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• APRIL is a compact, self-protein that binds two MM antigens (BCMA and TACI) with high 29 

affinity. We present an APRIL based CAR.   30 
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• Dual antigen targeting increases the availability of tumour binding sites and reduces the 32 

risk of antigen negative disease escape. 33 
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Abstract 1 

 2 

B-cell maturation antigen (BCMA) is a promising therapeutic target for multiple myeloma 3 

(MM), but expression is variable, and early reports of BCMA targeting chimeric antigen 4 

receptors (CARs) suggest antigen down-regulation at relapse. Dual antigen targeting 5 

increases targetable tumour antigens and reduces the risk of antigen negative disease 6 

escape. ‘A proliferation-inducing ligand’ (APRIL) is a natural high affinity ligand for BCMA 7 

and transmembrane activator and CAML interactor (TACI). We quantified surface tumour 8 

expression of BCMA and TACI on primary MM cells (n=50). All cases tested expressed 9 

BCMA and 39(78%) of them also expressed TACI. We engineered a third generation APRIL-10 

based CAR (ACAR), which killed targets expressing either BCMA or TACI (p<0.01 and 11 

p<0.05 respectively, cf control, E:T ratio 16:1). We confirmed cytolysis at antigen levels 12 

similar to those on primary MM, at low effector to target ratios (56.2±3.9% killing of MM.1s at 13 

48 hours, E:T ratio 1:32, p<0.01) and of primary MM cells (72.9±12.2% killing at 3 days, E:T 14 

ratio 1:1, p<0.05, n=5). Demonstrating tumour control in the absence of BCMA, cytolysis of 15 

primary tumour expressing both BCMA and TACI was maintained in the presence of a 16 

BCMA targeting antibody. Further, using an intramedullary myeloma model, ACAR T-cells 17 

caused regression of established tumour within 2 days.  Finally, in an in vivo model of 18 

tumour escape, there was complete ACAR-mediated tumour clearance of BCMA+TACI- and 19 

BCMA-TACI+ cells while a scFv CAR targeting BCMA alone resulted in outgrowth of BCMA 20 

negative tumour.  These results support the clinical potential of this approach. 21 

 22 

 23 

 24 

 25 
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 34 
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Introduction 1 

Multiple myeloma (MM) is a cancer of plasma cells (PC) which is responsible for 2% of 2 

cancer deaths1. Myeloma remains largely incurable, despite significant progress seen with 3 

the inclusion of proteasome inhibitors (PIs) and immunomodulatory drugs (IMiDs) into the 4 

mainstay of treatment regimens2. Furthermore, current therapeutic strategies fail to benefit 5 

approximately 15% of patients who have primary refractory disease, and/or adverse 6 

genetics3. There remains a need for new myeloma therapies with different mechanisms of 7 

action, particularly those that can induce durable remissions. 8 

Chimeric antigen receptors (CAR) typically graft the specificity of a monoclonal antibody 9 

(mAb) onto a T-cell,  redirecting T-cell cytotoxicity to tumour by a mechanism unimpeded by 10 

MHC class restriction4. CAR T-cells may have advantages over mAb based approaches 11 

since CAR T-cells can actively migrate to sites of disease and persist thus engendering a 12 

sustained rejection of target cells. CD19 directed CAR T-cell therapy has been effective 13 

against refractory B-cell malignancies and sustained responses are seen in the face of 14 

chemotherapy resistant disease5-9. Applying CAR T-cell therapy to MM however faces 15 

several challenges not least target antigen selection. CD19 is only expressed in a small 16 

proportion of tumour cells10 and well characterized antigens expressed by myeloma such as 17 

CD3811,12, CD5613,14 and CD13815 may not be suitable targets due to expression outside the 18 

lymphoid compartment. 19 

B-cell maturation antigen (BCMA) is a member of the tumor necrosis factor (TNF) receptor 20 

superfamily, is upregulated at the terminal stages of B-cell maturation, and selectively 21 

expressed on PC16,17. BCMA is absent on haemopoietic stem cells16-18 and is expressed by 22 

nearly all cases of MM, albeit at variable, and often low density16. Consequently, BCMA has 23 

been targeted by several immunotherapeutic strategies in MM including CAR approaches 24 

and bispecific T-cell engager (BiTE) therapies17,19-23. In the first reported clinical trial 25 

investigating a BCMA targeting CAR, rapid and dose dependent disease response was seen 26 

in 4 of 12 patients despite substantial tumour load and heavy pre-treatment24. However, 27 

relatively high T-cell doses were needed to achieve durable remissions and, possibly akin to 28 

CD19 down-regulation in CD19 CAR T-cell studies25, loss of BCMA expression at relapse 29 

was reported24.  30 

Thus, while BCMA is a promising target, challenges of low target density and target escape 31 

may compromise clinical efficacy. To address this, we hypothesized that dual antigen 32 

binding would increase the level of targetable antigen on tumour cells, while potentially 33 

reducing the incidence of antigen negative escape, in this way enhancing therapeutic 34 

potential and capacity for long term disease control. Transmembrane activator and CAML 35 
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interactor (TACI) is also a TNF receptor and is involved in maturation of B-cells, including 1 

their maturation to PC26,27. Importantly, TACI is also expressed on MM cells18,28,29. A 2 

proliferation-inducing ligand (APRIL) is a natural ligand of both BCMA and TACI and is an 3 

attractive antigen binder as it is a compact, oligomerizing, single domain, self-protein, that 4 

binds both MM antigens with high, nanomolar affinity30,31.  5 

In this work, we describe a novel CAR construct using a truncated form of (APRIL) as the 6 

tumour targeting domain (ACAR), which recognizes both BCMA and TACI on MM cells. We 7 

establish ACAR potency at antigen levels seen in clinical samples, at low effector to target 8 

ratios (E:T), against primary cells, as well as in murine models of myeloma and tumour 9 

escape. 10 

 11 

Method 12 

BCMA/TACI quantification  13 

Mononuclear cells (MNCs) were stained with CD138 APC (MI15) to identify tumour and 14 

either murine IgG2a PE Isotype control, rat IgG2a PE Isotype control, anti-BCMA PE (clone 15 

19F2) or anti-TACI PE (clone 1A1). All antibodies from BioLegend. BD Fortessa was used 16 

for cell acquisition and data analysed using FlowJo_V10 (Treestar). Antibodies bound per 17 

cell (ABC) was calculated using BD QuantiBRITETM beads and subtracting ABC of isotype 18 

control (greater than 100 ABC considered positive).  19 

 20 

Cloning 21 

All plasmids were cloned in-house32 into the oncoretroviral vector SFG33 and RD114-22 

pseudotyped supernatant was produced as previously described32. Sequence coding for 23 

residues 116 to 250 of the canonical sequence for APRIL (Uniprot 075888) was cloned 24 

between signal peptide from IgG kappa chain V-III to CAR scaffolds comprising of either 25 

IgG1 hinge spacer, CD8 alpha spacer or IgG1 Fc domain34 co-expressed with RQR8 using 26 

an in-frame foot-and-mouth–like 2A peptide, TaV35. Epidermal growth factor receptor vIII 27 

(EGFRvIII) and BCMA targeting CARs were engineered using MR1-136 or 11-D-5-317 scFvs, 28 

respectively, a CD8 spacer and a CD28-OX40-CD3ζ endodomain. 29 

 30 

CAR T-cells 31 

Peripheral blood mononuclear cells (PBMC) obtained by density gradient centrifugation 32 

(Ficoll Paque, GE lifesciences) were stimulated with CD3 and CD28 antibodies (0.5µg/ml, 33 

Miltenyl) and IL-2 (100IU/ml, Genescript) then transduced as before37 to obtain CAR T-cells. 34 
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Transduction efficiency was assessed by FACS of cells stained for RQR8 (Qbend10 1 

antibody, R&D) or APRIL (anti-APRIL biotin) and RQR8 for ACAR T-cells.  2 

 3 

Further methods are available in Supplementary Data. 4 

 5 

Results 6 

Primary myeloma cells express BCMA and TACI  7 

We have previously reported variable surface expression of BCMA on tumour16. Here, we 8 

sought to quantify expression levels of both BCMA and TACI on the cell surface of primary 9 

BM-derived MM cells.  10 

Ficolled BM MNCs from 50 patients were stained for CD138 to identify tumour and anti-11 

BCMA or TACI (Figure 1A; Table S1; Figure S1A) using QuantiBRITETM beads for antigen 12 

quantification. We found expression of BCMA on CD138+ tumour cells from all patients 13 

tested (median: 1061, range: 105-8323 ABC) (Figure 1B). TACI was co-expressed on 14 

tumour (Figure S1B) and detected on MM cells from 39 of these patients, at generally lower 15 

levels (median:333, range: 0-21301 ABC) (Figure 1C). Thus, we calculated that concurrent 16 

targeting of both antigens compared to BCMA alone would increase levels of target antigen 17 

in 78% of patients and result in an increased mean combined targetable antigen density on 18 

tumour of 2458 ABC compared to 1623. TACI expression also exceeded BCMA in a subset 19 

of samples (16%) (Figure S1C). Notably, 7 of these 8 patients expressed less than the 20 

median level of BCMA suggesting that concurrent TACI targeting may be particularly 21 

beneficial in a proportion of BCMAlo tumours. 22 

In keeping with our previous findings16, patients with a new diagnosis of myeloma (54%) 23 

expressed lower levels of BCMA (p<0.05) compared to relapsed disease (46%) but there 24 

was no such correlation with TACI expression (p=0.3, Figure S1D). Of the 42 (84%) of 25 

patients for whom FISH was available, the 25 (60%) of patients with high risk cytogenetic 26 

lesions had higher levels of BCMA (p<0.05 by Mann-Whitney) but a trend to lower levels of 27 

TACI (p=0.06) (Figure S1E). 28 

Thus we confirm the surface tumour expression of BCMA on tumour from all patients tested 29 

and the co-expression of BCMA and TACI in the majority (78%) of patients, supporting a 30 

therapeutic strategy for myeloma that targets both these antigens. 31 

 32 
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Similar expression pattern of BCMA and TACI in normal tissues 1 

The selectivity of BCMA expression to lymphoid cells17 and more specifically PC has been 2 

previously described16. TACI is also a known lymphoid antigen expressed mainly on B-cells, 3 

but at an earlier stage of maturation and particularly in maturing subsets of splenic B-cells38. 4 

As expression of TACI on normal tissues is less well known, we performed reverse 5 

transcription-polymerase chain reaction (qRT-PCR) of BCMA and TACI in a range of normal 6 

tissues. 7 

Transcript analysis from 72 normal tissues, each from 3 donors, revealed highest levels of 8 

BCMA and TACI expression in lymphoid tissues. Notable expression levels were also seen 9 

in gastrointestinal and in bronchial tissues which likely reflects the presence of lymphocytes 10 

at these anatomical sites. BCMA but not TACI expression was also noted in testes and gall 11 

bladder (Figure S2; Table S2). BCMA and TACI transcripts were equally high in the splenic 12 

parenchyma but it is noteworthy that in other tissues BCMA gene expression was up to 10-13 

fold higher than TACI. 14 

These data are consistent with TACI expression being restricted to the lymphoid 15 

compartment, with distribution broadly similar to that of BCMA. 16 

Optimization of APRIL based CAR constructs 17 

APRIL is a soluble ligand that binds BCMA and TACI. Additionally, the amino-terminus of 18 

APRIL binds proteoglycans 39,40 but is not involved in the interaction with BCMA or TACI. To 19 

confirm that a truncated form of APRIL could bind BCMA and TACI when expressed on a 20 

cell surface, truncated APRIL was fused to the CD8 transmembrane domain and expressed 21 

on SUPT1 cells. Staining with recombinant soluble BCMA and TACI confirmed that 22 

truncated APRIL is both stably expressed and maintains BCMA and TACI binding when 23 

membrane bound (Figure S3A). Further, surface plasmon resonance analysis of soluble 24 

truncated APRIL binding to TACI and BCMA confirmed previously described binding kinetics 25 

(Figure S3B)41. 26 

Next, three APRIL-based chimeric antigen receptors (ACAR) were constructed, consisting of 27 

truncated APRIL fused to a spacer domain, a CD28 transmembrane and tripartite 28 

endodomain (CD28-OX40-CD3ζ)42. Spacers were either the hinge of human IgG1 (ACAR-29 

H), the stalk of human CD8α (ACAR-CD8) or the hinge, CH2 and CH3 domains of human 30 

IgG1 modified to reduce Fc receptor binding43 (ACAR-Fc) (Figure 2A).  31 

PBMCs from normal donors were activated with IL-2, anti-CD28 and CD3 antibodies, 32 

retrovirally transduced with ACAR constructs, CD56 depleted, and tested against SUPT1 33 

cells modified to express high levels of either BCMA, TACI or non-transduced (NT) targets. 34 
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Using 4 hour 51Cr release assay, T-cells transduced with ACAR-H(n=5) and ACAR-1 

CD8(n=6) spacer variants caused cytolysis of SUPT1BCMA (p<0.01 for both ACAR constructs 2 

compared to PBMC NT at an E:T ratio 16:1, paired t test) and SUPT1TACI (p<0.05 for both 3 

ACAR constructs) targets. In comparison, ACAR-Fc transduced T-cells killed SUPT1BCMA 4 

targets (n=3, p<0.05) but not TACI expressing targets (Figure 2B). 5 

After co-culture with antigen expressing target cells (1:1 with irradiated, SUPT1 cells) for 24 6 

hours, interferon gamma (IFNG) release from ACAR-H(n=5) and ACAR-CD8(n=6) T-cells 7 

was detected. There was significant cytokine release observed on co-culture of both these 8 

ACAR constructs with SUPT1BCMA (p<0.01 for both) and SUPT1TACI (p<0.05 for both) 9 

compared to control targets. In comparison, ACAR-Fc did not result in cytokine release 10 

against TACI or BCMA expressing SUPT1 cells (n=3) (Figure 2C).  11 

To assess proliferation of ACAR T-cells, effector T-cells were stained with Cell Trace Violet 12 

prior to 1:1 co-culture with SUPT1 targets and analysed by FACS at 4 days. Compared to 13 

control co-cultures with SUPT1NT targets, there was a significant increase in the percentage 14 

of proliferated ACAR-H and ACAR-CD8 transduced T-cells with SUPT1BCMA and SUPT1TACI 
15 

(p<0.001 for both effectors with BCMA and TACI expressing targets) (Figure 2D, Figure S4). 16 

Taken together, these data indicate that both ACAR-CD8 and ACAR-H demonstrated 17 

greater in vitro activity, compared with ACAR-Fc transduced T-cells. Both spacer variants 18 

resulted in target cytolysis, cytokine release and effector proliferation in response to 19 

SUPT1BCMA or SUPT1TACI.   20 

APRIL CAR causes target cytolysis at low antigen densities, at a low E:T ratio, and in 21 

the presence of soluble APRIL , BCMA and TACI 22 

Clinical responses will likely require ACAR activity against the low levels of BCMA and TACI 23 

found on some primary MM cells, and at low E:T ratios. We thus explored the in vitro 24 

cytolytic potential of the two most promising ACAR constructs (ACAR-H and ACAR-CD8) 25 

under these conditions.  26 

ACAR transduced PBMCs were tested against SUPT1 targets expressing a wide range of 27 

surface BCMA (421 to 1.5x10^5 ABC) and TACI (1063 to 6.3x10^4 ABC) (Figure 3A). By 28 

51Cr release, T-cells transduced with either ACAR construct caused significant cytolysis of all 29 

BCMA and TACI expressing targets compared to control at all E:T ratios tested (32:1 to 4:1, 30 

16:1 shown in Figure S5A). In an attempt to more closely replicate physiological conditions, 31 

co-cultures were then extended to 48 hours and the E:T ratio lowered to 1:10 and target kill 32 

assessed by FACS. In these conditions, T-cells transduced with ACAR-H and ACAR-CD8 33 
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both caused significant target cytolysis of unirradiated targets expressing even the lowest 1 

levels of BCMA and TACI (Figure 3B). 2 

ACAR-mediated cytolysis of MM cells was confirmed in a number of human myeloma cell 3 

lines (HMCLs, Figure S5B).  ACAR activity was also demonstrated at lower E:T ratios 4 

against MM.1s and U266 HMCL with significant target cytolysis down to an E:T ratio of 1:32 5 

on co-culture with T-cells transduced with both ACAR constructs (Figure 3C). T-cells 6 

transduced with a BCMA-targeting CAR (BCMA CAR) based on the 11-D-5-317,24 scFv were 7 

also compared to the ACAR and despite low E:T ratios, there was no statistically significant 8 

difference in kill of MM.1s or U266 by the BCMA CAR and ACAR (Figure S5C).   9 

Members of the TNF receptor superfamily found in the sera of MM patients may interfere 10 

with an APRIL based therapeutic strategy by blockade or inadvertent T-cell activation. We 11 

therefore quantified APRIL, BCMA and TACI in MM BM (Figure S6A), repeated cytotoxicity 12 

assays with ACAR-H against MM.1s at low E:T ratios (Figure S6B) and measured IFNG 13 

release (Figure S6C) in the presence of physiological levels of these proteins. There was no 14 

significant cytokine release and ACAR-mediated target cytolysis was unaffected by sAPRIL 15 

and sTACI but was reduced at the highest levels of sBCMA tested (p<0.001 at 1000ng/ml 16 

compared to media control). 17 

Therefore in vitro, T-cells transduced with both ACAR-H and ACAR-CD8 demonstrate 18 

equivalent cytolytic activity and we consistently observed significant cytolysis of the lowest 19 

BCMA and TACI expressers even at low E:T ratios. Furthermore, ACAR killing was 20 

equivalent to that demonstrated by a scFv BCMA targeting CAR when used against BCMA 21 

expressing targets. We also observed that ACAR T-cells are not activated by soluble ligand 22 

and while tumour kill was also unaffected by physiological levels of soluble APRIL or TACI, 23 

attenuation of target kill was seen at the highest levels of sBCMA.  24 

APRIL CAR causes cytolysis of primary myeloma cells 25 

To test ACAR activity on primary tumour cells, allogeneic PBMCs transduced with ACAR-H 26 

and ACAR-CD8 variants were CD56 depleted, then co-cultured 1:1 with CD138-selected BM 27 

derived MM cells from 5 patients. Although BCMA and TACI expression varied between 28 

patient samples (BCMA 1224-7728 and TACI 563-1213 ABC, Figure 4A), tumour cytolysis 29 

and IFNG release were seen with both ACAR constructs in all samples. Survival and 30 

proliferation of ACAR T-cells was seen with 3 patient samples (#23, #17, #1 in Figure 4A).  31 

Combining the results from the 5 patient samples, at D+3, ACAR-H and ACAR-CD8 resulted 32 

in 72.9±12.2% and 87.7±5.4% tumour death respectively (mean± SEM cytolysis relative to 33 

control). In comparison, baseline tumour cell death was 2.8±15.3% (p<0.05 for both ACAR 34 
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constructs by paired t test). There was no significant difference in target kill, cytokine release 1 

or T-cell expansion between the two ACAR spacer variants (Figure 4B).  2 

We tested the ability of ACAR constructs to induce cytolysis by TACI alone by conducting 3 

cytotoxicity assays in the presence of high concentrations of anti-BCMA monoclonal 4 

antibody (S307118G03).  We observed that the antibody blocked ACAR-mediated cytolysis 5 

of U266 (BCMA+TACI-) but not MM.1s cells (BCMA+TACI+).  Encouragingly, anti-BCMA 6 

antibody did not attenuate killing of primary MM cells from 3 patients that expressed both 7 

BCMA and TACI (Figure 4C).  8 

Taken together, these experiments confirm ACAR-mediated cell death of primary MM cells 9 

and support the assumption that, in the event of BCMA down-regulation, tumour control 10 

could be maintained by TACI expression on primary cells. 11 

Efficacy of APRIL CAR against myeloma in vivo 12 

As these in vitro assays did not show a significant difference in efficacy of ACAR-H and 13 

ACAR-CD8, we proceeded to test the smaller and thus simpler of the two constructs, ACAR-14 

H in an in vivo model.  15 

To establish an intramedullary myeloma model, 22 NSG mice were injected intravenously 16 

with 10x10^6 HA+Fluc+MM.1s cells. Thirteen days later, there was intramedullary disease 17 

by BLI in all mice (Figure 5A) at which point 5x10^6 EGFRvIII CAR or ACAR-H T-cells 18 

(Figure 5B) were administered by tail vein injection into 8 animals. A single animal in the 19 

EGFRvIII CAR group did not recover following T-cells and a further mouse (with the lowest 20 

disease burden pre-CAR) had disease clearance. Nonetheless, by 2 days, there was less 21 

disease in ACAR than EGFRvIII CAR treated animals by BLI (p<0.01 by t test) and 22 

continued disease suppression in ACAR treated mice (Figure 5A-B). At termination of the 23 

experiment (D+12 post ACAR T-cells, D+25 post tumour cells) FACS of the BM confirmed 24 

significant tumour clearance in ACAR treated animals compared to both control cohorts 25 

(p<0.05 and p<0.001 compared to EGFRvIII CAR and untreated cohorts, Figure 5C). 26 

Tumour clearance in ACAR-H treated cohort was confirmed by immunohistochemistry 27 

(Figure 5D).  28 

Human APRIL binds murine BCMA and TACI at similar affinities to their human isoforms44 29 

and ACAR causes equivalent cytolysis of SUPT1 targets expressing human or murine 30 

BCMA and TACI (Figure S7A). This provided the unique opportunity to investigate possible 31 

off target toxicity in our mouse xenograft model without modification to the ACAR construct. 32 

Numerous tissues were harvested from test mice (full list in Supplementary data) and on 33 

examination of formalin fixed and paraffin embedded (FFPE), haematoxylin and eosin (H&E) 34 
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stained tissue sections, we found there to be no treatment related histopathological findings 1 

in ACAR treated animals (Figure S7B). 2 

Persistent disease control in an in vivo escape model 3 

We propose dual antigen targeting as a means of reducing the risk of antigen-negative 4 

disease escape. To model the capacity for ACAR-mediated tumour control despite BCMA 5 

downregulation, NSG mice were engrafted with a mix of SUPT1BCMA and SUPT1TACI (4:1 6 

ratio) tumour cells by tail vein before administration of ACAR or BCMA CAR.  7 

Twenty-one NSG mice were injected with 3.5x10^6 Fluc expressing SUPT1 cells comprising 8 

SUPT1BCMA(5807 ABC) and SUPT1TACI(2229 ABC) (80%:20%).  At 4 days mice received 9 

5x10^6 NT T-cells, ACAR or BCMA CAR T-cells (n=7 per group) by tail vein injection. By 10 

BLI, there was continued tumour growth with NT T-cells, partial disease suppression with 11 

BCMA CAR and greatest tumour clearance in ACAR treated animals (Figure 6A-B). On 12 

termination of the experiment (D+13 and D+9 post tumour and CAR respectively), FACS of 13 

BM from animals receiving ACAR T-cells showed clearance of both SUPT1BCMA and 14 

SUPT1TACI (p<0.001 and p<0.01 compared to NT respectively), while BM from animals 15 

receiving BCMA CAR showed persistence of SUPT1TACI (p=ns compared to NT). There was 16 

continued engraftment of both tumour populations in animals receiving NT T-cells (Figure 17 

6C-D) and evident T-cell persistence in all mice (Figure S8).  18 

These data support the assumption that in comparison to targeting BCMA alone, dual 19 

antigen targeting of BCMA and TACI facilitates continued disease suppression in the event 20 

of BCMA downregulation or loss in patients who have tumour co-expression of both 21 

antigens. 22 

 23 

Discussion  24 

BCMA is emerging as a lead therapeutic target in MM, as indicated by several on-going 25 

clinical studies.  The NCI group have reported 12 patients treated with their BCMA targeting 26 

CD28-CD3ζ CAR45 observing sustained responses at the highest dose level of 9x10^6 T-27 

cells/kg24 and a further 21 patients treated with a separate (bb2121) 4-1BB-CD3ζ CAR with 28 

consistent responses in patients administered at least 150x10^6 CAR T-cells46. Cohen et al 29 

have described their preliminary results of the first cohort treated with a 4-1BB-CD3ζ BCMA 30 

CAR47. In this study, 3/9 patients developed grade 3-4 cytokine release syndrome but 31 

notably, there were deep responses and evidence of CAR T-cell expansion without prior 32 

lympho-depleting chemotherapy.  Alternative T-cell redirecting therapies are CD3-BCMA 33 
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bispecific molecules on a common IgG arm48,49, or bi-specific T-cell engagers (BiTEs), where 1 

scFvs to CD3 and BCMA are joined by a small peptide linker23,50.  Additionally, a phase I 2 

study of an antibody-drug conjugate utilising the anti-tubulin agent, monomethyl auristatin F, 3 

reported an overall response rate of 67% in their high dose groups in multiply relapsed 4 

patients51.   5 

While these BCMA targeted therapies show promise, this receptor is present on tumour cells 6 

at variable and often low levels16,17. We found the median surface BCMA expression on MM 7 

cells to be over a log less than CD19 on acute lymphoblastic leukemia (ALL)6. Moreover, 8 

antigen negative tumour escape is well described in B-cell malignancies, with an incidence 9 

exceeding 10% in patients with ALL treated with a CD19 CAR6,25. In the BCMA CAR study 10 

described by the UPenn group47, disease  progression in two patients was associated with 11 

reduction in BCMA expression, reminiscent of the report from the NCI group using their first 12 

BCMA CAR24.  These observations prompt a re-evaluation of such therapies targeting a 13 

single antigen. 14 

We found BCMA and TACI to be co-expressed on tumour from the majority (78%) of 15 

patients and we hypothesized that targeting two tumour antigens could overcome the 16 

challenges of low target levels and antigen escape when targeting BCMA alone. To date, 17 

there have been several approaches to creating dual targeting CARs. These strategies have 18 

included the admixing of two populations of CAR transduced T-cells52, engineering a single 19 

CAR construct containing two separate scFvs in tandem (TanCAR)53,54 or the co-expression 20 

of 2 CARs on T-cells using a bi-cistronic vector or double transduction (OR gate)55,56. In the 21 

context of low levels of target antigen, the first approach may not ensure maximal T-cell 22 

activation as only BCMA or TACI would be recognised by individual T-cells. A bi-valent 23 

TanCAR may result in lower numbers of ligated receptors per target cell in target limited 24 

conditions; finally, an OR gate requires a large, complex bi-cistronic vector or a complex 25 

double transduction.  26 

In comparison, APRIL is compact (135aa), non-immunogenic and natively bispecific, binding 27 

either MM antigen31 with high affinity. Using APRIL as the CAR binder, we report target 28 

cytolysis at low E:T ratios that enforce an assessment of serial kill and at low levels of target 29 

antigen such as are present on primary tumour cells. ACAR-mediated cytolysis was also 30 

achieved at low levels of TACI, when BCMA targeting was blocked thus indicating the 31 

possibility of ACAR-mediated disease control even with BCMA down-regulation or loss. Data 32 

exists demonstrating resistance of CARs to blocking by avidity effects57,58 and we observed 33 

reduction in ACAR killing at the highest levels of sBCMA found in MM BM but not with 34 

physiological concentrations of APRIL or TACI. In confirmation of our in vitro findings, we 35 
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observed tumour regression of established disease after only 48 hours of ACAR T-cell 1 

infusion in an intramedullary murine myeloma model. Notably, using an in vivo model of 2 

tumour escape, we observed improved disease control compared to a CAR targeting BCMA 3 

alone. 4 

BCMA and TACI are both lymphoid antigens. BCMA is vital for the survival of long-lived 5 

PC59, is upregulated in late memory B-cells on committing to the PC lineage60,61 and is thus 6 

present on normal and malignant PC16,17. In comparison, TACI expression is found primarily 7 

on maturing B-cells, particularly marginal zone B-cells, CD27+ memory B-cell subsets and 8 

PC38,60. Our qRT-PCR analysis of TACI transcripts indicates expression restricted to the 9 

lymphoid compartments. Furthermore, ACAR does not appear to result in tissue toxicity in 10 

an animal model. We expect that ACAR therapy would result in loss of the entire plasma cell 11 

compartment and a subset of the B-cell compartment. The subsequent 12 

hypogammaglobinaemia may be more profound than that of CD19 targeting62 but should not 13 

be more severe than that of BCMA targeting alone.  14 

TACI has been implicated both as a positive and a negative immune regulator63-66, and gene 15 

disruptions are found in 8% of patients with common variable immunodeficiency27,64. TACI 16 

also drives PC differentiation67 suggesting that TACI is expressed early in PC development. 17 

We describe tumour TACI expression in the majority of patients and given the ontogeny of 18 

TACI expression, speculate that in these patients at least, expression of this antigen on 19 

putative myeloma stem cells which have a role in disease relapse and drug resistance68,69 20 

would add a further advantage to this approach. 21 

In summary, using a novel ligand-based approach, we have demonstrated that the ACAR 22 

can concurrently target BCMA and TACI to increase the number of targetable tumour 23 

antigens in the majority of MM patients. ACAR T-cells were able to kill targets expressing 24 

either receptor and significant killing was seen at physiological receptor levels, at low E:T 25 

ratios  or with BCMA blockade. ACAR T-cells also killed primary myeloma cells in vitro and 26 

we observed rapid and complete tumour clearance in vivo in comparison to an irrelevant 27 

CAR as well as in our tumour escape model compared to a CAR targeting BCMA alone. 28 

These observations suggest that dual antigen targeting of BCMA and TACI by ACAR T-cells 29 

may improve on the initial clinical responses seen with BCMA targeting CARs, both by 30 

extending clinical applicability to those patients with low levels of tumour BCMA, and by 31 

reducing the risk of antigen negative escape.   32 

 33 
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 22 

 23 

Figure Legends 24 

Figure 1. BCMA and TACI expression on primary myeloma cells (A) Fresh bone marrow 25 

mononuclear cells (BM MNCs) were stained with CD138 APC and one of BCMA PE, TACI 26 

PE (blue) or isotype control (red). Antigen densities of BCMA and TACI on CD138+ tumour 27 

cells (gated) were then quantified using QuantiBRITETM beads and subtracting antibodies 28 

bound per cell (ABC) of isotype controls. FACS plots from 4 representative patient samples 29 

with antigen densities (ABC) shown. (B) Stacked plot of BCMA and TACI expression on 30 

CD138+ cells. Each bar represents a separate myeloma patient. (C) Distribution of BCMA 31 

and TACI expression on primary CD138+ myeloma cells (n=50; medians shown. BCMA 32 

range: 105-8323, mean: 1623. TACI range:0-21301, mean:853). 33 

Figure 2. Optimization of APRIL-based chimeric antigen receptors (A) Three APRIL 34 

based 3rd generation chimeric antigen receptors (ACAR) were constructed, consisting of a 35 
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truncated APRIL molecule, fused to a tripartite endodomain (CD28-OX40-CD3ζ) via one of 1 

three spacers: the hinge of IgG1 (ACAR-H), the stalk of human CD8α (ACAR-CD8) or 2 

modified Fc (*FcR mutations as per Hombach43, ACAR-Fc). PBMCs were CD3/CD28/IL-2 3 

activated, transduced with ACAR constructs using RD114-pseodotyped retrovirus and CD56 4 

depleted before testing against SUPT1 cells expressing high levels of BCMA (8x10^4 ABC) 5 

or TACI (16.2x10^5 ABC). (B) Target cell death as determined by 4 hour 51Cr release assay 6 

with (i)SUPT1NT (ii)SUPT1BCMA (iii)SUPT1TACI on co-culture with PBMCs transduced with 7 

ACAR-H (n=5), ACAR-CD8 (n=6), ACAR-Fc (n=3). Significance values indicated are 8 

compared to cytolysis with PBMCs NT by paired t test. (C) ACAR transduced T-cells were 9 

also co-cultured (1:1) with SUPT1 targets and IFNG release at D+1 measured by ELISA 10 

(Same number of experiments as before). (D) ACAR transduced PMNCs from further donors 11 

were labelled with Cell Trace Violet prior to co-culture with SUPT1 targets (1:1) and FACS at 12 

D+4. Percentage of ACAR positive cells proliferated with antigen expressing targets was 13 

then defined relative to co-culture with SUPT1NT control (n=6 for ACAR-H and ACAR-CD8, 14 

n=4 for ACAR-Fc). Mean±SEM indicated, *=p<0.05, **=p<0.01, by paired t test.  15 

Figure 3. ACAR mediated cytolysis seen at low target density and low E:T ratios (A) 16 

SUPT1 targets were engineered to express a wide range of (i)BCMA and (ii)TACI. Antigen 17 

densities of targets indicated. Dot plots depict receptor levels found on primary MM tumour 18 

cells from 50 patients (population median indicated and hashed line represents threshold for 19 

positive expression) compared to engineered SUPT1 targets. (B) These targets were then 20 

co-cultured with ACAR-CD8 and H spacer variants at a low E:T ratio (1:10), and target death 21 

determined at 48 hours by FACS and expressed as percentage cytolysis compared to media 22 

control. (C) Specific cytolysis at 48 hours of human myeloma cell lines (i)MM.1s and (ii)U266 23 

when co-cultured with ACAR transduced T-cells at reducing E:T ratios. Inset histograms 24 

show BCMA and TACI expression by FACS (grey filled) compared to staining with isotype 25 

control (empty). Mean±SEM of number of experiments indicated *=p<0.05, **=p<0.01, 26 

***=p<0.001 by t test, compared to PBMC NT.   27 

Figure 4. ACAR causes cytolysis of primary myeloma cells in vitro (A) CD138 selected 28 

bone marrow derived primary myeloma cells from 5 patients were cultured in media alone 29 

(labelled ‘Tumour alone’), with allogeneic NT T-cells or T-cells transduced to express ACAR-30 

H.2A.RQR8 or ACAR-CD8.2A.RQR8. Patients identified by number allocated in Figure 1B 31 

and Table S1. Tumour antigen densities of BCMA and TACI indicated (ABC). Relative 32 

number of viable tumour cells at D+3 shown. Cytokine release was determined at D+1 by 33 

ELISA and T-cell numbers after 7 days of co-culture with or without tumour cells determined 34 

by staining for RQR8 transgene using FACS. (B) Summarised (i)tumour kill (% cytolysis 35 
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determined relative to viable tumour cells on co-culture with NT T-cells) (ii)cytokine release 1 

and (iii)T-cell expansion. (C) ACAR-H transduced PBMCs from 3 donors were co-cultured 2 

1:4 with MM.1s, U266 or CD138 selected primary bone marrow derived tumour cells from 3 3 

further patients. Effectors and targets were cultured in media alone, 150µg/ml of anti-BCMA 4 

antibody (S307118G03) or the equivalent concentration of IgG2a control. (i)BCMA and TACI 5 

expression on targets (ii)target kill at 48 hours by FACS. Mean± SEM, *=p<0.05 compared 6 

to control by paired t test.  7 

Figure 5. ACAR-H mediated tumour clearance in vivo (A) Twenty-two NSG mice were 8 

injected IV with 10x10^6 HA+Fluc+MM.1s cells at D0 and monitored by BLI for tumour 9 

burden at different time points (dorsal views shown). On D+13 there was clear evidence of 10 

intramedullary tumour in all animals at which point 6 animals were left untreated, 8 animals 11 

were intravenously injected with T-cells transduced with a control EGFRvIII targeting CAR or 12 

ACAR-H (5x10^6 CAR cells/animal). (B) Average radiance [p/s/cm²/sr] of whole mice in the 13 

3 groups at different timepoints.  (C) At termination of experiment (D+25 post tumour, D+12 14 

post CAR), by FACS there was significant reduction of tumour in the bone marrow of ACAR 15 

treated mice compared to EGFRvIII treated and untreated animals. Tumour cells were 16 

identified as live/single/muCD11b-/HA+ with numbers normalised to Flow-CheckTM beads to 17 

calculate relative engraftment. Mean±SEM shown, **=p<0.01 and ***=p<0.001 by t test. (D) 18 

Eradication of CD138+ tumour cells by ACAR was confirmed in bone marrow by IHC of 19 

femur. H&E staining shown at x12.5 and x400 (left and central panels) and immuno-staining 20 

for CD138 (right panels) at x200 original magnification.  21 

Figure 6. ACAR-H mediated clearance of BCMA negative tumour. (A) BCMA-3 (5807 22 

ABC) and TACI-2 (2229 ABC) SUPT1 targets were transduced with RQR8.2A.Fluc and 23 

HA.2A.Fluc respectively and used in an in vivo tumour escape model. Twenty-one NSG 24 

mice were intravenously injected with a total of 3.5x10^6 BCMA and TACI expressing 25 

SUPT1 cells at a ratio of 4:1 respectively. At D+4, mice were intravenously injected with NT 26 

PBMCs, T-cells transduced with ACAR-H or a CAR construct targeting BCMA alone (BCMA 27 

CAR) at a dose of 5x10^6 CAR cells/animal (n=7 per cohort). Tumour burden was monitored 28 

by BLI at different time points (dorsal views shown). (B) Average radiance [p/s/cm²/sr] of 29 

whole mice in the 3 groups at different timepoints. (C) Nine days post CAR T-cells, the 30 

experiment was terminated and FACS of BM MNCs showed persistent engraftment of 31 

BCMA and TACI SUPT1 cells following NT T-cells, clearance of both cell populations by 32 

ACAR-H T-cells and eradication of BCMA expressing tumour only by BCMA CAR (single 33 

example from 3 cohorts shown). (D) SUPT1 cells were identified as live/single/muCD11b-34 

/CD2-/CD4+/CD8+ and BCMA(i) and TACI(ii) expression determined by RQR8 and HA 35 
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staining respectively with numbers normalised to Flow-CheckTM beads to calculate relative 1 

engraftment. Mean±SEM shown, **=p<0.01 and ***=p<0.001 by t test. 2 
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