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Abstract

Computational modelling has been used to address: (1) the variety of symptoms observed in schizophrenia using
abstract models of behaviour (e.g. Bayesian models– top-down descriptive models of psychopathology); (2) the causes of
these symptoms using biologically realistic models involving abnormal neuromodulation and/or receptor imbalance (e.g.
connectionist & neural networks – bottom-up realistic models of neural processes). These different levels of analysis have
been used to answer different questions (i.e. understanding behavioural vs. neurobiological anomalies) about the nature
of the disorder. As such, these computational studies have mostly supported diverging hypotheses of schizophrenia’s
pathophysiology, resulting in a literature that is not always expanding coherently. Some of these hypotheses are however
ripe for revision using novel empirical evidence.

Here we present a review that first synthesises the literature of computational modelling for schizophrenia and psy-
chotic symptoms into categories supporting the Dopamine, Glutamate, GABA, Dysconnection and Bayesian inference
hypotheses respectively. Secondly, we compare model predictions against the accumulated empirical evidence and finally
we identify specific hypotheses that have been left relatively under-investigated.
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1. Background

Schizophrenia is a psychiatric disorder with a lifetime
prevalence of 0.3-0.66% (Bhugra, 2005; van Os and Kapur,
2009). This condition manifests itself through a variety of
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symptoms across patients, classified into three distinct cat-
egories: positive, negative and cognitive symptoms. Posi-
tive symptoms refer to hallucinations (i.e. vivid percep-
tions of complex stimuli, such as hearing voices or
seeing objects/people, in the absence of an exter-
nal stimulus), and delusions (i.e. persistent false be-
liefs maintained despite being contradicted by real-
ity or rational evidence and out of keeping with the
individual’s socio-cultural norms). Negative symp-
toms include flattened affect, social withdrawal, apathy,
poverty of speech, and anhedonia. Cognitive deficits cover
decreased memory performance, attentional and reasoning
deficit, which is usually associated with an average IQ drop
of about 10 points following the disease onset (Bhugra,
2005; Frith et al., 1991; Johnstone et al., 1991; McIntosh
et al., 2005; van Os and Kapur, 2009). Schizophrenia is
highly debilitating, leading to an average loss of 15 to 20
years of life expectancy when compared to the general pop-
ulation (Andrew et al., 2012; Mangalore and Knapp, 2007).
It is argued that unhealthy lifestyles and increased suici-
dal rates (found to be about 12 times higher in schizophre-
nia; Caldwell and Gottesman, 1990) might account for this
general reduction in life expectancy (World Health Organ-
isation, 1996).

Besides this devastating prospect for patients and their
relatives, schizophrenia has also been found to generate a
high economical burden on society (Knapp et al., 2004;
Mangalore and Knapp, 2007; Serretti et al., 2009). Re-
cently, the total societal cost of schizophrenia has been es-
timated to be around 6.7 to 11.8 billion per year for Eng-
land alone (Andrew et al., 2012; Mangalore and Knapp,
2007). This is including direct treatment costs and indi-
rect societal costs such as loss of employment. In fact, it
has been estimated that around 80% to 93% of patients
with schizophrenia remain unemployed, leading to large
societal costs due to loss productivity (Andrew et al., 2012;
Mangalore and Knapp, 2007). Lack of employment is ar-
gued to result largely from cognitive deficits, problems of
attention and working memory (Insel, 2010). However,
it is worth noting that negative symptoms, which
include amotivation, anhedonia and apathy, are as-
sociated with social functioning impairments and
as such, could also potentially contribute to the
unemployment status observed in patients (Hoff-
mann and Kupper, 1997; Lysaker and Bell, 1995;
Solinski et al., 1992; Suslow et al., 2000; Weinberg
et al., 2009).

Unfortunately, there is currently no cure for schizophre-
nia, mainly due to a poor understanding of the causes and
mechanisms of the disorder. The best treatment to date
consists of managing the occurrence of positive symp-
toms through a combination of anti-psychotic medications
and psychosocial treatments. These treatments aims to
minimise symptoms, potential risks to the patient or oth-
ers (e.g. hallucinations/delusions leading to self-neglect
or harm), and to avoid the relapse of psychosis. It is es-

timated that about 45% of patients recover after one or
more episodes, 20% show a gradual worsening of symp-
toms and a final 35% exhibit a mix of remission with a
worsening of some of the symptoms (relapsing-remitting;
World Health Organisation, 1996).

1.1. Schizophrenia - Diverging hypotheses

Several studies have identified neuroanatomical differ-
ences in patients (e.g. Kreczmanski et al., 2007; Lawrie
et al., 2008; Seeman, 1994) as well as susceptible genes in-
creasing the risk of developing psychiatric disorders (e.g.
Chubb et al., 2008). However, while it is well established
that genetic risk factors alone are not sufficient to account
for the development of the disorder (Lawrie et al., 2008);
it is widely accepted that an interaction between genetic
(Berry et al., 2003; Bertolino and Blasi, 2009; Chubb et al.,
2008) and environmental risk factors (i.e. stress, trau-
matic experiences, etc. Jones et al., 1994; McDonald and
Murray, 2000; Mortensen et al., 1999) are necessary to
lead to the emergence of schizophrenia. So far, research
in the field has identified various differences between pa-
tients and healthy controls, which has led to divergent –
although not mutually exclusive – hypotheses about
the origins of the disorder. First, the Dopamine (DA)
hypothesis was established through the observation of al-
leviated positive symptoms upon treatment with typical
anti-psychotic drugs (APD), which block dopamine recep-
tors D2 (D2r). Consistent with this hypothesis, subse-
quent imaging studies found elevated dopaminergic sig-
nalling (Meyer-Lindenberg et al., 2005; Murray et al., 2008;
Waltz et al., 2009), elevated presynaptic striatal DA syn-
thesis and release, and increased striatal D2 receptor den-
sities (Howes and Kapur, 2009). More recently studies
have also found deregulated D1 receptor densities in the
pre-frontal regions of patients (Howes and Kapur, 2009).
The second hypothesis, the Glutamate (Glu) hypothesis
emerged from the observation of induced psychosis in healthy
subjects when exposed to psychoactive drugs, such as Ke-
tamine and Phencyclidine (PCP), which acts primarily by
blocking the glutamate binding sites of NMDA receptors
(Corlett et al., 2007a; van Os and Kapur, 2009). Post-
mortem studies also identified reduced glutamate levels in
the pre-frontal areas of patients (Sherman et al., 1991). It
is therefore plausible that reduced NMDA receptor densi-
ties or receptor hypo-function can account for the symp-
tomatology observed in patients (Gilmour et al., 2012;
Javitt and Zukin, 1991; Olney et al., 1999). The third
hypothesis, the GABAergic hypothesis is supported by ex-
perimental studies reporting reduced cortical GABA, dys-
functional activity and reduced markers of inhibitory inter-
neurons in the pre-frontal areas of patients (Lewis and
Hashimoto, 2005; Nakazawa et al., 2012; Tanaka, 2008).
Finally, the dysconnection hypothesis stemmed from sev-
eral findings of reduced cortical volume, abnormal pre-
frontal cortical folding, enlarged ventricles, abnormal synap-
tic connectivity (Harrison, 1999; Lawrie et al., 2008) and
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increased cortical activation during cognitive tasks (Manoach
et al., 1999; Winterer and Weinberger, 2004). This in-
creased activation is thought to be the result of a reduced
synchrony or dysconnection between different cortical ar-
eas (Friston, 2005; Stephan et al., 2009), therefore requir-
ing increased effort during completion of cognitive tasks.

Whilst the origins of the disorder are highly debated and
led to diverging hypotheses of schizophrenia, researchers
and practitioners alike tend to agree that until reliable bio-
logical markers are found – which can robustly and reliably
predict the emergence of schizophrenia and its symptoms –
, the best course of action for current diagnostic purposes
is to rely on clinical interviews and an interpretation of
symptoms by trained professionals.

1.2. Categorical vs. Dimensional diagnosis

In the absence of reliable biological markers, diagnosis
of mental disorders is obtained from a clinical examina-
tion of the symptoms and behaviours expressed by pa-
tients (World Health Organisation, 1996). Using the di-
agnostic and statistical manual of mental disorders (DSM;
DSM-IV-TR, 2000) or the international statistical classi-
fication of disease and related health problems (ICD-10
Chapter V; World Health Organization, 2009), clinicians
diagnose a patient’s illness from the number of symptoms
present and the duration of these symptoms. Specifically,
for schizophrenia, the current DSM (DSM-5, 2013) crite-
ria for diagnosis is met when two or more symptoms are
present continuously for a period of one month or more,
and had an impact on the patient’s functioning for at least
6 months. The first symptom being either: delusions, hal-
lucinations or disorganised speech, while the second symp-
tom can be any negative or cognitive symptoms causing so-
cial or occupational dysfunction. That is, positive symp-
toms remain the predominant criteria necessary for the
diagnosis of schizophrenia.

Recently however there has been an attempt to bridge the
gap between categorical diagnoses based on the clinical
consensus of symptoms and the identification of poten-
tial biological markers identified by neuroscience research
(Insel et al., 2010). For example, the research domain
criteria (RDoC), aims to develop a precision medicine ap-
proach (or personalised, i.e. that takes into account indi-
vidual variability in genes, environment, and lifestyle for
each person) to mental disorders based on behavioural and
neurobiological markers (Cuthbert and Insel, 2013; Insel
et al., 2010). More importantly, the RDoC proposes to
cut across the typical categorical boundaries delineating
current mental disorders and instead investigate the vari-
ations present in mental illness as belonging to a dimen-
sional continuum (Cuthbert and Insel, 2013). For exam-
ple, using the semi-structured Present State Exam-
ination (PSE), Strauss (1969) identified that psy-
chotic experiences lie on a continuum of intensity

in psychotic patients rather than being simply ei-
ther present or absent. Using the PSE as a tem-
plate, Peters et al. (1999) then developed the Peters
delusion inventory, so as to measure non-clinical delu-
sional ideation in the general population (Johns
and van Os, 2001; Peters et al., 2004). Using this
scale, delusions have since then been found to be present
in the general population on multiple occasions (Corlett
and Fletcher, 2012; Freeman et al., 2008; Schmack et al.,
2013), albeit to a milder degree than those present in pa-
tients with schizophrenia. This growing body of evidence
suggests that psychotic experiences might lie on a contin-
uum (Allardyce et al., 2007; Corlett and Fletcher, 2012;
David, 2010; Johns and van Os, 2001; Linscott and van
Os, 2010; van Os et al., 2000). It is argued however that
such a continuum would be impractical for clinical diag-
nosis (Lawrie et al., 2010). Similarly, a recent joint con-
sortium between the American Psychological Association
(APA), the National Institute for Mental Health (NIMH)
and the World Health Organisation (WHO) agreed that
while neurobiological parameters are of high importance
for future diagnostic systems, according to the current
state of knowledge, it seems more appropriate for use in
research than for immediate clinical use (Insel et al., 2010).

1.3. Computational modelling

While experimental studies provide valuable informa-
tion to understand the abnormal biological and cognitive
processes in schizophrenia, experimental work alone is of-
ten limited by ethical, economic or practical factors. Re-
cently, computational and mathematical models have shown
to be very useful research tools for the exploration of neu-
ral computation, and understanding of the interaction be-
tween neural systems and functions (Montague et al., 2012,
2004). Specifically, Marr (1982) proposed that computa-
tional models may be used to investigate three distinct al-
though complementary levels of analysis, namely the com-
putational level (“What” does the brain compute, and
“why”?), the algorithmic level (“Which” representations
and algorithms can describe these computations?) and the
physical level (“How” are these algorithms implemented
neurally?; Dayan and Abbott, 2005). These different levels
of analyses typically lead to two categories of models: top-
down and bottom-up models, which – although not incom-
patible – generally attempt to answer different scientific
questions. That is, depending on the main scientific
questions being investigated, the primary strength
and predictive power of a model resides on their
ability to accurately and realistically model the
main variable of interest (e.g. neural dysfunction
or behavioural deficit). Top-down models usually start
from the computational level, for e.g. the behavioural phe-
nomena and can remain only descriptive in nature (e.g.
Bayesian models of perception; Colombo and Series, 2012),
while bottom-up models start from the physical substrate
and aim at acquiring a mechanistic understanding of how
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neural computations and processes are performed and give
rise to behaviour.
By integrating data from diverse experimental studies and
levels of description, top-down and bottom-up mod-
els can offer a concise and formal description of a phe-
nomenon, shed light on the underlying mechanisms and
make predictions leading to novel experimental tests and
hypotheses (Dayan and Durstewitz, 2016; Huys et al., 2011).

1.3.1. Computational psychiatry

Computational psychiatry is a young field in expansion
at the intersection between computational neuroscience
and psychiatry (Huys, 2013; Huys et al., 2016, 2011; Mon-
tague et al., 2012). This discipline builds on the initial
effort in the 80’s using connectionist models, but has also
evolved to get closer to the physiological substrate and to
more testable predictions (Huys, 2013; Montague et al.,
2012). Although psychiatric disorders are characterised
essentially by their high-level symptoms, following Marr’s
principles, computational models can help formalise symp-
toms and hypotheses to bridge the gap between neurobiol-
ogy and psychiatry (Huys et al., 2011). That is, computa-
tional models are able to provide a normative framework
to explicitly define and rigorously test competing hypothe-
ses of mental disorders (Huys et al., 2011), while providing
a link between different levels of descriptions (Huys, 2013).

For example, Maia and Frank (2011) illustrated how mod-
elling using a deductive or abductive approach can lead to
different predictions for psychiatry. Using the deductive
approach scientists start from the premise of known neuro-
biological deficits observed in mental disorders, and imple-
ment these deficits in a computational model. The perfor-
mance of the model is then compared to those of patients.
If the model can account for the performance deficits ob-
served in patients, it provides a plausible mechanistic ac-
count that bridges biological abnormalities to behaviour
or neural activity (Maia and Frank, 2011). The abductive
approach, on the other hand, starts from the premise of
a model of normal behaviour and alter the model in mul-
tiple ways to generate distinct novel hypotheses of brain
dysfunction. All these models are then fitted to the per-
formance of patients to find which hypothesis (different
models) accounts best for the patients’ performance (Maia
and Frank, 2011). The winning hypothesis can then be re-
fined in an attempt to explain the deficits at lower levels
of description, or used to devise new experimental tests
that will precisely assay the dysfunction suggested by the
winning hypothesis. However, this strategy assumes that
all the competing hypotheses of dysfunction are tested si-
multaneously on the same dataset (Ahn and Busemeyer,
2016). Failure to test for all the competing hypotheses
could result in conflicting research output, and misleading
conclusions (Ahn and Busemeyer, 2016).

Computational techniques have been used not only as a

tool to inform on the origins and mechanisms of a dis-
order, but also for diagnosis and prognostic of treatment
efficacy (e.g. machine learning classification techniques –
e.g. Chekroud et al., 2016). These latter techniques are
promising and could potentially lead to automated classi-
fication and “model-based assays” used to diagnose men-
tal disorders (Chekroud et al., 2016; Stephan and Mathys,
2014). In this review, however, we focus on the former
type of models that attempt to understand the origins and
mechanisms of mental disorders.

2. Questions, aims and methodology

The aim of this review is to synthesise the expanding
literature of computational modelling of schizophrenia and
psychotic symptoms and address the following questions:

• What predictions have computational models been
able to achieve in terms of explaining the mecha-
nisms of psychotic symptoms in schizophrenia?

• How well did these predictions hold up to the accu-
mulated empirical evidence?

• Are there specific hypotheses that have been left rel-
atively under-investigated?

To extract an exhaustive bibliography of computational
models in schizophrenia and psychosis, we used regular ex-
pressions to search through the PubMed and Web of Sci-
ence databases using the following criteria:

Title and/or abstract including: (“schizo*” or “psy-
chos*” or “hallucin*” or “delusion*”) and (“neural?network*
or “comput* model*” or “model*” or “comput*” or “frame-
work”).

Exclusion criteria:. We excluded papers that were not in
English or peer-reviewed journals. Conference abstracts
and animal models without computational modelling were
discarded from this analysis, as well as computational mod-
els that were not designed to inform on the aetiology or
mechanisms of the disorder (e.g., models developed for di-
agnostic purposes, data analysis or to identify medication
interactions). This resulted in a list of more than 100 arti-
cles published between 1968 and 2016, comprising all lev-
els of description of the psychopathology of schizophrenia
(i.e. the “what?” “how?” and “why?” of Marr’s compu-
tational levels of analysis; Dayan and Abbott, 2005; Marr,
1982).

For the sake of clarity, we have classified hy-
potheses into the distinct categories of Dopamine,
Glutamate, GABAergic, Disconnection and Bayesian
inference, so that we could more readily compare
similar models against each other, and contrast
them against recently accumulated empirical ev-
idence. However, this is not to say that these hy-
potheses are mutually exclusive and incompatible
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with each other. On the contrary, a disruption of
one of these categories could result in a cascading
chain of events (Lewis and Gonzalez-Burgos, 2006;
Maia and Frank, 2016) so as to compensate for the
dysfunction, leading to downstream up or down-
regulation resulting in the symptoms we observe
in patients. For example, while dopamine appears
to be related to positive symptoms, the genesis
of the dopaminergic dysfunction in schizophrenia
may very well be the result of upstream gluta-
matergic and/or GABAergic deficits.

3. The Dopamine (D2) hypothesis

3.1. Experimental evidence

The dopamine hypothesis has been popular in the search
for aetiological factors of schizophrenia. The hypothesis
emerged from the discovery of first generation of anti-
psychotic drugs (APD), which relieve patients from posi-
tive symptoms by blocking dopamine D2 receptors (D2r).
Consistent with these findings, further support originated
from the discovery of several psychotomimetic drugs (i.e.,
such as amphetamines) that can induce psychotic-like episodes
in healthy individuals by increasing sub-cortical DA lev-
els (Corlett et al., 2009a; Grace, 1991; Jentsch and Roth,
1999). Over the past decade, the dopamine hypothesis has
been supported by various neuroimaging studies reporting
increased pre-synaptic dopamine synthesis and storage in
the striatum of acutely psychotic patients (Fusar-Poli and
Meyer-Lindenberg, 2013; Howes and Kapur, 2009; Howes
and Murray, 2014). These dopamine levels were found to
directly correlate with the degree of cognitive deficits and
positive symptoms (Howes and Kapur, 2009; Howes and
Murray, 2014). Additionally, increases in D2 dopamine
receptors densities have been identified in the striatum of
patients, together with reduced receptor densities in the
thalamus and the anterior cingulate cortex (Howes and Ka-
pur, 2009), although these effects appear to be relatively
small (Howes and Murray, 2014). Recent reviews suggest
that the influence of striatal D3 receptors in schizophrenia
are not significant (Howes and Kapur, 2009; Howes and
Murray, 2014), further supporting the role of D2 receptors
in psychosis. Consistent with the DA hypothesis, many
of the top genetic risk factors of developing schizophrenia
involve genes directly interacting with the dopaminergic
pathways (Frank, 2008; Hall et al., 2009; Howes and Ka-
pur, 2009; Winterer and Weinberger, 2004; for a review
see Howes et al., 2016). While it is likely that excessive
D2r-activation is directly involved in psychosis, scientists
are still attempting to link the molecular level anomalies
to behaviour and positive symptoms. One difficulty is that
increased striatal dopaminergic D2r and decreased frontal
D1r densities are found to more easily explain cognitive
deficits and negative symptoms than positive symptoms
(Maia and Frank, 2011).

3.2. Models and support

Within the computational literature supporting the dopamine
hypothesis, we identified four main categories of models
that support a deficit in dopaminergic transmission, namely:
a decreased signal-to-noise ratio (SNR), inappropriate sen-
sory gating, aberrant salience and abnormal reward pre-
diction error (RPE).

3.2.1. Signal-to-noise ratio (SNR) models

Early computational models attempted to explain cog-
nitive deficits in schizophrenia through a generalised de-
cline of the signal-to-noise ratio (SNR) of cortical neurons.
Specifically, in these models, DA was thought to function
as a signal-to-noise enhancer that modulates neuronal ac-
tivity by amplifying the neurons’ signal while reducing dis-
tortions induced by cortical noise.

SNR in connectionist Frameworks

In artificial neural networks (i.e., interconnected net-
works of simple processing units called neurons by anal-
ogy with the neural system), the signal-to-noise ratio can
be altered by changing the neurons’ gain or bias param-
eter (Aakerlund and Hemmingsen, 1998). This directly
influences the activation pattern and the stochastic ac-
tivity of the neurons in the system. SNR models tradi-
tionally focused on modelling cognitive symptoms and the
performance of patients in tasks where they usually show
deficits (e.g., Continuous Performance Task, Stroop Task,
Rorschach inkblots, Wisconsin Card Sort Test (WCST),
Facial Affect – Amos, 2000; Carter and Neufeld, 2007; Co-
hen and Servan-Schreiber, 1992, 1993; Jobe et al., 1994;
Monchi et al., 2000; Peled and Geva, 2000). In these
models, poor performance on cognitive tasks stems from
working-memory deficits in units representing the prefrontal
cortex (PFC), due to a low signal-to-noise ratio. Through
a complete exploration of the parameter space from low to
high gain modulation (i.e. hypo-dopaminergic to hyper-
dopaminergic states), the models addressed the validity of
different dopamine dysfunctions leading to the observed
reduced performance. All these models reached the same
conclusions, namely that prefrontal DA hypo-function was
responsible for the deficient cognitive performance observed
in patients (Amos, 2000; Carter and Neufeld, 2007; Co-
hen and Servan-Schreiber, 1992, 1993; Jobe et al., 1994;
Monchi et al., 2000; Peled and Geva, 2000). With respect
to working-memory, low DA levels are thought to result
in a signal that is easily corrupted by internal cortical
noise which in turn becomes incapable of transmitting and
maintaining meaningful contextual information about the
ongoing task (Cohen and Servan-Schreiber, 1992, 1993).
Another theory suggests that DA hypo-function results
in a failure to update task relevant information into WM
(Amos, 2000). A deficit in WM updating would then re-
sult in a failure to switch to new contextual information,
and lead to perseverative behaviour (Amos, 2000). Indeed,
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in switching-tasks such as the WCST where participants
are required to infer a sorting rule that changes once it has
been correctly acquired, patients are usually able to infer
the initial rule but consistently fail to flexibly update it
once it has been changed.

A possible criticism of these models is that they can only
account for poor cognitive performance following a hypo-
dopaminergic state (low SNR). While frontal hypo-dopaminergia
is consistent with neuroimaging findings in schizophrenia
(Howes and Kapur, 2009), it has been shown experimen-
tally that weak or excessive frontal D1r activation also
lead to poor working-memory performance (Vijayraghavan
et al., 2007). In the SNR models, however, increasing the
gain of neuronal units so as to model a hyper-dopaminergic
state leads to a high SNR, which would result in an im-
provement rather than a deterioration of cognitive per-
formance. Such models thus fail to account for working-
memory deficits following frontal hyper-dopaminergia.

SNR in attractor networks (cortical stability)

Hopfield attractor networks (Hopfield, 1982, 1984) are
recurrent artificial neural network of binary units used to
model memory storage and retrieval. Such models have
also been used to model patients’ behaviour by adding
SNR perturbations to the network. During training, these
networks can be made to store specific patterns of acti-
vation (memories) by updating the weights of connections
between neuronal units. After training, the network can
recover an entire memory from a degraded or partial mem-
ory input by gradually flowing into the closest pattern of
activation (attractor). All the attractors learnt by that
network (memories) collectively form the attractor land-
scape. Such models have usually been used to explain the
occurrence of spurious memories (hallucinations; Chen,
1994, 1995; Rolls et al., 2008) or specific aspects of posi-
tive symptoms such as the perseverance of delusions (Rolls
et al., 2008).
In early models, Spitzer (1995) argued that a hyper-dopaminergic
state in cortical networks results in a high SNR, leading to
strongly anchored activation of memories encoding high-
level constructs such as ideas, concepts and meanings,
(Spitzer, 1995). Consistent with this hypothesis, Rolls
et al. (2008) argued that the perseverance of delusions
could be explained by the depth of the basins of attractions
in the attractor landscape of the network, where again at-
tractors would correspond to ideas, meanings or an inter-
pretation of the environment. That is, the depth of the
basins of attraction would prevent unlearning or switching
to new attractors (new ideas or interpretation), leading
to a perseverance and an inability to adapt to novel cues
from the environment (Rolls et al., 2008). In Hopfield net-
works, the SNR is modulated by changing the temperature
parameter of the neurons, which in turn alters their firing
probabilities. A low SNR leads to the inability for the net-
work to recover learnt memories due to a high amount of

noise. A high SNR instead results in recurring patterns of
activation, irrespective of the original input, or spurious
memories, analogous to delusional thoughts or hallucina-
tions (Chen, 1994, 1995). When studying the whole spec-
trum of temperature changes, Chen (1994; Chen, 1995)
predicted an inverted-U response profile, whereby interme-
diate temperatures induced normal behaviour and memory
retrieval, high temperature resulted in parasitic foci/spurious
attractors analogous to hallucinations and delusions (pos-
itive symptoms), while low temperature impeded mem-
ory retrieval (i.e., cognitive deficits). Interestingly, the
inverted-U response profile in working-memory performance
was later validated experimentally by electrophysiologi-
cal recordings of primates’ PFC neurons during working-
memory tasks (Cools and D’Esposito, 2011; Vijayraghavan
et al., 2007).

Recent implementations of attractor networks have reached
a high level of biological and physiological detail using
integrate-and-fire spiking neurons together with realistic
AMPA, GABA, NMDA and DA pathways (with D1r vs.
D2r mediated SNR; Rolls et al., 2008). In these studies,
GABAergic interneurons inhibit the activity of excitatory
neurons that are not encoding the current memory so as to
keep the activated memory pattern stable, while NMDA
receptors modulate the stochastic firing probabilities of
the pyramidal cells. DA modulates the SNR by stabil-
ising the firing patterns of NMDA and GABA activity,
whereby a D1-dominated state increases excitatory and
inhibitory activity leading to deeper basins of attraction,
while D2-dominated states flatten the energy landscape
and facilitates jumps from one attractor to the other. The
reduction of excitatory (NMDA) and inhibitory (GABA)
activity leads to an impossibility for the network to keep
the firing patterns stable, resulting in random jumps be-
tween attractors. These random jumps have been argued
to be responsible for the positive symptoms and cognitive
deficits observed in schizophrenia (Loh et al., 2007; Rolls
et al., 2008).

These models make precise and valuable neurophysiologi-
cal predictions regarding the global inhibitory and excita-
tory activity of the cortical networks in patients vs. that
of healthy controls. It would be extremely valuable to be
able to test these experimentally. However, such predic-
tions are difficult to test using present neuroscientific tools
(typical neuroimaging tools simply do not have the reso-
lution required to monitor the activity of excitatory & in-
hibitory neurons, while invasive multi-electrode recording
can only be used serendipitously in patients undergoing
epilepsy surgery). The models presented above suggest
that, at the cognitive level, attractors encode high-level
constructs such as ideas, meaning, concepts or interpreta-
tions. These predictions are also challenging to test ex-
perimentally, as high-level constructs are likely to be en-
coded over a wide array of sparsely interconnected neurons
(Huth et al., 2016). However, it may be possible to test
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some of these neurophysiological predictions and the effect
of DA manipulation in vitro using multi-electrode record-
ing of neural cell-cultures derived from patients’ induced
pluripotent stem cells (Brennand et al., 2011).

3.2.2. Sensory Gating Models

Sensory gating was the earliest theory of abnormal
dopamine function in schizophrenia implemented using com-
putational models (Callaway and Naghdi, 1982; Carr and
Wale, 1986). This theory postulates that the brain has to
gate relevant information to working-memory and filter-
out irrelevant stimuli from all modalities. This mechanism
enables subjects to flexibly adapt their behaviour to the
demands of particular tasks, favouring the processing of
task-relevant information over other sources of competing
information. This process, also known as cognitive con-
trol (Cohen et al., 1996), is thought to be automatic. In
these models, the sensory gating process works by pre-
venting task-irrelevant stimuli to access working memory,
while maintaining the integrity of task-relevant informa-
tion against distractors and is assumed to be related to
DA signalling (Cohen et al., 1996). Biologically, the gat-
ing of relevant information is thought to occur through
the simultaneous phasic burst of DA neurons when rele-
vant stimuli are presented, while tonic DA is though to be
responsible for the maintenance and protection of working-
memory (Tretter and Albus, 2007). In schizophrenia, sen-
sory gating would be disrupted due to inappropriate phasic
and tonic dopaminergic signalling, leading to incorrect up-
dates (intrusion of irrelevant stimuli) and maintenance of
information (perseveratory behaviour). This would finally
lead to deficits in attention and cognition (Grace, 1991).
Gating models traditionally used connectionist frameworks
to reproduce the performance of healthy controls or the
perseveratory behaviour of patients at the WCST and CPT,
CPT-X tasks (Braver et al., 1999; Braver and Cohen, 1999).
In these models, the DA signal exerts a top-down influence
on behaviour by gating task-relevant information, allow-
ing the update, maintenance and protection against dis-
tracting stimuli (Braver et al., 1999; Braver and Cohen,
1999). Such models of working-memory gating converged
to similar conclusions, namely, that DA hypo-function was
most likely to be responsible for the cognitive deficits ob-
served in schizophrenia (Braver et al., 1999; Braver and
Cohen, 1999). Additionally, a number of descriptive mod-
els (i.e. not formalised using computational simulations;
Javanbakht, 2005, 2006) also concurred with earlier mod-
els, also suggesting that a DA hypo-function would lead to
positive symptoms due to weakened top-down behavioural
control (Javanbakht, 2005, 2006). Finally, using a connec-
tionist framework of facial affect recognition, Carter and
Neufeld (2007) attempted to address a question that is
often neglected in the literature: Why are patients with
schizophrenia constantly found to exhibit reaction-time
deficits in cognitive tasks? In this model, inefficient gating
of information led to an overflow of incoming stimuli, re-

sulting in additional processing for task completion. The
increased amount of processing leads to a reaction-time
escalation, as observed in patients (Carter and Neufeld,
2007). It is worth noting however that these patients were
receiving medication, which provides an alternative expla-
nation for the increased processing times. Importantly,
increased reaction-time is not specific to schizophrenia; it
has also been observed in other psychiatric conditions such
as major depressive disorder (Austin et al., 2001).

3.2.3. Aberrant Salience Model

The aberrant ‘motivational salience’ hypothesis has its
origins in a recent interpretation of the role of DA as sig-
nalling rewards associated to stimuli so as to guide be-
haviour (Berridge, 1998; Wise, 1978). An aberrant ‘mo-
tivational salience’ is an incorrect assignment of motiva-
tional salience to innocuous stimuli, where DA acts as an
indicator of motivation, desire, or attention attributed to a
stimulus (Howes and Kapur, 2009; Kapur, 2003). The the-
ory of incentive or ‘motivational salience’ was first used to
explain drug addiction, where inappropriate rewards for
drug intake gradually increase the motivational drive to
relapse and repeat behavior (Berridge, 1998; Redish et al.,
2008; Torregrossa et al., 2011). In schizophrenia, scien-
tists have posited that an aberrant DA signalling would re-
sult in incorrect stimulus-reinforcer associations, attribut-
ing inappropriate salience to innocuous stimuli (Abboud
et al., 2016; Anticevic et al., 2011; Gray et al., 1991; Howes
and Kapur, 2009; Kapur, 2003; Roiser et al., 2013, 2009).
This inappropriate salience attribution is hypothesised to
lead to an increase and perseverance of delusional think-
ing, even in the face of opposing evidence (Anticevic and
Corlett, 2012; Corlett et al., 2009b; Howes and Kapur,
2009; Kapur, 2003). Recent behavioural and neuroimag-
ing experiments appear to confirm the link between aber-
rant salience, DA signalling and the strength of delusions
in schizophrenia patients (Roiser et al., 2009; Romaniuk
et al., 2010) and patients at ultra-high risk (UHR) of psy-
chosis (Roiser et al., 2013), but not in patients with long-
standing treatment-refractory persistent delusions (Abboud
et al., 2016).

Grasemann et al. and Hoffman et al. (2009; 2011) adapted
the aberrant salience framework using a connectionist model
of story learning and recall to study thought disorder (delu-
sions and derailments). This model mimics the multi-
ple stages of syntax processing, where in each processing
stage, artificial neural networks are trained to recall chains
of words and sentences to reproduce a previously learnt
story from a partial original input. The model is trained
to learn the sequences of words and sentences through
back-propagation. Excessive DA signalling during learning
(termed ‘hyperlearning’ by Grasemann et al., 2009; Hoff-
man et al., 2011), was modelled by increasing the learning
rate of the last 500 training cycles of the model. This ma-
nipulation was argued to be consistent with the aberrant
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salience hypothesis. That is, since increased DA transmis-
sion would lead to an aberrant assignment of salience, it
should eventually result in excessive learning. The authors
also implemented various alternative mechanisms such as
working memory dysconnection (loss of synaptic connec-
tions) and hypo-dopaminergic states (as in the sensory
gating models presented above) by altering the gain and
bias of the response curve of neurons. When comparing
the performance of each model to that of controls and
schizophrenia patients, only the hyperlearning and dyscon-
nection models provided satisfactory fit to the data. How-
ever, the hyperlearning achieved the best fit to the exper-
imental data. The hyperlearning model could account for
derailments from the original story through a confusion
between the characters of different stories (‘agent-slotting
errors’) leading to delusion-like ideas (Grasemann et al.,
2009; Hoffman et al., 2011). Specifically, these studies
suggest that fixed delusions could stem from contaminated
memories (i.e. due to misappropriated agents/characters
between stories). However, it is difficult to verify whether
‘agent-slotting errors’ genuinely lead to false beliefs (delu-
sions) as the authors argue. That is, a falsely recon-
structed story within the model can stem from an incorrect
recombination of memories during recall, but this appears
to be in contrast with the idea that delusions are false
beliefs strongly anchored in memory. However, it is inter-
esting that out of all types of story recall errors that were
possible, agent slotting errors were the most frequent, as
is observed experimentally in the subgroup of patients ex-
hibiting delusions.
Earlier studies used connectionist frameworks to describe
how the aberrant salience hypothesis might lead to cog-
nitive deficits as well as negative symptoms (Grossberg,
1999, 2000). Particularly, such models were interested
in investigating how symptoms might arise from impaired
amygdala circuits and abnormal arousal levels in patients
(Grossberg, 1999, 2000). In these studies, the arousal level
was assumed to be driven by dopamine and to follow an
inverted-U response profile. Specifically, DA release was
postulated to drive the amygdala circuits, where hypo-
dopaminergic or hyper-dopaminergic activation would lead
to a reduced top-down control resulting in an inability
to block incentive stimuli (Grossberg, 1999, 2000). These
models were solely descriptive however, and were not tested
using simulations, making it difficult to draw testable pre-
dictions.

3.2.4. Prediction Error

The reward prediction error (RPE) hypothesis is the
most recent interpretation of dopamine function. The the-
ory dates back to the 60’s when Sokolov (1960) proposed
that our internal representation of the environment should
be updated as a function of a mismatch between the pre-
dicted and actual stimuli (Schmajuk, 2005). This theory
was later supported by clinical studies in animals and hu-
mans revealing that the midbrain dopaminergic signal was
consistent with the expected reward signal of the tem-

poral difference (TD) learning algorithm (Schultz et al.,
1997). Reward prediction-error models do not necessarily
contradict sensory-gating and signal-to-noise models dis-
cussed in earlier paragraphs. These models focused al-
most exclusively on modelling prefrontal cortices and pre-
date the finding of associative learning through dopamin-
ergic reward prediction-error signalling. This explains why
such earlier models did not discriminate direct and indi-
rect dopamine pathways (D1r vs D2r) or tonic vs. phasic
activity of dopaminergic neurons. Interestingly, the pre-
dictions made by these early computational studies of DA
function (SNR, attractors, sensory gating), which mostly
suggest that cognitive deficits stem from low prefrontal
dopamine (D1r) activation, are still valid. Recent stud-
ies (e.g. aberrant salience and prediction error) aim at
uncovering different phenomena: the role of dopamine in
the basal ganglia and learning and how impaired learn-
ing lead to the emergence of positive symptoms & cogni-
tive deficits. In associative learning experiments, the DA
signal originating from the ventral tegmental area (VTA)
is found to be similar to the reward prediction error sig-
nal used to drive learning in the TD-learning algorithm
(Schultz et al., 1997; Smith et al., 2005). The DA sig-
nal is interpreted as the biological substrate of the re-
ward prediction error, where an expected outcome leads
to tonic DA release, unexpected positive outcome leads
to phasic DA release and unexpected negative outcome
are represented by dips of DA release below the tonic
baseline (lack of expected reward; Grace, 1991). Consis-
tent with these findings, Smith et al. (2003, 2004, 2007)
successfully modelled patients’ cognitive deficits in asso-
ciative learning tasks by modelling aberrant DA reward
prediction-error, which disrupts learning. The simulations
successfully matched the behavioural performance of ro-
dents in experimental studies using amphetamines and
anti-psychotics as pharmacological models of schizophre-
nia (Smith et al., 2003, 2004, 2007). Recent computational
models from Frank & colleagues (Frank, 2008; Frank and
Claus, 2006; Maia and Frank, 2011; O’Reilly and Frank,
2006; Waltz et al., 2007) also provide a very detailed mech-
anistic account of the direct and indirect pathways of the
basal ganglia and how these pathways interact with frontal
cortices. These cortico-basal-thalamo-cortical models have
been able to provide a detailed account of motor and cog-
nitive deficits in patients with Parkinson’s disease (Frank
et al., 2004; Maia and Frank, 2011; Moustafa et al., 2008a,b).
Investigating the indirect and direct pathways modulated
by D2r and D1r (indirect/NoGo and direct/Go pathways)
could lead to novel predictions regarding D2r vs. D1r
mediated cognitive deficits in schizophrenia (i.e. impair-
ment in positive as opposed to negative reinforcers; Frank,
2008).

Using associative learning and functional magnetic res-
onance imaging (fMRI), multiple studies have identified
strong distortions in the expected reward prediction-error
signal of patients (Corlett et al., 2007b; Gradin et al.,
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2011; Murray et al., 2008; Roiser et al., 2013, 2009). Inter-
estingly, the distortion magnitude of the prediction error
signal was highly predictive of positive symptom severity
(delusions; Corlett et al., 2007b; Gradin et al., 2011; Mur-
ray et al., 2008; Roiser et al., 2013, 2009; Romaniuk et al.,
2010). These findings led to suggest that the RPE hypoth-
esis is consistent with the aberrant salience hypothesis.
That is, delusions might stem from faulty PE that fails to
discriminate between logical, rational or adaptive associa-
tions in the environment such that patients would attend
to stimuli they should normally ignore (Frank, 2008).

Interestingly, the original interpretation of the
function of the midbrain dopaminergic signal as a
RPE driving learning has recently given place to a
more refined view, distinguishing different types of
DA signals and functions (Bromberg-Martin et al.,
2010; Grace, 2016; Schultz, 2016). Particularly, it
appears that the DA response to stimuli consists
of two distinct signals, a saliency signal and a valu-
ation signal, that operate sequentially on a narrow
timescale (Bromberg-Martin et al., 2010; Schultz,
2016). The first signal – the saliency signal – op-
erates just after the stimulus presentation and re-
sponds positively (phasic bursts) to both reward-
ing and punishing events. It is thought to encode
a measure of attention or stimulus ‘salience’ and
is modulated by the novelty, intensity or physical
characteristics of the stimulus to bring attention
to potentially important and relevant information
(Schultz, 2016). The second signal – the valuation
signal – is the RPE, responding positively (phasic
activity) to unexpected positive rewards, neutrally
(tonic activity) to expected rewards and negatively
(dips in tonic activity) to punishments. The val-
uation signal drives appetitive and avoidance con-
ditioning, leading to the motivational drive to en-
gage and approach rewarding stimuli (Bromberg-
Martin et al., 2010; Schultz, 2016). These two
signals are complementary and appear to origi-
nate from two different populations of dopamin-
ergic neurons within the SNc (Bromberg-Martin
et al., 2010; Grace, 2016). Interestingly, this means
that both aberrant motivational valuation and aber-
rant attentional salience could be present concur-
rently. Particularly, due to the signals’ close tem-
poral proximity, it is believed (Schultz, 2016) that
any overall increase in DA transmission could lead
to an overlapping of the saliency and value sig-
nal, resulting in false valuation, and aberrant mo-
tivational drive. Grace (2016) proposes a detailed
circuitry of these networks, delineating the corti-
cal and subcortical mechanisms and glutamatergic
dysfunctions that could lead to such aberrant DA
signalling in schizophrenia.

4. The Glutamate hypothesis

4.1. Experimental Evidence

The glutamate hypothesis refers to the theory that glu-
tamatergic signalling might be disrupted in schizophrenia.
N-methyl-D-aspartate (NMDA) receptors are glutamater-
gic receptors known to be essential for synaptic plasticity
and learning through the stabilisation of synaptic connec-
tions (long term potentiation (LTP); Kandel et al., 2013).
Consistent with this hypothesis, increases in the expression
of NMDA receptors of subtype NR2D were identified in the
prefrontal regions of patients with schizophrenia (Akbar-
ian et al., 1996 – NR2D mediated NMDAr are considered
”hyperexcitable”, and the increase observed in schizophre-
nia is believed to be a compensatory response from reduced
prefrontal activity). Secondly, psychotomimetic drugs such
as Phencyclidine (PCP) and Ketamine that block NMDA
receptors (NMDAr antagonists) lead to negative symp-
toms, cognitive deficits and delusion-like ideation in healthy
individuals (Javitt, 1987; Javitt and Zukin, 1991; Jentsch
and Roth, 1999). As a result, Ketamine has been widely
used as a pharmacological model of schizophrenia (An-
ticevic et al., 2012; Corlett et al., 2013, 2011; Honey et al.,
2006; Javitt, 1987; Javitt and Zukin, 1991; Moore et al.,
2011). This led to the widely accepted hypothesis that
schizophrenia patients might suffer from deficient NMDA
receptors (NMDA receptor hypo-function; Honey et al.,
2006; Javitt, 1987; Javitt and Zukin, 1991; Jentsch and
Roth, 1999). More recently, it has been shown that genet-
ically engineered NRG1 mice (NRG1 encodes the neureg-
ulin protein, essential to NMDA receptor maturation) dis-
played abnormal behaviours reminiscent to those schizophre-
nia patients: abnormal social interactions, increased anx-
iety, abnormal levels of DA release and hypersensitivity
to amphetamines, all of which can be reversed with anti-
psychotics (Powell et al., 2009).

4.2. Models and support

While DA is widely accepted as playing a major role
in psychotic symptoms, the glutamate hypothesis remains
a strong potential candidate to explain the aetiology of
schizophrenia as a whole. One reason for this is that
the glutamate hypothesis can account for a wider range
of symptoms, inducing positive, cognitive and negative
symptoms when using ketamine or PCP in healthy con-
trols (Javitt, 1987; Javitt and Zukin, 1991; Jentsch and
Roth, 1999). However, it is worth noting that no pharma-
cological treatment affecting glutamate has been found to
be effective to date in schizophrenia (Papanastasiou et al.,
2013).

The glutamate hypothesis is relatively recent in compar-
ison to the DA hypothesis, and as a result fewer com-
putational models have been developed to assay its va-
lidity. Such models (e.g. Murray et al., 2012) consist
mostly of biophysical models using integrate-and-fire neu-
ral networks that simulate memory or working-memory
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storage and retrieval through attractor networks. These
networks provide realistic simulations of the interactions
between excitatory and inhibitory (E/I) activity in corti-
cal areas relevant to the task being modelled (e.g. hip-
pocampus and/or prefrontal cortex). That is, making a
number of assumptions regarding the topology of the net-
work (e.g. Mexican hat connectivity), these models can
predict the E/I balance within cortical areas that is nec-
essary for memory storage and retrieval. While such real-
istic neural networks provide very detailed predictions at
the biophysical level, these predictions are difficult to val-
idate experimentally. In fact, as mentioned earlier, most
of the data and measurements acquired in schizophrenia
comes from neuroimaging or behavioural experiments, and
are thus difficult to relate to predictions regarding precise
neural activity.

4.2.1. NMDA receptor hypofunction - Cortical Stability

Models supporting the glutamate hypothesis usually
explain cognitive deficits and/or negative symptoms through
NMDA receptors hypo-function in the PFC (Hsu et al.,
2008; Murray et al., 2012; Wang, 2006) or through a com-
bination of NMDA receptors hypo-function in the PFC
and the hippocampus (Diwadkar et al., 2008; Siekmeier
et al., 2007). Wang (2006) simulated prefrontal networks
of working-memory using integrate-and-fire neural networks.
In this model, pyramidal cells (excitatory) and inhibitory
interneurons were differently modulated by NMDA recep-
tors. Wang (2006) then tested whether such biophysically
realistic attractor networks can simulate the sustained ac-
tivity of PFC neurons observed during delayed-response
tasks in primates. The author found that realistic mod-
els of WM maintenance can be instantiated by attractor
networks, but that a precise E/I balance is critical in or-
der to filter out distracting stimuli (Murray et al., 2012;
Wang, 2006). A second class of models also addressed
NMDA receptor hypo-function in the hippocampus (Di-
wadkar et al., 2008; Siekmeier et al., 2007). For exam-
ple, Siekmeier et al. (2007) used a connectionist model
of the hippocampus to simulate associative learning and
context-dependent retrieval of verbal stimuli. The model
predicted that NMDA receptor hypo-function in the hip-
pocampus would result in poor memory retrieval (Siek-
meier et al., 2007). Interestingly, the authors argue that a
hyper-dopaminergic activation of the hippocampus would
also result in NMDA receptor hypo-function, again lead-
ing to poor memory retrieval.
A possible criticism of this study is that patients seem
to usually display memory encoding deficits rather than
memory retrieval, and that a memory retrieval deficit may
be linked to the cortex rather than from the hippocampus
depending on the type of memory involved (short term vs.
long term memory). Particularly, it is important to note
that the different models presented here investigated differ-
ent types of memory (Baddeley, 1987). Siekmeier (2009)
was modelling deficits in verbal short-term memory, while
Murray et al. (2012); Wang (2006) were investigating spa-

tial working-memory networks. These two types of mem-
ory are known to involve different cortical processes and
memory systems.

4.2.2. Realistic biophysical models - Cortical stability &
Signal-to-Noise ratio

Earlier attractor network models were the precursors
of the latest biophysical models, which use AMPA, NMDA
and GABA receptors to model working-memory (Loh et al.,
2007; Rolls et al., 2008). In these models, the balance be-
tween inhibitory (GABA) and excitatory signals (AMPA/NMDA)
is critical. First, in a combined experimental and computa-
tional setting, Wolf et al. (2005) studied the bistability (i.e.
the switching between an up or down state) of medium
spiny neurons in the Nucleus Accumbens (NAcc), which
has been proposed to serve for gating purposes in working-
memory (Gruber et al., 2006). Their model predicted that
the medium spiny neurons (MSN) would require sustained
excitatory inputs (from about 1000 afferent) in order to
maintain a stable depolarised (up) state. In this model,
NMDA receptor hypo-function is predicted to lead to an
inability for MSN to express bistable activity and to im-
pede gating or integration of information. Another study
by Loh et al. (2007) addressed the interactions between in-
hibitory (GABA) and excitatory (NMDA/AMPA) activity
on the dynamics of a working-memory attractor network.
The authors found that an imbalance in excitation or inhi-
bition led to the instability of the whole system, resulting
in unstable working-memory. Such instability resulted in
changes in the attractor landscape. Decreased excitatory
activity led to jumps from one attractor to another due
to an increased stochastic firing of the neurons in combi-
nation with shallower attractor states. As a result, mem-
ories were unstable. In this model, a decrease in both
excitation (NMDA) and inhibition (GABA) results in a
flat attractor landscape. The authors argue that a flat at-
tractor landscape in temporal areas would lead to jumps
between trains of thoughts. This prediction is also in line
with previous experiments showing excessive amounts of
noise in the temporal (auditory) cortices of patients, es-
pecially during auditory hallucinations. Interestingly, al-
though supporting the glutamate hypothesis, the authors
managed to adapt the model using the work from Durste-
witz and Seamans (2008), so as to also account for the
role of DA in modulating network activity. The authors
found that intermediate levels of DA modulate the SNR
in frontal areas. That is, D1 receptor activation enhance
both excitatory (NMDA) and inhibitory (GABA) activity
resulting in an increased stability of the network (increase
in SNR), while D2 receptor activation has the opposite
effect and reduce the signal-to-noise ratio. The authors
argue that this mechanism could potentially explain the ef-
fects of anti-psychotic medications by stabilising deficient
attractor networks through a decrease in D2 receptors ac-
tivity.
It is worth noting however, that the majority of dopamin-
ergic receptors in the frontal cortex seem to be of the D1r
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subtype (Howes and Kapur, 2009) and that D2r activa-
tion have previously been found to have no effect on WM
networks (Wang et al., 2004). Again, while these studies
provide interesting insights on the possible link between
DA, SNR and attractor dynamics in schizophrenia, the
model predictions are difficult to relate to experimental
data, which mostly consists of behavioural and/or imag-
ing data.

5. The GABA hypothesis

5.1. Experimental evidence

Lewis and Hashimoto (2005) observed anomalies in
GABAergic interneurons of schizophrenia patients. Namely,
they found that GABA synthesis and re-uptake was al-
tered and diminished in the dlPFC leading to disrupted
gamma oscillations and de-synchronisation. Also, DA neu-
rons appear to provide direct synaptic input to parvalbumin-
expressing GABA interneurons in the dlPFC of primates,
suggesting a possible modulation of GABAergic inhibition
through DA activation (Lewis and Hashimoto, 2005).

5.2. Models and support

Very few computational models support the GABAer-
gic hypothesis alone, but rather integrate GABAergic in-
hibition with NMDA hypo-function to model biologically
realistic simulations of cortical function, stability and syn-
chrony (Loh et al., 2007; Murray et al., 2012; Rolls et al.,
2008).

5.2.1. Cortical stability

Each of the models that investigated the GABA hy-
pothesis explored different aspects of inhibitory dysfunc-
tion in schizophrenia (Spencer, 2009; Tanaka, 2008). In
Tanaka (2008), the effects of GABAergic activation through
dopamine D1r modulation were investigated using a pure
mathematical model of balanced inhibitory and excitatory
activity. The author established through parameter ex-
ploration that for intermediate levels of D1r activation,
GABA inhibits noise in the dlPFC circuitry of working-
memory (increased SNR). The model of Spencer (2009) in-
vestigated the link between the GABA and the dysconnec-
tion hypothesis (which we detail below). Their integrate-
and-fire model suggests that a deficient inhibition would
lead to disrupted γ-rhythms as observed in schizophrenia.
γ-rhythms, if disrupted, would disturb cortico-cortical syn-
chrony and eventually result in a functional dysconnection
syndrome.

6. The dysconnection hypothesis

6.1. Experimental evidence

The dysconnection hypothesis states that schizophre-
nia is associated with reduced synaptic connectivity (in
which case it is sometimes spelt ‘disconnection’ – lack of

connectivity) or dysfunctional connectivity (i.e. dyscon-
nection – abnormal functional connectivity) primarily in
the mesocortical pathway (i.e. midbrain dopamine and
serotonin afferent to the PFC) and between cortical areas
such as the frontal cortex and the temporal lobes (Fris-
ton, 1996; Lawrie et al., 2002; Pettersson-Yeo et al., 2011;
Stephan et al., 2009). This theory is supported by several
post-mortem or neuroimaging studies revealing anatom-
ical (Kubicki et al., 2007, 2005; Samartzis et al., 2014)
and functional dysconnection (Dauvermann et al., 2013;
Dima et al., 2010; Lawrie et al., 2002) in patients (for a
review see: Friston et al., 2016). It is known that the
normal developmental course of the mammalian brain be-
gins with an over-elaboration of neuritic processes, which
is then followed by a gradual reduction of synaptic density
during adolescence, reaching about 60% of maximum lev-
els in early adulthood (McGlashan and Hoffman, 2000).
Interestingly, the end of this developmental timeline coin-
cides with the age of onset of psychotic symptoms (first
episode), suggesting a late neurodevelopmental dysfunc-
tion during adolescence. Several post-mortem examina-
tions later found reduced spine densities and smaller den-
dritic arbors on prefrontal pyramidal cells of schizophre-
nia patients (Stephan et al., 2009). Additionally, decreased
synaptic protein messengers and synaptophysin were found
in the dlPFC of patients. Together these findings provide
a possible explanation for the observed decreased neuropil
without neural loss found previously in schizophrenia (Mc-
Glashan and Hoffman, 2000). It is worth noting, however,
that decreased neuropil appears in other mental disorders
and is not specific to psychotic illness.

6.2. Models and support

6.2.1. Cortical stability

Computational models of the dysconnection hypothe-
sis can be classified into three subcategories. First, simple
Hopfield networks were used to study positive symptoms
(David, 1994; Hoffman, 1987; Hoffman and Dobscha, 1989;
Seeman, 1994). In these models, dysconnection is usually
implemented by ‘pruning’ the synaptic connections be-
tween the units of the networks after training. The pruning
strategy adopted is a Darwinian ‘evolutionary’ process,
which eliminates weak and spatially distant connections
by setting their weights to zero. This eventually results in
an inability for the network to flow into previously learnt
patterns of activation and recover memories. When exces-
sive pruning is performed two types of behaviours emerge.
First, the network produces generalisations or ‘loose as-
sociations’, by merging parts of distinct memory patterns
into a single one, which was interpreted as a potential ex-
planation for bizarre trains of thoughts (thought disorder).
Secondly, the network could elicit spontaneous patterns of
activations, i.e. relentlessly recovering the same memory
output irrespective of the input presented or recovering
new memory patterns unknown to the model. The authors
argued that the spontaneous emergence of new memories
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was homologous to hallucinations. Hoffman was the main
instigator of this hypothesis in the field of schizophrenia.
His early models qualitatively supported the hypothesis of
an excessive pruning or memory overload in the disorder
(Hoffman, 1987; Hoffman and Dobscha, 1989). However,
simulations of these effects were quantitatively unrealis-
tic as up to 80% of ‘evolutionary’ pruning was required
for hallucinations to emerge. This specific hypothesis was
later disputed by David (1994), who on the contrary pro-
posed that positive symptoms may emerge from an hyper-
connectivity due to a deficit of the neurodevelopmental
pruning process. However, these conclusions appear to
be contradicted by experimental findings of reduced grey
matter and connectivity in schizophrenia. Following Hoff-
man’s suggestions, other researchers sought to expand the
model to account for the effects of environmental stress and
dopamine modulation (Chen, 1994, 1995; Seeman, 1994).
These effects were expressed in terms of memory overload
and increased network temperature. The models provided
a possible link between the positive symptoms and cog-
nitive deficits by incorporating dopamine as a signal-to-
noise enhancer, where too little or too much dopamine was
detrimental to the signal. In the mid 90’s, computational
studies started investigating the dysconnectivity hypoth-
esis from a different perspective, suggesting that positive
symptoms might stem from secondary self-repairing prop-
erties of the brain following cortico-cortical synaptic prun-
ing. When the cortico-cortical inputs connecting to the
working-memory units of the network were degraded, the
PFC tend to compensate by updating its local weights in
order to recover memory patterns. This, in turn, would
lead to increased WM noise resulting in the spontaneous
retrieval of memories in the absence of external inputs
(Horn and Ruppin, 1995; Ruppin, 1995; Ruppin et al.,
1996).

The second group of dysconnection models used three-
layer perceptrons to study hallucinated voices in patients
with schizophrenia (de la Fuente-Sandoval et al., 2005;
Hoffman, 1997; Hoffman and McGlashan, 1993a,b, 1997,
1999, 2001, 2006; McGlashan and Hoffman, 2000). These
networks were trained in an ad-hoc manner to associate in-
puts (phonemes) and outputs (words) using back-propagation.
The network then relied on an intermediate layer repre-
senting verbal working-memory to disambiguate current
phonemes. In the first implementations of this model, the
working-memory module was only a delayed copy of the
hidden layer (i.e. temporary buffer) used to bias and com-
pute temporally successive inputs (de la Fuente-Sandoval
et al., 2005; Hoffman, 1997; Hoffman and McGlashan, 1993a,b,
1997, 1999, 2001; McGlashan and Hoffman, 2000). Later
models modified the working-memory so as to use a Hop-
field network within the hidden layer (Hoffman and Mc-
Glashan, 2006). To account for the dysconnection syn-
drome, synaptic connections were removed following an
‘evolutionary’ approach as described previously. These
models generated particularly interesting predictions, whereby

synaptic pruning improved the performance of word recog-
nition by 50% when pruning up to 64% of the connections.
However, above 77% of pruning, hallucinated words i.e.
words detected without input started to occur and perfor-
mance decreased drastically. The authors suggested that
synaptic pruning during the neurodevelopmental stage of
late adolescence might actually be beneficial as it would
improve recall performance while reducing energetic costs.
The model also suggests that a failure to stop normal
synaptic pruning in early adulthood could account for the
onset of the disorder. Neuronal loss (Hoffman, 1997) and
deregulated hypo-dopaminergic modulation (Hoffman and
McGlashan, 2006; McGlashan and Hoffman, 2000) were
also addressed in this framework. However, both failed to
initiate “hallucinations”. Hypo-dopaminergic modulation
was implemented in this model as a shift of the bias to each
neural unit in WM (i.e. hidden layer), which protected
over-pruned networks against hallucinations (Hoffman and
McGlashan, 2006). Interestingly, under the assumption
that dopaminergic modulation does alter the bias of WM
units, the model could successfully account for the effects
of anti-psychotics against positive symptoms.

Other models studied cognitive impairments in schizophre-
nia at specific tasks such as facial affect recognition using
a three-layer perceptron (Johnston et al., 2001), episodic
memory deficits using a connectionist framework (Meeter
et al., 2002), and semantic priming using interconnected
Hopfield networks (Siekmeier and Hoffman, 2002). All
these studies converged to similar conclusions, namely that
synaptic pruning was found to degrade the performance of
the network. However, the causes of an excessive prun-
ing mechanism remains unknown and was largely left un-
touched in these studies. While genetic factors could be at
play, no experimental study has found a common genetic
component that would be responsible for this developmen-
tal deficit.

It is important to mention that while R.E. Hoffman
was the most prominent scientist defending the dyscon-
nection hypothesis through models of excessive pruning
processes (10 out of the 15 published modelling studies on
dysconnection), in later studies the author tested other
competing hypotheses of schizophrenia in a story-recall
task (Grasemann et al., 2009; Hoffman et al., 2011). In
that study, the authors found that only the dysconnection
and aberrant salience hypotheses could account for posi-
tive symptoms, but that the aberrant salience hypothesis
accounted best for the performance at story learning and
recall in the subgroup of schizophrenia patients exhibiting
delusions. Finally, recent work from Whitford et al. (2012)
hypothesised that frontal myelin damage in schizophre-
nia would lead to delays in the transmission of efference
copies & corollary discharge (copies of motor commands
& predicted sensory feedback). This delay would result in
an asynchrony between proprioception (sensory feedback)
and corollary discharge leading to sensory discrepancies.
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In such cases, a subject would perceive these sensory dis-
crepancies as-if their own actions were not self-generated.
This would result in delusions of control, that is, the false
belief that an external force controls one’s thoughts and
behaviour.

A recent review of the advances and accumulated empiri-
cal evidence regarding the dysconnection hypothesis (Fris-
ton et al., 2016) suggest that the dysconnection syndrome
may result from abnormal neuromodulation or synaptic
gain in neuronal microcircuits, where microcircuits imple-
ment hierarchical inference and abstraction over multiple
layers of the hierarchy using a predictive coding frame-
work. They propose that the dysconnection hypothesis
can be understood within the framework of Bayesian in-
ference (see below). In this framework, abnormal synaptic
gain would disrupt the inference mechanism, leading to in-
correct beliefs (false inference) about the causes of events
and sensory percepts, leading to psychotic symptoms.

7. The Bayesian inference hypothesis

Recently the brain has been viewed as a complex pro-
cessing machine used to interpret sensory inputs in order
to make sense of the environment (Franklin and Wolpert,
2011; Friston, 2005, 2010; Wolpert et al., 2011). According
to this theory, the brain evolved to interpret and infer the
cause and consequences from the environment in order to
predict future outcomes in the environment and minimise
surprises. This framework assumes that cognition can be
described in terms of Bayesian inference, where subjects
combine optimally sensory evidence (the likelihood, for e.g.
sensory inputs about a visual scene) and prior knowledge
or expectations (the prior, for e.g. knowledge about the
frequency of certain objects in the environment) so as to
form probability distributions relevant to the task at hand
(e.g. how likely is it to see a particular object in this en-
vironment?). It is argued that using this framework, if
perceptual biases or illusions occur, they would lead to
an effect of surprise. This surprise would then require
to logically explain these abnormal percepts by updating
the internal model of the environment, resulting in false
beliefs akin to delusions (Corlett and Fletcher, 2015; Cor-
lett et al., 2009a, 2007a, 2016, 2007b, 2009c; Fletcher and
Frith, 2009). Delusional content, would in turn bias ex-
pectations of future outcomes in the environment result-
ing in stronger perceptual biases (i.e. illusions or halluci-
nations). This spiralling effect would gradually result in
stronger, more salient illusions & false-beliefs, eventually
leading to full-blown complex hallucinations and deeply
anchored delusions.

7.1. Experimental evidence

The Bayesian brain hypothesis of schizophrenia has
received relatively little empirical testing and validation,

with the exception of studies investigating illusions (Craw-
ford et al., 2010; Dima et al., 2010, 2009; Horton and Sil-
verstein, 2011; Keane et al., 2013; Silverstein and Keane,
2011a,b; Tschacher et al., 2006; Williams et al., 2010) or
explicit statistical learning (Averbeck et al., 2011; Evans
et al., 2012; Freeman et al., 2008, 2014; Garety et al., 2013;
Garety and Freeman, 2013; Huq et al., 1988; Joyce et al.,
2013; Speechley et al., 2010). Such studies however, tend
to investigate either illusions or learning in isolation (i.e.
not first the acquisition of expectations through learning
and then the influences of these expectations on percep-
tion).
For illusory perception, patients with schizophrenia have
been found to be less susceptible than healthy controls at
the hollow mask illusion (Dima et al., 2010, 2009; Keane
et al., 2013), motion-induced blindness (Tschacher et al.,
2006), illusory motion (Crawford et al., 2010), the size-
weight illusion (Williams et al., 2010) and the Ebbinghaus
illusion (Horton and Silverstein, 2011) (for reviews of per-
ception in schizophrenia see (Notredame et al., 2014; Sil-
verstein and Keane, 2011a,b)). In healthy controls, Schmack
et al. (2013) recently demonstrated that the magnitude
of expectation-driven illusions correlated with delusional
ideation. That is, in line with previous studies on percep-
tual illusions in schizophrenia (Crawford et al., 2010; Dima
et al., 2010, 2009; Keane et al., 2013; Tschacher et al.,
2006; Williams et al., 2010), the authors found that the
stronger the delusions of healthy controls, the less likely
these were to have their percepts affected by expectations
(Schmack et al., 2013). Recently, Teufel et al. (2015) de-
scribed on the contrary how healthy subjects who demon-
strated schizotypal features, as well as patients with sub-
clinical levels of psychotic symptoms, relied significantly
more than controls on their priors to disambiguate noisy
sensory information in visual perceptual tasks. This sug-
gests that subjects displaying mild to moderate levels of
psychosis (akin to levels observed in the prodromal phase
of schizophrenia) may show a stronger reliance on their
prior relative to sensory evidence (or an equivalent down-
weighting of sensory evidence relative to prior informa-
tion). This is consistent with the idea that patients with
schizophrenia (or controls with mild forms of psychotic
symptoms) might have a deficit of perceptual inference
or in the acquisition of expectations. These findings have
been sometimes reconciled by proposing that whether prior
knowledge had stronger or weaker impact in schizophrenia
compared to controls depended on the level of the pre-
dictions: low-level sensory predictions would have weaker
impact in schizophrenia whereas higher-level (more cogni-
tive) predictions would have a stronger impact.

7.2. Models and support

While a number of authors have proposed theories sug-
gesting that schizophrenia could be linked with Bayesian
inference deficits (Corlett et al., 2009a, 2016; Fletcher and
Frith, 2009; Frith and Friston, 2012; Jardri and Cachia,
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2013), relatively few computational models have been im-
plemented to provide a quantitative and mechanistic ac-
count of delusions and hallucinations using this framework
(Adams et al., 2013; Deneve and Jardri, 2016; Jardri and
Deneve, 2013; Jardri et al., 2016; Notredame et al., 2014).

In Adams et al. (2013), the authors argue that psy-
chosis may stem from an abnormal encoding of the metacog-
nitive level of precision,i.e the confidence about the preci-
sion (i.e. inverse of standard deviation) of incoming in-
formation (the sensory likelihood) or confidence about the
precision of beliefs about the world (the prior). Particu-
larly, the authors argue that the expectations (prior be-
liefs) of patients are weaker than they ought to be, re-
sulting in too much emphasis on sensory evidence and a
high state of ‘surprise’ since sensory observations are un-
expected (weak prior expectations). So as to minimize
surprise, compensatory changes in the precision of prior
information or sensory likelihood ensue, leading to cogni-
tive, negative or positive symptoms. Using a predictive
coding model of hierarchical inference, the authors then
demonstrate how weaker priors could explain deficits in
tasks such as in the oddball stimuli (mismatch negativ-
ity), smooth eye-pursuit and the force-matching task. In
this framework, trait symptoms such as cognitive deficits
and negative symptoms may be explained by weaker priors
relative to sensory evidence. Conversely, the authors argue
that state symptoms such as hallucinations and delusions
may be better explained in terms of an increase in prior
precision relative to sensory evidence.
Interestingly, this framework could potentially account for
the occurrence of positive symptoms alone in first episode
psychosis (and prodromal phase) due to stronger priors,
and account for trait symptoms (e.g. cognitive deficits
& negative symptoms) due to weaker priors in chronic
schizophrenia. However, it is unclear how both a decrease
in prior precision for trait symptoms and an increase in
prior precision for transient state symptoms might cohabit
(e.g. in relapsing-remitting patients or when chronic pa-
tients suspend pharmacological treatment). This also ap-
pears to be at odds with the co-occurrence of decreased
sensitivity to perceptual illusions (suggesting a weaker prior)
and delusional ideation (suggesting stronger priors), both
in healthy (Schmack et al., 2013) and patient populations
(Silverstein and Keane, 2011a,b).
Similarly to Adams et al. (2013), Jardri and Deneve (2013)
proposed a hierarchical Bayesian inference model using an
algorithm known as ‘belief propagation’, where each level
of the hierarchy produces inference and abstraction over
lower levels. In this model, the authors argue that bottom-
up sensory evidence and top-down predictions could be re-
verberated throughout the hierarchy due to poor GABAer-
gic inhibition. Particularly, the authors make the predic-
tions that an impairment in bottom-up inhibition would
result in sensory evidence being reverberated throughout
the hierarchy and wrongly interpreted as if it were prior
beliefs. Conversely impaired top-down inhibition would

result in prior knowledge being reverberated as sensory
evidence. That is, impaired inhibition would result in
an over-estimation (overconfidence) in sensory evidence
and/or prior knowledge depending on the inhibition cir-
cuits affected (bottom-up vs. top-down respectively). In-
terestingly, a symmetric impairment of both bottom-up
and top-down inhibition resulted in no deficit in belief in-
ference itself, but lead to an abnormally high confidence in
that belief. This phenomenon is argued to be reminiscent
to the jumping-to-conclusion bias and the relative imper-
viousness of delusional beliefs to contradictory evidence.
While hallucinations and delusions may more readily be
explained by a deficit in top-down inhibition resulting in
stronger priors, the authors argue that converging lines
of evidence such as the reduced susceptibility to illusions
and the jumping-to-conclusions bias suggest that bottom-
up inhibition may be selectively impaired in schizophre-
nia. That is, impaired bottom-up inhibition would result
in sensory evidence reverberating back through the hier-
archy as if they were priors, resulting in increased preci-
sion of sensory evidence (or an equivalent under-weighing
of the prior relative to sensory evidence). The authors
argue that hallucinations could still occur in this context
when sensory information is particularly noisy. As a result,
Jardri and Deneve (2013) conclude that an impairment of
bottom-up inhibition could account for most of the deficits
of inference observed in schizophrenia including hallucina-
tions and delusions.
It is interesting to note however that the conclusions of
Jardri and Deneve (2013) and Jardri et al. (2016) appear
to be in contrast with those of Adams et al. (2013) for
state symptoms where Adams et al. argue that delusions
and hallucinations stem from an increased precision of the
prior (stronger prior relative to sensory evidence). The
conclusions of Jardri and colleagues are however in line
with Adams et al. (2013) model of trait symptoms (i.e.
cognitive deficits and negative symptoms result from an
under-weighting of the prior –decreased ‘precision’ of the
prior– and an over-estimation of the strength of sensory
evidence – increased ‘precision’ of sensory evidence).
A couple of points can be discussed in relation to these
studies: First, it is important to mention that although
behavioral performance (e.g. perception in psychophysics
tasks) may appear to be approximately Bayesian opti-
mal, a multitude of implementations could give rise to
similar behaviours and that Bayes optimal behavior (i.e.
Marr’s 1st level of analysis) does not necessarily require the
brain to perform Bayesian inference at the neural level (i.e.
Marr’s 3rd level of analysis; see: Jacobs and Kruschke,
2011 & Sanborn and Chater, 2016). While both studies
used predictive coding models as methods for approximate
Bayesian inference, these are just one of many possible im-
plementations of how inference may be implemented at the
neural substrate, and that others mechanisms have also
been suggested (e.g. including but not limited to: neu-
ral sampling Berkes et al., 2011, probabilistic population
codes Ma et al., 2006, etc. Gershman and Beck, 2016;
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Lochmann and Deneve, 2011). Particularly, Deneve and
Jardri (2016) called for neurophysiological validation to be
carried out, as a specific neural implementation of belief
propagation (i.e. inference) has yet to be identified in the
brain (Deneve and Jardri, 2016). While the models pre-
sented above provided an elegant conceptual illustration
of how changes in precision may lead to psychotic symp-
toms using synthetic data, it would be extremely valuable
to see whether these models yield similar conclusions once
fitted to experimental data in schizophrenia. For exam-
ple, Adams et al. (2016) recently demonstrated how such
computational models can be used to successfully infer the
precision of beliefs at an eye-pursuit task in healthy con-
trols. Similarly, Jardri et al. (2017) used a modi-
fication of the beads task in healthy controls and
chronic medicated patients with schizophrenia. In
this task, both the prior (i.e. prior probability of
each urn being selected) and likelihoods (i.e. how
likely is it to find a red/blue bead in each urn)
were explicitly given on every trial. The partici-
pants then used a visual analog scale to report their
confidence as to where a bead originated from. Re-
sponses were then used to identify whether partic-
ipants could optimally combine prior information
and likelihood. The authors found that their cir-
cular inference model (Jardri and Deneve, 2013)
best accounted for the patients’ behaviour. Sur-
prisingly however, they found that the integra-
tion of prior and likelihoods was suboptimal in
all participants, but more so in patients than con-
trols. In line with their earlier theoretical pre-
dictions, patients’ behaviour was best explained
by a model that over-counted sensory evidence,
suggesting that patients were unable to incorpo-
rate prior information optimally. The degree to
which patients over-counted sensory information
correlated with the severity of their positive symp-
toms (non-clinical delusion severity as measured by
the PDI). Surprisingly, however, considering that
the PDI was originally designed to measure delu-
sional ideation in the general population, this cor-
relation did not hold in the healthy control sam-
ple. Interestingly, the experiment required par-
ticipants to memorize and maintain the prior in-
formation in working memory in order to com-
bine the two sources of information optimally. The
two groups were not matched for working memory
deficits (patients had significantly worse WM than
controls). As a result, the differences in model pa-
rameters could largely be accounted for by WM
deficits in the schizophrenia sample, which could
also explain why the correlation between model pa-
rameters and positive or negative symptoms only
occurred in the patient sample. Further experimental
investigation need to be carried out in patients, to quanti-
tatively test how patients weigh their likelihood and priors
during decisions tasks (Adams et al., 2016; Jardri et al.,

2016). It will be essential that future studies at-
tempt as best as possible to remove potential con-
founds related to patients’ potential deficits in di-
mensions not directly assessed by the task (e.g. IQ,
WM).
Finally, it is unclear how the proposed models would scale
for realistic problems. For example, the conceptual illus-
tration provided in Jardri and Deneve (2013) (i.e. “For-
est→Tree→Leaves→Green”) was a singly-connected graph-
ical model. For this particular graphical model (or more
generally for hierarchies involving trees and poly-trees which
doesn’t include any loops), belief propagation (BP) is known
to perform exact inference. However, BP is not guaranteed
to converge to a stable equilibrium when used with loopy
graphical models (Pearl, 1982). It is likely that graphi-
cal models representing complex world statistical relation-
ships may not be reducible to a tree-like structure. Loopy
BP could then lead to widely oscillating beliefs that may
never converge, beliefs that converge to poor approxima-
tions or incorrect equilibriums which lead to beliefs that
are not globally consistent (i.e. beliefs that are not coher-
ent with respect to all the nodes of the network). This
may provide a different explanation for the false inference
mechanisms than impaired top-down or bottom-up inhi-
bition. Secondly, the examplar graphical model used in
the study was correctly depicting realistic statistical rela-
tionships between elements of the world’s hierarchy (e.g.
“Forest→Tree→Leaves→Green”). It is unknown however,
whether patients with schizophrenia have (or are able to
learn) the correct internal graphical model of their envi-
ronment. That is, – in patients – if the internal model of
the world is not representative of the true structure of the
environment, inference processes could lead to beliefs that
are subjectively consistent with the patients’ incorrect in-
ternal model of the world, but incoherent with respect to
the true model of the environment.
Such a framework could explain delusional beliefs, and in
particular the cases where patients tend to assume causal-
ity between unrelated events and appear to be impervious
to evidence contrary to their delusional beliefs. Specifi-
cally, patients rather appear to integrate contrary evidence
as supporting their delusional beliefs, suggesting that the
contrary evidence provided may be consistent with their
internal model of the world.

The false Bayesian inference hypothesis of schizophrenia
holds much hope for a unifying framework explaining the
variety of symptoms expressed in patients. However, sensi-
tive behavioral tasks are now needed to validate the mod-
els’ assumptions at the behavioural level before attempt-
ing to make predictions at the neural level. Particularly,
it appears essential to test empirically, whether:

1. Patients behave as Bayesian observers in simple tasks,
correctly mixing prior information and sensory evi-
dence (likelihood) when these are explicitly provided;

2. Patients can acquire relevant statistical information
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about the world in the form of prior distributions;

3. Patients learn a coherent graphical model (causal
structure) of the world.

8. Discussion

In this review, we described promising models, which
support various hypotheses of schizophrenia’s pathophys-
iology. While, none of these computational studies could
account for the variety and complexity of symptoms found
in the disorder, most studies focusing on cognitive deficits
appear to support the dopaminergic hypothesis. Compu-
tationally, cognitive deficits appear to stem from:

1. A weak frontal dopaminergic D1r activation (dlPFC),
resulting in a decreased frontal SNR and deficient
working memory.

2. Excessive striatal D2r activation, leading to impair-
ments in prediction-error signalling, essential for as-
sociative learning and goal-directed behaviour.

Interestingly, a recent study from Collins et al. (2014) man-
aged to disentangle the influence of working-memory from
that of reinforcement-learning using a novel behavioural
task & computational modelling in chronic schizophre-
nia. The study suggested that the generalised cognitive
deficits observed in schizophrenia appeared to result from
reduced working memory capacity and reliability rather
than from deficient reinforcement learning (Collins et al.,
2014). Particularly it appears that in the cognitive and
negative symptom domains, schizophrenia is associated
with reduced adaptive phasic DA release to relevant stim-
uli (Gold et al., 2015; Maia and Frank, 2016), while it
is associated with increases in spontaneous phasic DA re-
lease to innocuous stimuli in the positive domain (Maia
and Frank, 2016).
However, schizophrenia is an heterogeneous disorder, ex-
pressing itself through unique combinations of symptoms
in every patient. Therefore, several of the current hypothe-
ses discussed in this review might jointly be responsible for
the wide variety of behaviours and symptoms observed in
the disorder.
For example, biophysically realistic models of working-
memory elegantly demonstrated how the balance between
inhibitory GABAergic and excitatory glutamatergic activ-
ity is crucial to the proper functioning of realistic attractor
networks (cortical stability). In these models, a deficit in
either excitatory glutamate or inhibitory GABAergic ac-
tivity led to impaired working-memory dynamics, cogni-
tive impairments and arguably to some form of positive
symptoms.

Alternatively, models supporting a dysconnection syn-
drome were able to successfully demonstrate how exces-
sive pruning in cortical networks could lead to positive
symptoms (spurious attractors), as well as predicting the
neurodevelopmental timeline of schizophrenia, providing
for the first time an explanation for the late adolescence

onset of the disorder (Hoffman and McGlashan, 2006; Mc-
Glashan and Hoffman, 2000). Less experimental evidence
was found to support an association between neurotrans-
mitter dysfunctions and cortico-cortical dysconnection. How-
ever, we would argue that both the glutamate and GABAer-
gic hypothesis could lead to a dysconnection syndrome.
Specifically, weaker synapses could emerge following a pre-
frontal NMDA receptor hypo-function. Such synapses could
then be pruned away during the Darwinian ‘evolution-
ary’ neurodevelopmental process proposed by (Hoffman
and McGlashan, 2006; McGlashan and Hoffman, 2000).
That is, weaker synapses would lead to an over-pruning
of frontal cortices, resulting in a ‘physical dysconnection
syndrome’, as presented by the synaptic runaway model
of Greenstein-Messica and Ruppin (1998). Alternatively,
GABAergic inhibition appears to be essential to the gen-
eration of γ-band rhythms. Aberrant γ-oscillations, is ar-
gued to result in an asynchrony between cortical regions
(Spencer, 2009), leading to a reduced ability to transmit
information between cortical regions, (‘functional dyscon-
nection’ ). As a result, we argue that a dysconnection
syndrome might be secondary to an incorrect balance be-
tween excitatory and inhibitory activity in cortical regions,
leading to either excessive synaptic pruning during adoles-
cence (‘physical dysconnection’ ) or an impossibility to syn-
chronize information across cortical regions (‘functional
dysconnection’ ). Finally, it is worth mentioning that NMDA
receptor blockade has been found to result in strong changes
of dopaminergic midbrain neurons (Jentsch and Roth, 1999),
while chronic ketamine abuse has been found to
upregulate dopamine D1r in the PFC (Narendran
et al., 2005). It is therefore possible that the dopamine
dysfunction observed in schizophrenia could be secondary
to a generalised NMDA receptor hypo-function (Lewis
and Gonzalez-Burgos, 2006).

In a recent review of computational studies in schizophre-
nia research, Rolls and Deco (2011) called for further in-
vestigation using bottom-up modelling approaches. The
authors argued that using realistic biophysical models of
attractor network and cortical dynamics, one could explore
in much detail the interactions between neurotransmitter
functions and produce precise predictions about the states
of the neural networks in schizophrenia. We agree with the
authors that the abstract modelling of decreased signal-to-
noise ratio in schizophrenia can successfully give place to
more refined biophysical models in order to account for our
current knowledge of network dynamics and neurotrans-
mitter function. Such models’ plausibility and real-
ism might however often appear limited, as they
tend to focus on simulating one single (or some-
times a few) cortical area(s) in isolation, with lit-
tle diversity in terms of cell and receptors types or
structure. This is in part due to the inherent math-
ematical intractability and parameter identifiabil-
ity constraints of models with complex network in-
teractions and dynamics, resulting in an over sim-

16



plification of the models’ components (that is, only
the units that are believed to substantially affect
the model’s behaviour or are relevant to the hy-
pothesis being tested are implemented).

However, Rolls and Deco (2011) argue that high-level,
abstract, behavioural or descriptive models (i.e. phenomeno-
logical models) have no construct validity since these do
not map to realistic brain function and as a result fail
to produce testable predictions. In this review, we take
a different standpoint. First, we would first argue that
top-down and bottom-up modelling approaches are not in-
compatible and that the choice of modelling strategy de-
pends on the scientific question and disorder being in-
vestigated. Particularly, biophysical models have a
potential to lead to strong and testable predictions
about the neural substrate, where electrophysio-
logical and optogenetic tools are available to ma-
nipulate, test, validate, – and if necessary, revise
– the models and their predictions. While predic-
tions at that level can be tested in animal mod-
els of particular psychiatric disorders (e.g. drug
abuse, addiction, gambling, compulsion, anxiety,
etc.), they are more limited in disorders that ap-
pear to be unique to humans (e.g. psychosis –
where electrophysiological experimentation is im-
possible, or limited to exceptional case of patients
undergoing brain surgery –, although some animal
models do exist, see Forrest et al., 2014). Particu-
larly, since cognitive, positive and negative symptoms are
the most stable, readily available, and quantitatively mea-
sureable effects of the disorder across patients, high-level
descriptive models can yield strong testable predictions at
the behavioural level and serve as a starting point for ad-
dressing the underlying neural processes.

Overall, the Bayesian brain hypothesis of psychosis
seems very promising but has received relatively little the-
oretical and empirical investigation in comparison to the
other hypotheses. In fact, in comparison to the models
supporting the GABAergic, glutamate or dopamine hy-
pothesis, the Bayesian brain hypothesis provides a high-
level construct that makes strong testable predictions that
can be validated experimentally at the behavioural level.
That is, one could potentially test several the assumptions
of the framework, and if proven successful, start to inves-
tigate the underlying neural processes that may have gone
awry.

If we attempt to synthesize our findings across
models and symptoms, we find strong experimen-
tal and modelling evidence suggesting that dopamine
is the final common pathway to psychotic symp-
toms (Abi-Dargham, 2004; Howes et al., 2016; Howes
and Murray, 2014; Maia and Frank, 2016). How-
ever dopaminergic dysfunction may be secondary
to other upstream neurotransmitter dysfunctions.
In fact, a growing body of evidence suggests that

aberrant dopaminergic neurotransmission in the
striatum may result from upstream glutamater-
gic dysfunction (e.g. NMDA hypofunction – Abi-
Dargham, 2004; Grace, 2016; Howes et al., 2016),
possibly combined with deficient GABAergic inhi-
bition (Abi-Dargham, 2004; Grace, 2016). Aside
from the obvious contributions to positive symp-
toms, dopamine may also be of particular inter-
est when considering both cognitive and negative
symptoms (Maia and Frank, 2016). For example,
it has long been assumed that cognitive deficits in
schizophrenia were the result of poor dopaminergic
transmission, leading to either poor working mem-
ory gating and maintenance (a component essential
to all cognition) and/or to the abnormal acquisi-
tion of reward and punishment contingencies. This
resonates with earlier models of dopamine func-
tion which suggest that in large parts, the gener-
alised cognitive deficits in schizophrenia may be
due to deficient working memory potentially re-
sulting from poor DA transmission (e.g. Cohen
et al., 1996) or/and alternatively to Glutamater-
gic dysfunction (Murray et al., 2012; Wang, 2006).
Recently however, using finely tuned experimen-
tal designs, it has become possible to dissociate
the contributions of WM deficits to that of re-
ward learning (Collins et al., 2014). Using these
approaches with patients at different time points
across the time course of the disorder may be par-
ticularly useful. This would help elucidating which
of these systems is impaired in schizophrenia, and
whether any of these deficits is secondary to an-
tipsychotic medication (Artaloytia et al., 2006; Maia
and Frank, 2016). Finally, we know that dopamin-
ergic signalling is critical for the subjective valua-
tion of actions (Schultz, 2016), that is, in deriving
a subjective value from potential reward benefits
given their effort costs. This could provide partial
explanation for some negative symptoms. If the
valuation system is impaired due to inappropriate
dopaminergic signalling, inaccurate sensitivities to
rewards and efforts costs may negatively affect the
patients’ willingness to engage in activities leading
to poor motivation, and a gradual worsening of
social-economic functioning, and eventually severe
isolation.
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Keshavan, M. S., Erdi, P., Sep. 2008. Impaired associative learning
in schizophrenia: behavioral and computational studies. Cognitive
neurodynamics 2 (3), 207–219.

DSM-5, May 2013. Diagnostic and Statistical Manual of Mental Dis-
orders, Fifth Edition. DSM-5®. American Psychiatric Associa-
tion.

DSM-IV-TR, Jan. 2000. Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition. DSM-IV-TR®. American Psychiatric
Association.

Durstewitz, D., Seamans, J. K., Nov. 2008. The dual-state theory of
prefrontal cortex dopamine function with relevance to catechol-o-
methyltransferase genotypes and schizophrenia. Biological psychi-
atry 64 (9), 739–749.

Evans, S., Almahdi, B., Sultan, P., Sohanpal, I., Brandner, B., Col-
lier, T., Shergill, S. S., Cregg, R., Averbeck, B. B., Aug. 2012.
Performance on a probabilistic inference task in healthy subjects
receiving ketamine compared with patients with schizophrenia.
Journal of Psychopharmacology 26 (9), 1211–1217.

Fletcher, P. C., Frith, C. D., Jan. 2009. Perceiving is believing:
a Bayesian approach to explaining the positive symptoms of
schizophrenia. Nature reviews Neuroscience 10 (1), 48–58.

Forrest, A. D., Coto, C. A., Siegel, S. J., Jun. 2014. Animal Mod-
els of Psychosis: Current State and Future Directions. Current
behavioral neuroscience reports 1 (2), 100–116.

Frank, M. J., Nov. 2008. Schizophrenia: a computational reinforce-
ment learning perspective. Schizophrenia bulletin 34 (6), 1008–
1011.

Frank, M. J., Claus, E. D., Apr. 2006. Anatomy of a decision: striato-
orbitofrontal interactions in reinforcement learning, decision mak-
ing, and reversal. Psychological review 113 (2), 300–326.

Frank, M. J., Seeberger, L. C., C O’Reilly, R., Dec. 2004. By carrot or
by stick: cognitive reinforcement learning in parkinsonism. Science
(New York, NY) 306 (5703), 1940–1943.

Franklin, D. W., Wolpert, D. M., Nov. 2011. Computational mecha-
nisms of sensorimotor control. Neuron 72 (3), 425–442.

Freeman, D., Pugh, K., Garety, P., Jul. 2008. Jumping to conclusions
and paranoid ideation in the general population. Schizophrenia
research 102 (1-3), 254–260.

Freeman, D., Startup, H., Dunn, G., Černis, E., Wingham, G.,
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