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Abstract 

Grey matter networks are disrupted in Alzheimer’s disease and related to cognitive 

impairment. However, it is still unclear whether these disruptions are associated with 

cognitive decline over time. Here, we studied this question in a large sample of 

patients with mild cognitive impairment with extensive longitudinal 

neuropsychological assessments. Grey matter networks were extracted from baseline 

structural MRI and we tested associations of network measures and cognitive decline 

in MMSE and five cognitive domains (i.e., memory, attention, executive function, 

visuospatial and language). Disrupted network properties were cross-sectionally 

related to worse cognitive impairment. Longitudinally, lower small-world coefficient 

values were associated with a steeper decline in almost all domains. Lower 

betweenness centrality values correlated with a faster decline in MMSE and memory 

and, at a regional level, these associations were specific for the precuneus, medial 

frontal and temporal cortex. Furthermore, network measures showed additive value 

over established biomarkers in predicting cognitive decline. Our results suggest that 

grey matter network measures might have use in identifying patients who will show 

fast disease progression. 

 

Keywords: Alzheimer’s disease; cognitive decline; grey matter networks; mild 

cognitive impairment; single-subject; graph theory 
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1. Introduction 

Therapies targeted to treat Alzheimer’s disease (AD) are probably most effective 

when administered at very early stages of the disease, before the clinical syndrome of 

dementia has become evident (Scheltens et al., 2016). Patients with mild cognitive 

impairment (MCI) have an increased risk to develop dementia. Being able to identify 

those MCI patients that will show fast cognitive decline could increase potential 

treatment effects in clinical trials. However, this is challenging for individual patients, 

as subjects with MCI show considerable variability in cognitive decline (Jack et al., 

2013; Scheltens, 2013). In addition, the biological substrate associated with decline in 

specific cognitive domains is not well understood. Increasing evidence indicates that 

measures of brain networks change during the course of AD (Pereira et al., 2016; Yao 

et al., 2010), already starting at early, pre-clinical stages (Tijms et al., 2016). 

Therefore, measures of brain networks might have promise as prognostic biomarkers 

for future cognitive decline (Tijms et al., 2013b). 

 

Brain networks can be determined based on similarity in grey matter structure 

between brain areas as measured with structural MRI (Mechelli et al., 2005; Tijms et 

al., 2012). Such patterns of grey matter similarity have been associated with 

coordinated growth of grey matter during development (Alexander-Bloch et al., 

2013a), functional co-activation (Alexander-Bloch et al., 2013b) and/or axonal 

connectivity (Gong et al., 2012). Several studies have shown that grey matter 

networks are disrupted in AD, as indicated by a more random network organization 

(He et al., 2009; Li et al., 2012; Tijms et al., 2013a; Tijms et al., 2013b; Yao et al., 

2010). Furthermore, a more random network topology has been cross-sectionally 

related to worse cognitive impairment in AD patients (Tijms et al., 2013a; Tijms et 
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al., 2014). In MCI, the network topology seems to lie in between those of cognitively 

healthy older subjects and AD patients (Pereira et al., 2016; Yao et al., 2010). 

Therefore, it could be hypothesized that MCI patients who have a more randomly 

organized network will show faster decline in cognitive functioning over time. 

However, previous studies investigated cross-sectional effects and/or used a 

methodology that results in one network for a group of subjects. Thus, this hypothesis 

has not been tested yet as it is not possible to relate group-based networks to inter-

individual measures of decline. Therefore, it remains unclear whether a more random 

network topology may provide a biological substrate to explain cognitive decline in 

single patients with MCI, and if so, whether this can be attributed to specific cognitive 

domains. 

 

In this study, we assessed whether baseline single-subject grey matter network 

measures could explain differences among MCI subjects in their rates of cognitive 

decline for specific cognitive domains. We further tested whether grey matter network 

measures have additive value over established markers for Alzheimer’s disease (i.e., 

hippocampal volume, CSF amyloid β 1-42 and total tau levels) in predicting which 

patients will show increased cognitive decline. 

 

2. Materials and Methods 

2.1. Participants 

Two-hundred and fifty-eight MCI patients (mean age 67±8 years, MMSE 27±2) with 

available baseline structural MRI, and at least one year of follow-up including 

repeated neuropsychological testing were selected from the Amsterdam Dementia 
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Cohort of the Alzheimer Center of the VU University Medical Center. Patients 

initially visited our memory clinic between 2000 and 2013. Most subjects received a 

standard dementia screening that often included a medical history, physiological and 

neurological examination, extensive neuropsychological screening, blood testing, 

lumbar puncture, an EEG and an MRI scan (Van Der Flier et al., 2014). Patients were 

diagnosed with MCI during a multidisciplinary consensus meeting based on 

international consensus criteria: patients initially visiting our memory clinic before 

2012 were diagnosed with MCI according to Petersen criteria (Petersen et al., 1999); 

after that the National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria 

were used (Albert et al., 2011). Follow-up visits were scheduled approximately 

annually as part of the clinical routine and often included standardized 

neuropsychological testing. During a multidisciplinary consensus meeting at follow-

up, a diagnosis of AD or another type of dementia was made when subjects met the 

corresponding international research and/or clinical consensus criteria (Gorno-

Tempini et al., 2011; Mckeith et al., 2005; Mckhann et al., 1984; Mckhann et al., 

2011; Neary et al., 1998; Rascovsky et al., 2011; Roman et al., 1993). Over a median 

follow-up time of 2.3 years, 115 (45%) patients progressed to dementia. Ninety-eight 

(85%) out of the progressing patients received a diagnosis of probable or possible AD 

during follow-up and 17 patients received another diagnosis (n=7 vascular dementia; 

n=3 dementia with Lewy bodies; n=4 frontotemporal lobar degeneration; n=1 primary 

progressive aphasia; n=2 unspecified dementia). The medical ethics committee of the 

VU University Medical Center approved the study and all subjects provided written 

informed consent. 
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2.2. Neuropsychological assessment 

Neuropsychological examinations consisted of a standardized test battery (Van Der 

Flier et al., 2014) and included the Dutch version of the Rey Auditory Verbal 

Learning Test (RAVLT) total immediate recall and delayed recognition and correct 

words of the visual association test (VAT) for the memory domain; the trail making 

test part A (TMT), the forward subtest of the Digit Span, the Stroop test part 1 and 2 

for the attention domain; the backward subtest of the Digit Span, the trail making test 

part B, the Stroop test part 3, the letter fluency test (DAT) and the frontal assessment 

battery test (FAB) for executive functioning; category fluency (animals) and the VAT 

naming subtest for the language domain and the dot counting and fragmented letters 

test for the visuospatial domain. General cognitive function was assessed with the 

mini-mental state examination (MMSE). A total number of 922 neuropsychological 

evaluations were available (median number of follow-ups: 3, range: 1-11). The 

percentage of missing values over all follow-up visits in any neuropsychological test 

ranged from 1 to 37% (see also table 2). We combined tests into cognitive domains in 

order to reduce the number of tests, and therefore we estimated missing values using 

multiple imputation as implemented in SPSS (version 22) to obtain unbiased 

estimates of cognitive functioning. Age, sex and education were included as 

predictors. Imputation was repeated for 15 times. After imputation, test scores of the 

Stroop and TMT tests were inverted so that lower scores reflect more impairment. All 

baseline test-scores were z-transformed and follow-up z-scores were determined 

relative to baseline scores. Per time point the z-transformed scores were averaged 

across tests per cognitive domain. 

 



 

- 5 - / Dicks et al. 

 

 

2.3. MRI acquisition & pre-processing 

Due to the long period of time that subjects were included, imaging was acquired 

from 7 different systems using spoiled gradient-echo sequences. Acquisition details 

for the different systems are listed in the Supplementary Material. All structural T1-

weighted MRI scans were reviewed for brain pathology other than neurodegeneration 

by an experienced radiologist. Images were preprocessed using SPM12 as 

implemented in Matlab 7.12. First, the structural T1 weighted images were segmented 

into grey matter, white matter and cerebrospinal fluid with the default settings for all 

parameters. The native space grey matter segmented images were then resliced to a 

voxel size of 2×2×2 mm, in order to standardize voxel sizes and to reduce 

dimensionality. Next, 90 anatomical areas in subject space were identified using the 

automated anatomical labelling atlas (AAL; Tzourio-Mazoyer et al., 2002) which was 

warped from standard space to native space using subject specific inversed 

normalization parameters. Total intracranial volume (TIV) was computed as the sum 

of grey and white matter and cerebrospinal fluid volumes in cm
3
. Normalized grey 

matter was defined as the ratio of grey matter to total intracranial volume. Single-

subject grey matter networks were extracted from native space grey matter 

segmentations using an automated method that has been published previously 

(https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks; Tijms et al., 

2012). 

 

2.4. Grey matter network measures 

The obtained networks were binarized after determining a threshold that ensured a 

similar chance for all subjects to include on average 5% spurious correlations in the 
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network. We then calculated graph theoretical measures for the obtained grey matter 

networks that quantify the amount of connectivity (i.e., degree and connectivity 

density) and the network topology (i.e., clustering, path length, betweenness 

centrality; Rubinov and Sporns, 2010). For each network, the network measures size, 

degree, connectivity density, clustering coefficient, path length and betweenness 

centrality were calculated. Connectivity density is defined as the ratio of existing 

connections to the maximum number of connections possible in the network. The 

clustering coefficient indicates the interconnectedness of neighboring nodes. The path 

length quantifies the number of connections between two nodes along the shortest 

path. Betweenness centrality measures the number of shortest paths that pass through 

a node and is indicative of the importance of a node in a network (Rubinov and 

Sporns, 2010). In order to estimate how the network topology deviates from randomly 

organized networks, we also calculated measures of the small-world property. 

Normalized versions of global clustering coefficient (gamma) and path length 

(lambda) were calculated by dividing the unnormalized measures with the 

corresponding average of clustering or path length values of 20 randomized reference 

networks that kept the degree distribution intact (Maslov and Sneppen, 2002). The 

small-world coefficient is defined as the ratio of gamma to lambda (Humphries and 

Gurney, 2008) with values >1 indicating an optimal balance between information 

segregation (greater than random clustering) and integration (similar to random path 

length; Rubinov and Sporns, 2010). At a regional level, we averaged local values 

across nodes that were labeled according to the AAL atlas to enable comparison 

across subjects and global network measures were obtained by averaging the local 

network measures across all nodes. All network measures were computed with 
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functions from the Brain Connectivity Toolbox adjusted for large-sized networks 

(https://sites.google.com/site/bctnet/; Rubinov and Sporns, 2010). 

 

2.5. Cerebrospinal fluid analysis 

CSF samples were obtained with a lumbar puncture between the L3/L4, L4/L5 or 

L5/S1 intravertebral space using a 25-gauge needle and syringe and collected in 

polypropylene tubes. Concentrations of amyloid β 1-42 (Aβ42) and total tau were 

determined with sandwich ELISAs (Innotest, Fujirebio, Belgium) (Mulder et al., 

2010) at the Neurochemistry Laboratory of the Department of Clinical Chemistry of 

the VUmc. 

 

2.6. Statistical analysis 

Comparisons of clinical characteristics between stable MCI subjects and those 

patients who progressed during follow-up were performed with Student’s t-tests, 

Kruskal tests or chi-square tests where appropriate. We tested associations of baseline 

grey matter network measures (predictor variables) and decline over time in each 

cognitive domain (outcome variables) with linear mixed models, including grey 

matter network measures and time as main terms to assess baseline effects and an 

interaction term of grey matter network measures × time to assess annual change 

effects. We estimated random slopes and intercepts for subjects with the lme4 

package (Bates et al., 2015) in R (version 3.3.0, 2016-05-03). Results were pooled 

over imputed datasets using Rubin’s rules as implemented in the package MICE (Van 

Buuren and Groothuis-Oudshoorn, 2011). Sex, age, education, scanner type and TIV 

were included as covariates. For the network size we excluded TIV as a covariate due 
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to the high correlation between these measures. First size, degree and connectivity 

density were tested and if any of these measures showed a significant association they 

were included as an additional covariate in the respective model, since they influence 

other network property values (Van Wijk et al., 2010). Analyses of annual change 

effects were repeated at a local level for each of the 90 AAL areas including local 

grey matter atrophy as an additional covariate. Local analyses were corrected for 

multiple testing with the FDR-procedure (Benjamini and Hochberg, 1995) with pFDR < 

0.05 indicating statistical significance. We used logistic regression modeling to study 

whether network properties could predict which subjects would show fast 

progression. Per cognitive domain, we classified patients based on whether their slope 

was higher (i.e., slow decline) or lower (i.e., fast decline) than the median slope of the 

total group corrected for education. Logistic regression analyses were employed for 

slow / fast cognitive decline (outcome variable) with network measures as the 

predictor variable and age, sex, total intracranial volume and scanner included as 

covariates (Model 1). To study whether network measures could explain variance 

beyond more established biomarkers, we repeated the logistic regression analyses 

subsequently adding hippocampal volume (Model 2), CSF Aβ42 levels (Model 3) and 

CSF total tau levels (Model 4) as covariates. All statistical analyses were performed 

in R (version 3.3.0, 2016-05-03) and brainviewer (Version 1.53; Xia et al., 2013) was 

used to visualize regional results. 
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3. Results 

3.1. Sample description 

Baseline demographical, clinical and grey matter connectivity measures are 

summarized in Table 1. Subjects were on average 67±8 years of age and 105 (41%) 

were female. Follow-up information was available over a median of 2.3 (1.4-3.1) 

years. Over follow-up, patients showed decline in all cognitive domains examined (all 

p < 0.01), and this was most pronounced for the MMSE and the memory domain 

(Table 2). Progressing patients had lower normalized grey matter and hippocampal 

volumes and CSF Aβ42, and higher CSF total tau and p-tau levels (all p < 0.05). All 

networks had an average connectivity density of 16.31% (± 1.33) and were small-

world. None of the networks had disconnected nodes. Compared to subjects who 

remained stable, subjects who progressed to dementia showed significantly lower 

values of gamma and the small-world coefficient (p < 0.05) and a trend for lower 

betweenness centrality values (p = 0.053) at baseline. 

 

================== Please insert Table 1 about here =================== 

================== Please insert Table 2 about here =================== 

 

3.2. Baseline and annual change effects of global network measures 

Table 3 shows estimated baseline and annual change effects of global network 

measures on cognitive impairment. We found several baseline effects of global 

network measures on cognition: for global cognitive function, lower values of the 

degree (β±SE; 0.2±0.09) and betweenness centrality (β±SE =0.33±0.15) were 

associated with worse performance in the MMSE (p < 0.05). Patients with higher 
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values of the characteristic path length (β±SE = -0.11±0.05) showed worse memory 

performance at baseline (p < 0.05). Lower values of betweenness centrality were 

associated with worse performance in attention (β±SE = 0.45±0.13; p < 0.001), 

executive (β±SE = 0.38±0.1; p < 0.001) and language functioning (β±SE = 0.29±0.13; 

p < 0.05). Lower values of the characteristic path length (β±SE = 0.1±0.04) and 

lambda (β±SE = 0.1±0.5) were additionally associated with worse executive 

functioning (all p < 0.05).  

 

Longitudinal analyses showed that lower small-world coefficient values at baseline 

were associated with increased decline in memory (β±SE = 0.05±0.02), attention 

(β±SE = 0.04±0.02) and executive functioning (β±SE = 0.04±0.02; all p<0.05). 

Patients with lower gamma values at baseline showed faster decline in memory (β±SE 

= 0.04±0.02), attention (β±SE = 0.04±0.02) and executive functioning (β±SE = 

0.04±0.02; all p < 0.05). Smaller network size (β±SE = 0.07±0.03) and lower 

betweenness centrality values (β±SE = 0.08±0.03) were additionally related to steeper 

decline in MMSE, while lower values of network size (β±SE = 0.05±0.02), degree 

(β±SE = 0.05±0.02) and betweenness centrality (β±SE = 0.06±0.02) were associated 

with steeper decline in memory (all p < 0.01). No associations were found for grey 

matter network properties and change over time in language and visuospatial 

functioning (all p > 0.05). 

 

================== Please insert Table 3 about here =================== 

 

When we restricted analyses to patients who remained stable and those who 

progressed to AD-type dementia (n=98) the observed associations between size and 
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betweenness centrality and cognitive decline over time became slightly stronger for 

memory and MMSE (Supplementary Table 1a). Effect sizes for attention and 

executive functioning remained similar, but were no longer significant. In this 

subsample higher connectivity density values were related to steeper decline in 

language functioning (β±SE = -0.05±0.03; p < 0.05; Supplementary Table 1a). When 

restricting analyses to patients who remained stable and those who received a 

diagnosis other than AD during follow-up (n=17), effect sizes for the associations of 

network measures and decline in the MMSE decreased (Supplementary Table 1b). 

Effect sizes of network measures remained similar for decline in memory and 

attention and became slightly stronger for executive functioning. In this sub-group we 

found additional associations of lower connectivity density (β±SE = 0.05±0.02) and 

clustering coefficient values (β±SE = 0.05±0.02) with steeper decline in visuospatial 

functioning (all p < 0.05). 

 

3.3. Anatomical specificity of associations between grey matter network measures 

and cognitive decline 

We found several effects of local network measures on cognitive decline over time for 

global cognitive functioning and memory: lower values of the network degree in the 

temporal lobes and prefrontal areas showed the largest effect sizes for decline in 

memory (Fig. 1A and Supplementary Table 2). Lower baseline betweenness centrality 

values were related to faster decline in both memory and MMSE for several brain 

areas, including the left superior medial orbito-frontal and the bilateral precentral 

gyrus (all pFDR < 0.05; Fig. 1). The strongest effects were found for the associations 

of lower betweenness centrality in the right precuneus and faster decline in memory 

(β±SE = 0.07±0.02) and MMSE (β±SE = 0.11±0.03; all pFDR < 0.01). Lower values 
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of the betweenness centrality in the right supramarginal, middle occipital, superior 

parietal, middle temporal, parahippocampal gyrus and bilateral inferior temporal gyri 

were specifically associated with increased decline in memory functioning over time 

(all pFDR < 0.05; Fig. 1B). For the MMSE, the associations additionally involved the 

left anterior cingulate, right lingual gyrus, right fusiform gyrus, right hippocampus, 

left parahippocampal gyrus and right thalamus (all pFDR < 0.05; Fig. 1C; see also 

Supplementary Table 2 and 3 for all local effects for MMSE and memory). 

 

Repeating analyses after excluding subjects who progressed to non-AD type 

dementia, we found similar effects for the local betweenness centrality on memory 

decline over time while the weakest associations were no longer significant (see 

Supplementary Fig. 1B). Effects for local betweenness centrality values and decline in 

the MMSE were slightly stronger and additionally included the right paracentral 

lobule (see Supplementary Fig. 1C). For this subsample, we additionally found 

associations for lower values of the local degree and increased decline in memory 

functioning for regions that included the right olfactory gyrus, left precuneus, bilateral 

putamen and left superior temporal pole (see Supplementary Fig. 1A). After 

restricting analyses to stable patients and those with a follow-up diagnosis other than 

AD, lower values of the betweenness centrality in the right supramarginal gyrus 

(β±SE = 0.07±0.02) and left inferior temporal gyrus (β±SE = 0.06±0.02) were 

associated with steeper memory decline over time (all pFDR = 0.02). Local 

associations of the degree with increased memory decline largely overlapped with 

those seen for the total group (see Supplementary Fig. 2). Additionally, we found a 

significant association of lower betweenness centrality in the right olfactory gyrus 

with increased decline in attention over time (β±SE = -0.09±0.02; pFDR = 0.004). 
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=================== Please insert Fig. 1 about here ==================== 

 

3.4. Comparison of network measures with other biomarkers to predict which 

subjects will show fast cognitive decline 

We further investigated whether those network measures that showed the largest 

effect sizes in the mixed model analyses would show additive value to established 

biomarkers to predict which patients show faster than median rate of cognitive 

decline. Across the domains, subjects classified as fast progressors showed similar 

proportions of progression to clinical AD dementia (Supplementary Table 4). For the 

MMSE and memory functioning, gamma and the small-world coefficient were 

predictive for fast decline, and this effect remained after correcting for hippocampal 

volume and CSF Aβ42 levels (Table 4). These effects lost significance, however, 

when CSF total tau levels were added to the model. For attention and executive 

functioning, the betweenness centrality, gamma and small-world coefficient showed 

the strongest predictive effects, which remained stable after correcting for 

hippocampal volume, CSF Aβ42 and total tau levels (all p < 0.05).  

 

================== Please insert Table 4 about here =================== 

 

 

4. Discussion 

Our main finding is that MCI patients who had grey matter network measures that are 

indicative of a more random network organization at the time of first visit showed a 
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steeper rate of decline in cognitive functioning. These results suggest that grey matter 

networks might contain information that could help in discriminating MCI subjects 

who will show fast cognitive decline in specific cognitive domains. 

 

Grey matter network properties showed the strongest associations with decline in 

global cognitive functioning and memory compared to other cognitive domains. 

Memory is among the first cognitive functions to be affected in AD, while other 

cognitive domains usually become impaired at later stages of the disease (Jack et al., 

2013). Lower values of gamma and the small-world property are indicative of a more 

random network organization, which has often been reported for AD patients (Tijms 

et al., 2013a; Tijms et al., 2013b; Yao et al., 2010). We have previously shown that a 

more random network topology was associated with worse cognitive impairment 

when comparing patients with AD dementia with controls cross-sectionally, and 

within AD (Tijms et al., 2013a; Tijms et al., 2014). Previous studies investigating 

grey matter networks in MCI have reported intermediate values of the small-world 

coefficient relative to cognitively normal controls and AD subjects (Pereira et al., 

2016; Yao et al., 2010), suggesting that lower small-world values in these MCI 

patients may herald prodromal AD. Our findings seem to support this idea, since MCI 

subjects who progressed to dementia showed lower betweenness centrality, gamma 

and small-world coefficient values, suggesting that their networks seems to be 

similarly organized to networks we previously observed in subjects with AD 

dementia. Still, previous studies have reported conflicting results concerning the 

directionality of network measures when comparing patient groups to healthy 

controls. For example, both increased and decreased clustering coefficient and path 

length values (He et al., 2008; Pereira et al., 2016; Tijms et al., 2013a; Yao et al., 
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2010), have been reported for AD patients compared to controls. A potential 

explanation for these conflicting results might lie in the different network 

reconstruction methods that have been used (Tijms et al., 2013b). Alternatively, the 

changes in network measures due to illness might not follow a linear path (Seo et al., 

2013). Future studies should further investigate trajectories of network changes over 

time. 

 

Lower betweenness centrality values were associated with a steeper decline in the 

MMSE and the memory domain. Betweenness centrality measures the importance of 

a node in a network and identifies hubs (Rubinov and Sporns, 2010). Hub regions are 

thought to control the information flow between functionally segregated areas and 

seem to be especially vulnerable in AD-related pathology (Tijms et al., 2013a; Tijms 

et al., 2013b; Yao et al., 2010). We hypothesize that the loss of hubs impedes the 

information flow between functionally distinct areas, resulting in impaired cognitive 

functioning as suggested by our findings. Our results showed that decreased 

betweenness centrality values in several distinct brain areas, including the precuneus, 

the superior frontal gyrus and the supramarginal gyrus, were associated with a steeper 

cognitive decline. These brain areas have previously been implied in the progression 

to AD as showing increased cortical thinning (Dickerson et al., 2009). Our analyses 

were adjusted for local grey matter atrophy, and so these results suggest that grey 

matter network measures explain variance in cognitive decline beyond atrophy. The 

precuneus and superior frontal gyrus have previously also been implicated with early 

amyloid aggregation (Rowe et al., 2007; Thal et al., 2002), suggesting that grey 

matter networks might reflect subtle structural alterations in the brain caused by 

amyloid deposits. We additionally found associations for the bilateral precentral gyri 
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and cognitive decline. Decreased clustering coefficient values in the precentral gyri 

have been associated with lower Aβ42 levels in a study of cognitively healthy adults 

(Tijms et al., 2016), suggesting that network alterations in this area might be affected 

in the very early phases of AD. 

 

After we restricted analyses to subjects who progressed to Alzheimer’s dementia 

during follow-up, associations of betweenness centrality on cognitive decline in 

global cognition and memory slightly increased, suggesting that MCI subjects with 

lower betweenness centrality values are on the path towards AD dementia. Analyses 

restricted to patients that developed non-AD dementia during follow-up showed 

decreased effect sizes of network measures for decline in the MMSE, and slightly 

increased effect sizes for executive functioning, suggesting that domain-specific 

associations of network measures depend on the composition of the patient groups. 

 

In contrast to previous studies that used methods that result in one network for an 

entire group of subjects, our approach to extract networks for single-subjects allowed 

us to further extend the literature by showing that network alterations are related to 

cognitive decline, and showed additive value in predicting which subject showed 

worse than median decline. Gamma, e.g., could predict which subjects showed fast 

decline in memory and MMSE, even when corrected for hippocampal volume, 

suggesting that this measure contains additive value over this more established 

biomarker for memory functioning. Results remained similar when adding CSF Aβ42 

levels to the model, but did not have additive value over total tau levels. Thus, when 

CSF is available, tau would be the biomarker of preference to select subjects who will 

show fast decline in memory. For attention and executive functioning network 
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measures were the best predictors for fast decline, beyond all other established 

biomarkers. These results suggest that grey matter network measures contain 

information beyond established biomarkers that could further aid in identifying those 

patients that will show increased cognitive decline and in specifying which specific 

cognitive domains will be affected over time.  

 

A potential limitation of the method we used to construct networks is that these result 

in subject specific network sizes and degrees. Van Wijk et al. (2010) have shown that 

those measures influence other network properties and, therefore, differences in 

network size and degree might impact the results. How to deal with networks of 

unequal size and/or degree is still an open question. Methods that enforce identical 

degree and size might introduce bias, especially in the case of patient populations that 

are known to show atrophy and/or changes in brain networks. By keeping intact 

patient-level information on the size and degree, we showed for which cognitive 

domains these basic network properties play a role. When necessary we controlled 

further analyses for these properties to assess whether more complex measures still 

explain additional variance in the data. A strong aspect of our study is that we were 

able to include a large sample of MCI patients who had extensive neuropsychological 

assessment over follow-up. This long period of time, however, also is a potential 

limitation, since MRI scans were acquired on seven different systems. Although we 

accounted for scanner system in the analyses by including this variable as a covariate, 

the possibility that this has introduced noise in the analyses cannot be excluded. 

Another potential limitation is that not all subjects had complete neuropsychological 

test data available. We have used a multiple imputation procedure to estimate missing 

values based on multivariate patterns of existing data, which at least enabled us to 
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avoid selection bias that might have been introduced if only complete cases were 

analyzed. Furthermore, cognitive tests that are used in clinical practice have not been 

designed to capture changes over time, and so might not adequately capture changes 

in cognition. We observed relatively little decline for both the visuospatial and the 

language domain, and cognitive tests used for the respective composite scores equally 

showed little variance, presumably due to ceiling effects. Future research should 

further investigate grey matter network measures in relation to cognitive tests that are 

more sensitive to detect decline over time. 

 

5. Conclusion 

MCI patients are at increased risk to develop dementia. However, they show 

considerable variability in symptom presentation and rate of decline. For clinical trial 

development, prognostic measures are needed that can be used to include those 

subjects who will show fast decline, in order to increase the chances to observe 

potential treatment effects. Here, we demonstrated that those MCI patients with more 

severe disruptions in baseline grey matter connectivity showed a steeper decline in 

MMSE and in memory, attention and executive functioning over time. Together our 

findings suggest that grey matter network measures might contain prognostic 

information about future cognitive decline in specific cognitive domains. 
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Tables and Figures 

Table 1. Demographics and grey matter network characteristics of the included sample. 

  Total Stable Progression 

N 258 100 115 

Female 105 (41%) 40 (40%) 52 (45%) 

Age, years 66.7 (7.96) 67.03 (6.85) 68.25 (8.05) 

Education 5 (4-6) 5 (4-6) 5 (4-6) 

Co-medication 38 (15%) 12 (12%) 18 (16%) 

Follow up time, years 2.3 (1.4-3.1) 2.2 (1.2-3.1) 2.3 (1.7-3.3) 

CSF Aβ42, pg/ml 589 (454-899) 639 (486.8-978.2) 511 (404-613) c 

CSF total tau, pg/ml 405 (263.2-625) 345.5 (247.2-513.8) 550 (370-803) c 

CSF p-tau, pg/ml 64 (45-84) 53 (41.2-74.8) 76 (59-107) c 

Progression to AD-type dementia 98 (38%) n.a. 98 (85%) 

Progression to non-AD 17 (7%) n.a. 17 (15%) 

Nomalized grey matter volume, cm3 410.48 (48.27) 411.26 (41.43) 396.75 (50.27) b 

Hippocampal volume, cm3 7.71 (1.28) 7.93 (1.19) 7.16 (1.2) c 

Network size 7000.97 (669.22) 7033.14 (654.87) 6892.62 (672.31) 

Network degree 1140.37 (135.18) 1130.65 (128.79) 1125.29 (137.94) 

Connectivity density 16.31 (1.33) 16.09 (1.24) 16.34 (1.38) 

Clustering coefficient 0.46 (0.02) 0.46 (0.02) 0.46 (0.03) 

Path length 2.01 (0.02) 2.02 (0.02) 2.01 (0.02) 

Betweenness centrality 7099.74 (700.32) 7140.93 (669) 6961.89 (697.79) a 

Gamma 1.66 (0.1) 1.66 (0.09) 1.63 (0.1) b 

Lambda 1.1 (0.01) 1.1 (0.01) 1.09 (0.01) 

Small-world coefficient 1.51 (0.08) 1.51 (0.07) 1.49 (0.08) b 

n.a. is not applicable. Data are presented as N (%), mean (SD) or median (IQR). Education was assessed with the Verhage 

classification system (Verhage, 1964).  

a p = 0.053; b p < 0.05; c p < 0.001. 
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Table 2. Neuropsychological baseline data and annual change. 

  Baseline score Annual change p Value (Annual change) N missing (%) 

MMSE -0.24 (1.05) -0.23 (0.03) <0.001 

 MMSE, raw score 26.68 (2.45) -0.57 (0.07) <0.001 105 (11.4) 

Memory -0.3 (0.64) -0.16 (0.02) <0.001 

 RAVLT, immediate recall 30.95 (7.77) -1.18 (0.2) <0.001 78 (8.5) 

RAVLT, correct 25.97 (2.96) -0.56 (0.07) <0.001 87 (9.4) 

VAT a1 and a2 9.83 (2.74) -0.67 (0.07) <0.001 54 (5.9)  

Attention -0.14 (0.84) -0.13 (0.02) <0.001 

 Digit span forward 12.28 (2.9) -0.13 (0.05) 0.012 9 (1.0) 

TMT A -47.73 (19.98) -4.15 (0.86) <0.001 20 (2.2) 

Stroop 1 -48.5 (11.48) -2.03 (0.3) <0.001 222 (24.1) 

Stroop 2 -67.29 (16.33) -2.95 (0.5) <0.001 224 (24.3) 

Executive function -0.15 (0.73) -0.11 (0.02) <0.001 

 Digit span backward 8.56 (2.87) -0.07 (0.06) 0.265 9 (1.0) 

Letter fluency (DAT) 33.56 (11.53) -0.13 (0.21) 0.532 217 (23.5) 

FAB 15.93 (1.86) -0.27 (0.07) <0.001 252 (27.3) 

Stroop 3 -127.72 (42.43) -11.85 (2.01) <0.001 239 (25.9) 

TMT B -131.97 (71.88) -13.02 (1.58) <0.001 90 (9.8) 

Language -0.15 (0.88) -0.15 (0.03) <0.001 

 VAT naming 11.88 (0.46) -0.07 (0.02) 0.002 56 (6.1) 

Category fluency (animals) 18.87 (5.21) -0.96 (0.11) <0.001 45 (4.9) 

Visuospatial -0.1 (0.67) -0.07 (0.02) <0.001 

 Fragmented letters 18.67 (1.36) -0.21 (0.07) 0.003 336 (36.4) 

Dot counting 9.65 (0.64) -0.06 (0.03) 0.041 340 (36.9) 

Data are presented as mean (SD) for baseline test scores and annual change as β (SD) as estimated by linear mixed models. 

Domain scores are given in z-scores and are based on the averaged imputed z-scores of the respective subtests. Scores for 

subtests represent the unimputed, raw scores. Note that scores for TMT and Stroop were inverted, so that higher scores indicate 

better performance. 

Key: FAB, Frontal Assessment Battery; MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory Verbal Learning Test; 

TMT, Trail Making Test; VAT, Visual Association Test. 
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Table 3. Baseline and annual change effects of grey matter connectivity measures on cognition. 

  MMSE MEMORY ATTENTION EXECUTIVE FUNCTION LANGUAGE VISUOSPATIAL 

 

Baseline effect Annual change Baseline effect Annual change Baseline effect Annual change Baseline effect Annual change Baseline effect Annual change Baseline effect Annual change 

Size 0.1 (0.07) 0.07 (0.03) a 0.03 (0.05) 0.05 (0.02) b 0.08 (0.06) 0.02 (0.02) 0.06 (0.05) 0.02 (0.02) 0.07 (0.06) 0.04 (0.03) 0.08 (0.05) 0.01 (0.02) 

Degree 0.2 (0.09) a 0.03 (0.03) 0.08 (0.07) 0.05 (0.02) b 0.02 (0.07) 0.02 (0.02) 0.02 (0.06) 0.02 (0.02) 0.03 (0.08) 0.03 (0.03) -0.05 (0.06) 0.03 (0.02) 

ConDen 0.13 (0.07) -0.05 (0.03) 0.09 (0.05) 0.01 (0.02) -0.09 (0.06) 0.01 (0.02) -0.05 (0.05) 0 (0.02) -0.01 (0.06) -0.01 (0.03) -0.04 (0.05) 0.03 (0.02) 

C -0.21 (0.18) -0.03 (0.03) 0.06 (0.05) 0.02 (0.02) -0.04 (0.06) 0.03 (0.02) -0.01 (0.05) 0.01 (0.02) 0.01 (0.06) 0.01 (0.03) -0.02 (0.05) 0.03 (0.02) 

L 0.06 (0.07) 0.04 (0.03) -0.11 (0.05) a 0.02 (0.02) 0.1 (0.05) 0.02 (0.02) 0.1 (0.04) a 0.02 (0.02) 0.04 (0.06) 0.04 (0.03) 0.04 (0.04) -0.01 (0.02) 

BC 0.33 (0.15) a 0.08 (0.03) b -0.17 (0.11) 0.06 (0.02) b 0.45 (0.13) c 0.02 (0.02) 0.38 (0.1) c 0.03 (0.02) 0.29 (0.13) a 0.05 (0.03) -0.02 (0.1) 0.01 (0.02) 

Gamma 0.04 (0.07) 0.04 (0.03) -0.01 (0.05) 0.04 (0.02) a 0.02 (0.06) 0.04 (0.02) a 0.07 (0.04) 0.04 (0.02) a 0.05 (0.06) 0.05 (0.03) 0.03 (0.05) 0.01 (0.02) 

Lambda 0.05 (0.07) 0.01 (0.03) -0.09 (0.05) 0.03 (0.02) 0.08 (0.06) 0.03 (0.02) 0.1 (0.05) a 0.02 (0.02) 0.05 (0.06) 0.03 (0.03) 0.03 (0.05) 0.01 (0.02) 

SW 0.04 (0.07) 0.05 (0.03) 0.01 (0.05) 0.05 (0.02) b 0 (0.05) 0.04 (0.02) a 0.06 (0.04) 0.04 (0.02) a 0.05 (0.06) 0.05 (0.03) 0.03 (0.05) 0.01 (0.02) 

Data are presented as β (SE) as estimated by linear mixed models. The models included the covariates age, sex, education, MRI scanner type, TIV, network measure, follow-up time in years and the interaction term 

network measure × time. Size, Degree, ConDen were additionally corrected for when they showed a significant effect in the respective model. 

a p < 0.05; b p < 0.01; c p<0.0009 (i.e., Bonferroni corrected) 

Key: BC, Betweenness centrality; ConDen, Connectivity density; C, Clustering coefficient; L, Path length; MMSE, Mini-mental state examination; SW, Small-world coefficient. 
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Table 4. Odds ratio to predict which individual subjects will show faster than median decline for specific cognitive domains. 

  Model 1 Model 2 Model 3 Model 4 

MMSE     

Size 0.32 (0.12-0.84) b 0.39 (0.14-1.08) a 0.38 (0.14-1.05) a 0.41 (0.15-1.14) a 

Degree 0.56 (0.36-0.87) b 0.6 (0.38-0.97) b 0.61 (0.38-0.97) b 0.72 (0.45-1.14) 

BC 0.59 (0.28-1.23) 0.73 (0.33-1.62) 0.7 (0.32-1.57) 0.7 (0.32-1.57) 

Gamma 0.64 (0.46-0.9) b 0.68 (0.47-0.98) b 0.67 (0.47-0.98) b 0.78 (0.54-1.13) 

Small world 0.63 (0.45-0.87) c 0.65 (0.46-0.94) b 0.65 (0.45-0.93) b 0.76 (0.53-1.09) 

     

Memory     

Size 0.34 (0.13-0.89) b 0.5 (0.18-1.38) 0.47 (0.17-1.31) 0.51 (0.18-1.41) 

Degree 0.67 (0.44-1.03) a 0.8 (0.51-1.24) 0.81 (0.52-1.25) 0.95 (0.61-1.48) 

BC 0.44 (0.21-0.94) b 0.61 (0.27-1.37) 0.57 (0.25-1.29) 0.57 (0.25-1.3) 

Gamma 0.63 (0.46-0.88) c 0.72 (0.5-1.04) a 0.71 (0.5-1.03) a 0.83 (0.58-1.19) 

Small world 0.64 (0.46-0.88) c 0.73 (0.51-1.03) a 0.71 (0.5-1.01) a 0.83 (0.59-1.18) 

     

Attention     

Size 0.43 (0.16-1.11) a 0.46 (0.17-1.29) 0.46 (0.16-1.27) 0.47 (0.17-1.3) 

Degree 0.77 (0.49-1.21) 0.81 (0.5-1.3) 0.81 (0.5-1.31) 0.85 (0.53-1.38) 

BC 0.34 (0.16-0.73) c 0.34 (0.15-0.77) b 0.33 (0.14-0.75) c 0.33 (0.14-0.75) c 

Gamma 0.57 (0.4-0.81) c 0.54 (0.36-0.81) c 0.54 (0.36-0.81) c 0.56 (0.37-0.84) c 

Small world 0.6 (0.43-0.85) c 0.59 (0.4-0.86) c 0.58 (0.4-0.86) c 0.6 (0.41-0.89) b 

     

Executive functioning     

Size 0.26 (0.1-0.71) c 0.3 (0.1-0.89) b 0.3 (0.1-0.88) b 0.31 (0.11-0.93) b 

Degree 0.79 (0.51-1.22) 0.88 (0.55-1.41) 0.89 (0.56-1.41) 1 (0.62-1.61) 

BC 0.25 (0.11-0.55) c 0.27 (0.11-0.64) c 0.26 (0.11-0.62) c 0.26 (0.11-0.62) c 

Gamma 0.56 (0.39-0.82) c 0.58 (0.38-0.88) b 0.57 (0.38-0.88) b 0.64 (0.42-0.96) b 

Small world 0.59 (0.41-0.85) c 0.6 (0.4-0.91) b 0.6 (0.39-0.91) b 0.67 (0.45-1) a 

Data is represented as OR (95% CI). Model 1 contains the respective network measure as predictor. Model 2 additionally 

includes hippocampal volume, Model 3 CSF Aβ42 levels and Model 4 CSF total tau levels as covariates. All models were 

corrected for age, gender age, total brain volume and scanner. 

a p < 0.1; b p < 0.05, c p < 0.01. 

Key: BC, betweenness centrality. 
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Figure 1. Regional associations of network measures with cognitive decline over time. 

The colorbar indicates the level of significance after FDR-correction per AAL area. Analyses were adjusted for 

age, sex, education, local grey matter volume and the local degree. (A) For the memory domain, lower values of the 

degree in widespread areas, involving particularly the temporal lobes and prefrontal areas in the left hemisphere, 

were significantly associated with steeper decline over time. (B) Lower values of the betweenness centrality were 

associated with increased decline in memory functioning over time in the right precuneus, left superior medial 

orbito-frontal gyrus, right supramarginal gyrus, bilateral precentral gyrus, bilateral inferior temporal gyrus, left 

superior medial frontal gyrus, right superior parietal gyrus, right middle temporal gyrus, right parahippocampal 

gyrus, left superior temporal pole, right middle occipital gyrus and left thalamus. (C) Lower betweenness centrality 

values were associated with increased decline over time in MMSE, specifically for the right precuneus, left superior 

medial-orbito-frontal gyrus, bilateral precentral gyri, bilateral superior medial frontal gyri, bilateral thalami, left 

anterior cingulate, left parahippocampal gyrus, left superior temporal pole, right lingual gyrus, right fusiform gyrus 

and right hippocampus. Subcortical structures are plotted in ventricular areas as approximation. Estimated cross-

sectional and annual change effects for all AAL areas are listed in Supplementary Table 2 and 3. Abbreviations: L, 

left hemisphere; R, right hemisphere. 
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