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Abstract

It has been suggested that when developing risk prediction models using

regression, the number of events in the dataset should be at least 10 times

the number of parameters being estimated by the model. This rule was

originally proposed to ensure the unbiased estimation of regression coeffi-

cients with confidence intervals that have correct coverage. However, only

limited research has been conducted to assess the adequacy of this rule

with regards to predictive performance. Furthermore, there is only limited

guidance regarding the number of events required to develop risk prediction

models using hierarchical data, for example when one has observations from

several hospitals. One of the aims of this dissertation is to determine the

number of events required to obtain reliable predictions from standard or hi-

erarchical models for binary outcomes. This will be achieved by conducting

several simulation studies based on real clinical data.

It has also been suggested that when validating risk prediction models, there

should be at least 100 events in the validation dataset. However, few studies

have examined the adequacy of this recommendation. Furthermore, there

are no guidelines regarding the sample size requirements when validating

a risk prediction model based on hierarchical data. The second main aim

of this dissertation is to investigate the sample size requirements for model

validation using both simulation and analytical methods. In particular we

will derive the relationship between sample size and the precision of some

common measures of model performance such as the C statistic, D statistic,

and calibration slope.

The results from this dissertation will enable researchers to better assess

their sample size requirements when developing and validating prediction

models using both standard (independent) and clustered data.
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Chapter 1

Introduction

This chapter gives an overall overview of the study covering the context of the study, the

rationale for and significance of the study, and the organisation of the dissertation. The

first part of this chapter, the context of the study, covers the background and general

schema of the dissertation. It also contextualises the guiding research questions and

the main objectives of the study. The second part mainly discuses the motivations to

carry out the studies of the dissertation. Finally, the organisation of this dissertation

is presented in part three.

1.1 The context of the study

Risk modelling is a method by which factors related to a desired health outcome can

be modelled, provided that information for those factors are collected in the studied

data. Risk models are ever increasingly being used in medical research and commonly

utilised to predict a patient’s outcome in order to provide additional information to both

patient and clinician. That is, they are employed to provide quantitative knowledge

about the probability of outcomes in a defined patient population for patients with

different characteristics (Moons et al., 2009).

For example, in the field of neurosurgery when the aim is to estimate the probability

of death within 14 days in patients with traumatic brain injury or is to estimate the

probability of severe disability at six months in those patients, a risk model can be used

to serve those aims based on the information collected from all the relevant factors.

13



1. INTRODUCTION

A risk model is usually developed by fitting a multivariable regression model to a

dataset known as the development dataset (Harrell (2001); Royston et al. (2009)). The

choice of regression varies depending on the outcome. For example, logistic regression

is commonly exploited when the outcome of interest is binary.

Risk models play a vital role in medical research and should always be developed

with extra care so that they can safely be used in practice. One of the key requirements

to obtain a valid risk model is to use sufficient data when developing it (Harrell (2001);

Steyerberg (2009)), where a valid model can produce correct predictions for future

patients. The size of a dataset should be large enough to reflect the population of

study, but not to waste resources.

A common problem in situations in which sample size is small is over-fitting, where

the model appears to perform well in data used to fit the model but not with new data.

An over-fitted logistic prediction model, for example, overpredicts the log-odds of an

event and thus the range of predictions produced by the model is too wide; that is, the

predictions are too extreme.

To avoid the problem of over-fitting, several researchers have made recommenda-

tions regarding the maximum number of predictors to be included in a risk model (Pe-

duzzi et al. (1995); Steyerberg et al. (2000); Harrell (2001), Vittinghoff and McCulloch

(2007); Steyerberg (2009); Courvoisier et al. (2011a)). A common recommendation in a

binary outcome setting is that the ratio of events to the candidate predictors should be

at least ten where the number of events is defined as the number of deaths in the binary

outcome. This ratio is called events per variable (EPV). For example, there should be

at least 50 events to develop a model with 5 predictors which are planned to be in the

model. There are; however, other guidelines in the literature, such as to use EPV of at

least 20 (Jinks, 2012) or 5 (Vittinghoff and McCulloch, 2007) when developing a risk

model.

However, ‘EPV rule of ten’ was originally developed to ensure the accurate and

precise estimation of regression coefficients and may not be suitable when the aim of

developing the risk model is prediction rather than estimation. That is because there

is less interest in individual covariate effects when developing a risk prediction model.

Rather, the aim is likely to measure the ability of the model to predict outcomes for

future patients (Copas (1983)). One of the aims of this dissertation is to determine

the number of events required to obtain reliable predictions from standard models for

14



1.1 The context of the study

binary outcomes. We will achieve this by conducting several simulation studies based

on real clinical data.

Moreover, in practice, adhering to EPV rule of at least ten may not be possible

especially if one studies rare diseases, or if the event of interest is rare. In such cir-

cumstances, it is advised to apply a single shrinkage factor to the estimated regression

coefficients after model fitting. However, this may not always result in a reliable risk

prediction model as the performance of the risk model is also sample size dependant.

Hence, we also aim to determine the required number of events when there is a possi-

bility of using linear shrinkage methods.

It is important that one validate the developed risk prediction model in new datasets.

Care needs to be taken when calculating the required sample size for model validation,

because the estimated predictive performance measures of the risk model may be unbi-

ased, yet not precise when using a small validation dataset (Harrell, 2001, Steyerberg,

2009).

To overcome such a problem, it has been suggested that the validation data must

have at least 100 events when the outcome of interest is binary (Harrell, 2001, Peek

et al., 2007, Collins et al., 2015, Vergouwe et al., 2005). However, few studies have

examined the adequacy of this recommendation, and so the rule is not commonly used

in practice. In a review paper, Collins et al. (2014) found that only 53% of studies

out of reviewed papers had 100 events or more in their validation data. The second

main aim of this dissertation is to investigate the sample size requirements for model

validation using both simulation and analytical methods. In particular, we will derive

the relationship between sample size and the precision of some common measures of

model performance such as the C statistic, D statistic and calibration slope.

Clustered data is common in medical research (Kreft and Leeuw (1998); Guo and

Zhao (2000); Goldstein (2003); Twisk (2006)). For example, patients may be clustered

within hospitals, clinics, or general practices. In such circumstance, patients from the

same cluster have common characteristics when compared with patients from other

clusters. That is, observations within clusters are dependent on each other and are

independent from patients who are in other clusters.

Ignoring the dependence structure of observations in the clustered data and em-

ploying standard regression models to analysis this data may lead to unbiased but

imprecise estimation for regression coefficients (Beitler and Landis (1985); Kreft and

15



1. INTRODUCTION

Leeuw (1998); Localio et al. (2001); Goldstein (2003); Maas and Hox (2004); Rabe-

Hesketh and Skrondal (2005); Twisk (2006); Robertson et al. (2013)).

Three common methods to model clustered binary outcomes are marginal, fixed-

and random-effect regression methods (Goldstein (2003); Rabe-Hesketh and Skrondal

(2005); Twisk (2006)). While marginal models can be obtained by fitting a standard

logistic regression models on patients from different clusters without taking clustering

into account, one can fit a standard logistic regression with fixed-effect for clusters or fit

a random-effect regression model by including a random term for clusters (with specific

distribution, say, Normal distribution,) into the model to account for clustering. The

simplest version of a random-effect logistic model is a random-intercept logistic model,

which takes clustering effect into account by allowing the intercepts to vary across

clusters.

The three relevant types of predictions in the context of clustered data are marginal,

median, and cluster-specific predictions. Marginal predictions reflects the average prob-

ability of the outcome for patients with the same observed values of predictors in the

population, ignoring the clusters the patients came from, and can be produced by

marginal, random-effect, and fixed-effect models. In contrast, while cluster-specific

prediction reflects the probability of outcome for patients with regard to the clusters

the patients came from, median prediction reflects the median probability of outcome

for patients with the same observed values of predictors across clusters. Both median

and cluster-specific predictions can be obtained using fixed- and random-effect logistic

models.

Wynants et al. (2015) have suggested using an EPV of at least ten when developing

a risk model using the clustered binary outcome. However, they only studied median

predictions from a random-intercept logistic model. The third aim of this dissertation is

to determine the sample size requirement for developing a risk prediction logistic models

using the clustered binary outcome. Simulation is used. Three types of marginal, fixed-

effect and random-intercept modelling techniques were investigated.

Finally, there are no guidelines on sample size requirements when validating a risk

prediction models using clustered binary data. The last aim of the dissertation is to

ascertain the required sample size to validate a random-intercept risk prediction logistic

model using simulation methods.
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1.2 Rationale for and significance of the study

1.2 Rationale for and significance of the study

The sample size is one of the most important elements of designing a study in the

medical and clinical setting. In a broad sense, research design is the process of making

decisions before the situation arises in which the decision has to be carried out. One

of the most important decisions in designing research is to devise strategies to address

the research questions with the smallest possible number of subjects. A very small

sample will lead to a loss of precision and power of the study and real medical im-

provements are unlikely to be distinguished from chance variation. On the contrary, a

very large dataset will result in a waste of resources, that is, patients and investigator’s

time or funding. Balance is required to ensure that a study collects sufficient data to

produce statistically valid and clinically useful results, while making cost-effective use

of resources and meeting deadlines.

Methodologically, before starting a probable clinical research, a sample size should

always be determined. For example, in randomised controlled trials, for funding appli-

cation and also for subsequent publications, a researcher ought to determine the sample

size. Sample size calculations for prediction studies, which are usually retrospective, are

not routinely available, meaning these studies may often be underpowered. Available

formulae can be used in some particular situations, but for most analyses of prognostic

data, particularly binary data, little guidance is available to researchers.

There is little guideline for addressing how many events per variable are needed to

develop a risk prediction model. Thus, this study will produce a clear route for this

area.

Practically, it may not be possible to adhere to the EPV recommendations for

studies based on rare diseases or events. One common approach to overcome this

problem is to apply a single shrinkage factor to the estimated regression coefficients

after model fitting. However, this may not always result in a reliable risk prediction

model. Therefore, this dissertation will also make recommendations on the number of

required EPV for such circumstances in which some sort of shrinkage factor is applied.

While there is a suggestion for the number of events to validate a risk prediction

model in the literature, few studies have evaluated the adequacy of the recommendation.

This study will also provides guidelines for such circumstances.
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Apart from Wynants et al. (2015), in the case of developing a risk prediction model

using clustered binary data, there is no recommendation about the required number

of events per variable when developing a reliable risk prediction model. Furthermore,

there are no guidelines on how many events are required to validate a reliable clustered

risk prediction model. This dissertation will also give practical guidelines or recom-

mendations for those situations. These guidelines will be for cases in which the risk

model is developed using fixed-, random- effect and marginal logistic regression.

1.3 Organisation and overview of the dissertation

In drawing an accurate picture of the sample size requirements for developing and

validating a reliable risk model in medical research, the dissertation is divided into

seven chapters:

In chapter two, Key Concepts of Risk Modelling we give an overview of the central

notions and terms of risk modelling in the medical setting. This chapter is composed

of five parts. Those are as follows: Risk Models in Medicine, Developing a Risk Model,

Logistic Regression, Validating a Risk Model including various measures of validation

for both independent and clustered binary data, and Summary and Discussion.

Chapter three of the dissertation extensively investigates the Sample Size Require-

ments for Developing a Risk Model in the Context of Independent Binary Data. This

chapter covers the following main parts: Sample Size (EPV) in Developing a Risk

Model: a Review, Data, Case Study, Simulation Study, and Summary and Discussion.

In Chapter four, we investigate the Sample Size Requirements for Validating a Risk

Model Using Independent Binary Data. Similar to Chapter three, this chapter is made

up of four parts: Sample Size in Validating a Risk Model: a Review, Precision of

Performance Measure and Sample Size, Case Study, Simulation Study, and Summary

and Discussion.

The Sample Size Requirements for Developing a Risk Model with the Binary Clus-

tered Data is presented in Chapter five. The chapter consists of six parts: Literature

Review, Data, Case Study, Simulation Study, Comparing the Recommended Sample

Size with the One Used in Common Practice, and Summary and Discussion.

Chapter six examines the Sample Size Requirements for Validating a Risk Model

Using Binary Clustered Data. This chapter consists of four parts: Sample Size (EPV)
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in Validating a Risk Model: a Review, Case Study, Simulation Study, and Summary

and Discussion.

Finally, Chapter 7, Summary and Discussion, is devoted to closing remarks of the

study including summary, main conclusions and contributions of this dissertation. Ad-

ditionally, this chapter presents major implications of this study for further research in

medical statistics including practical recommendations. It follows with Conclusion.
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Chapter 2

Key concepts of risk modelling

In medicine, prognosis usually concerns the risk of a person developing a specific state

of health over a particular time, based on his or her clinical and non-clinical profile.

This chapter is organised into four main sections. Section 2.1 provides an overview

on risk models in medicine. It briefly discusses the significance and application of

risk models in medical research. In section 2.2, the steps should be taken to develop

a risk model are briefly described. Then, the risk models used in this dissertation,

logistic regression models, for both independent and clustered data are mathematically

discussed in section 2.3. This section, also addresses methods to produce predictions

of the models. The validation of a risk model including types of validation and issues

related to it are elucidated in section 2.4. It concludes with explaining validation

measures for both independent and clustered binary settings in sections 2.5 and 2.6.

2.1 Risk models in medicine

Risk models are ever-increasingly being employed in medical research for prognostic

purposes. They enable care providers to estimate the probability that an individual

develops an outcome (Harrell (2001); Steyerberg (2009)). These models are useful in

various settings for different reasons: to inform patients about their forthcoming health-

related problems, to guide practitioners about the possible future treatments; and to

facilitate fairer, risk-adjusted comparisons between healthcare providers. Moreover, risk

prediction models are useful in studies for several purposes. For instance, they assist

in deciding the inclusion criteria or covariate adjustment in a randomised controlled
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2.1 Risk models in medicine

trial, or to adjust the co-founder or case-mix in comparing an outcome between centres

in observational studies (Steyerberg et al., 2010). Such models are also referred to as

prediction rules, prediction models, prognostic models, and risk scores (Moons et al.,

2009). There are some risk prediction models which are commonly used in practice,

such as the Framingham Risk Score (Wilson et al., 1998), QRISK2 (Hippisley-Cox

et al., 2008), and Gail risk model 2 (Costantino et al., 1999). Some details of these risk

models are briefly described here.

The famous risk model which is usually used as a reference in cardiovascular dis-

ease is Framingham Risk Score (Wilson et al., 1998). This sex-specific model was

originally developed using data from the Framingham Heart Study and validated in

the US (D’Agostino et al., 2001). The predictors included in this model were age, sex,

low density lipoproteins (LDL) cholesterol, high density lipoprotein (HDL) cholesterol,

blood pressure, whether the patient is treated or not for his/her hypertension, diabetes,

and smoking. This risk score was updated (D’Agostino et al., 2008) to include dyslipi-

demia, age range, hypertension treatment, smoking, and total cholesterol. In this new

version, diabetes was excluded from the model. This model is employed to estimate

the 10-year cardiovascular risk of a subject.

The QRISK2 risk prediction model was developed and validated using a large gen-

eral practice database in England and Wales (Hippisley-Cox et al., 2008). This sex-

specific risk score is the updated version of QRISK1 (Hippisley-Cox et al., 2007). The

predictors in QRISK2 are age, sex, cholesterol/HDL ratio, systolic blood pressure, di-

abetes, smoking status, self-assigned ethnicity, family history of coronary heart disease

in a first degree relative under the age of 60, deprivation, treated hypertension, body

mass index, rheumatoid arthritis, chronic kidney disease, and atrial fibrillation. The

QRISK2 model is used to predict the ten year risk of developing cardiovascular disease

in patients from different ethnic groups.

Gail’s risk model 2 (Costantino et al. (1999); Gail et al. (1989)) is one of the most

commonly employed risk prediction models for breast cancer in the clinics. The data

was from a randomised placebo-controlled study conducted over six years to study

the effects of tamoxifen in a population of women at high risk of breast cancer. The

predictors included in this model were current age, age at menarche, age at first birth

or nulliparity, number of previous breast biopsies, number of first degree relatives with

breast cancer, and the presence of an atypical hyperplasia on biopsy. This model is
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2. KEY CONCEPTS OF RISK MODELLING

employed to estimate the chance of breast cancer development in currently healthy

women within the next five years and during their lifetime.

2.2 Developing a risk model

The process of constructing a function of candidate factors or predictors related to the

future outcome of the patients is recognised as developing a risk model. This process

may not be as simple as fitting a model on a dataset. There are a number of decisions

that model makers must make before developing such a model which will affect the

model and the results of the study (Royston et al. (2009); Harrell (2001); Justice et al.

(1999); Moons et al. (2009)). These decisions are as follows.

First, all candidate variables for likely inclusion in the model must be chosen. Can-

didate predictors can be obtained from patient demographics, clinical history, physical

examination, disease characteristics, test results, and previous treatment.

Second, the quality of the data should be appraised and all steps to handle missing

values should be determined.

Third, the strategy to select the important variables in the final model and to

model continuous variables should be chosen. There are options such as stepwise vari-

able selection, incomplete principal component, and clustering variables using clinical

knowledge to select important variables (Harrell, 2001).

Finally, the choice of validation data should be decided. One may need to decide

on whether data should be set aside to validate the risk model (see section 2.4).

Royston et al. (2009) noted that there are other important areas which should

be considered when developing a risk model, including investigation of the robustness

of the final risk model to outliers and influential observations, research for possible

interactions between predictors, and determining whether and how to adjust the model

for overfitting (see section 2.4.1).

Subsequent to these, one may find the suitable modelling strategy to describe a

relationship between predictors and the outcome of interest. The choice of strategies

for modelling depends on the type of outcome variables.

The observations of the outcome variable might be of an independent or of a clus-

tered structure. For example, patients might be clustered within hospitals, cities, or

countries.
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2.3 Logistic regression

2.3 Logistic regression

In this dissertation logistic regression, for both independent and clustered data, was

used to develop risk models for two main reasons. First, the real data used in this

dissertation has a binary outcome (0/1) (see section 3.2 and 5.2). This type of out-

come is amongst the most common outcomes in medical research. Second, the logistic

regression modelling technique is commonly used in practice to develop a risk model

when the outcome of interest is binary.

2.3.1 Standard logistic regression

Let Yi (i = 1, . . . , N) be a binary outcome for the ith patient which follows the

Bernoulli distribution with the probability pi = Pr(Yi = 1), the probability that the

individual experiences the event of interest, Xk the kth predictor (k = 1, . . . ,K). The

logistic regression model expresses pi as a linear combination of predictors Xki, using

the logit as a link function:

logit(pi) =
pi

1− pi
= α+

K∑
k=1

βkXki, (2.3.1)

The intercept α and regression coefficients βk are estimated using maximum likeli-

hood. The predicted probability (call it standard predictions) of an event is computed

by taking the inverse logit of the linear predictor of the estimated model.

ηi = α̂+
K∑
k=1

β̂kXki, (2.3.2)

p̂i =
1

1 + exp(−ηi)
, (2.3.3)

In this study, the maximum likelihood logistic regression model was fitted onto the

data using command logit from STATA 14.2 MP.

2.3.2 Logistic regression for clustered binary outcomes

Clustered data are common in medical research; for example patients may be clustered

within hospitals or general practices. Several multilevel or hierarchical binary regression

models have been developed to model the clustered binary outcome (Zeger et al. (1988);
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Neuhaus et al. (1991); Gelman and Hill (2007)). Three very common modelling methods

for clustered data are marginal, fixed-effect, and the random-effect modelling approach

(Skrondal and Rabe-Hesketh (1984); Goldstein (2003); Twisk (2006); Steele (2017);

Kahan (2014)).

Let Yij be the outcome for the ith patient (i = 1, . . . , nj) from the jth cluster

(j = 1, . . . , J) of size nj , which takes a value of one for an event (e.g. if the patient

has died) and a value of 0 for a nonevent (e.g. if the patient is alive), Xkij the kth

predictor (k = 1, . . . ,K) and pij = P (Yij = 1).

One can obtain three types of predictions for the ith patient from the jth cluster

based on whether or not there was information from jth cluster at the time of developing

the model; cluster-specific (piju), median (pij0), and marginal (pijm) predictions. Rabe-

Hesketh and Skrondal (2005) suggested that one should use piju for the ith patient from

the known jth cluster. We will discuss how one can obtain these predictions from each

type of model after describing it.

Marginal logistic regression

The standard logistic regression model is a marginal model, and is fitted on patients

from different clusters without taking clustering into account when the outcome of the

interest is clustered binary. The marginal logistic regression model expresses pij as a

linear combination of predictors Xkij , using the logit as a link function:

logit(pij) = α+

K∑
k=1

βkXkij , (2.3.4)

In this model, regression coefficients βk represent the average effects in the popu-

lation and the predicted probability for a patient indicates the average probability of

patients with the same observed values of predictors, ignoring the clusters to which

those patients belong. The predicted probability of an event is computed by taking the

inverse logit of the linear predictor of the estimated model.

ηij m = α̂m +

K∑
k=1

β̂kmXkij , (2.3.5)

p̂ij m =
1

1 + exp(−ηij m)
, (2.3.6)
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2.3 Logistic regression

This type of prediction is also called population-averaged predictions.

Furthermore, marginal predictions can also be obtained using random-effect logis-

tic regression models (further details for this type of modelling are discussed shortly)

by integrating cluster-specific predictions over prior random-effect distribution (Lee

and Nelder (2004); Skrondal and Rabe-Hesketh (1984)) or using a generalised estima-

tion equation (GEE) (Goldstein, 2003). Wynants et al. (2016) has reported that the

marginal predictions obtained using the standard logistic regression model were similar

to those obtained using the random-intercept logistic model. Thus, we use standard

logistic regression to obtain marginal predictions.

Fixed-effect logistic model

In clustered binary data, one can also use a fixed-effect logistic regression model. A

fixed-effect logistic regression model is the standard logistic regression model which is

fitted on patients from different clusters, taking clustering into account by including

dummy variables for all clusters but one into the model (Kahan, 2014).

The fixed-effect logistic regression model expresses pij as a linear combination of

predictors Xkij and dummy variables Il (l = 1, ..., J − 1), using the logit as a link

function:

logit(pij) = α+
K∑
k=1

βkXkij +
J−1∑
l=1

γlIl (2.3.7)

where Ij is one if patient i belongs to cluster j and 0 otherwise, and γl presents the

effect of cluster l. In this study, the maximum likelihood fixed-effect logistic regression

was fitted on data using command logit from STATA 14.2 MP.

Like the random-intercept model, the fixed-effect model is a cluster-specific model

and the regression coefficients βk present the predictor effects within clusters.

One can obtain a cluster-specific prediction piju(fe) by taking the inverse logit of

the linear predictor of the estimated model.

ηiju(fe) = α̂(fe) +

K∑
k=1

β̂k (fe)Xkij + γ̂j (2.3.8)

p̂iju(fe) =
1

1 + exp(−ηiju(fe))
. (2.3.9)
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One can also obtain a median prediction from the fixed-effect logistic regression

model as follows:

ηij0(fe) = α̂(fe) +
K∑
k=1

β̂k (fe)Xkij −
1

J − 1

J−1∑
l=1

γl, (2.3.10)

p̂ij0(fe) =
1

1 + exp(−ηij0(fe))
, (2.3.11)

Random-intercept logistic regression

In clustered data, a random-effect model logistic regression model can be used for model

development (Twisk, 2006). The simplest version of a random-effect logistic model is

the random-intercept logistic regression model. Alongside fixed-effect predictors (Xkij),

one adds a random variable (random-intercept; uj) to the model to take clustering into

account. The random-intercept is usually assumed to be normally distributed with a

mean of zero, and allows the intercepts to vary across clusters.

The random-intercept logistic model expresses pij as a linear combination of the

predictors and random-intercept uj :

logit(pij) = α+
K∑
k=1

βkXkij + uj (2.3.12)

where uj ∼ N(0, σ2
u). The random-effect model is a cluster-specific model and

regression coefficients βk represent the effects of predictors within clusters. The cluster-

specific predicted probability of an event given the random-intercept for the jth cluster

is computed by taking the inverse logit of the linear predictor of the estimated model.

ηiju(re) = α̂(re) +
K∑
k=1

β̂k(re)Xkij + ûj (2.3.13)

piju(re) =
1

1 + exp(−ηiju(re))
. (2.3.14)

One can also obtain a median prediction for a patient from a cluster which was

not known when developing the risk model by replacing the random-intercept with
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the average random-intercept (ûj = 0), and then using the inverse logit of the linear

predictor of the estimated model.

ηij0(re) = α̂(re) +
K∑
k=1

β̂k (re)Xkij + 0, (2.3.15)

p̂ij0(re) =
1

1 + exp(−ηij0(re))
, (2.3.16)

It is worth mentioning that the logit function is nonlinear, and thus the inverse logit

of the average effect is not equal to the average, but to the median. That is the reason

why this prediction refers to the median prediction.

In this study, the maximum likelihood adaptive Gaussian quadrature (AGQ) random-

intercept logistic regression was fitted on data using the command gllamm (Skrondal

and Rabe-Hesketh (1984); Rabe-Hesketh and Skrondal (2005); Rabe-Hesketh et al.

(2002)) and meqrlogit from STATA 14.2 MP. However, the command gllamm was very

slow for the conduction of simulation study. Therefore, we only used this command for

the case study, and command meqrlogit for the simulation study.

2.4 Validating a risk model

Apart from developing the risk prediction model, an important part of constructing a

risk prediction model is validation (Royston et al., 2009). This section of the chapter

discusses the main concepts related to validating a risk model by answering the following

questions:

What Does validation of a risk model mean?

The idea of validating a risk model does generally mean establishing that the model

performs well in a new dataset (Harrell et al. (1996); Andreas et al. (1997); Altman

and Royston (2000); Bleekera et al. (2003); Moons et al. (2009); Royston et al. (2009);

Harrell (2001)). In other words, assessing the quality of predictions or performance of

the model in new patients is known as validating. Thus, if the model passes this test

it is said that model is validated (Altman and Royston, 2000).
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Why is validation of a risk model needed?

A risk model might not successfully pass a validation test. There are three main reasons

that may cause a risk model to fail to be validated (Harrell, 2001):

The standard modelling methods might not be efficient. Most of standard statistical

methods, employed to fit risk models, are data-dependent. Hence, they might give an

exaggerated judgement of predictive performance. For example, there is always a large

number of potential variables in the development stage of the risk model. Therefore,

the important variables should be selected to appear in the model. The data-dependent

aspect of most models is based on the variable selection methods, where stepwise se-

lection is commonly used by researchers. However, the desirable approach is based

on applying clinical knowledge along with statistical methods to reduce the number of

candidate variables and therefore the risk of an overfitted model. The overfitted model

cannot produce as good predictions in the validation data as it does in the development

data.

The design of prognostic studies might not be efficient. Most observational studies

aim to accomplish the same quality results as experimental studies. The existence of

implicit inclusion and the exclusion criteria, exclusion of many patients due to missing

data, which may be missing not at random, and insufficient sample size may result in

misleading findings, creating overfitting and/or bias. The definition of the characteris-

tics of the sample is of clear importance to the clinician who wishes to know whether

a model is relevant to a particular patient.

Models may not be transportable. Even with flawless methodology of a study, a

model may not be generalisable for a different case-mix population (Steyerberg (2009);

Altman and Royston (2000)). This will usually take place when one or more important

variables is not present in the model. The problem is that one can never be sure that

all important variables are in the model.

For these reasons, it is strongly recommended to examine the performance of a

risk model on a new series of patients, ideally in a different location (Harrell (2001);

Vergouwe et al. (2005); Royston et al. (2009)).

As mentioned, overfitting is a common problem in the development stage. Hence,

we discuss it here.
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2.4.1 Overfitting

A model may be overfitted if the estimated performance of it is overly optimistic. Over-

fitting may cause an unimportant predictor to appear predictively important (Peduzzi

et al., 1995). In other words, large effect size are estimated very large and small effect

size are estimated very small in a overfitted model (Steyerberg et al., 2001). Overfitting

might occur because the same data are used for model development and validation, or

because the development data is really small compared to complexity of the model

(Steyerberg et al. (2001); Harrell (2001)). To overcome such a problem, and to improve

the quality of the predictions, the application of shrinkage factor has been suggested

(Harrell et al. (1996);Steyerberg et al. (2001); Ambler et al. (2011)).

The most straightforward process is to obtain shrunk regression estimates by mul-

tiplying the ML estimates by a single linear shrinkage factor. Such a process shrinks

the estimated coefficient equally. It is given by

η̂new = η + c(η̂ − η)

where c is the shrinkage factor, and η̂ and η̄ are estimated and mean linear predictor.

In nontechnical terms, it means that the estimated prognostic index is drawn towards

the average. This method is also called the postestimation shrinkage technique.

Two common linear shrinkage factors are heuristic and bootstrap. These are dis-

cussed here.

Heuristic shrinkage factor

The Heuristic shrinkage factor was first introduced by Copas (1983) and then Van Houwelin-

gen and Le Cessie (1990) generalised this method. It is given by

ŝheur =
modelχ2 − k
modelχ2

,

where k is the number of regression parameters, excluding the intercept but including

all non-linear and interaction effects. The model χ2 is the difference in - 2log likelihood

of the final model and the null model (Miller et al., 1991). The heuristic shrinkage

uses model χ2, as a quantity of its strength, to shrink the optimism of the fitted model

towards zero where the optimism is the difference between the original performance of

the model and its estimated performance. When model χ2 is less than the number of
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parameters the estimated heuristic shrinkage becomes negative. That is, the model is

only fitting noise, and is often the case when the dataset is small. In other words, when

the heuristic shrinkage factor is very small or negative, it means that the number of

variables in the model is large compared to the strength of the model. Harrell in his

book discussed that when heuristic shrinkage is less than 0.9 in a model then either the

shrunken estimator or data reduction might be required (Harrell, 2001).

Bootstrap shrinkage

Bootstrap shrinkage is another method that helps to shrink the coefficients of the

model in the developing stage. Based on this method, the amount of optimism is

quantified and used to shrink the model (Steyerberg (2009); Harrell (2001)). The

following procedure is carried out to obtain Bootstrap shrinkage. First, a model is

fitted on the development sample and linear predictors (η̂) for all patients are obtained.

Second, a sample with a replacement is taken from development data. This sample

is also referred to as a bootstrap sample, and is the same size as the development

sample. Third, the same model is fitted on Bootstrap sample and used to produce

linear predictors (η̂boot) for all patients. Afterwards, a model is fitted on the bootstrap

sample using η̂boot as a sole predictor and corresponding outcomes. Then, the slope

of the linear predictor (βboot) is estimated. The process is performed several times,

say 100. The average (β̂boot) over the number of bootstrap samples forms a bootstrap

shrinkage. This method mimics the calculation of the calibration slope (see section

2.5), and corrects the predictions accordingly.

How should a risk model be validated?

To validate a risk model, one can use development data or new data. By ascending order

according to their rigorous performance, validation methods are apparent, internal,

temporal and external (Harrell, 2001, Steyerberg, 2009, Vergouwe et al., 2005). A brief

description of these approaches are as follows.

Apparent validation: in apparent validation, a researcher quantifies the performance

of the model only in the development data which is used to develop the risk model.

That is, the data is employed for both estimating parameters of the model and testing

the quality of predictions produced by that model (Steyerberg, 2009). It is known that

such validation tends to produce overoptimistic measures (Moons et al., 2009).
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Internal validation: the internal validity is regarded as a method that examines

reproducibility of the models (Konig et al., 2007). One common type is data-splitting.

Here, the sample is split into two parts before the modelling begins, for example 50%

for development and the rest for validation. The model is derived from the development

data, and its predictions are evaluated on validation data. A problem is how to split

the data. Furthermore, estimates of predictive accuracy from data-splitting procedures,

though unbiased, tend to be imprecise (Harrell, 2001).

The second common method of internal validation is cross-validation (Harrell (2001);

Konig et al. (2007); Steyerberg (2009)), which is an extension of split data such that

the data is split up into several parts: one part is used for validation and the rest for

development at the time. This is repeated several times and the average is taken as

an estimate of performance. The most extreme variant of cross-validation is the Jack

Knife, where one observation is picked out and the rest are used for model development,

and the model is validated on the observation which was left out (Harrell, 2001). One

benefits from cross-validation more than data-splitting for two reasons: firstly, the size

of the development samples can be much larger, so less data are discarded from the

estimation process; secondly, cross-validation reduces variability by not relying on a

single sample split.

The other technique in internal validation is bootstrap validation (Harrell (2001);

Konig et al. (2007); Steyerberg (2009)). The Bootstrap validation can be computation-

ally extensive depending on the characteristics of studied data, and the type of method

which is used to fit the risk model. The Bootstrap validation is conducted as follows.

First, random samples with replacement are taken from the development data; they

are also called bootstrap samples. These samples are the same size as the development

data. Then, the risk model is fitted on each bootstrap sample and its predictions are

evaluated using the development sample (Harrell, 2001). This technique is preferable

and efficient especially when a limited number of observations is available. To obtain

stable results, the procedure has to be repeated several times, usually at least 100 times.

The internal validation techniques differ with regard to how well they predict the

performance of the model in independent patients but all still operate only in the

original data. Further validation procedures may be required for a more stringent

check of the generalisability of the model (Hosmer and Lemeshow (2001); Konig et al.

(2007); Altman et al. (2009)).
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Temporal validation: in this approach, the performance of a model is evaluated on

subsequent patients within the same centre(s) (Hosmer and Lemeshow (2001); Konig

et al. (2007); Altman et al. (2009)). In principle, this technique is similar to splitting

a single dataset into two cohorts seen in different time periods. Structural differences

between datasets arise from temporal changes, such as revised diagnostic criteria, or

different referral schemes in the hospitals. Typically, it is difficult to eliminate this

variability because of employing specific inclusion/exclusion criteria. Thus, the case-

mix might be different (Konig et al. (2007); Altman et al. (2009)).

External validation: neither internal nor temporal evaluation addresses the wider

issue of the generalisability of the model. The external approach is desirable since it

evaluates a model on new data collected in a different centre. The external validity

checks the generalisability of the risk model or its transportability (Justice et al. (1999);

Harrell et al. (1996); Vergouwe et al. (2005); Konig et al. (2007); Moons et al. (2009)).

The results from this validation may differ from those from internal validation, since

many aspects may be different between settings including the selection of patients,

definition of variables, and diagnostic or therapeutic procedures (Miller et al. (1991);

Moons et al. (2009)).

What aspects of a risk model should be validated?

The performance of the models is commonly assessed in terms of calibration, discrim-

ination, and overall performance (Spiegelhalter (1986); Miller et al. (1991); Vergouwe

et al. (2005)).

Calibration: this refers to the agreement between observed outcome frequencies and

predicted probabilities. For instance, if the model predicts that in-hospital mortality

after heart valve surgery is 70%, that model is well calibrated only if the observed

in-hospital mortality is 70%. Measures such as the calibration slope and Hosmer-

Lemeshow test are used to investigate calibration of risk prediction models.

Discrimination: this refers to the ability of the model to distinguish patients from

different risk groups. For example, a risk model with good discriminating ability can

adequately separate low- and high-risk patients. The discriminatory ability of a risk

prediction model is commonly measured using the area under the ROC curve or C

statistic. Other methods such as the D statistic are also used in the literature.
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Overall performance: this measures the quality of predictions for each subject in the

dataset. Overall performance measures incorporate both calibration and discrimination

aspects (Harrell, 2001). The Brier score is one of the most commonly used measures to

quantify the overall performance of a risk prediction model.

2.5 Validation measures for independent binary data

This section elucidates measures used throughout this dissertation to measure the valid-

ity of risk models. These measures are evaluated in the validation data using predictions

derived from the models fitted on the development data.

Calibration slope

The calibration slope measures calibration or the agreement between the estimated

log-odds and actual log-odds (Miller et al., 1991). The calibration slope is given by:

logit(pi) = α+ βη̂i

If the model is well calibrated, then, the estimated calibration slope β̂ should be close

to one. The overfitted model tends to show a slope of less than one indicating that low

predictions are too low, and high predictions are too high (Miller et al., 1991). The α̂

is different from zero indicates that the predicted probabilities are systematically too

high (α̂ < 0), or too low (α̂ > 0). If α̂ is different from zero and β̂ different from one,

the interpretation of the mis-calibration is hard since the values of α̂ and β̂ are not

independent (Miller et al., 1991). In practice, the calibration slope is less than one

reflecting a need for the shrinkage of regression coefficients that were estimated in the

development dataset (Copas (1983); Van Houwelingen and Le Cessie (1990); Harrell

(2001); Steyerberg et al. (2003); Steyerberg (2009)).

C statistic

The concordance statistic is defined as a measure of the discrimination ability of the

risk model (Harrell, 2001), and is the proportion of all pairs of patients in which the

patient with the outcome of interest had a higher predicted probability. This statistic

is identical to the area under the receiver operating a characteristics curve (ROC) when

the outcome of interest is binary (Harrell et al., 1984). The ROC is a graph of the true

33



2. KEY CONCEPTS OF RISK MODELLING

positive rate or sensitivity against false positive rates or one minus specificity of the

model for all possible cut-off points (Harrell et al., 1984), where sensitivity is the ability

of a test to correctly classify a patient as diseased. For example, if 100 patients known

to have a disease are tested, and the test result for only 23 of them is positive, then

the test has 23% sensitivity. On the contrary, the ability of a test to correctly classify

a healthy individual as disease-free is called specificity. For instance, if 100 with no

disease are tested, and 80 return a negative result, then the test has 80% specificity.

The C statistic of a model with no discrimination ability is expected to be around

0.5. In contrast, the model with perfect discrimination would have a C statistic of

about one (Harrell, 2001). The C statistic equal one is rare in practice though. In the

risk prediction modelling, it typically ranges from 0.6 to 0.85; higher values are seen

in diagnostic settings (Vergouwe et al. (2005); Altman and Royston (2000); Harrell

(2001)).

The C statistic can be estimated in both parametric and nonparametric approaches

(Dorfman and Alf (1969); Metz (1978)). The nonparametric approach will be taken in

this study as it does not require any distributional assumption for the linear predictor.

For a pair of patients (i, j) the nonparametric C statistic is given by

C = Pr(pi > pj |Yi = 1 and Yj = 0), ∀(i, j)

from one-to-one transformation between the probability of event of interest (p) and the

linear predictor (η); the above expression can be written as:

C = Pr(ηi > ηj |Yi = 1 and Yj = 0), ∀(i, j).

To compute the parametric C statistic, let N0 and N1 denote the total number of

subjects who experienced event and nonevent, respectively. Also, let p0 and p1 denote

the probability of nonevent and event, respectively. Therefore, the C statistic can be

estimated as follows

C =
1

N0N1

∑
i

∑
j

I(η
(1)
i , η

(0)
j ),

where η(1), η(0) are linear predictors that correspond to the ith person who did and

the jth person who did not experience the event of interest; I(η
(1)
i , η

(0)
j ) is defined as
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follows.

I(η
(1)
i , η

(0)
j ) =


1 if η

(1)
i > η

(0)
j

0.5 if η
(1)
i = η

(0)
j

0 if η
(1)
i < η

(0)
j

D statistic

The D statistic estimates separation or discrimination between subjects with low- and

high-risk (Royston and Sauerbrei, 2004). This statistic was initially suggested by Roys-

ton and Sauerbrei. This is calculated by first transforming each patient’s estimated

linear predictor η̂i to give standard normal order rank statistics. These rank statistics

are then divided by a factor of
√

8
π . It can be formalised as follows.

zi = (

√
8

π
)−1Φ−1

(
i− 3/8

N + 1/4

)
where i is the rank of the estimated linear predictor η̂i sorted within the population

of the study, N is the number of observations, Φ−1(.) is the inverse standard normal

distribution function, and
√

8
π ≈ 1.60. The scaled normalised estimated linear predictor

zi is distributed as N(0, π/8). Obtaining z for all patients in the validation data, a

logistic regression is then fitted to the validation data with sole predictor z. That is,

logit(Yi = 1|zi) = βzzi + αz,

β̂z is an estimate of the D statistic. In terms of the values that the D statistic

can take, it ranges between zero and plus infinity (+∞) for the models with no and

good prognostic information. The D statistic will be close to zero, if the average of the

predicted risk ordering doesn’t show any relationship with true risk ordering. Consider

two groups of the lower and upper half of the estimated linear predictor; in non-technical

words, the D statistic is an estimate of log-odds of having the event of interest between

low- and high-risk groups, respectively. For example, a D statistic of three in the binary

outcome setting means the log-odds of event in low-risk group is three times larger than

high-risk group.
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Brier score

The Brier score (BS) is often used to quantify the predictive accuracy of a risk model.

This measure is a quadratic scoring rule, where the mean square differences between

observed response y and estimated probability p̂ are calculated (Glenn, 1950), where n

is the number of observations. That is:

BS =
1

n

n∑
i=1

(yi − p̂i)2

The Brier score for a risk model can range from zero for a perfect model to one for

a model with no prognostic information (Ash and Shwartz, 2003). A Brier score is so

close to zero when the outcome prevalence is low (Harrell, 2001), which may not mean

that the model has good prognostic information.

Other measures

There are other measures available in the literature to study performance of logistic

risk prediction models.

One common method, usually readily available in standard software, is Nagelkerke’s

R2 (Nagelkerke, 1991). This measure can be obtained by rescaling the fit of the model

in accordance with −2 log likelihood. The Nagelkerke’s R2 is the logarithmic scoring

rule which is calculated by Y × log(P ) + (1− Y )× log(1− P ).

Another, yet not so common, measure is Pearson’s R2 which considers the square

differences between predictions p and the outcome y. This measure is similar to the

Brier score; however, it does not involve averaging over the total number of observations.

Calibration curve is a measure to quantify calibration ability of the risk prediction

model, and is the visual presentation of the relationships between observed outcome

frequencies and predicted probabilities.

Calibration-in-the-large is another method to measure calibration. This is the cali-

bration intercept when the slope is set to one.

Furthermore, the Hosmer-Lemeshow test is frequently used in risk prediction mod-

elling to assess whether or not the observed event rates match the predicted event rates

in subgroups of the sample, where subgroups are typically used based on deciles of the

estimated predictions. The risk prediction model is said to be well calibrated if the

predicted and observed event rates in the subgroups are similar.
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2.6 Validation measures for clustered binary data

In clustered data, the performance of the risk prediction models should be assessed

taking clustering into account. The predictive performance measures are often obtained

using two approaches; within-cluster and overall approaches.

To calculate within-cluster measures, one calculates the standard measures (see

section 2.5) within each cluster, and takes average over all cluster. On the contrary, one

computes the overall measures by calculating standard measures within the population.

For each measure in the clustered data, there are as many types of measures as there

are types of predictions type. For example, one can compute the within-cluster and

overall calibration slope for each type of prediction when validating a random-intercept

risk prediction logistic model. All these versions of the calibration slope have the same

interpretation to the standard calibration slope, based on the reference value of one

(see Section 2.5).

We considered using cluster-specific performance measures. However, we encoun-

tered a problem in small datasets when calculating the C statistic in cases where there

was no event in some clusters, and when calculating the calibration slope where there

were less than two events in some clusters. Moreover, according to Wynants et al.

(2015), overall and within-cluster performance measures perform similarly. Therefore,

we only used overall measures in chapters five and six. The details of four common

measures are discussed now.

Calibration slope

The calibration slope (CS) for clustered binary outcomes can be obtained using the same

method as the standard calibration slope. However, one can conduct it by fitting either

a random-intercept logistic model with the linear predictor η̂iju as the only predictor

and the outcome variable Yij , or a standard logistic model with those variables thereof.

If one uses a random-intercept logistic regression, the results take the following form:

logit(piju) = α+ βuη̂iju + uj , (2.6.1)
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where βu is the estimated calibration slope. On the contrary, if one uses a standard

logistic regression, the results will be in the following form:

logit(piju) = α+ βη̂iju, (2.6.2)

where β is the estimated calibration slope.

The estimated βu is equal to the estimated β, because the random effects are already

included in η̂iju.

The same approach to that discussed above can be taken to obtain the calibration

slope based on median (η̂ij0) and marginal (η̂ijm) linear predictors, respectively, but by

replacing η̂iju with the corresponding linear predictors.

C statistic

For a pair of subjects (i, k) from clusters (j, l), respectively, where i and k correspond

to subjects who had an event and those who did not, respectively, with the probability

(piju, pklu) or linear predictors (ηiju, ηklu), the C statistic is defined as

C = Pr(piju > pklu) = Pr(ηiju > ηklu), (2.6.3)

where a pair may consist of subjects from the same cluster or from different clus-

ters. For the subjects from different clusters, the cluster-specific random effect (u)

contributes in determining whether a pair is concordant, even if both subjects have the

same predictor values. For the subjects from the same cluster, however, u does not

contribute in determining a concordant pair, as they share the same value of u.

The definition is the same for median and marginal predictions. Note that marginal

predictions are re-scaled values of median predictions; marginal predictions re-scaled

by integrating out the u in clustered-specific predictions. Therefore, the rank order

based on both median and marginal predictions would be identical. This results in the

C statistic obtained using them being identical.

To estimate the C statistic, one uses the same approach described in section 2.5.

Note that the C statistic obtained using cluster-specific predictions is greater than that

obtained using marginal predictions if clustering exists in the data, and they are equal

if there is no clustering.
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D statistic

The same approach as described in section 2.5 is taken to obtain the D statistic when

using the clustered binary outcome. That is, one transforms linear predictors ηiju to

zij , and then fits either a random-intercept or standard logistic model to the validation

sample, consisting of zij as the only predictor and outcome variable. However, as the

random effects are already included in zij , both approaches would give a similar D

statistic.

For median and marginal predictions, the D statistic is obtained in a similar manner

to that described above. All these versions of the D statistic have the same interpreta-

tion as those for the C statistic.

Brier score

The Brier score (BS) can be obtained by averaging the squared differences between

the predicted probabilities and the observed outcomes (see section 2.5). One conducts

this by using either cluster-specific, median, or marginal prediction to obtain the cor-

responding Brier score. Unlike the C statistic, the Brier score is obtained using median

predictions that are not equal to those obtained using marginal predictions, as those

predictions are not equal.

2.7 Summary and discussion

In this chapter, the main components of risk modelling in medical research have been

briefly reviewed.

The next chapters of the dissertation include our main contribution to the literature.

While chapters three and four will examine the sample size requirements to develop

and validate a risk prediction model exploiting the independent data, chapters five and

six address the same problem but in the context of clustered data.
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Chapter 3

Sample Size Requirements for

Developing a Risk Model Using

Independent Binary Data

Risk prediction models have a vital role in medicine and need to be developed carefully

so that they reflect the information in the data accurately. These models should also

be valid when applied to new data. However, risk models developed in small datasets

may not be accurate as they may be overfitted (Harrell, 2001). Therefore, adequate

sample sizes should be used when developing a risk model.

This chapter discusses the sample size required to develop a risk prediction model

in the context of independent binary outcomes. The chapter consists of the following

parts. A literature review is provided in section 3.1. Section 3.2 describes the dataset

used in this chapter and Chapter 4. Section 3.3 is devoted to a case study conducted to

give an insight into the issue of sample size and events per variable. Section 3.4 describes

and presents the results of a simulation study which was conducted to explore factors

which may affect the accuracy of risk models. The final section, 3.5, is the discussion.

Literature search

For the literature search in chapters 3 to 6, we first searched online materials (e.g

using Google and Google scholar) for combinations of the following keywords “Events

per Variable”, “EPV”, “number of events”, “prediction modelling”, “prediction risk
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modelling”, “risk modelling”, “developing”, and “validating” (for chapters 4 and 6).

We also searched online sources based on citations and references of all known articles

(e.g. Harrell et al. (1984, 1985), Concato et al. (1995), Peduzzi et al. (1996) for chapter

3). However, we did not find any article using either of the aforementioned approaches

for chapter 6.

3.1 EPV in developing a risk model: a review

Type of sample size calculation

One critical part of study design is determining the sample size to develop a risk

model. Traditionally, the sample size for a prognostic study is calculated based on either

precision or hypothesis testing (Cochran (1977), Rosner (2006)). For precision-based

calculations, the sample size is obtained to find a confidence interval of a sufficiently

narrow width, where the aim of the study is estimating the mean of the population

or the difference in means or proportions. A small study, for instance, found that

the sensitivity of a new technique to detect methicillin-resistant staphylococcus aureus

(MRSA) was around 90%. Therefore, a new study should recruit 385 patients to

estimate this sensitivity with a 95% confidence interval of ±3. Note that MRSA is an

infection caused by a group of bacteria called staphylococcus aureus.

Sample size, for a hypothesis testing calculation, is computed when the aim of the

study is detecting a difference as statistically significant with specific power. Such a

study is conducted to compare the mean or proportion in two groups. As an example,

consider a randomised control trial in which patients with colonic cancer received post-

op fluids either in accordance with standard practice or a restricted intake. Let us

assume that the aim of the study is establishing whether two approaches differ with

respect to gastric emptying time. In this study a sample size of 20 patients in each

group will be sufficient to detect a difference of 30 minutes on gastric emptying time

using two sample t-test with a standard deviation of 29 minutes, a power of 90%, and

a significance level of 5%.

In current practice, the common sample size calculation for risk models is not based

on using confidence interval (precision-based) or testing coefficients (hypothesis test-

ing). Simple calculations are used for exploratory or prognostic studies involving risk

modelling where the risk models are serving to predict the likely outcome of a disease or
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ailment. These calculations obtain the size of the sample which is required to develop

a risk model and differ in relation to the types of outcome. The effective sample size

(Harrell et al., 1984) for a continuous outcome is equated with the total number of

observations. It is, in contrast, equal to the number of events, if this is the smallest

category, when analysing the binary outcome. The required effective sample size is

also obtained with taking the number of potential variables into account. That is the

number of events per variable (EPV) (Harrell et al., 1996). Now, the existing body of

knowledge and literature on sample size using EPV is reviewed.

Using EPV

For years, many model developers such as Harbarth et al. (2000), Judith et al. (2002),

Lassnigg et al. (2004), Jonas and Johnny (2005), Voerman et al. (2007), Akins et al.

(2008), Stone et al. (2011) and William et al. (2013) used ten events per variable (EPV)

to build a risk model and cited Peduzzi et al. (1995, 1996). However, this rule of thumb

is based on the work of Harrell et al. (1984) and Harrell et al. (1985). The last four

studies will be summarised now.

Harrell et al. (1984)

Harrell et al. (1984) conducted a study to quantify the performance of regression models

built using development data of different sizes to predict survival in independent valida-

tion data. They used three Cox regression models; one with stepwise variable selection,

one that is the incomplete principle components Cox model, and the one with clinical

indexes, where the Cox regression model is a common modelling technique when the

outcome of interest is time-to-event.

Harrell et al. (1984) employed data from 4226 patients with possible angina un-

dergoing cardiac catheterisation of whom 10% died from cardiovascular disease. Their

response variable was measured on a continuous scale with no censoring. They always

used half of the data and three subsets of it for development and the other half of it for

validation. Moreover, in their data there were 30 potential variables, both continuous

and categorical.

Those three methods are described now. While in the standard stepwise variable

selection model, one selects variables from candidates until no other variable remains

significant at the studied significant levels; in incomplete principle components (PC)
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regression, one replaces variables with subsets of PCs which explain most of the vari-

ation in the variables across patients. Each PC is the linear combination of variables.

This is incomplete as in this method one does not transform the estimated coefficients

of PCs back to the coefficients of the variables. In the regression model with clinical

indexes, one makes clusters of variables using the clustering method, assigns weights

to each variable in the clusters (if required) based on clinical intuition and uses the

clusters (indexes) instead of potential variables.

In the study, Harrell et al. (1984) assessed the performance of the model using only

one discrimination measure (C index) and concluded that the Cox regression model with

stepwise variable selection should not be employed in studies when the EPV is smaller

than ten; however, this issue was not the main focus of the study and so investigation

of that aspect was limited in scope.

Harrell et al. (1985)

Harrell et al. (1985) conducted the study to compare the performance of the three

regression methods that they used in previous work plus the method of recursive par-

titioning to predict the probability of recovery from Non-Hodgkin’s Lymphoma using

logistic regression. Note that the recursive partitioning methods yield a prediction rule

by making subgroups of patients within which the response variable is relatively homo-

geneous(on the basis of their values on a set of predictor variables) and assigning each

subgroup a predicted response.

Harrell et al. (1985) used ten years of data on 450 patients with Non-Hodgkin’s

Lymphoma, of whom 190 recovered after six doses of chemotherapy. In their data,

they had 25 potential variables, both continuous and categorical. They divided the

first five years into two independent development samples and always utilised the last

five years for validation.

Like in the previous study, Harrell et al. (1985) used only one discrimination measure

(C statistic) and drew the same conclusion as before. Harrell et al. (1985) suggested

the use of data reduction method before performing regression analysis when the EPV

is smaller than ten. However, again the issue of EPV was not the main focus of the

publication and so was not investigated further.
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Peduzzi et al. (1995), Concato et al. (1995), and Peduzzi et al. (1996)

In a similar vein, Peduzzi et al. (1995) and Concato et al. (1995) carried out a simulation

study to find the effect of small EPV on accuracy, precision of estimation of the Cox

regression coefficients, and the power of significance testing. Their data was from 673

patients who had coronary artery bypass surgery of which 252 died during the first ten

years of follow-up. They used only categorical predictors in their model with a wide

range of prevalences and hazard ratios.

Peduzzi et al. and Concato et al. assessed convergence of the models, bias in the

estimation of regression coefficients, and power of the statistical test. They reported

that most of the problems happened at EPV<10 and concluded that the results of

studies with EPV<10 should be interpreted cautiously.

Peduzzi et al. (1996) repeated the previous study with logistic regression using the

same dataset and drew the same conclusions as before.

The focus of both studies was on the accuracy and precision of the estimated regres-

sion coefficients rather than predictions. Moreover, they did not report the simulation

standard error which aids judgement on stability of the results. Furthermore, in these

studies, the researchers only looked into the effect of EPV, holding the sample size, the

distribution, and the effects of the predictors constant at the values observed in the

dataset.

Vittinghoff and McCulloch (2007)

Vittinghoff and McCulloch (2007) carried out a simulation study to find out in which

situations EPV<10 was enough for acquiring correct coverage for the confidence interval

of and unbiased estimation of regression coefficients. They studied both logistic and

Cox regression models.

Their study was carried out from an epidemiological perspective; it focused only on

a primary predictor and considered the rest of the variables as covariates. The primary

predictor in their study was either discrete or continuous, but the covariates were always

normally distributed. Apart from altering the EPV in their simulation process, they

changed other factors; namely sample size, number of events, total number of predictors,

effect size of primary predictor (varying prevalence for the categorical predictor or

different coefficients for the continuous predictor). For logistic models, Vittinghoff
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and McCulloch generated the required number of events and non-events separately,

mimicking the case-control design. In contrast, for the Cox regression models, they first

selected the required number of events and then censored the remainder at simulated

time values. They concluded that the problem of a biased estimation of regression

coefficients, large standard error for estimated coefficients, and non-coverage in the

confidence interval appeared more at EPV less 5.

Nevertheless, by taking an epidemiological approach, the investigators did not study

collinearity, or the presence of noise variables in the model, presence of various types of

covariates. Similar to previous studies, Vittinghoff and McCulloch did not assess the

effect of the EPV in the presence of other scenarios on the predictive performance of

the model. They also did not report the simulation standard error in order for readers

to judge the stability of their results.

Courvoisier et al. (2011a)

In line with previous works, Courvoisier et al. (2011a) carried out a simulation study to

examine the accuracy and precision of the estimated logistic regression coefficients in

relation to the EPV. They generated a set of standard normal predictors, examining the

following scenarios; strength of the predictors, collinearity, the number of variables in

the model (one variable, 25 variables, and seven significant variables out of 25 variables

which are in the model) and the proportion of significant variables from the total

number of variables in the model. They also studied different outcome prevalences

using univariate models (only one predictor in the model). They simulated a population

and sampled events and nonevents separately to achieve the required EPV.

They observed the estimation bias was around 20% at EPV≤10 in univariable mod-

els and that it was about 15% at the same EPV in models with seven variables. In

addition, the level of bias in the model with 25 variables was the same as it was in

models with seven variables when EPV≤ 7.

In a small part of their study Courvoisier et al. (2011a) also looked into the bias in

the estimation of the C statistic in the development sample (apparent discriminating

ability of the model) for all simulated models and compared the results with those in

the population. They found an overestimation of the C statistic in the development

sample by > 10% at all EPV in univariate models with weak variables, by > 10% at

EPV< 10 in models with seven weak variables, and by < 10% at all EPV in models with
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25 variables. Courvoisier et al. concluded that even if EPV exceeds 10, an unbiased

and precise estimation of regression parameters may not be guaranteed.

Courvoisier et al.’s model always included continuous variables. These researchers

did not study the presence or otherwise of noise variables in the model. Courvoisier

et al. (2011a) only examined the apparent discrimination ability of the models. The

researchers may not be able to ensure the reliability of their model unless they use

data to test it that is different to the data used to build it (Harrell, 2001, Omar et al.,

2004, Steyerberg, 2009). Moreover, Courvoisier et al. did not report the simulations

standard error.

Steyerberg et al. (2011)

In their response to Courvoisier et al. (2011a), Steyerberg et al. (2011) indicated that

Courvoisier et al.’s model with seven significant variables may not be successfully val-

idated in future datasets because of selection bias (Steyerberg et al., 2011). Where

Selection bias refers to the amount of bias in estimated regression coefficients when one

selects only statistically significant predictors to be included into the model. In their

response they illustrated that selection bias in estimated regression coefficients is larger

than the bias that may occur in a prespecified model.

Courvoisier et al. (2011b)

Later, Courvoisier et al. (2011b) responded using results from a new simulation study.

They found that bias at EPV less than 5 was higher whenever predictors were selected

based on statistical significance. Thus, they confirmed that due to the impact of omit-

ting nonsignificant variables, the estimation of significant variables effects was biased

(Courvoisier et al., 2011b).

Ogundimu et al. (2016)

They conducted a resampling study to evaluate the effect of the EPV on the accuracy

and precision of estimated regression coefficients and the accuracy of predictions for

models with binary predictors which have low prevalence.

Ogundimu et al. (2016) used the data from The Health Improvement Network

(THIN) which consisted of two million patients’ information. They studied fully pre-
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specified models and models derived using automated variable selection (backward elim-

ination).

In their study, they used a case-control design for sampling (select events and non-

events separately) and examined the number of variables in the model. Ogundimu et al.

investigated the predictive accuracy of the models using the C index, D statistic, and

measures of explained variation and calibration slope.

Ogundimu et al. (2016) concluded that a higher EPV (say, >20) is required when

there are many low-prevalence binary predictors in the model; this is to ensure unbiased

regression coefficients and accurate/improved predictions compared to true predictions

from the true model which was developed using the entire THIN dataset.

Although Ogundimu et al. (2016) employed a large dataset for their study, they

studied a limited number of scenarios (number of variables in the model). For instance,

they did not examine collinearity between variables or different outcome prevalences.

They also only evaluated the Cox regression model.

van Smeden et al. (2016)

They conducted Monte Carlo simulations to investigate small sample bias, coverage of

90% confidence intervals, and mean square error of regression coefficients.

van Smeden et al. (2016) show that the estimates of true associations were largely

biased (about 30%) for data sets with small EPV, and bias may not disappear even for

a large EPV (say, 150). They also reported the coverage above the nominal level for

EPV less than 30, and that mean square error was large (greater than 0.2) for those

predictors with large true effects (β equals to log(4) or log(0.25) when with an EPV

≤ 30.

van Smeden et al. (2016) found that apart from EPV, other factors, such as the

total sample size, and true effect size, associated with the problems of low EPV. They

concluded that the available evidence supporting EPV rules is weak. Nevertheless,

they have not investigated the effect of EPV on the predictive performance of logistic

regression models.

Jinks (2012)

In her PhD dissertation, Jinks conducted a study to explore the problem of sample

size, EPV, in risk survival modelling. She used a number of different survival datasets
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from cancer with various sample size and outcome prevalence. To quantify model

performance she only used the discrimination measure (D statistic). In this study

Jinks developed multivariable fractional polynomial models (Sauerbrei and Royston,

1999). These models use backward elimination as a variable selection method. They

used the bootstrap method to minimise optimism in the estimate of the measure due

to employing the same dataset for both developing and validating. This researcher

studied the presence of noise variables in the data, the outcome prevalence, and sample

sizes along with the EPV.

Jinks concluded that with EPV greater than and equal to 10 in a dataset, there is

no chance of producing a valid risk model where the valid model was defined as the

one that has an acceptable amount of optimism (median optimism was 18% here) in

its related D statistic. Ultimately, she recommended that to minimise optimism and to

accurately estimate the D statistic EPV should exceed 20 or 30.

Jinks exploited a variety of datasets (studying different case mixes) but only used

survival data and evaluated her models with just the D statistic. Furthermore, Jinks

used the multivariable fractional polynomial (Royston and Sauerbrei, 2008) method

to develop risk models. This method uses a backward elimination procedure to select

variables. A closer look at the literature reveals that this variable selection method is

always criticised for the bias that it introduces and may not choose clinically important

variables (Harrell, 2001, Steyerberg, 2009, Ambler et al., 2011).

EPV summary

So far, the review of the available literature has revealed that, with the exception of a

very small part of Courvoisier et al. (2011a) and the study by Ogundimu et al. (2016),

investigators have mainly paid attention to the effect of sample size using EPV on

the estimation of regression coefficients. Nevertheless, in the case of a risk prediction

model, there is less interest in individual covariate effects. Rather, the main focus is

likely to be measuring the ability of the model to predict outcomes for future patients,

or to discriminate between groups of patients. Copas (1983) asserted that “a good

model may include variables which are ‘not significant’, exclude others which are, and

may involve coefficients which are systematically biased”. Hence, basing sample size

decisions on the significance or unbiased estimation of model coefficients alone may not

result in the best risk prediction model.
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In practice, it may not be possible to accomplish the EPV ≥ 10 advice when

developing a risk model under some circumstances (Ambler et al., 2011); for instance,

datasets might contain few events due to rare event cases. As such, the performance of

the risk model is affected negatively (Harrell, 2001). However, the predictive accuracy of

the risk model may be improved by using the post-estimation shrinkage factor (Harrell,

2001, Ambler et al., 2002, Steyerberg, 2009, Ambler et al., 2011). The factor can be

estimated using the bootstrap or the heuristic approach.

Ambler et al. (2011)

The use of shrinkage factors when developing risk models has been suggested for some

decades (Copas, 1983, Van Houwelingen and Le Cessie, 1990). However, few studies

have investigated the influence of applying shrinkage on the performance of risk predic-

tion models with regard to EPV. Ambler et al. (2011) carried out a simulation study

based on two real datasets (the penile cancer data for rare events and the mechanical

failure of artificial heart valves data for rare disease) to investigate differences in the

performance of three risk modelling methods (ridge (Verweij and van Houwelingen,

1994), lasso (Tibshirani, 1996), and garotte (Breiman, 1995)) and the standard Cox

model with post-estimation shrinkage when there is a low EPV. In their penile cancer

data, there was information on 129 patients (20 events), whilst the heart valve data

consisted of 3118 patients (56 events). Now those methods and some details of their

study are described.

The penalised estimation methods of ridge, the least absolute shrinkage and selec-

tion operator (lasso), and garotte maximise a function which is the sum of the usual

Cox partial likelihood and a penalty term (a function of only the regression coefficients

and a parameter that controls the amount of shrinkage). The difference between Ridge

and Lasso is in the penalty term: in the Ridge method the penalty term is proportional

to the sum of the squares of the regression coefficients, but in the lasso method it is

proportional to the sum of the absolute value of the regression coefficients. The non-

negative garotte individually shrinks each maximum likelihood regression coefficient

under a constraint on the sum of the corresponding shrinkage parameters.

Ambler et al. observed that the method of maximum likelihood with linear shrinkage

factor (LSF) and ridge were often under-fitted with decreasing EPV. Ambler et al. also

learnt that garotte and lasso produced the best calibration. Furthermore, in terms of

49



3. SAMPLE SIZE REQUIREMENTS FOR DEVELOPING A RISK
MODEL USING INDEPENDENT BINARY DATA

the discrimination ability of the models, they found that ridge performed best in all

EPV, followed by lasso and the full model. In conclusion, Ambler et al. suggested

using some type of shrinkage for EPV<30 when developing risk models (Ambler et al.,

2011).

Summary

To sum up, the consensus might be that at least ten EPV is a reasonable guideline

to develop a reliable risk model to achieve acceptable accuracy and precision in the

estimation of the regression coefficients (Harrell, 2001, Peduzzi et al., 1995, 1996).

However, a researcher can develop a model with EPV greater than and equal to five

with care (Vittinghoff and McCulloch, 2007) or may need a larger EPV (say, >20) when

there are many low-prevalence binary variables in the model. Although these results

are reassuring, the required number of events to develop a reliable risk prediction model

might be different.

There is no consensus on how many EPV are needed to develop a reliable risk

prediction model using binary outcomes. Courvoisier et al. (2011a) suggested that

EPV≥10 can not guarantee the accurate estimation of the C statistic. Further, Jinks

(2012) justified that EPV should be at least 20 or 30 to develop a valid risk prediction

model.

This study is carried out to ascertain the required number of events to develop

a reliable risk prediction model. To do this, we illustrate the dependence of the risk

model performance on EPV in the case study. This will be conducted using several

performance measures of discrimination, calibration, and overall performance. We also

performed a simulation study evaluating various scenarios including different outcome

prevalence in the dataset and the strength of linear prediction.

Moreover, Ambler et al. (2011) recommended the use of shrinkage technique when

developing a risk model at EPV ≤ 30. Therefore, the trend of improvement in per-

formance of the risk models when applying linear shrinkage with EPV is also studied

in this chapter. Despite Ambler et al.’s finding showed that the postestimation linear

shrinkage performed the worst at low EPV among all methods that they used, we will

employ linear postestimation shrinkage in this chapter because we believe that their

finding was only from two case mixes and may not be the case in our study.
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3.2 Data

The data used in this dissertation, the heart valve surgery data, was from the Society of

Cardiothoracic Surgeons of Great Britain and Ireland (SCTS). It was based on patients

who underwent aortic and/or mitral heart valve surgery, both repair and replacement,

between April 1995 and April 2003 (Keogh and Kinsman, 2003). The clinical outcome

was in-hospital mortality, recoded as either dead or alive. This data set has been used

by Ambler et al. (2005) to develop and validate a risk model. They developed the risk

model on the dataset from the first five years (N=16,679) and evaluated its performance

on the remaining data (N=16,160). This model was to predict in-hospital mortality for

aortic and/or mitral heart valve patients with or without concomitant Coronary Artery

Bypass Grafting (CABG). The overall in-hospital mortality was 6.4%.

In this chapter the first five years of data is utilised, but in Chapter four (sample

size requirement to validate a reliable risk model using independent binary data) the

entire data (N=32,839) is employed. Therefore, the data used in these two chapters is

described in this section.

A set of predictors all with prognostic information were chosen to use in this study

(except the case study in Chapter four where we used most of the predictors of Ambler

et al.’s model to specify a perfect risk model), having a mixture of continuous (age at

surgery, and body mass index or BMI), categorical (renal problem, ejection fraction,

operative priority, operation sequence, preoperative arrhythmias, year of operation and

valve operation), and binary (concomitant CABG surgery, diabetes and hypertension,

sex) variables. Categories were combined for two variables, renal problem (high creati-

nine and dialysis) and operation sequence (second and third or more), to avoid perfect

prediction problems (Albert and Anderson, 1984) due to low prevalence (less than 1%).

Therefore, renal problem and operation sequence changed to be binary variables.

Logistic regressions models were fitted to the entire dataset (N=32,839) using max-

imum likelihood (ML) to investigate the importance of each predictor. For each predic-

tor, two models were fitted, one all predictors including and one excluding the predictor.

The decrease in χ2 (∆χ2) was then calculated for each predictor (Table 3.1).

Operative priority was the most important predictor followed by age and renal fail-

ure. Table 3.1 also summarises the prevalence of each category for categorical variables.
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Table 3.1: Importance of the predictors in a multivariable model (estimated using

maximum likelihood) for the heart valve data (N=32,839).

Variable Category D.F. M (pM ) β̂ (SE) OR (95% CI) ∆χ2

Operative Elective 2 23,926 ( 0.05 ) 1.00 432.246

priority Urgent 7,510 ( 0.09 ) 0.576 ( 0.053 ) 1.75 ( 1.58 , 1.94 )

Emergency 1,403 ( 0.25 ) 1.680 ( 0.078 ) 5.33 ( 4.57 , 6.21 )

Age at surgery 1 0.035 0.002 ) 1.04 ( 1.03 , 1.04 ) 227.727

Age at < 50 4 3,559 ( 0.03 ) 1.00 217.896

surgery 50− 59 5,225 ( 0.04 ) 0.211 ( 0.122 ) 1.28 ( 1.01 , 1.63 )

60− 69 10,573 ( 0.06 ) 0.535 ( 0.109 ) 1.79 ( 1.44 , 2.22 )

70− 79 11,340 ( 0.08 ) 0.950 ( 0.107 ) 2.76 ( 2.23 , 3.41 )

> 70 2,142 ( 0.10 ) 1.347 ( 0.126 ) 4.11 ( 3.21 , 5.27 )

Renal No 1 31,121 ( 0.06 ) 1.00 153.243

failure Cr>200&dialysis 1,718 ( 0.21 ) 0.942 ( 0.072 ) 2.12 ( 1.89 , 2.37 )

Operation First 1 28,673 ( 0.06 ) 1.00 140.657

sequence Second&more 4,166 ( 0.12 ) 0.751 ( 0.061 ) 1.87 ( 1.70 , 2.06 )

Ejection Good(>49) 2 21,816 ( 0.05 ) 1.00 106.855

fraction Fair(30-49) 8,783 ( 0.08 ) 0.218 ( 0.054 ) 1.24 ( 1.12 , 1.38 )

Poor(<30) 2,240 ( 0.16 ) 0.776 ( 0.072 ) 2.19 ( 1.90 , 2.52 )

Concomitant No 1 21,865 ( 0.05 ) 1.00 74.677

CABG Yes 10,974 ( 0.09 ) 0.443 ( 0.051 ) 1.57 ( 1.42 , 1.73 )

surgery

Valve Aortic 2 21,143 ( 0.06 ) 1.00 61.764

Operation Mitral 9,651 ( 0.07 ) 0.254 ( 0.054 ) 1.29 ( 1.16 , 1.43 )

Aortic+mitral 2,045 ( 0.11 ) 0.642 ( 0.084 ) 1.90 ( 1.61 , 2.24 )

Preoperative No 2 23,060 ( 0.04 ) 1.00 46.938

arrhythmias AF/flutter 9,160 ( 0.10 ) 0.340 ( 0.051 ) 1.40 ( 1.27 , 1.55 )

VT/VF 619 ( 0.09 ) 0.384 ( 0.150 ) 1.46 ( 1.08 , 1.96 )

BMI Low(<20) 2 2,788 ( 0.11 ) 1.00 38.664

Normal(20-

25)

12,076 ( 0.08 ) -0.350 ( 0.076 ) 0.71 ( 0.61 , 0.82 )

High(>25) 17,975 ( 0.06 ) -0.486 ( 0.076 ) 0.62 ( 0.54 , 0.72 )

Year 1995 8 1,039 ( 0.09 ) 1.00 22.597

1996 1,867 ( 0.08 ) -0.142 ( 0.147 ) 0.86 ( 0.65 , 1.15 )

1997 2,882 ( 0.08 ) -0.106 ( 0.137 ) 0.90 ( 0.68 , 1.17 )

1998 3,986 ( 0.07 ) -0.288 ( 0.134 ) 0.74 ( 0.57 , 0.97 )

1999 5,359 ( 0.06 ) -0.379 ( 0.131 ) 0.67 ( 0.52 , 0.87 )

2000 5,053 ( 0.06 ) -0.311 ( 0.132 ) 0.71 ( 0.55 , 0.92 )

2001 5,178 ( 0.06 ) -0.244 ( 0.132 ) 0.76 ( 0.59 , 0.98 )

2002 5,950 ( 0.05 ) -0.432 ( 0.133 ) 0.63 ( 0.48 , 0.81 )

2003 1,525 ( 0.05 ) -0.366 ( 0.167 ) 0.67 ( 0.48 , 0.93 )

Diabetes No 1 15,189 ( 0.07 ) 1.00 16.628

Yes 1,269 ( 0.11 ) 0.303 ( 0.072 ) 1.36 ( 1.18 , 1.56 )

Hypertension No 1 20,866 ( 0.07 ) 1.00 12.528

Yes 11,973 ( 0.08 ) 0.179 ( 0.050 ) 1.19 ( 1.08 , 1.32 )

Full model (with age) 24 LRχ2=1883.675

Full model (with age groups) 27 LRχ2=1873.843

D.F. denotes the number of parameters included in the model for that predictor.

M and pM refers to the number of patients and the rate of in-hospital mortality in each category, where

pM=m/M and m is the number of patients with the event in each category.

β̂ (SE) refer to the estimated regression coefficient and corresponding standard error

Odds Ratio (OR) and its related 95% confidence interval (CI) was estimated with either age or agegrp (age

group) in the model.

∆χ2 denotes the decrease in the χ2 statistic for the model when the predictor is omitted and the model refitted.
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3.3 Case study

From reviewing the literature it become clear that the available sample size advice to

develop a risk prediction model is not sufficient. There is little advice regarding the

prediction ability of a risk model when the outcome of interest is binary, in contrast to

the advice regarding the accuracy of the effect size of predictors.

Therefore, a case study was conducted using the heart valve surgery data (described

in 3.1) to understand how the accuracy of predictions produced using logistic regression

models can be affected by the EPV.

3.3.1 Method

The following method was used to carry out the case study. The data was randomly

split into two parts for development (80%) and validation (20%). Then, the required

subset of the development sample was taken for each EPV (by separate sampling from

events and nonevents). A standard logistic regression model was fitted on the de-

velopment sample and its performance was quantified in the correspondent validation

sample (using four measures). These measures were the C statistic, D statistic, cali-

bration slope, and Brier score. The process was repeated several times (i.e. 200) for

each EPV. The EPV values were 2.5, 5, 7.5, 10, 12.5, 15, 20, 25 and 30. These values

include all recommended EPV (5, 10, 20, and 30).

In all simulation and case studies for the entire thesis we used the standard error of

the estimated measures to determine the adequate number of simulations to perform.

That is, we obtained the required number of simulations using SE = SD/
√
n, where

SE and SD are standard error and standard deviation, respectively. For instance, to

achieve a standard error of 0.001 for the estimated mean we require 400 simulations

based on a standard deviation of 0.02.

3.3.2 Results

Table 3.2 displays the mean values of each performance measure over 200 samples

for each EPV. From the table, it is clear that the performance of the risk model is

dependant on the EPV.

The discrimination ability of the models deteriorated by decreasing the EPV for the

C statistic and D statistic. That is, the mean value of the C statistic diminished from
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Table 3.2: mean values of each performance measures over 200 samples for each

EPV level.

EPV C statistic (SE∗) D- statistic (SE) Calibration slope (SE) Brier score (SE)

30 0.74 (0.02) 1.47 (0.12) 0.96 (0.01) 0.06056 (0.0030)

25 0.74 (0.01) 1.48 (0.11) 0.96 (0.01) 0.06119 (0.0030)

20 0.73 (0.02) 1.45 (0.12) 0.94 (0.01) 0.06115 (0.0029)

15 0.73 (0.01) 1.45 (0.11) 0.92 (0.01) 0.06149 (0.0031)

12.5 0.73 (0.02) 1.41 (0.11) 0.89 (0.01) 0.06162 (0.0033)

10 0.72 (0.02) 1.38 (0.12) 0.88 (0.01) 0.06192 (0.0031)

7.5 0.72 (0.02) 1.39 (0.13) 0.84 (0.01) 0.06155 (0.0031)

5 0.72 (0.02) 1.32 (0.16) 0.77 (0.01) 0.06238 (0.0032)

2.5 0.69 (0.03) 1.15 (0.19) 0.60 (0.01) 0.06452 (0.0041)

* SE denotes the empirical standard error of the measure in 200 simulations.

0.74 for EPV equal to 30 to 0.69 for EPV equal to 2.5, respectively. Also, the value of

the D statistic declined from 1.47 for EPV equal to 30 to 1.15 for EPV equal to 2.5,

respectively. The major drop was at EPV=2.5 for the C statistic. It was at EPV ≤ 5

for the D statistic.

Furthermore, there were signs of overfitting for all EPV as shown by the calibration

slope. Moving from EPV of 30 to 2.5, the calibration slope changed from 0.99 to 0.60.

However, models fitted using EPV ≤ 12.5 were overfitted. This problem was severe for

EPV ≤ 5

The overall performance of the models measured by the Brier score slowly decreased

with regard to the decreasing EPV. There is a jump at EPV ≤ 5. Brier scores for

different EPV are so close together due to the low outcome prevalence in our dataset

and also our scaling.

3.3.3 Discussion

From the results of this case study, it is evident that the performance of the risk model

was affected by the EPV.

Further investigation was conducted to understand the reasons for the trends seen in

Table 3.2. The effect of the EPV on the separation between η̂(0) and η̂(1) is illustrated in

Figure 3.1 where η̂(0) and η̂(1) are the linear predictors that correspond to the nonevent

and event groups respectively. For each panel (each EPV), an overlap of all 200 η̂(0)
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Figure 3.1: Separation between η̂(0) and η̂(1) by EPV. η̂(0) and η̂(1) are linear predictors

correspond to nonevent and event groups, respectively.

and η̂(1) distribution have been overlaid to judge the separation by decreasing EPV. As

can be seen, the separation between η̂(0) and η̂(1) is better when the sample size (EPV)

is large compared to when the sample size is small.

This indeed was the pattern observed in the D statistic and C statistic, both mea-

sures decreased by decreasing the EPV.

The questions that we also like to address in this chapter are whether EPV is

the only factor that affects model performance or whether there are other additional

factors. Therefore, we need to change some characteristics of the data and observe

whether model performance changes when other factors in the dataset apart from EPV

are varying. That will bring us to the next section in which we discuss the quality of
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the risk models that were studied using diverse scenarios and EPV.
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3.4 Simulation study

The case study illustrates that model performance is influenced by EPV in terms of cal-

ibration, discrimination, and overall performance. However, it is still unclear whether

performance is affected by other factors such as outcome prevalence, strength of the

model or presence of noise variables in the model.

To learn how model performance and predictive accuracy depend on EPV and other

factors, a number of simulation studies were performed based on the heart valve surgery

data. The following factors were investigated; EPV, prevalence of the event of interest,

prognostic strength of the risk model, the presence or otherwise of noise or continuous

variables in the data, and the degree of collinearity. The details of these simulations

are now described.

3.4.1 Overview

For the dataset described in section 3.2, a true model was derived using the entire

dataset (N=16,679) and a full model was specified. From the true model, a set of true

regression coefficients were obtained and used to generate new responses. These were

used to investigate the following factors:

§ Strength of risk model: to study whether EPV requirements change if the prog-

nostic strength of the risk model varies, three levels of model strength were specified;

weak, original, and strong. ‘Original’ refers to the models in which the coefficients are

obtained from the model fitted to the heart valve surgery data.

§ Outcome prevalence: to assess how prevalence of the outcome can change the EPV

requirements, three outcome prevalences were examined; 7%, 25% and 40%. These

represent situations where the occurrence of the event of interest is low, medium or

high. Note that the first level is the outcome prevalence in the heart valve surgery data

(7%).

§ Noise variables: to learn whether the presence of noise variables in the risk model

can affect the EPV requirements, a mixture of continuous and binary noise variables

were simulated and included in the risk models. There were either 0, 5, or 10 noise

variables.

§ Type of predictor : to understand whether the EPV requirements are different for

models with different types of predictors, type of predictors in the model was changed;
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variables were either all categorical, or a mixture of both categorical and continuous

with one type dominant. Four levels were considered for this scenario; 0, 2, 4 or 7

continuous predictors out of 11 predictors.

§ Number of predictors: to check whether the EPV requirement should vary de-

pending on the number of predictors in the model, different numbers of predictors were

considered to be in the model. Four levels were studied for this scenario; 4 or 7, 10

or 22 predictors. These mimicked the situations whereby there were a small (4 or 7

variables), medium (10 variables) or large (22 variables) number of predictors in the

risk model.

§ Degree of collinearity: this factor is to understand the impact of collinearity

in data on the EPV requirement. The average (pairwise) Pearson correlation in the

real data was 4%. Hence, two extra datasets (with about 45% and 70% (pairwise)

correlation) were produced to assess this scenario.

§ Postestimation shrinkage: to learn how EPV requirements can change when

postestimation shrinkage is to be applied, two postestimation linear shrinkage methods

were used; namely, heuristic shrinkage and bootstrap. The former method is simple

and can be calculated more easily than the latter (see section 2.5). In contrast, the

second method is recommended but may take a long time to obtain if, for example,

there is high collinearity between variables (Harrell, 2001).

§ EPV: nine EPV were considered: 2.5, 5, 7.5, 10, 12.5, 15, 20, 25, and 30 . This

range includes all recommended EPV (see section 3.1).

For each combination of factors, 400 datasets were simulated. For each EPV, the

simulated dataset was randomly split into two parts (development (80%) and validation

(20%)) and the size of the development data was altered (by sampling separately from

events and nonevents), but the size of the validation data remained unchanged. The

risk model was fitted on the development data and the performance of it was quantified

using the validation data. The predictive accuracy of each risk model was assessed

by comparing the estimated performance measures with reference measures. These

reference measures represent the performance of the risk models fitted on the full size

development dataset. The following measures were used:

§ calibration - calibration slope,

§ discrimination - C statistic, D statistic,

§ overall performance - Brier score
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Only ‘full’ models were used - no variable selection method was applied.

Evaluating the models

To enable comparison across different simulated scenarios, model performance was

quantified relative to the corresponding reference values using

Relative differences = (
m̂i −m
m

)× 100

where m̂i and m are the performance measure from the ith simulated data and the

reference measure.

Sample size calculation

EPV is defined as:

EPV =
(number of events)

(number of potential variables)
(3.4.1)

In this study, the full model approach was taken; therefore, the number of potential

variables is the number of variables in the model.

This can be rewritten as:

EPV =
(N)× (outcome prevalence)

(number of variable)
(3.4.2)

and so:

N =
EPV× (number of variables)

(outcome prevalence)
. (3.4.3)

The sample sizes required for different EPV when ten variables are in the model

are given in Table 3.3.

Details of each simulation scenario is described below along with the corresponding

results.

3.4.2 Model strength

Generally, the strength is evaluated by measuring how well that model can separate

between prognostic groups. A strong model has the ability to classify patients into

clinically useful groups (Altman and Royston, 2000). The required EPV is expected

to be lower when developing models with several strong predictors. To aid better

understanding of this, consider two scenarios in which the true logistic model consists
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Table 3.3: Sample sizes required for each

EPV and by outcome prevalence when there

are ten predictor variables.

Outcome prevalence

7% 25% 40%

2.5 357 100 63

5 714 200 125

10 1429 400 250

EPV 12.5 1786 500 313

15 2143 600 375

20 2857 800 500

25 3571 1000 625

30 4286 1200 750

of a single binary predictor where the corresponding β equals either 2 or 0.5. Further,

consider the prevalence of the binary outcome to be 10%. The C statistic for the model

with the strong predictor is 0.73 and for the model with the weak predictor it is 0.56.

To develop a model with this strong predictor (β=2) an acceptable C statistic (say,

0.72) can be obtained using only 10 events per variable. However, a model with the

weak predictor (β=0.5) will always have low discrimination ability even when EPV

exceeds 50. In other words, EPV needs to be large when developing a risk model with

a weak predictor.

The effect of EPV on the performance of models of varying strength was studied.

To do this, the logistic model was fitted on the entire data; the true linear predictor

(ηtrue) was obtained and used to derive the new linear predictor (ηnew). That was

conducted using ηnew = A + B × (ηtrue − η̄true) + η̄true, where A sets the outcome

prevalence and B shrinks or boosts the prognostic strength. The values of B were

chosen to be 0.5, 1, and 2 to achieve the following desired values for the C statistic

(0.61, 0.74, and 0.87, respectively) as an indicator of the strength of the model. Since

a prognostically strong model can accurately differentiate patients into different risk

groups and a larger C means that the model has a good discriminating ability, our

method seems adequate. The original outcome prevalence (7%) is used for all three

strength levels for comparability. For convenience the models corresponding to the C

statistic values of 0.74, 0.61 and 0.87 will be called original, weak and strong models,
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Table 3.4: Reference values of performance measures for all scenarios

Scenario Scenario Calibration Brier C D

level slope score statistic statistic

Model strength

weak 1.00 0.064 0.62 0.70

original 1.00 0.059 0.73 1.47

strong 1.00 0.046 0.87 3.15

Outcome prevalence

7% 1.00 0.059 0.73 1.47

25% 1.00 0.177 0.64 0.86

40% 1.00 0.228 0.62 0.75

Noise variables 0/5/10 1.00 0.059 0.73 1.47

Type of predictors 0 1.00 0.059 0.73 1.52

(number of continuous 2 1.00 0.059 0.74 1.55

variables) 4 1.00 0.060 0.73 1.52

7 1.00 0.061 0.74 1.54

4 1.00 0.062 0.72 1.42

Number of variables 7 1.00 0.061 0.72 1.44

in the model 10 1.00 0.059 0.73 1.47

22 1.00 0.059 0.73 1.46

Presence or otherwise 4% 1.00 0.059 0.73 1.47

of collinearity 46% 0.99 0.059 0.72 1.44

71% 1.00 0.058 0.72 1.40

respectively.

Note that the model χ2 for the true original model was 857.1 and the interquartile

range (IQR) for the weak and strong models χ2 were (193 to 233) and (2664 to 2792),

respectively.

Model strength: results

Figure 3.2 displays relative differences in the calibration slope and Brier score by

model strength over EPV and Table 3.4 presents reference values for the various model

strengths. From the plot, the relative differences in all measures were smallest for

strong models, and largest for weak models for all EPV.

From the calibration slope plots, there was an overfitting problem in models of any

strength at almost all EPV if no recalibration was applied. However, the overfitting

issue was a greater concern in all EPV for weak models than strong and original models.

Such models were overfitted by more than 10% at EPV≤7.5 and EPV≤ 10, respectively.

The overfitting issue was either resolved or alleviated by applying postestimation
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The simulation standard error (SE) among all EPV, model strength and the recalibration status of models for the estimated

calibration slope and Brier score were between (0.003, 0.041) and (0.000133, 0.000135), respectively.

Figure 3.2: Relative differences in the calibration slope and Brier score

over EPV by strength of risk model based on 400 simulated datasets.

The X axis is on the log scale.
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The simulation standard error (SE) among all EPV, model strength and the recalibration status of models for the estimated

C statistic and D statistic were between (0.0018, 0.0021) and (0.017, 0.018), respectively.

Figure 3.3: Relative differences in the C statistic and D statistic over

EPV by strength of risk model based on 400 simulated datasets. The

X axis is on the log scale.
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linear shrinkage for all EPV for all models of any strength (Figure 3.2, top row). While

the application of bootstrap postestimation factor removed entirely differences in strong

and original models at all EPV. However, it only diminished the differences in weak

models at EPV≥ 15. On the other hand, by applying the Heuristic postestimation

factor the differences almost completely vanished in the strong and original models and

the calibration slope dramatically improved in weak models, although there were some

differences at EPV= 2.5 with strong and original models and large differences at EPV≤

5 with weak models.

Looking at the Brier score plot, there was a downward trend in the relative differ-

ences by increasing EPV. It was steeper for strong models than for the original and

weak models, and for models with no recalibration, compared to those in which linear

postestimation shrinkage was applied. The relative differences in the Brier score were

less than 4% at EPV ≥ 10 for all models with no recalibration and those in which linear

postestimation shrinkage was applied.

Figure 3.3 displays the relative differences in the C statistic and D statistic by

model strength over EPV and Table 3.4 presents the corresponding reference values for

various model strengths. From the plots, we can see that the relative differences were

the smallest for the strong models and the largest for the weak models by deceasing

EPV. The relative differences for the C statistic were less than 2% of the reference value

at EPV ≥ 7.5 and EPV ≥ 10 for strong and original models, respectively. However, the

relative differences were always larger than 2% for weak models. The relative differences

for the D statistic were less than 10% of the reference value at EPV≥ 5, EPV ≥ 7.5,

and EPV ≥ 15 for strong, original models and weak models, respectively. Note that

as applying postestimation shrinkage does not change the risk order, and so C statistic

and D statistic. Thus, the corresponding graphs of C statistic and D statistic were not

presented.

The results of studying this scenario imply that researchers should gather informa-

tion from the related literature about their predictors and the strength of their relation

with the outcome of interest prior to their study. If they know that some (or one) of

the predictors are strong (β is large or the odds ratio is significantly different than one),

they can be assured that a sample size as small as EPV=10 may result in a reliable

prediction model. However, if they know that all or most of the predictors are weak,
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they should consider recalibrating their model even at EPV=30 as recommended by

Ambler et al. (2011) and Steyerberg et al. (2001).

Furthermore, we note that the bias in the estimated regression coefficients decreased

by increasing EPV, and bias was largest for the weak models and smallest for the strong

models at all EPV (Figure A.1). As the linear predictor is the linear combination of

estimated regression coefficients, a bias in the estimated regression coefficients causes

an inaccurate and precise estimation for the performance measures. This explains the

pattern seen in Figures 3.2 and 3.3.

3.4.3 Outcome prevalence

The occurrence of the desired event can change from very rare to very frequent. Where

the event of interest refers to endpoint such as death, heart disease, strokes, or the

diagnosis of cancer. This can affect the amount of available prognostic information

(Altman and Royston, 2000), where prognostic information relates to the spread of

predicted probabilities. When the occurrence of the outcome of interest is relatively

high (say, 40%), then a low EPV means that the total sample size is small.

The effect of EPV on the performance of risk prediction models fitted on three

datasets with various outcome prevalences was studied. To simulate outcomes with

different prevalences, the intercept of the true model was altered to produce new levels

of outcome prevalence. The strength of all models with a different intercept was kept at

similar levels. The transformed linear predictor was ηnew = A+B×(ηtrue−η̄true)+η̄true,

where A and B were used to retain the outcome prevalence and strength of the model.

Taking the described approach, two other series of datasets were generated, with 25%

and 40% outcome prevalences.

Note that the data used throughout my thesis is from a prospective cohort study

and the correct Epidemiological term for the occurrence of (new) events in this context

is “incidence”hence rather than “outcome prevalence”. However, we use the term “out-

come prevalence” because we mean the occurrence of the event of interest in general.

Note that, as before, the model χ2 for the true model fitted using data with the

original outcome prevalence was 857.1. A simulation study was conducted to check the

strength of the models. The IQR of the models’ χ2 for those fitted on datasets with

25% and 40% outcome prevalences over 400 simulated datasets were (819 to 901) and

(828 to 890), respectively.
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The simulation standard error (SE) among all EPV, outcome prevalence and the recalibration status of models for the

estimated calibration slope and Brier score were between (0.006, 0.023) and (0.001, 0.002), respectively.

Figure 3.4: Relative differences in the calibration slope and Brier score

over EPV by outcome prevalence based on 400 simulated datasets.

The X axis is on the log scale.

Outcome prevalence: results

Figure 3.4 illustrates the relative differences in the calibration slope and Brier score

by outcome prevalence and Table 3.4 presents the corresponding reference values by

outcome prevalence.

A main point in this scenario is that as outcome prevalence increased the sample size

decreased as the example in Table 3.3 demonstrates. Also, the parameter convergence

problem (very large estimations for coefficients) (Heinze and Schemper, 2002) took

place more in the higher outcome prevalences as a result of the smaller sample sizes (see

Table 3.3). These problems occurred in 44% of simulations for all EPV (mostly EPV≤

10) and high prevalence (40%) compared to 3% for a very low EPV (2.5) when the

prevalence was much lower (7%). These problems persisted up to when EPV was 30 but

dramatically decreased by increasing the EPV for high prevalence (40%); in contrast,

the problems mostly vanished when the EPV increased to 5 when the prevalence was
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The simulation standard error (SE) among all EPV, outcome prevalence and the recalibration status of models for the

estimated C statistic and D statistic were between (0.0008, 0.0011) and (0.006, 0.008), respectively.

Figure 3.5: Relative differences in the C statistic and D statistic over

EPV by outcome prevalences based on 400 simulated datasets. The

X axis is on the log scale.

low (7%). Results which led to a negative calibration slope were excluded from the

analysis (1.7% of the entire results of the outcome prevalence).

From the matrix plot we can see that the smallest differences at all EPV were at

the lowest outcome prevalence and the largest differences were at the highest outcome

prevalence.

From the calibration slope plot, the values of the calibration slope were under-

estimated by more than 10% at EPV≤10 and outcome prevalence of 7%. At the

outcome prevalence of 25% and 40% differences were more than 10% at all EPV.

From the Brier score plot, the relative differences were less than 5% at EPV≥ 5 and

EPV≥ 20 at 7% and 25% outcome prevalences, respectively. Relative differences were

never 5% or less at the 40% outcome prevalence. Furthermore, the relative differences

dropped at almost all EPV for the 7% outcome prevalences and at 12.5 EPV to less

than 5% for outcome prevalences of 25%, when the heuristic shrinkage was applied.

The application of this shrinkage made differences larger at EPV=2.5 and had almost

no effect at EPV ≥ 5 when the outcome prevalence was 40%. The decrease in relative

differences was slightly more with applying bootstrap shrinkage for all EPV at outcome

prevalence of 25% especially for EPV of 5 at the outcome prevalence of 40% (5%

decrease) compared to applying heuristic shrinkage.

From the C statistic plot, the relative differences declined at all outcome prevalences

by increasing EPV. That decrease was steeper at the outcome prevalence of 40% than

66



3.4 Simulation study

at outcome prevalences of 25% and 7%. The relative differences were less than 2%

at EPV≥ 7.5, EPV≥ 20, and EPV= 30 at 7%, 25%, and 40% outcome prevalences,

respectively.

From the D statistic plot, the pattern of decreasing relative differences was similar

to the C statistic. The relative differences were < 10% at EPV≥ 7.5, EPV ≥20 and

EPV =30 in 7%, 25%, and 40% outcome prevalence, respectively.

From the results of the two previous scenarios, we note that the C statistic and

D statistic are correlated. The correlation coefficient was about 0.98. Hence, only

results for C statistic (the most common measure) will be presented for the rest of the

scenarios.

In brief, from the results of the simulation for the scenario of outcome prevalence,

it appears that the EPV needs to be at least 12.5 to develop a risk model. At this EPV

the relative differences in estimated performance measures were acceptable. However,

a shrinkage might be needed for large outcome prevalences.

Furthermore, from Figure A.2 we note that the bias in the estimated regression coef-

ficients decreased by increasing EPV, and bias was largest when the outcome prevalence

was large and smallest when the outcome prevalence was small at all EPV. Moreover,

the linear predictor is the linear combination of estimated regression coefficients. That

is, the bias in the estimated regression coefficients causes an inaccurate and precise

estimation for the performance measures. This explains the pattern seen in Figures 3.4

and 3.5.

3.4.4 Presence or otherwise of noise variables

When model building, there might be some variables in the study sample which show a

strong association with the outcome yet their true correlation is zero (βtrue = 0) (Flack

and Chang, 1987). This is more likely to happen when the sample size is small.

Now, let us postulate that there is already a dataset which includes some noise

predictors along with the main predictors, variables which have a real relationship

with the response, and that all predictors in this sample have an association with the

response. Also let us assume that the model maker wishes to develop a risk model

using all predictors in the sample without using variable selection methods. Now,

the question is how much data is required to develop a reliable risk model using all

variables? or, does the performance of a model with some noise variables change in

67
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datasets of varying size? To address these issues we investigated the impact of ‘noise’

variables on the performance of a risk model and the effect such variables have on

sample size requirements.

From the heart valve data, the seven predictors were chosen which have the biggest

∆χ2, where ∆χ2 is the decrease in the χ2 statistic for the full model when the pre-

dictor is omitted and the model refitted. Five and ten additional noise variables were

considered. The five noise variables consisted of three binary variables generated using

probabilities of 0.1, 0.3, and 0.5 respectively, and two standard normal variables. The

ten noise variables consisted of six binary variables generated using probabilities of

0.1, 0.2, 0.3, 0.4, 0.4, and 0.5 respectively, and four standard normal variables. These

noise variables were generated completely independently from the outcome. Three risk

models were developed, the first model had just the seven original predictors and the

second and third models had the additional five and ten noises respectively along with

those original predictors. Note that, in the simulation process, the size of the data was

adjusted according to the number of noise variables in the data to retain the required

EPV. For example, having five noise variables in the model with ten influential vari-

ables required us to pick about 38 events for simulated data to achieve the EPV=2.5,

the simulated datasets for 0 noise model had 25 events.

Presence or otherwise of noise variables: results

This section illustrates relationships between bias in performance measures and EPV

in models with a varying number of noise variables.

Figures 3.6 and 3.7 present the relative differences in the measures of performance

quality over EPV across the number of noise variables and Table 3.4 presents reference

values across various number of noises and modelling strategies. From the plot, the

pattern of changes in measures of models with a large or medium number of noises were

in a similar fashion to models with no noise variables.

In conclusion, noise variables did not affect the performance of the risk model for

fixed EPV if we adjusted the sample size to achieve the target EPV. However, the

presence of noise variables in the models required a larger sample size. If we had not

increased the sample size then the presence of noise predictors would have reduced the

EPV and would have resulted in a worse model.
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The simulation standard error (SE) among all EPV, the presence of noise variables and the recalibration status of models

for the estimated calibration slope and Brier score were between (0.002, 0.015) and (0.00006, 0.00007), respectively.

Figure 3.6: Relative differences in the calibration slope and Brier score

over EPV by the presence of noise variables based on 400 simulated

datasets. The X axis is on the log scale.
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The simulation standard error (SE) among all EPV, the presence of noise variables and the recalibration status of models

for the estimated C statistic was between (0.0003, 0.0005), respectively.

Figure 3.7: Relative differences in the C statistic over EPV by the

presence of noise variables based on 400 simulated datasets. The X

axis is on the log scale.
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The results of this scenario suggest that a researcher needs to make a thorough

review of literature about the research questions, the outcome variables, and the im-

portant predictors before commencing the study. The researcher also needs to exclude

all variables which are ‘speculative’ in the model building stage in order to have enough

EPV to develop a valid risk model where noise variables are considered to be specula-

tive.

3.4.5 Type of predictors

In practice, medical researchers often convert continuous variables to categorical. That

is because precise measurement is not always possible and it is easier for them to inter-

pret the results of analysis (Harrell, 2001). However, categorising continuous variables

may reduce the amount of information that the predictor holds.

A simulation study was conducted to investigate this issue. For this simulation

study, a population of 100,000 observations was generated. The data for the popu-

lation was generated according to a true logistic regression model. The true model

included a continuous predictor (X1) from a standard normal distribution with β = 2.

The probability of an event (pi) for individual i was computed using the inverse logit

transformation, pi = 1
α+βxi

. The intercept, α, was set to -3.4 in order to obtain an

outcome prevalence of 10%. Then, two other predictors were produced by splitting X1

into four (predictor X2) and two (predictor X3). For each observation, 1000 outcome

Yi was generated using Bernoulli distribution with probability pi (the average outcome

prevalence for the categories of X2 were 0.33%, 5.13%, 29.24%, and 65.30% and for

the categories of X3 were 5.46%, and 94.54%). Each time, three logistic regression

models were fitted using the response variable and one predictor: one with continuous

predictor X1, one with dichotomised variable X2, and another with dichotomised vari-

able X3. For the model with the continuous variable X1, the average C statistic was

0.88 compared to 0.85 and 0.75 for the model with X2 (categorised variable with four

categories) and for the model with X3 (dichotomised variable with two categories), re-

spectively. This implies that categorising a continuous variable may reduce the amount

of prognostic information it holds.

Given the fact discussed thereof, the question is whether one needs different EPV

when developing a risk model with categorical predictors comparing to when developing

a risk model with continuous predictors. Hence, the heart valve surgery data was used
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to address the issue. Some variables from data were transformed: some continuous

predictors were categorised, and some categorical predictors were transformed into

continuous predictors.

The following simulation study was carried out to investigate the above issue. To

simulate this scenario, eleven predictors were chosen to be included in the model from

the real data. Those were operative priority, operation sequence, valve operation,

concomitant CABG surgery, age, BMI, renal failure, ejection fraction, diabetes, preop-

erative arrhythmias and hypertension, (see section 3.2). The first four were originally

categorical. Age and BMI were recorded as continuous in the dataset, but most of

the time researchers collect them as categorical. Hence, we categorised them according

to common practice. The rest of the variables (renal failure, ejection fraction, dia-

betes, preoperative arrhythmias, and hypertension) were recorded as categorical in the

dataset, but most of them are based on continuous measurements, such as ejection frac-

tion. Therefore, the following approach was taken to produce the continuous versions

of those variables.

To transform categorical predictors to continuous, a uniform noise variable of [−0.5, 0.5]

was added to each categorical predictor in order to jitter it across the reasonable range

such that the categories of the variables did not overlap. Then, the jittered data was

mapped to standard Normal distribution via order statistics for each categorical pre-

dictor. That is, xi = Φ−1( i
N+1) where xi, N and Φ−1(.) are ith observation of the

variable, number of observations and inverse standard Normal distribution function.

These transformed predictors were considered to be continuous versions of the categor-

ical predictors.

For example, consider a binary variable that is coded as 0 or 1. To jitter it, a uniform

noise of [-0.5, 0.5] was added to each value, hence, the categories coded 0 and coded 1

will have values between [-0.5,0.5] and [0.5, 1.5], respectively. Then, these values were

mapped to a standard Normal distribution via order statistics for this binary variable.

Subsequent to forming a continuous type of categorical variables, four models were

produced using the various types of predictors: model with two continuous predic-

tors and nine categorical predictors; model with four continuous predictors and seven

categorical predictors, model with seven continuous predictors and four categorical

predictors; model with 11 categorical predictors.
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Table 3.5: Statistical significance of each predictor in a multivariable

model fitted (using ML) on the heart valve dataset. ∆χ2 denotes the

decrease in the likelihood ratio χ2 statistic for the model when the

predictor is omitted and the model refitted. cont. means that variable

is continuous.

Variables D.F. ∆χ2

Age (cont.) 1 105.53

Age 4 104.55

Renal failure (cont.) 1 45.79

Renal failure 1 107.69

Ejection fraction (cont.) 1 30.19

Ejection fraction 2 41.62

Diabetes (cont.) 1 0.41

Diabetes 1 5.38

Preoperative arrhythmias (cont.) 1 29.78

Preoperative arrhythmias 2 47.99

Hypertension (cont.) 1 6.43

Hypertension 1 9.12

BMI (cont.) 1 8.9

BMI 2 16.97
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Table 3.5 exhibits the effect of each form of predictors on the full model. As it can

be seen from the table, transforming some of the variables to continuous resulted in

a loss of information. That is the associated ∆χ2 reduced. Therefore, the resulting

models had different strengths and consequently were not comparable. The following

describes how the strength of these models were equalised.

To equalise the strength of the models the model with all the original predictors (a

model with two continuous predictors) was treated as the reference model. For the rest

of the models, which had different strengths to the reference, prognostic indexes were

boosted and then transformed in order to generate new outcomes and models refitted

with new outcomes. This was conducted in the same fashion as it was performed for

the model strength scenario or outcome prevalence.

Note that, as before, the model χ2 for the true model fitted including two continuous

variables was 857.1 and the interquartile range (IQR) of the models’ χ2 for those fitted

including 0, four and seven variables were (888 to 968), (889, 978), and (895 to 974),

respectively. Therefore, the models are now of comparable strength.

Type of predictors: results

This section illustrates relationships between performance measures and EPV in models

with various type variables.

Figures 3.8 and 3.9 display relative differences in performance measures over EPV

across the number of continuous variables, and Table 3.4 presents reference values

across the types of variables and modelling strategies. As the figure demonstrates,

there was little differences between the performance of models with different number

of continuous predictors, holding EPV constant.

3.4.6 Number of variables in the model

Many researchers believe that if they collect as many variables that budget and time

allow and include them all in the stage of developing the model, then the final model

can be of satisfactory performance (Steyerberg, 2009). However, the results in section

3.4.4 (the scenario of ‘Presence or otherwise of noise variables’) showed that if we do

not increase the sample size, the presence of the variables which are ‘speculative’ in the

dataset reduces the EPV and results in a worse model. Therefore, it is recommended

that when EPV is low (or the sample size is small), one should just include influential
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The simulation standard error (SE) among all EPV, the type of predictors and the recalibration status of models for the

estimated calibration slope and Brier score were between (0.025, 0.001) and (0.00005, 0.00006), respectively.

Figure 3.8: Relative differences in the calibration slope and Brier score

over EPV by the type of predictors based on 400 simulated datasets.

The X axis is on the log scale.
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The simulation standard error (SE) among all EPV, type of predictors and the recalibration status of models for the

estimated C statistic were between (0.0003, 0.0004), respectively.

Figure 3.9: Relative differences in the C statistic over EPV by type

of predictors based on 400 simulated datasets. The X axis is on the

log scale.
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variables (based on literature and common practice) in the model. In other words, all

variables should be relevant and worth investing. To evaluate the relation between the

number of variables in the risk model and the EPV, the following simulation study was

set up.

To simulate outcomes, models with 22 variables, ten variables, seven variables, and

four variables were obtained by fitting logistic regression models using the following

variables. These were the categorical (five categories) and continuous versions of age at

surgery, operative priority (three categories), renal problem (two categories), operation

sequence (two categories), valve operation (three categories), ejection fraction (three

categories), concomitant CABG surgery (two categories), respiratory disease (two vari-

ables), preoperative arrhythmias (three categories), diabetes (two categories), and year

of operation (six categories). The calculated ∆χ2 for these variables can be seen in Ta-

ble 3.1 in section 3.2. To increase the comparability of the models, the strength of all

models was equalised. This was performed using ηnew = A+B× (ηtrue− η̄true) + η̄true,

where A and B were to retain the outcome prevalence and strength of the model and

ηnew and ηtrue were the new and true linear predictors.

Note that, as before, the model χ2 for the true model fitted using ten original

variables was 857.1 and the IQR of the models’ χ2 for those fitted using four, seven,

and 22 variables were (807 to 895), (816, 889), and (802 to 893), respectively.

Number of variables in the model: results

This section illustrates relationships between performance measures and EPV in models

with different number of variables.

Figures 3.10 and 3.11 demonstrate relative differences in the measures of perfor-

mance quality over EPV across the numbers of variables in the model, and Table 3.4

displays the reference values for various number of variables and different modelling

strategies. It is evident from the figures that including a large number of variables in

the risk model did not affect the performance of the risk models as long as the EPV

was held constant.

3.4.7 Degree of collinearity

In the modelling stage, it quite often happens that one or more of the predictors are

capable of predicting other predictor(s) perfectly or partially. This is called collinearity.
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The simulation standard error (SE) among all EPV, the number of variables and the recalibration status of models for the

estimated calibration slope and Brier score were between (0.002, 0.521) and (0.00005, 0.00008), respectively.

Figure 3.10: Relative differences in the calibration slope and Brier

score over EPV by the number of variables based on 400 simulated

datasets. The X axis is on the log scale.
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The simulation standard error (SE) among all EPV, the number of variables and the recalibration status of models for the

estimated C statistic was between (0.0003, 0.0006), respectively.

Figure 3.11: Relative differences in the C statistic over EPV by the

number of variables based on 400 simulated datasets. The X axis is

on the log scale.
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If collinearity is perfect, the regression coefficients are indeterminate (they are not

definitively or precisely determined) and their standard errors are infinite. If collinearity

is not perfect the regression coefficients, although determinate, cannot be estimated

with great precision or accuracy.

Since the estimation of coefficients can be problematic at presence of collinearity,

this may affect the development of risk prediction models. In particular, more events

might be required to develop a risk model as the dataset does not hold enough infor-

mation. Therefore, we performed a simulation study to determine whether the EPV

requirement changes when developing a risk model where there is a collinearity problem.

The following method was used for the simulation study.

The following approach was used to change the original correlation between vari-

ables of real data, retaining original observations. The correlation between the pre-

dictors in the heart valve surgery data was changed and used to simulate new out-

comes. This process is elucidated below. Firstly, true regression coefficients, βtrues,

were estimated using the full size dataset. Then, seven multivariate standard normal

variables with a specific correlation level were generated, one per original variable in

the heart valve surgery data. Let (z1, z2, z3, . . . , z7) be multivariate standard normal

variables and (Xage, Xvalve, XEjectFrac, Xcabg, Xprior, Xsequence, and Xrenal) are seven

variables from the heart valve surgery data. Therefore, there were seven pairs of vari-

ables, one from the simulated variables and one from heart valve surgery dataset;

(z1, Xage), (z2, Xvalve), (z3, XEjectFrac), (z4, XEjectFrac), (z5, Xcabg), (z6, Xprior) and

(z7, Xrenal). Then, observations within each heart valve variable were sorted accord-

ing to the order of its counterpart in the simulated multivariable normal variable.

For example, consider pair (z1, Xage); we first sort z1 in ascending order (that is,

z11 < z12 < z13 < ... < z1n, where n is the number of observations), then, sort

Xage only so that Xage 1 ≤ Xage 2 ≤ Xage 3 ≤ · · · ≤ Xage n. The process was repeated

for all the pairs regardless of the type of variable. Table 3.6 presents the old and new

pairwise Pearson correlation between variables of heart valve surgery data. From the

table the goal was accomplished.

Ultimately, the new linear predictor was obtained by linearly combining the true

regression coefficients and seven predictors with a new level of collinearity; that is,

ηnew =
∑
βtruej X(j) where βtruej denotes that the true estimated regression coefficient

corresponds to variable j, and is used to simulate new outcomes. To increase the
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The simulation standard error (SE) among all EPV, the degree of collinearity and the recalibration status of models for

the estimated calibration slope and Brier score were between (0.002, 0.081) and (0.00005, 0.00008), respectively.

Figure 3.12: Relative differences in the calibration slope and Brier

score over EPV by the degree of collinearity based on 400 simulated

datasets. The X axis is on the log scale.

comparability of the models, the process of adjusting for both the strength of the linear

predictor and the outcome prevalence was also executed using the same approach as

before to retain models with similar features; that is, the outcome prevalence was the

same in all datasets and models had similar strength.

Note that the model χ2 for the true model included variables with 0.04 average

pairwise collinearity was 857.1. The IQR of the models’ χ2 for those included variables

with 0.46 and 0.71 average pairwise collinearity which were (819 to 909) and (811 to

896), respectively.

Presence or otherwise of collinearity: results

Figures 3.12 and 3.13 illustrate the relative differences in the measures of performance

quality over EPV across the amount of collinearity, and Table 3.4 displays reference

values for collinearity levels and modelling strategies. As it is evident from the plots,
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Table 3.6: Correlation matrix of predictors in datasets with different degrees of

collinearity. Data size in all stages = 16679.

The obtained correlation

Age at Concomitant Renal Ejection Operative Operation Valve

surgery CABG surgery problem fraction priority sequence operation

Age at surgery 1

Concomitant CABG 0.23 1

surgery

Renal problem 0.02 -0.01 1 Real Data

Ejection fraction 0.05 0.12 0.09 1

Operative priority -0.01 0.02 0.13 0.19 1

Operation sequence -0.14 -0.12 0.04 0.06 0.09 1

Valve operation -0.06 -0.08 0.04 0.04 0.01 0.15 1

Average pairwise 0.04

Pearson correlation

Age at surgery 1

Concomitant CABG 0.49 1

surgery

Renal problem 0.30 0.33 1

Ejection fraction 0.50 0.51 0.41 1

Operative priority 0.48 0.50 0.42 0.55 1

Operation sequence 0.38 0.42 0.44 0.49 0.50 1

Valve operation 0.50 0.50 0.40 0.54 0.53 0.47 1

Average pairwise 0.46

Pearson correlation

Age at surgery 1

Concomitant CABG 0.66 1

surgery

Renal problem 0.40 0.40 1

Ejection fraction 0.70 0.88 0.67 1

Operative priority 0.65 0.88 0.64 0.89 1

Operation sequence 0.50 0.56 0.78 0.71 0.74 1

Valve operation 0.69 0.88 0.63 0.98 0.89 0.69 1

Average pairwise 0.71

Pearson correlation
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The simulation standard error (SE) among all EPV, the degree of collinearity and the recalibration status of models for

the estimated C statistic was between (0.0003, 0.0006), respectively.

Figure 3.13: Relative differences in the C statistic over EPV by the

degree of collinearity based on 400 simulated datasets. The X axis is

on the log scale.

collinearity did not effect the performance of risk models as long as the amount of it

was medium or lower.

From the calibration slope plots, medium (46%) and low (4%) levels of collinearity

did not change the quality of the risk models, holding the EPV constant. However,

model performance was negatively affected at high (71%) levels of collinearity at EPV ≤
15. This is because the regression coefficients of the model are not estimated accurately

when both sample size is small and collinearity is high (see A.6 for bias in estimated

regression coefficients). Furthermore, if the level of collinearity among variables in the

model was around medium or lower, applying postestimation linear shrinkage almost

completely removed overfitting at all EPV.

From the C statistic graph, the discrimination ability of the risk models was only

slightly influenced by the amount of collinearity.

From the Brier score plot, this measure was influenced by the amount of collinearity

in a similar pattern to the calibration slope. However, the overall performance of the

risk models with highly correlated variables improved more noticeably with applying

the heuristic shrinkage factor than employing the bootstrap method at small EPV.

The Brier score showed that the heuristic shrinkage method is best at small EPV.

Further investigation of bootstrap and heuristic shrinkages at the presence of EPV and

collinearity scenarios also suggested that the bootstrap method shrinks the predictions
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more than the heuristic method when correlation is 71% which is the opposite of what

happens when the correlation is 46%. This pattern persists when the EPV is as high

as 20.

In brief, it seems there should be at least 13 EPV to develop a model when variables

are correlated at a level of medium or less. Moreover, a model developer needs a higher

EPV, or needs to apply shrinkage when the collinearity level is more than medium.

One practical point in this scenario is that models in which there is a high collinearity

problem may appear with a very low (say, < 0.5) or negative calibration slope, especially

at small EPV. That is because the estimated regression coefficients are inaccurate and

imprecise when there is a high collinearity problem. In our simulation, these problems

occurred in 19% of simulations at all EPV (mostly EPV≤ 10) when collinearity was high

(71%) compared to 3% at very low EPV (2.5) when collinearity was medium (45%) or

much lower (4%). These problems persisted up to when EPV was 20 but dramatically

decreased as EPV increased for high (71%) collinearity. In contrast, the problems

mostly vanished when EPV reached 5 for medium (46%) or low (4%) collinearity. The

results which led to a negative calibration slope were excluded from the analysis (0.65%

of entire results of collinearity scenario). Moreover, 5.2% of the models when collinearity

was large did not converge.
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3.5 Conclusion

The focus of this chapter was on the sample size requirements for developing a reliable

risk model with binary outcome. Harrell et al. in 1984 suggested that the performance

of a risk model is a function of the number of events per variable, rather than sample size

(Harrell et al., 1984). Also, he claimed that when EPV is less than ten the performance

of a risk model deteriorates. Although he did not provide any supporting evidence

for this suggestion, model-developers commenced using that threshold as a rule of

thumb when developing a risk model regardless of the aim of constructing the model

(Harbarth et al., 2000, Judith et al., 2002, Lassnigg et al., 2004, Jonas and Johnny,

2005, Voerman et al., 2007, Akins et al., 2008, Stone et al., 2011, William et al., 2013).

The investigations in this chapter were started with a case study using the heart valve

surgery data to answer the question of whether performance of a risk model is influenced

by EPV.

Utilising four very common performance measures of the C statistic, D statistic,

Calibration slope and Brier score in the case study, it was observed that the performance

of risk models increased by moving from small to large EPV. That is, the EPV has

an impact on the performance of a risk model. In the next step, another question

was raised that whether EPV is the only factor which can affect the performance of

model. A simulation study was set-up to address this issue. A number of scenarios were

investigated; namely, the strength of risk model, the outcome prevalence, the presence

of noise variables, the number of continuous predictors, the number of variables in the

model, the presence of multicollinearity, and application of post-estimation shrinkage

factor.

As evident from the results of the simulations in this chapter, as little as five EPV

can be enough when developing a risk model including a few strong predictors where

the aim is either that of prediction and estimation (see section A). Moreover, shrinkage

can remove the optimism in the model when the model is strong at EPV equal to 5.

As the simulation study revealed, EPV needs to be at least 30 where the outcome

prevalence is as high as 40% if the focus of developing a risk model is on prediction.

This value reduced to ten , when the outcome prevalence reduced to 7% for the same

circumstance. Applying shrinkage at the outcome prevalence of 40% and of 7% could

reduce the EPV requirements to 10 and 2.5.
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In addition, the presence of noise variables or more continuous variables were not

associated with the performance of a risk model, if EPV is held constant. However, bias

in the estimation of regression coefficients was lower in small EPV where there were

more noise variables or more continuous variables in the risk model (see section A). Also,

involving a further number of variables in the model did not affect the performance of

it, holding EPV constant. The amount of overfitting declined dramatically subsequent

to applying shrinkage where the EPV was as small as five at all number of variables in

the model.

Additionally, the results of this chapter revealed that the performance of a risk

model is only associated with the amount of multicollinearity when collinearity is high

in the light of the EPV. Moreover, EPV should be at least 15 for developing a reliable

unshrunk risk model with high collinearity (71% ). The EPV requirement will drop

to 7.5 when applying the bootstrap shrinkage and to 12.5 when using the Heuristic

shrinkage.

Therefore, the EPV does not need to be large, say five or ten, when there are strong

predictors in the risk model or when the total sample size is large;that is, outcome preva-

lence is small. Other factors such as the number of variables, the number of continuous

variables, the number of noise variables do not have an impact on the performance of

the risk model, holding the EPV constant. Although, applying the shrinkage factor

improved the performance of a model for EPV between five and ten. Additionally, high

multicollinearity (of > 46%) deteriorates the performance of the model and EPV needs

to be at least 15 to develop a risk model with acceptable performance.

In closing, when the collinearity is not high even EPV equal to five can lead to

a reliable risk model as long as there are a number of strong predictors in the model

and/or the total sample size is large. Moreover, the results of this simulation study

agree with Harrell’s rule of thumb (Harrell et al., 1984) in the sense that if there is no

prior knowledge about the strength of the predictors there should be at least ten EPV

when developing risk models. However, if one knows from literature that one or some

variables have strong relationships with the outcome, having even EPV equal to five

can result in satisfactory risk models. Furthermore, the strength of the true model can

be important in the performance of studied models in accordance with this simulation

study. Note that the strength of the true model in this study, based on model’s χ2,

was large, except at the scenario of the strength of the risk model which was smaller
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for the weak model and larger for the strong model. The simulated model may tolerate

high collinearity at a small EPV if the corresponding true model is strong.

Moreover, based on this simulation study we also agree with Ambler et al. (2011)

that the shrinkage method should be used even when EPV exceeds 30. However, the

discrimination ability of the model may not improve in some scenarios such as those in

our study.

This study was based on heart valve surgery data; other scenarios or datasets should

be explored.
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Chapter 4

Sample Size Requirements to

Validate a Risk Model Using

Independent Binary Data

The sample size requirements to obtain accurate predictive performance measures when

developing a risk model using independent binary outcome has already been explored

(see Chapter 3). The question of how many observations are required to investigate

the validity of a risk model is now addressed.

Risk prediction models have an important role in the medical setting. Hence, these

models should be developed carefully and be validated with great caution so that they

can safely be used in other patients. It has been shown that risk models validated

using small datasets may show exaggerated performance (Harrell (2001); Vergouwe

et al. (2002); Vergouwe et al. (2005); Peek et al. (2007); Steyerberg (2009); Collins

et al. (2014); Collins et al. (2015)). In other words, the performance of the risk model

in small validation dataset may appear much better than the actual performance is

in larger datasets. As a result, these validated models should not be trusted to be

used in practice. For an example of such models with exaggerated performance, see

Chamogeorgakis et al. (2009) in which a modified Thoracoscore, to predict in-hospital

mortality after general thoracic surgery, was validated using 155 patients, of which just

8 died. The reported C statistic value was very high (0.95 with 95% confidence interval

0.91 to 0.99). As another example, see Brusselaers et al. (2009) where a data set of

only 119 patients with only one outcome event was used to validate a risk prediction
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model. The reported C statistic was absurd (1.00 with 95% confidence interval 1.00 to

1.00). Therefore, it is crucial to take the issue of number of events into account when

validating a risk model in a medical setting.

This chapter discusses the sample size required to validate a risk prediction model

in the context of the independent binary outcome. The chapter is structured as follows.

All available research in this area is provided in the literature review, section 4.1. We

show that the precision of performance measures depends on sample size in Section

4.2. A case study, in Section 4.3, was conducted to give an insight into the issue of

sample size, or more specifically the number of events. A simulation study to explore

whether outcome prevalence can affect the validation of risk models is discussed in

Section 4.4. Finally, we summarise our findings and place them in the context of the

existing literature in section 4.5.

4.1 Number of events in validating a risk model: A Re-

view

There is a wide range of literature discussing the importance of the validation of risk

prediction models (Royston and Altman, 2013, Collins et al., 2014). However, the

design requirements for conducting a validation study have been little explored.

A key aspect when planning to validate a risk prediction model is to calculate the

required sample size. As discussed in chapter 3, Harrell et al. (1996) suggested the

performance of a risk prediction model is a function of the number of events.

Harrell et al. (1996)

Harrell et al. (1996) recommended that there should be at least 100 events in the

validation data in order to successfully validate a risk model. No supporting evidence

has been provided.

Vergouwe et al. (2005)

They conducted a simulation study to determine the required number of events to

detect relevant changes in the performance of logistic regression model. In their study,

Vergouwe et al. (2005) used real data consisting of 544 patients, who were treated with
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chemotherapy for metastatic testicular germ cell cancer. In their data, 254 patients

(47%) had the event of interest (histology of retroperitoneal lymph nodes).

They evaluated three various validation scenarios in which the studied model was

invalid but validation datasets had a similar case-mix to the development datasets, and

one validation scenario in which the tested model was valid, but the validation dataset

had a different case-mix to the development dataset. Those scenarios are as follows.

First, a situation where the predicted probabilities of the model in the validation dataset

were systematically too high or too low compared to true proportions, which might

happen when an important factor is missing from the developed risk model (Steyerberg

et al., 2004). Second, a case in which the developed model was overoptimistic in the

validation data and its predictions were too extreme. This situation can arise as a result

of inadequate shrinkage of the regression coefficients in the development stage (Altman

and Royston, 2000). Third, a circumstance in which the estimated regression coefficients

were imprecise or the definition of the predictor variables in the development data was

different than those in the validation dataset, leading to the wrong regression coefficients

for the validation samples. Finally, a case in which the developed model is valid but

the dataset included more homogeneous patients. That is the validation sample had

different case-mix. In technical terms, it means that the variances of explanatory

variables in the validation sample were smaller than those in the development data.

Vergouwe et al. used the calibration curves and the Hosmer-Lemeshow test to

quantify the calibration ability of the model, the C statistic to measure discrimination

and both the Brier score and Nagelkerke’s R2 to quantify overall performance (see

section 2.5).

They concluded that a validation sample with at least 100 events and 100 nonevents

is necessary to detect large differences in model performance with 80% power. They

additionally reported that the sample size required to detect a decrease in the discrim-

ination ability of a model for samples with low outcome prevalence (less than or equal

to 10%) is larger.

Vergouwe et al. (2005) only studied three sample sizes with two outcome prevalences.

Furthermore, they investigate a case where both the risk model is valid and the case-mix

in the validation data is similar to that in the development data.
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Peek et al. (2007)

They conducted a validation study to compare the performance of four models on a

large dataset. They also investigated the effect of the sample size on the validation

results. The logistic prediction models were the Simplified Acute Physiology Score II

(SAPS II) (Le Gall et al., 1993), the Acute Physiology and Chronic Health Evaluation

II (APACHE II) (Knaus et al., 1985), and the Mortality Probability Models II (MPM0

II and MPM24 II) (Lemeshow et al., 1993). These models are commonly used to predict

the probability of in-hospital mortality in intensive care units (ICUs).

They used a dataset of 42,139 patients (of whom 19.8% died in hospital) from

the National Intensive Care Evaluation (NICE) registry in Netherlands. The outcome

prevalence in their data was similar to that in the datasets used to develop SAPS II,

APACHE II and MPM II (21.8%, 19.7% and 20.8%, respectively). Peek et al. (2007)

used the C statistic, Brier score, calibration slope, and the Hosmer-Lemeshow test to

evaluate the performance of the model and varied the sample size by randomly sampling

from the entire dataset.

In their study, Peek et al. (2007) found that considerable sample sizes such as 1000

patients (20% events) were required to compare and externally validate those prediction

models.

However, in their external validation study to evaluate the effect of sample size Peek

et al. (2007) did not study the effect of various outcome prevalence.

Collins et al. (2015)

In their external validation study, they employed The Health Improvement Network

(THIN) data, consisting of information from 2 million patients from primary care

records held at general practice surgeries around the UK, to assess the influence of

sample size on the performance of three sex-specific Cox regression prediction models.

The prediction models were QRISK2 (Hippisley-Cox et al., 2008), Cox Framingham

(?) and QDScore (Hippisley-Cox et al., 2009). While the first two prediction models

were developed to predict the 10-year risk of developing cardiovascular disease, the last

was constructed to predict the 10-year risk of developing type 2 diabetes. The outcome

prevalences of data in which QRISK2, Framingham, and QDScore were developed were

6%, 15% and 3%, respectively, compared to 5% and 3% which were the prevalence of
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developing cardiovascular disease and type 2 diabetes, respectively, in the THIN data.

In their resampling study, Collins et al. (2015) investigated whether the estimation of C

index, D statistic, R2
D, ρ2

OXS , Brier score and calibration slope was unbiased and precise,

where R2
D, ρ2

OXS are two R2−type measures (Choodari-Oskooei et al., 2012a,b) used

with survival data. Collins et al. (2015) varied the sample size by stratified sampling

from events and nonevents groups according to the outcome prevalence in THIN data.

Collins et al. (2015) found that the estimation of all six performance measures varied

largely when the number of events was smaller than 100. They also reported that the

mean standardized biases in the performance measures were larger than 10% when the

number of events was less than 75. No explanation on why there was bias was reported.

Thus, Collins et al. (2015) concluded that to externally validate a risk prediction model

there should be a minimum of 100 events, preferably 200 in a validation dataset.

Collins et al. (2015) only studied one dataset with the small outcome prevalence

to investigate the effect of sample size on a validation study. Moreover, the prevalence

of developing cardiovascular disease in their study (THIN) was lower than that in a

dataset employed to develop QRISK2 and Framingham.

Jinks et al. (2015)

They derived formulae based on the D statistic to calculate the required sample size for

risk prediction models using time-to-event data. Inspired by Armitage et al. (2001) for

comparison of the means of two independent groups with equal within-group variance,

they assumed that either there is a previous study (with e1 events) in which the D

statistic has been estimated (D1 with variance of σ1) or the researcher has a target D

statistic in mind.

Thus, with the assumption that a previous study existed, they supposed that a

researcher wished to validate the estimate of the D statistic for the model in a new study

(which has e2 events). They also assumed that D2 and σ2
2 were the estimates of D and its

variance in that new study. Since the standard error of the differences between D1 and

D2 did not explicitly include e1 and e2, they assumed λ =σ2
1e1 = σ2

2e2, where λ was a

model- and disease-specific structural constant which could be either obtained from the

previous study or estimated using an approximation incorporating a value of D and the

proportion of censoring (cens) in the data using λ = 2.66+1.26 D1.9−1.65(D× cens)1.3.

They developed this equation using simulated datasets.
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Jinks et al. (2015) found that e2 = λ

[(
δ

z1−α+z1−β

)2
− σ2

1

]−1

could be used to detect

differences (δ) in D between the first and second studies with α significance level and

1−β power, where zx was the x-quantile of the standard normal distribution. Moreover,

they suggested that e2 = λ

[(
w

z1−α

)2
− σ2

1

]−1

could be used to obtain a required sample

size for multivariable prediction models in time-to-event data, based on the precision

of the estimate of D in a new study in terms of a confidence interval of width 2w.

For cases where there was no previous study, they assumed that there was a fixed

target value of D∗ with zero uncertainty (σ2 = 0). Their previous formulae, by substitut-

ing the new assumption, became e2 = λ
[

δ
z1−α+z1−β

]−2
and e2 = λ

[
w

z1−α

]−2
; w > 0,

respectively.

As an example, Jinks et al. (2015) considered the study by Collette et al. (2008),

which was conducted to compare three existing staging systems for advanced liver

cancer. The estimated D statistic for the CLIP prognostic model was 1.01 (σ = 0.09),

using time-to-event dataset of 538 patients with 7% censoring. To validate this model

using a new data, one can employ the information in the paper, and use Jinks equation

to obtain λ(= e1σ
2
1 = 502× 0.092 = 4.1). Based on Jinks formulae there should be 558

events in the validation dataset when the validation study is used to detect differences

of δ = 0.25 in D between the first and second studies with one-sided α = 0.05, 90%

power. If the aim is to specify a 95% confidence interval with 0.4 width for D, there

should be 391 events in the dataset.

Now assume that the aim is to add a prognostic factor to the CLIP model, which

is believed to improve the prognostic ability of the model (to D = 1.3). There is no

previous study, thus, λ can be estimated using a target value of D (=1.3) and the

censoring proportion (expected to be 10%) in the dataset. Thus, the estimated λ is

4.62, and for a non-inferiority validation study to detect differences of δ = 0.25 in D

between the first and second studies with one-sided α = 0.05, and 90% power, based

on Jinks’ equation, there should be 633 events in the validation dataset.

Jinks et al. (2015) only studied validating a risk model using time-to-event outcomes

based only on the D statistic.
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Summary

To sum up, there are some guidelines on how many events are required to validate

risk prediction models. The rule of 100 events to validate a risk model was suggested

by Harrell et al. (1996) without evidence. Later, in 2005, Vergouwe et al., using a

simulation study, recommended that there must be at least 100 events and 100 non-

events in validation data to be able to detect some types of model invalidity with a

specific power using the binary outcomes. Peek et al. (2007) suggested using at least

200 events to validate a risk model in the context of binary outcome. Moreover, Collins

et al. (2015) suggested using at least 100 events (preferably 200 events) when validating

a reliable risk model developed using time-to-event outcomes.

There are different recommendations on how many events are required to validate

a risk model. This leads to the consideration that not all model-makers trust those

rules. In fact, in a review paper, Collins et al. (2014) found that only 41 papers out of

78 had 100 number of events or more in their validation dataset. Thus, this study is

to ascertain the required number of events to validate a correctly-specified model using

datasets with various outcome prevalences. But, first, we analytically illustrate that

the precision of performance measures depends on the sample size.

4.2 Precision of the performance measures and sample

size

When validating a risk model, the key point is that the estimated performance measure

should have high precision. In other words, the standard error of the estimated measures

should be small. In this section, it will be shown how the variance of calibration slope,

D statistic, and C statistic depends on sample size, and thus the number of events.

Variance of calibration slope

To calculate the calibration slope (CS), we fit a logistic model on data using an outcome

variable and the estimated linear predictor (η̂) as the only predictor, where the outcome

and η̂ come from the validation dataset. That is

log(
pi

1− pi
) = β0 + βCS η̂i, (4.2.1)
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where βCS is calibration slope. The coefficients of this logistic model are estimated

by (HTWH)−1HTZ where

H =


1 η̂1

...
...

1 η̂n

 ,

W =


p̂1(1− p̂1) 0 · · · 0

...
...

. . .
...

0 0 · · · p̂n(1− p̂n)


Z is a vector with ith element yi − p̂i. Moreover, η̂i is the estimated prognostic

index (β̂X) for the ith patient from the validation data with n patients, where the

coefficients β are estimated using development data but the predictor values (x) are

from the validation datasets and p̂i is estimated risk obtained using η̂i.

Let us suppose that we estimate the coefficients of the model in equation 4.2.1 using

the validation data and η̃i and p̃i are the estimated prognostic index and risk for ith

patient from the validation data. We now make the assumption that the risk model

is perfectly estimated. That is, η̂ = η̃ = η and p̂ = p̃ = p where η and p are the true

prognostic index and risk. Moreover, we assume that ηi ∼ N(µ, var(η)) where µ and

var(η) are the mean and variance of η. In fact, the prognostic index is likely to follow

the normal distribution as the dimension of the parameter vector (βs) increases based

on the central limit theorem (Choodari-Oskooei et al., 2012c).

It can be written that ηi = log( pi
1−pi ) in which rearranging will give pi

1−pi = eηi and

so pi = eηi
eηi +1

.

Furthermore, wi is also a function of ηi. That is,

wi = pi(1− pi)

= (
eηi

eηi + 1
)(

1

eηi + 1
)

=
eηi

(eηi + 1)2
.

Given that the first derivative of wi is dwi
dηi

= − eηi (eηi−1)

(eηi+1)3
, the wi around ηi = η̄ (η̄

is the mean value of prognostic index within the validation data) can be approximated
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using the Taylor series expansion as follows.

wi =
eη̄

(eη̄ + 1)2
− eη̄(eη̄ − 1)

(eη̄ + 1)3
(ηi − η̄)

= A+B ηi, (4.2.2)

where

A =
eη̄

(eη̄ + 1)2
(1 + η̄

eη̄ − 1

eη̄ + 1
)

B =
−eη̄ (eη̄ − 1)

(eη̄ + 1)3
.

The variance of the calibration slope (βCS) can be written as

Var(βCS) =

∑
wi∑

wi(
∑
wiη2

i )− (
∑
wiηi)2

. (4.2.3)

Substituting 4.2.2 in the variance formula (equation 4.2.3), we have

Var(βCS) ≈
∑
A+

∑
Bηi

(
∑
A+

∑
Bηi)(

∑
Aη2

i +
∑
Bη3

i )− (
∑
Aηi +

∑
Bη2

i )
2
. (4.2.4)

The first three moments of the distribution of H the prognostic index can be used

to estimate
∑
ηi,
∑
η2
i and

∑
η3
i which are E(η) = η̄ = 1

n

∑
ηi, E(η2) = 1

n

∑
η2
i =

η̄2 + V ar(η), and E(η3) = 1
n

∑
η3
i = η̄3 + 3 η̄ V ar(η). Therefore, V ar(βCS) (equation

4.2.4) can be approximated as

n(A+ Bη̄)

n2(A+ Bη̄)[A (η̄2 + V ar(η)) +B (η̄3 + 3 η̄ V ar(η))]− n2 [(Aη̄ +B (η̄2 + V ar(η)))2]
(4.2.5)

where η̄ and var(η) can be obtained using the validation data. The equation 4.2.5 can

be simplified as

1

n
.

A+ Bη̄

(A+ Bη̄)[A (η̄2 + V ar(η)) +B (η̄3 + 3 η̄ V ar(η))]− (Aη̄ +B (η̄2 + V ar(η)))2
.

(4.2.6)

That is, the variance of the calibration slope is inversely proportional to the sample

size n.
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Variance of D statistic

The D statistic is calculated by fitting logistic regression to data consisting of the

outcome variable (Yi) and zi, where zi =
√

π
8 Φ−1

(
i− 3/8

n+ 1/4

)
in which i is the rank

order of the prognostic index (η), where Φ−1(.) denotes the inverse standard normal

distribution function. The slope from this regression is the D statistic. In other words,

one calculates calibration slope using ηi, and transforms it to calculate D statistic.

Therefore, one can approximate the D statistic by calculating the product of calibration

slope and π
8 . For example, the D statistic is approximately equal to 0.31 for the

calibration slope of 0.78, or the D statistic is equal to 0.39 for when there is perfect

calibration and the calibration slope equals one.

Likewise, one can approximate the standard error of D statistic by calculating the

product of the standard error of the calibration slope and π
8 . For instance, if the stan-

dard error of calibration slope is 0.32, the standard error of D statistic approximately

equals 0.13.

Thus, like the variance of calibration slope, the variance of D statistic is inversely

proportional to the sample size n.

Variance of C statistic

Under the normality assumption of prognostic index (ηi), the C statistic and D statistic

are closely related. Based on this assumption, an analytical relationship between C

statistic and D statistic is derived as follows.

Let us assume that ηi|Yi = 1 ∼ N(µ1, σ
2) with P (Yi = 1) = p1 and

ηj |Yj = 0 ∼ N(µ0, σ
2) with P (Yj = 1) = p0. Further, assume that the conditional

distribution of η given Y = y is normal with the mean µy and variance 2σ2. This for-

mulation corresponds to linear discriminant analysis (LDA) (Anderson, 1958), which

is equivalent to logistic regression model (Efron, 1975). In LDA, one assigns subject i

with prognostic score ηi to the population who had experienced the event with proba-

bility P (Yi = 1|ηi). This probability can be expressed in terms of a logistic model as

P (Yi = 1|ηi) =
1

1 + exp(−(β0 + βηηi))
, (4.2.7)

where β0 = −log p1p0 + 1
2

(µ21−µ20)
2σ2 and βη = µ1−µ0

2σ2 .
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Standardising the prognostic indexes, η1 and η0, and then multiplying them by π
8

gives the terms Z
′(1) and Z

′(0), which are distributed as N(0; π8 ).

That is: Z
′(1) ∼ N(

µ1−µy
σ
√

2
, π8 ) and Z

′(0) ∼ N(
µ0−µy
σ
√

2
, π8 ).

These formulations also correspond to the LDA with the transformed variables Z
′(1)

and Z
′(0), and can be expressed in terms of a logistic regression model for the binary

outcome variable Y with Z ′ as a predictor:

P (Yi = 1|z′i) =
1

1 + exp(−(β0 + βz′z
′
i))
, (4.2.8)

Therefore, the D statistic is the coefficient of Z ′, βz′ , in the above model and can be

estimated approximately by analogy to βη as

D ≈ (
8

π
)

(
µ1 − µ0√

2σ2

)
=

8

π
Φ−1(C).

Therefore,

C ≈ Φ(
π

8
D).

In order to obtain the variance of C statistic, the variance of Φ(π8 D) should be

calculated. That is,

V ar(C) ≈ V ar(Φ(
π

8
D)).

To do so, the delta method can be employed which is

V ar(C) ≈ V ar(D)

(
dΦ(π8 D)

dD
|D=D̂

)2

, (4.2.9)

where D̂ can be estimated in the validation dataset.

The first derivative of Φ(π8 D) is π
8 φ(π8 D), where φ(.) denotes the standard normal

density function. Thus, the equation 4.2.9 is equivalent to

V ar(C) ≈ V ar(D)
(π

8
Φ(
π

8
D̂)
)2
. (4.2.10)

That is, like the variance of D, the variance of C statistic is inversely proportional

to the sample size n.

For example, under the assumption of perfect calibration and given that variance of

D statistic is known to be 0.13, the variance of C statistic approximately equals 0.018.
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Validating the accuracy of the proposed formulas

Simulation was used to validate the derived formulas for estimating the standard error

of the performance measures.

A set of 200 validation datasets (N=800) based on a prognostic index with mean

µ and standard deviation of σ was simulated. The outcome variables were simulated

from these prognostic indices. We allowed the prognostic index to have either a normal

or log-normal distribution. Note that its assumed that the model to be validated is

the correct model. The three measures of calibration slope, D statistic and C statistic

were then obtained using the outcomes and prognostic indices. The observed standard

errors of the performance measures were averaged over 200 simulated datasets and were

compared with the expected values which were calculated using the derived formulae

(Table 4.1).

As can be seen, the estimated standard errors for the calibration slope are almost

as good as the observed standard errors for both distribution. However, the standard

errors of D statistic, and consequently C statistic, are not as good as the observed

standard errors when the standard deviation of the prognostic index is large.
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Table 4.1: The expected and observed standard errors of performance mea-

sures. The observed standard errors were averaged over 200 simulations.

Standard error of

Distribution* of η Equivalent median Calibration slope D statistic C statistic

risk (Min, Max)

expected 0.445 0.175 0.025

N(µ= 2, σ = 0.25) 87% (77%, 95%) observed 0.442 0.176 0.031

LN(µ= 2, σ = 0.25) 0.453 0.175 0.031

expected 0.236 0.093 0.013

N(µ= 2, σ = 0.5) 87% (70%, 99%) observed 0.223 0.178 0.029

LN(µ= 2, σ = 0.5) 0.249 0.176 0.028

expected 0.321 0.126 0.018

N(µ= 1, σ = 0.25) 72% (61%, 91%) observed 0.327 0.130 0.023

LN(µ= 1, σ = 0.25) 0.341 0.130 0.023

expected 0.164 0.064 0.009

N(µ= 1, σ = 0.5) 71% (54%, 98%) observed 0.170 0.136 0.022

LN(µ= 1, σ = 0.5) 0.200 0.133 0.021

expected 0.486 0.191 0.028

N(µ= 0.5, σ = 0.15) 62% (55%, 80%) observed 0.490 0.118 0.021

LN(µ= 0.5, σ = 0.15) 0.505 0.118 0.021

expected 0.365 0.143 0.021

N(µ= 0.5, σ = 0.2) 61% (53%, 82%) observed 0.371 0.118 0.021

LN(µ= 0.5, σ = 0.2) 0.386 0.118 0.021

N(µ,σ): normal distribution with the mean µ and standard deviation σ.

LN(µ,σ): Log-normal distribution with the mean µ and standard deviation σ.

4.3 Case study

From section 4.2, the precision of performance measures have a nonlinear relationship

with the sample size. A case study was conducted to empirically present that the

precision of the estimated performance measures on real validation data can be affected

by the number of events. This case study was carried out using the heart valve surgery

data.

4.3.1 Method

We employed all predictors in Ambler’s model (Ambler et al., 2005), in total 14 predic-

tors equivalent to 16 degrees of freedom, and fitted the logistic risk model on the data

from the first five years (the development data in Ambler’s paper). The fitted model

97



4. SAMPLE SIZE REQUIREMENTS TO VALIDATE A RISK MODEL
USING INDEPENDENT BINARY DATA

was validated on the second part of the data (data from the years 2000 to 2005, which

was the validation data in Ambler’s paper). The estimated performance measures on

the validation data were: D statistic=1.76, C statistic=0.77, calibration slope=1.11 and

Brier score=0.050. That is, it seems that the agreement between the predicted and ob-

served outcomes is not good ( calibration slope greater than one), but this model was

successful in terms of distinguishing patients from different risk groups.

Therefore, the model was recalibrated by transforming the predicted log-odds using

50% of the validation dataset, a linear function found to be appropriate. The recal-

ibration improved the fit of the model, calibration slope was equal to one (obtained

using the rest of the validation data). Thereafter, we validated this recalibrated model

on validation samples of different sizes sampled from the original validation data. The

size of the validation datasets were adjusted by sampling separately without replace-

ment from events and non-events (retaining the outcome prevalence of the heart valve

data, 0.6%). For each number of events, 200 samples were selected. For each sample,

performance measures were calculated based on the recalibrated model.

4.3.2 Results

Table 4.2: Mean value (standard deviation) of the predictive performance measures by

number of events over 200 external samples.

Number of Events C statistic D statistic Calibration Slope Brier Score

500 0.77 (0.006) 1.75 (0.052) 1.00 (0.027) 0.454 (0.0003)

300 0.77 (0.010) 1.76 (0.087) 1.00 (0.046) 0.453 (0.0005)

250 0.77 (0.012) 1.76 (0.099) 1.00 (0.050) 0.454 (0.0006)

200 0.77 (0.013) 1.75 (0.113) 1.00 (0.060) 0.454 (0.0007)

150 0.77 (0.017) 1.75 (0.138) 1.00 (0.074) 0.454 (0.0007)

125 0.77 (0.018) 1.78 (0.151) 1.00 (0.081) 0.453 (0.0009)

100 0.77 (0.024) 1.76 (0.188) 1.00 (0.094) 0.454 (0.0010)

75 0.77 (0.025) 1.76 (0.202) 1.00 (0.107) 0.454 (0.0011)

50 0.77 (0.032) 1.76 (0.269) 1.00 (0.147) 0.454 (0.0016)

We expected the precision of estimation for measures in external samples to increase

by increasing the sample size.

Table 4.2 shows the precision of predictive performance measures was affected by

the number of events. The standard deviation of the measures across samples was
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smallest for the largest number of events, and largest for the smallest number of events

in the validation sample.

4.3.3 Conclusion

To sum up, this case study also showed that the number of events in the validation

samples has an effect on the precision of the estimated calibration and discrimination

measures and overall performance measures. The larger the number of events in the

validation sample, the higher the precision of the estimated validation measures. This

was indeed what we showed in section 4.2.

Further investigation was conducted to understand the reasons for the trends seen in

Table 4.2. The effect of the number of events on the separation between η̂(0) and η̂(1) is

illustrated in Figure 4.1, where η̂(0) and η̂(1) are the linear predictors that correspond to

the nonevent and event groups, respectively. As can be seen, the variation within η̂(0)s

and η̂(1)s was least at the largest number of events compared to the smallest number

of events. This indeed was the pattern observed in Table 4.2; the standard deviation

of the measures was the largest at the smallest number of events. Additionally, in

our analytical work in section 4.2, we showed that the precision of the performance of

measures increases with increasing sample size.

This case study was conducted by sampling without replacement from the real data.

Also, the outcome prevalence was fixed at that observed in the original heart valve

surgery data. Therefore, a simulation study was performed by varying the outcome

prevalence in the validation sample to ascertain how many events are required to achieve

satisfactory precision in the validation measures.
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Figure 4.1: Separation between η̂(0) and η̂(1) by number of events. η̂(0) and η̂(1) are

linear predictors corresponding to nonevent and event groups, respectively.
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4.4 Simulation study

We required to assess whether the precision of these measures can be worsen by the

number of events at different outcome prevalences when validating a correct risk model.

A number of simulation studies were performed using the heart valve surgery data.

All investigations in this chapter started with assuming that the risk model had been

perfectly estimated in the development data (see section 4.2). Details of these simula-

tions are now described.

4.4.1 Overview

A model was derived using the entire heart valve surgery data with 10 pre-specified

variables. The linear predictor was obtained for all patients in the data and used to

generate new outcomes to investigate the following factors:

§ Different risk profile in validation set; to learn whether the sample size require-

ments should change if the risk profile varies. Three levels of low, medium, and high

were considered for the risk profile.

§ Number of events; the following number of events were examined; 25, 50, 75, 100,

125, 150, 200, 250, 300 and 400.

For each combination of these factors, the following approach was repeated 2000

times. The linear predictor variable was sorted in ascending order, and split into three

equal groups: low-, medium-, and high-risk groups. The proportion of risk groups

was manipulated to change risk profile in the simulated data. This was achieved by

sampling the required proportion from each group (see section 4.4.2). For each number

of events, the simulated data was sorted by outcome and the first observations were

selected to be in the studied sample until the required numbers of events had been

observed, and the quality of the predictions were then quantified using the calibration

slope, C statistic and Brier score. The results for the D statistic are not presented

for this simulation study since they are correlated with those from the C statistic.

The performance measures from the reduced validation datasets were compared with

those from the full size validation datasets using percent relative differences. Detailed

information regarding the simulation scenarios are now described.
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4.4.2 Different risk profile in validation set

In reality, the prevalence of some disease might be smaller or larger than others, or pa-

tients of one country may be highly at risk of developing a disease than other countries.

For instance, heart failure is a major public health issue in the USA, with over 5.8 mil-

lion sufferers compared to over 23 million worldwide (Bui et al., 2011). To reflect such

situations, datasets with different risk profiles were produced and utilised to validate

the risk model.

To do so, the true model was fitted on the entire heart valve surgery data (N=32,839).

For each number of events, three datasets were simulated (with low, medium and high

risk profile), and the required number of events and nonevents were selected by sepa-

rate random sampling from them. To change the risk profile, the true linear predictors

were estimated and sorted in ascending order. The linear predictors were split into

three groups of low, medium and high risk such that the first third of patients who had

the lowest linear predictors constituted the low-risk group, and the second and third

sections of the remaining patients with medium and large linear predictors formed the

medium- and high-risk groups, respectively. Then, samples without replacement for

the low-risk profile were produced by selecting 60% of the patients from the lowest risk

group, 33% of those from the middle, and the remaining 7%, from the highest risk

group category. These proportions were about 7%, 33% and 60% from low- medium-

and high-risk groups, respectively, to form the high-risk profile samples. Furthermore,

33% from each risk group were selected to create the medium-risk profile samples.

Figure 4.2 illustrates the distribution of the linear predictors in one of the full

size samples across different risk profiles. The average outcome prevalence in the low,

medium and high risk profile samples were 3.6%, 6.4% and 9.2%, respectively.

4.4.3 Generating new outcomes

The logistic regression prediction model was derived using the entire heart valve surgery

data and all pre-specified predictors (see section 3.2). For each patient, the linear

predictor, lp = −5.95+0.036age+0.36Mitral+0.69Aortmitr+0.41cabge+0.96Renal+

0.21FairEjec + 0.70PoorEjec + 0.51Urgent + 1.60Emergency + 0.67Sequence was

obtained from the prediction model and used to simulate new outcomes. The predictor

values and outcomes were combined to make new datasets. The generated new datasets
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Figure 4.2: Distribution of linear predictors in samples with varying

risk profile, N = 32,839.

were referred to as the validation samples. This method mimics the situation where

the validation sample originates in the same underlying population as the development

dataset. The same approach was taken to create outcomes for patients in the low-risk

and high-risk profile samples.

4.4.4 Results

Figure 4.3 displays percent relative differences in the estimated performance measures

by number of events in the validation samples over different risk profiles based on

2000 simulated datasets, and Table 4.3 presents the reference values and their standard

values obtained based on 2000 full size validation data. Note that reference values were

obtained by calculating the performance measures using the entire validation datasets.

Furthermore, standard error of the reference measures are the standard deviation of

measures across 2000 validation datasets.
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Table 4.3: The reference values of the performance measures and their standard devi-

ations based on 2000 simulated datasets.

Risk Performance measure

profile C statistic Brier score Calibration slope

Low 0.69 (0.0098) 0.033 (0.0011) 1.00 (0.0444)

Medium 0.74 (0.0071) 0.055 (0.0013) 1.00 (0.0299)

High 0.72 (0.0062) 0.076 (0.0014) 1.00 (0.0281)

As can be seen from the graph, the precision of the measures increases by increas-

ing number of events for all risk profiles. In fact, the interquartile range of relative

differences in all performance measures decreased by increasing the number of events

at differing levels of risk profile.

Additionally, it seems that only the number of events affect the precision of perfor-

mance measures.

To sum up, according to the interquartile range, the precision of performance mea-

sures seemed acceptable when the number of events were at least 75. At this number

of events, the percent root mean squared differences of calibration slope was 15, of C

statistic was 3.5, and of Brier score was 1. Thus, we suggest that there should be at

least 75 events when validating a risk model using independent binary outcome. The

percent root mean squared differences is calculated by squaring the subtraction of the

estimated measure from the reference measure and multiplying the result by 100.
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Figure 4.3: Percent relative differences in the estimated performance measures in the

validation samples by number of events for different risk profiles based on 2000 simu-

lated data. The standard error range of simulation for the C statistic, calibration slope

and Brier score among all number of events and risk profiles were (0.0001, 0.0012),

(0.0006, 0.0059) and (0.00004, 0.00031), respectively.
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4.5 Conclusion

The objective of this chapter was to analytically investigate the relationship between

the precision of the performance measures and the sample size, and to ascertain the

required number of events when validating a correctly-specified risk prediction model

with independent binary outcome.

With regard to the importance of the risk prediction models in medical settings,

other than these models should be developed carefully, they should be validated with

great care such that they could satisfactory perform in other new settings. Moreover,

risk models validated using small datasets cannot be trusted to be used in practise

(Harrell, 2001, Vergouwe et al., 2002, 2005, Steyerberg, 2009). Therefore, taking ac-

count of the issue of sample size is crucial when validating a risk model in medical

setting.

It is suggested to use at least 100 events when validating a risk model (Harrell et al.

(1996); Vergouwe et al. (2005); Peek et al. (2007); Collins et al. (2014)). However, none

of the studies investigated the relationship between the risk profile and precision of the

performance measures in the light of the number of events.

Thus, we first analytically showed that the precision of the calibration slope, D

statistic and C statistic have a nonlinear relation with the sample size.

We also conducted a case study to empirically assess this dependency. The results

were in line with the analytical observations. A further question arose over the need for

a different number of events in validation datasets if the outcome prevalence differed

from what was observed in the heart valve surgery data. A simulation study was

conducted to address this issue.

The results of our simulations showed that the required number of events is not

different for different risk profiles. We found that with at least 75 events a researcher

can validate a model satisfactorily .
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Chapter 5

Sample Size Requirements for

Developing a Risk Model using

Binary Clustered Data

We have already studied the required number of events to develop a risk prediction

model using datasets in which the assumption of the independence of observations

holds (see chapter 3).

However, data may be of the clustered structure (Twisk, 2006). This is the case in a

lot of medical research. For example: patients who are registered in their local surgery

are clustered within surgeries; or measures repeatedly taken from the same patient or

variable over long periods of time in longitudinal studies (Robertson et al., 2013) are

clustered within patients or variables; as well as the data from different studies of the

same sort evaluated in a meta analysis, are clustered within studies (Thayyil et al.,

2010).

In clustered data, observations inside the same cluster are correlated in some fea-

tures compared to those from different clusters (Beitler and Landis, 1985, Hedeker et al.,

1991, Kreft and Leeuw, 1998, Ambler et al., 2005, Robertson et al., 2013). For instance,

the results of treatments for patients from the same surgery due to the treatment pol-

icy in the surgery, or due to the unique characteristic of each patient in longitudinal

studies which appears in each measurement, or due to the fact that each study has

been conducted by a certain method which might somewhat differ from other studies.

The treatment result for patients from different surgeries, or the measurements of each
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patient, or the resulting information from each study are correlated within their own

clusters.

Thus, as the assumption of independence of observations is violated in clustered

data, the standard EPV calculation may no longer apply, nor the standard modelling

techniques. That is because those techniques cannot accommodate the dependence

among subjects within the same cluster and must be adjusted for the presence of

clustering. However, one might choose to fit a standard risk model with fixed effects

for clusters (see section 2.3.2), in which case one could use a standard EPV calculation.

The objective of this chapter is to determine the required sample size when devel-

oping a risk prediction model using clustered binary data. The chapter includes the

following sections. The literature is reviewed in section 5.1. Section 5.2 describes the

dataset used in this chapter and Chapter 6. Section 5.3 is devoted to a case study

conducted to give an insight into the issue of events per variable when with clustered

binary data. In Section 5.4, a simulation study in which the issue of EPV is further

investigated is reported. In Section 5.5, the recommended sample size was compared

with the one used in the common practice. Finally, Section 5.6 discusses findings and

provides some recommendations.

5.1 EPV in developing a clustered risk model: A review

In general, the usual approach to calculate sample size for clustered data is one that

uses standard methods to find the required sample size, and then multiplies the results

by a design factor (Simpson et al., 1995), where design factor is given by 1+(m−1)×ICC
in which m and ICC are average cluster size and ‘intra cluster’ correlation coefficients,

respectively. This approach was developed to use when the primary interest was signifi-

cant testing or precision of estimated regression coefficients to estimate the amount that

the standard errors of parameters are underestimated (Kish, 1965). It is worth noting

that the standard modelling approach assumes that observations are independent and

that each observation adds to our information from the study population. However,

when observations are clustered within centres, those from the same cluster provide

similar information from the studied population. Thus, when choosing the modelling

approach, it is important to take clustering into account in order to obtain the correct

standard errors for the estimated parameters.
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This approach may not be appropriate to take when developing a risk prediction

model as there is less interest in individual covariate effects. Rather, the main focus is

likely to be quantifying the ability of the model to predict outcomes for future patients,

or to separate patients from different groups, as Copas (1983) observed that “a good

model may include variables which are ‘not significant’, exclude others which are, and

may involve coefficients which are systematically biased”. Thus, the best risk prediction

model may not be produced by only basing sample size decisions on the significance or

unbiased estimation of model coefficients.

In literature, there are some simulation studies which have been conducted to in-

vestigate the required sample size to accurately estimate fixed- and random-effect co-

efficients and their corresponding standard errors (SE) when using multilevel linear

regression models in the context of continuous outcome (Maas and Hox, 2004, 2005,

Bell et al., 2008, 2010). These papers are reviewed here since the estimated coefficients

of the risk model are linearly combined to constitute the linear predictors which are

directly or indirectly used in calculation of performance measures.

Maas and Hox (2004, 2005)

They conducted a simulation study to determine the influence of different cluster sizes

on the accuracy of fixed- and random-effect parameters estimations and their standard

errors in multilevel linear regression models using continuous outcome. The fixed-effect

parameters referred to the intercept and regression slopes at two levels and the random-

effect parameters were error terms for subject level and cluster level. Maas and Hox

assessed the number of clusters, cluster size and ICC.

Maas and Hox (2004, 2005) discovered that the estimation of both fixed- and

random-effect parameters have negligible bias (less than 5%) in all scenarios. They

also found that 95% confidence interval coverage for estimated parameters is influenced

by the cluster sizes less than the number of clusters, and the estimation of standard

errors for the random-effect parameters were biased downward when there were 50 clus-

ters or fewer of sizes of 30 or less in the datasets. Moreover, they reported that ICC

did not have an effect on 95% confidence interval coverage

They did not investigate the effect of those three scenarios on accuracy and precision

of estimation and predictions of a multilevel logistic regression model.
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Moineddin et al. (2007)

They conducted a simulation study to examine the effect of sample and cluster sizes

on the estimation of the fixed- and random-effect parameters and their standard error

in two-level logistic regression models. In their simulation study, they examined all the

scenarios which Maas and Hox (2005) have studied plus outcome prevalence.

Moineddin et al. found that while the estimation bias of fixed-effect parameters was

very low (less than 4%) when the size of the clusters increased (to 30 observations) as

well as the number of clusters (to 50 clusters), the standard error of random-intercept

was consistently underestimated when with a cluster size of at least 30, regardless of the

number of clusters (the bias was less than 4%, though, when with 100 clusters of size 50).

Furthermore, they reported that bias was smaller at low outcome prevalence for both

fixed- and random-effect parameters. Above all, Moineddin et al. (2007) confirmed that

ICC had no effect on the estimation of the fixed-effect parameters, although relative

bias for the random-intercept decreased by increasing ICC.

Moineddin et al. (2007) also discovered that while ICC had no effect on 95% con-

fidence interval coverage for the fixed-effects parameter, the 95% confidence interval

coverage decreased by increasing ICC for the random-intercept parameter. What is

more, they verified that while the standard error of fixed-effect parameters was almost

always accurate in all scenarios, the standard error of random-effect parameters was

always biased (the convergence of 95% confidence interval was lower than nominal level

in all scenarios).

Moineddin et al. (2007) recommended using at least 50 clusters of size 50 when

developing a two-level logistic risk model in order to produce valid (accurate and pre-

cise) estimation for parameters. They also recommended that low outcome prevalence

requires larger cluster sizes in order to have at least one event in each cluster.

They did not evaluate the effect of listed scenarios on predictions of multilevel

logistic models.

Paccagnella (2011)

They conducted a Monte Carlo simulation study to assess the accuracy of regression co-

efficients estimates and their standard errors when using a two-level random-intercept
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logistic model. As in previously reviewed studies, they investigated the following sce-

narios; the number of clusters, (unequal) cluster sizes and ICC.

They reported that the estimation of fixed-effect parameters were accurate when

there were at least 10 clusters in the dataset. They also found that the estimates

of standard errors of fixed-effect parameters were accurate when there were at least

five clusters in the dataset; however, the estimates of standard errors of random-effect

parameters were never accurate. Paccagnella (2011) also reported that the estimates

of fixed- and random-effect parameters were not influenced by ICC.

Overall, the results of this work by Paccagnella (2011) agree with the findings of

Maas and Hox (2004, 2005) and Moineddin et al. (2007): that the accurate estimates

for fixed-effect of fixed-effect parameters can be achieved at even 10 clusters, but the

standard error of those estimates were too small and standard error of random-effects

parameters were always underestimated. These researchers did not study the effect of

the number of clusters, cluster sizes and ICC on prediction.

Recommendations for estimation of regression coefficients

Summing up the recommendations, there should be at least 50 clusters of size at least 30

observations in the dataset when developing a multilevel linear regression model using

continuous outcome. This allows us to achieve an accurate estimation for fixed- and

random-effect parameters and a precise estimate for fixed-effect regression coefficients.

However, a studied dataset should consist of at least 50 clusters of size at least 50

observations to accomplish the same aim when developing a multilevel logistic regression

model using binary outcomes.

Nevertheless, there is still an unsolved problem. How many observations are re-

quired to obtain accurate predictions when developing multilevel regression model us-

ing either continuous or binary outcome? To answer this question, in a small part of

their study, Bouwmeester et al. (2013) examined the effect of sample size on predictions

using clustered binary outcome. This study is reviewed below.

Bouwmeester et al. (2013)

They conducted a simulation study to compare the ability of a random-effect logistic

model (in producing accurate median predictions (p0) or cluster-specific predictions (pu)

(see section 2.3)) with the ability of standard logistic regression models (in producing
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accurate standard predictions (see section 2.3)) in both development and validation

datasets. The number of clusters and ICC were the scenarios of study. Bouwmeester

et al. assessed both apparent and external performance ( see section 2.4) of the models

in terms of discrimination and calibration, using the C statistic, calibration slope and

calibration-in-the-large (see section 2.5).

Bouwmeester et al. (2013) reported that models developed using datasets with a

small number of clusters (5 clusters) performed worse compared to those developed us-

ing datasets with a medium number of clusters (50 clusters) regardless of ICC. However

this issue of sample size was not the main focus of the publication, and so investigation

of this aspect was limited in scope.

Wynants et al. (2015)

In their simulation study, Wynants et al. (2015) looked into the effect of EPV on

predictive performance of the random-intercept logistic models, as well as the estimation

of their coefficients. They evaluated the following scenarios; the number of clusters,

cluster size, ICC and EPV.

Wynants et al. only studied median predictions, (P0) (see section 2.3) and compared

overall and within-cluster calibration and the C statistic in simulated data with those

from source population. Note that the overall measures evaluate the performance of

the models in population level, and within-cluster measure is a weighted combination of

cluster-specific measures which quantify the performance of the model in cluster level.

From their study, Wynants et al. (2015) reported that the largest estimation bias

was in the lowest EPV at all ICCs. For example, at ICC=20% the estimation bias of

their example coefficient was about 10% at EPV=5 compared to 2% at EPV=50. They

also found that the standard error of random-intercept was often underestimated, but

the amount of underestimation was less at large EPV. For example, at ICC=20% bias

was -15% at EPV=5 and it dropped to -5% at EPV=50. They also noted that the

values of both the overall and within-cluster C statistic and calibration slope went up

by increasing EPV at all ICC levels. For example, at ICC=20% bias in within-cluster

C statistic was around 3% at EPV=5 compared to about 0 at EPV=50, and bias in

the calibration slope was about 28% at EPV=5 compared to 3% at EPV=50. We also

found this relationship between EPV and performance of the risk model in our study,

reported at section 3.4 of this dissertation. Wynants et al. also reported that models
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developed in larger samples perform well, holding EPV constant. Of note, we also

found similar results to their last finding in our study by studying different outcome

prevalence scenario, reported at section 3.4.3 of this dissertation.

They recommended using at least 10 EPV (calculated by incorporating the number

of fixed- and random-effect parameters) to fit a predefined prediction model when using

clustered binary outcomes.

Wynants et al. only investigated the issue of the number of events using median

predictions.

EPV summary

To sum up, there is no consensus on how much sample size is required to develop a

multilevel risk model with accurate or nearly accurate predictions. It has been rec-

ommended to use 50 clusters of size 30 to develop a two-level linear risk model (Maas

and Hox (2004); Maas and Hox (2005)) and to use 50 clusters of size 50 to develop a

two-level logistic risk model (Moineddin et al., 2007) with accurate estimation of fixed-

and random-effect parameters, as well as accurate estimation of fixed-effect standard

error. All of those studies only addressed the estimation of fixed- and random-effect

parameters and their standard errors and did not investigate the impact of sample size

on predictive performance of the models.

There is not enough study on how much data is required to develop a reliable

multilevel risk model for prediction. In an independent binary setting, it has been

suggested to use EPV of at least 10 when developing a risk prediction logistic model

(Harrell et al., 1984). Wynants et al. (2015) also suggested to use EPV of at least

10 when developing a random-intercept logistic model with reasonable performance.

However, they only studied median predictions obtained from only incorporating the

estimates of fixed-effects parameters. Therefore, the following questions are yet to

be answered. Are cluster-specific predictions (pu) and/or marginal predictions (pm)

affected by EPV? What other factors apart from EPV are important to accomplish an

acceptable performance from random-intercept logistic models?

Therefore, this study was conducted to ascertain the required number of events

to develop a risk prediction model with acceptable performance. We illustrated the

dependency of two-level random-intercept risk prediction model performance on EPV

in our case study. This was conducted using three common performance measures;
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calibration slope, C statistic and Brier score. We also performed a simulation study

examining different scenarios, including various number of clusters, cluster size, ICC

and EPV. We evaluated the performance of the random-intercept logistic risk model

using median prediction and cluster-effect predictions. We also examined the perfor-

mance of the marginal models (see section 2.3) as well as fixed-effect logistic models in

the studied scenarios in relation to EPV.
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5.2 Data

Heart valve surgery data was used to conduct studies in chapter 5 and 6. This data

will be described now.

The entire heart valve surgery dataset was employed (N=32,839) in chapter 5 and

6. The dataset includes the information of patients who are clustered within health

centres. There were 30 clusters with the cluster sizes ranged from 298 patients to 2007

patients (cluster size mean and standard deviation were 1279 and 404, respectively).

The overall outcome prevalence was 6.36%. The outcome prevalence in clusters ranged

from 0.67% to 12.43% (average prevalence over clusters was 6.03 and the standard

deviation of it was 1.93). The intra-cluster correlation (ICC) coefficient was calculated

using the method of analysis of variance (ANOVA) (Chakraborty et al., 2009) to be

6%. A set of seven predictors, all with prognostic information, were chosen to be used

in this study (see section 3.2).

The Maximum Likelihood (ML) random-intercept model logistic regressions with

two levels was fitted on the entire dataset (N=32,839) and used to investigate the

importance of each predictor. The process was conducted as follows. For each predictor,

two models was fitted, one with all predictors included and one excluding the predictor.

The decrease in χ2 (∆χ2) was then calculated for each predictor (Table 5.1).

The variance parameter of the random effects, σ2
u was estimated as 0.05. This cor-

responds to an ICC = σ2
u/(σ

2
u + π2

3 ) = 0.015, indicating a weak correlation between

patients within a centre, after accounting for the fixed predictors. It transpired that,

fitting the random-intercept model for this multi-centre data using standardised vari-

ables, there were four moderate (the estimated coefficients were between 0.2 and 0.5)

and three weak (the estimated coefficients were less than 0.2, inclusive) predictors.
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Table 5.1: Importance of the predictors in a random-intercept model (estimated

using maximum likelihood) fitted for the heart valve data.

Variables Category D.F. β̂∗ ∆χ2

Operative Priority elective 2 416.03

urgent 0.264

emergency 0.351

Age 1 0.476 171.39

Operation Sequence First 1 122.74

Second & more 0.266

Renal failure no 1 118.22

Cr>200 & dialysis 0.202

Ejection Fraction good (>49) 2 108.14

fair (30-49) 0.110

poor (<30) 0.208

Valve Operation aortic 2 64.56

mitral 0.149

aortic+mitral 0.182

Concomitant CABG Surgery no 1 54.37

yes 0.214

Full model 10 ”LRχ2= 1631.65 ”

β̂* the estimated coefficient for standardised variables.

∆χ2 denotes the decrease in χ2 statistic for the model when the predictor is omitted and the model refitted.

D.F. denotes the number of parameters included in the model for that predictor.

Prevalence of category refers to the percentage of subjects with the condition.
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5.3 Case study

From the previous section the available literature is not enough to determine the re-

quired sample size to develop a multilevel risk prediction model using clustered binary

outcomes.

Therefore a case study was conducted to understand how the accuracy of predicted

risks produced using random-intercept regression models can be affected by EPV. This

case study was carried out using the heart valve surgery data (see section 5.2). All

types of predictions were studied (see section 2.3).

5.3.1 Method

To conduct a case study, the first five years from the heart valve surgery data was used

for development, and the rest for validation. For each EPV, the following method was

repeated 200 times. Firstly, the size of development dataset was varied to achieve the

desired EPV (5, 10, 20, 50 and 116) by separately sampling without replacement from

events and nonevents. These numbers of EPVs included all recommended EPVs in the

previous studies. The EPV was calculated by dividing the number of events into 10

(the number of variables in the model). Secondly, a random-intercept logistic regression

model was fitted on development datasets of varying size and used to produce three

types of predictions (cluster-specific (Pu), median (p0) and marginal (pm) predictions

(see section 2.3)). Finally, the overall performance measures (C statistic, D statistic,

calibration slope and Brier score) were calculated on validation data for each type of

prediction.

We only use overall measures in both this chapter and chapter six as overall and

within-cluster performance measures (see section 2.6) perform similarly (Wynants et al.

(2015), Bouwmeester et al. (2013)).

5.3.2 Results

Table 5.2 presents the mean value (and standard error) of performance measures by

EPV and types of predictions over 200 samples where types of predictions were cluster-

specific (pu), median (p0) and marginal (pm) predictions.

From the table, the performance of random-intercept logistic models were affected

by EPV. The discrimination ability of the models decreased as EPV decreased according
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to C statistic and D statistic. The C statistic obtained using any type of predictions

dropped from 0.77 for EPV=116 to 0.73 for EPV=5. Moreover, the D statistic obtained

using p0 or pm fell from 1.72 when EPV was 116 to 1.49 when EPV was 5, but this

statistic decreased from 1.75 for EPV=116 to 1.51 for EPV=5 when obtained using pu.

Furthermore, models underfitted in higher EPV and overfitted in lower EPVs, ac-

cording to the calibration slope. This is discussed further shortly. The calibration slope

dropped from 1.18, 1.20 or 1.19 for EPV=116 to 0.89, 0.90 or 0.90 for EPV=5 when

using p0, pm and pu, respectively.

In addition, with regard to Brier score, the overall performance of the models was

slightly affected by EPV regardless of the type of predictions. This is due to low

outcome prevalence in our dataset.

Furthermore, the results for all types of predictions were similar, since the clustering

effect in heart valve surgery data was weak.
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Table 5.2: Mean value and standard error of each performance measure by EPV and type of prediction obtained from

a random-intercept logistic model where types of predictions were cluster-specific, median and marginal predictions.

Performance quality measures in validation data

EPV C(SE) D(SE) CS(SE) BS(SE)

naive updated optimism corrected

116 0.77 1.72 1.18 0.98 0.96 0.0499

50 0.76 ( 0.002 ) 1.7 ( 0.011 ) 1.17 ( 0.046 ) 0.98 ( 0.003 ) 0.96 ( 0.002 ) 0.05 ( 0.0001 )

P0 20 0.76 ( 0.005 ) 1.66 ( 0.033 ) 1.12 ( 0.081 ) 0.98 ( 0.004 ) 0.95 ( 0.004 ) 0.0502 ( 0.0002 )

10 0.75 ( 0.009 ) 1.6 ( 0.066 ) 1.05 ( 0.114 ) 0.98 ( 0.005 ) 0.94 ( 0.006 ) 0.0505 ( 0.0003 )

T
y
p

e
s

o
f

p
re

d
ic

ti
o
n 5 0.73 ( 0.043 ) 1.49 ( 0.135 ) 0.9 ( 0.16 ) 0.99 ( 0.04 ) 0.98 ( 0.04 ) 0.0511 ( 0.0006 )

116 0.77 1.72 1.2 0.98 0.97 0.0499

50 0.76 ( 0.002 ) 1.7 ( 0.011 ) 1.18 ( 0.047 ) 0.98 ( 0.002 ) 0.96 ( 0.003 ) 0.05 ( 0.0001 )

Pm 20 0.76 ( 0.005 ) 1.67 ( 0.034 ) 1.13 ( 0.081 ) 0.98 ( 0.004 ) 0.95 ( 0.004 ) 0.0502 ( 0.0002 )

10 0.75 ( 0.009 ) 1.6 ( 0.066 ) 1.06 ( 0.114 ) 0.98 ( 0.005 ) 0.95 ( 0.006 ) 0.0505 ( 0.0003 )

5 0.73 ( 0.043 ) 1.49 ( 0.135 ) 0.91 ( 0.162 ) 0.99 ( 0.03 ) 0.98 ( 0.01 ) 0.0511 ( 0.0006 )

116 0.77 1.75 1.19 0.99 0.98 0.0498

50 0.77 ( 0.001 ) 1.74 ( 0.011 ) 1.18 ( 0.045 ) 0.99 ( 0.0009 ) 0.99 ( 0.002 ) 0.0498 ( 0.0001 )

Pu 20 0.76 ( 0.005 ) 1.69 ( 0.036 ) 1.13 ( 0.08 ) 0.99 ( 0.004 ) 0.99 ( 0.004 ) 0.05 ( 0.0002 )

10 0.75 ( 0.009 ) 1.62 ( 0.066 ) 1.06 ( 0.114 ) 0.99 ( 0.006 ) 0.98 ( 0.006 ) 0.0504 ( 0.0003 )

5 0.73 ( 0.044 ) 1.5 ( 0.136 ) 0.91 ( 0.16 ) 0.98 ( 0.02 ) 0.99 ( 0.04 ) 0.051 ( 0.0006 )

P0: median prediction. Pm: marginal prediction. Pu: cluster-specific prediction. C: C statistic. D: D statistic. CS: calibration

slope. BS: Brier score. SE: standard error of the measure over 200 simulations. Updated refers to which the calibration slope

was obtained from predictions of the recalibrated-updated model. Optimism corrected refers to the calibration slope which was

obtained from predictions of the bootstrap-optimism-corrected risk model.
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Figure 5.1: Observed and predicted log odds of mortality in validation data (n=16,160)

before (left plot) and after (right plot) updating. Perfect calibration is represented by

the red line through the origin.

Further analysis

We have used the original data to conduct the case study and as it can be seen in Table

5.2, models are misspecified at large EPVs (calibration slope was greater than one). In

practice, in such situations, one should look for the reasons which caused the model to

be underfitted (or overfitted) and try to fix it. Therefore, we inspected the data used

for development and validation of the prediction model. The results of our inspection

for EPV of 116 are reported here.

As a first step, we examined the outcome prevalence in both development and

validation datasets. The outcome prevalence in the first five years of heart valve surgery

data which was used to develop the risk prediction model was 6.97%, but it was 5.73%

in validation data. We plotted the observed risk against predicted risk for a first

impression of validity of the risk prediction model for the last four years (2000-2003) of

heart valve surgery data (Figure 5.1 - left plot). We noted that the observed mortality

rate in high-risk group patients was larger and in low-risk group patients somewhat

lower than those predicted. This may be attributed to the slight difference in outcome

prevalence.

The validity was further assessed by fitting a random-intercept model in both de-

velopment and validation datasets and comparing the regression coefficients between
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Table 5.3: Differences in estimated Logistic regression coefficients in the development

and validation data and P-value for the test for ”whether the effect of predictors in

validation data differ significantly”. All the results are presented for only sample with

EPV of 116 .

Variable Categories differences∗ in Is the effect in

coefficients val. different?

(P-value)

Age - 0.0073 No (0.679)

Valve Operation Aortic No (0.625)

Miteral 0.0768

Aortic&miteral - 0.0634

Concomitant CABG Surgery No No (0.875)

Yes - 0.0579

Renal Failure No No (0.186)

Cr>200&dialysis -0.3321

Ejection Fraction Good No (0.526)

Fair - 0.0902

Poor - 0.2595

Operative Priority Elective No (0.411)

Urgent - 0.1765

Emergency - 0.1416

Operation Sequence First No (0.293)

Second&more - 0.2430

∗ estimated coefficient in development data minus estimated coefficient in validation data.

val.: validation data
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them (Table5.3). The coefficients when EPV was 116 are reasonably similar, although

the coefficient of Mitral Operation is somewhat smaller in validation data and those of

the rest of the variables larger.

As can be seen from Figure 5.1 (left plot) and Table 5.3, there is a clear need

for updating the fitted model. To do so, we implemented the updating method for

the standard logistic regression model suggested by Steyerberg (2009) to update the

random-intercept logistic regression model which was developed on the entire develop-

ment data. The steps taken for this purposes are described here.

The cluster-specific linear predictor (η1) was obtained for patients in validation data

using the model developed on development dataset. To recalibrate the model, the in-

tercept and overall calibration slope were updated by fitting a new random-intercept

logistic model on the validation data using η1 as the only predictor. Thereafter, the

updated cluster-specific predictor was used to produced predictions and to compute

the overall calibration slope. This was performed for cluster-specific linear predictors

(obtained incorporating the effect of both fixed- and random-effect variables). Then,

median and marginal linear predictors were derived from those. The process was con-

ducted for all samples with EPV of 5 to EPV of 116.

We plotted the observed risk against expected risk for an updated model when EPV

was 116 (Figure 5.1 (right plot)). As noted, performance of the prediction model after

updating slightly improved in low- and high-risk groups but slightly deteriorated in

medium-risk group.

Furthermore, to verify if any of the coefficients needs to be re-estimated in validation

data, we used validation dataset to update (the intercept and slope of) the developed

risk prediction model and also test whether the predictors had an effect that was clearly

different in validation dataset. We performed likelihood ratio tests of model extensions

in a forward stepwise fashion and extended the revised model until all differences in

predictive effects have p > 0.05 for each predictor. We did not find statistically signif-

icant deviations from overall recalibrated values (see Table 5.3) which means there is

no need for re-estimation of individual coefficients.

We reported the effect of updating the model on the values of calibration slope

(Table 5.2). As can be seen in Table 5.2, while the average value of the naive calibration

slope obtained using p0 or pm were 1.17 and 1.18, respectively, dropping to 0.98 after

updating when EPV was 116. The average value of it obtained using pu was 1.19

122



5.3 Case study

dropping to 0.99. We updated all models fitted in development datasets of varying

size and recalculated the calibration slopes. From the table, the calibration slope for

EPVs of 50 to 10 obtained using pu stayed the same as it was for EPV of 116, but

the empirical standard error of the calibration slope increased by decreasing EPV. The

calibration slope for EPV of 5 was slightly different than it for EPV of 116. However,

its empirical standard error was larger. The calibration slope obtained using p0 and

pm changed in a similar fashion to that just described by decreasing EPV.

Moreover, as we used validation datasets for both updating the models and com-

puting the calibration slope, the apparent estimate of calibration slope may be severely

optimistic. Therefore, we studied the internal validity of all the updated risk predic-

tion models using the bootstrap method. To do so, each developed model was updated

and its related calibration slope was calculated using 200 bootstrap validation samples.

The optimism-corrected calibration slope for that model was obtained by averaging

calibration slope values over 200 bootstrap samples. Table 5.2 displays the results of

the study. From the table, while the optimism-corrected calibration slopes obtained

using p0 and pm were somewhat smaller than updated ones, those obtained using pu

were quite similar to the updated ones.

5.3.3 Discussion

This case study showed that the performance of the random-intercept risk prediction

models were affected by EPV. The performance of risk prediction model was good when

the EPV was large compared with those when the EPV was small, regardless of the

type of predictions. Moreover, the results for median, marginal and cluster-specific

predictions were similar because the clustering effect was weak in our data.

Further investigation on the result of simulation showed that the distribution of

linear predictors for patients with the event of interest overlapped largely compared

with that for patients without event at lower EPV. The separation between η̂
(0)
u and

η̂
(1)
u by EPVs among 200 samples illustrated in Figure 5.2, where η̂

(0)
u and η̂

(1)
u are linear

predictors, corresponds to patients who survived and those who died, respectively, and

was obtained using both fixed- and random-effects of random-intercept models. For

each panel (each EPV), the overlap of all 200 η̂
(0)
u and η̂

(1)
u was overlaid to judge the

separation by decreasing EPV value. Furthermore, the separation between η̂
(0)
m and η̂

(1)
m

and between η̂
(0)
0 and η̂

(1)
0 appeared to be approximately equal to those just described
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Figure 5.2: Separation between η̂
(0)
u and η̂

(1)
u by EPVs. η̂

(0)
u and η̂

(1)
u are linear predictors

corresponding to patients who survived and those who died, respectively. The orange

(and blue) lines correspond to the distributions of linear predictors for patients with

(and without) event of interest over 200 simulated datasets.

by decreasing EPV, although the results are not shown here. This is expected because

the clustering effect in heart valve surgery data used for this case study is not strong.

The questions that we are also interested in addressing in this chapter are whether

the EPV is the only factor that affects the performance of the multilevel risk model,

more specifically a random-intercept logistic model, or whether there are other factors

alongside EPV, such as a different number of clusters, various cluster sizes or ICCs,

which can change the quality of performance. Several simulation studies were conducted

and various characteristics of the heart valve surgery data modified such as ICC, number

of clusters and cluster size. Then the performance of the models were quantified. That

brings us to the next section in which the quality of the random-intercept and fixed-

effect and marginal (standard) models were studied using diverse scenarios with samples
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including different EPVs.
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5.4 Simulation study

The case study illustrated how the performance of the risk models are affected by EPV.

Nevertheless, it is not obvious whether the EPV effect can disappear by changing some

of the characteristics of clustered data. To understand how the accuracy of performance

measures can be influenced when developing risk models using clustered datasets of

different features and varying EPV, a number of simulation studies were conducted.

These simulations were based on heart valve surgery data. In these studies, different

factors were investigated; EPV, ICC, number of clusters, cluster size, type of predictions

and type of the model. Details are elaborated here.

5.4.1 Overview

Simulation studies were conducted to investigate the influence of EPV on performance

of logistic risk models when fitted using clustered binary data. To do so, a source

population was produced and used to develop the true model using seven predictors (10

variables). True linear predictors were derived and employed to study the performance

of risk models in relation to EPV in the presence of the following scenarios.

§ Intra-cluster-correlation coefficient (ICC): to learn whether the EPV requirements

should change with increasing ICC, the intra-class correlation (ICC) coefficient was

modified. Four levels were considered; 0%, 5%, 10% and 20%. These values represent

four common clustering levels in multicenter prediction research (Adams et al., 2004).

§ Number of clusters: to evaluate the influence of EPV on the performance of

multilevel risk prediction models in the presence of various numbers of clusters, different

numbers of clusters were examined; 7, 14, 21, 28, 30, 42 and 70.

§ Cluster sizes: to examine the impact of EPV on the accuracy of predictions ob-

tained from multilevel risk prediction models in correlation with different cluster sizes,

various cluster sizes were studied. The average cluster sizes were 7, 14, 21, 28, 30, 42

and 70.

§ Modelling approach: to examine whether the effect of EPV on the performance of

each type of model differs, three very common modelling approaches were considered;

random-intercept, fixed-effect and marginal (standard) logistic regression (see section

2.3).
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§ Type of predictions: three types of predictions were studied; median (P0), cluster-

specific (Pu) and marginal (Pm) predictions (see section 2.3).

§ EPV: the following values were studied depending on the available number of

events in samples; 5, 10, 15, 20, 30 , 50. The EPV calculation was based on the

number of parameters in the random-intercept model (11 parameters; 10 fixed- and

one random-effect parameters).

§ Sub-studies: to study all factors thereof, three sub-studies were designed; a) the

number of clusters and cluster sizes were fixed, but outcome prevalence altered to

change EPV, b) the number of clusters and outcome prevalence were fixed, but the

cluster sizes and EPV were changed, and c) the cluster sizes and outcome prevalence

were fixed, but the number of clusters and EPV were varied.

For each combination of factors, the following steps were carried out 400 times.

Firstly, the required number of clusters was sampled without replacement from the

source population. Secondly, the resulting sample was divided into development and

validation; 80%:20%. Thirdly, the size of the development sample was altered by sep-

arate sampling without replacement of the desired number of events and nonevents

(the proportion of events and nonevents were determined by the required EPVs us-

ing equation 3.4.3). Lastly, risk models were fitted on development samples, and all

types of predictions (pu, pm and p0) of death for all patients in validation samples

were obtained. These were used to measure the performance of the models in related

validation samples and compare them with their true values by calculating the percent

relative differences (see section 3.4.1). Note that the true values were obtained using

cluster-specific predictions, which were produced using a true model. Three overall

performance measures were used; calibration slope, C statistic and Brier score.

We ought to illustrate the sampling procedure with the use of an example. To

do so, let the source population have 5 clusters of sizes 50, 45, 80, 40 and 55. In

addition, assume that one wishes to study samples consisted of 3 clusters and thus

chooses 3 clusters without replacement from the source population. To proceed with

this example, let the hypothetical clusters be of 80, 55 and 45 sizes. The selected

clusters, thus, make a sample of size 180 observations. One will divide the sample

with portions of 80% (144 observations) for development and 20% (36 observations) for

validation and follow the simulation protocol thereof.
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The studied scenarios and the features of source dataset are summarised in Table

5.4. Now, the details of the simulation study are explained.

Table 5.4: The features of studied scenarios (in the development datasets) and

the source datasets.

Source data Sample Model

ICC(%) J n̄j (min,max) N p K type EPV

(1
)

0, 5, 10, 20 30 30 (12, 62) 900 0.06 11 RE, FE 5

0, 5, 10, 20 30 30 (12, 62) 900 0.12 11 RE, FE 10

0, 5, 10, 20 30 30 (12, 62) 900 0.18 11 RE, FE 15

0, 5, 10, 20 30 30 (12, 63) 900 0.24 11 RE, FE 20

0, 5, 10, 20 70 70 (27, 164) 4900 0.02 11 RE, FE 10

0, 5, 10, 20 70 70 (28, 163) 4900 0.03 11 RE, FE 15

0, 5, 10, 20 70 70 (28, 165) 4900 0.04 11 RE, FE 20

0, 5, 10, 20 70 70 (27, 163) 4900 0.07 11 RE, FE 30

0, 5, 10, 20 70 70 (28, 164) 4900 0.11 11 RE, FE 50

(2
)

0, 5, 10, 20 30 7 (1, 16) 210 0.26 11 RE, FE 5

0, 5, 10, 20 30 14 (5, 31) 420 0.26 11 RE, FE 10

0, 5, 10, 20 30 21 (8, 45) 630 0.26 11 RE, FE 15

0, 5, 10, 20 30 28 (11, 59) 840 0.26 11 RE, FE 20

0, 5, 10, 20 30 42 (18, 86) 1260 0.26 11 RE, FE 30

0, 5, 10, 20 30 70 (32, 144) 2100 0.26 11 RE, FE 50

(3
)

0, 5, 10, 20 7 30 (17, 47) 210 0.26 11 RE, FE 5

0, 5, 10, 20 14 30 (14, 54) 420 0.26 11 RE, FE 10

0, 5, 10, 20 21 30 (13, 59) 630 0.26 11 RE, FE 15

0, 5, 10, 20 28 30 (12, 62) 840 0.26 11 RE, FE 20

0, 5, 10, 20 42 30 (11, 67) 1260 0.26 11 RE, FE 30

0, 5, 10, 20 70 30 (10, 74) 2100 0.26 11 RE, FE 50

ICC: Intra-cluster-correlation coefficient. J: the number of clusters. n̄j : average cluster size.

N: sample size. p: outcome prevalence. K: the number of variables. type: the type

of the model. RE: random-effect. FE: fixed-effect. EPV: events per variable.

(1) Fixed number of clusters and cluster size, varying outcome prevalence.

(2) Fixed number of clusters and outcome prevalence, varying cluster size.

(3) Fixed cluster size and outcome prevalence, varying number of clusters.
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Figure 5.3: The distribution of events across clusters in five simulated datasets for ICCs

of 0% and 20% and EPVs of 5 and 20. This figure corresponds to a fixed number of

clusters and cluster sizes and varied outcome prevalence scenario, N=900. Note that

there are 30 clusters of size average 30 in each of the simulated datasets.

Source populations

The source populations were generated as follows. The size of the heart valve surgery

data was doubled to N=65,678 in order to increase the number of available clusters.

We decided to use a two-step sampling procedure in order to reduce the size of our

sample. That is, we first sampled the required number of clusters, then selected the

required number of observations.

A set consisted of 150 λ exponentiated random values from Normal (mean 6 and

standard deviation 0.33) distribution was produced. The Poison distribution with the

mean of λi was used to determine the size of ith cluster, where i = 1, . . . , 150. Note

that as
∑150

i=1 λi < 65, 678 the aforementioned approach led to 151 clusters with sizes
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Figure 5.4: Distribution of events across clusters in five simulated datasets for ICCs of

0% and 20% and EPVs of five and 50. This figure corresponds to a fixed cluster sizes.

Note that there are seven clusters of average size 30 when EPV is five and 70 clusters

of average size 30 when EPV is 50 in each of the simulated datasets.

between 192 and 1143 observations. Also, note that the use of different λ in the process

of producing source population ensured that the distribution of cluster sizes bear a close

resemblance to the real population, in particular the heart valve surgery data.

Intra-cluster-correlation coefficient and outcome prevalence

The following approach was taken to change ICC and outcome prevalence in the source

dataset. The true linear predictor (ηtrue) was used to alter ICC using

ηnew = A+ ηtrue + σu × u. (5.4.1)
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where A is used to change outcome prevalence, ηnew denotes new linear predictors, σu

is standard deviation of random-intercept and u is a random standard normal variable.

The threshold formula, given by ICC = σ2
u

σ2
u+π2/3

(Twisk, 2006), was employed to calcu-

late σu for desired ICC. Based on the formula, σ2
u should be 0, 0.17, 0.37 and 0.82 to

achieve ICC of 0%, 5%, 10% and 20%, respectively.

The outcome prevalence in the heart valve surgery data was 6.36% and was changed

to 26% for the purpose of the simulation studies. With the data in hand, the outcome

prevalence of 26% ensured that all values in the simulation design setting (the number

of clusters, cluster sizes, sample sizes (N)) are a whole number. A in equation 5.4.1 was

set to be 1.85, 1.80, 1.76 or 1.67 to modify the outcome prevalence in the heart valve

surgery data for source datasets with ICC of 0%, 5%, 10% and 20%.

Generating new outcome

For each patient, the probability of death (pij u) was computed using a new linear

predictor (ηnew) and applying the inverse logit transformation. Thereafter, Yij were

simulated using Bernoulli distribution with a probability of pij u.

Distribution of events over clusters

The distribution of events within clusters in 200 simulated datasets for the smallest (5

or 10) and largest (20 or 50) number of EPV and for the smallest (0%) and largest

(20%) ICC were presented in Figures 5.3 to 5.4. Figure 5.3 corresponds to the cases

that the simulated datasets had 30 clusters of size 30 and Figure 5.4 relates to the

cases that the simulated datasets have increasing numbers of clusters with EPV where

clusters always included 30 observations.

As can be seen, there were more sparse clusters when EPV and ICC were both

small compared to when EPV was low and ICC was large. However, the distribution

of events followed binomial distribution (slightly right skewed) for the large EPV and

small ICC and it became heavily and positively skewed when ICC increased for the

same EPV (Figure 5.3). A similar pattern was observed for the scenario of 70 clusters

of average size 70 and the scenario of a fixed number of clusters (figures not shown). In

contrast, from Figure 5.4, the distribution of the events over clusters followed binomial

distribution only when both EPV and ICC were small. It became positively skewed as

either EPV or ICC or both increased.
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Sample size calculation and type of model

As discussed earlier, the EPV was calculated based on the number of parameters in the

random-intercept model for the following two reasons. First, one needs a large sample

size to fit a fixed-effect logistic model compared to a random-intercept logistic model.

For example, let us assume that there are ten predictors and 70 clusters in the dataset.

Let also assume that the outcome prevalence is 3%. By definition, to have ten events

per variable, one needs a sample of size about 27,000 observations to fit a fixed-effect

logistic model, compared to about 3,700 observations to fit a random-intercept logistic

model. That is because there are 80 variables in the former model, compared to 11

variables in the latter. Second, in practice, that is not always possible to collect a large

sample.

Table 5.5 presents the actual EPV by type of model for each nominal EPV. It is

assumed that there are ten predictors, and also there are either 70 or 30 clusters in the

dataset. It is also assumed that the outcome prevalence is 3%.

Table 5.5: The actual EPV by the type of model for each nominal EPV.

The number of predictors is ten. The outcome prevalence is 3%.

Actual EPV

Number of clusters Current EPV Marginal model Fixed-effect model

5 5.5 0.7

10 11 1.4

70 15 16.5 2.1

20 22 2.8

30 33 4.1

50 55 6.9

5 5.5 1.4

10 11 2.8

30 15 16.5 4.1

20 22 5.5

30 33 8.3

50 55 13.8

As can be seen from the table, the actual EPV for the marginal models are larger

than the current EPV. On the contrary, the actual EPV for the fixed-effect models
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are very much smaller than the current EPV. For example, if the nominal EPV is ten,

the corresponded actual EPV is 1.4 when using a fixed-effect logistic model with 70

clusters.

Sample size calculation and sub-studies

The three sub-studies are discussed in detail here. The first sub-study was designed by

fixing the number of clusters and cluster sizes but altering the outcome prevalence to

change the EPV. For example, the outcome prevalence was altered from 2% to 11% to

change the EPV from 10 to 50 when there were 70 clusters of average size 70 in the

dataset.

The second sub-study was designed by fixing the number of clusters and outcome

prevalence, but changing the cluster sizes and EPV. That is, the sample size was in-

creased with increasing EPV. For example, while the number of clusters and outcome

prevalence were always 30 and 26%, respectively, the sample sizes increased from 210

to 2100 when the EPV increased from five to 50.

The last sub-study was designed by fixing the average cluster size and outcome

prevalence, but altering the number of clusters and EPV. As per the previous sub-

study, in this sub-study, the sample size was increasing by increasing the EPV. For

example, while the average cluster size and outcome prevalence were always 30 and

26%, respectively. The number of observations in the datasets increased from 210 to

2100 while the EPV increased from five to 50.

We give an example here to explain the differences between the sub-studies when

EPV was identical (see Table 5.4). Let assume that the EPV was ten, the three sub-

studies were different in the following ways . In the first sub-study at N = 4900, the

outcome prevalence was 2%, and there were 70 clusters of an average size 70 in data

when EPV was ten. In contrast, in the last two sub-studies, the outcome prevalence was

26% and there were 420 observations in the dataset for the same EPV. Furthermore,

while there were 30 clusters of an average size of 14 in the second sub-study, there were

14 clusters of an average size of 30 in the last sub-study when the sample size was 420

(and EPV=10).
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5.4.2 Results

The results of all simulations are displayed here. The risk models converged in more

than 99.99% of the simulated datasets.

Calibration slope

Figure 5.5 presents the relative differences in the calibration slope in percent by EPV

and ICC over types of predictions on 400 simulations.

From the graphs, EPV had an effect on the calibration slope at all ICCs when using

any type of predictions. That is, the relative differences in the calibration slope de-

creased by increasing EPV at all ICCs and types of predictions. The calibration slopes

obtained using cluster-specific predictions produced from random-intercept models im-

proved at most by increasing EPV at all scenarios.

Furthermore, the magnitude of the EPV effect differs depending on the ICC, type

of prediction and type of model fitted on the dataset: the calibration slope obtained

using any type of predictions from random-intercept, or marginal models, and those

obtained using median predictions from fixed-effect logistic models, were influenced by

ICC in presence of EPV. However, the calibration slopes obtained using cluster-specific

predictions of the fixed-effect model were not affected by ICC.

When there were fixed number of clusters in the datasets and the size of those

clusters increased by increasing EPV, the calibration slopes obtained using any types

of predictions from any type of models were very similar when the EPV was greater

than 15 specially at small ICCs (say, less than 20%).

Additionally, the calibration slopes obtained using cluster-specific predictions from

fixed-effect models had the largest relative differences among the others, especially when

there were large number of clusters in the development data, due to the small actual

EPV in the dataset (see Table 5.5). For instance, the differences in the calibration

slope were the largest in both sub-studies of 30 clusters of an average size of 30 and 70

clusters of an average size of 70 at almost all EPV and ICC.

The differences in calibration slopes was also large at almost all EPV and ICC for

sub-study of fixed cluster size (last row of the Figure 5.5). That is probably because

there were so many parameters in the fixed-effect model to be estimated for the available

sample size and EPV (see chapter 3). That is, EPV was not defined based on the
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number of parameters in the fixed-effect logistic model (see Table 5.5). The differences

in calibration slope obtained using cluster-specific predictions of a fixed-effect model,

however, decreased as EPV and ICC increased when there were fewer number of clusters

in the development data for sub-study of fixed cluster-size. In fact, the percent relative

differences were very similar to those obtained using the rest of the predictions in this

sub-study.

Summing up, EPV needs to be at least 20 in order to develop a logistic regression

model with at least 0.8 calibration slope using clustered binary outcome. One will

need even larger EPV to develop a hierarchical model with a better (closer to perfect)

calibration slope. EPV needs to be defined based on the parameters that appear in the

fixed-effect logistic model if one prefers to fit a such model.

C statistic

Figure 5.6 displays relative differences in C statistic in percent by EPV and ICC over

any types of predictions and models based on 400 simulations.

As can be seen, the relative differences in C statistic decreased as EPV increased

at all ICCs and types of predictions.

Furthermore, the magnitude of percent relative differences in the C statistic for

similar EPV was different depending on the ICC. That is, the percent relative differences

in the C statistic obtained using cluster-specific predictions of fixed-effect models were

the largest for ICC of 0%, but those obtained using all the other predictions were the

smallest and decreased at the same level for the same ICC by increasing EPV.

Also, the relative differences in C statistic obtained from cluster-specific predic-

tions of random-intercept models were the smallest at all ICCs, but those obtained

from cluster-specific predictions of fixed-effect models were the second smallest at ICCs

greater than 5%.

The relative differences in the C statistic obtained from various predictions differed

by increasing ICC such that those related to cluster-specific predictions of random-

intercept model remained the smallest at all ICC, but those related to median and

marginal predictions showed increasing deterioration by increasing ICC. In fact, the C

statistic obtained from median and marginal predictions were the smallest at most or

all of the EPV when ICC was greater than 5%.
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The C statistic obtained with median (regardless of type of the model) and marginal

predictions increased rapidly by increasing EPV for the sub-study of fixed number of

clusters, compared to those for sub-study of fixed-cluster size, specially when ICC was

large (say, greater than 10%). That is because the size of clusters increased by increasing

EPV for the sub-study of fixed number of clusters, compared to the sub-study of fixed

cluster size in which the number of clusters increased by increasing EPV.

Additionally, the C statistic, holding EPV constant, calculated using marginal pre-

dictions was identical to those obtained from median predictions of fixed- or random-

effect models. That is probably because these predictions either do not take clustering

into account (marginal predictions) or do not use the cluster effect (median predictions).

In brief, given that the true values for 0%, 5%, 10% and 20% are 0.72, 0.74, 0.76 and

0.79, respectively, if one wishes to use cluster-specific predictions, EPV needs to be at

least 20 in order to achieve a model with C statistic of 0.7 when using clustered binary

data. However, if one wishes to use median predictions out of random- or fixed-effect

models or marginal predictions when ICC is 20%, one cannot produce a satisfactory

model (with C statistic of 0.7) with larger EPV.

Brier score

Figure 5.7 presents percent relative differences (%) in Brier score by EPV and ICC over

types of predictions based on 400 simulations.

As can be seen, EPV had an effect on relative differences in Brier score for all ICCs

and types of predictions. The pattern was similar to those in the calibration slope and

C statistic.

As for the calibration slope and C statistic, the Brier score was influenced by ICC.

The pattern was similar to those in the calibration slope and C statistic.

To sum up, given that the true values for ICC of 0%, 5%, 10% and 20% are 0.17,

0.16, 0.16 and 0.15, if one wishes to have a model with 0.18 Brier score, one needs EPV

of at least 10 events per variable.

Further investigation

Further investigation was carried out in order to learn the reason behind the ordering

pattern observed in relative differences in calibration slope, C statistic and Brier score

observed in Figures 5.5 to 5.7. The comparison between cluster-specific and median
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predictions by sub-studies from a random-intercept logistic model was presented in

Figures 5.8, and from fixed-effect logistic model was displayed in Figure 5.9. From the

Figures, while the random-intercept prediction model can distinguish better between

high- and low-risk patients as EPV and ICC increases, the fixed-effect prediction model

was not affected by ICC.

5.5 Comparing the recommended sample size with the

one used in common practice

We have reviewed in section 5.1 that the common method used in practice is that

one calculates the sample size by taking a standard approach for independent binary

outcome and then multiplies the results by a design factor, 1 + (m− 1)×ICC.

Besides, we have shown that one needs at least 12.5 EPV when developing a risk

model using independent binary outcomes, evaluating samples with various outcome

prevalences (see section 3.4.3). EPV of 12.5 events per variable is equivalent to sample

size of about 481, when there are 10 potential variables to be included in the model and

the outcome prevalence is 0.26. Thus, if the average cluster sizes and ICC are 30 and

20% respectively, given the traditional approach, the required sample size to develop a

random-intercept logistic model is 3264 calculated by ((1 + (30− 1)0.20)× 481).

However, the results of our simulations in this chapter showed that one needs EPV

of 20 (equivalent to 20×11
0.26 = 846 ) for the same situations to develop a random-intercept

logistic model using clustered binary outcomes.

5.6 Conclusion

The focus of this chapter was on the sample size requirements when developing risk

models using clustered binary outcomes. Moineddin et al. (2007) suggested there should

be at least 50 clusters of size 50 with more than one event per cluster when the objective

of the study is to accurately estimate fixed- and random-effect parameters, and have

precise estimations for fixed-effect parameters to develop a two-level risk model using

binary clustered outcomes. Wynants et al. (2015), examining only median predictions

(p0), suggested that EPV should be at least 10 when developing a random-intercept

prediction model using clustered binary outcome.
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The available literature are not sufficient for the situation where the aim of the study

is to develop a random-intercept risk prediction model using clustered binary outcome

in order to predict for patients from clusters which were or were not in the development

dataset. Thus, we investigated whether the performance of a random-intercept logistic

model is influenced by EPV in the case study.

In our case study, the three common performance measures of the calibration slope,

C statistic and Brier score increased by increasing EPV, which was a sign that EPV has

an effect on the performance of the random-intercept logistic risk model. Therefore,

our further investigation continued to address the issue of whether EPV can still play

a vital role in the performance of the model if other factors such as the number of

clusters, their size and ICC varies from what is observed in our real data. A simulation

study was set to address this issue.

Based on the results of our simulations in this chapter, we suggest that , in gen-

eral, EPV should exceed 20 when developing a random-intercept and/or a marginal

risk prediction model. If one wishes to use cluster-specific predictions of a random-

intercept model, EPV needs to be at least 15 when developing the model. Moreover,

we recommend adjusting EPV (including the parameters for the centre indicators) when

developing a fixed-effect model.

Moreover, from the results of our simulations in this chapter, it is recommended to

use random-intercept logistic models rather than fixed-effect logistic models when the

ICC is large (say, greater than 10%), and the aim is to use cluster-specific predictions.

As in our simulation study, the random-intercept logistic model produced better cluster-

specific predictions compared to the fixed effect logistic model when the ICC was large.

Additionally, predictive performance measures obtained from marginal predictions

were similar to those obtained from median predictions in our simulation study.
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Figure 5.5: Percent relative differences in the calibration slope by EPV and ICC over types of predictions based on 400

simulations. The standard error of the simulation for the calibration slope among all simulated scenarios were (0.002,

0.015). CS0(re): calibration slope obtained using median predictions of random-effect model. CSu(re): calibration slope

obtained using cluster-specific predictions of random-effect model. CS0(fe): calibration slope obtained using median

predictions of fixed-effect model. CSu(fe): calibration slope obtained using cluster-specific predictions of fixed-effect

model.CSm: calibration slope obtained using marginal predictions.
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Figure 5.6: Percent relative differences in the C statistic by EPV and ICC over types of predictions based on 400

simulations. The standard error of the simulation for the C statistic among all simulated scenarios were (0.0004,

0.0020). C0(re): C statistic obtained using median predictions of random-effect model. Cu(re): C statistic obtained

using cluster-specific predictions of random-effect model. C0(fe): C statistic obtained using median predictions of

fixed-effect model. Cu(fe): C statistic obtained using cluster-specific predictions of fixed-effect model.Cm: C statistic

obtained using marginal predictions.
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Figure 5.7: Percent relative differences in the Brier score by EPV and ICC over types of predictions based on 400

simulations. The standard error of the simulation for the Brier score among all simulated scenarios were (0.002, 0.015).

BS0(re): calibration slope obtained using median predictions of random-effect model. BSu(re): Brier score obtained

using cluster-specific predictions of random-effect model. BS0(fe): Brier score obtained using median predictions of

fixed-effect model. BSu(fe): Brier score obtained using cluster-specific predictions of fixed-effect model.BSm: Brier

score obtained using marginal predictions.
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Figure 5.8: Comparing cluster-specific predictions with median predictions from a

random-intercept model in one simulated dataset for EPV of 5 or 10 and 20 or 50

and ICC of 0% and 20%. A & B: fixed number of clusters and cluster sizes and varied

outcome prevalence (NA=900 & NB=4900). C: Fixed number of clusters. D: fixed

cluster sizes.
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Figure 5.9: Comparing cluster-specific predictions with median predictions from a fixed-

effect model in one simulated dataset for EPV of 5 or 10 and 20 or 50 and ICC of 0% and

20%. A & B: fixed number of clusters and cluster sizes and varied outcome prevalence

(NA=900 & NB=4900). C: Fixed number of clusters. D: fixed cluster sizes.
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Chapter 6

Sample Size Requirements for

Validating a Risk Model Using

Clustered Binary Data

The sample size requirements to validate a reliable risk model using independent binary

outcome were discussed in Chapters 4. This chapter focuses on what sample size is

required to determine whether or not a multilevel risk prediction model is valid.

Clustered data is very common in medical research. For example, the subjects of

the study are clustered within centres such as hospitals, general practices and clinics.

In such situations, observations within clusters are correlated with each other and are

independent from those patients who are in other clusters. A random-effect model is

often used when the studied data is clustered.

The chapter includes the following sections: Section 6.1 explores the available and

relevant literature; Section 6.2 provides a case study to provide insight on the issue

of the number of events in the context of clustered binary outcomes; Section 6.3 out-

lines the results of a simulation study, which was conducted to investigate further the

problems highlighted in the case study; Section 6.4 discusses the findings and makes

recommendations based on these.
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6.1 The number of events in validating a clustered risk

model: A review

According to our literature search, to date there have been no studies or guidelines

regarding the number of events required to validate a reliable risk prediction model

when using clustered binary outcomes.

6.2 Case study

A case study was conducted to understand how performance measures related to the

random-intercept logistic models can be affected by the number of events.

6.2.1 Method

A similar methodology to the one outlined in chapter 5 (section 5.3) was used. In

brief, the first five years of heart valve surgery data was used to develop the model

and the rest was used for validation. The size of the validation dataset was varied

to obtain the desired number of events by separately sampling without replacement

from events and nonevents. A random-intercept logistic regression model was fitted

on the full size development dataset and used to obtain three types of predictions for

patients in the validation data. The predictions were cluster-specific predictions (pu),

median predictions (p0) and marginal predictions (pm) (see section 2.3). For each type

of prediction, measures of performance were calculated on the validation data using the

calibration slope, C statistic and Brier score. All procedures were repeated 200 times

for each combination of factors. Five values of the number of events were studied: 50,

100, 200, 500 and 1047. This list includes previously recommended values, where 1047

is the number of events in the full size validation dataset.

There were 30 clusters of sizes ranged from 298 to 2007 patients. The intra-cluster

correlation (ICC) coefficient was about 6% (see section 5.2).

The performance measures estimated using the full size validation data were the
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calibration slope = 1.12 (obtained using cluster specific predictions, 1.10 obtained us-

ing median or marginal predictions), the C statistic=0.77 (obtained using all types of

predictions), and Brier score=0.050 (for all types of predictions). The calibration slope

suggests that this model was underfitted. The model was therefore recalibrated using

part (50%) of the validation data. A linear transformation of the predicted log-odds was

found to be appropriate. The recalibration improved the fit of the model and produced

a calibration slope of 1.00 in the half of the validation data not used for recalibrating

the model. That is, the agreement between the predicted and observed outcomes is

good and the model performs well in terms of separation of different risk groups.

6.2.2 Results

Table 6.1 presents the mean value and standard deviation of the performance measures

by number of events and types of predictions over 200 samples.

As can be seen, the precision of the predictive performance measures computed

using predictions of random-intercept logistic models were affected by the number of

events in the validation dataset. The precision of the C statistic in validation data

declined as the number of events decreased (standard deviation increased from 0.006

for 500 events to 0.032 for 50 events) for all types of predictions. The precision of

the calibration slope in the validation datasets was also influenced by the number of

events (standard deviation increased from 0.029 for 500 events to 0.143 for 50 events).

The precision of the Brier score was also affected by the number of events (standard

deviation increased from 0.0004 for 500 events to 0.0016 for 50 events).

Furthermore, the precision of the predicted performance measures were affected at

almost the same rate for all types of predictions. That might be expected due to the

low clustering level in the heart valve surgery data (see section 5.2).
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Table 6.1: Mean value and standard deviation (SD) of each performance mea-

sure by the number of events and type of predictions obtained from random-

intercept logistic models in the validation datasets over 200 samples.

Nominated Mean performance measures (SD)

events Calibration slope C statistic Brier score

1047 1.00 0.77 0.050

500 1.00 (0.029) 0.77 (0.006) 0.052 (0.0004)

p0 200 1.00 (0.066) 0.78 (0.015) 0.052 (0.0007)

100 1.00 (0.094) 0.78 (0.021) 0.052 (0.0010)

T
y
p

e
s

o
f

p
re

d
ic

ti
o
n 50 1.00 (0.143) 0.78 (0.032) 0.052 (0.0016)

1047 1.00 0.77 0.050

500 1.00 (0.028) 0.77 (0.006) 0.052 (0.0004)

pm 200 1.00 (0.066) 0.78 (0.015) 0.052 (0.0007)

100 1.00 (0.099) 0.78 (0.022) 0.052 (0.0010)

50 1.00 (0.143) 0.78 (0.033) 0.052 (0.0016)

1047 1.00 0.77 0.050

500 1.00 (0.029) 0.77 (0.006) 0.052 (0.0004)

pu 200 1.00 (0.066) 0.78 (0.015) 0.052 (0.0007)

100 1.00 (0.094) 0.78 (0.021) 0.052 (0.0010)

50 1.00 (0.143) 0.78 (0.032) 0.052 (0.0016)

p0: median predictions.

pm: marginal predictions.

pu: cluster-specific predictions.

6.2.3 Discussion

From the results of this case study, it is evident that the precision (but not the bias) of

the performance measures obtained using any type of predictions was affected by the

number of events.

Further investigation of the results of simulation was carried out in order to un-

derstand why only the standard deviation was dependent on the number of events.

We therefore plotted the distribution of the cluster-specific linear predictors of patients

with (η̂
(1)
u ) and without (η̂

(0)
u ) the event of interest for all 200 datasets and the number

of events (Figure 6.1).
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Figure 6.1: Separation between η̂(0) and η̂(1) by number of events. η̂(0) and η̂(1) are

linear predictors, corresponding to nonevent and event groups, respectively. Orange

lines present the distribution of linear predictors for patients without the event of

interest and the blue lines correspond to the distribution of linear predictors for those

with the event of interest.

As can be seen, the separation between η̂
(1)
u and η̂

(0)
u was similar for different num-

bers of events, but the variation within η̂
(1)
u and η̂

(0)
u increased as the number of events

decreased.

Furthermore, the separation and variation for the linear predictors obtained using

marginal-effects and/or fixed-effects appeared to be similar to those for cluster-specific

effects (results not shown ). This is probably because the clustering effect in the heart

valve surgery data used in this case study is not strong.

However, there are other issues to address in this chapter, such as whether the

number of events is the only factor that impacts the performance of measures when
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validating a risk model using clustered binary outcomes or whether there are other

influential factors coupled with the number of events. Various simulation studies were

therefore conducted, using the heart valve surgery data, altering certain characteristics

of the validation datasets, such as the number of clusters and ICC. The performance

of validation measures was then examined in validation data.
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6.3 Simulation study

Table 6.2: Features of the studied scenarios and source datasets to validate a

random-intercept logistic model with eleven parameters.

Source dataset Sample Number of

ICC(%) J n̄j (min, max) N p events

(1
)

0, 5, 10, 20 30 30 (12, 62) 900 0.06 50

0, 5, 10, 20 30 30 (12, 62) 900 0.12 100

0, 5, 10, 20 30 30 (12, 63) 900 0.24 200

0, 5, 10, 20 30 30 (12, 63) 900 0.37 300

0, 5, 10, 20 70 70 (27, 163) 4900 0.01 50

0, 5, 10, 20 70 70 (27, 164) 4900 0.02 100

0, 5, 10, 20 70 70 (28, 165) 4900 0.04 200

0, 5, 10, 20 70 70 (27, 163) 4900 0.07 300

0, 5, 10, 20 70 70 (28, 164) 4900 0.11 500

(2
)

0, 5, 10, 20 30 7 (1, 16) 210 0.26 50

0, 5, 10, 20 30 14 (5, 31) 420 0.26 100

0, 5, 10, 20 30 28 (11, 59) 840 0.26 200

0, 5, 10, 20 30 42 (18, 86) 1260 0.26 300

0, 5, 10, 20 30 70 (32, 144) 2100 0.26 500

(3
)

0, 5, 10, 20 7 30 (17, 47) 210 0.26 55

0, 5, 10, 20 14 30 (14, 54) 420 0.26 100

0, 5, 10, 20 28 30 (12, 62) 840 0.26 200

0, 5, 10, 20 42 30 (11, 67) 1260 0.26 300

0, 5, 10, 20 70 30 (10, 74) 2100 0.26 500

ICC: Intra-cluster-correlation coefficient. J: the number of clusters. nj : cluster size.

N: sample size. p: outcome prevalence.

(1) Fixed number of clusters and cluster size, varying outcome prevalence.

(2) Fixed number of clusters and outcome prevalence, varying cluster size.

(3) Fixed cluster size and outcome prevalence, varying number of clusters.

As can be seen from the case study, the performance of validation measures in the

validation dataset is influenced by the number of events. However, it is not obvious

whether the number of events can still be influential if, for example, the number of

clusters in the dataset is different to that observed in the heart valve surgery dataset.

A number of simulation studies were conducted to address this question. These simu-
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Figure 6.2: Distribution of events across clusters in five simulated datasets for ICCs of

0% and 20% and the number of events of 50 and 300. This figure corresponds to a fixed

number of clusters and cluster sizes and varied outcome prevalence scenario, N=900.

Note that there are 30 clusters of an average size of 30 in each simulated dataset.

lations were based on the heart valve surgery data. In these studies, different scenarios

were investigated varying the number of events, ICC, number of clusters and the size

of clusters. The methodology and scenarios used in the simulation study were similar

to those described in chapter 5.4 with the following three exceptions. First, we divided

the dataset in half (one half for development and the other for validation). Second,

unlike chapter 5, the development data was always 50% of the heart valve surgery data,

but the size of the validation sample varied according to the required number of events.

Finally, there were always 151 clusters in the development dataset, but the number of

151



6. SAMPLE SIZE REQUIREMENTS FOR VALIDATING A RISK
MODEL USING CLUSTERED BINARY DATA

D
en
si
ty

0
.0

5
.1

.1
5

 

0 20 40 60
 

Events=50 - ICC=0%

0
.0

2
.0

4
.0

6
.0

8
 

0 20 40 60
 

Events=50 - ICC=20%

0
.0

5
.1

.1
5

 

0 20 40 60
 

Events=500 - ICC=0%
0

.0
2

.0
4

.0
6

.0
8

 

0 20 40 60
 

Events=500 - ICC=20%

Number of events in clusters

Figure 6.3: Distribution of events across clusters in five simulated datasets for ICCs of

0% and 20% and the number of events of 50 and 500. This figure corresponds to the

fixed cluster sizes. Note that when there were 50 events, there are seven clusters of an

average size of 30; and when there were 500 events, there are 70 clusters of an average

size of 30 in each simulated dataset.

clusters in the validation dataset was varied according to the scenario. The features

of the simulated datasets are summarised in Table 6.2, and the distribution of events

within clusters in the simulated validation datasets is shown in Figures 6.2 to 6.3.

In Figure 6.2, we see that the simulated validation datasets are similar to the

development datasets in chapter 5. To explain further, there were more sparse clusters

when the number of events was low and the ICC was small, compared to when the

number of events was low and the ICC was large. However, the distribution of events

followed the binomial distribution when the number of events was high and the ICC was
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low, but it became heavily skewed to the right when the number of events remained

the same but ICC was high. A similar pattern was observed for the scenario of 70

clusters of an average size of 70 and the scenario with a fixed number of clusters (figures

not shown). In contrast, (see Figure 6.3), the distribution of the events followed the

binomial distribution when both the number of events and ICC were small, but it

became more positively skewed when either the number of events, the ICC or both

increased.

6.3.1 Results

The results of the simulation studies are presented in this section.

Figures 6.4, 6.5 and 6.6 present the precision and bias of the predictive performance

measures obtained using three types of predictions (cluster-specific (pu), median (p0)

and marginal (pm) predictions) by the number of events across ICCs for all scenarios.

As these figures show, the precision of the predictive performance measures was

influenced by the number of events. The precision of the calibration slope, C statistic

and Brier score increased as the number of events in the validation dataset increased.

The precision of the predictive performance measures was affected differently by

the number of events depending on the type of predictions used. The precision of

calibration slope obtained using cluster-specific predictions was slightly better than

that obtained using other types of predictions. The precision of the C statistic and

Brier score obtained using cluster-specific predictions was slightly worse than those

obtained using other types of predictions.

Additionally, the estimated calibration slopes and C statistics were only biased

when ICC was greater than 5%. This is probably because the random-intercept logistic

models underestimate the variance of random-intercept even when the development

sample is large, as confirmed in all previous studies (see, for example, Moineddin et al.

(2007); Wynants et al. (2015)). Also, the estimated Brier scores in two sub-studies
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(when the sample sizes were either 900 or 4900) were highly biased at all ICC levels

(Figure 6.6 top two rows). This is due to different outcome prevalences in the validation

and development datasets; as the differences in outcome prevalences in the validation

and development data decreased, the biased decreased. Furthermore, the estimated

Brier scores for the last sub-studies (fixed number of clusters, and fixed cluster sizes)

were also slightly biased due to the fact that we used the predictions from models

developed on full size development data, rather than those from the true model. The

bias will be zero when increasing the number of simulations.

To conclude, according to our results of the simulation, there should be at least 200

number of events when validating a logistic model using clustered binary outcomes in

order to precisely obtain predictive performance measures. In this number of events,

the measures were less biased, and the width IQR for calibration slope, C statistic,

Brier score were less than 20%, 5%, and 5%, respectively.
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Figure 6.4: Percent relative differences in the calibration slope obtained using

different types of predictions based on 500 simulations. The standard error

range of simulation among all number of events, ICC and simulated scenar-

ios for the estimated calibration slope obtained using cluster-specific, median

and marginal predictions were (0.0007, 0.0101), (0.0007, 0.0011) and (0.0008,

0.0120), respectively.
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Figure 6.5: Percent relative differences in the C statistic obtained using ob-

tained using different types of predictions based on 500 simulations.The stan-

dard error range of simulation among all number of events, ICC and simulated

scenarios for the estimated C statistic obtained using all types of predictions

was (0.0001, 0.0020).
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Figure 6.6: Percent relative differences in the Brier score obtained using differ-

ent types of predictions based on 500 simulations. The standard error range

of simulation among all number of events, ICC and simulated scenarios for

the estimated Brier score obtained using cluster-specific, median and marginal

predictions were (0.00004, 0.00049), (0.00004, 0.00045) and (0.00012, 0.00042),

respectively.
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6. SAMPLE SIZE REQUIREMENTS FOR VALIDATING A RISK
MODEL USING CLUSTERED BINARY DATA

6.4 Conclusion

The focus of this chapter was on the sample size requirements when validating a risk

model using clustered binary outcomes. There are no guidelines on how many events

are required when validating a hierarchical risk model using a clustered binary dataset.

This chapter opened with a case study using the heart valve surgery data to inves-

tigate whether validation performance measures computed using the predictions from

a random-intercept or standard logistic models are influenced by the number of events.

With the use of three common performance measures of the calibration slope, C

statistic and Brier score in the case study, it was observed that the precision of the per-

formance measures decreased as the number of events in the validation data increased.

In other words, the number of events had an effect on the performance of validation

measures in the context of clustered data. This raised additional questions regarding

whether the number of events can still affect the performance of validation measures if

the number of clusters, their size and ICC changes. A simulation study was designed

to address this question.

From the results of the simulations in this chapter, we observed that there should be

at least 100 events in the validation dataset to obtain predictive performance measures

with reasonable accuracy and precision for the random-intercept logistic risk models.

We recommend that the researchers use at least 100 events in their validation

dataset.
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Chapter 7

Discussion and Conclusion

7.1 Summary and discussion

Prognostic studies are often conducted to develop risk prediction models. These models

are used to provide useful information with regard to a patient’s health or to observe

the performance of health institutes after considering differences in case-mix. It is es-

sential for risk prediction models to produce accurate or acceptable predictions. Hence,

the central prerequisite of developing and validating a prediction model is to use an

adequate number of observations to ensure that the model performs satisfactorily in

new data. This research was designed to investigate the sample size requirements when

developing and/or validating a risk prediction model using independent or clustered

binary outcomes.

The dissertation started with introductory remarks in Chapter one, followed by the

description of key concepts of risk modelling in Chapter two. Sample size requirements

to develop and validate risk prediction models using independent binary outcomes were

investigated in Chapters three and four, and using clustered binary data were examined

in Chapters five and six. The details of our contribution to the literature is discussed

here.

In Chapter three, we investigated the sample size requirements when developing a

risk model using binary outcomes. In this chapter, we found that EPV needs to be at
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7. DISCUSSION AND CONCLUSION

least five when developing risk models using independent binary data when there are a

small number of strong predictors; at this EPV, the differences between the estimated

and reference performance measures were low. In addition, we found that a large EPV

is required when the prevalence of the outcome is expected to be high. For example,

EPV needs to be at least 30 for outcome prevalence of 40% compared to at least 10

for outcome prevalence of 7%. We also found that the presence of noise variables, the

presence of more continuous variables, or even the presence of further predictors in the

model is not associated with the performance of a risk model if EPV is held constant.

Moreover, a larger EPV (say, at least 15) is needed when developing a risk model using

data with a large collinearity (say, greater than 46%).

However, in Chapter three, we also found that if it is possible to apply a linear

postestimation shrinkage factor, the EPV requirements can be relaxed. For instance,

with the possibility of using postestimation linear shrinkage, EPV can reduce to 10

(from 30) for an outcome prevalence of 40%.

In Chapter four, the required number of events to validate a risk model using

independent binary outcomes was examined. We analytically showed that the precision

of the performance measures is dependent on the number of events, examining the

calibration slope, C statistic, and D statistic. Moreover, with the use of a simulation

study, it was found that at least 75 events are needed to validate a risk model using

independent binary outcomes regardless of the risk profile. This value was chosen as

the corresponding performance measures had relatively high precision.

Based on the results of our simulations in chapter five, we suggest that , in general,

EPV should exceed 20 when developing a random-intercept and/or a marginal risk

prediction model. Moreover, we recommend adjusting EPV by including the parameters

for the centre indicators when developing a fixed-effect model.

Finally, Chapter six was devoted to the sample size requirements to validate a

random-intercept logistic model. In this chapter, we found that one needs at least 100
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7.2 Possibilities of further research

events in the validation data when validating a multilevel risk model. At this number

of events, the corresponding performance measures had relatively high precision.

7.2 Possibilities of further research

A number of areas have been identified where further study is possible. They are

described as follows.

The sample size requirement to develop and validate a standard logistic regression

model was studied under a number of scenarios (Chapters three and four). Time-to-

event data are common in medical setting. Further investigation could be conducted

based on survival models, such as the Cox proportional hazard, lognormal, and accel-

erated failure time models, to assess whether the sample size requirements differ for

these models.

In addition, further investigation may be needed to see how the rule of the required

number of EPV to develop a survival risk model can be adjusted when one has the

possibility of using a postestimation shrinkage factor.

The required number of events to develop a marginal, fixed-effect logistic regression,

and to develop and validate a random-intercept logistic regression, was examined in

Chapter five and six. Further investigation could be conducted to see how this rule could

be adjusted when developing a random-slope logistic regression model, or a multilevel

model with contextual variables.

The clustered survival outcomes are very common in practice. Random-effect frailty

model which can take account of this clustering have been proposed for the analysis

of clustered survival outcomes, It may also be of interest to study the required sample

size to develop and validate a frailty model.

The multicenter data was used in this thesis. However, the measurements may

be clustered within each subject. This type of data is also called longitudinal data.

Longitudinal data is common in medical research. One could examine whether the rule
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7. DISCUSSION AND CONCLUSION

of number of events stands for a longitudinal data.

We only used split validation method in our study. There are other types of val-

idation methods which are used in practice. It may be of interest to investigate the

required number of events to validate a standard or multilevel risk prediction models

using other validation methods such as cross-validation or bootstrap (see section 2.4).

One may also be interested to study the required number of events to validate a

multilevel risk prediction models for various risk profile.

7.3 Conclusion

This research is written mainly from a methodological perspective, focussing on the

required sample size to develop and/or validate a risk prediction model for a binary

outcome.

We believe that the strengths of our research are as follows. We investigate the

issue of sample size using both case studies and simulation. In the simulation studies,

the investigation of sample size requirements considered a broad range of scenarios such

as prognostic strength, outcome prevalence, types of predictors, collinearity, clustering,

and size of clusters. We have suggested a range of practical guidelines on how many

events are required to develop and validate risk models for binary outcomes; specially

there are practical recommendations to use when developing and/or validating a lo-

gistic model using independent binary outcomes (Chapters three and four), and using

clustered binary outcomes (Chapters five and six). Moreover, a model-maker could

use the derived formulae (Chapter four) to obtain the sample size on the anticipated

standard error of the calibration slope, D statistic, and C statistic.

One of the weakness of this study is that it was based on just one dataset, the

heart valve surgery data, and so other datasets should be explored. Also, we have only

explored binary outcome due to time restrictions, though our results can probably be

generalised to the time-to-event setting. We also did not explore continuous outcome

162
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setting for the same restriction. The results of our validation sections are applicable to

both internal and external validation. For Cross-validation and particularly JackKnife

validation, we consider that the overall number of events should be at least 75 for

independent binary outcome, and at least 100 events for clustered binary outcomes.

Finally, we were not able to run more simulations in some of the simulation studies due

to the fact that it was often taking several weeks, and in some cases months, to run

all the simulations. This was particularly the case in chapters 5 and 6 that considered

clustered binary outcomes.
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Appendix A

Relationship between accuracy of

estimated regression coefficients

and EPV
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Figure A.1: Relative differences in the estimated regression coefficients over EPVs by

strength of risk model based on 200 simulated data.
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Figure A.2: Relative differences in the estimated regression coefficients over EPVs by

outcome prevalence based on 200 simulated data.
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A. RELATIONSHIP BETWEEN ACCURACY OF ESTIMATED
REGRESSION COEFFICIENTS AND EPV
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Figure A.3: Relative differences in the estimated regression coefficients over EPVs

across the number of noise variables based on 200 simulated data.
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Figure A.4: Relative differences in the estimated regression coeffi-

cients over EPVs across the number of continuous variables in the

model based on 200 simulations. Note the scale of Y axis.
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Figure A.5: Relative differences in the estimated regression coeffi-

cients over EPVs across the number of variables based on 200 simu-

lations.
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Figure A.6: Relative differences in the estimated regression coeffi-

cients over EPVs across the amount of collinearity based on 200 sim-

ulations. Note different scale of y axis.
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