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Abstract 

Damage to left inferior prefrontal cortex in stroke aphasia is associated with 

semantic deficits reflecting poor control over conceptual retrieval, as opposed to 

loss of knowledge. However, little is known about how functional recruitment 

within the semantic network changes in patients with executive-semantic deficits. 

The current study acquired fMRI data from 14 patients with semantic aphasia, 

who had difficulty with flexible semantic retrieval following left prefrontal 

damage, and 16 healthy age-matched controls, allowing us to examine activation 

and connectivity in the semantic network. We examined neural activity while 

participants listened to spoken sentences that varied in their levels of lexical 

ambiguity and during rest. We found group differences in two regions thought to 

be good candidates for functional compensation: ventral anterior temporal lobe 

(vATL), which is strongly implicated in comprehension, and posterior middle 

temporal gyrus (pMTG), which is hypothesized to work together with left inferior 

prefrontal cortex to support controlled aspects of semantic retrieval. The patients 

recruited both of these sites more than controls in response to meaningful 

sentences. Subsequent analysis identified that, in control participants, the 

recruitment of pMTG to ambiguous sentences was inversely related to functional 

coupling between pMTG and anterior superior temporal gyrus (aSTG) at rest, 

while the patients showed the opposite pattern. Moreover, stronger connectivity 

between pMTG and aSTG in patients was associated with better performance on a 

test of verbal semantic association, suggesting that this temporal lobe connection 

supports comprehension in the face of damage to left inferior prefrontal cortex. 

These results characterize network changes in patients with executive-semantic 

deficits and converge with studies of healthy participants in providing evidence 

for a distributed system underpinning semantic control that includes pMTG in 

addition to left inferior prefrontal cortex. 
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1.0 Introduction 

Semantic cognition – the application of conceptual knowledge to drive 

appropriate thought and behaviour – is critical for many aspects of functioning, 

including the capacity to understand and use objects, and the production and 

comprehension of language (Lambon Ralph et al., 2017). The study of patients 

with different varieties of semantic impairment has suggested that distinct brain 

regions support different aspects of semantic cognition (Jefferies, 2013; Jefferies 

& Lambon Ralph, 2006). Patients with semantic dementia (SD) exhibit a gradual 

degradation of conceptual knowledge across modalities following atrophy 

focused on the ventral anterior temporal lobes (vATL) (Bozeat et al., 2000; 

Patterson et al., 2007). Patients with semantic aphasia (SA) can also show 

multimodal semantic deficits following infarcts in left frontal or temporoparietal 

areas: they appear to have difficulty accessing knowledge in a flexible and task-

appropriate way, while the store of semantic information, supported by the vATL, 

is largely spared (Jefferies & Lambon Ralph, 2006; Rogers et al., 2016). SA patients 

are strongly influenced by the control requirements of semantic tasks and are 

much more sensitive than SD patients to cues that reduce the need for internally-

generated constraints on semantic retrieval (Jefferies et al., 2007; Corbett et al., 

2011). Patients with SA produce errors when strong distracters are present, 

generate task-irrelevant yet highly-associated responses in picture naming, and 

find it difficult to retrieve non-dominant knowledge, including the subordinate 

meanings of ambiguous words (Noonan et al., 2010; Corbett et al., 2011).  

Patients with SA typically have large left-hemisphere lesions showing 

maximal overlap in left inferior frontal gyrus (LIFG), and often extending into 

temporoparietal regions, including posterior middle temporal gyrus (pMTG; 

Thompson et al., 2015). Furthermore, there are reports of patients with damage 

restricted to temporoparietal cortex who show similar deficits to those with LIFG 

lesions (Jefferies & Lambon Ralph, 2006; Berthier, 2001). Functional 

neuroimaging and transcranial magnetic stimulation studies of healthy 

participants suggest that both left inferior frontal gyrus (LIFG) and posterior 

middle temporal gyrus (pMTG) support the flexible controlled retrieval of 

semantic information. Both of these regions show stronger activation across a 

range of manipulations of semantic control, including distractor strength, 
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ambiguity, and the strength of the relationship being probed (Badre et al., 2005; 

Davey et al., 2015a; 2016; Noonan et al., 2013; Whitney et al., 2011a). Similarly, 

the application of inhibitory TMS to either left LIFG or pMTG disrupts difficult 

semantic judgements in which target meanings are relatively weak or ambiguous 

(Whitney et al., 2011b; Hoffman et al., 2010; Davey et al. 2015b). These findings 

help to explain why damage to left posterior temporal and inferior prefrontal 

cortex can elicit similar semantic deficits in patients with SA (Noonan et al., 2010; 

Corbett et al., 2011). Tractography and resting-state fMRI studies have also shown 

that there are strong, direct white matter connections and functional connectivity 

between the IFG and pMTG (JeYoung & Lambon Ralph, 2016). 

These findings from neuropsychology, neuroimaging and 

neurostimulation are consistent with a component process account of semantic 

cognition in which transmodal conceptual representations supported by the 

ventral ATL interact with control processes that recruit LIFG and pMTG (Jefferies, 

2013; Jefferies & Lambon Ralph, 2006; Noonan et al., 2013; Lambon Ralph et al., 

2017). While this framework provides a useful account of the dissociation 

between SD and SA, the way in which these neurocognitive components are 

recruited flexibly to support comprehension is poorly understood. There have 

been few, if any, fMRI studies of the neural basis of residual comprehension in 

patients with SA and thus it is not known whether these patients show a different 

pattern of recruitment and/or changes in connectivity within the functional 

network specifically implicated in semantic control (e.g., stronger activation of left 

pMTG in patients with damage to left prefrontal cortex), in other parts of the 

semantic system implicated in conceptual representation, such as ventral ATL, or 

within aspects of the semantic network particularly allied to the task being 

performed, for example, superior temporal gyrus for sentence-listening tasks (e.g. 

Scott et al., 2000). Robson et al. (2013) found that increased vATL activation was 

linked to levels of comprehension in patients with Wernicke’s aphasia. Patients 

showed significantly greater bilateral ATL activation compared to controls; 

controls also showed enhanced activation of ATL in a more demanding semantic 

decision task, suggesting that upregulation of ATL regions is an inherent 

mechanism in the healthy brain. However, in patients with semantic control 

deficits, other forms of compensation may be as or more important. For example, 
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a recent study found that inhibitory TMS to LIFG in healthy participants increased 

the response within pMTG during a semantic task, particularly for high-control 

judgements (Hallam et al., 2016), suggesting that damage to LIFG in SA may elicit 

a stronger response in pMTG during semantic processing. 

Here, we examined neural recruitment related to semantic processing in 

SA patients and age-matched controls, using task-based fMRI and resting-state 

functional connectivity, to characterize how the response within the semantic 

network differs in patients with executive-semantic deficits. We compared the 

brain’s response to auditory sentences and spectrally-rotated speech (SRS; 

Blesser, 1972), to identify the network underpinning naturalistic comprehension 

in the absence of explicit task instructions. This contrast activates a processing 

stream along the superior temporal gyrus and into ATL (Scott, Blank, Rosen & 

Wise, 2000), as well as regions of ventral prefrontal and inferior-to-middle 

temporal cortex that respond to meaning ambiguity and other manipulations of 

semantic control (Noonan et al., 2013; Rodd et al., 2005, 2012; Vitello et al., 2014). 

We used auditory presentation to avoid additional demands related to reading, 

plus a “sparse” fMRI data acquisition sequence that limits contamination of neural 

signals by scanner noise.  

Using these data, we examined how SA patients with lesions in left 

prefrontal cortex respond to sentences relative to controls in undamaged parts of 

the semantic network. We focused on two key regions. First, we examined the 

response within vATL, which is considered to be a key region for the 

representation of heteromodal aspects of conceptual knowledge. If upregulation 

of this region is a general response to increased difficulty of semantic tasks, we 

would expect increased activation within this region in patients with SA (see 

above). Secondly, we characterized the response within pMTG, which co-activates 

with LIFG to support semantic control in healthy participants. We hypothesized 

that this region might also show a stronger response to the presentation of 

ambiguous sentences if undamaged parts of the semantic control network become 

more critical for comprehension following damage to left prefrontal cortex. We 

also acquired task-free resting state scans that allowed us to characterize 

connectivity differences for brain regions relevant to semantic processing in 

patients and controls. We predicted that differences in recruitment might be 
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reflected in the functional organization of key nodes of the semantic system 

measured at rest: for example, pMTG might show stronger connectivity to other 

regions relevant for semantic processing in participants who also show greater 

activation of this region following an infarct in the left prefrontal cortex. Finally, 

we examined whether these differences in connectivity related in a positive or 

negative fashion to semantic performance outside the scanner. Although 

differences in neural organization following brain injury might support 

comprehension, these effects might also be the consequence of semantic 

difficulties (and therefore show the opposite correlation with behaviour).  

 

2.0 Materials and Methods 

2.1 Participants 

The study was approved by the local Research Ethics Committee. Fourteen 

patients broadly meeting the definition of semantic aphasia used by Jefferies & 

Lambon Ralph (2006) – i.e., with multimodal comprehension impairment – were 

recruited from local stroke and communication support groups (9 females, mean 

age = 61, SD = 11), together with 16 age- and education-matched neurologically 

healthy controls (9 females, mean age = 64, SD = 9). Although some of the patient 

participants in this study presented with milder deficits than those reported by 

Jefferies & Lambon Ralph (2006) – i.e., they were not impaired on the Camel and 

Cactus test tapping word and picture semantic associations (further details in 

Table 1 below) – every case was below the normal cut-off on a more demanding 

verbal semantic task (comprehending the non-dominant meanings of ambiguous 

words). The patients were also impaired on a demanding non-verbal semantic 

task (involving understanding the non-canonical uses of objects, presented as 

photographs, although data is missing for two patients – one of whom did show a 

deficit on picture Camel and Cactus judgements; further details below and in 

Figure 1). All patients and control participants gave written informed consent as 

approved by the Research Ethics Committee NHS ethics committee. All the 

patients had chronic deficits arising from a cerebrovascular accident affecting left 

frontal cortex (typically along with other brain regions) at least one year before 

the study. Table 1 shows demographic details, neuropsychological profile and 
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aphasia classification of the participants. The typical lesion in this sample is shown 

in Figure 2 and further details about the brain regions damaged in individual 

patients is shown in the Supplementary Materials (Figure S1). 

 

2.2 Neuropsychological assessment 

Background neuropsychological testing included assessments of semantic 

cognition (both verbal and non-verbal tasks), language and executive function.  

(i) To characterize semantic processing in a way that would allow the 

participants in this study to be compared with other individuals 

with aphasia, we report data from standard semantic tests. We used 

basic-level picture naming, word-picture matching, verbal and non-

verbal association judgements (Camel and Cactus Test) and 

category fluency (8 categories) from the Cambridge semantic 

battery (Bozeat et al., 2000), which assesses verbal and non-verbal 

comprehension and speech production for the set of 64 same 

concepts. Word-picture matching involved an array of ten 

semantically-related items, while the association judgements 

required a probe to be matched with one of four response options, 

presented as either pictures or words (in written form and also 

spoken aloud by the researcher). Twelve of the patients were 

impaired on at least one of these tasks (see Table 1).  

(ii) To assess aspects of semantic aphasia already reported in the 

literature, we employed three additional semantic tasks. (i) We 

compared the comprehension of dominant (e.g., bark-dog) and non-

dominant (e.g., bark-tree) interpretations of ambiguous words in a 

four-alternative forced-choice task (see Noonan et al., 2010 for 

further details of the task). All but one of the patients (Case 8) were 

highly sensitive to this manipulation (see Figure 1). (ii) In an object 

use task, we examined the ability to identify an object that could be 

used to achieve a goal (depicted in words and pictures – e.g., “kill a 

fly”, with a photograph of a fly on the table). In the “canonical use” 

condition, the target was an object whose sole or typical use was to 

achieve the goal (e.g., fly swat). In the “alternative use” condition, 
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the target object had the right properties to achieve the goal but this 

was not its typical function (e.g., a rolled-up newspaper – normally 

associated with reading). There were six response options (see 

Corbett et al., 2011 for further details of the task). All of the patients 

were sensitive to this manipulation (see Figure 1). These combined 

results confirmed that our sample of SA patients was especially 

impaired at retrieving non-dominant aspects of meaning across 

verbal and non-verbal tasks, and thus they resembled patients 

studied previously. (iii) In synonym judgement, a probe word was 

presented with three response options. The words on each trial 

varied in lexical frequency and imageability (full task details in 

Jefferies et al., 2009). Patients with semantic aphasia, in common 

with those with “access” impairment, typically show insensitivity to 

frequency/familiarity (Jefferies et al., 2007; Warrington & Cipolotti, 

1996; Thompson et al., 2015; Hoffman, Rogers and Lambon Ralph, 

2011). This pattern was observed in our patient sample, in all but 

one of the individual patients (Patient 3; see Figure 1).  

(iii) To characterize other aspects of language processing, we examined 

words per minute on the Cookie Theft picture description task 

(BDAE; Goodglass & Kaplan, 1983) and word repetition (Test 7) 

from the PALPA (Psycholinguistic Assessments of Language 

Processing in Aphasia; Kay, Lesser & Coltheart, 1992). Since our 

only inclusion criteria was multimodal semantic deficit in the 

context of stroke aphasia, the patients had a range of other language 

impairments (e.g., deficits in repetition and fluency of speech), but 

their comprehension problems could not be entirely accounted for 

in these terms (since they extended to picture-based tasks, see 

above). Moreover, since the patients had largely intact performance 

on word-picture matching (with only patient 4 scoring substantially 

below normal limits), we considered that basic auditory processes 

required to access meaning from spoken words (i.e., in our fMRI 

sentence listening paradigm) were largely preserved.  
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(iv) To document the possible contribution of non-semantic deficits in 

cognitive control to semantic processing, we assessed executive 

function and non-verbal reasoning with Raven’s progressive 

coloured matrices test (Raven, 1962) and Brixton rule attainment 

test (Burgess & Shallice, 1997). Raven’s matrices requires 

participants to identify which of six tiles can be used to complete a 

pattern, and provides a nonverbal estimate of fluid intelligence. The 

Brixton Rule Attainment test is a visuospatial task which involves 

anticipating where a coloured dot will move within a grid, requiring 

the ability to detect rules in sequences of stimuli. Nine of the group 

showed deficits on at least one of these assessments. These findings 

are in line with Jefferies and Lambon Ralph (2006), who showed 

that semantic deficits in semantic aphasia were correlated with 

executive dysfunction (unlike the impairment in semantic 

dementia).  
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Figure 1: Deficits of semantic control and access in the current sample of SA patients 

 

Impairment on a variety of semantic control tasks in the patient sample. Patients are ordered by severity of semantic impairment (score on the Camel and Cactus 

test). Ambiguity task is taken from Noonan et al., 2010; Object use task is taken from Corbett et al., 2009; synonym judgement task is taken from Jefferies et al., 2010. 

A semantic control deficit was defined on the basis of below cut-off performance on the non-dominant interpretations of ambiguous words (demonstrating verbal 

comprehension impairment), plus below cut-off performance in understanding the non-canonical uses of objects (demonstrating non-verbal comprehension 

impairment). All patients in the group met these inclusion criteria (although data is missing for two patients in the object use task).   
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Table 1 – Demographic details and background neuropsychology 

  Max Cut-off 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 

Age   57 59 75 69 80 48 56 65 57 54 64 38 76 59  

Sex   F F M F M F M M F F M F F F  

Time post onset (months)   77 96 73 101 24 48 144 264 100 108 54 70 29 11  

Neuropsychological assessment                  

Picture naming 64 59 19 1 61 43 13/16* 0 50 50 46 10/16* 3 62 56 18/32*  

Word-picture matching 64 62 60 63 62 63 15/16* 61 62 64 63 16/16 52 62 64 64  

CCT_word 64 56 29 39 43 48 49 50 52 53 56 56 57 60 61 63  

CCT_picture 64 52 45 31 44 51 9/25* 59 57 56 61 57 54 61 53 58  

Ambiguity nondominant 30 28 14 11 9 18 21 17 17 14 21 22 19 19 21 23  

Object use task alternative 37 34 14 14 13 27 NT 24 22 21 32 NT 22 29 26 NT  

Category fluency (mean) -  5 0 7 4 7 0 7 4 15 9 0 17 17 0  

Cookie theft (words-per-minute) -  9 0 18 21 NT 0 37 12 38 29 0 37 54 0  

PALPA Word repetition 16  12 0 14 11 15 0 16 15 6 15 2 16 15 2  

Forward digit span - 5 2 0 4 3 5 0 4 5 6 3 0 5 5 4  

Raven's coloured matrices 36  31 31 29 31 21 32 30 24 33 22 34 33 21 32  

Brixton (correct) 54 28 18 21 7 NT 5 6 23 26 39 36 31 30 31 39  

Aphasia classification                  

Fluency   Non-fl Non-fl Mid Fluent Mid Non-fl Fluent Mid Fluent Fluent Non-fl Fluent Fluent Non-fl  

Comprehension   Poor Poor Poor Poor Poor Mid Mid Mid Good Good Poor Good Good Good  

Repetition   Mid Poor Good Mid Good Poor Good Good Mid Good Poor Good Good Poor  

   
Mixed 

TA Global TSA  TSA Broca's Anomic Anomic Anomic Anomic Global Anomic Anomic Broca’s 
 

Normal cut-off = two s.d. below the control mean as reported by Jefferies & Lambon Ralph (2006). Scores in bold font are below the cut-off. CCT: Camel and Cactus 
test from Bozeat et al. (2000). PALPA = Psycholinguistic Assessment of Aphasia. Fluency classification is based on cookie theft scores: fluent > 20 words per minute; 
non-fluent < 10 words per minute.  Comprehension classification is based on three pointing tasks from Cambridge semantic battery (word-picture matching; 
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CCT_word; CCT_picture). Repetition is based on PALPA word repetition : poor < 3; mid = 3-12 items correct. Non-fl = non-fluent. TA = transcortical aphasia. TSA = 
transcortical sensory aphasia. *Test was only partially completed 
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2.3 Lesion identification methods 

Structural T1 images were obtained for all participants prior to the 

functional runs (3D FSPGR). A semi-automated method of lesion identification 

was used, whereby a rough lesion outline for each patient was drawn by hand 

using MRICron. The Clinical toolbox within SPM8 (Rorden et al., 2012) was then 

used to automate the lesion identification process within the prescribed area and 

to identify areas of lesion overlap. This method involved enantiomorphic 

normalization, which uses information from the contralateral intact hemisphere 

to ‘fill in’ the area marked by the lesion mask (Nachev et al., 2008). The primary 

area of damage for all patients was the posterior portion of the inferior frontal 

gyrus, extending into the precentral gyrus (peak overlap MNI = -38 16 15; lesion 

overlap map Figure S1). No patients showed any damage to the vATL. The pMTG 

region of interest (ROI) identified in this study was also intact in all patients. 

  

2.4 Experimental materials 

Materials were taken from the set of stimuli used by Rodd (2005).  

Sentences were selected that either contained a high or low degree of semantic 

ambiguity. Briefly (i) ambiguous sentences contained at least two ambiguous 

words which were either homonyms or homophones (e.g. the creak came from a 

beam in the ceiling), (ii) unambiguous sentences were matched to ambiguous 

sentences for number of words and syntactic structure. Unambiguous sentences 

were matched to ambiguous sentences for number of syllables (unambiguous = 

8.64, ambiguous = 8.64), duration (mean length unambiguous = 2.01s, ambiguous 

= 2.03s), ‘naturalness’ rating (mean unambiguous = 6.49, ambiguous = 6.25), 

‘imageability’ rating (unambiguous = 5.42, ambiguous = 5.58), and mean 

frequency of content words in the CELEX database (Baayern et al., 1995; 

unambiguous = 4.7, ambiguous = 4.5). (iii) Spectrally rotated speech (SRS; Blesser, 

1972) was also created from these sentences, by spectrally inverting them using 

MATLAB (The MathWorks Inc., Natick, MA) scripts. SRS shares some 

spectrotemporal properties with unprocessed speech but it is unintelligible 

(Blesser, 1972, Scott et al., 2000). 
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2.5 Task fMRI acquisition 

Whole-head fMRI data (Gradient echo, echo-planar imaging sequence, 

TR=2s, TE=minimum full, flip angle=90°) were acquired on a GE Signa HDx3T 

system (GE, Waukesha, WI, USA) using an eight-channel phased array head coil. A 

64x64 matrix with a field of view of 19.2cm was used, giving an in-plane resolution 

of 3mm x 3mm. 28 interleaved slices were collected with a slice thickness of 3mm. 

The study used the MR sequence Interleaved Silent Steady State Imaging (ISSS; 

Schwarzbauer et al., 2006), which has been previously used to overcome some of 

the issues relating to scanner noise during auditory experiments (Rodd et al., 

2012, Hymers et al., 2015). In brief, the method allows for a quiet period of several 

seconds in which auditory stimuli can be presented without accompanying 

background scanner noise, followed by the acquisition of several volumes 

following the offset of this period. This method is an alternative to traditional 

sparse imaging and has been shown to be more sensitive for auditory experiments 

(Mueller et al., 2011). The fMRI response in auditory cortex typically peaks about 

4-5s after the presentation of an auditory stimulus (e.g. Hall et al., 2000) and 

therefore this sequence captures brain activity to an ongoing response that began 

prior to data acquisition. Stimuli were presented in three experimental runs. Each 

run consisted of the presentation of 8 ambiguous sentences, 8 unambiguous 

sentences, 8 SRS (4 of which were rotated versions of ambiguous sentences, 4 

unambiguous sentences). Each sentence was presented in a 6-second quiet period. 

The 6-second quiet period was the same length for each stimulus; each sentence 

was presented so that there was 200ms in between the offset of the stimulus and 

onset of the acquisition of functional volumes. There were four stimulus 

acquisition volumes acquired after each trial, giving a trial of 14 seconds. Stimuli 

were presented in a pseudo-randomised order. 4 trials were also included in each 

block where no auditory stimulus was presented. Each run was therefore 6 mins 

46 seconds and involved collection of 116 volumes. 

To normalise variation in sound level across each sentence, stimuli were 

subject to dynamic range compression in Audacity (Audacity® version 2.0.3). All 

stimuli were normalised to -25 db FS. During the experiment participants wore 

earplugs, in addition to sound-attenuating fMRI-compatible headphones (MR 

Confon, MR Confon GmBH). Stimuli were presented using Presentation 13.1 (NBS 
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labs). Prior to the first experimental run participants were played three test 

sounds (two sentences and one SRS sentence, not used in the subsequent 

experimental runs) and all verified, either verbally or by button press, that they 

were able to hear the stimuli comfortably. 

The paradigm was designed to be suitable for patients. To this end, 

participants in both patient and control groups were instructed to simply listen 

carefully to the sentences. A vigilance task was included in order to maintain 

participants’ attention throughout the duration of each run; on a number of trials 

within each block, a visual cue of a picture of a finger pushing a button was 

presented in the volume acquisition period following offset of the stimulus. 

Participants were required to press a button with their left index finger using an 

MRI-compatible response box when they saw this image appear. The image 

appeared 3 times in a pseudorandomised order within each run. These trials were 

modelled separately within the brain imaging analysis. On the majority of trials 

where participants were not required to make a response, a simple fixation cross 

was presented. Prior to entering the scanner, all participants were also played 

three example stimuli (two sentences and one SRS, not used in the subsequent 

scanning session) to familiarise them with the nature of the stimuli. 

 

2.6 Resting state fMRI acquisition 

Resting state fMRI was collected on a separate day for 10 patients in the 

sample. We also collected resting state fMRI for 10 of the control participants. 

These data were acquired using the same scanner and coil as for the task 

experiment. Resting state data was acquired using a continuous GE-EPI   sequence 

(TR=3s, TE=minimum full, flip angle=90°TR).  A 64x64 matrix with a field of view 

of 19.2cm was used, giving an in-plane resolution of 3mm x 3mm.  60 interleaved 

slices were collected with a slice thickness of 3mm. The scan duration was 9 min 

giving a total of 180 volumes of data. During the resting state scan participants 

were instructed to maintain fixation on a black fixation cross on a grey 

background. 

The analyses below also make use of a large set of resting state scans to 

characterize the normal functional connectivity of the site of maximal lesion 

overlap. For this analysis we utilised a publically available data set of 141 
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participants (Cohort 4, Mean Age = 37, SD = 13.9, 102 females) from the Nathan 

Kline Institute (NKI; Nooner et al., 2012; see Gorgolewski et al. (2014). Parameters 

of the independent (NKI)/Rockland Enhanced Sample are described in detail by 

Gorgolewski et al. (2014) and Smallwood et al. (2016). The size of this sample 

allowed us to reliably characterize the intrinsic connectivity of the lesion site, in 

general terms; for this reason, the NKI sample was considered preferable to the 

more limited resting-state fMRI data from our own control participants.   

  

2.7 Task fMRI pre-processing and analysis 

Data were pre-processed in FSL v4.1, using Feat-5.98 (part of FMRIB 

Software library) in addition to custom scripts that allowed for temporal filtering 

of the non-contiguous data. At the first level, a separate analysis was carried out 

for each participant. Data were motion corrected with MCFLIRT (Jenkinson et al., 

2002) and enantiomorphically normalised brains were brain extracted using BET 

(Smith, 2002). EPI data were smoothed with a Gaussian kernel of 8mm FWHM. 

Custom scripts also removed linear and quadratic trends per-voxel, taking into 

account the times at which data were acquired. 

Each condition (ambiguous, unambiguous or SRS) was modelled as a 

separate explanatory variable (EV).  The design matrix was conducted in a similar 

fashion to that described in Hymers et al. (2015). Briefly, the design matrix was 

initially constructed in accordance with the overall length of the experiment. Each 

event in the design matrix was modelled as the 2 second period following offset of 

the stimulus, and was convolved using the double gamma HRF and its temporal 

derivative (Friston et al., 1998). The design matrix was then resampled to reflect 

the time at which the volume acquisition occurred using in house scripts 

(available on request, Hymers et al., 2015). The six motion correction parameters 

were included in the model. All regressor heights for each EV and contrast were 

recalculated in accordance with the resampled design matrix. Beta values were 

then estimated by using FMRIB’s Improved Linear Model (FILM) and parameter 

estimates for each condition (unambiguous, ambiguous, and SRS) were pooled. A 

second level, within-subjects, fixed effects analysis combined parameter estimates 

together for each of the 3 runs. This was then taken forward to a group level mixed 
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effects analysis using FLAME (FMRIB’s Local Analysis of Mixed Effects; Beckmann 

et al., 2003, Woolrich et al., 2004) stage 1. 

We first conducted whole-brain analyses of the task data within a semantic 

mask to characterize sentence processing in the two groups. The binary mask that 

was obtained using the online meta-analytic search tool Neurosynth (Yarkoni et 

al., 2011; search term: “semantic”; 844 contributing studies; reverse inference, 

www.neurosynth.org/analyses/terms/) and corresponded to brain regions 

already implicated in semantic processing across studies. This mask was used to 

restrict the analysis to areas that are plausible candidates for supporting residual 

comprehension in patients with SA, since we had relatively few participants in 

each group. Data were thresholded at z=1.96 (i.e. p=.05) with a cluster significance 

threshold of p<.05 FWE corrected. We conducted further ROI analyses to 

investigate the neural response to the ambiguous and unambiguous sentences in 

ATL and pMTG, given our strong a priori hypothesis that these regions will 

contribute to functional compensation following LIFG damage. Spherical ROIs 

with 5mm radius were centred on (i) a peak in pMTG that showed a strong 

response to diverse manipulations of semantic control in a meta-analysis of 

neuroimaging studies (Noonan et al., 2013; coordinates: MNI -45 19 21) and (ii) a 

site in ventral ATL thought to support the computation of coherent heteromodal 

concepts, taken from Binney et al., 2010 (coordinates: MNI -39 -9 -36).  

Given that co-registration and normalization of lesioned brains can be 

problematic (see Crinion et al., 2007, Nachev et al., 2008), we manually checked 

that the ROIs for the patients corresponded to the relevant region of cortex in each 

individual brain by back-transforming the spherical ROI to native space using 

ApplyXFM within FSL. For these ROIs, percent signal change was extracted using 

FEAT query within FSL, and these values were entered into a 2 X 2 x 2 ANOVA to 

investigate the main effects of site, group and condition, and their interactions. 

One sample t-tests were used to investigate whether the signal change in each 

condition for each ROI was significant.  

 

2.8 Resting state pre-processing and analysis 

Resting state data were analysed in FSL v4.1, using Feat-5.98 (part of 

FMRIB Software library). Structural T1 weighted images were brain extracted 
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using BET and these scans were registered to standard space using FLIRT 

(Jenkinson & Smith, 2001). Prior to conducting the functional connectivity 

analysis the following pre-statistics processing was applied to the resting state 

data; motion correction using MCFLIRT (Jenkinson, Bannister et al. 2002); slice-

timing correction using Fourier-space time-series phase shifting; non-brain 

removal using BET (Smith 2002); spatial smoothing using a Gaussian kernel of 

FWHM 6mm; grand-mean intensity normalization of the entire 4D dataset by a 

single multiplicative factor; high pass temporal filtering (Gaussian-weighted least-

squares straight line fitting, with sigma = 100 s); Gaussian low pass temporal 

filtering, with sigma= 2.8 s. 

Spherical seed ROIs with 3mm radius were constructed for the ROIs in 

vATL and pMTG. The time-series of these regions were extracted and used as 

explanatory variables in a separate subject-level functional connectivity analysis 

for each seed. In these analyses, we also included 11 nuisance regressors: the top 

five principal components extracted from white matter (WM) and cerebrospinal 

fluid (CSF) masks in accordance with the CompCor method (Behzadi, Restom et al. 

2007) and six motion parameters. The WM and CSF masks were generated by 

segmenting each individual’s high-resolution structural image (using FAST in 

FSL). The default tissue probability maps, referred to as Prior Probability Maps 

(PPM), were registered to each individual’s high-resolution structural image (T1 

space) and the overlap between these PPM and the corresponding CSF and WM 

maps was identified. Finally, these maps were thresholded (40% for the CSF and 

66% for the WM), binarized and combined. The six motion parameters were 

calculated in the motion-correction step during pre-processing. No global signal 

regression was performed (Murphy, Birn et al. 2009). 

 

2.9 Signal-to-noise ratio in the ROIs 

To assess whether our ROIs had sufficient signal to detect reliable 

activation (given the possibility of signal dropout within the more ventral aspect 

of the ATL), we calculated the temporal signal-to-noise ratio (tSNR) for the first 

run of the experiment for each participant. This was performed in the manner 

described by Friedman et al. (2006) by dividing the mean signal in each voxel by 

the standard deviation of that voxel’s residual error time series. The resulting 
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value was then averaged across all voxels within the ROI. We calculated the tSNR 

for the vATL and pMTG ROI for patients and controls, in the task data and in the 

resting state scan. Mean tSNR values across participants in the task data were: 

vATL ROI = 47.07, pMTG ROI = 74.64; resting state data: vATL ROI = 51.73, pMTG 

ROI = 75.37. The percentage of voxels with ‘good’ tSNR values of above 20 (as 

outlined in Binder et al., 2011) was  as follows: task data: vATL ROI = 98%, pMTG 

ROI = 100%; resting state data: vATL ROI = 96.6%, pMTG ROI = 100%. This 

indicates that although tSNR was lower in the vATL, as has been widely reported 

previously (Binney, Hoffman & Lambon Ralph, 2016, Devlin et al., 2000, Visser et 

al., 2010), the tSNR was still at an acceptable level to detect reliable fMRI 

activation (Binder et al., 2011). 

 

3.0 Results 

The analyses presented below followed the following steps: (i) We 

identified a site lesioned in all patients in left inferior frontal cortex. (ii) We 

established that this site showed a pattern of strong intrinsic connectivity with 

other regions implicated in semantic control in non-lesioned brains. (iii) We 

identified sites activated by the sentence listening paradigm that lay outside the 

lesioned area. These sites included two ROIs thought to be candidates for 

supporting residual comprehension in patients with damage to left inferior frontal 

cortex; namely pMTG and vATL. (iv) We characterized the intrinsic connectivity 

of these ROIs in the patient and control groups, to establish whether these sites 

formed a functional network with the damaged left inferior frontal cortex. (v) We 

extracted the percentage signal change for each condition of the sentence listening 

paradigm for these ROIs in each group, to determine how damage to left inferior 

frontal cortex influenced the level of functional recruitment within these sites. (vi) 

We related this functional recruitment across participants to levels of intrinsic 

connectivity for these sites, to investigate how changes in recruitment might be 

reflected in the functional organization of the semantic system measured at rest. 

(vii) Finally, we examined whether these patterns of connectivity related in a 

positive or negative fashion to semantic performance measured outside the 

scanner.  
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All maps generated in this study are freely available at the following URL 

at Neurovault: http://neurovault.org/collections/2221/ 

 

3.1 Functional connectivity of the lesion site 

Our first analysis was to use resting-state fMRI data to examine whether 

the site of maximal lesion overlap was part of a functional network that included 

the pMTG and vATL ROIs. All of the SA patients included in this study had some 

damage to left inferior frontal cortex, and the site of maximum lesion overlap was 

at the boundary of posterior LIFG and precentral gyrus (see left-hand column of 

Figure 2). We investigated this location of maximal lesion overlap by placing a 

sphere in the grey matter adjacent to the peak lesion overlap (seed region in left-

hand column, damaged in all fourteen patients; MNI coordinates = -45 7 10). We 

then characterized the intrinsic connectivity of this sphere in a large sample of 

resting-state fMRI data from healthy individuals (NKI sample; see Methods). The 

results in the middle two columns of Figure 2 show that the site of maximal lesion 

overlap is functionally coupled with both pMTG and vATL in the left hemisphere. 

To quantify the overlap between this functional connectivity map and regions 

implicated in semantic control, we overlaid this map with the meta-analytic map 

of semantic control produced by Noonan and colleagues (2013). There was a high 

degree of overlap between these spatial maps (bottom right in Figure 2). Thus our 

ROIs in vATL and pMTG participate in a large-scale network that includes the site 

damaged in the majority of the patients. Table S1 in the Supplementary materials 

presents the full details of the spatial map produced through this analysis.  
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Figure 2: Functional connectivity pattern for the site of maximal lesion 

overlap 

 

The top left of this figure shows the lesion overlap map for the patient group. This lesion map is 

thresholded at minimum of 7 patients who showed overlapping damage.  All patients in the sample 

showed a lesion overlap at the boundary of posterior LIFG and precentral gyrus (bottom left). We 

seeded this peak overlap location in an independent dataset (NKI) to reveal the intrinsic 

connectivity at rest of the network commonly damaged in the patients (middle two columns). This 

pattern of connectivity overlapped with regions known to be involved in semantic control (right-

hand column; from Noonan et al., 2013).  

 

 

3.2 Neural processing associated with sentence comprehension 

We next considered the neural activation associated with sentence 

processing in patients and controls. We used a mask that restricted the scope of 

our search to regions identified as important for “semantics” using Neurosynth 

(see Methods). Neural activation within this mask associated with attending to 

meaningful speech relative to unintelligible SRS was seen within multiple left 

hemisphere sites, including anterior temporal lobes (ATL), both vATL and aSTG, 

plus pMTG and LIFG in both patients and controls (see Figure 3, top row). The 

majority of the LIFG cluster was outside the area of lesion. This analysis 

demonstrates that the sentence listening task successfully activated regions 
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important for semantic processing in both groups, including sites of interest in 

vATL and pMTG – which, in the analyses that follow, are taken forward as ROIs. 

Table S2 in the Supplementary Materials presents the full details of the spatial 

map produced through this analysis.  

  

Figure 3: Task-based activation and seeding of regions of interest in the 

resting-state  

    

Activation for the contrast of sentences > noise for patients and controls, identifying a bilateral 

network including anterior temporal lobes (ATL), posterior middle temporal gyrus (pMTG) and 

left ventral inferior frontal gyrus (IFG) in both groups. These maps are masked by areas involved 

in semantic processing identified using Neurosynth. The bottom two rows shows common areas 

of connectivity when seeding from two key sites activated by these contrasts and largely 

undamaged in the patient group (pMTG and vATL).  

 

3.3 Functional connectivity of the nodes of the semantic system in patients 

and controls at rest 

The analysis above demonstrates that both groups showed activation in 

the sentence listening task in undamaged parts of the semantic network, including 

two regions of interest thought to be candidates for supporting comprehension 
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following damage to LIFG; namely a second site implicated in semantic control in 

addition to LIFG (pMTG) and a region thought to support multimodal conceptual 

representation (vATL). The lower two rows of Figure 3 presents the functional 

connectivity associated with these two ROIs, taken from a meta-analysis of 

semantic control tasks by Noonan et al. (2013; pMTG -57 -54 -9) and from a study 

of semantic processing designed to optimise signal in vATL by Binney et al. (2010; 

vATL -39 -9 -36). These maps reflect the connectivity pattern for spheres placed 

around relevant coordinates from the literature, which fell within the area of 

activation during sentence listening in both groups. In controls, the left pMTG was 

functionally connected to LIFG as well as right pMTG. In the patients we observed 

a similar pattern, except the connection to LIFG was absent, likely reflecting 

structural disconnection between the two sites caused by damage within and 

beyond LIFG. The vATL had a more restricted pattern of connectivity, limited to 

its right hemisphere homolog. There were no clear differences in the functional 

connectivity of vATL between patients and controls. Table S3 in the 

Supplementary Materials presents the full details of the spatial map produced 

through this analysis.  

 

 

3.4 Regions of interest analysis on processing the semantic ambiguity within 

sentences 

To characterize the response to the sentence listening task in the regions 

of interest in pMTG and vATL, we extracted the percent signal change for 

ambiguous and non-ambiguous sentences, for patients and controls, within these 

spherical ROIs (Figure 4 and 5). We calculated the difference in signal for 

ambiguous and non-ambiguous sentences over SRS sentences, and examined the 

within-participant factor of ambiguity (High / Low) and the between-participant 

factor of group (Patients / Controls) using ANOVA. We observed a main effect of 

group, reflecting a higher response to sentences in the patients than controls 

(F(1,28) = 7.23, p <.05). There was also a main effect of site (stronger signal within 

pMTG than vATL; F(1,28) = 6.49, p = .017) and a main effect of ambiguity, 

indicating a stronger response to ambiguous sentences (F(1,28) = 12.10, p = .002). 

Other effects were non-significant. 
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3.5 Relationship between the nodes of the semantic system during tasks and 

at rest 

Having determined how pMTG and vATL responded to the sentences in the 

patients and controls, as well the intrinsic functional connectivity of these sites at 

rest, our next analyses considered the relationship between these regions’ 

behaviour in tasks and at rest.   

pMTG: This site showed a stronger response to the sentence listening task 

in the patients than the controls (F(1,28) = 6.146, p < .05), an effect of ambiguity 

that approached significance (F(1,28) = 4.121, p = .052) and no interaction 

between group and ambiguity (F(1,28) = 1.492, p = .232). We included the 

difference in activity during ambiguous and non-ambiguous sentences in the 

pMTG ROI as an explanatory variable in a group-level regression of resting-state 

functional connectivity, to identify regions where the strength of functional 

connectivity at rest from pMTG was associated with the magnitude of the 

ambiguity effect in the task. This revealed a functional activation by group 

interaction in a region of anterior superior temporal gyrus (aSTG) extending into 

the most ventral aspects of inferior frontal gyrus (see Figure 4 and Supplementary 

Table S4); i.e., the connectivity between this region and pMTG varied according to 

ambiguity in a different way across the two groups. To understand this pattern in 

greater detail, we extracted the connectivity from within this mask and plotted it 

against the percentage signal change reflecting the ambiguity effect in each group. 

For controls, strong activity in pMTG for ambiguous relative to non-ambiguous 

sentences was associated with reduced functional connectivity to aSTG [r = -.823, 

p < .01], but this relationship was reversed in SA patients who showed stronger 

functional coupling with this region [r = .758, p < .05].  

Finally, we considered the functional significance of this effect by relating 

the strength of pMTG-aSTG connectivity to semantic performance measured 

outside the scanner in the patient group. We examined a verbal association task 

(Camel and Cactus Test presented as words), for which we had behavioural 

measurements on the same task for every case, and found that stronger coupling 

between pMTG and aSTG predicted better patient performance [r = .653, p < .05]. 

Thus, functional connectivity between the pMTG and aSTG was higher for 
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individuals with aphasia whose semantic cognition was relatively preserved 

following a stroke affecting left prefrontal cortex. We also examined the 

correlation with the ambiguity task but found no significant correlation with the 

dominant (r = .186, p = .63) or non-dominant (r = .188, p = .628) conditions of the 

task.  

 

Figure 4: Regions that show changes in intrinsic connectivity at rest as a 

function of task activation for ambiguous versus unambiguous sentences in 

pMTG.   

    

Group level regression examining regions that show changes in intrinsic connectivity at rest as a 

function of task activation for ambiguous over unambiguous sentences in the pMTG ROI. Scatter 

plots show connectivity from within the resulting mask against the ambiguity effect in the seed 

region in each group.  For controls, activation in pMTG for ambiguous over unambiguous sentences 

was associated with reduced functional connectivity to a region in anterior Superior Temporal 

Gyrus (aSTG) in the left temporal lobe [r = -.823, p<.01], but this relationship was reversed in SA 

patients who showed stronger functional coupling with this region [r = .758, p<.05]. 

 

vATL: Like pMTG, this site showed a stronger response to the sentence 

listening task in the patients than the controls (F(1,28) = 4.840, p < .05), but only 
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a weak and non-significant effect of ambiguity (F(1,28) = 3.377, p = .077) and no 

interaction between these factors (F(1,28) = .003, p = .954). Examination of the 

relationship between the behaviour of vATL during tasks and rest revealed that, 

regardless of group, there was stronger connectivity between the ROI in vATL and 

a region of ventral LIFG for participants who showed stronger recruitment of the 

ROI for ambiguous over unambiguous sentences (see Figure 5). To understand 

this pattern in greater detail, we extracted the connectivity from within this mask 

(the mask included only areas that were undamaged in all of the patients) and 

plotted it against the percentage signal change reflecting the difference in 

recruitment between ambiguous and non-ambiguous sentences. This confirmed 

that in both SA patients [r =.636, p<.05] and controls [R=.716, p<.05], greater 

recruitment of vATL during the processing of ambiguous sentences was 

associated with greater functional connectivity of this region with ventral LIFG. 

Unlike pMTG, there was no relationship between this pattern of connectivity and 

performance on the verbal Camel and Cactus Task (r=-.415, p=.232) or on the 

dominant (r=-.247, p=.521) or non-dominant (r=-.266, p=.490) conditions of the 

ambiguity task. 
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Figure 5: Regions that show changes in intrinsic connectivity at rest as a 

function of task activation for ambiguous over unambiguous sentences in 

vATL

  

Group level regression examining regions that show changes in intrinsic connectivity at rest as a 

function of task activation for ambiguous over unambiguous sentences in vATL. In both SA patients 

[r = .636, p<.05] and controls [R=.716, p<.05], greater recruitment of vATL for ambiguous items 

was associated with greater functional connectivity between this region and ventral inferior 

frontal gyrus (outside the lesioned area). 

 

4.0 Discussion 

Over the last decade, numerous studies have shown that semantic deficits in 

aphasia can reflect deficient control over conceptual retrieval (Jefferies & Lambon 

Ralph, 2006, Thompson et al., 2015, Corbett et al., 2011., Noonan et al., 2010, 

Jefferies, 2013), but the neural basis of this type of semantic impairment has 

hardly been explored. This study examined neural recruitment in patients with 

poor control over semantic retrieval during a sentence listening task using 

sentences that varied in their levels of ambiguity. We used a combination of (i) 

task-based fMRI and a sparse imaging sequence that allowed us to characterize 

the processing of meaningful speech in both groups, plus (ii) task-free resting-

state methods to assess the connectivity of the semantic system. This multi-
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method approach was used to establish how neural recruitment during 

comprehension changes in patients with semantic control deficits, and how this 

recruitment is linked to the functional architecture of the semantic system at rest. 

 

Every patient in our sample showed deficient semantic control associated with 

damage to left posterior inferior prefrontal cortex. This region is thought to play 

a critical role in semantic control across tasks and modalities (Thompson-Schill et 

al., 1997, Badre et al., 2005, Noonan et al., 2013, Whitney et al., 2011), and in line 

with this characterization, the patients were unable to retrieve less dominant 

aspects of meaning in both verbal and picture-based tasks. Comparison of the 

commonly-lesioned areas in this sample (in left prefrontal and superior temporal 

cortex) with a meta-analytic map of semantic processing from Neurosynth 

identified two regions critical to semantic cognition that were largely undamaged 

in our patients. These sites were in vATL (implicated in semantic representation; 

Patterson et al., 2007, Lambon Ralph et al., 2010, Rogers et al., 2004, Pobric et al., 

2010., Lambon Ralph et al., 2017) and pMTG (thought to co-activate with LIFG as 

part of a distributed network underpinning semantic control; Hallam et al., 2016, 

Hoffman et al., 2010, Noonan et al., 2013, Davey et al., 2015, Whitney et al., 2011., 

Gold et al., 2006, Davey et al., 2016). We examined the response of these regions-

of-interest, and found that patients recruited them both to a greater extent than 

the controls. This is consistent with the possibility that comprehension in patients 

with LIFG lesions relies more on activation within pMTG and vATL – i.e., that these 

regions help to compensate for damage to LIFG. Alternatively, given that there was 

a main effect of group and a near-significant effect of ambiguity in the BOLD 

response in both ROIs, this greater response could conceivably have reflected the 

effort required to process the sentences. 

 

In order to understand more about the functional contribution of this increased 

response in pMTG and vATL, we examined the relationship between the functional 

recruitment of these regions in sentence comprehension and their intrinsic 

connectivity at rest. For controls, heightened activation of pMTG in response to 

ambiguous sentences was associated with reduced correlation at rest with LIFG, a 

site commonly implicated in semantic control (Badre et al., 2005; Noonan et al., 
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2013; Whitney et al., 2011), as well as weaker coupling with anterior STG. In 

contrast, a positive correlation between pMTG and aSTG was observed for the SA 

patients – and the magnitude of this positive coupling predicted better 

performance on the Camel and Cactus test of verbal association, consistent with 

the hypothesis that the response in pMTG supports semantic cognition in the face 

of LIFG damage. Functional neuroimaging studies of healthy participants have 

suggested that aSTG has a different functional profile from vATL: rather than 

showing a multimodal semantic response across verbal and non-verbal tasks, this 

region is specifically recruited during auditory-verbal semantic processing 

(Murphy et al., 2017). Anterior STG also shows a different pattern of intrinsic 

functional connectivity from vATL, with stronger coupling with auditory-motor 

regions, and weaker connectivity with the default mode network and heteromodal 

semantic areas (Jackson et al., 2016, Murphy et al., 2017). Consequently, relatively 

good verbal comprehension in patients with SA was related to stronger 

connectivity between a posterior semantic control site (pMTG) and a region 

associated with verbal semantic processing (aSTG). 

 

Increased functional connectivity in the patient sample relative to controls might 

be expected to be restricted to regions that support controlled semantic retrieval, 

e.g., pMTG (Davey et al., 2016). In line with this proposal, increased functional 

recruitment during the processing of ambiguous speech in vATL was associated 

with increased functional coupling with a region of ventral LIFG at rest for both 

patients and controls. This ventral LIFG region was largely outside the lesion area 

in the patient group. Thus, we found an abnormal pattern of functional 

connectivity from a non-damaged region within the semantic control network 

(pMTG), but a normal pattern for the putative semantic store in vATL. These 

findings fit well with theoretical accounts of SA that emphasise the preservation 

of semantic knowledge in an amodal conceptual ‘hub’ in vATL (which captures 

meaning in concert with modality-specific representations in “spoke” regions; 

Patterson et al., 2007, Lambon Ralph et al., 2017). Comprehension deficits that 

arise from damage to left IFG are instead thought to reflect difficulty constraining 

the retrieval of semantic representations in a task-relevant manner, and these 
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problems might benefit from engagement of another region in the semantic 

control network. 

 

Our findings have important theoretical implications for understanding how 

semantic control is implemented by the cortex. Converging evidence from 

neuropsychology, neuroimaging and transcranial magnetic stimulation highlights 

the role of a left lateralized functional network including both left IFG and pMTG 

in constraining semantic processing to suit the demands of a task or context 

(Jefferies, 2013). In this regard, our study shows that, at rest, aberrant functional 

behaviour in pMTG, but not vATL, emerges from lesions that are primarily focused 

in left prefrontal cortex. This dissociation can be easily accounted for by the 

hypothesis that left IFG and pMTG work in tandem to flexibly constrain semantic 

processing to fit into the momentary demands posed by a task (Jefferies, 2013; 

Whitney et al., 2011, Noonan et al., 2013). When one site within the distributed 

system underpinning semantic control is damaged (left prefrontal cortex), the 

ability to understand words is linked to the capacity to activate and connect a 

second site, the pMTG, within the semantic control network. Similar findings were 

recently observed in a study using TMS to disrupt the normal functioning of LIFG 

in healthy volunteers (Hallam et al., 2016). Augmenting this compensatory 

response in pMTG is a clear target for speech and language therapy in patients 

with comprehension deficits resulting from poor control over retrieval in aphasia.   

 

It is worth noting some limitations of the study. One issue relates to the use of the 

ISSS sequence: this was selected as it was optimal for characterizing activation in 

response to the auditory sentences, but it made task-based connectivity difficult 

to assess. For this reason, we correlated task-based activation with intrinsic rather 

than task-based connectivity. A paradigm that used a more standard EPI sequence, 

as in Jackson et al. (2016), would have allowed us to consider similarities and 

differences in task-based and resting-state connectivity.  

 

Secondly, in addition to deficits of semantic control, many of the patient 

volunteers in this study showed poor performance on non-verbal tests of 

executive function. This pattern replicates the findings of Jefferies & Lambon 
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Ralph (2006), who reported a correlation between semantic and non-semantic 

control deficits in patients with SA, in contrast to those with semantic dementia. 

This pattern is predicted by neuroimaging studies of healthy participants showing 

partially-overlapping and adjacent networks supporting semantic and domain-

general executive control (e.g., Noonan et al., 2013). Difficult tasks across domains 

elicit activation within a multiple-demand network, including inferior frontal 

sulcus, intraparietal sulcus and pre-supplementary motor area (e.g., Duncan, 

2010). Semantic control manipulations activate these regions in addition to more 

ventral and anterior parts of LIFG and pMTG, which lie outside the multiple-

demand network (Noonan et al., 2013; Davey et al., 2016). Both the semantic 

control and the multiple-demand networks could have been affected in our 

patients (although the intrinsic connectivity of the peak lesion location at rest 

overlapped substantially with regions important for semantic control, while some 

sites strongly implicated in executive control – namely intraparietal sulcus – were 

not part of the network). Our findings do not preclude the possibility that patients 

might also show abnormal patterns of functional recruitment and connectivity in 

non-semantic tasks (e.g. Brownsett et al., 2014; Geranmayeh et al., 2014 although 

the focus of the current study was on characterizing the neural basis of residual 

comprehension following damage to left inferior frontal cortex. 

 

Secondly, we opted to characterize the brain’s response during passive listening 

to ambiguous and non-ambiguous sentences, since this precluded the possibility 

that the patients would show abnormal activation from a failure to understand the 

task instructions. There are likely to be differences in the neural response to 

semantic processing for single words compared with sentences (such as semantic 

combination processes; e.g. Price et al., 2015). However, previous studies 

examining the effects of ambiguity in auditory sentences (Rodd et al., 2005; 2012; 

2015) identified regions of the semantic control network, such as LIFG and pMTG, 

which overlapped directly with areas implicated in semantic control in a meta-

analysis of neuroimaging studies that used a wide range of task manipulations 

(Noonan et al., 2013). These included single word matching tasks varying the 

strength or number of distractors or the strength of the semantic link between the 

items. Ambiguous sentences might elicit a stronger response in semantic control 



 32 

regions because, in common with other semantic control tasks, they require 

retrieval to be focussed on non-dominant aspects of knowledge as well as 

selection of appropriate representations from competing alternatives (Badre et 

al., 2005; Thompson-Schill et al., 1997). Indeed, Noonan et al. (2013) found that 

the type of comprehension task did not have a strong influence on recruitment 

across the semantic control network, presumably because all of these tasks shared 

the requirement to shape retrieval away from dominant patterns within long-

term memory and towards alternative aspects of knowledge suitable for the 

current task goal or context. This observation can explain why abnormal 

recruitment and connectivity derived from a sentence listening paradigm 

predicted performance on more standard semantic assessments in patients with 

SA. 
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Figure S1: Stroke lesion overlap map for the group of 14 patients  
 
 
 
 
 
 
 
 
 
 
Stroke lesion overlap map for the 14 left hemisphere stroke patients. Colour scale 
refers to number of patients who had lesions in that region. 
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Table S1: Connectivity of the lesion mask  
   Z   x y z Voxels 
Positive connectivity      
L Central operculum 11.9 -44 6 10 13826 
L Anterior insula  7.92 -36 22 0  
L Inferior frontal gyrus (pars 

triangularis) 
7.86 -38 28 4  

L Inferior frontal gyrus (pars 
triangularis) 

7.82 -44 30 2  

L Anterior insula 7.72 -28 22 6  
L Inferior frontal gyrus (pars 

triangularis) 
7.4 -42 22 6  

R Mid insula 7.04 38 2 8 3827 
R Precentral gyrus 6.72 48 8 8  
R Inferior frontal gyrus (pars 

triangularis) 
5.13 48 32 2  

R Anterior insula 4.99 36 24 -2  
R Anterior insula 4.95 36 28 4  
R Inferior frontal gyrus (pars 

triangularis) 
4.74 42 30 2  

L Pre supplementary motor area 6.46 -4 14 42  
L Pre supplementary motor area 6.33 -6 18 50  
L Pre supplementary motor area 6.15 -4 2 54  
L Anterior cingulate 5.4 -8 16 34  
L Anterior cingulate 4.22 -10 32 22  
L Anterior cingulate 4.14 -8 32 18  
L Thalamus 6.09 -10 -8 6 699 
L Thalamus 5.34 -4 -20 2  
L Substantia nigra 3.61 -8 -20 -12  
L Thalamus 3.08 -10 -30 -2  
L Peri-acqueductal grey 2.75 -6 -26 -16  
R Supramarginal gyrus 4.39 62 -32 46 661 
R Supramarginal gyrus 4.1 66 -42 26  
R Supramarginal gyrus 4.07 64 -28 40  
R Supramarginal gyrus 4.05 60 -38 48  
R Supramarginal gyrus 3.67 58 -26 50  
R Central operculum 3.23 62 -20 20  
L  Inferior temporal gyrus / anterior 

temporal lobe 
4.18 -42 -6 -42 522 

L  Inferior temporal gyrus / anterior 
temporal lobe 

4.12 -34 -6 -44  

L Temporal fusiform cortex 4.11 -32 -18 -34  
L Temporal pole 3.44 -26 4 -42  
L Temporal pole 3.1 -28 10 -40  
L Temporal pole 2.82 -34 8 -44  
Negative connectivity      

R Posterior cingulate 6.65 10 -44 30 11816 
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R Posterior cingulate 6.54 8 -40 30  
L Posterior cingulate 6.12 -18 -54 8  
R Posterior cingulate 6.07 2 -46 32  
R Precuneous 5.88 2 -66 58  
R Posterior cingulate 5.78 6 -48 32  
R Frontal pole 5.05 4 64 -10 2303 
R Frontal pole 4.74 4 56 -18  
R Dorso-medial prefrontal cortex 4.72 4 52 -12  
R Frontal pole 4.66 6 50 -28  
R Dorso-medial prefrontal cortex 4.61 4 44 -12  
 Para-cingulate gyrus 4.48 0 38 -12  
R Middle temporal gyrus 4.7 62 -14 -18 891 
R Inferior temporal gyrus 4.3 56 -20 -24  
R Middle temporal gyrus 4.24 62 -14 -8  
R Middle temporal gyrus 3.67 54 -10 -28  
R Inferior temporal gyrus 3.47 62 -12 -32  
R Middle temporal gyrus 3.32 60 -22 -16  
R Middle frontal gyrus 4.95 24 30 38 732 
R Middle frontal gyrus 4.88 24 32 42  
R Middle frontal gyrus   4.4 26 18 44  
R Middle frontal gyrus 4.36 26 22 42  
R Middle frontal gyrus 3.7 36 6 50  
R Middle frontal gyrus 3.42 36 24 40  
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Table S2: Sentences > noise for patients and controls (masked by 
Neurosynth ‘semantic’ map) 

   Z   x y z Voxels 
Patients      
L Inferior anterior temporal lobe 11.8 -36 -8 -38 5098 
L Inferior anterior temporal lobe 10.4 -36 -6 -34  
L Posterior middle temporal gyrus 7.94 -58 -40 -12  
L Parahippocampal gyrus 6.83 -30 -20 -32  
L Anterior middle temporal gyrus 6.72 -60 -10 -26  
L Posterior superior temporal gyrus 6.68 -52 -18 -6  
Controls      

L Inferior anterior temporal lobe 9.32 -46 0 -36 6218 
L Temporal pole 7.27 -52 4 -40  
L Temporal pole 6.65 -48 4 -18  
L Planum polare 6.31 -48 4 -14  
L Inferior frontal gyrus pars 

triangularis 
6.15 -42 28 -4  

L Temporal pole 5.88 -46 6 -36  
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Table S3: Functional connectivity of left pMTG and vATL in patients and 
controls  

   Z   x y z Voxels 
Patients LpMTG      
L Posterior middle temporal gyrus 6.99 -58 -54 -10  
L Posterior inferior temporal gyrus 5.35 -62 -46 -16  
L Posterior middle temporal gyrus 5.33 -50 -62 0  
L Posterior middle temporal gyrus 3.93 -54 -36 -6  
L Lateral occipital cortex 3.7 -50 -68 -8  
L Posterior temporal fusiform cortex 3.35 -42 -36 -18  
R Posterior inferior temporal gyrus 4.57 56 -58 -10  
R Posterior middle temporal gyrus 4.06 62 -54 -10  
R Posterior inferior temporal gyrus 3.61 62 -46 -14  
R Posterior inferior temporal gyrus 3.6 58 -44 -12  
R Posterior inferior temporal gyrus 3.12 48 -48 -34  
R Posterior middle temporal gyrus 3.08 70 -34 -8  
L Superior lateral occipital cortex 2 -14 -72 46  
L Superior lateral occipital cortex 3.84 -32 -86 26  
L Superior lateral occipital cortex 3.38 -28 -76 38  
L Superior lateral occipital cortex 2.92 -28 -72 30  
L Superior lateral occipital cortex 2.9 -20 -66 52  
L Superior lateral occipital cortex 2.37 -24 -64 46  
R Cerebellum 3.55 38 -68 -38  
R Cerebellum 3.39 28 -76 -48  
R Cerebellum 3.27 20 -76 -52  
R Cerebellum 2.4 36 -66 -56  
Patients LATL      
R Anterior temporal fusiform cortex 4.44 36 -6 -44 2214 
R Posterior temporal fusiform cortex 4.29 28 -12 -40  
R Parahippocampal gyrus 4.27 30 2 -28  
R Frontal pole 3.98 26 30 -20  
R Posterior temporal fusiform cortex 3.94 36 -16 -30  
R Anterior parahippocampal gyrus 3.92 22 4 -26  
L Anterior temporal fusiform cortex 6.49 -38 -10 -38 1818 
L Anterior parahippocampal gyrus 5.56 -30 -12 -36  
L Anterior inferior temporal gyrus 4.83 -42 -8 -44  
L Anterior inferior temporal gyrus 4.55 -48 -2 -40  
L Temporal pole 4.38 -38 18 -36  
L Anterior temporal fusiform cortex 3.93 -32 -8 -48  
Controls LpMTG      
L Posterior middle temporal gyrus 6.47 -56 -56 -8 3013 
L Posterior middle temporal gyrus 5.28 -56 -56 2  
L Posterior middle temporal gyrus 4.68 -62 -44 -14  
L Inferior lateral occipital cortex 4.64 -50 -70 -4  
L Posterior middle temporal gyrus 4.41 -66 -46 0  
L Posterior superior temporal gyrus 4.27 -60 -40 14  
R Posterior inferior temporal gyrus 4.27 60 -42 -22 1170 
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R Posterior middle temporal gyrus 4.14 54 -48 -4  
R Posterior middle temporal gyrus 4 64 -54 -8  
R Posterior inferior temporal gyrus 3.56 48 -56 -12  
R Posterior inferior temporal gyrus 3.41 66 -40 -16  
R Inferior lateral occipital cortex 2.89 46 -74 -8  
R Frontal pole 5.06 -46 36 -6 852 
R Middle frontal gyrus 3.34 -40 12 38  
R Middle frontal gyrus 3.03 -50 20 28  
R Orbitofrontal cortex 3.01 -48 24 -6  
R Inferior frontal gyrus (pars 

opercularis) 
2.98 -50 14 2  

R Inferior frontal gyrus (pars 
triangularis) 

2.81 -52 28 24  

Controls LATL      
L Anterior inferior temporal gyrus 6.74 -42 -8 -36 2620 
L Posterior temporal fusiform cortex 6.72 -36 -12 -32  
L Posterior temporal fusiform cortex 6.58 -38 -10 -36  
L Temporal pole 4.61 -40 12 -28  
L Temporal pole 4.33 -38 12 -24  
L Anterior parahippocampal gyrus 4.25 -22 -12 -30  
R Anterior temporal fusiform cortex 4.83 38 -4 -38 2211 
R Temporal pole 4.6 52 10 -18  
R Anterior parahippocampal gyrus 4.49 22 4 -28  
R Hippocampus 4.47 18 -18 -20  
R Amygdala 4.44 20 0 -26  
R Posterior superior temporal gyrus 4.41 50 -12 -8  
R Periaqueductal grey 4.99 2 -28 -36 420 
R Brain stem 3.92 6 -40 -32  
R Brain stem 3.65 6 -28 -44  
R Brain stem 3.65 6 -38 -52  
L Brain stem 3.52 -4 -30 -42  
R Cerebellum 3.48 26 -42 -34  
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Table S4: Task x group interaction using pMTG ROI as an explanatory 
variable in a group-level regression of resting-state functional connectivity 
   

Ambiguity x group LpMTG interaction      
      
L Temporal pole 4.44 -40 24 -18  
L Temporal pole 4.17 -46 16 -22  
L Temporal pole 4.13 -42 18 -22  
L Temporal pole 4.12 -42 8 -28  
L Temporal pole 3.81 -46 12 -28  
L Orbitofrontal cortex 3.26 -26 14 -22  

           
           
       
    
 
 


