , with Z ∼ N (0, Σm), is c0.95 = 2.234, while the much

easier to computer conservative critical value in (14) is Φ−1 (0.9875) = 2.241.
19 Theoretically one can assume α

pre
n → 0 as n → ∞ to avoid asymptotic size distortions due to the pretest.



460 J. Vikström et al. / Journal of Econometrics 205 (2018) 448–469

Critical value for the case a1 ≪ a2 ≪ u
Analogous to the discussion of (14), the critical value (15) is again potentially conservative because it is based on the case

where two of the inequalities m(θ0) ≤ 0 (for either the lower or the upper bound, respectively) are jointly binding.20 For
example, if we find that a1 ≪ a2 ≪ u (by which we again mean that the null hypotheses H0 : a1 = a2, vs. Ha : a1 < a2, and
H0 : a2 = u, vs. Ha : a2 < u, are rejected with very high confidence), then a natural confidence interval to report is

Θ̂ =

[̂
a2 −

Φ−1 (1 − α) Σ̂
1/2
a,22

√
n

,min

(̂
a3 +

Φ−1
(
1 −

α
2

)
Σ̂

1/2
a,33

√
n

, â4 +
Φ−1

(
1 −

α
2

)
Σ̂

1/2
a,44

√
n

)]
.

Note that the lower bound of Θ̂ now corresponds to inverting a standard one-sided t-test. Analogous confidence intervals
can obviously be constructed in other cases, e.g. ℓ ≪ a3 ≪ a4 or a2 ≪ a1 ≪ a4 ≪ a3, etc.

The different critical values and corresponding confidence intervals discussed above correspond to cases where different
subsets of the inequalities m(θ0) ≤ 0 can be simultaneously binding, i.e. to a moment selection problem. A much more
general discussion of moment selection is given e.g. in Andrews and Soares (2010). Different confidence intervals than
those discussed here, e.g. based on different objective functions Q̂ (θ ), can of course also be considered.

It should be noted that pretesting is not required if we use the approach in Hahn and Ridder (2014) who obtain a
confidence interval by inverting the Likelihood Ratio test for the composite null and composite alternative test. Their current
results do not cover the case considered here and we did not attempt the non-trivial extension to the case considered here.

6. Application to the Illinois bonus experiment

6.1. The re-employment bonus experiment

In 1984, the Illinois Department of Employment Security conducted a randomized social experiment.21 The goal of the
experimentwas to explore,whether re-employment bonuses paid toUnemployment Insurance (UI) beneficiaries (treatment
1) or their employers (treatment 2) reduced the length of unemployment spells.

Both treatments consisted of a $500 re-employment bonus, which was about four times the average weekly unemploy-
ment insurance benefit. In the experiment, newly unemployed UI claimants were randomly divided into three groups:

1. The Claimant Bonus Group. The members of this group were instructed that they would qualify for a cash bonus of $500
if they found a job (of at least 30 h) within 11weeks and, if they held that job for at least 4months. A total of 4186 individuals
were selected for this group, and 3527 (84%) agreed to participate.

2. The Employer Bonus Group. The members of this group were told that their next employer would qualify for a cash
bonus of $500 if they, the claimants, found a job (of at least 30 h) within 11 weeks and, if they held that job for at least four
months. A total of 3963 were selected for this group and 2586 (65%) agreed to participate.

3. The Control Group, i.e. all claimants not assigned to one of the treatment groups. This group consisted of 3952
individuals. The individuals assigned to the control group were excluded from participation in the experiment. In fact, they
did not know that the experiment took place.

The descriptive statistics in Table 2 in Woodbury and Spiegelman (1987) confirm that the randomization resulted in
three similar groups.

6.2. Results of previous studies

Woodbury and Spiegelman (1987) concluded fromadirect comparison of the control group and the two treatment groups
that the claimant bonus group had a significantly shorter average unemployment duration. The average unemployment
duration was also shorter for the employer bonus group, but the difference was not significantly different from zero. In
Illinois UI benefits end after 26 weeks and since administrative data were used, all unemployment durations are censored
at 26 weeks. Woodbury and Spiegelman ignore the censoring and take as outcome variable the number of weeks of insured
unemployment.

Meyer (1996) analyzed the same data but focused on the treatment effects on conditional transition probabilities which
allows him to properly account for censoring. Meyer focuses on the conditional transitions rates because both labor supply
and search theory imply specific dynamic treatment effects. The bonus is only given to an unemployed individual if (s)he
finds a job within 11 weeks and retains it for four months. The cash bonus is the same for all unemployed. Theory predicts
that (i) the transition rate during the eligibility period (first 11 weeks) will be higher in the two treatment groups compared
with the control group, and (ii) that the transition rate in the treatment groups will rise just before the end of the eligibility
period, as the unemployed run out of time to collect the bonus.

To test these predictions, Meyer (1996) estimates a proportional hazard (PH) model with a flexible specification of
the baseline hazard. He uses the treatment indicator as an explanatory variable. Since there was partial compliance with

20 It is also conservative, because the information in the correlation matrix Σm is not used to construct (15). It corresponds to the most extreme case
where both lower bound estimators â1 and â2 (or both upper bound estimators â3 and â4) are perfectly negatively correlated.
21 The population consisted of those who filled for UI between July 29, 1984 and November 17, 1984. A complete description of the experiment and a

summary of its results can be found in Woodbury and Spiegelman (1987).
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treatment his estimator can be interpreted as a intention to treat (ITT) estimator.22 In his analysisMeyer controls for age, the
logarithm of base period earnings, ethnicity , gender and the logarithm of the size of the UI benefits. He finds a significantly
positive effect of the claimant bonus and a positive but insignificant effect of the employer bonus. Amore detailed analysis of
the effects for the claimant group reveals a positive effect on the transition rate during the first 11 weeks in unemployment,
an increased effect during week 9 and 10, and no significant effect on the transition rate after week 11 as predicted by labor
supply and search theory.

6.3. Estimates of bounds

In his study Meyer (1996) relies on the proportionality of the hazard rate to investigate his hypotheses. We now ask
what can be said if the assumptions of the MPHmodel do not hold, that is what can be identified if we rely solely on random
assignment and the additional assumptions. As in Meyer (1996) we consider the ITT effect, that is, we do not correct for
partial compliance. We divide the 24 month observation period into 12 subperiods: week 1–2, week 3–4, . . . , week 23–24.
The reason for this is that there is a pronounced even–odd week effect in the data, with higher transition rate during odd
weeks. With these subperiods the predictions we wish to test are: (i) a positive treatment effect during periods 1–5, i.e.

ATETSt > 0 , t = 1, . . . , 5,

(ii) no effect after the bonus offer has expired in periods 6–12, i.e.

ATETSt = 0 , t = 6, . . . , 12,

and (iii) a larger effect of the bonus offer at the end of the eligibility period in period 5, i.e.

ATETS5 > ATETS4.

Note that in this experiment the treatment assignment is in period 1, so that in ATETSt the superscripts 1 and 0 are t vectors
with components equal to 1 and 0.

We report both the bounds that are obtained by simply replacing the population moments with their sample analogs, as
well as the confidence intervals based on the approach described in Section 5.23 Table 2 presents the upper and the lower
bound and the confidence interval on ATETSt for the claimant group assuming only random assignment. We find that the
instantaneous treatment effect on the transition probability (week 1–2) is point identified and indicates a positive effect of
the re-employment bonus. The transition probability is about 2 percentage points higher in the treatment group compared
to the control group. This estimate is statistically significant. Fromweek 3–4 and onwards the bounds are quite wide. In fact,
without further assumptions we cannot rule out that the bonus actually has a negative impact on the conditional transition
probability after week 3. However, the bounds are nevertheless informative on the average treatment effect in all time
periods.

Table 2 also shows that the confidence intervals are marginally wider than the actual bounds. That is the uncertainty
arising from the dynamic selection is far greater than the uncertainty due to sampling variation.

Next, Table 2 presents bounds under the additional assumptions in Section 4. As expected, if we impose additional
assumptions the bounds are considerably narrower. Under MTR and CS we can rule out very large negative and very large
positive dynamic treatment effects. Imposing MTR, CS as well as PCO further tightens the bounds. If these assumptions hold
simultaneouslywe can, if we disregard sampling variation, rule out that the bonus offer has a negative effect on the transition
rate out of unemployment up to week 20. This conclusions changes slightly when sampling variation is taken into account.

Let us return to the three hypotheses suggested by labor supply and search theory, and consider our most restrictive
bounds under MTR, CS and PCO.We find that there is a positive effect of the bonus offer on the conditional transition rate up
toweek 11. This confirms the first hypothesis. The upper bound increases in time period 5 (weeks 9–10), but the lower bound
does not increase enough, so that both an increase and no change (and even a small decrease) in the transition probability out
of unemployment are consistentwith the data. Now consider the third hypothesis that there is no effect on the transition rate
after week 11. Again the bounds do not rule out that there is a positive effect on the conditional transition probability after
week 11. These results illustrate that the evidence for the second and third hypotheses presented by a number of authors
rely on the imposed structure, e.g. proportionality of the hazard or the restrictions implied by a particular discrete-time
duration model.

We next examine heterogeneous effects. To this end we split our sample by gender, race and pre-unemployment income
and estimate our bounds for each subgroup. We provide results for bounds without additional assumptions and bounds
under MTR, CS and PCO. The other bounds are available upon request. If we focus on the bounds under MTR, CS and PCO,

22 The partial compliance is addressed in detail by Bijwaard and Ridder (2005). They introduce a new method to handle the selective compliance in the
treatment group. If there is full compliance in the control group, their two-stage linear rank estimator is able to handle the selective compliance in the
treatment group even for censored durations. In order to achieve this they assume a MPH structure for the transition rate. Their estimates indicate that the
ITT estimates by Meyer (1996) underestimate the true treatment effect.
23 The covariance matrix Σa is estimated using the bootstrap with 399 replications. Constructing confidence intervals furthermore requires moment

selection, e.g. for the bounds under just random assignment we find that with very high confidence only one inequality is binding for the lower as well as
the upper bound. Details are available from the authors upon request.
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Table 2
Bounds on ATETS1,0 for the Illinois job–bonus experiment.

No assumption bounds [A] MTR + CS [B]

Lower-CI LB UB Upper-CI Lower-CI LB UB Upper-CI
(1) (2) (3) (4) (5) (6) (7) (8)

Week
1–2 0.012 0.023 0.023 0.034 0.012 0.023 0.023 0.034
3–4 −0.145 −0.137 0.094 0.102 0.000 0.011 0.038 0.050
5–6 −0.259 −0.251 0.074 0.082 −0.007 0.004 0.046 0.056
7–8 −0.346 −0.339 0.078 0.086 0.004 0.013 0.063 0.073
9–10 −0.452 −0.444 0.069 0.077 0.000 0.008 0.069 0.079
11–12 −0.552 −0.544 0.062 0.070 0.000 0.008 0.062 0.072
13–14 −0.655 −0.648 0.056 0.064 −0.010 −0.002 0.056 0.064
15–16 −0.750 −0.743 0.051 0.058 −0.004 0.003 0.051 0.058
17–18 −0.844 −0.836 0.049 0.057 −0.007 0.000 0.049 0.057
19–20 −0.943 −0.936 0.049 0.057 −0.011 −0.004 0.049 0.056
21–22 −0.994 −0.953 0.047 0.056 −0.028 −0.021 0.047 0.055
23–24 −0.989 −0.944 0.056 0.064 −0.011 −0.002 0.056 0.064

PCO [C] MTR + CS + PCO [D]

Lower-CI LB UB Upper-CI Lower-CI LB UB Upper-CI
(1) (2) (3) (4) (5) (6) (7) (8)

Week
1–2 0.012 0.023 0.023 0.034 0.012 0.023 0.023 0.034
3–4 −0.131 −0.123 0.094 0.102 0.002 0.014 0.038 0.049
5–6 −0.209 −0.202 0.074 0.082 −0.004 0.007 0.046 0.055
7–8 −0.256 −0.247 0.078 0.087 0.008 0.016 0.063 0.072
9–10 −0.306 −0.299 0.069 0.077 0.004 0.012 0.069 0.078
11–12 −0.348 −0.340 0.062 0.070 0.004 0.012 0.062 0.071
13–14 −0.388 −0.379 0.056 0.064 −0.004 0.003 0.056 0.064
15–16 −0.419 −0.411 0.051 0.058 0.000 0.007 0.051 0.059
17–18 −0.445 −0.438 0.049 0.057 −0.003 0.005 0.049 0.058
19–20 −0.472 −0.464 0.049 0.057 −0.006 0.001 0.049 0.057
21–22 −0.504 −0.496 0.047 0.063 −0.022 −0.014 0.047 0.055
23–24 −0.523 −0.513 0.056 0.073 −0.006 0.003 0.056 0.065

Notes: CI is 95% confidence intervals. Variances and covariances used to obtain the CI are estimated using bootstrap (399 replications).

Table 3 indicates several interesting differences between males and females. For males we find significant effects in the
beginning of the unemployment spell (weeks 1–2) and shortly before the bonus expires (weeks 7–10). For females on the
other hand we only find significant effects in weeks 1–4, but no effects in weeks 5–11. This indicates that females quickly
responds to the bonus offer, whereas a large part of the effects for males occur shortly before the end of the subsidy. Table
B1 in Appendix B also reveals some differences between blacks and non-blacks. For both groups we find significant effects
during the first 11 weeks of unemployment, but for non-blacks the bonus offer also increases the transition rates after the
bonus offers has expired (e.g. duringweeks 15–16). Finally, Table B2 in Appendix B reveals no significant differences between
how workers with low and high income react to the bonus offer.

7. Conclusions

In this paper, we have derived bounds on treatment effects on conditional transition probabilities under (sequential)
randomization. The partial identification problem arises since random assignment only ensures comparability of the
treatment and control groups at the time of randomization. In the literature this problem is often refereed to as the
dynamic selection problem. For that reason only instantaneous or short-run effects are point identified, whereas dynamic
or long-run effects in general are not point identified. Our weakest bounds impose no assumptions beyond (sequential)
random assignment, so that they are not sensitive to arbitrary functional form assumptions, require no additional covariates
and allow arbitrary heterogeneous treatment effects as well as arbitrary unobserved heterogeneity. These non-parametric
bounds offer an alternative to semi-parametric methods. They tend to be wide and therefore we have also derived more
informative bounds under additional assumptions that often hold in semi-parametric reduced form and structural models.

An analysis of data from the Illinois re-employment bonus experiment shows that our bounds are informative about
average treatment effects. It also demonstrates that previous results on the evolution of the average treatment effect require
assumptions such as the proportionality of the hazard rate or those embodied in a particular (semi-)parametric discrete-time
hazard model.
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Table 3
Bounds on ATETS1,0 for the Illinois job–bonus experiment. Heterogeneous effects for males and females.

Panel A: Males

No assumption bounds MTR + CS + PCO

Lower-CI LB UB Upper-CI Lower-CI LB UB Upper-CI
(1) (2) (3) (4) (1) (2) (3) (4)

Week
1–2 −0.004 0.016 0.016 0.037 0.002 0.016 0.016 0.030
3–4 −0.152 −0.141 0.094 0.105 −0.004 0.009 0.026 0.039
5–6 −0.269 −0.259 0.075 0.084 −0.010 0.003 0.030 0.043
7–8 −0.349 −0.338 0.085 0.096 0.009 0.024 0.054 0.069
9–10 −0.464 −0.453 0.076 0.087 0.000 0.014 0.070 0.084
11–12 −0.573 −0.562 0.069 0.080 0.005 0.015 0.069 0.081
13–14 −0.688 −0.676 0.065 0.076 −0.004 0.006 0.065 0.077
15–16 −0.793 −0.782 0.054 0.064 0.004 0.014 0.054 0.064
17–18 −0.899 −0.887 0.056 0.067 −0.008 0.003 0.056 0.066
19–20 −0.994 −0.941 0.059 0.071 −0.004 0.008 0.059 0.071
21–22 −1.006 −0.948 0.052 0.063 −0.028 −0.017 0.052 0.066
23–24 −1.006 −0.941 0.059 0.071 −0.010 0.002 0.059 0.074

PCO [C] MTR + CS + PCO [D]

Panel B: Females

No assumption bounds MTR + CS + PCO
(1) (2) (3) (4) (1) (2) (3) (4)

Week
1–2 0.008 0.031 0.031 0.054 0.014 0.031 0.031 0.047
3–4 −0.143 −0.131 0.093 0.105 0.003 0.019 0.053 0.069
5–6 −0.251 −0.239 0.074 0.085 0.000 0.012 0.066 0.080
7–8 −0.348 −0.337 0.068 0.079 −0.006 0.005 0.068 0.082
9–10 −0.441 −0.430 0.060 0.071 −0.003 0.009 0.060 0.073
11–12 −0.528 −0.517 0.053 0.064 −0.002 0.008 0.053 0.066
13–14 −0.616 −0.606 0.045 0.055 −0.011 0.000 0.045 0.055
15–16 −0.698 −0.686 0.046 0.057 −0.012 0.000 0.046 0.059
17–18 −0.775 −0.764 0.041 0.052 −0.008 0.007 0.041 0.055
19–20 −0.861 −0.851 0.036 0.047 −0.016 −0.006 0.036 0.047
21–22 −0.949 −0.936 0.041 0.054 −0.022 −0.011 0.041 0.055
23–24 −1.020 −0.948 0.052 0.066 −0.009 0.004 0.052 0.068

Notes: CI is 95% confidence intervals. Variances and covariances used to obtain the CI are estimated using bootstrap (399 replications).
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Appendix A. Proofs

Proof of Theorem 1.
We use the following notation for the distribution of the potential outcomes. For d = 0, 1

pdt (1|0, 0) =: Pr(Y d
t = 1|Y

1
t−1 = 0, Y

0
t−1 = 0),

pdt (1|0, ̸= 0) =: Pr(Y d
t = 1|Y

1
t−1 = 0, Y

0
t−1 ̸= 0),

pdt (1| ̸= 0, 0) =: Pr(Y d
t = 1|Y

1
t−1 ̸= 0, Y

0
t−1 = 0),

and for the joint distribution of Y
1
t−1, Y

0
t−1

pt−1(0, 0) =: Pr(Y
1
t−1 = 0, Y

0
t−1 = 0),

pt−1(0, ̸= 0) =: Pr(Y
1
t−1 = 0, Y

0
t−1 ̸= 0),

pt−1(̸= 0, 0) =: Pr(Y
1
t−1 ̸= 0, Y

0
t−1 = 0).

We derive bounds on ATETSt defined by

E
[
Y 1
t |Y

1
t−1 = 0

]
− E

[
Y 0
t |Y

1
t−1 = 0

]
(A.1)

with the data providing the observed transition probabilities Pr(Yt = yt |Y t−1 = 0,D = 1) and Pr(Yt = yt |Y t−1 = 0,D = 0).
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Under Assumption 1

E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0,D = 1),

so that if Pr(Y
1
t−1 = 0|D = 1) = Pr(Y t−1 = 0|D = 1) > 0 then E[Y 1

t |Y
1
t−1 = 0] is point-identified, and if

Pr(Y
1
t−1 = 0|D = 1) = Pr(Y t−1 = 0|D = 1) = 0 then E[Y 1

t |Y
1
t−1 = 0],E[Y 0

t |Y
1
t−1 = 0] and ATETSt are not defined.

Note that the point identification of this mean is similar to the point identification of the treated mean in the ATET in static
settings.

Next, we have for the counterfactual transition probability

E
[
Y 0
t |Y

1
t−1 = 0

]
=

p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, ̸= 0)pt−1(0, ̸= 0)
pt−1(0, 0) + pt−1(0, ̸= 0)

. (A.2)

By Assumption 1

Pr(Yt = 1, Y t−1 = 0|D = 0) = Pr(Y 0
t = 1, Y

0
t−1 = 0|D = 0) = Pr(Y 0

t = 1, Y
0
t−1 = 0).

By the law of total probability

Pr(Y 0
t = 1, Y

0
t−1 = 0) = Pr(Y

1
t−1 = 0, Y 0

t = 1, Y
0
t−1 = 0) + Pr(Y

1
t−1 ̸= 0, Y 0

t = 1, Y
0
t−1 = 0) =

p0t (1|0, 0)pt−1(0, 0) + p0t (1| ̸= 0, 0)pt−1(̸= 0, 0).

Therefore,

Pr(Yt = 1, Y t−1 = 0|D = 0) = p0t (1|0, 0)pt−1(0, 0) + p0t (1| ̸= 0, 0)pt−1(̸= 0, 0)

Solving for p0t (1|0, 0) gives

p0t (1|0, 0) =
Pr(Yt = 1, Y t−1 = 0|D = 0) − p0t (1| ̸= 0, 0)pt−1(̸= 0, 0)

pt−1(0, 0)
.

and upon substitution

E
[
Y 0
t |Y

1
t−1 = 0

]
=

Pr(Yt = 1, Y t−1 = 0|D = 0)
pt−1(0, 0) + pt−1(0, ̸= 0)

−
p0t (1| ̸= 0, 0)pt−1(̸= 0, 0) − p0t (1|0, ̸= 0)pt−1(0, ̸= 0)

pt−1(0, 0) + pt−1(0, ̸= 0)
.

The expression on the right-hand side is decreasing in p0t (1| ̸= 0, 0) and increasing in p0t (1|0, ̸= 0). The lower bound is
obtained by setting p0t (1| ̸= 0, 0) at 1 and p0t (1|0, ̸= 0) at 0 and the upper bound by setting p0t (1| ̸= 0, 0) at 0 and p0t (1|0, ̸= 0)
at 1 so that

Pr(Yt = 1|Y t−1 = 0,D = 0) Pr(Y t−1 = 0|D = 0) − pt−1(̸= 0, 0)
pt−1(0, 0) + pt−1(0, ̸= 0)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0,D = 0) Pr(Y t−1 = 0|D = 0) + pt−1(0, ̸= 0)
pt−1(0, 0) + pt−1(0, ̸= 0)

,

where we note that

Pr(Yt = 1|Y t−1 = 0,D = 0) Pr(Y t−1 = 0|D = 0) = Pr(Yt = 1, Y t−1 = 0|D = 0) = 0

if Pr(Y t−1 = 0|D = 0) = 0.
Because

Pr(Y t−1 = 0|D = 1) = pt−1(0, 0) + pt−1(0, ̸= 0)

and

Pr(Y t−1 = 0|D = 0) = pt−1(0, 0) + pt−1(̸= 0, 0)

we have

[Pr(Yt = 1|Y t−1 = 0,D = 0) − 1] Pr
(
Y t−1 = 0|D = 0

)
+ pt−1(0, 0)

Pr(Y t−1 = 0|D = 1)
(A.3)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0,D = 0) Pr
(
Y t−1 = 0|D = 0

)
− pt−1(0, 0)

Pr(Y t−1 = 0|D = 1)
+ 1.
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The upper bound is decreasing and the lower bound is increasing in pt−1(0, 0). By the Bonferroni inequality

pt−1(0, 0) ≥ max
{
Pr(Y

1
t−1 = 0) + Pr(Y

0
t−1 = 0) − 1, 0

}
=

max
{
Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1, 0

}
.

If

Pr
(
Y t−1 = 0|D = 1

)
+ Pr

(
Y t−1 = 0|D = 0

)
− 1 ≤ 0

the lower bound on pt−1(0, 0) is 0. In that case the lower bound in (A.3) is non-positive and the upper bound is greater than
or equal to 1 so that

0 ≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ 1.

If Pr
(
Y t−1 = 0|D = 1

)
+Pr

(
Y t−1 = 0|D = 0

)
−1 > 0 we have upon substitution of the lower bound on pt−1(0, 0) into (A.3)

and because the probability E
[
Y 0
t |Y

1
t−1 = 0

]
is bounded by zero and one

max

{
0,

Pr(Yt = 1|Y t−1 = 0,D = 0) Pr
(
Y t−1 = 0|D = 0

)
− 1

Pr(Y t−1 = 0|D = 1)
+ 1

}

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ (A.4)

min

{
1,

1 − [1 − Pr(Yt = 1|Y t−1 = 0,D = 0)] Pr
(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

}
.

Finally, we combine these bounds with the point-identified E[Y 1
t |Y

1
t−1 = 0] to obtain bounds on ATETSt .

Proof of Theorem 2.
As above, under Assumption 1 E[Y 1

t |Y
1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0,D = 1), so that if Pr(Y t−1 = 0|D = 1) > 0 then

E[Y 1
t |Y

1
t−1 = 0] is point-identified, and if Pr(Y t−1 = 0|D = 1) = 0 then ATETSt is not defined. If Pr(Y t−1 = 0|D = 1) > 0 we

have from (A.3)

[Pr(Yt = 1|Y t−1 = 0,D = 0) − 1] Pr
(
Y t−1 = 0|D = 0

)
+ pt−1(0, 0)

Pr(Y t−1 = 0|D = 1)
(A.5)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0,D = 0) Pr
(
Y t−1 = 0|D = 0

)
− pt−1(0, 0)

Pr(Y t−1 = 0|D = 1)
+ 1.

Because the lower bound is increasing in pt−1(0, 0) and the upper bound decreasing in pt−1(0, 0) we need the lower bound
on this probability. We have

pt−1(0, 0) = Pr(Y 1
t−1 = 0, . . ., Y 1

1 = 0, Y 0
t−1 = 0, . . ., Y 0

1 = 0) =

Pr(Y 1
t−1 = 0, Y 0

t−1 = 0|St−2) Pr(Y 1
t−2 = 0, . . ., Y 1

1 = 0, Y 0
t−2 = 0, . . ., Y 0

1 = 0).

By Assumption 3 either

Pr
(
Y 1
t−1 = 0|St−2, V

)
≤ Pr

(
Y 0
t−1 = 0|St−2, V

)
, (A.6)

or

Pr
(
Y 1
t−1 = 0|St−2, V

)
> Pr

(
Y 0
t−1 = 0|St−2, V

)
, (A.7)

for all V . Assume that (A.6) holds. By Assumption 4 this implies that

Pr(Y 1
t−1 = 0, Y 0

t−1 = 1|Si,t−2, V ) = 0,
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so that

Pr(Y 1
t−1 = 0|St−2, V ) = Pr(Y 1

t−1 = 0, Y 0
t−1 = 0|St−2, V ) + Pr(Y 1

t−1 = 0, Y 0
t−1 = 1|St−2, V )

= Pr(Y 1
t−1 = 0, Y 0

t−1 = 0|St−2, V ).

Because this holds for all V we omit V in the sequel. Because Assumptions 3 and 4 hold for all t , it follows from this equation
by recursion that

Pr(Y 1
t−1 = 0, . . ., Y 1

1 = 0, Y 0
t−1 = 0, . . ., Y 0

1 = 0) =

t−1∏
s=1

Pr(Y 1
s = 0|Y

1
s−1 = 0),

so that

pt−1(0, 0) =

t−1∏
s=1

Pr(Y 1
s = 0|Y

1
s−1 = 0) =

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 1).

If Assumption 3 holds with (A.7), then

pt−1(0, 0) =

t−1∏
s=1

Pr(Y 0
s = 0|Y

0
s−1 = 0) =

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 0).

We conclude that

pt−1(0, 0) ≥ min

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 1),
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 0)

}
=

min
{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

}
.

As noted below Theorem 2 the bounds simplifies in an obvious way if we have prior knowledge of the direction of the effect
of the treatment.

Next, upon substitution of this lower bound on pt−1(0, 0) into (A.3) and because the probability E
[
Y 0
t |Y

1
t−1 = 0

]
is

bounded by zero and one we have

max

{
0 ,

[Pr(Yt = 1|Y t−1 = 0,D = 0) − 1] Pr
(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

+
min

{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

}
Pr(Y t−1 = 0|D = 1)

}
.

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ (A.8)

min

{
1, 1 +

Pr(Yt = 1|Y t−1 = 0,D = 0) Pr
(
Y t−1 = 0|D = 0

)
Pr(Y t−1 = 0|D = 1)

−
min

{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

}
Pr(Y t−1 = 0|D = 1)

}
.

Finally, we combine these bounds with the point-identified E[Y 1
t |Y

1
t−1 = 0] to obtain bounds on ATETSt .

Proof of Theorem 3.
As above, under Assumption 1 E[Y 1

t |Y
1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0,D = 1), so that if Pr(Y t−1 = 0|D = 1) > 0 then

E[Y 1
t |Y

1
t−1 = 0] is point-identified, and if Pr(Y t−1 = 0|D = 1) = 0 then ATETSt is not defined.

Next, we have for the counterfactual transition probability

E
[
Y 0
t |Y

1
t−1 = 0

]
=

p0t (1|0, 0)pt−1(0, 0) + p0t (1|0, ̸= 0)pt−1(0, ̸= 0)
pt−1(0, 0) + pt−1(0, ̸= 0)

. (A.9)

The expression on the right-hand side is increasing in p0t (1|0, ̸= 0). By Assumption 5 we have the restriction p0t (1|0, ̸=
0) ≥ p0t (1|0, 0). Then the upper bound is obtained by setting p0t (1|0, ̸= 0) = 1 and lower bound by setting p0t (1|0, ̸= 0) =
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p0t (1|0, 0):

p0t (1|0, 0) ≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

p0t (1|0, 0)pt−1(0, 0) + pt−1(0, ̸= 0)
pt−1(0, 0) + pt−1(0, ̸= 0)

.

By Assumption 1 and the law of total probability we have using similar reasoning as for Theorem 1:

Pr(Yt = 1, Y t−1 = 0|D = 0) = p0t (1|0, 0)pt−1(0, 0) + p0t (1| ̸= 0, 0)pt−1(̸= 0, 0). (A.10)

Solving for p0t (1|0, 0) gives

p0t (1|0, 0) =
Pr(Yt = 1, Y t−1 = 0|D = 0) − p0t (1| ̸= 0, 0)pt−1(̸= 0, 0)

pt−1(0, 0)
and upon substitution

Pr(Yt = 1, Y t−1 = 0|D = 0) − p0t (1| ̸= 0, 0)pt−1(̸= 0, 0)
pt−1(0, 0)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1, Y t−1 = 0|D = 0) − p0t (1| ̸= 0, 0)pt−1(̸= 0, 0) + pt−1(0, ̸= 0)
pt−1(0, 0) + pt−1(0, ̸= 0)

.

Both the lower and upper bound is decreasing in p0t (1| ̸= 0, 0). By Assumption 5 we have the restriction p0t (1| ̸= 0, 0) ≥

p0t (1|0, 0). Therefore the lower bound is obtained by setting p0t (1| ̸= 0, 0) at 1. The upper bound is obtained by setting
p0t (1| ̸= 0, 0) = p0t (1|0, 0), upon substitution into (A.10) this implies that

p0t (1| ̸= 0, 0) = p0t (1|0, 0) = Pr(Yt = 1|Y t−1 = 0,D = 0).

Then,

Pr(Yt = 1, Y t−1 = 0|D = 0) − pt−1(̸= 0, 0)
pt−1(0, 0)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1, Y t−1 = 0|D = 0) − Pr(Yt = 1|Y t−1 = 0,D = 0)pt−1(̸= 0, 0) + pt−1(0, ̸= 0)
pt−1(0, 0) + pt−1(0, ̸= 0)

.

Because

Pr(Y t−1 = 0|D = 1) = pt−1(0, 0) + pt−1(0, ̸= 0)

Pr(Y t−1 = 0|D = 0) = pt−1(0, 0) + pt−1(̸= 0, 0)

we have
Pr(Yt = 1, Y t−1 = 0|D = 0) − Pr(Y t−1 = 0|D = 0) + pt−1(0, 0)

pt−1(0, 0)
(A.11)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

[Pr(Yt = 1|Y t−1 = 0,D = 0) − 1]pt−1(0, 0)

Pr(Y t−1 = 0|D = 1)
+ 1.

The lower bound is increasing and the upper bound decreasing in pt−1(0, 0). Assumption 5 also improves on the Bonferroni
inequality for pt−1(0, 0). We have

pt−1(0, 0) =

t−1∏
s=1

Pr(Y 1
s = 0, Y 0

s = 0|Ss−1).

By the Bonferroni inequality and the results above

Pr(Y 1
s = 0, Y 0

s = 0|Ss−1) ≥ max{1 − Pr(Y 1
s = 1|Ss−1) − Pr(Y 0

s = 1|Ss−1), 0} ≥

max{1 − Pr(Ys = 1|Y s−1 = 0,D = 1) − Pr(Ys = 1|Y s−1 = 0,D = 0), 0} =

max{Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1, 0},

so that

pt−1(0, 0) ≥

t−1∏
s=1

max{Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1, 0}. (A.12)
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We compare this to the lower bound

max

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 1) +

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 0) − 1, 0

}
that we obtained in the proof of Theorem 1. First, if there is an 1 ≤ s′ ≤ t − 1 so that

Pr(Ys′ = 0|Y s′−1 = 0,D = 1) + Pr(Ys′ = 0|Y s′−1 = 0,D = 0) − 1 < 0,

then
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 1) +

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 0) − 1 =

Pr(Ys′ = 0|Y s′−1 = 0,D = 1)
t−1∏

s=1,s̸=s′

Pr(Ys = 0|Y s−1 = 0,D = 1)+

Pr(Ys′ = 0|Y s′−1 = 0,D = 1)
t−1∏

s=1,s̸=s′

Pr(Ys = 0|Y s−1 = 0,D = 0) − 1 < 0

so that if the new lower bound is 0, so is the previous one. Finally, if for all s = 1, . . . , t − 1

Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1 > 0,

then
t−1∏
s=1

[
Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1

]
≥

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 1) +

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0,D = 0) − 1.

If Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1 ≤ 0 for some s ≤ t the lower bound on
pt−1(0, 0) is 0. In that case the lower bound in (A.11) is non-positive and the upper bound is greater than or equal to 1
so that 0 ≤ E

[
Y 0
t |Y

1
t−1 = 0

]
≤ 1.

If Pr(Ys = 0|Y s−1 = 0,Ds = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1 > 0 for all s = 1, . . . , t − 1 we have upon substitution
of the lower bound on pt−1(0, 0) in (A.12) into (A.11) and because the probability E

[
Y 0
t |Y

1
t−1 = 0

]
is bounded by zero,

max

{
0,

(Pr(Yt = 1|Y t−1 = 0,D = 0) − 1) Pr
(
Y t−1 = 0|D = 0

)∏t−1
s=1[Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1]

+ 1

}

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ 1 −

1 − Pr(Yt = 1|Y t−1 = 0,D = 0)

Pr(Y t−1 = 0|D = 1)
· (A.13)

·

t−1∏
s=1

[Pr(Ys = 0|Y s−1 = 0,D = 1) + Pr(Ys = 0|Y s−1 = 0,D = 0) − 1].

Finally, we combine these bounds with the point-identified E[Y 1
t |Y

1
t−1 = 0] to obtain bounds on ATETSt .

Proof of Theorem 4.
Using similar reasoning as for the proof of Theorem 3 we have under Assumptions 1 and 5:

E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0,D = 1)

and

Pr(Yt = 1, Y t−1 = 0|D = 0) − Pr(Y t−1 = 0|D = 0) + pt−1(0, 0)
pt−1(0, 0)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

[Pr(Yt = 1|Y t−1 = 0,D = 0) − 1]pt−1(0, 0)

Pr(Y t−1 = 0|D = 1)
+ 1.
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The lower bound on E
[
Y 0
t |Y

1
t−1 = 0

]
is increasing and the upper bound on E

[
Y 0
t |Y

1
t−1 = 0

]
is decreasing in pt−1(0, 0). By

the proof of Theorem 2 we have under Assumptions 3 and 4

pt−1(0, 0) ≥ min
{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

}
,

so that

max

{
0,

(Pr(Yt = 1|Y t−1 = 0,D = 0) − 1) Pr
(
Y t−1 = 0|D = 0

)
min

{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

} + 1

}
≤ E

[
Y 0
t |Y

1
t−1 = 0

]
≤

1 − Pr(Yt = 1|Y t−1 = 0,D = 0)

Pr(Y t−1 = 0|D = 1)
× min

{
Pr(Y t−1 = 0|D = 1), Pr(Y t−1 = 0|D = 0)

}
+ 1.

Together with the results for E[Y 1
t |Y

1
t−1 = 0] this gives the bounds.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2017.11.012.
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