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Abstract 

We studied whether grey matter network parameters are associated with rate of clinical 

progression in non-demented subjects who have abnormal amyloid markers in the 

cerebrospinal fluid (CSF), i.e., pre-dementia AD. Non-demented subjects (62 with 

subjective cognitive decline; 160 with mild cognitive impairment; age = 68±8 years; MMSE 

= 28±2.4) were selected from the Amsterdam Dementia Cohort when they had abnormal 

amyloid CSF levels (<640 pg/ml). Networks were extracted from grey matter structural 

MRI, and nine parameters were calculated. Cox proportional hazards models were used to 

test associations between each connectivity predictor and the rate of progression to mild 

cognitive impairment or dementia. After a median time of 2.2 years (1.4-3.1), 122 (55%) 

subjects showed clinical progression. Lower network parameter values were associated with 

increased risk for progression, with the strongest Hazard Ratio of 0.29 for clustering (95%CI 

=0.12 - 0.70; p<.01). Results remained significant after correcting for tau, hippocampal 

volume and MMSE scores. Our results suggest that at pre-dementia stages, grey matter 

networks parameters may have use to identify subjects who will show fast clinical 

progression. 

 

Key words: prognosis, pre-dementia Alzheimer’s disease, single-subject, grey matter 

networks, clinical progression. 
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1. Introduction 

Accumulation of amyloid in the brain is among the first changes leading to Alzheimer's 

disease (AD)(Sperling et al., 2011; Toledo et al., 2015; van Harten et al., 2013). Future disease 

modifying therapies are probably most effective in the earliest stages of AD, to prohibit the 

pathological cascade of events leading to dementia from unfolding. Prognostic biomarkers 

that can be used to predict time to clinical progression are necessary for disease 

management, as well as therapy development. Once amyloid is abnormal, it is only weakly 

related to the rate of clinical progression, probably because it reaches plateau levels at early, 

preclinical stages of the disease (Jack et al., 2013). Alternative biomarkers are needed that 

show a better relationship with cognitive decline. 

 

Soluble beta amyloid oligomers and the deposition of amyloid beta into insoluble plaques 

disrupt synaptic functioning, and loss of synapses has been robustly associated with signs 

and symptoms of dementia (Selkoe, 2002). Synaptic dysfunction impacts on brain 

connectivity, and so it can be hypothesised that brain connectivity as measured with 

neuroimaging techniques might be a sensitive marker for incipient brain damage. One way 

to measure brain connectivity is based on patterns of coordinated grey matter morphology 

from structural MRI (Alexander-Bloch et al., 2013a; Bassett et al., 2008; Lerch et al., 2006; 

Mechelli et al., 2005; Tijms et al., 2012). Coordinated patterns of grey matter morphology have 

been associated with functional co-activation (Alexander-Bloch et al., 2013b; Andrews et al., 

1997), axonal connectivity (Gong et al., 2012),  and/or genetic factors (Chen et al., 2013; 

Schmitt et al., 2009). In AD grey matter networks seem to be more randomly organised, as 

indicated e.g., by a lower value of the small world coefficient (Friedman et al., 2015; Li et al., 

2012; Pereira et al., 2016; Phillips et al., 2015; Tijms et al., 2013a; 2014; Yao et al., 2010; Zhou and 

Lui, 2013). We previously have shown that worse grey matter network disruptions are 

associated with worse disease severity and cognitive dysfunction (Tijms et al., 2014; 2013a). 

 

A recent study reported that grey matter network parameters in subjects with mild cognitive 

impairment (MCI) who later progressed to dementia were more similar to the organisation 

of grey matter networks in AD subjects, than those of controls (Pereira et al., 2016). In 

cognitively normal elderly, disruptions of grey matter networks have been associated with 

more abnormal amyloid-beta 1-42 (Aβ 1-42) levels in cerebrospinal fluid (CSF), suggesting 

that grey matter network measures are sensitive to pathological changes at very early stages 

of AD (Tijms et al., 2016). However, it remains unclear if grey matter network parameters are 

associated with rate of clinical progression in pre-dementia AD. 
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In this study, we investigated the hypothesis that grey matter network disruptions are 

associated with time to clinical progression in a memory clinic sample of subjects with 

subjective cognitive decline (SCD) or MCI and abnormal amyloid CSF markers. Based on 

previous studies we expected that indications of a more randomly organised network would 

be related to a faster clinical decline. 

 

2. Methods 

2.1 Subjects 

For the COnnectivity in DementiA (CODA) study we selected 62 subjects with SCD and 

160 subjects with MCI from the Amsterdam Dementia Cohort(van der Flier et al., 2014) 

when they had abnormal Aβ 1-42 CSF levels (<640 pg/ml; see section 2.4 for details of CSF 

analysis), baseline T1-weighted structural MRI and at least 1 year clinical follow-up data 

available. Subjects initially visited our memory clinic at the Alzheimer Centre of the VU 

University Medical centre between 2000 and 2014. Most subjects underwent standard 

dementia screening that included a medical history, physical and neurological examination, 

extensive neuropsychological evaluation, screening laboratory tests, an 

electroencephalogram and an MRI scan. Subjects were diagnosed during a multidisciplinary 

consensus meeting with SCD when they presented with cognitive complaints, but cognitive 

and laboratory investigations were normal and they did not meet criteria for MCI, dementia 

or any other neurological disorder (Jessen et al., 2014); or with MCI when they fulfilled 

corresponding criteria (Albert et al., 2011; Petersen et al., 1999). For most subjects follow-

up visits were part of the regular care, scheduled at about 1 year intervals and included 

medical history, neurological and neuropsychological work up. Clinical progression was 

defined as receiving a follow-up diagnosis of MCI or AD-dementia, made in a 

multidisciplinary meeting based on commonly used criteria (Albert et al., 2011; McKhann et 

al., 1984; McKhann et al., 2011; Petersen et al., 1999). The primary outcome measure in the 

present study was time to clinical progression, defined as the time between the baseline MRI 

and the time that a new diagnosis was made. 
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2.2 MRI acquisition and preprocessing 

High resolution 3D T1-weighted structural images were acquired as part of routine subject 

care. Over the years, scans were acquired from 7 different MRI scanners (see supplementary 

material for acquisition details). The distribution of scanner types did not differ between 

subjects who showed progression and who remained stable (p>.05; S-table 1). An 

experienced neuroradiologist reviewed all scans for brain pathology other than atrophy. 

Scans were segmented into cerebrospinal fluid, grey and white matter using Statistical 

Parametric Mapping Software version 12 (SPM12; Functional Imaging Laboratory, 

University College London, London, UK) run in Matlab 7.12 (MathWorks, Natick, MA). 

For each subject, 90 brain areas were identified in the native space grey matter 

segmentations with the use of the Automated Anatomical Labelling Atlas (AAL; (Tzourio-

Mazoyer et al., 2002), by warping the AAL atlas from standard space to subject space using 

inverted parameters that had been calculated for non-linear normalisation of subject images 

to standard MNI space. Total intracranial volume was calculated as the sum of grey matter, 

white matter and cerebrospinal fluid voxels from the native space segmentations. Native 

grey matter segmentations were resliced into 2mm
3
 isotropic voxels to ensure equal voxel 

sizes across all scans. 

 

2.3 Grey matter networks 

Single-subject grey matter networks were extracted from native space grey matter density 

segmentations using a fully automated method previously described in detail 

(https://github.com/bettytijms/ Single_Subject_Grey_Matter_Networks; (Tijms et al., 2012). 

Briefly, this method determines whether small regions of interest (defined as 3x3x3 voxel 

cubes containing grey matter density estimates) show statistical similarity as quantified with 

Pearson’s correlations. A network is constructed by connecting brain areas when the 

significance of their correlations values exceeds a threshold of p <.05 corrected for multiple 

testing based on permutation testing. Table 1 gives an overview of the network properties 

that were computed at the node and/or global level for each network: the degree (i.e., the 

number of edges of a node), characteristic path length (i.e., the minimum number of edges 

between any pair of nodes), clustering coefficient (i.e., the level of interconnectedness 

between the neighbours of a node), and betweenness centrality (i.e., the proportion of 

characteristic paths that run through a node). In addition, the size of the network is the 

number of nodes in a network, and connectivity density is the proportion of existing edges to 

the total number of edges possible. To estimate normalised path length λ and normalised 

clustering coefficient γ, we averaged the characteristic path length and clustering coefficient 
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across the nodes for each network and then divided these properties by those that were 

averaged across 20 randomised reference networks that had an identical size and degree 

distribution (Maslov and Sneppen, 2002). A network is considered to be ‘small world’ when γ/ 

λ > 1. Network properties were computed with scripts from the Brain Connectivity Toolbox 

that we modified for large sized networks (www.brain-connectivity-toolbox.net, (Rubinov 

and Sporns, 2010). In order to reduce dimensionality when comparing local network 

properties, we averaged network property values across nodes within each of the 90 AAL 

areas. 

======== Please insert table 1 about here ======= 

 

2.4 Cerebrospinal fluid analysis 

CSF samples were obtained with a lumbar puncture between the L3/L4, L4/L5 or L5/S1 

intervertebral space using a 25-gauge needle and syringe and collected in polypropylene 

tubes. Biomarker values were determined at the Neurochemistry laboratory of the 

department of Clinical Chemistry of the VUmc. Aβ 1-42 and total tau concentrations were 

determined with sandwich ELISAs (Innotest, Belgium) (Mulder et al., 2010). Subjects were 

classified as harbouring abnormal amyloid when CSF Aβ 1-42 levels were lower than 640 

pg/mL (Zwan et al., 2014). 

 

2.5 Statistical analyses 

Demographical and clinical characteristics were compared between subjects who remained 

stable and those who showed clinical progression over time with t-tests, Kruskal-Wallis tests 

or chi-square tests when appropriate. Baseline network measures were compared for clinical 

outcome with ANCOVAs, taking into account an interaction effect of baseline cognitive 

status (SCD or MCI), and as covariates age, gender, normalised whole brain grey matter 

volume (i.e, grey matter volume divided by total intracranial volume), and scanner type. We 

used Cox proportional hazards models to assess for each of the 9 global grey matter network 

measures (predictor variables, i.e, size, degree, connectivity density, clustering coefficient, 

path length, betweenness centrality, γ, λ and the small world metric) associations with time 

to clinical progression (dependent variables). All network measures were Z-transformed to 

aid interpretation of Hazard Ratios (HR). We ran four models: Model 1 included covariates 

age, gender, normalised whole brain grey matter volume, MRI scanner type and baseline 

cognitive status (SCD or MCI). Model 2 added CSF tau levels as additional covariate to 

http://www.brain-connectivity-toolbox.net/
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Model 1. Model 3 added hippocampal volume (obtained from the AAL parcellation of grey 

matter) as an additional covariate to Model 2. Model 4 added MMSE scores as an additional 

covariate to Model 3. If size, average degree or connectivity density showed a significant 

main effect it was included as an additional covariate, because these properties are known to 

influence other network properties (van Wijk et al., 2010). Cox proportional hazards analyses 

were repeated for local network properties in each of the 90 AAL areas, with additional 

correction for local grey matter volume. Global and local analyses were corrected for 

multiple comparisons with the false discovery rate (FDR) procedure (Benjamini and Yekutieli, 

2001). All statistical analyses were performed in R version 3.2.3. 
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3. Results 

3.1 Sample description 

After a median time of 2.2 years, 122 subjects showed clinical progression: 18 to mild 

cognitive impairment, 96 to AD dementia and nine to other types of dementia (table 2). 

Compared to subjects who remained stable, those who showed clinical progression more 

often had MCI, were older, had lower MMSE scores, higher CSF tau levels and less 

normalised whole brain grey matter volume. Stable and progressive subjects had a similar 

follow up time (p>.05). None of the grey matter networks had disconnected nodes and the 

average connectivity density was 16% (SD = 1.26%). 

======== please insert Table 2 about here ======= 

 

3.2 Grey matter network measures and clinical outcome in pre-dementia AD 

Network size, degree and connectivity density were comparable between subjects who 

remained stable and those who progressed (table 2). Compared to subjects who remained 

stable, subjects who progressed had lower γ and small world values. At a local level, 

subjects who progressed had lower clustering coefficient values in several anatomical areas, 

but only the left orbitofrontal cortex survived correction for multiple hypothesis testing 

(F(1,211) = 15.34, pFDR = 0.01). No interaction effects for baseline cognitive status were 

found, which suggests that lower γ and small world values associated with clinical 

progression were similar for subjects with SCD and MCI. 

 

3.3 Grey matter network measures and time to clinical progression 

Table 3 shows that the HRs of most network properties were below 1, with lower HRs 

indicating that per standard deviation decrease in the values of degree, connectivity density, 

the clustering coefficient, path length, γ, λ and the small world property at baseline, the risk 

of clinical progression increases. Clustering coefficient values showed the lowest HR, with 

lower values being associated with a 3-fold increased risk for clinical progression (HR = 

0.29; 95%CI =0.12 - 0.70, p = .006, pFDR = .02). For illustrative purposes, figure 1 shows the 

clinical outcome for connectivity density, clustering and γ according to tertiles. Results 

remained largely unchanged after correcting for baseline CSF tau levels, hippocampal 

volume and MMSE scores (table 3). Interaction terms of baseline cognitive status and grey 

matter networks measures on the time to clinical progression were not significant (all 

pinteraction >.05), suggesting that the observed associations were similar for SCD and MCI 

subjects. 
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Repeating cox proportional hazards analyses for regional network values, additionally 

correcting for local grey matter volume, showed that the association of lower clustering 

values and time to progression were specific for the right precuneus, left hippocampus and 

right angular gyrus, occipital areas and the right supramarginal gyrus were associated with 

time to clinical progression (figure 2). These local associations were subtle however, as none 

of the local proportional hazards analyses survived correction for multiple testing. 

 

======== Please insert Table 3 about here ======= 

======== Please insert figure 1 about here ======= 

======== Please insert figure 2 about here ======= 
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4. Discussion 

The main finding of the present study is that in subjects with pre-dementia AD alterations of 

grey matter network parameters at baseline were associated with faster clinical progression. 

In these subjects, lower values for degree, clustering, normalised clustering, normalised path 

length and the small world property, indicative for a more randomly organised network, 

were associated with clinical outcome and predicted faster clinical progression. Regional 

analyses suggested that clustering values were lower in specific anatomical areas, 

comprising mostly temporal and frontal lobes. HRs remained largely unchanged after 

additional correction for CSF tau, and hippocampal volume, suggesting that grey matter 

network properties have additive value over these more conventional biomarkers. Together, 

these results provide further support for the hypothesis that disruptions in brain connectivity 

underlie cognitive decline. 

 

Subjects showing clinical progression over time had lower values for clustering, normalised 

clustering and the small world property. This suggests that their grey matter networks are 

organised more like that of a random network, and as such seem to move towards a network 

organisation that has previously been reported for AD subjects (Li et al., 2012; Pereira et al., 

2016; Phillips et al., 2015; Tijms et al., 2014; 2013a) (but also see (Yao et al., 2010) reporting 

higher clustering in AD and MCI compared to controls). This supports the idea that 

disruptions in grey matter networks start before the dementia stage of the disease and as 

such might be sensitive to early changes in brain structural integrity, and are closely related 

to future cognitive decline. 

 

Associations between lower clustering values and faster decline were found to be specific 

for several anatomical areas including the inferior parietal gyrus, occipital areas, 

hippocampus and the precuneus, even when additionally correcting for local grey matter 

volume. Most of these areas have previously been reported in grey matter network studies to 

be associated with AD (He et al., 2008; Tijms et al., 2014; 2013a; 2013b; Yao et al., 2010). The 

largest difference in local clustering associated with clinical progression was found in the 

orbitofrontal cortex that is part of the functionally defined ‘default mode’ network, which 

seems particularly vulnerable for AD pathology (Buckner et al., 2009). This area is also 

among brain areas reported to show increased rates of amyloid plaques accumulation 

subjects with an initially abnormal amyloid positron emission tomography (PET) scan 

(Villain et al., 2012). A recent study showed that compared to controls, MCI subjects showing 

clinical progression had reduced clustering in the right postcentral gyrus (Pereira et al., 2016). 
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Another study investigating grey matter networks based on correlating rates of change in 

cortical thickness over time between brain areas, demonstrated improved classification 

accuracy when differentiating between mild cognitive impairment subjects who remained 

stable and who progressed over time when the clustering coefficient was included (Li et al., 

2012). In particular, clustering coefficient values of the parahippocampal gyrus, temporal 

lobe and supramarginal gyrus showed the best discriminatory value between groups of 

stable and progressive subjects (Li et al., 2012). Another study using a similar longitudinal 

approach(Friedman et al., 2015) showed that network structure in mild cognitive impairment 

subjects who later progressed to dementia due to AD became increasingly more randomly 

organised over time. Here we further extend these findings, by showing that grey matter 

network parameters based on a single baseline measurement are associated with faster 

clinical progression within amyloid positive subjects. 

 

A potential limitation of the present study is that due to the long period of time during which 

we were able to retrospectively include subjects, scans were obtained from 7 different 

scanners that varied in manufacturers and field strengths between 1 and 3T. The use of 

different scanners might have introduced noise in the data, although it is unlikely that this 

has biased the present results since stable and progressive subjects showed similar scanner 

type distributions and scanner type was included as a covariate in the analyses. 

 

In conclusion, in the pre-dementia phases of AD grey matter network alterations can be 

observed that are suggestive of a change towards a more random network organisation and 

these alterations seem to predict faster clinical progression. Based on abnormal amyloid, 

about 50% of pre-dementia AD individuals will develop dementia within a 3-year period. 

Hence, additional markers are necessary to identify individuals who will progress within 

e.g., a 1-year period. Here we show that grey matter network parameters might be useful to 

identify fast progressing subjects, and that in particular the small world property has additive 

value over more conventionally used biomarkers CSF tau levels and hippocampal volume. 
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Figure Legends and Tables 

 

Figure 1. Clinical progression curves for the time to dementia onset in subjects with 

subjective cognitive decline or mild cognitive impairment for connectivity density, 

clustering and normalised clustering according to tertiles, adjusted for age, gender, total 

brain volume, baseline cognitive status and MRI scanner. Clustering and γ were additionally 

adjusted for connectivity density. Blue lines represent subjects with network property values 

in the highest tertile, orange with intermediate values and red line with the lowest values. 

 

Figure 2. Surface plots of the AAL areas where reduced clustering was associated with time 

to progression in pre-dementia Alzheimer’s disease subjects. Reduced clustering was 

associated with time to progression in right supramarginal gyrus, bilateral middle occipital 

gyrus, right postcentral gyrus, left Heschl’s gyrus, left hippocampus, right angular gyrus, 

right inferior frontal triangularis, right precuneus. All analyses were adjusted for age, 

gender, total brain volume, local grey matter volume and scanner type. 
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Table 1. Overview of studied network properties. 

Network measure Global, local Explanation Example 

1. Network size Global Total number of nodes (i.e., brain areas).  

2. Connectivity 

density  

Global Percentage observed connections from 

the maximum number possible 

connections. 

 

3. Degree Global, local The number of connections per node  

4. Clustering 

coefficient 

Global, local Proportion existing connections between 

neighbouring nodes from maximum 

number possible connections. This is a 

measure of information segregation, i.e., 

specialised information processing. 

The clustering coefficient of the white node 

would be 0.33, as 1 connection of the 3 

possible exists.  

5. Path length Global, local Minimum number of connections to go 

from one node to another node. This is a 

measure of information integration, as 

through e.g., long range connections 

distant clusters can exchange 

information. 

The path length between the white and the 

black node would be 3.  

6. Betweenness 

centrality 

Global, local The number of shortest paths that run 

through a node. This is a centrality 

measure. 

The white node would have the highest 

betweenness centrality as all short paths run 

through this node. 

The network falls apart when  

this node is removed. 

7. γ normalised 

clustering 

coefficient 

Global Quantifies how the global clustering 

coefficient of an observed network 

deviates from that of a random network. 

 

8. λ normalised 

path length 

Global Quantifies how the global path length of 

an observed network deviates from that 

of a random network. 

 

9. Small world 

property 

Global An observed network with γ > 1 and λ ≈ 

1 is ‘small world’, i.e., a network 

balances specialised information 

processing through clustering and 

information integration through long 

range connections. In a random network 

path length (L) is minimised, at the 

expense of a loss of clustering (C). In 

contrast a completely regularly organised 

network has high clustering, at the expe-

nse of the highest path length value. 

 

Local properties can be averaged across the nodes of a network to obtain a global description. 

 
 

 

 

 

Information  

segregation 

Information  

integration 
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Table 2. Baseline clinical and grey matter network characteristics by clinical progression for non-demented memory 

clinic subjects with abnormal Aβ42 CSF markers (cut-off <640 pg/ml). 

 Stable Progression 

N (% of total sample) 100 (45%) 122 (55%) 

Baseline diagnosis MCI, n (%) 61 (61%) 99 (81%) 
b
 

Follow up diagnosis MCI, n (%) n.a. 17 (14 %) 

Follow up diagnosis AD dementia n.a. 98 (80%) 

Follow up diagnosis non-AD dementia n.a. 7 (6%) 

Female, n (%) 48 (48%) 61 (50%) 

Age years, mean (SD) 67 (8) 68 (8) 

Education, median (IQR) ’ 6 (5-6) 5 (4-6) 

MMSE, median (IQR) 28 (27-29) 27 (25-28) 
b
 

T-tau pg/ml, median (IQR) 365 (223-564) 540 (372-803) 
b
 

Ptau pg/ml, median (IQR) 56 (38-79) 78 (65-108) 
b
 

Follow-up time years, median (IQR) 2.3 (1.4-3.1) 2.2 (1.3-3.1) 

Normalised whole brain grey matter volume, mean (SD) 
§
 0.42 (.04) 0.40 (.05) 

a
 

Network size, mean (SD) 6922 (669) 6822 (706) 

Degree, mean (SD) 1129 (126) 1118 (135) 

% connections, mean (SD) 16 (1) 16 (1) 

Clustering, mean (SD) 0.465 (0.024) 0.463 (0.024) 

Path length, mean (SD) 2.02 (0.02) 2.01 (0.02) 

Betweenness centrality, mean (SD) 7037.47 (715.53) 6906.57 (715.88) 

γ, mean (SD) 1.68 (0.08) 1.65 (0.1) 
a
 

λ, mean (SD) 1.1 (0.01) 1.1 (0.01) 

Small world, mean (SD) 1.53 (0.06) 1.50 (0.07) 
a
 

% were calculated according to clinical status unless specified otherwise, n.a. is not applicable, MCI is mild cognitive 

impairment, AD is Alzheimer’s disease, MMSE is mini-mental state examination, Aβ is amyloid beta, SD is standard 

deviation, IQR is inter quartile range,
 §
 whole brain grey matter volume was normalized by total intracranial volume, 

γ is normalised clustering coefficient, λ is normalised path length. ‘ data missing for N = 4. Groups were compared 

using Student’s t test, Kruskal tests or chi square tests where appropriate, and for network measures ANCOVAs were 
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used adjusting for baseline diagnosis, age, gender, normalised whole brain grey matter volume, and scanner type, 
a
 is 

p < .01, 
b
 is p < .001. 

  

 

 

Table 3. Hazard Ratios (95%CI) of Cox proportional hazards analysis of grey matter network property values to 

predict time to clinical progression in non-demented subjects with abnormal amyloid. 

Network property Model 1 Model 2  Model 3 Model 4 

Network size, mean 

(SD) 

1.04 (0.82 - 1.32) 0.58 (0.32 – 1.06) 0.89 (0.46 – 1.72) 0.70 (0.37 – 1.35) 

Degree, mean (SD) 0.91 (0.72 - 1.15) 0.94 (0.74 – 1.20) 1.15 (0.88 – 1.50) 1.12 (0.86 – 1.46) 

% Connections, mean 

(SD) 

0.74 (0.56 - 0.97) 
a
 0.75 (0.56 – 0.99)

 a
 0.82 (0.61 – 1.09) 0.76 (0.57 – 1.01) 

Clustering’ 0.29 (0.12 - 0.70) 
b
 0.30 (0.12 – 0.71) 

b
 0.32 (0.13 – 0.78) 

b
 0.38 (0.16 – 0.91) 

a
 

Path length’ 0.75 (0.56 - 0.99) 
a
 0.69 (0.52 – 0.92) 

b
 0.71 (0.53 – 0.95) 

b
 0.75 (0.56 – 1.00) 

a
 

Betweenness 

centrality’ 

1 (0.78 - 1.27) 1.02 (0.79 – 0.92) 1.24 (0.94 – 1.63) 1.29 (0.98 – 1.70)  

γ’ 0.67 (0.52 - 0.88) 
b
 0.65 (0.50 – 0.85) 

b
 0.70 (0.53 – 0.91) 

b
 0.71 (0.54 – 0.93) 

b
 

λ’ 0.75 (0.57 - 0.99) 
a
 0.70 (0.53 - 0.92) 

b
 0.72 (0.55 – 0.95)

 b
 0.76 (0.57 – 1.00) 

a
 

Small world ’ 0.68 (0.53 - 0.88) 
b
 0.67 (0.51 - 0.86) 

b
 0.71 (0.55 – 0.93) 

b
 0.72 (0.55 – 0.94) 

c
 

γ is normalised clustering coefficient, λ is normalised path length. All measures were Z transformed and so e.g., 

Hazard Ratio = .30 means a standard deviation decrease in a network property value is associated with about a 3-

fold risk to clinically progress. Model 1: network predictor + age + gender + normalised grey matter volume + 

baseline diagnosis + scanner type; Model 2: Model 1 + CSF tau levels; Model 3: Model 2 + hippocampal volume; 

Model 4: Model 3 + MMSE. Variables indicated with ‘ were additionally corrected for connectivity density in all 

models. 
a
 is p <.05, 

b
 is pFDR <.05 with false discovery rate correction for 9*4 = 36 tests. 

 



Highlights 
 

 Abnormal amyloid is predictive for dementia, but does not predict when. 
 Grey matter network alterations were associated with clinical progression 
 Low clustering values were associated with 3 fold increased risk to progress 
 Grey matter networks may have use to identify subjects who will show fast decline 
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