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APPENDIX A: LEMMAS AND PROOFS

A.1. Notations and Basic Lemmas

LET Zi = (Yi�Di�Xi) ∈Z . The subgraph of a real-valued function f :Z �→R is the set

SG(f )≡ {(z� t) ∈Z ×R : 0 ≤ t ≤ f (z) or f (z)≤ t ≤ 0
}
�

The following lemma establishes a link between the VC-dimension of a class of subsets
in the covariate space X and the VC-dimension of a class of subgraphs of functions on
Z = R× {0�1} ×X (their subgraphs will be in Z ×R).

LEMMA A.1: Let G be a VC-class of subsets of X with VC-dimension v <∞. Let g and
h be two given functions from Z to R. Then the set of functions from Z to R

F = {fG(z)= g(z) · 1{x ∈G} + h(z)1{x /∈G} :G ∈ G
}

is a VC-subgraph class of functions with VC-dimension less than or equal to v.

PROOF: Let zi = (yi� di� xi). By the assumption, no set of (v + 1) points in X
could be shattered by G. Take an arbitrary set of (v + 1) points in Z × R, A =
{(z1� t1)� � � � � (zv+1� tv+1)}. Denote the collection of subgraphs of F by SG(F)≡ {SG(fG)�
G ∈ G}. We want to show that SG(F) does not shatter A.

If, for some i ∈ {1� � � � � (v+ 1)}, (zi� ti) ∈ SG(g) ∩ SG(h), then SG(F) cannot pick out
all of the subsets of A because the ith point is included in any S ∈ SG(F). Similarly, if,
for some i ∈ {1� � � � � (v+ 1)}, (zi� ti) ∈ SG(g)c ∩ SG(h)c , then point i cannot be included
in any S ∈ SG(F).

The remaining case is that, for each i, either (zi� ti) ∈ SG(g) ∩ SG(h)c or (zi� ti) ∈
SG(g)c∩SG(h) holds. Indicate the former case by δi = 0 and the latter case by δi = 1. The
points with δi = 0 could be picked by SG(fG) if and only if xi /∈G. The points with δi = 1
could be picked if and only if xi ∈G. Given that G is a VC-class with VC-dimension v,
there exists a subsetX0 of {x1� � � � � xv+1} such thatX0 	= ({x1� � � � � xv+1}∩G) for anyG ∈ G.
Then there could be no set S ∈ SG(F) that picks out the set (possibly empty){

(zi� ti) : (xi ∈X0 and δi = 1) or (xi /∈X0 and δi = 0)
}
� (A.1)
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because this set of points could only be picked out by SG(fG) if ({x1� � � � � xv+1} ∩G) =
X0. Hence, F is a VC-subgraph class of functions with VC-dimension less than or equal
to v. Q.E.D.

In addition to the notations introduced in the main text, the following notations are
used throughout the supplementary material. The empirical probability distribution based
on an i.i.d. size n sample of Zi = (Yi�Di�Xi) is denoted by Pn. L2(P) metric for f is de-
noted by ‖f‖L2(P) = [∫Z f 2 dP]1/2, and the sup-metric of f is denoted by ‖f‖∞. Positive
constants that only depend on the class of data generating processes, not on the sam-
ple size nor the VC-dimension, are denoted by c1� c2� c3� � � � . The universal constants are
denoted by the capital letter C1�C2�C3� � � � .

In what follows, we present lemmas that will be used in the proofs of Theorems 2.1
and 2.3. Lemmas A.2 and A.3 are classical inequalities whose proofs can be found, for
instance, in Lugosi (2002).

LEMMA A.2—Hoeffding’s Lemma: Let X be a random variable with EX = 0,
a≤X ≤ b. Then, for s > 0,

E
(
esX
)≤ es2(b−a)2/8�

LEMMA A.3: Let λ > 0, n ≥ 2, and let Y1� � � � �Yn be real-valued random variables such
that, for all s > 0 and 1 ≤ i≤ n, E(esYi)≤ es2λ2/2 holds. Then,

(i) E
(

max
i≤n

Yi
)

≤ λ√2 lnn�

(ii) E
(

max
i≤n

|Yi|
)

≤ λ√2 ln(2n)�

The next two lemmas give maximal inequalities that bound the mean of a supremum
of centered empirical processes indexed by a VC-subgraph class of functions. The first
maximal inequality (Lemma A.4) is standard in the empirical process literature, and it
yields our Theorem 2.1 as a corollary. Though its proof can be found elsewhere (e.g.,
Dudley (1999), van der Vaart and Wellner (1996)), we present it here for the sake of
completeness and for later reference in the proof of Lemma A.5. The second maximal
inequality (Lemma A.5) concerns the class of functions whose diameter is constrained by
the L2(P)-norm. Lemma A.5 will be used in the proof of Theorem 2.3. A lemma similar
to our Lemma A.5 appears in Massart and Nédélec (2006, Lemma A.3).

LEMMA A.4: Let F be a class of uniformly bounded functions, that is, there exists F̄ <∞
such that ‖f‖∞ ≤ F̄ for all f ∈F . Assume that F is a VC-subgraph class with VC-dimension
v <∞. Then, there is a universal constant C1 such that

EPn
[
sup
f∈F

∣∣En(f )−EP(f )
∣∣]≤ C1F̄

√
v

n

holds for all n≥ 1.

PROOF: Introduce (Z′
1� � � � �Z

′
n), an independent copy of (Z1� � � � �Zn) ∼ Pn. We de-

note the probability law of (Z′
1� � � � �Z

′
n) by Pn′ , its expectation by EPn′ (·), and the sam-

ple average with respect to (Z′
1� � � � �Z

′
n) by E′

n(·). Define i.i.d. Rademacher variables
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σn ≡ (σ1� � � � �σn) such that Pr(σ1 = −1) = Pr(σ1 = 1) = 1/2 and they are independent
of Z1�Z

′
1� � � � �Zn�Z

′
n. Then,

EPn
[
sup
f∈F

∣∣En(f )−EP(f )
∣∣]= EPn

[
sup
f∈F

∣∣EPn′ [En(f )−E′
n(f )|Z1� � � � �Zn

]∣∣]
≤EPn

[
sup
f∈F

EPn′
[∣∣En(f )−E′

n(f )
∣∣|Z1� � � � �Zn

]]
(∵ Jensen’s inequality)

≤EPn�Pn′
[
sup
f∈F

∣∣En(f )−E′
n(f )

∣∣]

= 1
n
EPn�Pn′

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f (Zi)− f (Z′

i

))∣∣∣∣∣
}

= 1
n
EPn�Pn′ �σn

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

σi
(
f (Zi)− f (Z′

i

))∣∣∣∣∣
}

(
∵ f (Zi)− f (Z′

i

)∼ σi(f (Zi)− f (Z′
i

))
for all i

)
≤ 1
n
EPn�Pn′ �σn

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif (Zi)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣
n∑
i=1

σif
(
Z′
i

)∣∣∣∣∣
}

= 2
n
EPn�σn

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif (Zi)

∣∣∣∣∣
]

= 2
n
EPn

{
Eσn

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif (Zi)

∣∣∣∣∣
∣∣∣Z1� � � � �Zn

]}
�

(A.2)

Fix Z1� � � � �Zn, and define f ≡ (f (Z1)� � � � � f (Zn)) = (f1� � � � � fn), which is a vector
of length n collecting the value of f ∈ F evaluated at each of (Z1� � � � �Zn). Let F ≡
{f : f ∈ F} ⊂ R

n, which is a bounded set in R
n with radius F̄ , since F is the set of uni-

formly bounded functions with |f (·)| ≤ F̄ . Introduce the Euclidean norm to F,

ρ
(
f� f′
)=

(
1
n

n∑
i=1

(
fi − f ′

i

)2

)1/2

�

Let f(0) = (0� � � � �0), and f∗ = (f ∗
1 � � � � � f

∗
n ) be a random element in F maximizing

|∑n

i=1σifi|. Let B0 = {f(0)} and construct {Bk : k = 1� � � � � K̄} a sequence of covers of
F, such that Bk ⊂ F is a minimal cover with radius 2−kF̄ and BK̄ = F. Note that such
K̄ <∞ exists at given n and (Z1� � � � �Zn). Define also {f(k) ∈ Bk : k= 1� � � � � K̄} be a ran-
dom sequence such that f(k) ∈ arg minf∈Bk ρ(f� f∗). Since Bk is a cover with radius 2−kF̄ ,
ρ(f(k)� f∗)≤ 2−kF̄ holds. In addition, we have

ρ
(
f(k−1)� f(k)

)≤ ρ(f(k)� f∗
)+ ρ(f(k−1)� f∗

)≤ 3 · 2−kF̄�
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By a telescope sum,

n∑
i=1

σif
∗
i =

n∑
i=1

σif
(0)
i +

K̄∑
k=1

n∑
i=1

σi
(
f (k)i − f (k−1)

i

)= K̄∑
k=1

n∑
i=1

σi
(
f (k)i − f (k−1)

i

)
�

We hence obtain

Eσn

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣≤
K̄∑
k=1

Eσn

∣∣∣∣∣
n∑
i=1

σi
(
f (k)i − f (k−1)

i

)∣∣∣∣∣
≤

K̄∑
k=1

Eσn max
f∈Bk�g∈Bk−1:ρ(f�g)≤3·2−kF̄

∣∣∣∣∣
n∑
i=1

σi(fi − gi)
∣∣∣∣∣�

(A.3)

We apply Lemma A.2 to obtain

Eσn
(
es
∑n
i=1 σi(fi−gi)

)=
n∏
i=1

Eσi
[
esσi(fi−gi)

]≤ n∏
i=1

es
2(fi−gi)2/2

= exp
(
s2nρ2(f�g)/2

)
≤ exp

(
s2n
(
3 · 2−kF̄

)2
/2
)
�

An application of Lemma A.3(ii) with λ = 3
√
n · 2−kF̄ and n = |Bk||Bk−1| ≤ |Bk|2 then

yields

Eσn max
f∈Bk�g∈Bk−1:ρ(f�g)≤3·2−kF̄

∣∣∣∣∣
n∑
i=1

σi(fi − gi)
∣∣∣∣∣ ≤ 3

√
n · 2−kF̄

√
2 ln 2|Bk|2

= 3
√
n · 2−kF̄

√
2 ln 2N

(
2−kF̄�F�ρ

)2

= 6
√
n · 2−kF̄

√
ln 21/2N

(
2−kF̄�F�ρ

)
�

where N(r�F�ρ) is the covering number of F with radius r in terms of norm ρ. Accord-
ingly,

Eσn

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣≤
K̄∑
k=1

6
√
n · 2−kF̄

√
ln 21/2N

(
2−kF̄�F�ρ

)

≤ 12
√
n

∞∑
k=1

2−(k+1)F̄
√

ln 21/2N
(
2−kF̄�F�ρ

)

≤ 12
√
n

∫ 1

0
F̄

√
ln 21/2N(εF̄�F�ρ)dε�

(A.4)

where the last line follows from the fact that N(εF̄�F�ρ) is decreasing in ε.
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To bound (A.4) from above, we apply a uniform entropy bound for the covering num-
ber. In Theorem 2.6.7 of van der Vaart and Wellner (1996), by setting r = 2 and Q at the
empirical probability measure of (Z1� � � � �Zn), we have,

N(εF̄�F�ρ)≤K(v+ 1)(16e)(v+1)

(
1
ε

)2v

� (A.5)

where K > 0 is a universal constant. Plugging this into (A.4) leads to

Eσ

∣∣∣∣∣
n∑
i=1

σif
∗
i

∣∣∣∣∣≤ 12F̄
√
n

∫ 1

0

√
ln
(
21/2K

)+ ln(v+ 1)+ (v+ 1) ln(16e)− 2v lnεdε

≤ 12F̄
√
nv

∫ 1

0

√
ln
(
21/2K

)+ ln 2 + 2 ln(16e)− 2 lnεdε

= C ′F̄
√
nv�

(A.6)

where C ′ = 12
∫ 1

0

√
ln(21/2K)+ ln 2 + 2 ln(16e)− 2 lnεdε < ∞. Combining (A.6) with

(A.2) and setting C1 = 2C ′ lead to the conclusion. Q.E.D.

LEMMA A.5: Let F be a class of uniformly bounded functions with ‖f‖∞ ≤ F̄ <∞ for
all f ∈F . Assume that F is a VC-subgraph class with VC-dimension v <∞. Assume further
that supf∈F ‖f‖L2(P) ≤ δ. Then, there exists a positive universal constant C2 such that

EPn
[
sup
f∈F

(
En(f )−EP(f )

)]≤ C2δ

√
v

n

holds for all n≥ C2
1 F̄

2v/δ2, where C1 is the universal constant defined in Lemma A.4.

PROOF: By the same symmetrization argument and the same use of Rademacher vari-
ables as in the proof of Lemma A.4, we have

EPn
[
sup
f∈F

(
En(f )−EP(f )

)]≤ 2
n
EPn

{
Eσn

[
sup
f∈F

n∑
i=1

σif (Zi)
∣∣∣Z1� � � � �Zn

]}
� (A.7)

Fix the values of Z1� � � � �Zn, and define f, f(0), F, and norm ρ(f� f′) as in the proof of
Lemma A.4. Let f∗ be a maximizer of

∑n

i=1σif (Zi) in F and let δn = supf∈F ρ(f
(0)� f)≤ F̄ .

Let B0 = {f(0)} and construct {Bk : k= 1� � � � � K̄} a sequence of covers of F, such that Bk ⊂
F is a minimal cover with radius 2−kδn and BK̄ = F. We define {f(k) ∈ Bk : k= 1� � � � � K̄} to
be a random sequence such that f(k) ∈ arg minf∈Bk ρ(f� f∗). By applying the chaining argu-
ment in the proof of Lemma A.4, Lemma A.3(i), and the uniform bound of the covering
number (A.5), we obtain

Eσ

n∑
i=1

σif
∗
i ≤ 12

√
n

∫ 1

0
δn
√

logN(εδn�F�ρ)dε≤ 2−1C1δn
√
nv
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for the universal constant C1 defined in the proof of Lemma A.4. Hence, from (A.7), we
have

EPn
[
sup
f∈F

(
En(f )−EP(f )

)]≤ C1

√
v

n
EPn(δn)= C1

√
v

n
EPn
([

sup
f∈F

En
(
f 2
)]1/2)

≤ C1

√
v

n

[
EPn
(

sup
f∈F

En
(
f 2
))]1/2

�

(A.8)

Note that En(f 2) is bounded by

En
(
f 2
)=En(f 2 −EP

(
f 2
))+EP(f 2

)
=En

[(
f − ‖f‖L2(P)

)(
f + ‖f‖L2(P)

)]+ ‖f‖2
L2(P)

≤ 2F̄En
[
f − ‖f‖L2(P)

]+ ‖f‖2
L2(P)

≤ 2F̄En
[
f −EP(f )

]+ ‖f‖2
L2(P)(

∵ ‖f‖L2(P) ≥EP(f ) by the Cauchy–Schwarz inequality
)
�

Combining this inequality with (A.8) yields

EPn
[
sup
f∈F

(
En(f )−EP(f )

)]≤ C1

√
v

n

√
2F̄EPn

[
sup
f∈F

(
En(f )−EP(f )

)]+ δ2�

Solving this inequality for EPn[supf∈F(En(f )−EP(f ))] leads to

EPn
[
sup
f∈F

(
En(f )−EP(f )

)]≤ F̄C2
1

√
v

n

(√
v

n
+
√
v

n
+ δ2

F̄ 2C2
1

)
�

For v
n

≤ δ2

F̄2C2
1
, that is, n ≥ C2

1 F̄
2v

δ2 , the upper bound can be further bounded by (1 + √
2)×

C1δ
√

v
n
, so the conclusion of the lemma follows with C2 = (1 + √

2)C1. Q.E.D.

A.2. Proofs of Theorems 2.1 and 2.2

PROOF OF THEOREM 2.1: Define

f (Zi;G)=
[
YiDi

e(Xi)
· 1{Xi ∈G} + Yi(1 −Di)

1 − e(Xi)
· 1{Xi /∈G}

]
,

and the class of functions on Z

F = {f (·;G) :G ∈ G
}
�

With these notations, we can express inequality (2.3) in the main text as

W ∗
G −W (ĜEWM)≤ 2 sup

f∈F

∣∣En(f )−EP(f )
∣∣� (A.9)
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Note that Assumption 2.1 (BO) and (SO) imply that F has uniform envelope F̄ =
M/(2κ). Also, by Assumption 2.1 (VC) and Lemma A.1, F is a VC-subgraph class of
functions with VC-dimension at most v. We apply Lemma A.4 to (A.9) to obtain

EPn
[
W ∗

G −W (ĜEWM)
]≤ C1

M

κ

√
v

n
�

Since this upper bound does not depend on P ∈ P(M�κ), the upper bound is uniform
over P(M�κ). Q.E.D.

PROOF OF THEOREM 2.2: In obtaining the rate lower bound, we normalize the support
of outcomes to Y1�i�Y0�i ∈ [− 1

2 �
1
2 ]. That is, we focus on bounding supP∈P(1�κ) EPn[W ∗

G −
W (Gn)]. The lower bound of the original welfare loss supP∈P(M�κ) EPn[W ∗

G − W (Gn)] is
obtained by multiplying by M the lower bound of supP∈P(1�κ) EPn[W ∗

G −W (Gn)].
We consider a suitable subclass P∗ ⊂ P(1�κ), for which the worst-case welfare loss

can be bounded from below by a distribution-free term that converges at rate n−1/2. The
construction of P∗ proceeds as follows. First, let x1� � � � � xv ∈X be v points that are shat-
tered by G. We constrain PX (the marginal distribution of X) to being supported only
on (x1� � � � � xv). We put the equal mass 1/v at xi, i ≤ v. Thus-constructed marginal dis-
tribution of X is common in P∗. Let the distribution of treatment indicator D be inde-
pendent of (Y1�Y0�X), and D follows the Bernoulli distribution with Pr(D = 1) = 1/2.
Let b = (b1� � � � � bv) ∈ {0�1}v be a bit vector used to index a member of P∗, that is, P∗

consists of a finite number of DGPs. For each j = 1� � � � � v, and depending on b, construct
the following conditional distribution of Y1 given X = xj : if bj = 1,

Y1 =

⎧⎪⎪⎨
⎪⎪⎩

1
2

with prob.
1
2

+ γ�

−1
2

with prob.
1
2

− γ�
(A.10)

and, if bj = 0,

Y1 =

⎧⎪⎪⎨
⎪⎪⎩

1
2

with prob.
1
2

− γ�

−1
2

with prob.
1
2

+ γ�
(A.11)

where γ ∈ [0� 1
2 ] is chosen properly in a later step of the proof. As for Y0’s condi-

tional distribution, we consider the degenerate distribution at Y0 = 0 at every X = xj ,
j = 1� � � � � v. That is, when bj = 1, τ(xj) = γ, and when bj = 0, τ(xj) = −γ. For each
b ∈ {0�1}v, Pb ∈ P(1�κ) clearly holds. We accordingly define a subclass of P(1�κ) by
P∗ = {Pb : b ∈ {0�1}v}.

With knowledge of Pb ∈P∗, the optimal treatment assignment rule is

G∗
b = {xj : bj = 1� j ≤ v},

which is feasible G∗
b ∈ G by the construction of the support points of X . The maximized

social welfare is

W
(
G∗

b

)= v−1γ

(
v∑
j=1

bj

)
�
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Let Ĝ be an arbitrary treatment choice rule depending on sample (Z1� � � � �Zn), and b̂ ∈
{0�1}v be a binary vector whose jth element is b̂j = 1{xj ∈ Ĝ}. Consider π(b) a prior
distribution for b such that b1� � � � � bv are i.i.d. and b1 ∼ Ber(1/2). The welfare loss satisfies
the following inequalities:

sup
P∈P(1�κ)

EPn
[
W ∗

G −W (Ĝ)] ≥ sup
Pb∈P∗

EPnb
[
W
(
G∗

b

)−W (Ĝ)]
≥
∫

b
EPnb
[
W
(
G∗

b

)−W (Ĝ)]dπ(b)
= γ

∫
b
EPnb
[
PX
(
G∗

b�Ĝ
)]
dπ(b)

= γ

∫
b

∫
Z1�����Zn

PX
({
b(X) 	= b̂(X)})dPnb (Z1� � � � �Zn)dπ(b)

≥ inf
Ĝ

γ

∫
b

∫
Z1�����Zn

PX
({
b(X) 	= b̂(X)})dPnb (Z1� � � � �Zn)dπ(b)�

where b(X) and b̂(X) are elements of b and b̂, respectively, such that b(xj) = bj and
b̂(xj)= b̂j . Note that the infimum over assignment rules Ĝ can be seen as the minimiza-
tion problem of the Bayes risk with the loss function corresponding to the classification
error for predicting binary random variable b(X). Hence, a minimizer of the Bayes risk
is attained by the Bayes classifier,

Ĝ∗ =
{
xj : π(bj = 1|Z1� � � � �Zn)≥ 1

2
� j ≤ v

}
�

where π(bj = 1|Z1� � � � �Zn) is the posterior probability for bj = 1. The minimized Bayes
risk is given by

γ

∫
Z1�����Zn

EX
[
min

{
π
(
b(X)= 1|Z1� � � � �Zn

)
�1 −π(b(X)= 1|Z1� � � � �Zn

)}]
dP̃n

(A.12)

= v−1γ

∫
Z1�����Zn

v∑
j=1

[
min

{
π(bj = 1|Z1� � � � �Zn)�1 −π(bj = 1|Z1� � � � �Zn)

}]
dP̃n�

where P̃n is the marginal likelihood of {(Y1�i�Y0�i�Di�Xi) : i = 1� � � � � n} with prior π(b).
For each j = 1� � � � � (v), let

k+
j = #

{
i :Xi = xj�YiDi = 1

2

}
�

k−
j = #

{
i :Xi = xj�YiDi = −1

2

}
�
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The posterior for bj = 1 can be written as

π(bj = 1|Z1� � � � �Zn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

if #{i :Xi = xj�Di = 1} = 0�(
1
2

+ γ
)k+

j
(

1
2

− γ
)k−

j

(
1
2

+ γ
)k+

j
(

1
2

− γ
)k−

j

+
(

1
2

+ γ
)k−

j
(

1
2

− γ
)k+

j

otherwise.

Hence,

min
{
π(bj = 1|Z1� � � � �Zn)�1 −π(bj = 1|Z1� � � � �Zn)

}

=
min

{(
1
2

+ γ
)k+

j
(

1
2

− γ
)k−

j

�

(
1
2

+ γ
)k−

j
(

1
2

− γ
)k+

j
}

(
1
2

+ γ
)k+

j
(

1
2

− γ
)k−

j

+
(

1
2

+ γ
)k−

j
(

1
2

− γ
)k+

j

=

min

⎧⎪⎪⎨
⎪⎪⎩1�

⎛
⎜⎝

1
2

+ γ
1
2

− γ

⎞
⎟⎠
k+
j −k−

j
⎫⎪⎪⎬
⎪⎪⎭

1 +
⎛
⎜⎝

1
2

+ γ
1
2

− γ

⎞
⎟⎠
k+
j −k−

j

= 1

1 + a|k+
j −k−

j | � where a= 1 + 2γ
1 − 2γ

> 1�

(A.13)

Since k+
j − k−

j =∑i:Xi=xj 2YiDi, plugging (A.13) into (A.12) yields

v−1γ

v∑
j=1

EP̃n

[
1

1 + a|∑i:Xi=xj 2YiDi|

]
≥ γ

2v

v∑
j=1

EP̃n

[
1

a
|∑i:Xi=xj 2YiDi|

]

≥ γ

2v

v∑
j=1

a
−E

P̃n
|∑i:Xi=xj 2YiDi|�

where EP̃n(·) is the expectation with respect to the marginal likelihood of
{(Y1�i�Y0�i�Di�Xi)� i= 1� � � � � n}. The second line follows by a > 1, and the third line fol-
lows by Jensen’s inequality. Given our prior specification for b, the marginal distribution
of Y1�i is Pr(Y1�i = 1/2)= Pr(Y1�i = −1/2)= 1/2, so

EP̃n

∣∣∣∣ ∑
i:Xi=xj

2YiDi

∣∣∣∣=EP̃n
∣∣∣∣ ∑
i=1:Xi=xj�Di=1

2Y1�i

∣∣∣∣= n∑
k=0

(
n

k

)(
1

2v

)k(
1 − 1

2v

)n−k
E

∣∣∣∣B
(
k�

1
2

)
− k

2

∣∣∣∣
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holds, where B(k� 1
2) is the binomial random variable with parameters k and 1

2 . By noting

E

∣∣∣∣B
(
k�

1
2

)
− k

2

∣∣∣∣ ≤
√
E

(
B

(
k�

1
2

)
− k

2

)2

( ∵ Cauchy–Schwarz inequality)

=
√
k

4
�

we obtain

EP̃n

∣∣∣∣ ∑
i:Xi=xj

2YiDi

∣∣∣∣ ≤ n∑
k=0

(
n

k

)(
1

2v

)k(
1 − 1

2v

)n−k√
k

4
=E

√√√√√B
(
n�

1
2v

)
4

≤
√
n

8v
( ∵ Jensen’s inequality)�

Hence, the Bayes risk is bounded from below by

γ

2
a−

√
n
8v ≥ γ

2
exp
{
−(a− 1)

√
n

8v

} (
∵ 1 + x≤ ex ∀x)

= γ

2
exp
{
− 4γ

1 − 2γ

√
n

8v

}
�

(A.14)

This lower bound of the Bayes risk has the slowest convergence rate when γ is set to be
proportional to n−1/2. Specifically, let γ =√ v

n
. Then, we have

γ

2
exp
{
− 4γ

1 − 2γ

√
n

8v

}
= 1

2

√
v

n
exp
{
−

√
2

1 − 2γ

}
≥ 1

2

√
v

n
exp{−2

√
2} if 1 − 2γ ≥ 1

2
�

The condition 1 − 2γ ≥ 1
2 is equivalent to n ≥ 16v. Multiplying M to this lower bound

completes the proof. Q.E.D.

A.3. Proofs of Theorems 2.3 and 2.4

The next lemma is the concentration inequality of Bousquet (2002).

LEMMA A.6: Let F be a countable family of measurable functions, such that
supf∈F EP(f

2) ≤ δ2 and supf∈F ‖f‖∞ ≤ F̄ for some constants δ and F̄ . Let S =
supf∈F(En(f )−EP(f )). Then, for every positive t,

Pn
(
S −EPn(S)≥

√
2
[
δ2 + 4F̄EPn(S)

]
t

n
+ 2F̄ t

3n

)
≤ exp(−t)�

In proving Theorem 2.3, it is convenient to work with the normalized welfare difference,

d
(
G�G′)≡ κ

M

[
W (G)−W (G′)]�
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and its sample analogue

dn
(
G�G′)≡ κ

M

[
Wn(G)−Wn

(
G′)]� (A.15)

By Assumption 2.1 (BO) and (SO), both d(G�G′) and dn(G�G′) are bounded in [−1�1],
and the normalized welfare difference relates to the original welfare loss of decision set
G as

d
(
G∗

FB�G
)= κ

M

[
W
(
G∗

FB

)−W (G)] ∈ [0�1]� (A.16)

Hence, the welfare loss upper bound of ĜEWM can be obtained by multiplyingM/κ by the
upper bound of d(G∗

FB� ĜEWM).
Note that d(G∗

FB�G) can be bounded from above by PX(G∗
FB�G), since

d
(
G∗

FB�G
)= κ

M

∫
G∗

FB�G

∣∣τ(X)∣∣dPX ≤ κPX
(
G∗

FB�G)≤ PX(G∗
FB�G)� (A.17)

On the other hand, with Assumption 2.2 (MA) imposed, PX(G∗
FB�G) can be bounded

from above by a function of d(G∗
FB�G), as the next lemma shows. We borrow this lemma

from Tsybakov (2004).

LEMMA A.7: Suppose Assumption 2.2 (MA) holds with margin coefficient α ∈ (0�∞).
Then

PX
(
G∗

FB�G)≤ c1(M�κ�η�α)d
(
G∗

FB�G
) α

1+α

holds for all G ∈ G, where c1(M�κ�η�α)= ( M
κηα
)

α
1+α (1 + α).

PROOF: Let A= {x : |τ(x)|> t} and consider the following inequalities:

W
(
G∗

FB

)−W (G)=
∫
G∗

FB�G

∣∣τ(X)∣∣dPX ≥
∫
G∗

FB�G

∣∣τ(X)∣∣1{X ∈A}dPX

≥ tPX
((
G∗

FB�G)∩A)≥ t[PX(G∗
FB�G)− PX(Ac

)]
≥ t
[
PX
(
G∗

FB�G)−( t
η

)α]
�

where the final line uses the margin condition. The right-hand side is maximized at t =
η(1 + α)− 1

α [PX(G∗
FB�G)] 1

α ≤ η, so it holds that

W
(
G∗

FB

)−W (G)≥ ηα
(

1
1 + α

) 1+α
α [
PX
(
G∗

FB�G)] 1+α
α �

This, in turn, implies

PX
(
G∗

FB�G)≤ ( M

κηα

) α
1+α
(1 + α)d(G∗

FB�G
) α

1+α �
Q.E.D.

PROOF OF THEOREM 2.3: Let a= √
ktεn with k ≥ 1, t ≥ 1, and εn > 0, where t ≥ 1 is

arbitrary, k is a constant that we choose later, and εn is a sequence indexed by sample size
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n whose proper choice will be discussed in a later step. The normalized welfare loss can
be bounded by

d
(
G∗

FB� ĜEWM

)≤ d(G∗
FB� ĜEWM

)− dn(G∗
FB� ĜEWM

)
�

as dn(G∗
FB� ĜEWM) ≤ 0 by Assumption 2.2 (FB). Define a class of functions induced by

G ∈ G:

H ≡ {h(Zi;G) :G ∈ G
}
,

h(Zi;G)≡ κ

M

(
YiDi

e(Xi)
− Yi(1 −Di)

1 − e(Xi)

)[
1{Xi ∈G} − 1

{
Xi ∈G∗

FB

}]
�

By Assumption 2.1 (VC) and Lemma A.1, H is a VC-subgraph class with VC-dimension
at most v < ∞ with envelope H̄ = 1. Using h(Zi;G), we can write d(G∗

FB�G) =
−EP(h(Zi;G)). Since d(G∗

FB�G)≥ 0 for allG ∈ G, it holds that −EP(h)≥ 0 for all h ∈H.
Since we have

d
(
G∗

FB� ĜEWM

)− dn(G∗
FB� ĜEWM

)=En(h(Zi; ĜEWM)
)−EP(h(Zi; ĜEWM)

)
and dn(G∗

FB� ĜEWM)≤ 0, the normalized welfare loss can be bounded by

d
(
G∗

FB� ĜEWM

) ≤ En
(
h(Zi; ĜEWM)

)−EP(h(Zi; ĜEWM)
)

≤ Va
[
d
(
G∗

FB� ĜEWM

)+ a2
]
,

where

Va = sup
h∈H

{
En(h)−EP(h)
−EP(h)+ a2

}
= sup

h∈H

{
En

(
h

−EP(h)+ a2

)
−EP

(
h

−EP(h)+ a2

)}
�

On event Va < 1
2 , d(G∗

FB� ĜEWM)≤ a2 holds, so this implies

Pn
(
d
(
G∗

FB� ĜEWM

)≥ a2
)≤ Pn(Va ≥ 1

2

)
� (A.18)

In what follows, our aim is to construct an exponential inequality for Pn(Va ≥ 1
2) involving

only t, and we make use of such exponential tail bound to bound EPn(d(G∗
FB� ĜEWM)).

To apply Bousquet’s inequality (Lemma A.6) to Va, note first that

EP

((
h

−EP(h)+ a2

)2)
≤ PX

(
G∗

FB�G)(−EP(h)+ a2
)2 ≤ c1

[−EP(h)] α
1+α(−EP(h)+ a2
)2

(
∵ by Lemma A.7 and d

(
G∗

FB�G
)= −EP

(
h(Zi;G)

))
≤ c1 sup

ε≥0

ε
2α

1+α(
ε2 + a2

)2 ≤ c1
1
a2 sup

ε≥0

ε
2α

1+α

ε2 + a2 ≤ c1
1
a2 sup

ε≥0

(
ε

α
1+α

ε∨ a
)2

≤ c1
1
a4a

2α
1+α ,
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where c1 is a constant that depends only on (M�κ�η�α) as defined in Lemma A.7. We,
on the other hand, have

sup
h∈H

∣∣∣∣sup
Z

h

−EP(h)+ a2

∣∣∣∣≤ 1
a2 �

Hence, Lemma A.6 gives, with probability larger than 1 − exp(−t),

Va ≤ EPn(Va)+
√

2
[
c1a

2α
1+α−2 + 4EPn(Va)

]
t

na2 + 2t
3na2 � (A.19)

Next, we derive an upper bound of EPn(Va) by applying the maximal inequality of
Lemma A.5. Let r > 1 be arbitrary and consider partitioning H by H0�H1� � � � , where
H0 = {h ∈ H : −EP(h) ≤ a2} and Hj = {h ∈ H : r2(j−1)a2 < −EP(h) ≤ r2ja2}, j = 1�2� � � � .
Then,

Va ≤ sup
h∈H0

{
En(h)−EP(h)
−EP(h)+ a2

}
+
∑
j≥1

sup
h∈Hj

{
En(h)−EP(h)
−EP(h)+ a2

}

≤ 1
a2

[
sup
h∈H0

(
En(h)−EP(h)

)+∑
j≥1

(
1 + r2(j−1)

)−1
sup
h∈Hj

(
En(h)−EP(h)

)]
(A.20)

≤ 1
a2

[
sup

−EP(h)≤a2

(
En(h)−EP(h)

)+∑
j≥1

(
1 + r2(j−1)

)−1
sup

−EP(h)≤r2ja2

(
En(h)−EP(h)

)]
�

Since it holds that ‖h‖2
L2(P)

≤ PX(G
∗
FB�G) ≤ c1(M�κ�η�α)[−EP(h)] α

1+α , where the lat-
ter inequality follows from Lemma A.7, −EP(h) ≤ r2ja2 implies ‖h‖L2(P) ≤ c1/2

1 r
α

1+α ja
α

1+α .
Hence, (A.20) can be further bounded by

Va ≤ 1
a2

[
sup

‖h‖L2(P)≤c
1/2
1 a

α
1+α

(
En(h)−EP(h)

)

+
∑
j≥1

(
1 + r2(j−1)

)−1
sup

‖h‖L2(P)≤c
1/2
1 r

α
1+α ja

α
1+α

(
En(h)−EP(h)

)]
�

We apply Lemma A.5 to each supremum term, and obtain

EPn(Va)≤ C2
c

1
2
1

a2

√
v

n
a

α
1+α
∑
j≥0

r
α

1+α j

1 + r2(j−1) ≤ C2c
1
2
1

√
v

n
a

α
1+α−2

(
r2

1 − r− 2+α
1+α

)
≤ c2

√
v

n
a

α
1+α−2

for

n≥ C1v

c1a
2α

1+α
⇐⇒ a≥

(
C1

c1

) 1+α
2α
(
v

n

) 1+α
2α

� (A.21)

where C1 and C2 are universal constants defined in Lemmas A.4 and A.5, and c2 =
C2c

1
2
1 (

r2

1−r−
2+α
1+α
) ∨ 1 is a constant greater than or equal to 1 and depends only on
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(M�κ�η�α), as r > 1 is fixed. We plug this upper bound into (A.19) to obtain

Va ≤ c2

√
v

n
a

α
1+α−2 +

√√√√√2
[
c1a

2α
1+α−2 + 4c2

√
v

n
a

α
1+α−2

]
t

na2 + 2t
3na2 � (A.22)

Choose εn as the root of c2
√

v
n
a

α
1+α−2 = 1, that is,

εn =
(
c2

√
v

n

) 1+α
2+α

. (A.23)

Note that the right-hand side of (A.22) is decreasing in a, and a≥ εn by the construction.
Hence, if εn satisfies inequality (A.21), that is,

n≥ c−α
2

(
C1

c1

)1+ α
2

v�

which can be reduced to an innocuous restriction n≥ 1 by inflating, if necessary, c1 large
enough, we can substitute εn for a to bound the right-hand side of (A.22). In particular,
by noting

c2

√
v

n
a

α
1+α−2 ≤ εn

a
= 1√

kt
≤ 1√

k
and

a
2α

1+α−2 = a2( α
1+α−2)a2 ≤ [ε α

1+α−2
n

]2
ε2
n = c−2

2 v
−1nε2

n,

the right-hand side of (A.22) can be bounded by

Va ≤ 1√
k

+
√

2
c1c

−2
2 v

−1nε2
n + 8

nkε2
n

+ 2
3nkε2

n

= 1√
k

+
√

2c1c
−2
2 v

−1

k
+ 8
nkε2

n

+ 2
3nkε2

n

≤ 1√
k

+
√

2c1c
−2
2 v

−1

k
+ 8
k

+ 2
3k

for nε2
n ≥ 1.

(A.24)

Note that condition nε2
n ≥ 1 used to derive the last line is valid for all n, since it is equiva-

lent to n≥ c−2(1+α)
2 v−(1+α), which holds for all n≥ 1 since c2 ≥ 1 and v ≥ 1. By choosing k

large enough so that the right-hand side of (A.24) is less than 1
2 , we can conclude

Pr
(
Va <

1
2

)
≥ 1 − exp(−t)� (A.25)

Hence, (A.18) yields

Pn
(
d
(
G∗

FB� ĜEWM

)≥ ktε2
n

)≤ exp(−t)
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for all t ≥ 1. From this exponential bound, we obtain

EPn
(
d
(
G∗

FB� ĜEWM

))=
∫ ∞

0
Pn
(
d
(
G∗

FB� ĜEWM

)
> t ′
)
dt ′

≤
∫ kε2

n

0
Pn
(
d
(
G∗

FB� ĜEWM

)≥ t ′)dt ′ + ∫ ∞

kε2
n

Pn
(
d
(
G∗

FB� ĜEWM

)≥ t ′)dt ′
≤ kε2

n + kε2
ne

−1

= (1 + e−1
)
kc

2(1+α)
2+α

2

(
v

n

) 1+α
2+α
�

So, setting c = M
κ
(1 + e−1)kc

2(1+α)
2+α

2 leads to the conclusion. Q.E.D.

PROOF OF THEOREM 2.4: As in the proof of Theorem 2.2, we work with the normal-
ized outcome support, Y1�i�Y0�i ∈ [− 1

2 �
1
2 ]. With the normalized outcome, we can assume

without loss of generality that constant η of the margin assumption satisfies η≤ 1.
Let α ∈ (0�∞) and η ∈ (0�1] be given. Similarly to the proof of Theorem 2.2, we con-

sider constructing a suitable subclass P∗ ⊂ P(1�κ�η�α). Let x1� � � � � xv ∈ X be v points
that are shattered by G, and let γ be a positive number satisfying γ ≤ min{η� 1

2 }, whose
proper choice will be given later. We fix the marginal distribution of X at the one sup-
ported only on (x1� � � � � xv) and having the probability mass function

PX(Xi = xj)= 1
v− 1

(
γ

η

)α
for j = 1� � � � � (v− 1)� and

PX(Xi = xv)= 1 −
(
γ

η

)α
.

Thus-constructed marginal distribution of X is common in P∗. As in the proof of The-
orem 2.2, we specify D to be independent of (Y1�Y0�X) and follow the Bernoulli dis-
tribution with Pr(D = 1) = 1/2. Let b = (b1� � � � � bv−1) ∈ {0�1}v−1 be a binary vector that
uniquely indexes a member of P∗, and, accordingly, write P∗ = {Pb : b ∈ {0�1}v−1}. For
each j = 1� � � � � (v − 1), we specify the conditional distribution of Y1 given X = xj to be
(A.10) if bj = 1 and (A.11) if bj = 0. For j = v, the conditional distribution of Y1 given
X = xv is degenerate at Y1 = 1

2 . As for the conditional distribution of Y0 givenX = xj , we
consider the degenerate distribution at Y0 = 0 for j = 1� � � � � (v− 1), and the degenerate
distribution at Y0 = − 1

2 for X = xv. In this specification of P∗, it holds that

PX
(∣∣τ(X)∣∣≤ t)=

⎧⎪⎪⎨
⎪⎪⎩

0 for t ∈ [0�γ)�(
γ

η

)α
for t ∈ [γ�1)�

1 for t ≥ 1

for every Pb ∈ P∗. Since γ ≤ η, PX(|τ(X)| ≤ t) ≤ (t/η)α holds for all t ∈ [0�η]. Further-
more, by the construction of the support points, for every Pb ∈ P∗, the first-best decision
rule G∗

b = {xj : j < v�bj = 1} ∪ {xv} is contained in G. Hence, P∗ ⊂PFB(1�κ�η�α) holds.
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Let π(b) be a prior distribution for b such that b1� � � � � bv−1 are i.i.d. and b1 ∼ Ber(1/2).
The maximized social welfare is

W
(
G∗

b

)= γ

v− 1

(
γ

η

)α( v−1∑
j=1

bj

)
+
[

1 −
(
γ

η

)α]
.

Let Ĝ be an arbitrary treatment choice rule as a function of (Z1� � � � �Zn), and b̂ ∈ {0�1}v
be a binary vector whose jth element is b̂j = 1{xj ∈ Ĝ}.

The welfare loss can be bounded from below as follows:

sup
P∈P(1�κ�η�α)

EPn
[
W ∗

G −W (Ĝ)]
≥ sup

Pb∈P∗
EPnb
[
W
(
G∗

b

)−W (Ĝ)]
≥
∫

b
EPnb
[
W
(
G∗

b

)−W (Ĝ)]dπ(b)≥
∫

b
EPnb
[
W
(
G∗

b

)−W (Ĝ∪ {xv}
)]
dπ(b)

= γ
∫

b
EPnb
[
PX
((
G∗

b�Ĝ
)∩ {x1� � � � � xv−1}

)]
dπ(b)

= γ
∫

b

∫
Z1�����Zn

PX
({
b(X) 	= b̂(X)}∩ {x1� � � � � xv−1}

)
dPnb (Z1� � � � �Zn)dπ(b)

≥ inf
Gn
γ

∫
b

∫
Z1�����Zn

PX
({
b(X) 	= bn(X)

})
dPnb (Z1� � � � �Zn)dπ(b)�

where the second line follows since W (G∗
b)−W (Ĝ) ≥W (G∗

b)−W (Ĝ ∪ {xv}) holds for
every b and Ĝ. The infimum in the last line is taken over decision sets Gn = {xj : bn(xj)=
1} that are constrained to contain {xv}, that is, bn(xv)= 1.

By the same reasonings as in obtaining (A.12), the lower bound of the welfare loss as
viewed as the Bayes risk can be expressed as

sup
P∈P(1�κ�η�α)

EPn
[
W
(
G∗)−W (Ĝ)]

≥ γ

v− 1

(
γ

η

)α ∫
Z1�����Zn

v−1∑
j=1

[
min

{
π(bj = 1|Z1� � � � �Zn)�1 −π(bj = 1|Z1� � � � �Zn)

}]
dP̃n�

Repeating the same bounding arguments as in the proof of Theorem 2.2, a lower bound
of the Bayes risk analogous to (A.14) is obtained by

sup
P∈P(1�κ�η�α)

EPn
[
W
(
G∗)−W (Ĝ)]≥ γ

2

(
γ

η

)α
exp
{
− 4γ

1 − 2γ

√
n

8(v− 1)

(
γ

η

)α}
.

The slowest convergence rate of this lower bound can be obtained by tuning γ to be
converging at the rate of n− 1

2+α . In particular, by choosing γ = η
α

2+α ( v−1
n
)

1
2+α assuming

γ ≤ 1
4 , the exponential term can be bounded from below by exp{−2

√
2}, so we obtain the
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following lower bound:

1
2
η− α

2+α

(
v− 1
n

) 1+α
2+α

exp{−2
√

2}. (A.26)

Recall that γ is constrained to γ ≤ min{η� 1
4 }. This implies that the obtained bound is valid

for

n≥ (max
{
η−1�4

})2+α
ηα(v− 1)�

whose stronger but simpler form is given by

n≥ max
{
η−2�42+α}(v− 1). (A.27)

The lower bound presented in this theorem follows by denormalizing the outcomes, that
is, multiplyM to (A.26) and substitute η/M for η appearing in (A.26) and (A.27). Q.E.D.

A.4. Proof of Theorems 2.5 and 2.6

PROOF OF THEOREM 2.5: Let W τ
n (G) be the sample analogue of the welfare crite-

rion (1.2) in the main text that one would construct if the true regression equations were
known, W τ

n (G)≡ En(m0(Xi))+En(τ(Xi) · 1{Xi ∈G}), and Ŵ τ
n (G) be the empirical wel-

fare with the conditional treatment effect estimators τ̂m(·) plugged in,

Ŵ τ
n (G)≡En

[
m0(Xi)+ τ̂m(Xi)1{Xi ∈G}]. (A.28)

Since them-hybrid rule maximizes Ŵ τ
n (·), it holds that Ŵ τ

n (Ĝm-hybrid)− Ŵ τ
n (G̃)≥ 0 for any

G̃ ∈ G. The following inequalities therefore follow:

W (G̃)−W (Ĝm-hybrid)≤W τ
n (G̃)− Ŵ τ

n (G̃)−W τ
n (Ĝm-hybrid)+ Ŵ τ

n (Ĝm-hybrid)

+W (G̃)−W (Ĝm-hybrid)−W τ
n (G̃)+W τ

n (Ĝm-hybrid)

= 1
n

n∑
i=1

[
τ(Xi)− τ̂m(Xi)

][
1{Xi ∈ G̃} − 1{Xi ∈ Ĝm-hybrid}

]
+W (G̃)−W τ

n (G̃)+W τ
n (Ĝm-hybrid)−W (Ĝm-hybrid)

≤ 1
n

n∑
i=1

∣∣τ̂m(Xi)− τ(Xi)
∣∣+ 2 sup

G∈G

∣∣W τ
n (G)−W (G)∣∣�

(A.29)

This implies that the average welfare loss of the m-hybrid rule can be bounded by

EPn
[
W ∗

G −W (Ĝm-hybrid)
]≤EPn

[
1
n

n∑
i=1

∣∣τ̂m(Xi)− τ(Xi)
∣∣]

+ 2EPn
[
sup
G∈G

∣∣W τ
n (G)−W (G)∣∣]�

(A.30)

For the e-hybrid rule, replacing W τ
n (·) and Ŵ τ

n (·) in (A.29) with the empirical welfare
Wn(·) defined in (1.7) and Ŵn(G) ≡ En[Yi(1−Di)

1−e(Xi) + τ̂ei · 1{Xi ∈ G}], respectively, yields a
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similar upper bound

EPn
[
W ∗

G −W (Ĝe-hybrid)
]≤EPn

[
1
n

n∑
i=1

∣∣τ̂ei − τi
∣∣]+ 2EPn

[
sup
G∈G

∣∣Wn(G)−W (G)∣∣]� (A.31)

where τi = YiDi
e(Xi)

− Yi(1−Di)
1−e(Xi) . Note that the uniform convergence rate ofEPn[supG∈G |W τ

n (G)−
W (G)|] is n−1/2, same as that of EPn[supG∈G |Wn(G)−W (G)|], since the proof of Theo-
rem 2.1 can be applied to the following class of functions:

F τ ≡ {f (Xi;G)=m0(Xi)+ τ(Xi) · 1{Xi ∈G} :G ∈ G
}
�

which is the VC-subgraph class with the VC-dimension at most v by Lemma A.1. Com-
bined with Condition 2.1 (m), (A.30) implies the uniform convergence rate of the m-
hybrid rule given in the current theorem. Similarly, combined with Condition 2.1 (e) and
n−1/2-convergence rate of EPn[supG∈G |Wn(G)−W (G)|], (A.31) leads to the uniform con-
vergence rate of φ−1

n ∨ n−1/2 for the e-hybrid rule. Q.E.D.

The next lemma gives a linearized solution of a certain polynomial inequality. We owe
this lemma to Shin Kanaya (2014, personal communication). The technique of applying
the mean value expansion to an implicit function defined as the root of a polynomial
equation has been used by Shin Kanaya and Dennis Kristensen in unpublished work on
bandwidth choice.

LEMMA A.8: Let A≥ 0, B ≥ 0, and X ≥ 0. For any α≥ 0, X ≤AX α
1+α +B implies

X ≤A1+α + (1 + α)B.

PROOF: When A= B= 0, the conclusion trivially holds. When B > 0,X =AX α
1+α +B

has a unique root, and we denote it byX∗ = g(A�B). WhenA> 0 and B= 0, we mean by
g(A�0) the nonzero root ofX =AX α

1+α . Let f (X�A�B)=X−AX α
1+α −B. By the form

of the inequality, the original inequality can be equivalently written asX ≤X∗ = g(A�B),
so we aim to verify thatX∗ is bounded from above byA1+α+(1+α)B. Consider the mean
value expansion of g(A�B) in B at B= 0,

X∗ = g(A�0)+ ∂g

∂B
(A� B̃)×B for some 0 ≤ B̃≤ B�

Note g(A�0) =A1+α. In addition, by the implicit function theorem, we have, with X̃ =
g(A� B̃),

∂g

∂B
(A� B̃)= −

∂f

∂B
(X̃�A� B̃)

∂f

∂X
(X̃�A� B̃)

= 1

1 − α

1 + αAX̃
− 1

1+α
= X̃

X̃

1 + α + α

1 + α
(
X̃ −AX̃ α

1+α
)

= X̃

X̃

1 + α + α

1 + αB̃
≤ 1 + α�

Hence, X∗ ≤A1+α + (1 + α)B holds. Q.E.D.
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The next lemma provides an exponential tail probability bound of the supremum of the
centered empirical processes. This lemma follows from Theorem 2.14.9 in van der Vaart
and Wellner (1996) combined with their Theorem 2.6.4.

LEMMA A.9: Assume G is a VC-class of subsets in X with VC-dimension v < ∞. Let
PX�n(·) be the empirical probability distribution on X constructed upon (X1� � � � �Xn) gener-
ated i.i.d. from PX(·). Then,

Pn
(

sup
G∈G

∣∣PX�n(G)− PX(G)
∣∣> t)≤

(
C4t√

2v

)2v

nv exp
(−nt2)

holds for every t > 0, where C4 is a universal constant.

PROOF OF THEOREM 2.6: We first consider the m-hybrid case. Set G̃=G∗
FB in (A.29)

and rewrite (A.29) in terms of the normalized welfare loss for Ĝm-hybrid,

d
(
G∗

FB� Ĝm-hybrid

)≤ κ

M

[
W τ
n

(
G∗

FB

)− Ŵ τ
n

(
G∗

FB

)−W τ
n (Ĝm-hybrid)+ Ŵ τ

n (Ĝm-hybrid)
]

+ d(G∗
FB� Ĝm-hybrid

)− dτn(G∗
FB� Ĝm-hybrid

)
≤ 1
n

n∑
i=1

κ

M

[
τ(Xi)− τ̂m(Xi)

][
1
{
Xi ∈G∗

FB

}− 1{Xi ∈ Ĝm-hybrid}
]

+ d(G∗
FB� Ĝm-hybrid

)− dτn(G∗
FB� Ĝm-hybrid

)
≤ ρn + d(G∗

FB� Ĝm-hybrid

)− dτn(G∗
FB� Ĝm-hybrid

)
�

(A.32)

where d(G∗
FB� Ĝm-hybrid) is as defined in equation (A.16), dτn(G

∗
FB� Ĝm-hybrid)=W τ

n (G
∗
FB)−

W τ
n (Ĝm-hybrid),

ρn ≡ κ

M
max
1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣PX�n(G∗

FB�Ĝm-hybrid

)
,

and PX�n is the empirical distribution on X constructed upon (X1� � � � �Xn). Define a class
of functions generated by G ∈ G,

Hτ ≡ {h(Zi;G) :G ∈ G
}
�

h(Zi;G)≡ κ

M
τ(Xi) · [1{Xi ∈G} − 1

{
Xi ∈G∗

FB

}]
�

which is a VC-subgraph class with the VC-dimension at most v with envelope H̄ = 1
by Lemma A.1. Let a = √

ktεn be as defined in the proof of Theorem 2.3 and V τ
a ≡

suph∈Hτ{En(h)−EP(h)−EP(h)+a2 }. By noting

d
(
G∗

FB� Ĝm-hybrid

)− dτn(G∗
FB� Ĝm-hybrid

)≤ V τ
a

(
d
(
G∗

FB� Ĝm-hybrid

)+ a2
)
�

inequality (A.32) implies

d
(
G∗

FB� Ĝm-hybrid

)≤ ρn + V τ
a

(
d
(
G∗

FB� Ĝm-hybrid

)+ a2
)
� (A.33)
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Denote event {V τ
a <

1
2 } byΩt , which is equivalent to event {d(G∗

FB� Ĝm-hybrid)≤ 2ρn+kε2
nt}.

The same line of argument that leads to (A.25) in the proof of Theorem 2.3 leads to, for
t ≥ 1,

Pn(Ωt)= Pn(d(G∗
FB� Ĝm-hybrid

)≤ 2ρn + kε2
nt
)≥ 1 − exp(−t), (A.34)

where εn is given in (A.23). We bound ρn from above by

ρn ≤ κ

M

[
max
1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣PX(G∗

FB�Ĝm-hybrid

)+ V0�n max
1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣]�

where

V0�n = sup
G∈G:

∣∣PX�n(G∗
FB�G)− PX(G∗

FB�G)∣∣�
Let λ > 0, that will be chosen properly later. Define events

Λ1 = {V0�n ≤ n−λ}� Λ2 = {PX(G∗
FB�Ĝm-hybrid

)≥ n−λ}�
Then, on Λ1 ∩ Λ2, it holds that V0�n ≤ PX(G

∗
FB�Ĝm-hybrid). Therefore, on Λ1 ∩ Λ2 ∩ Ωt ,

d(G∗
FB� Ĝm-hybrid) can be bounded by

d
(
G∗

FB� Ĝm-hybrid

) ≤ 4
κ

M
max
1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣PX(G∗

FB�Ĝm-hybrid

)+ kε2
nt

≤ 4c1
κ

M
max
1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣d(G∗

FB� Ĝm-hybrid

) α
1+α + kε2

nt�

where the second line follows from Lemma A.7 with the same definition of c1 given there.
By Lemma A.8 and substituting (A.23) to εn, we obtain, on event Λ1 ∩Λ2 ∩Ωt ,

d
(
G∗

FB� Ĝm-hybrid

)≤ c6

[
max
1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣]1+α + c7

(
v

n

) 1+α
2+α
t� (A.35)

where constants c6 and c7 depend only on (M�κ�η�α).
Using the upper bound derived in (A.35), we obtain, for t ≥ 1,

EPn
(
d
(
G∗

FB� Ĝm-hybrid

))
=EPn

(
d
(
G∗

FB� Ĝm-hybrid

)
1{Λ1 ∩Λ2 ∩Ωt}

)+EPn(d(G∗
FB� Ĝm-hybrid

)
1
{
Λc

1 ∪Λc
2 ∪Ωc

t

})
≤ c6EPn

([
max
1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣]1+α)+ c7

(
v

n

) 1+α
2+α
t + Pn(Λc

1

)
+EPn

(
d
(
G∗

FB� Ĝm-hybrid

)
1
{
Λc

2

})+ Pn(Ωc
t

)
≤ c6ψ̃

−(1+α)
n EPn

([
ψ̃n max

1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣]1+α)

︸ ︷︷ ︸
A1�n

+ c7

(
v

n

) 1+α
2+α
t︸ ︷︷ ︸

A2�n

+
(
C4√
2v

)2v

n−2v(λ− 1
2 ) exp

(−n−2(λ− 1
2 )
)

︸ ︷︷ ︸
A3�n

+ n−λ︸︷︷︸
A4�n

+ exp(−t)︸ ︷︷ ︸
A5�n

�
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where ψ̃n is a sequence as specified in equation (2.10) in the main text. In these in-
equalities, the third line uses (A.35) and d(G∗

FB� Ĝm-hybrid) ≤ 1. In the fourth line, A3�n

follows from Lemma A.9, A4�n follows from d(G∗
FB� Ĝm-hybrid) ≤ PX(G

∗
FB�Ĝm-hybrid) and

PX(G
∗
FB�Ĝm-hybrid) < n

−λ on Λc
2, and A5�n follows from (A.34).

We now discuss convergence rates of Aj�n, j = 1� � � � �5, individually with suitable
choices of t and λ. Equation (2.10) assumed in this theorem implies

sup
P∈Pm

EPn
((
ψ̃n max

1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣)1+α)

= sup
P∈Pm

EPn
([(

ψ̃n max
1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣)2] 1+α

2
)

≤
([

sup
P∈Pm

EPn
(
ψ̃n max

1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣)2] 1+α

2
)

=O(1)�
where the third line follows from Jensen’s inequality since (1 + α)/2 ≤ 1. Hence, A1�n

satisfies supP∈Pm A1�n =O(ψ̃−(1+α)
n ). By setting t = (1 +α) logψn, we can make the conver-

gence rate of A5�n equal to that of A1�n. At the same time, by choosing λ > 1+α
2+α ≥ 1

2 , we
can make A3�n and A4�n converge faster than A2�n. Hence, the uniform convergence rate
of EPn(d(G∗

FB� Ĝm-hybrid)) over P ∈ Pm ∩ PFB(M�κ�η�α) is bounded by the convergence
rates of the A1�n and A2�n,

O
(

sup
P∈Pm

A1�n ∨ sup
P∈PFB(M�κ�η�α)

A2�n

)
=O(ψ̃−(1+α)

n ∨ n− 1+α
2+α log ψ̃n

)
.

This completes the proof for the m-hybrid case.
A proof for the e-hybrid case follows almost identically to the proof of the m-hybrid

case. The differences are that ρn in inequality (A.32) is given by

ρn = κ

M
max
1≤i≤n

∣∣τ̂ei − τi
∣∣PX�n(G∗

FB�Ĝe-hybrid

)
�

and that inequality (A.33) is replaced by

d
(
G∗

FB� Ĝe-hybrid

)≤ ρn + Va
(
d
(
G∗

FB� Ĝe-hybrid

)+ a2
)
� (A.36)

where Va is as defined in the proof of Theorem 2.3. The rest of the proof goes similarly to
the proof of the first claim except that the rate φ̃n given in equation (2.11) replaces ψ̃n in
the first claim. Q.E.D.

APPENDIX B: INFERENCE FOR WELFARE GAIN

In the proposed EWM procedure, the maximized empirical welfare Wn(ĜEWM) can be
seen as an estimate of W (ĜEWM), the welfare level attained by implementing the esti-
mated treatment rule.1 In situations where propensity scores are known, this section pro-

1It is important to note that in finite samples, Wn(ĜEWM) estimates W (ĜEWM) with an upward bias. With
fixed n, the size of the bias becomes bigger as G becomes more complex.
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vides a procedure for constructing asymptotically valid confidence intervals for the popu-
lation welfare gain of implementing the estimated rule.

Let Ĝ ∈ G be an estimated treatment rule such as ĜEWM or other data-driven way of
selecting G from the set of candidate policies. Define the welfare gain of implementing
the estimated treatment rule Ĝ ∈ G by

V (Ĝ)≡W (Ĝ)−W (G0)�

where G0 is a benchmark treatment assignment rule with which the estimated treatment
rule Ĝ is compared in terms of the social welfare. For instance, if the estimated treatment
rule Ĝ is compared with the “no treatment” case,G0 is the empty set ∅. Alternatively, if a
benchmark policy is the non-individualized uniform adoption of the treatment, G0 is set
at G0 = X , and V (Ĝ) is interpreted as the welfare gain of implementing individualized
treatment assignment instead of the non-individualized implementation of the treatment.

A construction of one-sided confidence intervals for V (Ĝ) proceeds as follows. Let
νn(G)= √

n(Vn(G)− V (G)), where Vn(G)≡Wn(G)−Wn(G0). If there is a random vari-
able ν̄n such that νn(Ĝ)≤ ν̄n holds Pn-almost surely, and if ν̄n converges in distribution to
a non-degenerate random variable ν̄, then, with qν̄(1 − ᾱ), the (1 − ᾱ)th quantile of ν̄, it
holds that

Pn
(
νn(Ĝ)≤ qν̄(1 − ᾱ))≥ Pn(ν̄n ≤ qν̄(1 − ᾱ))→ Pr

(
ν̄ ≤ qν̄(1 − ᾱ))= 1 − ᾱ as n→ ∞�

Hence, if q̂ν̄(1 − ᾱ), a consistent estimator of qν̄(1 − ᾱ), is available, an asymptotically
valid one-sided confidence interval for V (Ĝ) with coverage probability (1 − ᾱ) can be
given by [

Vn(Ĝ)− q̂ν̄(1 − ᾱ)√
n

�∞
)
� (B.1)

Two-sided confidence intervals for V (Ĝ) can be constructed similarly by considering
a random variable ν̃n that satisfies |νn(Ĝ)| ≤ ν̃n, Pn-almost surely, and converges to a
nondegenerate random variable ν̃. With q̂ν̃(1− ᾱ) a consistent estimator for the (1− ᾱ)th
quantile of ν̃, two-sided confidence interval for V (Ĝ) can be given by[

Vn(Ĝ)− q̂ν̃(1 − ᾱ)√
n

�Vn(Ĝ)+ q̂ν̃(1 − ᾱ)√
n

]
� (B.2)

In the algorithm summarized below, we specify ν̄n to be ν̄n = √
n supG∈G(Vn(G)−V (G))

and ν̃n to be ν̃n = √
n supG∈G |Vn(G)− V (G)|, and estimate the (1 − ᾱ)-quantiles of their

asymptotic distributions by bootstrapping the centered empirical processes.2

2The current choices of ν̄n and ν̃n are likely to yield conservative confidence intervals. Keeping the same
nominal coverage probability, it is feasible to tighten up the confidence intervals with more sophisticated
choices of ν̄n and ν̃n, such as ν̄n = √

n supG∈Ĝ(Vn(G) − V (G)) and ν̃n = √
n supG∈Ĝ |Vn(G) − V (G)|, where

Ĝ is a data-dependent subclass of G that contains Ĝ with probability approaching 1. Such Ĝ can be obtained
by applying the technique of contact set estimation in the context of stochastic dominance testing. See Linton,
Song, and Whang (2010) and Donald and Hsu (2016), as well as the literature on moment inequalities with
moment selection (Andrews and Shi (2013), among others).



EMPIRICAL WELFARE MAXIMIZATION METHODS 23

ALGORITHM B.1: 1. Let Ĝ ∈ G be an estimated treatment assignment rule (e.g., EWM
rule), and Vn(·)=Wn(·)−Wn(G0) be the empirical welfare gain obtained from the original
sample.

2. Resample n-observations of Zi = (Yi�Di�Xi) randomly with replacement from the
original sample and construct the bootstrap analogue of the welfare gain, V ∗

n (·)=W ∗
n (·)−

W ∗
n (G0), where W ∗

n (·) is the empirical welfare of the bootstrap sample.
3. For one-sided confidence intervals, compute ν̄∗

n = √
n supG∈G(V

∗
n (G)− Vn(G)). For

two-sided confidence intervals, compute ν̃∗
n = √

n supG∈G |V ∗
n (G)− Vn(G)|.

4. Let ᾱ ∈ (0�1/2). Repeat step 2 and 3 many times. For one-sided (two-sided) confi-
dence intervals, obtain q̂ν̄(1 − ᾱ) (q̂ν̃(1 − ᾱ)) by the empirical (1 − ᾱ)th quantile of the
bootstrap realizations of ν̄∗

n (ν̃∗
n).

Given Assumption 2.1, the uniform central limit theorem for empirical processes as-
sures that ν̄n and ν̃n converge in distribution to the supremum of mean-zero Brownian
bridge processes and the supremum of their absolute values, respectively. Furthermore,
by the well-known result on the asymptotic validity of the bootstrap empirical processes
(see, e.g., Section 3.6 of van der Vaart and Wellner (1996)), the bootstrap critical values
q̂ν̄(1 − ᾱ) and q̂ν̃(1 − ᾱ) consistently estimate the corresponding quantiles of the limit-
ing distributions of ν̄n and ν̃n, respectively. We can therefore assure that the confidence
intervals constructed in (B.1) and (B.2) have the desired asymptotic coverage probability.

The same inference procedure is valid for the welfare gain estimated with demeaned
outcomes V dm

n (Ĝ) ≡ W dm
n (Ĝ) −W dm

n (G0). Resampling in this case is from observations
Zdm
i = (Y dm

i �Di�Xi), with outcomes Y dm
i = Yi − En[Yi] demeaned by the outcome mean

in the original sample.

APPENDIX C: COMPUTING EWM TREATMENT RULES

The Empirical Welfare Maximization rule ĜEWM, as well as hybrid rules Ĝm-hybrid, and
Ĝe-hybrid, share the same structure

Ĝ ∈ arg max
G∈G

n∑
i=1

gi · 1{Xi ∈G}� (C.1)

where each gi is a function of the data, that is, for the EWM rule ĜEWM, gi = 1
n
( YiDi
e(Xi)

−
Yi(1−Di)
1−e(Xi) ), for the e-hybrid rule Ĝe-hybrid, gi = τ̂ei /n, and for the m-hybrid rule Ĝm-hybrid,
gi = τ̂m(Xi)/n. The objective function in (C.1) is non-convex and discontinuous in G;
thus finding Ĝ could be computationally challenging. In this section, we propose a set of
convenient tools that permit solving this optimization problem and performing inference
using widely available software for practically important classes of sets G defined by linear
eligibility scores.3

C.1. Single Linear Index Rules

We start with the problem of computing optimal treatment rules that assign treatments
based on a linear index (linear eligibility score; LES, see Examples 2.1 and 2.2). To re-
duce notational complexity, we include a constant in the covariate vector X throughout

3For the empirical illustration, we used IBM ILOG CPLEX Optimization Studio, which is available free for
academic use through the IBM Academic Initiative.
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the exposition of this section. An LES rule can be expressed as 1{XTβ≥ 0}. This type of
treatment rule is commonly used in practice because it offers a simple way to reduce the
dimension of observable characteristics. Furthermore, it is easy to enforce monotonicity
of treatment assignment in specific covariates by imposing sign restrictions on the com-
ponents of β.

Let GLES be a collection of half-spaces of the covariate space X , which are the upper
contour sets of linear functions:

GLES = {Gβ : β ∈ B ⊂R
dx+1
}
�

Gβ = {x : xTβ≥ 0
}
�

Then the optimization problem (C.1) becomes

max
β∈B

n∑
i=1

gi · 1
{
XT
i β≥ 0

}
� (C.2)

This problem is similar to the maximum weighted score problem analyzed in Florios
and Skouras (2008). They observed that the maximum score objective function could
be rewritten as a Mixed Integer Linear Programming problem with additional binary
parameters (z1� � � � � zn) that replace the indicator functions 1{XT

i β ≥ 0}. The equality
zi = 1{XT

i β ≥ 0} is imposed by a combination of linear inequality constraints and the
restriction that zi’s are binary. The advantage of a MILP representation is that it is a stan-
dard optimization problem that could be solved by multiple commercial and open-source
solvers. The branch-and-cut algorithms implemented in these solvers are faster than brute
force combinatorial optimization.

We propose replacing (C.2) by its equivalent problem:

max
β∈B�

z1�����zn∈R

n∑
i=1

gi · zi (C.3)

s.t.
XT
i β

Ci
< zi ≤ 1 + XT

i β

Ci
for i= 1� � � � � n� (C.4)

zi ∈ {0�1}�
where constants Ci should satisfy Ci > supβ∈B |XT

i β|. Then the inequality constraints (C.4)
and the restriction that zi’s are binary imply that zi = 1 if and only if XT

i β≥ 0. It follows
that the maximum value of (C.4) for each value of β is the same as the value of (C.2).

The problem (C.3) is a linear optimization problem with linear inequality constraints
and integer constraints on zi’s if the set B is defined by linear inequalities that could be
passed to any MILP solver. Florios and Skouras (2008) imposed only one side of the
inequality constraint (C.4) for each i. For gi > 0, it is sufficient to impose only the upper
bound on zi, and for gi < 0, only the lower bound. The other side of the bound is always
satisfied by the solution due to the direction of the objective function.

Our formulation has significant advantages. Despite a larger number of inequalities, it
reduces the computation time in our applications by a factor of 10–40. Furthermore, it is
not sufficient to impose only one side of the inequalities on zi’s for optimization with a
capacity constraint considered further below.
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Our data contain large sets of observations that differ from each other in only one
covariate. Suppose that m observations i1� � � � � im differ only in the value of the last co-
variate:Xi1 = (1� x̃1� � � � � x̃dx−1�xdx�i1), � � � ,Xim = (1� x̃1� � � � � x̃dx−1�xdx�im), and are ordered
with xdx�i1 ≤ xdx�i2 ≤ · · · ≤ xdx�im . Then the solution must satisfy either zi1 ≤ zi2 ≤ · · · ≤ zim
or zi1 ≥ zi2 ≥ · · · ≥ zim . We found it advantageous to split the optimization problem in our
empirical application into two: one explicitly imposing zi1 ≤ · · · ≤ zim and one explicitly
imposing zi1 ≥ · · · ≥ zim for sets of observations that have the same values of education,
but different values of prior earnings.

Inference on the welfare gain V (ĜEWM) of the empirical welfare-maximizing policy
requires computing ν̄∗

n = supG∈G
√
n(V ∗

n (G)−Vn(G)) in each bootstrap sample. Denoting
the bootstrap weights by {w∗

i },
∑n

i=1w
∗
i = n, ν̄∗

n could be expressed as

ν̄∗
n = √

n sup
G∈G

n∑
i=1

(
w∗
i − 1

)
gi · 1

{
XT
i β≥ 0

}
� (C.5)

The optimization problem for ν̄∗
n is analogous to the optimization problem for ĜEWM.

Furthermore, solving it does not require the knowledge of ĜEWM; hence all bootstrap
computations could be performed in parallel with the main EWM problem.

C.2. Multiple Linear Index Rules

We extend this method to compute treatment rules based on multiple linear scores.
These rules construct J scores that are linear in covariates (or in their functions) and
assign an individual to treatment if each score exceeds a specific threshold. An example
of a multiple index treatment rule with three indices is when an individual is assigned to
a job training program if (25 ≤ age ≤ 35) AND (wage at the previous job < $15). The
results are easily extended to treatment rules that apply if any of the indices exceeds its
threshold, for example, (age ≥ 40) OR (length of unemployment ≥ 2 years).

Let the treatment assignment set G be defined as an intersection of upper contour sets
of J linear functions:

G = {Gβ1�����βJ �β
1� � � � �βJ ∈ B

}
�

Gβ1�����βJ = {x : xTβ1 ≥ 0� � � � � xTβJ ≥ 0
}
�

Then the optimization problem (C.1) becomes

max
β1�����βJ∈B

n∑
i=1

gi · 1
{
XT
i β

1 ≥ 0� � � � �XT
i β

J ≥ 0
}
� (C.6)

We propose its equivalent formulation as a MILP problem with auxiliary binary vari-
ables {(z1

i � � � � � z
J
i � z

∗
i )� i= 1� � � � � n}:

max
β1�����βJ∈B�
z1
i �����z

J
i �z

∗
i ∈R

n∑
i=1

gi · z∗
i (C.7)

s.t.
XT
i β

j

Ci
< z

j
i ≤ 1 + XT

i β
j

Ci
for 1 ≤ i≤ n�1 ≤ j ≤ J� (C.8)
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1 − J +
J∑
j=1

z
j
i ≤ z∗

i ≤ J−1
J∑
j=1

z
j
i for 1 ≤ i≤ n� (C.9)

z1
i � � � � � z

J
i � z

∗
i ∈ {0�1} for 1 ≤ i≤ n�

Similarly to the single index problem, the inequalities (C.8) and the constraint that zji ’s
are binary imply together that zji = 1{XT

i β
j ≥ 0}. Linear inequalities (C.9) and the binary

constraints imply together that

z∗
i = z1

i · � � � · zJi = 1
{
XT
i β

1 ≥ 0
} · � � � · 1

{
XT
i β

J ≥ 0
}
�

The problem for a collection of sets defined by the union of linear inequalities

Gβ1�����βJ = {X :XTβ1 ≥ 0 or . . . or XTβJ ≥ 0
}

could also be written as a MILP problem with the inequality constraint (C.9) replaced by

J−1
J∑
j=1

z
j
i ≤ z∗

i ≤
J∑
j=1

z
j
i for i= 1� � � � � n� (C.10)

C.3. Optimization With a Capacity Constraint

When there is a capacity constraint K on the proportion of population that could be
assigned to treatment 1, Empirical Welfare Maximization problem (2.4) on a set G of
half-spaces becomes

max
β∈B

[
min

{
1�

Kn
n∑
i=1

1
{
XT
i β≥ 0

}
}

n∑
i=1

gi · 1
{
XT
i β≥ 0

}]
� (C.11)

This problem cannot be rewritten as a linear optimization problem in the same way as
(C.3) because the factor min{1� Kn∑n

i=1 1{XTi β≥0} } varies with β. This factor could take fewer
than n different values and the maximum of (C.11) could be obtained by solving a se-
quence of optimization problems each of which holds this factor constant:

For k= �Kn�� � � � � n

max
β∈B�

z1�����zn∈R
min

{
1�
Kn

k

} n∑
i=1

gi · zi

s.t.
XT
i β

Ci
< zi ≤ 1 + XT

i β

Ci
for 1 ≤ i≤ n�

zi ∈ {0�1}�
n∑
i=1

zi ≤ k�

The capacity constrained problem with multiple indexes could be solved similarly.
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