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ABSTRACT
The substantial heritability of most complex diseases suggests that genetic data could

provide useful risk prediction. To date the performance of genetic risk scores has

fallen short of the potential implied by heritability, but this can be explained by insuf-

ficient sample sizes for estimating highly polygenic models. When risk predictors

already exist based on environment or lifestyle, two key questions are to what extent

can they be improved by adding genetic information, and what is the ultimate poten-

tial of combined genetic and environmental risk scores? Here, we extend previous

work on the predictive accuracy of polygenic scores to allow for an environmental

score that may be correlated with the polygenic score, for example when the environ-

mental factors mediate the genetic risk. We derive common measures of predictive

accuracy and improvement as functions of the training sample size, chip heritabilities

of disease and environmental score, and genetic correlation between disease and envi-

ronmental risk factors. We consider simple addition of the two scores and a weighted

sum that accounts for their correlation. Using examples from studies of cardiovascular

disease and breast cancer, we show that improvements in discrimination are generally

small but reasonable degrees of reclassification could be obtained with current sample

sizes. Correlation between genetic and environmental scores has only minor effects

on numerical results in realistic scenarios. In the longer term, as the accuracy of poly-

genic scores improves they will come to dominate the predictive accuracy compared

to environmental scores.
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1 INTRODUCTION

Predicting the individual risk of disease is one of the major

goals of epidemiology and, because most common diseases

have a heritable component, there has long been interest in

using genotype data to inform prediction of disease onset,

prognosis, or treatment response. Indeed for Mendelian disor-

ders genetic prediction has established clinical applications in

counselling, prophylactic intervention, and embryonic screen-
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ing. For the common, complex disorders however, progress

has to date been slow (Abraham & Inouye, 2015; Chatterjee,

Shi, & Garcia-Closas, 2016; Jostins & Barrett, 2011). Despite

the success of genome-wide association studies (GWAS) in

identifying numerous risk variants for many disorders, these

variants typically explain a small proportion of the variation in

risk; a number of studies have examined the predictive accu-

racy of GWAS “hits” and generally found limited utility for

risk prediction (Eriksson et al., 2015; Talmud et al., 2015;

4 www.geneticepi.org Genet. Epidemiol. 2018;42:4–19.
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Weissfeld et al., 2015), although there have been some suc-

cesses (Maas et al., 2016; Patel et al., 2016). The reasons are

that the associated markers individually have small effects on

risk, and the markers discovered to date are a small fraction

of the total complement of risk variants. The realization that

most, perhaps all, complex traits are polygenic, that is, deter-

mined by thousands of genetic variants with small effects,

has motivated a shift toward thinking about the genetic basis

of disease as a single entity (Dudbridge, 2016). Under this

paradigm, the whole genome should be regarded as a risk pre-

dictor, but attempts in this direction have so far also yielded

modest results (Evans, Visscher, & Wray, 2009; Locke et al.,

2015; Maier et al., 2015).

However, given the substantial heritability of many com-

mon disorders, it remains true that we should improve risk

prediction if we could measure the heritable component accu-

rately (Pharoah et al., 2002; Wray, Goddard, & Visscher,

2007; Wray, Yang, Goddard, & Visscher, 2010). Indeed,

a crude measure of polygenic risk, namely family history,

is already widely used as a risk predictor (Valdez, Yoon,

Qureshi, Green, & Khoury, 2010). An important insight is

that the currently disappointing performance of polygenic pre-

diction can be explained by insufficient sample sizes avail-

able for estimating genetic effects (Chatterjee et al., 2013;

Dudbridge, 2013). Essentially, sampling variation accumu-

lates across thousands of variants so that the polygenic predic-

tor has high measurement error even if standard errors are low

on each individual variant. However, international consortium

efforts and national biobank projects are now approaching the

sizes at which accurate genetic predictors could be derived,

so the performance of genetic prediction may well improve

toward useful levels in the next few years.

Nevertheless, the heritability imposes a limit on the accu-

racy of genetic prediction, even if we knew all the variants

affecting risk and their precise effect sizes (Clayton, 2009).

For many disorders, this limit falls short of levels usually

regarded as clinically useful, and the only way we could

improve predictive accuracy would be by adding further non-

genetic factors into the risk score. Indeed for some conditions,

for example, cardiovascular disease (CVD) and breast can-

cer, epidemiological risk scores are already available and in

clinical use. The question then is whether inclusion of genetic

information could improve the predictive accuracy to a use-

ful degree. As with studies of genetic prediction alone, efforts

to improve existing predictors by adding in genetic data have

met with only moderate success (Morris et al., 2016; Talmud

et al., 2015; Wacholder et al., 2010).

Theoretical treatments of genetic prediction have mainly

considered prediction from genotypes alone, but not the com-

mon scenario in which both genetic and nongenetic predic-

tors are combined. An exception is work of Garcia-Closas,

Gunsoy, and Chatterjee (2014), who argue that addition of

genetic data to questionnaire-based risk factors could pro-

vide useful levels of risk stratification for breast cancer. Here,

we extend previous work on the predictive accuracy of poly-

genic risk scores (Dudbridge, 2013) to include a nonpolygenic

component. For convenience, we term all nonpolygenic risk

factors as “environmental,” although such factors could

include major genes, behavioral and other factors such as age

that arguably do not fit that description. A key concern is

that many environmental risk factors are themselves herita-

ble, and may therefore mediate some or all of the genetic

risk. Indeed, comparable resources have been directed toward

GWAS of heritable risk factors such as lipid fractions (Willer

et al., 2013) and body mass index (BMI) (Locke et al., 2015)

as have been toward clinical outcomes. On the other hand,

for environments that are difficult to measure well (e.g., alco-

hol consumption), it is conceivable that their heritable compo-

nent may act as a more accurate predictor of the outcome than

the measured environment itself (Verhulst, Neale, & Kendler,

2015).

Here, we show how under a quantitative genetics

model, commonly used measures of predictive accuracy and

improvement can be expressed in terms of the genetic variance

of an outcome of interest (its “chip heritability”), genetic vari-

ance of an environmental risk score, variance in the outcome

explained by the environmental score, and genetic correla-

tion between the outcome and the environmental score. These

are quantities that are readily estimated by existing methods

(Bulik-Sullivan et al., 2015; Lee, Yang, Goddard, Visscher, &

Wray, 2012), allowing examples to be drawn from recent liter-

ature to illustrate the prospects for prediction from combined

genetic and environmental factors. As in previous work (Dud-

bridge, 2013), we allow for the estimation of a polygenic risk

score from finite training data, but in contrast to other work

(Garcia-Closas et al., 2014; So & Sham, 2010), we explic-

itly consider the genetic correlation between environment and

outcome and its implications for the computation of combined

risk scores.

2 MATERIALS AND METHODS

2.1 Quantitative Model
Consider two linear models for an outcome Y, the first in terms

of a scalar environmental factor X:

𝐸(𝑌 ) = 𝑋

the second in terms of m genetic markers:

𝐸(𝑌 ) = 𝜷′G =
𝑚∑
𝑖=1

𝛽𝑖𝐺𝑖,

where 𝛽 is an m-vector of coefficients 𝛽𝑖. Assume that the

effect of the environmental factor X on Y is known precisely,
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so that without loss of generality X may be assumed to have a

unit effect on Y. Denote by 𝑅2
𝑋𝑌

the proportion of variance in

Y explained by X. Assuming also that Y is standardized, then

var(𝑋) = 𝑅2
𝑋𝑌

.

Assume that genotypes G are independent (i.e.,

in linkage equilibrium) and standardized. Thus, for

single nucleotide polymorphisms (SNPs) in Hardy–

Weinberg equilibrium, the usual additive coding gives

𝐺𝑖 = (𝐴𝑖 − 2𝑓𝑖)∕(2𝑓𝑖(1 − 𝑓𝑖))1∕2, where 𝐴𝑖 is the number

of minor alleles and 𝑓𝑖 is the minor allele frequency at

SNP 𝑖. The genetic effects 𝛽𝑖 are regarded as fixed across

samples, but random over 𝑖 = 1,… , 𝑚 with 𝐸(𝛽𝑖) = 0,

var(𝛽𝑖) = 𝑚−1𝜎2
𝐺

. Then the genetic variance of Y is 𝜎2
𝐺

, and

because Y is standardized the chip heritability of markers G,

denoted by 𝑅2
𝐺𝑌

, is equal to 𝜎2
𝐺

.

The separate marginal genetic and environmental models

for Y reflect common practice in fitting such models. Many

environmental risk factors have been extensively studied prior

to the genomics era, and accurate estimates of their effects

have been obtained from large epidemiological studies with-

out adjustment for genetic factors. Here it is assumed that the

environmental effect size is known with negligible standard

error so that we may ignore sampling error in the effect of X.

Genetic effect sizes are often estimated by large consortia

in which it may be impractical to adjust for any but the sim-

plest risk factors (e.g., age and sex) across contributing stud-

ies. However, estimation of the marginal genetic effects is a

key determinant of predictive accuracy. Let the genetic effects

be estimated from a training sample of size n with the poly-

genic risk score then defined by:

𝑆̂ = 𝛽′G.

For ordinary least squares estimates of 𝛽, Dudbridge

(Dudbridge, 2013) showed that:

cov(𝑆̂, 𝑌 ) = 2𝑅2
𝐺𝑌

[
Φ(𝑟0) − Φ(𝑟1) + 𝑟1𝜑(𝑟1) − 𝑟0𝜑(𝑟0)

]
,

(1)

var(𝑆̂) = 2𝑚𝜋0𝑛−1
[
Φ(𝑞0) − Φ(𝑞1) + 𝑞1𝜑(𝑞1) − 𝑞0𝜑(𝑞0)

]
+2𝑚(1 − 𝜋0)((1 − 𝜋0)−1𝑚−1𝑅2

𝐺𝑌
+ 𝑛−1)[

Φ(𝑟0) − Φ(𝑟1) + 𝑟1𝜑(𝑟1) − 𝑟0𝜑(𝑟0)
]
,

(2)

where 𝜋0 is a proportion of markers assumed to have

no effect (𝛽𝑖 = 0), with the rest assumed to have effects

following a normal distribution; 𝑞0 = Φ−1(1 − 1
2𝑝0),

𝑞1 = Φ−1(1 − 1
2𝑝1), where 𝑝0, 𝑝1 are lower and upper

two-tailed P-values to select markers into the poly-

genic score; and 𝑟0 = 𝑞0(𝑛(1 − 𝜋0)−1𝑚−1𝑅2
𝐺𝑌

+ 1)−
1
2 ,

𝑟1 = 𝑞1(𝑛(1 − 𝜋0)−1𝑚−1𝑅2
𝐺𝑌

+ 1)−
1
2 .

Now consider a polygenic component to the environmen-

tal factor X. Denote the chip heritability of X by 𝑅2
𝐺𝑋

and the

genetic correlation between X and Y by 𝜌. That is, 𝜌 is the cor-

relation between the 𝛽𝑖 and the corresponding genetic effects

on X: thus it is a property of the markers G and should properly

be called a chip correlation. Then the chip covariance between

X and Y is:

𝜌

√
𝑚−2𝑅2

𝐺𝑌
𝑅2
𝑋𝑌

𝑅2
𝐺𝑋

and so

cov(𝑆,𝑋) = 𝑚𝜌

√
𝑚−2𝑅2

𝐺𝑌
𝑅2
𝑋𝑌

𝑅2
𝐺𝑋

= 𝜌

√
𝑅2
𝐺𝑌

𝑅2
𝑋𝑌

𝑅2
𝐺𝑋

.

The covariance of the estimated polygenic score 𝑆̂ with

the environmental score X also follows from the results of

Dudbridge:

cov(𝑆̂, 𝑋) = 2cov(𝑆,𝑋)
[
Φ(𝑟0)−Φ(𝑟1) + 𝑟1𝜑(𝑟1)−𝑟0𝜑(𝑟0)

]
= 2𝜌

√
𝑅2
𝐺𝑌

𝑅2
𝑋𝑌

𝑅2
𝐺𝑋

[
Φ(𝑟0) − Φ(𝑟1) + 𝑟1𝜑(𝑟1)

−𝑟0𝜑(𝑟0)
]
. (3)

Now consider a combined score formed as the weighted

sum of polygenic and environmental scores:

𝑆̂𝑐𝑜𝑚𝑏 = 𝑤1𝑆̂ +𝑤2𝑋. (4)

The coefficient of determination for the combined score is:

𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

=
cov(𝑆̂𝑐𝑜𝑚𝑏, 𝑌 )

2

var(𝑆̂𝑐𝑜𝑚𝑏)
, (5)

where

cov(𝑆̂𝑐𝑜𝑚𝑏, 𝑌 ) = 𝑤1cov(𝑆̂, 𝑌 ) +𝑤2𝑅
2
𝑋𝑌

, (6)

var(𝑆̂𝑐𝑜𝑚𝑏) = 𝑤2
1var(𝑆̂) +𝑤2

2𝑅
2
𝑋𝑌

+ 2𝑤1𝑤2cov(𝑆̂, 𝑋). (7)

A simple choice of weights just adds the two scores

together,𝑤1 = 𝑤2 = 1. Although this seems naive when there

is genetic correlation between X and Y, it is a very commonly

used approach. A better choice is to take the ordinary least

squares solution to the linear model:

𝐸(𝑌 ) = 𝑆̂𝑐𝑜𝑚𝑏,

which is[
𝑤1
𝑤2

]
=
[

var(𝑆̂) cov(𝑆̂, 𝑋)
cov(𝑆̂, 𝑋) var(𝑋)

]−1 [cov(𝑆̂, 𝑌 )
cov(𝑋, 𝑌 )

]

=
[

var(𝑆̂) cov(𝑆̂, 𝑋)
cov(𝑆̂, 𝑋) 𝑅2

𝑋𝑌

]−1 [cov(𝑆̂, 𝑌 )
𝑅2
𝑋𝑌

]
.

To summarize thus far, the coefficient of determination

for the combined score is expressed in terms of the genetic
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T A B L E 1 Parameters and Notation of Polygenic Model

Design Parameters Interpretation
n Training sample size

m Total number of independent markers in

genotyping panel

p0, p1 Lower and upper P values to select

markers into polygenic score

Genetic model parameters
𝑅2

𝐺𝑌
Variance in Y explained by genotypes G;

chip heritability of Y
𝑅2

𝑋𝑌
Variance in Y explained by environment X

𝑅2
𝐺𝑋

Variance in X explained by genotypes G;

chip heritability of X
𝜌 Genetic (chip) correlation between X and

Y
𝜋0 Proportion of markers with no effect on Y

model parameters listed in Table 1 and the derived quanti-

ties cov(𝑆̂, 𝑌 ), var(𝑆̂), and cov(𝑆̂, 𝑋) (Equations (1), (2), and

(3)). For continuous Y, this coefficient of determination is the

R2 between predicted and observed traits, a common measure

of predictive accuracy.

2.2 Binary Outcomes
For binary outcomes, the liability threshold (or probit) model

closely approximates the linear model for the small effects

expected on polygenic traits, and allows several measures of

predictive accuracy to be expressed analytically (So & Sham,

2010). Let Y now be an unobserved liability, distributed as

standard normal, with the binary outcome D = 1 when Y
exceeds a fixed threshold 𝜏, 0 otherwise. Denote by K the

prevalence of the trait and by P the case/control sampling

ratio in the training data, defined to equal K in a prospec-

tive study. The variance of the observed D in the training data

is 𝑃 (1 − 𝑃 ) and effects on Y are transformed to effects on D
by the factor 𝑐 = 𝝋(𝜏) 𝑃 (1−𝑃 )

𝐾(1−𝐾) (Lee, Wray, Goddard, & Viss-

cher, 2011). Let 𝑆̂ now be the polygenic score with effects

estimated on the observed D and transformed back to the

liability scale by 𝑐−1. Then analogous to Equations (1), (2),

and (3),

cov(𝑆̂, 𝑌 ) = 2𝑅2
𝐺𝑌

[
Φ(𝑟0) − Φ(𝑟1) + 𝑟1𝜑(𝑟1) − 𝑟0𝜑(𝑟0)

]
,

var(𝑆̂) = 𝑐−22𝑚𝜋0𝑃 (1 − 𝑃 )𝑛−1[
Φ(𝑞0) − Φ(𝑞1) + 𝑞1𝜑(𝑞1) − 𝑞0𝜑(𝑞0)

]
+2𝑚𝑐−2(1 − 𝜋0)((1 − 𝜋0)−1𝑚−1𝑐2𝑅2

𝐺𝑌

+𝑃 (1 − 𝑃 )𝑛−1)
[
Φ(𝑟0) − Φ(𝑟1) + 𝑟1𝜑(𝑟1)

− 𝑟0𝜑(𝑟0)
]
,

where now

𝑟0 = 𝑞0(𝑛𝑃−1(1 − 𝑃 )−1(1 − 𝜋0)−1𝑚−1𝑐2𝑅2
𝐺𝑌

+ 1)−
1
2 ,

𝑟1 = 𝑞1(𝑛𝑃−1(1 − 𝑃 )−1(1 − 𝜋0)−1𝑚−1𝑐2𝑅2
𝐺𝑌

+ 1)−
1
2 .

The combined score 𝑆̂𝑐𝑜𝑚𝑏 is calculated as before from

Equation (4) and its coefficient of determination 𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

from

Equations (5), (6), and (7).

2.3 Area under ROC Curve
The accuracy of predicting a binary outcome is often assessed

by the area under the receiver operator characteristic curve

(AUC), which measures the discrimination concordance

between risk scores and outcomes. That is, AUC is the prob-

ability that a subject with the trait has a higher risk score than

a subject without the trait. The central limit theorem implies

that the polygenic score 𝑆̂ is normally distributed. Assuming

that the environmental score X also is normally distributed:

𝐴𝑈𝐶 = Φ
⎛⎜⎜⎜⎝

𝐸(𝑆̂𝑐𝑜𝑚𝑏|𝐷 = 1) − 𝐸(𝑆̂𝑐𝑜𝑚𝑏|𝐷 = 0)√
var(𝑆̂𝑐𝑜𝑚𝑏|𝐷 = 1) + var(𝑆̂𝑐𝑜𝑚𝑏|𝐷 = 0)

⎞⎟⎟⎟⎠ , (8)

where

𝐸(𝑆̂𝑐𝑜𝑚𝑏|𝐷 = 1) = 𝜑(𝜏)
𝐾

𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

,

var(𝑆̂𝑐𝑜𝑚𝑏|𝐷 = 1)

= 𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

[
1 − 𝜑(𝜏)

𝐾
𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

(
𝜑(𝜏)
𝐾

− 𝜏

)]
,

𝐸(𝑆̂𝑐𝑜𝑚𝑏|𝐷 = 0) = −𝜑(𝜏)
1 −𝐾

𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

,

var(𝑆̂𝑐𝑜𝑚𝑏|𝐷 = 0)

= 𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

[
1 − 𝜑(𝜏)

1 −𝐾
𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

(
𝜑(𝜏)
𝐾

+ 𝜏

)]
.

Full derivations of these equalities have been provided pre-

viously (Dudbridge, 2013; So & Sham, 2010; Wray et al.,

2010).

2.4 Net Reclassification Index
The AUC has some limitations that have been well docu-

mented (Cook, 2007), notably that it reflects only the rank-

ing of subjects, but not their absolute risk levels. Further-

more, substantial increases in AUC may be hard to achieve
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even with the addition of informative markers. This has led to

the proposal of new measures of incremental predictive accu-

racy, of which the net reclassification improvement (NRI) has

proved popular (Pencina, D'Agostino, D'Agostino, & Vasan,

2008). Given discrete risk categories defined by absolute risk

thresholds, the NRI compares the classification of subjects

under an initial risk predictor to their reclassification under an

augmented predictor including an additional marker. Specif-

ically, the NRI is calculated in cases as the proportion cor-

rectly reclassified to a higher risk category minus the pro-

portion incorrectly reclassified to a lower category. Similarly,

the NRI is calculated in controls as the proportion correctly

reclassified to a lower category minus the proportion incor-

rectly reclassified to a higher category. The case and control

NRI could be combined into an overall NRI (Kerr et al., 2014;

Pencina, D'Agostino, & Steyerberg, 2011).

Currently, there is substantial interest in whether a poly-

genic risk score adds worthwhile information to an existing

environmental score. Under the liability threshold model, the

NRI can be calculated from tail probabilities of the joint dis-

tribution of liability, environmental, and combined scores (So

& Sham, 2010). Here the calculation is adjusted to allow for

chip correlation between environment X and liability Y.

Consider two categories of risk defined by a threshold a.

(This calculation can be extended if desired to a greater num-

ber of categories.) Under the liability threshold model, the risk

for environmental score X is:

1 − Φ
⎛⎜⎜⎜⎝

𝜏 −𝑋√
1 −𝑅2

𝑋𝑌

⎞⎟⎟⎟⎠ (9)

and so the risk equals the threshold a when

𝑋 = 𝑎𝑋 = 𝜏 −
√

1 −𝑅2
𝑋𝑌

Φ−1(1 − 𝑎).

The combined score, though constructed as an estimate of

liability, may have variance differing from 1 depending on the

choice of the weights 𝑤1, 𝑤2. To obtain absolute risks from

the combined score, it is therefore calibrated to the liability by

rescaling by its regression coefficient on Y:

𝛾 =
cov(𝑆̂𝑐𝑜𝑚𝑏, 𝑌 )
var(𝑆̂𝑐𝑜𝑚𝑏)

calculated from Equations (6) and (7), so that

var(𝛾𝑆̂𝑐𝑜𝑚𝑏) =
cov(𝑆̂𝑐𝑜𝑚𝑏, 𝑌 )

2

var(𝑆̂𝑐𝑜𝑚𝑏)
= 𝑅2

𝑆̂𝑐𝑜𝑚𝑏𝑌
.

(The least squares solutions of 𝑤1, 𝑤2 do give 𝛾 = 1.) The

risk equals the threshold a when

𝛾𝑆̂𝑐𝑜𝑚𝑏 = 𝑎𝑆 = 𝜏 −
√

1 − 𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

Φ−1(1 − 𝑎).

Again assuming that both polygenic and environmental

scores are normally distributed, the joint distribution of liabil-

ity, X, and the calibrated combined score is trivariate normal

with mean zero and variance-covariance matrix:

⎡⎢⎢⎢⎢⎣
1 𝑅2

𝑋𝑌
𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

𝑅2
𝑋𝑌

𝑅2
𝑋𝑌

cov(𝛾𝑆̂𝑐𝑜𝑚𝑏,𝑋)

𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

cov(𝛾𝑆̂𝑐𝑜𝑚𝑏,𝑋) 𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

⎤⎥⎥⎥⎥⎦
,

where

cov(𝛾𝑆̂𝑐𝑜𝑚𝑏,𝑋) = 𝛾(cov(𝑆̂, 𝑋) +𝑅2
𝑋𝑌

)

is calculated using Equation (3).

The case NRI is:

Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 > 𝑎𝑆,𝑋 ≤ 𝑎𝑋|𝐷 = 1)

−Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 ≤ 𝑎𝑆,𝑋 > 𝑎𝑋|𝐷 = 1),

where

Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 > 𝑎𝑆,𝑋 ≤ 𝑎𝑋|𝐷 = 1)

=
∞

∫
𝜏

𝑎𝑋

∫
−∞

∞

∫
𝑎𝑆

𝜑3(𝑙, 𝑥, 𝑠)𝑑𝑠𝑑𝑥𝑑𝑙∕𝐾,

Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 ≤ 𝑎𝑆,𝑋 > 𝑎𝑋|𝐷 = 1)

=
∞

∫
𝜏

∞

∫
𝑎𝑋

𝑎𝑆

∫
−∞

𝜑3(𝑙, 𝑥, 𝑠)𝑑𝑠𝑑𝑥𝑑𝑙∕𝐾,

𝜑3 being the trivariate normal density function just defined.

Similarly the control NRI is:

Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 ≤ 𝑎𝑆,𝑋 > 𝑎𝑋|𝐷 = 0)

−Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 > 𝑎𝑆,𝑋 ≤ 𝑎𝑋|𝐷 = 0),

where

Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 ≤ 𝑎𝑆,𝑋 > 𝑎𝑋|𝐷 = 0)

=
𝜏

∫
−∞

∞

∫
𝑎𝑋

𝑎𝑆

∫
−∞

𝜑3(𝑙, 𝑥, 𝑠)𝑑𝑠𝑑𝑥𝑑𝑙∕(1 −𝐾),
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Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 > 𝑎𝑆,𝑋 ≤ 𝑎𝑋|𝐷 = 0)

=
𝜏

∫
−∞

𝑎𝑋

∫
−∞

∞

∫
𝑎𝑆

𝜑3(𝑙, 𝑥, 𝑠)𝑑𝑠𝑑𝑥𝑑𝑙∕(1 −𝐾).

2.5 Continuous NRI and IDI
The discrete categories used in the NRI may be a limitation

when such thresholds have not been fixed in practice or when

comparing predictors between studies with different charac-

teristics. Two alternatives that do not rely on discrete cate-

gories are the continuous NRI (Pencina et al., 2011) and the

integrated discrimination improvement (IDI) (Pencina et al.,

2008).

In cases, the continuous NRI is the proportion whose risk

score increases under the augmented predictor minus the pro-

portion whose score decreases. Similarly in the controls it is

the proportion whose risk score decreases minus that whose

score increases. Therefore, in cases the continuous NRI is:

Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 > 𝑋|𝐷 = 1) − Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 ≤ 𝑋|𝐷 = 1)

= 2 Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 > 𝑋|𝐷 = 1) − 1,

where

Pr(𝛾𝑆̂𝑐𝑜𝑚𝑏 > 𝑋|𝐷 = 1) =
∞

∫
𝜏

∞

∫
0

𝜑2(𝑙, 𝑥)𝑑𝑥𝑑𝑙∕𝐾

with 𝜑2 the bivariate normal density of liability and 𝛾𝑆̂𝑐𝑜𝑚𝑏 −
𝑋. This distribution has mean 0 and variance-covariance

matrix:

⎡⎢⎢⎣
1 𝑅2

𝑆̂𝑐𝑜𝑚𝑏𝑌
−𝑅2

𝑋𝑌

𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

− 𝑅2
𝑋𝑌

𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

+𝑅2
𝑋𝑌

− 2cov(𝛾𝑆̂𝑐𝑜𝑚𝑏,𝑋)

⎤⎥⎥⎦ .
Similarly in controls, the continuous NRI is:

2
𝜏

∫
−∞

0

∫
−∞

𝜑2(𝑙, 𝑥)𝑑𝑥𝑑𝑙∕(1 −𝐾) − 1.

The IDI is the mean change in risk among cases minus the
mean change in controls:

𝐸
𝑆̂𝑐𝑜𝑚𝑏

⎡⎢⎢⎣1 − Φ
⎛⎜⎜⎝ 𝜏−𝛾𝑆̂𝑐𝑜𝑚𝑏√

1−𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

⎞⎟⎟⎠ |𝐷 = 1
⎤⎥⎥⎦ − 𝐸𝑋

[
1 − Φ

(
𝜏−𝑋√
1−𝑅2

𝑋𝑌

)|𝐷 = 1

]

−𝐸
𝑆̂𝑐𝑜𝑚𝑏

⎡⎢⎢⎣1 − Φ
⎛⎜⎜⎝ 𝜏−𝛾𝑆̂𝑐𝑜𝑚𝑏√

1−𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

⎞⎟⎟⎠ |𝐷= 0
⎤⎥⎥⎦ + 𝐸𝑋

[
1 − Φ

(
𝜏−𝑋√
1−𝑅2

𝑋𝑌

)|𝐷= 0

]

=
∞∫

−∞
Φ
⎛⎜⎜⎝ 𝜏−𝑙√

1−𝑅2
𝑆̂𝑐𝑜𝑚𝑏𝑌

⎞⎟⎟⎠
[
𝜑

(
𝑙−𝐸(𝛾𝑆̂𝑐𝑜𝑚𝑏|𝐷=0)√
var(𝛾𝑆̂𝑐𝑜𝑚𝑏|𝐷=0)

)
− 𝜑

(
𝑙−𝐸(𝛾𝑆̂𝑐𝑜𝑚𝑏|𝐷=1)√
var(𝛾𝑆̂𝑐𝑜𝑚𝑏|𝐷=1)

)]
𝑑𝑙

−
∞∫

−∞
Φ

(
𝜏−𝑙√
1−𝑅2

𝑋𝑌

)[
𝜑

(
𝑙−𝐸(𝑋|𝐷=0)√
var(𝑋|𝐷=0)

)
− 𝜑

(
𝑙−𝐸(𝑋|𝐷=1)√
var(𝑋|𝐷=1)

)]
𝑑𝑙

,

G

X

Y

E

F I G U R E 1 Directed acyclic graph showing correlation between

polygenic and environmental scores arising from mediation

Note: G: polygenic score; E: nongenetic risk factors; X: environmental

risk score; Y: outcome.

where the conditional means and variances have been

obtained previously for calculation of AUC.

3 RESULTS

3.1 Cardiovascular Disease
The analytic results are now compared to some published

studies of the predictive improvement from genotype data. In

many countries, lipid lowering medication is advised for sub-

jects whose medium term risk of a coronary event exceeds

a threshold (Goff et al., 2014; JBS3 Board, 2014). Environ-

mental risk scores have been developed using data from lon-

gitudinal studies, including the American College of Cardi-

ology/American Heart Association Score (Goff et al., 2014),

Framingham Risk Score (FRS) (D'Agostino et al., 2008),

and QRISK-2 equation (Hippisley-Cox, Coupland, Robson,

& Brindle, 2010). Risk factors commonly included are age,

gender, components of total cholesterol, smoking, BMI, and

blood pressure. A 10-year risk of 20% has been traditionally

used as a threshold although recent guidelines have suggested

lower thresholds, thus widening the prescription of such

medications, primarily statins (Hippisley-Cox et al., 2010).

Figure 1 is a directed acyclic graph illustrating how the envi-

ronmental risk score mediates some of the genetic risk, while

also including nongenetic factors.

Several studies have assessed the incremental value of a

limited number of SNPs compared to traditional risk fac-

tors (Hughes et al., 2012; Morrison et al., 2007; Thanas-

soulis et al., 2012; Tikkanen, Havulinna, Palotie, Salomaa, &

Ripatti, 2013). In general, very small improvements in AUC

have been observed, but some promise has been identified

for reclassification, particularly for individuals at intermedi-

ate risk. It is indeed those individuals who may be reluctant

to adopt a medication and thus for whom accurate risk predic-

tion is desirable. Two recent studies have used genome-wide

significant SNPs from the CARDIoGRAMplusC4D consor-

tium (Deloukas et al., 2013), the largest study yet conducted

in CVD, representing the state of the art in terms of the num-

ber of significantly associated SNPs and the precision of their

estimated effects.
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de Vries et al. (2015) considered prediction of coronary

heart disease (CHD) in the Rotterdam Study using 49 SNPs

significant at 𝑃 < 5 × 10−8 and with 152 SNPs significant at

approximately 𝑃 < 10−3. Improvements over traditional risk

factors were small: for example, in comparison to an envi-

ronmental score including established risk factors, the AUC

improved from 0.716 to 0.718 and the total NRI was 0.014

across four risk categories using the 49 SNP score. For the 152

SNP score the AUC improved to 0.719 and the NRI was 0.022.

Morris et al. (2016) considered prediction of CVD (defined

as CHD or stroke) in the UCLEB consortium using the same

49 SNPs with 𝑃 < 5 × 10−8 and three additional SNPs like-

wise associated with stroke. In comparison with the QRISK-

2 score, the AUC actually decreased from 0.635 to 0.623,

whereas the NRI was 0.0025 for a 10-year risk of 10%.

In a further recent study, Abraham et al. (2016) used all

the SNPs genotyped in CARDIoGRAMplusC4D with some

pruning by linkage disequilibrium. Over two target samples,

AUC improved by approximately 0.016 and the continuous

NRI over the FRS was between 0.147 and 0.195 in cases, and

between 0.102 and 0.175 in controls.

The present model is difficult to fit to these studies because

the full CARDIoGRAMplusC4D sample was genotyped on

the MetaboChip, a targeted array of approximately 200,000

SNPs chosen on the basis of prior association with several

cardio-metabolic disorders. The genomic coverage and chip

heritability of this array falls short of a full GWAS array; the

proportion of null SNPs may be lower than in a full array, but

the distribution of effect sizes will exhibit selection bias. The

published list of SNP effects used by these recent studies con-

sists of 79,138 SNPs present on both GWAS and MetaboChip

products. To simplify the presentation, it is assumed that a

full GWAS array was used, which could be approximated by

100,000 independent SNPs. A genetic model was identified

that closely matches the results of Morris et al. (2016), which

were more readily compared to the present theory than were

those of the other studies. Although this model may depart

from the truth, it will serve the main aim of illustrating the

effects of marker selection and sample size on the incremen-

tal accuracy.

The training data from CARDIoGRAMplusC4D include

63,746 cases and 130,681 controls. Taking the chip heritabil-

ity of CHD as 𝑅2
𝐺𝑌

= 0.3, proportion of null SNPs 𝜋0 = 0.8
and disease prevalence 𝐾 = 0.15 gives an expected AUC of

0.536 when SNPs are selected by 𝑃 < 5 × 10−8, similar to

the result of Morris et al. For the environmental score, the

chip heritability of FRS, which includes similar risk factors to

QRISK-2, is approximately 0.3 (Simonson, Wills, Keller, &

McQueen, 2011). To obtain an AUC of 0.635, as per QRISK-

2 in Morris et al., Equation (8) implies 𝜎2
𝑋
= 0.052.

With these parameters, and selecting SNPs into the score

by 𝑃 < 5 × 10−8, Equation (8) gives AUC of 0.622 for the

unweighted combined score when 𝜌 = 0.1, or AUC of 0.621

when 𝜌 = 0.4, both lower than the AUC of 0.635 for the envi-

ronmental score alone and consistent with the results of Mor-

ris et al. The least squares weighted score gives AUC of 0.623

and 0.622, respectively. Such a decrease in AUC is a known

effect when adding in a weakly predictive marker (Pepe, Fan,

Feng, Gerds, & Hilden, 2015). However, the present theory

suggests that the predictive accuracy of the unweighted score

would be maximized when selecting SNPs by P < 0.033, giv-

ing AUC of 0.693; for the weighted score, the AUC would be

0.700 when P < 0.053. Clearly, in contrast to common prac-

tice, predictive accuracy is improved by more liberal selection

of SNPs into the polygenic score. These results are summa-

rized in Table 2, which also shows that under these parame-

ters, AUC of nearly 0.8 could be achieved by the polygenic

score with a very large training sample and improved only

slightly by the environmental score. Supplementary Table S1

shows results with the prevalence reduced to 0.06, and Table 3

with the proportion of null SNPs increased to 0.95 (Palla

& Dudbridge, 2015), both cases showing modest increase in

AUC with similar qualitative conclusions.

Figures 2 and 3 show the expected AUC as a function

of training sample size for the unweighted and least squares

weighted scores. Notably, the results are almost identical for

unweighted and weighted scores except at low training sample

sizes. Although at a given sample size the degree of genetic

correlation has small effects on AUC, it can have a strong

bearing on the sample size required to reach a critical level of

AUC. For example, to reach AUC of 0.75, the required sam-

ple size is approximately 159,000 when 𝜌 = 0.1 but 210,000

when 𝜌 = 0.4, and 284,000 for the polygenic score alone. The

curves level out at around 200,000 cases, beyond which fur-

ther gains are small. The CARDIoGRAMplusC4D consor-

tium has recently exceeded this sample size and its predic-

tion studies, when completed, will allow further refinement

of these projections.

Table 3 shows expected NRI for 𝑃 < 5 × 10−8 and for opti-

mal thresholds at a single risk threshold of 10%. Morris et al.

reported a case NRI of− 0.0207 and control NRI of 0.0233 for

an unweighted combined score, each slightly larger in magni-

tude than predicted here but compatible in direction and with

sampling error. Substantially larger NRI is possible with more

liberal selection of SNPs, and also with a larger training sam-

ple. The improvements are largely within the controls, unaf-

fected individuals correctly reclassified to lower risk by addi-

tion of the polygenic score. Supplementary Tables S3 and S4

show results for alternative values of the prevalence and pro-

portion of null SNPs.

Table 4 shows results for the weighted score and 𝜌 = 0.4

for the higher risk threshold of 20% and for the continu-

ous NRI and IDI. Results (not shown) are similar for the

unweighted score or 𝜌 = 0.1. Again, substantial improve-

ments are possible, though the gains now appear concentrated

among cases. Supplementary Tables S5 and S6 show results
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T A B L E 2 AUC for environmental score, polygenic score, and combined scores based on a genetic model matching results for CVD reported by

Morris et al

Environment Polygenic Unweighted Sum Weighted Sum
N cases 𝝆 = 0.1 𝝆 = 0.4 𝝆 = 0.1 𝝆 = 0.4
63,746 0.635 0.536 (5× 10−8) 0.622 (5× 10−8) 0.621 (5 × 10−8) 0.623 (5 × 10−8) 0.622 (5 × 10−8)

63,746 0.635 0.666 (0.053) 0.693 (0.033) 0.688 (0.036) 0.701 (0.053) 0.693 (0.053)

∞ 0.635 0.782 0.800 0.784 0.800 0.788

In parentheses, P-value thresholds to select SNPs into polygenic score; N cases, number of cases in training sample with 2.05 controls per case as in CARDIoGRAM-

plusC4D.

T A B L E 3 NRI for a single risk threshold of 10% for combined scores based on a genetic model matching results for CVD reported by Morris

et al

Unweighted Sum Weighted Sum
N cases 𝝆 = 0.1 𝝆 = 0.4 𝝆 = 0.1 𝝆 = 0.4

Case Control Case Control Case Control Case Control
63,746 − 0.0049 0.012 − 0.0038 0.0095 − 0.0060 0.015 0.0053 0.013

63,784 − 0.046 (0.79) 0.186 (0.031) − 0.045 (0.76) 0.176 (0.031) − 0.052 (0.85) 0.2 (0.056) − 0.049 (0.86) 0.186 (0.059)

∞ − 0.046 0.367 − 0.050 0.344 − 0.046 0.368 − 0.049 0.349

In parentheses, P-value thresholds to select SNPs into polygenic score; N cases, number of cases in training sample with 2.05 controls per case as in CARDIoGRAM-

plusC4D.
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F I G U R E 2 AUC of unweighted combined score as a function of

training sample size

Note: Genetic model chosen to match results for CVD reported by Mor-

ris et al., with 2.05 controls per case as in the CARDIoGRAMplusC4D

consortium. Rho: chip correlation between environment and outcome.

Gene: polygenic score alone. Environment: environmental score alone.

for alternative values of the prevalence and proportion of null

SNPs.

Note that at finite sample size, the optimal P-value thresh-

old varies according to the risk threshold and whether the case

or control NRI is maximized, and those thresholds are not the

ones that maximize AUC. Although the values of NRI are not

greatly changed by using the threshold that maximizes AUC,

this shows that the optimal genetic predictor can depend on the
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F I G U R E 3 AUC of weighted combined score as a function of

training sample size

Note: Genetic model chosen to match results for CVD reported by Mor-

ris et al, with 2.05 controls per case as in the CARDIoGRAMplusC4D

consortium. Rho: chip correlation between environment and outcome.

Gene: polygenic score alone. Environment: environmental score alone.

chosen measure of accuracy. However, the optimal threshold

is the same for continuous NRI and IDI as it is for AUC.

For this model, the optimal threshold to select SNPs at

the CARDIoGRAMplusC4D sample size is at approximately

nominal significance. Although this is well short of genome-

wide significance, it results in fewer than 5,000 expected type-

1 errors from 100,000 tests and an expected false discovery

rate of about 0.4. It is this false discovery rate, rather than
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T A B L E 4 NRI for a single-risk threshold of 20%, continuous NRI and IDI for combined scores based on a genetic model matching results for

CVD reported by Morris et al

20% Risk Continuous NRI IDI
N cases Case Control Case Control
63,784 0.014 − 0.006 0.080 0.014 0.0018

63,784 0.187 (0.048) − 0.054 (0.76) 0.369 (0.053) 0.065 (0.053) 0.042 (0.053)

∞ 0.347 − 0.058 0.631 0.111 0.135

In parentheses, P-value thresholds to select SNPs into polygenic score; N cases, number of cases in training sample with 2.05 controls per case as in CARDIoGRAM-

plusC4D.

T A B L E 5 AUC for environmental score, polygenic score and combined scores based on a genetic model matching results for breast cancer

reported by Mavaddat et al

Environment Polygenic 𝑹𝟐
𝑮𝑿

= 𝟎.𝟏 𝑹𝟐
𝑮𝑿

= 𝟎.𝟖
N cases 𝝆 = 𝟎.𝟏 𝝆 = 𝟎.𝟒 𝝆 = 𝟎.𝟏 𝝆 = 𝟎.𝟒
33,673 (5 × 10−8) 0.618 0.621 0.682 0.679 0.680 0.673

33,673 (0.0035) 0.618 0.728 0.762 0.755 0.757 0.742

∞ 0.618 0.820 0.840 0.832 0.835 0.821

In parentheses, P-value thresholds to select SNPs into polygenic score; N cases, number of cases in training sample with 0.99 controls per case as in the Breast Cancer

Association Consortium.

the family-wise type-1 error, that influences the explanatory

power of the polygenic score.

3.2 Breast cancer
Breast cancer is another disorder for which there is substantial

interest in improving environmental risk scores with SNPs.

Here, the general intention is to more effectively target enrol-

ment on screening programs for early detection, rather than

to directly treat risk factors. Chemoprevention may be recom-

mended for high risk groups. A number of prediction mod-

els have been proposed, including BCRAT (commonly known

at the Gail model) (Gail et al., 1989), IBIS (Tyrer-Cuzick)

(Tyrer, Duffy, & Cuzick, 2004), Barlow (Barlow et al., 2006),

Rosner-Colditz (Rosner & Colditz, 1996), and BOADICEA

(Antoniou, Pharoah, Smith, & Easton, 2004). Common risk

factors include age, age at menarche, mutations in BRCA1 or

BRCA2, age at first live birth, first degree family history, and

history of breast biopsy. Generally speaking these models can

perform well in women at high risk but are less accurate in the

population at large.

In an early effort, Wacholder et al. (2010) estimated the

improvement in the AUC of the Gail model with the addition

of 10 SNPs associated from GWAS. The Gail model achieved

AUC of 0.580, improving to 0.618 with the addition of SNPs.

Subsequently, Darabi et al. (2012) used 18 SNPs to improve

AUC from 0.548 to 0.615 in a Swedish sample. Most recently,

Mavaddat et al. (2015) constructed a polygenic score from

77 SNPs identified in the largest consortium yet assembled

(Michailidou et al., 2013), obtaining AUC of 0.622 with a

training sample of 33,673 cases and 33,381 controls. In a sim-

ulation study, Garcia-Closas et al. (2014) suggested this could

be improved to 0.670 in combination with an environmental

score with similar components to the Gail model. The envi-

ronmental score alone had AUC of 0.618.

These previous studies did not consider the heritability of

environmental factors such as age at menarche (Elks et al.,

2010) and family history, and thus not the correlation between

genetic and environmental scores. With this sample size,

and again for simplicity assuming a genome-wide panel of

100,000 independent SNPs, the 77 SNP AUC of 0.622 would

be achieved when the chip heritability of breast cancer 𝑅2
𝐺𝑌

=
0.3, proportion of null SNPs 𝜋0 = 0.95 and disease preva-

lence 𝐾 = 0.05 with SNPs selected by 𝑃 < 5 × 10−8. With

this prevalence, an AUC of 0.618 would be achieved by an

environmental score with 𝑅2
𝑋𝑌

= 0.0375.

Under these parameters, Table 5 shows expected AUC for

low and high chip heritabilities of the environmental score,

and low and moderate genetic correlation between disease and

environment. The results for selection by 𝑃 < 5 × 10−8 agree

well with Garcia-Closas et al. Again it is clear that substantial

improvements are possible by more liberal selection of SNPs,

and that further gains will be possible with larger training

samples. Interestingly the results are quite robust to the envi-

ronmental chip heritability 𝑅2
𝐺𝑋

and the genetic correlation 𝜌.

Supplementary Table S7 shows results for a higher prevalence

of 0.1, and Supplementary Table S8 for a lower proportion of

null SNPs of 0.8. Figure 4 shows expected AUC as a func-

tion of training sample size. Again, the gains are small even if

the two scores are assumed independent, but the sample size

required to reach a given AUC can depend more strongly on

the genetic correlation. For example, to reach AUC of 0.8, the

required sample size is about 81,000 when 𝑅2
𝐺𝑋

= 0.1 and

𝜌 = 0.1, but 140,000 when𝑅2
𝐺𝑋

= 0.8 and 𝜌 = 0.4. The Breast

Cancer Association Consortium has recently grown to about

120,000 cases, which according to Figure 4 will yield an AUC
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T A B L E 6 NRI for a single-risk threshold of 8%, continuous NRI and IDI for combined scores based on a genetic model matching results for

breast cancer reported by Mavaddat et al

8% Risk Continuous NRI IDI
N cases Case Control Case Control
33,673 (5 × 10−8) 0.119 − 0.046 0.286 0.015 0.008

33,673 0.303 (0.0034) − 0.059 (0.89) 0.544 (0.0035) 0.029 (0.0035) 0.034 (0.0035)

∞ 0.441 − 0.094 0.771 0.041 0.089

In parentheses, P-value thresholds to select SNPs into polygenic score; N cases, number of cases in training sample with 0.99 controls per case as in the Breast Cancer

Association Consortium. 𝜌 = 0.4, 𝑅2
𝐺𝑋

= 0.8.
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F I G U R E 4 AUC of weighted combined score as a function of

training sample size

Note: Genetic model chosen to match results for breast cancer reported

by Mavaddat et al., with 0.99 controls per case as in the Breast Cancer

Association Consortium and 𝑅2
𝐺𝑋

= 0.1. Rho: chip correlation between

environment and outcome. Gene: polygenic score alone. Environment:

environmental score alone.

not far from the large sample limit. Again, in the near future

these projections will be refined by further prediction studies.

Table 6 shows NRI at a single risk threshold of 8%, which

is the 10-year absolute risk between ages 40–50 above which

chemoprevention is advised in the United Kingdom (National

Institute for Health and Care Excellence, 2013). Again the

optimal SNP selection depends on the criterion optimized.

Addition of SNPs to the Gail model would result in case NRI

of 0.119 and control NRI of −0.046 when selecting SNPs

by 𝑃 < 5 × 10−8, improving to case NRI of 0.303 and con-

trol NRI of −0.059 with more liberal selection. The negative

control NRI implies that more women would be unnecessar-

ily recommended to receive chemoprevention, and because

most women do not develop breast cancer, this translates to

a large absolute number of women. Indeed the specificity for

the development of cancer is 92% for the environmental score

alone, but is 86% for the combined score, whereas the sensi-

tivities are 16% and 32% respectively. Thus, while AUC and

NRI appear encouraging, a large number of women would in

fact be misclassified under either score. The continuous NRI

shows that over half of cases are expected to increase their

risk score. Supplementary Tables S9 and S10 show results

for alternative values of the prevalence and proportion of null

SNPs.

Reflecting applications in screening, the breast cancer liter-

ature emphasises the proportion of cases present within some

highest-risk proportion of the population (Pharoah, Anto-

niou, Easton, & Ponder, 2008). This is a point on a Lorenz

curve, which resembles the receiver-operator characteristic

curve with specificity replaced by a population proportion.

For a proportion of the population q at highest risk accord-

ing to score X, the corresponding threshold of liability is√
𝜎2
𝑋
Φ−1(1 − 𝑞) and so the proportion of cases selected by

that threshold is:

1 − Φ
⎛⎜⎜⎜⎝
√

𝜎2
𝑋
Φ−1(1 − 𝑞) − 𝐸(𝑋|𝑌 = 1)√

var(𝑋|𝑌 = 1)

⎞⎟⎟⎟⎠ .
Table 7 shows the proportion of cases within the top 10%,

20%, and 50% of the population at highest risk according to

the environmental score X and the combined score 𝑆̂𝑐𝑜𝑚𝑏.

These results suggest, for example, that at current sample

sizes nearly half of cases could be detected by screening the

20% of the population with highest combined scores. With

larger training samples, over 90% of cases might be detected

by screening the half of the population with highest scores.

These results are compatible with those of previous studies

(Garcia-Closas et al., 2014; Pharoah et al., 2008). Supple-

mentary Tables S11 and S12 show results for alternative val-

ues of the prevalence and proportion of null SNPs. Similar to

other sensitivity analyses in the supplementary tables, these

yield modest quantitative changes with similar qualitative

conclusions.

3.3 Height
Here the example of height is used to illustrate a relation-

ship between a polygenic score and family history. Of course,

family history is an environmental risk factor for any heri-
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T A B L E 7 Proportion of cases present among highest risk quantiles in the population under a genetic model matching results reported in Mavaddat

et al

Top 10% Top 20% Top 50%
N cases Polygenic Env Comb Polygenic Env Comb Polygenic Env Comb
33,673 (5 × 10−8) 18.8 18.5 22.2 33.0 32.7 37.7 66.2 65.7 71.1

33,673 (0.0035) 29.8 18.5 30.7 47.6 32.7 48.7 79.9 65.7 80.9

∞ 43.0 18.5 43.0 63.1 32.7 63.1 90.5 65.7 90.5

Polygenic: polygenic score alone; Env: environmental score alone; Comb: least squares weighted sum; in parentheses: P-value thresholds to select SNPs into polygenic

score; N cases: number of cases in training sample with 0.99 controls per case as in the Breast Cancer Association Consortium.

G

X

Y

F

F I G U R E 5 Directed acyclic graph showing correlation between

polygenic and environmental scores arising from family history

A simplified scenario is shown in which there are no shared environ-

mental effects. G: polygenic score; F: polygenic scores of other family

members; X: family history; Y: outcome.

table condition, but it will be correlated with the measured

genetic risk. An initial challenge for any genetic predictor is to

exceed the predictive accuracy of family history (Do, Hinds,

Francke, & Eriksson, 2012). For example, Aulchenko et al.

(2009) showed that 54 associated SNPs could not predict an

individual's height as accurately as could the mean height of

its parents. Through simulation they showed that a gene score

explaining all the heritability could predict better than the

family history. A natural question is: what sample size would

allow development of a gene score with predictive accuracy

better than the family history?

Figure 5 is a directed acyclic graph showing a simplified

situation in which the family history is entirely explained

by genetics. Although in many cases shared environment

also contributes to family history, this graph may be fairly

appropriate for height because it is highly heritable and par-

ents have often reached their full stature before produc-

ing offspring. Under this structure, the parameters of the

quantitative model may be derived exactly in terms of the

heritability.

Assume the commonly used value of 80% for the heritabil-

ity of height. Under an additive model, the height of a child

is the sum of genetic contributions from mother and father

and of unique environmental contributions. It is easy to show

that the genetic covariance between the child and the mean-

parents is half the heritability, and then that the genetic corre-

lation, 𝜌 = 1√
2
. Furthermore the variance in child explained

by the mean-parents is twice the square of the covariance,

so 𝑅2
𝑋𝑌

= 0.32, which is taken as the predictive accuracy of

the family history. Finally, the chip heritability of the mean-

parents is half the chip heritability, 𝑅2
𝐺𝑋

= 1
2𝑅

2
𝐺𝑌

.

The GIANT consortium has conducted discovery meta-

analyses for height, which despite very large samples have yet

to exceed the predictive accuracy of family history. A discov-

ery sample of approximately 134,000 achieved R2 of 13.3%

by selecting SNPs with P < 5 × 10−4 (Lango Allen et al.,

2010); a larger study of approximately 250,000 improved only

to R2 of 17% with P < 5 × 10−5 (Wood et al., 2014). These

studies used a densely imputed panel of 2.5 M SNPs with

chip heritability estimated within contributing studies at 60%

of the total heritability, so 𝑅2
𝐺𝑌

= 0.6 × 0.8 = 0.48. Stepwise

regressions were used to estimate SNP weights, so the esti-

mated effects may be considered approximately independent

across all 2.5 M SNPs. Across six polygenic scores with dif-

ferent selection thresholds, the best fitting model (Palla &

Dudbridge, 2015) has chip heritability 𝑅2
𝐺𝑌

= 0.34 and pro-

portion of null SNPs 𝜋0 = 0.996. This consortium level esti-

mate of 𝑅2
𝐺𝑌

is lower than the study-level estimates of 0.48,

as has previously been observed (Yang et al., 2015). This is

likely due to heterogeneity in data management across stud-

ies, if not actual genetic heterogeneity, and can be accounted

for by estimating the genetic covariance between training

and target data as a free parameter separately from the chip

heritability in the training data (Palla & Dudbridge, 2015).

This yields a genetic covariance of 0.46 with 𝜋0 = 0.995;

the estimate of 𝑅2
𝐺𝑌

is 1, but this is a known artifact of this

method, which has little bearing on estimates of predictive

accuracy. Under this model, the prediction R2 is 0.21 with

an infinite training sample, implying that the consortium-

based estimate can never predict as well as the family

history.

This alarming result is mitigated by considering a homoge-

neous training sample in which we assume 𝑅2
𝐺𝑌

= 0.48, with

𝜋0 = 0.995 as estimated above and perfect genetic correla-

tion with the target sample. Then R2 > 0.32 when the train-

ing sample exceeds 301,000 subjects. Emerging datasets such

as UK Biobank will soon allow such predictions to be tested

empirically.

Under this model, Figure 6 shows the accuracy of a com-

bined score as a function of training sample size, showing

that the family history continues to provide useful information

even as the polygenic risk becomes more informative. This is

not surprising, as the chip heritability falls short of the total
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F I G U R E 6 Prediction R2 as a function of training sample size

Note: Genetic model chosen to match results for height reported by

the GIANT consortium. Family: mean-parental height. Gene: polygenic

score alone. Fam + Gene: least squares weighted combination of poly-

genic score and mean-parental height

heritability, which can be accessed, albeit imperfectly, by the

family history. Nevertheless, this vignette demonstrates that

an independent effect of family history is consistent with it

being entirely genetic in origin, as long as the genetic predictor

is not complete. Furthermore, it is apparent that for strongly

heritable traits, the high threshold of predictive accuracy set

by family history can only be overcome through very large

and homogeneous genetic discovery studies.

4 DISCUSSION

Accurate genetic prediction of disease risk remains an elusive

goal, but its importance is evident from an increasing number

of studies evaluating its potential for many traits. In conjunc-

tion with existing environmental predictors, the incremen-

tal benefit of polygenic scores has appeared modest to date.

The results presented here allow an informed interpretation

of observed results and anticipation of future results as larger

training datasets are assembled. In particular, it is clear that

at current sample sizes predictive accuracy, and incremental

benefit, could be substantially improved by including SNPs at

liberal significance thresholds. Furthermore, for chip correla-

tion up to 0.4, the degree of correlation and the heritability of

the environmental score have little bearing on predictive accu-

racy. These results are encouraging for practice because they

reduce concern about accounting for the heritable compo-

nents of environmental scores. In particular, it seems accept-

able to combine consortium estimates of marginal SNP effects

with environmental risk scores, rather than jointly estimating

conditional SNP and environmental effects in training sam-

ples that may be much smaller than those of consortia.

The majority of studies to date have restricted their poly-

genic scores to genome-wide significant SNPs, but this is sub-

optimal. One justification has been that genotyping a limited

number of SNPs is more cost-effective than a whole-genome

panel; but this should be viewed in the context of potentially

predicting multiple conditions from a single DNA sample, for

which genome-wide typing will be more efficient. Another

view is that it is difficult to argue for inclusion of individual

risk factors (here SNPs) that have but weak evidence of asso-

ciation. However, by viewing the polygenic risk as a single

entity, this argument becomes irrelevant; the role of individ-

ual SNPs then applies only to how that risk is calculated.

The present work unifies previous work of So and Sham

(2010), who showed how many common measures of pre-

dictive accuracy can be expressed in terms of liability R2,

with that of Dudbridge (2013), who allowed for finite train-

ing samples and selection of SNPs into the polygenic score.

Only the most commonly reported measures are considered

here, namely AUC, NRI, and IDI, but other measures, such as

those related to predictiveness curves (Pepe et al., 2008) and

net benefit (Baker, 2009), could be treated in the same manner.

In contrast to some previous approaches, the genetic covari-

ance between environmental score and predicted trait is con-

sidered here explicitly, along with unweighted and weighted

combinations of genetic and environmental scores. Although

the genetic covariance is the key property, the results are

presented in terms of genetic correlation and variances, as

these quantities can be estimated readily by existing methods

(Bulik-Sullivan et al., 2015; Lee et al., 2012).

The modest effect of genetic correlation on AUC is not

too surprising, because AUC depends on ranking the scores

rather than their absolute values, but more surprisingly the

NRI, which does depend on absolute risk, is also quite robust

to correlation. Higher levels of correlation will of course tend

toward no incremental benefit, but such scenarios are arguably

unlikely because most environmental scores include nonheri-

table factors such as age, as well as the environmental compo-

nent of the heritable factors. Nevertheless, the predictive accu-

racy can be improved by accounting for covariance between

genetic and environmental predictors. Furthermore, the level

of correlation can have more substantial effects on the sample

size required to reach a prespecified level of accuracy.

The NRI has been criticized on theoretical and practical

grounds (Kerr et al., 2014; Pepe et al., 2015), yet it has an

intuitive appeal that should not be overlooked. An important

recommendation is that it should be reported separately for

cases and controls, especially if they are associated with dif-

ferent costs (Pencina et al., 2011). Here, it has been shown

that for given training data, the optimal polygenic score dif-

fers for case NRI and control NRI, and also varies with risk

thresholds. Because in a prospective setting one cannot know
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who is a case, the polygenic score must be defined according

to a criterion based on relative costs of case and control NRI.

Such considerations will further complicate reporting of NRI

in evaluation studies, although this problem does not apply to

the continuous NRI or IDI.

We have focused on two commonly reported measures,

AUC and NRI, yet both measures have been severely crit-

icized and there is a recognized need for more appropriate

measures of incremental benefit. For example, stratification

of the population by genetic risk may allow more efficient

application of environmental risk scores. In CVD, a group at

high genetic risk attained 20% estimated risk at an age up to

18 years younger than the low genetic risk group (Abraham

et al., 2016). In breast cancer, the absolute risk associated with

modifiable risk factors was significantly higher among women

in the top decile of nonmodifiable risk (including 92 SNPs)

compared to those in the lowest decile (Maas et al., 2016).

These results suggest that even limited genetic data can pro-

vide useful stratification for identifying subjects who would

benefit most from intervention. Such perspectives offer a more

optimistic view of genetic prediction that will only become

stronger with larger training samples and more liberal selec-

tion of genetic markers.

Consortium studies are now approaching the sizes at which

useful levels of predictive accuracy are predicted by theory.

However, such results have not yet been achieved in practice.

One clear reason is that many studies have restricted their

polygenic scores to genome-wide significant SNPs. Given

the large size of the CARIODoGRAMplusC4D consortium,

higher levels of accuracy should be possible by including

more SNPs in the risk score. This has been demonstrated by

Abraham et al. (2016), although their approach of pruning the

full set of SNPs may be suboptimal. Furthermore, accurate

odds ratios are currently available only for a targeted array

product, the MetaboChip, further limiting the accuracy that

can be achieved. Therefore their results, which are intermedi-

ate between those using genome-wide significant SNPs and

those predicted here, seem consistent with the present the-

ory. The present work suggests that as genome-wide typing is

completed on a larger number of studies, more accurate pre-

diction will be achieved by highly polygenic scores.

The Breast Cancer Association Consortium too is

approaching a sufficiently large number of cases. To date,

consortium-wide genotypes have only been generated on the

iCOGS platform, another targeted array focused on candidate

genes for certain cancers. Again therefore, prediction studies

have focused on genome-wide significant SNPs, but the next

generation of targeted arrays, which include a genome-wide

backbone, offer greater promise for developing more accurate

polygenic scores.

Given the large size of the GIANT consortium, the contin-

uing modest prediction of height is surprising but could be

explained by heterogeneity between consortium-level train-

ing data and individual target studies. The source of this

heterogeneity remains unclear (Yang et al., 2015), but with

the emergence of large, homogeneous datasets such as UK

Biobank, more accurate genetic predictors could be developed

that exceed the predictive accuracy of the family history.

An alternative explanation is that the present model for

genetic effects, consisting of a mixture of a normal distribu-

tion and a mass at zero, is incorrect for this phenotype. If

in fact the true distribution had a sharp peak at zero, then

the present model could fit the data well, but the individual

SNP effects would be more dispersed and thus harder to esti-

mate en masse. Such a model could apply, for example, to

schizophrenia, for which fine-scale heritability analyses sug-

gest an extremely polygenic architecture (Loh et al., 2015),

while the best fitting normal-null mixture estimates a null pro-

portion of around 90% (Palla & Dudbridge, 2015). Although

theory based on a mixture of exponential distributions (Chat-

terjee et al., 2013) has roughly agreed with the normal-null

mixture, there is a notable exception in the case of height,

for which a mixture of three exponentials fits GIANT data

well with chip heritability at 45%. This fitted model projects

that prediction R2 will not exceed 0.32 until the training sam-

ple size exceeds one million, in contrast to our projection of

301,000 for a homogeneous sample. Finally, departures from

the additive model may lead to a poor fit of the polygenic

score.

The substantial heritability of most common disorders

implies that clinically useful prediction can be achieved when

the heritable risk is accurately measured. The present results

suggest that such results may not be too far off in terms of

discovery sample size. As that level is approached, the poly-

genic score dominates the prediction compared to existing

environmental scores, although the dynamic and potentially

modifiable nature of environmental factors ensures that they

will continue to play a crucial role in assessing absolute risk.

Such predictors may include epigenetic or other “omic” fac-

tors that themselves are selected from high dimensional pan-

els. The present work assumes a known, low dimensional risk

factor whose effect on outcome is known precisely. Extension

to high dimensional, dynamic nongenetic predictors, allowing

for simple model selection as in the polygenic score, will be

pursued in subsequent work.
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