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ABSTRACT

Two-pore channels (TPCs) are two-domain members of the voltage-gated ion channel superfamily that localize
to acidic organelles. Their mechanism of activation (ligands such as NAADP/PI(3,5)P, versus voltage) and ion
selectivity (Ca** versus Na™*) is debated. Here we report that a cluster of arginine residues in the first domain
required for selective voltage-gating of TPC1 map not to the voltage-sensing fourth transmembrane region (S4)
but to a cytosolic downstream region (S4-S5 linker). These residues are conserved between TPC isoforms sug-
gesting a generic role in TPC activation. Accordingly, mutation of residues in TPC1 but not the analogous region
in the second domain prevents Ca®>* release by NAADP in intact cells. Our data affirm the role of TPCs in
NAADP-mediated Ca®" signalling and unite differing models of channel activation through identification of
common domain-specific residues.

1. Introduction

TPCs are ancient members of the voltage-gated ion channel super-
family [1] with widespread physiological roles ranging from germina-
tion and stomatal movement in plants [2] to receptor and virus traf-
ficking in animals [3-5]. They are structurally characterized by two
homologous domains each comprising six trans-membrane regions
(S1-S6) organized as a voltage sensing module (S1-S4) connected to
the pore (S5-S6) by a cytosolic linker [6,7]. TPCs assemble as dimers
[8] and are likely evolutionary intermediates between tetrameric one
domain and monomeric four domain channels exemplified by voltage
gated K* and Ca®" channels, respectively [9].

Although it is established that TPCs localize to acidic organelles
such as and plant vacuoles and animal lysosomes [10,11], their me-
chanism of activation and ion selectivity are unclear [12,13]. Plant
TPC1 encodes the SV channel which is a vacuolar non-selective Ca®* -
permeable channel regulated by voltage and Ca®* [2]. Recent X-ray
crystal structures have illuminated molecular mechanisms underlying
voltage sensing and Ca®* regulation [14-16]. But whether plant TPCs
contribute to physiological cellular Ca>* signals is debated [17]. Si-
milarly, animal TPCs (encoded by up to 3 genes) were originally
functionally identified as Ca®* -permeable endo-lysosomal ion channels
activated by NAADP [18-22]. NAADP is a potent Ca®>* mobilizing
messenger produced in response to numerous physiological stimuli such
as hormones and neurotransmitters and long known to release Ca®*
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from acidic organelles [23-26]. But other studies suggest that TPCs are
NAADP-insensitive Na* channels regulated by the endo-lysosomal
phosphoinositide, PI(3,5)P, [27] and/or voltage [28,29]. Evidence for
[30] and against [31] the original findings continues to accrue. Little at
present is known concerning the molecular determinants of TPC acti-
vation in animals.

Here, we identify arginine residues within the first S4-S5 linker of
TPC1 critical for NAADP-evoked Ca®* signalling and propose that this
region is a common determinant for channel activation.

2. Methods
2.1. Bioinformatics

Human TPC1 (accession: AAI50204.1) was modelled based on
Arabidopsis thaliana TPC1 (PDB:5E1J) using Phyre2 [32] in intensive
mode and presented using the PyMOL Molecular Graphics System,
Version 1.8 (Schroédinger, LLC). Multiple sequence alignments were
performed using T-Coffee [33], Clustal Omega [34] and MUSCLE [35].

2.2. Plasmids
Constructs encoding human TPC1 tagged at its C-terminus with GFP

or mRFP were described in [20]. Site-directed mutagenesis of TPC1-
mRFP was performed using QuikChange (Stratech).
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Fig. 1. The first S4-S5 linker of TPCs harbours conserved basic residues. A. Structural model of human TPC1. Arginine residues in the S4-S5 linker of domain I (left) and domain II (right)
are shown as sticks. B, T-Coffee multiple sequence alignment of TPC1 and TPC2 from Arabidopsis thaliana (Ath), Homo sapiens (Hsa), Danio rerio (Dre) and Stronglyocentrotus purpuratus
(Spu). Conserved arginine (red) and lysine (blue) residues within the S4-S5 linkers of animal TPCs are highlighted. Arginine residues subjected to site-directed mutagenesis in human
TPC1 are numbered. Secondary structure refers to that of AthTPC1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
A Fig. 2. TPC1 mutated in the S4-S5 linkers express.
Confocal images of SKBR3 cells expressing GFP-
tagged TPC1 (middle panels) together with mRFP-
tagged TPC1 (A), TPC1 R219Q (B), TPC1 R221Q (C)
and TPC1 R554Q (D, left panels). Image overlays are
shown to the right. Scale bars 2 pm.
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Fig. 3. Arginine residues in the first S4-S5 linker are required for
A activation of TPC1 by NAADP. A, Cytosolic Ca®* responses of cells
expressing the indicated mRFP-tagged TPC1 construct and micro-
injected with NAADP (10 uM, pipette concentration). Responses of
individual cells (left) and the average response of all cells are shown
(right). B, Pooled data summarizing the change in [Ca%™]. Data are
presented as mean * S.E.M (n = 6-8).
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2.3. Other methods helices are established in mediating voltage sensing in a number of
voltage-gated ion channels including plant TPC1 [14]. Taking ad-

Culture of SKBR3 cells, transfection, confocal microscopy, Ca®* vantage of recent plant TPCl crystal structures [14], we modelled
imaging and microinjection were performed as described in [36]. human TPC1 (Fig. 1A). Inspection of domain I revealed that R219,

R220 and R223, which upon combined mutation eliminated voltage
sensitivity [28] do not map to S4 (Fig. 1A). Instead, the residues were
located downstream in the cytosolic linker connecting S4 to S5
(Fig. 1A-B).

Multiple sequence alignment showed that these residues were con-
served mostly as lysine in human, zebrafish and sea urchin TPC2
(voltage-insensitive; Fig. 1B). Similar results were obtained using two
additional alignment algorithms and a number of other species (data

3. Results and discussion
3.1. The first S4-S5 linker of TPCs harbours conserved basic residues
Previous work concluded that human TPC1 but not TPC2 is a vol-

tage-gated Na* channel that confers endo-lysosomal excitability
through arginine residues within putative voltage sensors [28]. S4
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not shown). Our alignment agrees with those in [14,15].

Together, this reappraisal suggests that the basic cluster is unlikely
to directly mediate voltage-sensing by TPC1 and point to a more generic
role in TPC function across isoforms.

3.2. Arginine residues in the first S4-S5 linker are required for activation of
TPC1 by NAADP

To examine the functional role of the S4-S5 linker, we examined the
consequences of mutating conserved arginine residues on Ca®* release
by NAADP in intact cells. TPC1 constructs in which either R219 or R223
had been mutated individually to glutamine expressed and colocalized
with wild type TPC1 (Fig. 2A-C). Microinjection of NAADP evoked
robust Ca®* responses in cells expressing wild type TPC1 (Fig. 3A). The
responses however were inhibited in cells expressing either mutant
(Fig. 3A).

We also mutated R554 in the S4-S5 linker of domain II. This residue
together with R552 is conserved in TPC1 but not TPC2 across species,
and like the conserved residues in domain I, is placed within a helix
(Fig. 1). Again, the mutant channel expressed and co-localised with
wildtype TPC1 (Fig. 2D). However, in contrast to the domain I mutants,
this construct supported NAADP-evoked signals (Fig. 3A).

Collectively, these data summarised in Fig. 3B, identify novel mo-
lecular determinants underlying NAADP action and further link TPCs to
Ca®* fluxes in intact cells.

3.3. Conclusions

In sum, prompted by new structural data, we identify a domain-
specific requirement for the first S4-S5 linker in activation of TPCs by
NAADP. Together with previous work implicating this same region in
voltage-sensing [28] identifies it as a key mediator of TPC functionality.
This region is unlikely to directly sense voltage (due to its placing out of
the membrane) or bind NAADP (which interacts with accessory pro-
teins [37]). Given the conservation of positive charge in TPC1 and
TPC2, we speculate that mutations within the linker may instead affect
channel activity indirectly through perturbing electrostatic interac-
tions. This could be an intramolecular (allosteric) defect or an inter-
molecular one that disrupts association with putative NAADP binding
proteins or anionic lipids such as PI(3,5)P,, which regulates both TPC
isoforms [27,28,36]. Further analyses of this region across isoforms
may rationalize multimodal activation of TPCs.
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