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Abstract

In this thesis I undertake four projects that investigate the influence of network
topology on financial contagion. In the first project I study the ability of three net-
work models to reconstruct the topology and contagion dynamics of a real interbank
network. This allows me to identify the main topological properties of networks that
affect financial contagion. In the third and fourth projects I develop a framework to
reverse stress test interbank networks. Based on this framework I propose a strategy
to reduce systemic losses and I test the strategy in interbank networks with different
topologies. I develop the methodological background to the reverse stress testing
framework in the second project. In this project I study network control theory, to
investigate the influence of network topology on the cost of managing the dynamics
of networks.

Project 1: I focus on the problem of the required amount of information to
reconstruct a real interbank network. I obtain data of the Austrian interbank net-
work and compare the ability of three null models to reconstruct its topology. I test
Erdős-Rényi, the directed configuration and the fitness null models, each of which
requires a different amount of prior information about the real network. Since the
same counterparty risk algorithms are employed to stress test each network, an un-
derstanding of the topological determinants of financial contagion is obtained by
analysing the differences in the topologies of the real and reconstructed networks.
I find that the null models capture the DebtRank algorithm well, which does not
strongly depend on the local topology of the network, but rather on global topolog-
ical properties. In contrast, the null models cannot reproduce the exact values of
contagion observed due to the Furfine algorithm, that strongly depends on specific
constellations of links in the local topology. The difference in the observed finan-
cial contagion due to the Furfine algorithm between the reconstructed and the real
networks, is due to a higher concentration of risk in the real network. I explain
the higher concentration of risk in the real network via the concept of vulnerable
clusters of banks. Lastly, I find that the fitness model provided with information
only on the interbank assets and liabilities of each bank outperforms the other null
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models. This result suggests that the heterogeneity of the distribution of the inter-
bank relationships is sufficient in determining financial contagion at the aggregate
level.

Project 2: I perform numerical simulations to study the cost of controlling
the dynamics of networks. In particular, I investigate Erdős-Rényi and scale-free
networks, to identify the topological determinants of control energy. Control energy
represents the cost of driving each node in a network to a specific target state. In
interbank networks control energy translates into capital injections (losses) required
to reduce (increase) systemic risk. I find that, when nodes have a common target
state that they push one another to their common goal and thereby reduce the
control energy requirement. This reduction of the control energy is also evident when
the network connectivity increases, in this case more densely connected nodes help
one another in reaching their common target state. This effect is more pronounced
in scale-free networks, due to the presence of hub nodes that reach throughout the
network. To provide an intuition of the effect of network connectivity on control
energy, I provide an analytical approach based on mean-field theory to compute the
control energy in Erdős-Rényi networks.

Project 3: I introduce a reverse stress testing framework that can be used to
identify the potential triggers of systemic events and that removes the arbitrariness
in the selection of shock scenarios in stress testing. I reverse engineer financial
contagion to find the distribution of smallest exogenous shocks that, should it occur,
would lead to a given final systemic loss. I consider the case of distress propagation
in an interbank market based on the 44 largest European banks, which I construct
using data collected from Bloomberg. By looking at the distribution across banks
of the size of smallest exogenous shocks, I rank banks in terms of their systemic
importance, and show the effectiveness of a policy with capital requirements based
on this ranking. I also study the properties of the exogenous shocks as a function of
the largest eigenvalue λmax of the matrix of interbank leverages, which determines the
endogenous amplification of shocks. I find that the size of exogenous shocks reduces
and that the distribution across banks becomes more localized as λmax increases.

Project 4: I study the impact of network topology on the reverse stress testing
framework. I apply the framework to networks of various densities representing the
largest European banks and to the Austrian interbank network. I then perform
an analysis similar to that in the first project, in which I reconstruct the Austrian
network using three network models to test their ability to estimate the exogenous
shock applied via the reverse stress testing framework. Through these investigations



9

I find that the behaviour of the exogenous shock is robust across different topologies.
Moreover, I find that, when the system is unstable, the exogenous shock decreases
as a function of the network density. The null model reconstruction exercise sur-
prisingly reveals that the fitness model performs worse than the other two network
models. I link the performance of the fitness model to its overestimation of isolated
nodes, which significantly increases the required exogenous shock.

Main contribution of each project:

Project 1: Null models capture general trend in financial contagion, but cannot
accurately recreate local topology.

Project 2: Cost of controlling network dynamics decreases as a function of the
network connectivity.

Project 3: Introduction of framework to reverse stress test interbank networks,
which highlights sources of vulnerability in the network.

Project 4: Exogenous shock computed via reverse stress testing framework de-
pends on the network connectivity.
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Chapter 1

Introduction

1.1 Motivation and Research Objective

Financial stability is one of the main concerns for the regulators of financial mar-
kets. Only when financial markets are stable, do companies feel confident to invest
and thereby keep an economy prosperous. Understanding the dynamics of finan-
cial stability is thus not only in the interest of regulators, but also policy-makers,
businesses, banks and ultimately the general public. This research area is especially
timely given the financial crisis of 2008 and the resulting economic uncertainty that
still affects financial markets today.

In this thesis I consider a complex systems approach to study systemic risk. I fo-
cus in particular on the influence of the topology of interbank networks on financial
contagion. Systemic risk describes the possibility of the breakdown of a financial
system and emerges from the endogenous network dynamics resulting from the bor-
rowing and lending interactions (edges) between banks (nodes). Crucially, when
modelling the dynamics of systemic risk, the topology of interbank networks –that
is the bilateral connections between banks– is very influential in the way financial
contagion propagates throughout a network. An understanding of the interplay of
network topology and dynamics is therefore essential in studies of systemic risk.

Typically analyses of financial contagion employ a forward-looking approach, by
studying the impact of an initial exogenous shock on the stability of an interbank
network. Within such approaches a shock is propagated throughout the network and
the resulting losses of each bank are summed across all iteration steps of propagation.
Using this approach it cannot be known whether a shock employed in a marginally
different manner, for instance in terms of its size or the banks that are targeted, has a
significantly different effect upon the stability of the system. With these limitations
in mind, I introduce a framework to reverse stress test interbank networks. Using
this framework I consider the opposite problem to forward-looking stress tests, by
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computing the minimal exogenous shocks that need to affect each bank to cause a
specific loss to the system.

The reverse stress testing framework is similar to an optimal control problem on
a network. To develop the methodological background to framework, I use control
theory, a branch in the engineering sciences, to study the cost of managing the dy-
namics of a network. The goal in control theory is to move a dynamical system from
a given state to a target state. Since control theory has only recently been applied
to networks, essential parts of the theory are not yet understood within networks.
The computation of control energy, which measures the cost of control, is one of the
central parts in any control problem. The properties of control energy on networks
have not yet fully been understood [86, 128]. Since the reverse stress test framework
requires the ability to manage, i.e. to compute the cost of controlling, systemic
risk in an interbank network, this research is timely not only from a perspective of
systemic risk, but also for control theory.

1.2 Thesis Structure

This section provides a brief overview of the structure of this thesis. In this the-
sis I undertake four projects. Each project is concerned with a different aspect of
the impact of network topology upon financial contagion. In the subsequent sec-
ond chapter I provide a background literature review to systemic risk and network
reconstruction. The third chapter describes the first project, in which I study the
required amount of information in order to reconstruct the topology and dynamics
of interbank networks. In the fourth chapter I describe the second project, in which
I investigate the influence of the topology of a network on the cost of controlling
its dynamics. In the subsequent third project I use the insights from the first and
second projects to develop a framework to reverse stress test interbank networks. I
describe these results in the fifth chapter. In the sixth chapter I present the results
of the fourth and final project, in which I study the robustness and properties of
the reverse stress testing framework in interbank networks with different topologies.
I summarise and discuss the results across all projects in the final seventh chapter
and provide suggestions for future research.

1.3 Research Methodology

In this section I introduce the individual projects and thereby provide a more de-
tailed overview of the research methodology that I use in this thesis.
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1.3.1 First project: Systemic Risk - Disentangling the influ-

ence of interbank network topology and dynamics

In the first project I consider the problem of the amount of information required
to estimate systemic risk due to counterparty risk. I obtain data of the Austrian
interbank network to compare its topology and financial contagion properties to
that of reconstructed networks, which are built from limited information. Through
a comparison of the properties of the real network’s dynamics to that of the recon-
structed networks, a much deeper understanding of the topological determinants of
financial contagion can be gained, than by considering a real network in isolation.
Since the same counterparty risk algorithm is employed on the reconstructed and
real networks, I can identify the topological factors that influence financial contagion
by comparing the topology of the networks.

I consider the following models, which I chose due to the different amounts of
prior information they require of a real network: i) Erdős-Rényi random networks in
which the only information from the real network is the average degree across nodes,
ii) the fitness model in which information on total interbank assets and liabilities of
each bank is used to reconstruct the network, iii) the directed configuration model
that preserves the entire degree sequence of the original network by rewiring each
edge. The edge weights of all three reconstructed networks are fitted with the RAS
algorithm [13, 23].

After I reconstruct the real network, I compare the results of stress tests per-
formed on the real interbank network with those performed on the reconstructed
networks. I test in particular the counterparty default risk algorithm due to Furfine
[58] and the DebtRank algorithm [17]. For the Furfine algorithm my analysis shows
that the fitness model can only measure the general trend in financial contagion,
but cannot capture the exact values of contagion observed in the real network. This
suggests that knowledge of the network density as well as of total interbank assets
and liabilities of each bank is sufficient to assess the general trends in the stability
of a financial network.

However, a comparison between the contagion trajectories of the real and re-
constructed networks shows that there is a higher concentration of risk in the real
network. This higher concentration of risk is exemplified in the real network by a
vulnerable cluster that is much larger and triadic motifs that contain more risky
banks compared to the reconstructed networks. The vulnerable cluster is a set of
banks that default when only one of their counterparties fails to repay its liabilities.
The inability of the null models to accurately measure financial contagion due to the
Furfine algorithm is largely due to their inability to reconstruct the local topology
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of the real network. In contrast, all three null models reconstruct financial conta-
gion measured by the DebtRank algorithm well. The reason for this is that the
DebtRank algorithm does not strongly depend on the local topology, but rather on
global topological properties such as the network density. Moreover, the DebtRank
algorithm is strongly influenced by interbank leverages, which the null models indi-
rectly obtain via the RAS algorithm that allocates edge weights based on the total
interbank assets and liabilities of each bank.

1.3.2 Second project: Topological determinants of

control energy

Because the properties of control energy, the cost of controlling a network, are
not yet understood, I undertake a theoretical study of the impact of the topology
of networks upon control energy in the second project. The application of control
theory to networks is a relatively recent phenomenon, which was introduced through
a study by Liu et al in 2011 [86]. Since then the literature has focused upon structural
controllability, which describes mathematical criteria that define when a network is
controllable. A central aim of this effort is to find the minimum number of nodes
that require to be externally controlled to ensure structural controllability.

Yan et al in 2012 and 2015 produced the first studies that systematically investi-
gate the control energy in Erdős-Rényi (ER) and scale-free (SF) networks [137, 138].
These studies established the minimum and maximum bounds of control energy for
both types of networks. These bounds are very wide and therefore do not pro-
vide a sufficiently detailed understanding of the influence of network topology and
dynamics on control energy.

In this project I construct ER and SF networks with varying levels of connectivity
and compute the control energy for a simple control task in these networks. I
find that control energy decreases with an increasing network connectivity, because
nodes that have a common target state push one another to their common goal
and thus reduce the required exogenous control input. Importantly, this effect is
more pronounced in SF networks due to hub nodes that can coordinate the state of
most nodes in a network. I provide an analytical derivation based on a mean-field
approximation, to prove the diminishing effect of network connectivity on control
energy.
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1.3.3 Third project: Reverse stress testing interbank net-

works

In the third project I use the DebtRank algorithm to propagate stress in an interbank
network and develop a framework inspired by network control theory to reverse
engineer these dynamics. Using this framework I can identify the optimal (minimal)
exogenous shocks that would lead to a given cumulative loss of equity for each bank
in the network. I test this framework in a network consisting of the 44 largest
European banks that are members of the STOXX Europe 600 Banks index. Using
the RAS algorithm I construct a full network of interbank assets and liabilities
between all banks. I chose to apply the reverse stress testing framework to a full
network in order to focus on the dynamics of the framework free of the influence of
network topology.

I find that as the interbank leverage increases, that the size of the exogenous
shock decreases. I measure interbank leverage via the largest eigenvalue of the
matrix of interbank leverages, which describes the relative impact of the default
of a borrower on its lender’s equity capital. The reason for the decrease of the
exogenous shock is that as the dynamics become faster, the interactions between
nodes increase the systemic losses, such that a smaller exogenous shock is required
to reach the targeted losses. An additional effect of faster network dynamics is that
the shocks become increasingly concentrated in fewer banks.

The increased concentration of nodal shocks, i.e. the increased concentration of
risk in a subset of banks, allows me to create a ranking of banks in terms of their
systemic importance. Banks with the largest exogenous shocks are those that have
the largest impact on the stability of the system. Based on this ranking of banks
I design a simple policy to reduce the observed system losses. The policy allocates
additional equity capital to banks based on their relative systemic importance. I
show that this policy can significantly reduce the observed losses of the system by
up to 95%.

1.3.4 Fourth project: Reverse stress testing interbank net-

works - The influence of topology

In this final project I analyse the reverse stress testing framework, that I developed
in the previous project, in different network topologies. I apply the framework to
the STOXX network with a range of different densities that I create using the RAS
algorithm, and the Austrian network together with its reconstructed networks using
the three null models that I study in the first project. This approach allows me to
test the the influence of network topology on the properties of the exogenous shock
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that is computed via the framework.
I find that the exogenous shock is independent of the density when the STOXX

network is stable. In contrast, when the network is unstable, the exogenous shock
decreases as a function of the density. I further find that the equity capital policy
used to reduce the observed system losses is effective only when the density of the
network is larger than 50%. The reason for this is that the additional equity capital
injected by the policy can only be effectively spread throughout the network, when
the connectivity of the network is sufficiently high.

The properties of the total exogenous shock are similar in the Austrian relative
to the STOXX network. However, due to the higher heterogeneity of the nodes
in the Austrian network, the individual nodal shocks are more concentrated in the
Austrian than in the STOXX network. The reason for this is that the largest nodes
in a network absorb the largest fraction of the exogenous shocks.

With respect to the reconstructed networks via the three null models, I surpris-
ingly find in contrast to the first project, that the fitness networks have the largest
measuring error. The configuration model performs best out of the three null mod-
els in terms of estimating the size of the total exogenous shock of the Austrian
network. The Erdős-Rényi networks perform better than the fitness networks when
the underlying network is unstable, and conversely, the fitness networks provide bet-
ter estimates than the Erdős-Rényi networks when the system is stable. The poor
performance of the fitness model is due to its overestimation of the abundance of
isolated nodes. Isolated nodes require the largest fraction of the exogenous shock in
a network, as they cannot be affected by the endogenous network dynamics. The
total exogenous shock in the fitness networks is therefore much larger than in the
Austrian network.

1.4 Contributions of this Thesis

This thesis contributes to complex systems theory by providing insights into the
influence of the topology of a complex system on its dynamics. I use this connection
between network topology and dynamics to develop a framework to reverse stress
test interbank networks. This framework is a specific example of a new strand of
research that develops methodologies to manage complex system dynamics with
targeted interventions via their topology. In the remainder of this section I outline
the contributions that I make in each of the individual research projects.
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1.4.1 Systemic Risk: Disentangling the influence of interbank

network topology and dynamics

1. Most previous research investigated reconstructed networks without compar-
ing their ability to estimate financial contagion directly with other recon-
structed networks. I compare and contrast the results of an analysis of two
financial contagion algorithms, the Furfine and DebtRank algorithms, in re-
constructed networks with those of a real interbank network.

2. In contrast to the previous literature that focused on the good ability of fit-
ness model in reconstructing the higher-order properties of the topology of
interbank networks, I find that the fitness model only captures the general
trend of financial contagion and cannot accurately recreate the exact values of
financial contagion observed in the real network due to the Furfine algorithm.
In contrast, all three null models reconstruct counterparty risk measured with
the DebtRank algorithm well.

3. In all three reconstructed networks the trajectory profiles over time due to
the Furfine algorithm are quite different to the real network. I show that this
difference is due to a higher concentration of systemic risk in the real network
that results from a higher clustering of risky banks. I quantify the higher
clustering of risk by identifying vulnerable clusters, i.e. sets of banks that
default upon the failure of only one of their counterparties.

1.4.2 Topological determinants of control energy

1. Total network control energy, which measures the cost of control, decreases
with the average degree of the network.

2. The decrease in energy is more pronounced in scale-free networks due the
presence of large hub nodes, which can coordinate the states of a large fraction
of nodes throughout the network.

3. I provide an analytical derivation of the control energy for Erdős-Rényi net-
works based on a mean-field approximation.

1.4.3 Reverse stress testing interbank networks

1. I introduce a framework to reverse stress test interbank networks. This frame-
work allows the identification of the minimal exogenous shocks that lead to
specific total losses in an interbank network. This framework provides a more
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rigorous method with which to identify potential causes of financial instability
than previous approaches, which a priori presume the causes of instability.

2. As the largest eigenvalue of the matrix of interbank leverages increases the
optimal shocks become smaller and more concentrated in a smaller set of
banks.

3. Based on the distribution of optimal shock sizes, I rank banks in terms of
their systemic importance. This ranking can be used to make the system
more robust through the implementation of a targeted equity capital policy.

1.4.4 Reverse stress testing interbank networks - The influ-

ence of topology

1. I find that the exogenous shock is independent of the network density when
the network is stable, however when it is unstable then networks with higher
densities require lower shocks.

2. The equity capital policy employed to reduce the observed system losses, is
significantly less effective when the network connectivity is low.

3. The fitness model performs worst in estimating the size of the exogenous shock
out of the three network null models studied. The reason for the poor perfor-
mance of the fitness model is due to its underestimation of the connectivity of
small nodes and its overestimation of the connectivity of large nodes.

1.5 Publications and Talks

In this section I briefly mention the publications and talks that resulted from my
individual projects.

• Project 1 on systemic risk in the Austrian interbank network is currently in
submission with the Journal of Economic Interaction and Coordination.

• Project 2 on control energy in networks is in preparation for submission. I
have given invited talks of this project at:

1. 6th NII-Kobe Collaborative Workshop at the University of Kobe, Japan,
4th March 2016.

2. Inoue Laboratory for Inference and Learning at the National Institute of
Informatics and the University of Tokyo, Japan, 30th March 2016.
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• Project 3 on reverse stress testing is currently in the second round of reviews
with Scientific Reports. A preprint is available on arXiv: 1702.08744 with
the title ”Reverse stress testing interbank networks“. I have given a talk on
this project at the 13th Econophysics Colloquium at the University of Warsaw,
Poland on the 6th of July 2017.

• Project 4 on the impact of network topology on reverse stress testing is in
preparation for submission to the Journal of Network Theory in Finance.
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Chapter 2

Background and Literature Review

2.1 Systemic Risk

In this section I discuss the literature on systemic risk that is related to my thesis.
After generally introducing systemic risk, I focus on applications of network theory
to systemic risk. I put a particular emphasis on the literature that studies the
topology of interbank networks.

2.1.1 General definitions and a financial perspective

Generally speaking systemic risk is the risk associated with a catastrophic breakdown
of a financial system. A broad characterisation is to describe systemic risk as the risk
not specific to an agent in a financial market, but rather as the risk that naturally
emerges in a system due to the interaction of all agents, these interactions are
referred to as the endogenous dynamics of a system [23, 36, 97].

Traditionally any risk associated with financial markets, including the relatively
recent rise of the systemic risk concept, has been investigated from a purely financial
perspective. It is therefore useful to briefly discuss the main insights from this
financial research, to link the mechanisms that these studies identified to those
discovered through the methods of network theory, which I discuss in the following
section 2.1.2. In particular, I focus on the leverage cycle, which is a factor that
is influenced by many driving mechanisms of systemic risk and that significantly
changes the systemic risk profile of a market system.

The rise and fall of an economy is often explained with the leverage cycle, which
was originally described by Minsky [62]. Leverage moves pro-cyclically: In prosper-
ous times asset prices are high as easy borrowing conditions allow high leverages;
however, during depressed times asset prices are low because of constrained borrow-
ing conditions [62]. In times of financial distress margins increase and borrowing
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becomes expensive. In response investments turn unprofitable, which results in more
asset sales and further decreases in leverage. Many factors that drive financial mar-
kets therefore influence one another [34]. Especially in downturns the normally het-
erogeneous perspectives of investors align to a narrower pessimistic outlook, which is
signified by an increasing correlation of asset prices [45]. Brunnermeier et al (2009)
find a non-linear impact of the interaction of the ease of borrowing with asset prices.
This interaction results in a negative feedback loop, such that asset prices often drop
below their fundamental value in a market correction after prosperous times [34].
Distressed periods are also characterised by higher volatilities, due to the rising
uncertainty relative to the optimism that characterises prosperous periods [62].

Leverage allows some investors to exert a much larger influence on the price of
financial assets relative to other less leveraged market participants. From a per-
spective of systemic risk this means that the stability of a market depends on a few
major connected agents. The failure of only one of these agents can cause significant
disruptions to an economy [62]. In a very extensive study Jorda et al (2017) studied
the history of the leverage cycle across 17 advanced economies over 150 years [79].
The authors find that larger leverages, defined as the ratio of total credit to gross
domestic product (GDP), lead to slower recoveries from crises. However, larger
leverages also have the effect of smoothing out smaller crises, in that they allow an
economy to absorb small shocks by borrowing additional capital.

Traditional economic supply-demand models that define equilibrium interest
rates and that are based on the assumption of a law of one price, provide very
similar value estimates for different liabilities. Geanakoplos (2010) shows that these
models fail to adequately forecast the dynamics of the leverage cycle, precisely be-
cause of their assumption of homogeneous investor perspectives [62]. Geanakoplos
suggests different types of models, that forecast equilibrium leverage and margins
based on individual price estimates by analysing each loan separately. The core
rationale for this suggestion is that the same loan can have different prices for dif-
ferent investors, due to investors’ varying ability to leverage returns. See Aymanns
et al in 2014 and 2016 for two recent studies that define an optimal leverage policy
[11, 12]. For a comprehensive overview of methods used in traditional finance to
analyse systemic risk see Bisias et al (2012) [30].

Two insights from the preceding review of the financial perspective on systemic
risk are of importance to the network theoretic approach to systemic risk. Firstly,
heterogeneity influences the manner in which markets price assets; and secondly,
several interacting mechanisms are at play in driving systemic risk, that can be
roughly summarised with the leverage of financial markets. The focus of my thesis
is to study the impact of the structure of interactions between market participants
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on systemic risk. Networks allow these heterogeneous interactions to be integrated
with the leverage dynamics of financial markets. In the following section, together
with section 3.2, I discuss how these features of systemic risk are studied in the
network theory literature.

2.1.2 Network theory underlying systemic risk

Network theoretic investigations of systemic risk have identified multiple channels of
financial contagion in interbank networks, which describe the lending and borrowing
activities between banks. These include amongst others, counterparty default risk,
overlapping portfolio risk and liquidity risks. The topology of interbank networks
is crucial in defining these channels of financial contagion. In this section I discuss
the intricacies of interbank network topologies in preparation for a discussion of the
channels of financial contagion in section 3.2.

Tasca et al (2016) provide a link between the procyclical behaviour of leverage
and interbank networks [129]. They find that networks can amplify the leverage
cycle, which is driven largely by banks’ equity capital requirements and the liquidity
of assets. For instance, low levels of equity capital and low liquidity result in much
higher levels of systemic risk, because banks do not have sufficient capital buffers
to absorb losses from their counterparties and cannot sell their assets in time to
increase their equity capital [129].

The large-scale organisation of interbank networks

Many studies of national interbank markets have been undertaken, see Upper (2011)
[132] and Glasserman et al (2016) [66] for two extensive reviews. For a major
representative study on the topology of interbank networks based on the Mexican
interbank network, with access to rare daily data of interbank exposures, see the
study of Martinez-Jaramillo et al in 2014 [89]. Most of these studies have identified
topological features that occur across interbank networks, which therefore appear
to be universal to interbank networks. My focus in this section is to describe these
common topological features of interbank networks.

A major advantage of network theory is that it enables scholars to model the
emergence of the heterogeneity of financial data, such as losses and leverage [62, 122].
Networks with power-law (heterogeneous) degree distributions are called scale-free
(SF) networks. SF networks tend to consist of many poorly connected nodes and a
few extremely well connected nodes [75, 119, 122]. Interbank networks are typically
disassortative, such that large banks are typically the borrowers and small banks
the lenders [44, 75, 132].
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Moreover, interbank networks tend to have a core-periphery structure. The core
is a set of banks that coordinates the majority of the lending activity in an interbank
network. An ideal core-periphery network is characterized by a set of core banks,
that are fully interconnected, and a set of peripheral banks that are connected to the
core but have no connections to one another. Core-periphery structures have been
identified in many interbank markets including the German [44], Dutch [83], Italian
[57] and Austrian in this thesis. The core-periphery structure has been shown to
be fully determined by the degree sequence of a network [85], and thus not to be
representative of the underlying financial motivations that drive interbank lending
and borrowing. Moreover, the ability of algorithms to detect core-periphery struc-
tures depends on the a priori assumptions underlying these algorithms, especially
the level of time aggregation that is used when constructing interbank networks.
Barucca and Lillo (2016) show that with most time aggregations the structure of
the e-MID market is bipartite rather than resembling a core-periphery structure [21].
The e-MID market is the Italian electronic market for interbank deposits, for a thor-
ough introduction to its mechanism see Iori et al (2015) [77]. See also section 3.3.3
where I outline a methodology to detect core-periphery structures.

Nonetheless, from a financial perspective the core-periphery structure is sensible,
as large core banks can offer services to smaller banks (e.g. clearing, lending of large
amounts at lower rates, etc.) and generally coordinate the activity of the network as
money centre banks. Craig and von Peter (2014) for instance show, that over 90%
of transactions of periphery banks involve core banks, yet out of over 2,000 banks
in the German interbank network, only 45 are in the core. This demonstrates the
extraordinary significance of core banks in interbank activity [44].

Robust-yet-fragile structure of financial networks

Financial networks are characterised by relatively few but major disruptions. In
complex systems theory this behaviour is described as robust-yet-fragile [2]. Scale-
free networks tend to be robust with regards to random attacks, but are fragile
with respect to targeted attacks. When 5% of the links in a scale-free network
are randomly removed, the average shortest path length – an indicator of network
connectivity, does not significantly reduce [2]. However, when the most connected,
i.e. the nodes of highest degree, are disconnected from the giant connected com-
ponent, then the network connectivity quickly breaks down. The giant connected
component is the largest cluster of nodes in a network and strongly contributes the
connectivity of a network. In contrast, due to the homogeneous degree distribution
of ER networks, the fragmentation of the giant connected component in ER net-
works occurs only when a much larger fraction of links are removed relative to SF
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networks. Lenzu and Tedeschi (2012) explore this behaviour with an agent based
model employed on different topologies ranging from ER over SF to star networks
[84]. The authors find that the reason for the apparent robustness of SF networks
is due to their high abundance of poorly connected nodes. These nodes form iso-
lated clusters that are insufficiently diversified with respect to counterparty default
risk, which describes the risk of the lender, that one of its borrowers defaults on its
liabilities. A particular reason for this higher risk is that banks in isolated clusters
are unable to raise sufficient liquidity to continue their operations [84].

The core-periphery structure contributes to the robust-yet-fragile nature of in-
terbank networks [31]. Because most banks in an interbank network are small, it
is likely that a defaulting bank is a small bank in the periphery. The network ap-
pears robust with respect to the default of a small bank, since the failure of a small
bank has a limited impact on other banks. In contrast, the network is not strong
enough to cope with the failure of a bank from the core, which would cause many
other banks to default [2, 39, 108]. This description mirrors the effect of leverage
on the stability of financial markets, that I described in section 2.1.1: In a highly
leveraged financial market a few investors are the major drivers of asset prices, and
are therefore the largest sources of potential financial instability.

2.2 Null Models of Networks

I this section I discuss statistical procedures to estimate and generate networks.
Statistical estimation of networks has two main purposes. Firstly to estimate un-
known data; and secondly to gain insights into the factors and mechanisms that
define network topology and dynamics.

The estimation of unknown data is particularly important for studies of systemic
risk for three main reasons [97]. Firstly, banks are not required to publicly report
all their bilateral connections (loans) to their counterparties. Secondly, interbank
networks can evolve extremely quickly. The pace of interbank networks is amongst
other reasons due to the maturities of loans, such as in overnight lending markets; or
at times because the network is pushed into a different regime as a result of certain
endogenous or exogenous events. Thirdly, most transactions are over-the-counter,
which are not reported centrally and are therefore difficult to study comprehensively.

Methods that reconstruct networks can address these problems, as these methods
are based on public data that is easily accessible and up-to-date. In this way the
bilateral connections can be estimated and changes in interbank markets due to
endogenous and exogenous factors can be captured in time.

In this section I focus on null models, which generate ensembles of networks in
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which certain properties, such as the in- and out-degree of each node are preserved.
Statistical estimation is used primarily to estimate networks when no information
about bilateral connections exists. After reconstructing a network, analyses are
run on this network to compare its topology and dynamics to the underlying real
network. In the case of systemic risk studies, financial contagion mechanisms are
often simulated on these networks, such as those discussed in section 3.2, to compare
the ability of different null models to estimate the risk in a real interbank network.

2.2.1 General insights gained from null models

The null models studied in this thesis are static, i.e. time-invariant, in which indi-
vidual nodes do not adjust their decisions to a new state of the network, for instance
by selling assets to raise equity in a financial crisis. Instead, banks simply absorb
the effect of the network dynamics, for instance losses resulting from the default of
a counterparty. For a more thorough contrast between static and dynamic models
see Montagna and Lux (2013) [97].

Erdős-Rényi (ER) random networks are the most simple type of null model, as
they require information only of the average degree of the real network. In the pre-
vious section I already described through the robust-yet-fragile concept introduced
by Albert et al, that homogeneously distributed ER networks are not as fragile as
real interbank networks [2]. In fact, Montagna and Lux (2013) show that ER net-
works always underestimate the severity of financial contagion [97]. However, due
to the homogeneous distribution of degrees and balance sheet sizes, these smaller
contagion events happen more frequently in random networks [117]. Further studies
of random networks have shown, that in fact contagion can be large when nodes are
homogeneous [76]. ER networks therefore require several additional tuning parame-
ters to perform well in recreating the topological features and systemic risk observed
in real networks [105]. See Nier et al (2007) [105] and Sachs et al (2011) [117] for
two of the first null model studies on random networks.

Analyses of simulations run on null models confirm that disassortative mixing
and heterogeneous degree as well as balance sheet size distributions are defining
features of interbank networks. These characteristics of networks are therefore a
necessary feature for null models to recreate realistic topologies and dynamics [23,
36, 97, 117]. In fact, I discussed the influence of heterogeneous distributions of
underlying data on leverage and volatility in financial markets in section 2.1.1 and
section 2.1.2.

Anand et al (2017) study 7 different reconstruction methods in a very extensive
study based on datasets from 13 jurisdictions with 25 different interbank markets,
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that consist of each bilateral exposure between banks [9]. Whilst the study provides
no new insights into the capabilities of null models, it provides the most rigorous
study to date, that compares an extensive array of null models across a very large
number of financial markets. Whilst I refer the reader to the paper for specific
results, I note that Anand et al test two different categories of null models. The
first category is an iterative null model, which builds upon an initial guess of the
network structure and successively rescales the edge weights until the marginals of
the matrix, i.e. the total interbank assets and liabilities of each bank, are allocated
properly. An example of this approach is the RAS algorithm, which I describe in
the methods section 3.3.4. The second category is a Monte Carlo type sampling
approach, for instance based on copulas or the fitness model, that I describe below
in section 2.2.3. This type of statistical sampling null model allocates edge weights
based on a pre-defined probability distribution of bilateral exposures between banks.

2.2.2 Maximum entropy approach

The maximum entropy (ME) approach was the most common information theoretic
approach used to estimate bilateral connections [132]. In brief, the maximum en-
tropy method maximises the entropy of matrix Lij that is the directed and weighted
adjacency matrix, which represents the liability of bank i towards bank j. Typically
the sums of each bank’s interbank assets and liabilities are known, ai =

∑
j Lji and

li =
∑

j Lij, respectively [95, 133, 132]. The ME approach iteratively places edge
weights in the estimated matrix L in keeping with the constraints provided by a and
l. Formally, the ME approach minimises the Kullback-Leibler divergence between
the real adjacency matrix and its estimate L [132]. This minimisation is typically
implemented using the RAS algorithm, which I outline in section 3.3.4.

The ME approach creates networks in which the bilateral exposures are spread
as evenly as possible amongst all nodes. When each bank i in a network lends ai > 0

and borrows li > 0, then the ME approach creates complete networks, in which each
node is connected to every other node in the network. Such homogeneous networks,
which disregard the diversity of bilateral connections, are not applicable to most
interbank networks. As I noted in the previous section, network topology is a cru-
cial determinant of network dynamics. ME can therefore not recreate properties of
networks such as the borrowing and lending dependence of banks, clustering and as-
sortativity [7]. Moreover, given the even spread of interbank positions across an ME
generated network, these networks underestimate financial contagion relative to real
networks. Due to the homogeneous distribution of interbank liabilities, the default
of an individual bank does not have a strong effect on the system and can therefore
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not create the necessary trajectories to cause events in which a large number of
banks default, which are a common feature of interbank networks, see discussions
in [91, 95, 97, 117, 133, 132].

In response to the inapplicability of the maximum entropy approach Anand et
al (2015) introduced a method called Minimum Density (MD) that creates sparse
networks [7]. MD assumes that links are costly to establish and maintain in real
networks, based on the fact that most real interbank networks have a very small
density around 1%. Given the additional cost factor attached to each link, the total
interbank volume is allocated using a minimum number of links, whilst still properly
allocating the total interbank assets and liabilities of each bank. In addition, a prior
is assumed that contributes to the disassorativity of the estimated network, such
that small banks link to large banks and vice versa.

MD creates networks with remarkably similar topological characteristics to real
networks. Due to the objective function being tuned to the density of the underlying
network, its networks have similar degree distributions to the real network that it
aims to recreate. Moreover, MD produces disassortative networks, but struggles to
estimate the local topology, for instance the clustering coefficient and the abundance
of triadic motifs [7].

It is not the explicit goal of the MD method to construct interbank networks
with similar systemic risk to a real network, but rather to provide an upper bound
on the systemic risk in a given network. The reason for this is that poorly connected
networks typically have a higher fragility, see also section 3.2.2. MD based networks
have a very low connectivity and therefore fall into the category of fragile networks.
As I noted above, ME generated networks underestimate systemic risk, together with
the estimates of the MD networks, both methods may therefore provide reasonable
lower and upper bounds of the likely systemic risk in a real interbank network.
Whilst Anand et al show that this is the case for different levels of systemic risk
within the same network, the authors do not show whether this holds for networks
of different densities [7].

2.2.3 Fitness model

The fitness model goes further into the statistical mechanics of network estimation
than the null models that I have discussed so far. The fitness model is a boot-
strapping method that aims to fit a non-topological fitness metric, for instance the
interbank activity of each bank, to a topological metric, for instance the degree dis-
tribution. A core assumption is that a monotonous relationship exists between the
fitness and topological metric. A major advantage of this approach is that the data
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required for the fitness values may be more readily available than the desired topo-
logical information. In contrast to the preferential attachment model, the fitness
model fits all nodes at once rather than growing the network via a specified rule of
attachment of nodes [16, 46].

In applications to systemic risk, the fitness model generates disassortative, scale-
free and sparse networks, as it attaches a higher linking probability to larger banks,
due to their higher interbank activity, i.e. their higher fitness value [38, 46, 61]. See
section 3.3.4 where I outline the methodology of the fitness model in detail.

Cimini et al (2015) empirically test the fitness model on the World Trade Net-
work and the Italian e-MID Italian interbank network [41]. It is a unique study in
recreating and testing the ability of the fitness model to reconstruct not only reci-
procity, DebtRank and shortest path lengths but also percolation thresholds and
the size of the giant connected component. Cimini et al point out that errors in the
networks created by the fitness model are due to two factors. Firstly, the assumption
that the fitness values are proportional to the statistically fitted interbank activity
and secondly the partial knowledge of in- and out-degrees assumed in scaling the
model. For the second point it should be noted, that fitness model studies often
assume knowledge of only a subset of nodes in a network.

Cimini et al find that the topology of the underlying real networks is recreated
surprisingly well. The fitness model provided with a subset of only 10% of all nodes,
achieves a small measuring error for the DebtRank in the reconstructed networks
[41]. However, the measurement error for link reciprocity is high, even when a
larger subset of nodes is known. This is explained by the fact that the fitness model
can only capture the global topological properties of the real network, whereas link
reciprocity is constrained by local rather than global dependencies. Similar results
are found by Squartini et al (2016) who find that the fitness model can extrapolate
an entire network from a sub-sample as small as 2% of the nodes of a network with
an accuracy of 80% for the Italian e-MID market [123]. Other applications of the
fitness model to systemic risk include the study of Montagna and Lux (2013), who
use the fitness model approach to successfully recreate the core-periphery structure
of interbank networks [97]. Musmeci et al (2012) in one of the earlier studies that
use the fitness model on the World Trade Network, have similarly good results, with
a maximum root mean squared error of 10% between the reconstructed and real
network [98].
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Chapter 3

Systemic Risk: Disentangling the
Influence of Interbank Network

Topology and Dynamics

3.1 Introduction

3.1.1 Motivation

It is difficult to obtain complete information on the exposures between financial
counterparties, as I discuss in the literature review in section 2.2. Analyses of
interbank networks are therefore often conducted on networks that are reconstructed
from partial information. This partial information frequently consists of the total
interbank assets and liabilities of each bank, which are publicly available. This
information as the input for network reconstruction models allows users of interbank
networks to conduct research on networks that are based on data that is easily
obtainable and up-to-date. It is therefore important for practitioners, policy-makers
and researchers to understand the ability of null models to reconstruct networks.
Of further importance is an understanding of the ability of null models to estimate
the financial contagion properties of real interbank networks, in order to classify one
null model as superior to another. In this project I assess the ability of null models
to reconstruct network topologies and to estimate financial contagion.

Researchers are rarely in a position to compare different null models based on
data of both the complete balance sheets of banks and the networks that describe
banks’ bilateral exposures. Indeed, the empirical work on financial contagion can be
broadly divided into two strands. Firstly, analyses of real interbank networks, see for
instance [26, 36, 44, 54, 58]; and secondly, the introduction of models to recreate real
network topologies from partial information, see for instance [7, 9, 41, 48, 98, 105].

45
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An exception to this division of the literature is for instance the study of Mistrulli
(2011), who analyses the ability of the maximum entropy approach to reconstruct
financial contagion [95].

In this project I combine these two strands by comparing the results of an anal-
ysis of financial contagion in reconstructed networks with those of a real interbank
network. I can therefore compare the ability of null models to reconstruct a real
network and assess how well they can estimate the financial contagion of a real net-
work. This approach allows me to link the contribution of the network topology –via
the difference in the topology of the reconstructed networks– to financial contagion.
My study is more extensive than that of Mistrulli, who analysed only the maxi-
mum entropy approach, whereas I analyse three different null models at the same
time. Moreover, as I discuss in section 2.2.2, the maximum entropy approach has
been shown to generate networks that exhibit topological properties and financial
contagion that are very different to those observed in real interbank networks.

3.1.2 Research objective and approach

I obtained data of the Austrian interbank network, that has previously been studied
by Caccioli et al (2015) [36] and for an earlier period by Boss et al (2003) [32]. I
reconstruct the Austrian network using three null models, which are Erdős-Rényi
random networks, the fitness model and the directed configuration (rewired) model.
In all cases, after generating a binary adjacency matrix using one of the three models,
I employ the RAS algorithm to assign edge weights [13, 23]. The RAS algorithm en-
sures that the total interbank assets and liabilities of each bank in the reconstructed
network match those of the real system.

In this project I compare the topology and dynamics of the reconstructed net-
works to those of the Austrian network. Specifically, I compare the degree dis-
tribution, assortativity and clustering as well as triadic motifs of the real and re-
constructed networks. I then perform stress tests on the real and reconstructed
networks to assess the ability of the null models to produce networks with systemic
risk characteristics that are similar to the real network. I study in particular the
absorbing state dynamics and the trajectory profiles of contagion over time via the
Furfine counterparty default risk model [58] and the DebtRank algorithm [17].

I then link the insights that I gained on the contagion dynamics to the networks’
topological properties. One specific approach that I undertake is to identify a vul-
nerable cluster of banks as defined by Watts (2002) [135]. The vulnerable cluster is
a set of vulnerable banks that default when just one of their borrowers is unable to
repay its liabilities. This experiment represents the first study in which vulnerable
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clusters are identified in a real interbank network.

3.2 Related Work

In this section I discuss the directly related previous work to the investigations that
I undertake in this project. I focus on the part of the literature that investigates
the influence of network topology on financial contagion in interbank networks. For
a general literature review on systemic risk see section 2.1 and for null models of
networks see section 2.2.

3.2.1 Financial contagion

Network theory can offer a deep understanding of financial contagion by disentan-
gling the roles played by the topology of an interbank network and its dynamics.
Due to its focus on endogenous factors that can significantly amplify shocks to fi-
nancial systems, network theory is increasingly being used to gain an understanding
of financial contagion [23].

Systemic risk can spread through multiple channels of contagion. The most
frequently studied mechanism is counterparty risk, which describes the risk that
borrowers are unable to repay their liabilities. In the Furfine algorithm losses prop-
agate to lenders only after the default of a borrower [58]. The algorithm measures
counterparty risk in terms the number of defaults of lenders [58], I outline the al-
gorithm in section 3.3.1. If a lender does not have sufficient equity capital to cover
the default of its borrowers, the lender itself may default, which can lead to domino
effects in the entire network.

A different way of looking at counterparty risk is provided by the DebtRank
algorithm. It measures the incremental build-up of stress in terms of the cumula-
tive losses of banks’ equity capital, as a result of an exogenous shock to lenders’
interbank assets [26]. DebtRank in contrast to the Furfine algorithm therefore mea-
sures counterparty risk before the default of a borrower. The DebtRank algorithm
was introduced in 2012 by Battiston et al [26]. Bardoscia et al (2015) developed a
dynamic DebtRank version, which allows a bank to receive and propagate stress at
each iteration of contagion [17]. The authors find that a network of 183 publicly-
listed European banks can amplify an initial shock on its equity by a factor of up
to 6. I outline the DebtRank algorithm in section 3.3.2.

Other channels of contagion exist that consider systemic risk introduced through
mechanisms beyond lending networks. Fire-sales refer to system-wide losses induced
through the selling of assets that are held by other banks, which are referred to as
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overlapping portfolios [23, 37, 73]. In a study of the US interbank market Duarte et
al (2013) were able to show, based on data from 2008 until 2014, that an exogenous
shock of 1% to the common assets held by banks, leads to average losses of 8% of the
entire equity capital of the system, that are solely due to fire-sales. When combining
all channels of financial contagion the authors found that this shock led to a loss
of 35% of the equity capital of system [50]. In a similar study, Huang et al (2013)
study overlapping portfolio risk in the USA and describe how shocks to commonly
held assets exacerbate systemic risk [73].

A further channel of contagion is roll-over risk, which occurs when a bank loses
the trust of interbank markets, such that it is unable to refinance (roll-over) its
liabilities [8, 36]. Roll-over risk is very similar to liquidity risk, which describes the
inability of banks to access the interbank market to obtain funding [3, 40]. When
banks have better access to additional liquidity, systemic risk is drastically reduced
[3]. Amini et al (2016) provide analytical proofs for different channels of financial
contagion, based on the number of highly leveraged exposures that constitute the
largest sources of risk [6].

There are moreover many additional indirect channels of contagion that amplify
systemic risk [42]. Such channels are for instance the reputational risk that banks
are exposed to, for example via media articles describing their standing in interbank
markets. These indirect channels can increase counterparty, liquidity, fire-sale and
roll-over risks [42]. Uniquely, Glasserman et al (2014) point to the importance of
bankruptcy costs and delays in the repayment of liabilities as significant additive
factors to counterparty risk [65]. These factors are not commonly considered in
the abstract studies of financial contagion. Glasserman et al hypothesise that the
negative feedback loop created by fair value (mark-to-market) accounting is larger
than all other counterparty risk effects. Mark-to-market accounting reflects the
negative expectations of market participants in a crisis and can create negative
feedback loops in asset prices.

Recent investigations have began to study the interactions of these channels of
financial contagion [23, 36, 81]. For instance, during the financial crisis banks re-
duced their connections to other banks, even though these banks did not constitute
a significant counterparty risk. Banks decided to disconnect because of the addi-
tional risk imposed from overlapping portfolios. Since banks tend to hold the same
assets, the default of one bank could lead to fire-sales, which would in turn reduce
the equity base of all banks holding these assets [15, 36, 37, 70]. Caccioli et al
(2015) show that overlapping portfolio risk can spread throughout the entire net-
work, whereas counterparty risk affects the network only locally via neighbouring
nodes. Importantly, when both mechanisms are combined a much larger frequency
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of global contagion is observed [36].

Multilayer networks

In recent years studies have emerged that investigate interbank networks as multi-
layer networks. Each layer of these networks captures a different activity of financial
institutions. These different activities are for instance interbank loans of different
maturities such as overnight and three months maturities; overlapping portfolios,
such as investments in companies listed on stock exchanges; and financial deriva-
tives, for instance to hedge currency and credit risks. The layers are interconnected
through the individual institutions that hold assets in the markets that are captured
by each layer. The major advantage of multilayer networks is that they allow dif-
ferent types of financial contagion, that are unique to each asset class, to be studied
together. The most important insight from these studies is that there are strong
non-linear effects between the layers, due to which the total systemic risk of mul-
tilayer networks is larger than the sum of the systemic risk of the individual layers
[20, 96, 110, 118]. These non-linear effects show that there are strong interactions
across the different asset classes that increase systemic risk.

3.2.2 Interbank network topology and financial contagion

In this section I review the literature that addresses the influence of interbank net-
work topology on financial contagion. I focus on the roles played by the local topol-
ogy, such as triadic motifs; and global topological properties, such as diversification.

Impact of local topology on systemic risk

Squartini et al have shown in 2013 that the nature of interactions between Dutch
banks significantly changed in the period leading up to the financial crisis in 2008
[125]. Before the crisis the Dutch interbank network was close to an equilibrium
network structure, as banks arranged themselves in a way that maximises the lending
and borrowing activities in their network [125]. As the financial crisis began to
emerge, the Dutch interbank network moved away from this equilibrium topology.
Financial markets became less stable as stable banks stopped interacting with riskier
banks, which as a result did not have sufficient connections to maintain their liquidity
[125].

The local topology of an interbank network describes the specific constellations
of bilateral exposures between a small subset of banks. Triads are typically used to
deconstruct the local topology of networks. Triads are clusters that involve three
nodes, which can create 13 different motifs of connections, when taking into account
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the in-, out- and reciprocated links [94]. I thoroughly define triads and outline
an identification methodology in section 3.3.3. Research has shown that stronger
reciprocity in triads significantly reduces financial risk, due to a more homogeneous
spread of liabilities across the network [124, 125]. Reciprocity in networks describes
two nodes that have both in- and outgoing links to one another. In contrast, in
an unreciprocated triadic loop the lender is unaware of its borrowers’ interbank
positions and is indeed unaware that this risk loops back to itself. The lender
therefore underestimates the risk resulting from a loan extended to a borrower,
which results in the lender setting up insufficient equity capital buffers.

Squartini et al found that the abundance of unreciprocated triads was abnormally
high in the period from 2000 until 2004 [125]. However, as the financial crisis began
to emerge in 2008 this abundance was abnormally low, because banks reduced their
exposures to risky counterparties. In addition to banks being prone to underestimate
their counterparty exposures in the pre-crisis phase due to the high abundance
of unreciprocated triads, the number of reciprocated dyads in the Dutch market
significantly decreased in the pre-crisis period, leading to a further underestimation
of risk. Unreciprocated dyads, as Squartini et al note, are the most risky topological
structures from a perspective of financial stability, because they can become part
of unreciprocated triads. This change is analogous to the explanations that I have
given in section 2.1.1 of the leverage cycle: When margins increase, investments
become more risky and less profitable, in response banks reduce their exposures to
the most risky and vulnerable banks first and thereby cut the periphery off from the
core. See also section 2.1.2 where I discuss the core-periphery structure of interbank
networks. Similar insights to those of Squartini et al in the Dutch interbank market
were also shown in a multilayer network of the Italian interbank market [20].

Bardoscia et al (2016) study the impact of the connectivity of an interbank
network upon its stability [18]. With an increasing network density the number of
loops in a network increases, which in turn increases the instability of the network
as measured by the DebtRank algorithm. The instability of the network is measured
by λmax, the largest eigenvalue of the matrix of interbank leverages, see section 3.3.2
where I outline the methodology. Each entry in the matrix of interbank leverages
specifies the leverage of each exposure. Interbank leverage is typically expressed as
the amount of money lent by a bank relative to its equity capital [18, 24]. Bardoscia
et al show that when λmax > 1 the system is unstable, such that losses infinitely
compound.
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Impact of network diversification on systemic risk

An increasing number of studies investigate the amplification of risk that results
from deeper integration of interbank markets [127]. Many studies investigate the
impact of the connectivity of interbank networks on systemic risk, but may not
explicitly address the issue of network diversification. I here synthesise the results
across studies that directly or indirectly touch upon network diversification. This
review of the literature provides an important background to the investigations on
network connectivity that I undertake in this and the following projects.

Vitali et al (2016) study the influence of the connectivity between different world
regions across interbank markets with an agent based model [134]. The authors find
that a system is more resilient through diversification when the pace of financial
activities is constant, when this pace is accelerating however, diversification leads
to increased levels of systemic risk. The reason for this is that, as described in
section 2.1.1, increases in financial activity may result from larger leverages that
can become sources of risk. In the model of Vitali et al the size of banks changes
over time, whereas the network structure is constant. Vitali et al thus from a
different perspective confirm the results of Stiglitz (2010) [127] and Battiston et al
(2012) [25], who instead study changing network structures and also find increased
risks due to deeper market integration.

Nier et al (2007) assume a simple set-up of purely random graphs with equal
asset sizes for all banks in the network. They find for low levels of network con-
nectivity, that an increase in connectivity reduces the stability of the network, as it
amplifies the transmission of shocks. For higher levels of connectivity, increases in
connectivity stabilise networks, since shocks can be spread out to many other nodes
[105]. Similarly, in a seminal study Allen and Gale (2000) show that a monotonic
relationship exists between the average degree of a network and its financial stability.
Full connectivity between banks reduces risk because of banks are fully diversified.
As the average degree decreases, the diversification reduces, which results in larger
levels of systemic risk [4].

A similar insight is provided by Tedeschi et al (2012) [130] and Grilli et al (2014)
[68], who by studying agent based models show that larger heterogeneities in in-
terbank networks lead to larger avalanches of bank failures. The reason for the
increased avalanches is that the exposure of lenders to the network is highly varied,
such that the failure of a large bank can lead to large avalanches of failures. These
results were confirmed in a follow-up study by the authors in 2017 [28].

Battiston et al (2012) combine fire-sales and counterparty risk to discover that
increasing diversification in networks initially makes networks more robust, but show
that once systemic risk has increased beyond a certain level, diversification decreases
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the stability of a network [25]. This behaviour occurs because after some banks
have defaulted, the probability increased that a defaulted bank holds assets of the
portfolio of another bank. Interestingly, Roukny et al (2013) show that network
topology only matters to the stability of a network when markets are illiquid. When
markets dry up, fire-sales result that are amplified in a scale-free network due to their
robust-yet-fragile nature [114]. Caccioli et al (2012) show that contagion dynamics
are not only defined by heterogeneous distributions of degree and balance sheet sizes,
but also through the mixing patterns (degree correlations) of nodes [35].

In summary, this review of studies on the impact of market integration on sys-
temic risk shows that it is very difficult to judge whether diversification in interbank
networks increases or decreases financial stability. All studies are however in agree-
ment that high leverages in poorly connected networks increase the probability of
very large avalanches of bank failures.

3.2.3 Global Cascade model

Epidemic and cascading models provide additional methods to study network dy-
namics [103, 107, 135]. Watts’ Global Cascade model is a threshold model that
describes the conditions for and characteristics of contagion in complex systems
[135]. Watts assumes that network dynamics depend on the actions of the nodes in
a network, which can be in either of two states: active or inactive, such as being in
default.

A node can only spread its state in the network if at least one of its neighbours is
vulnerable with a threshold larger than 1/k, where k is the degree of the neighbour.
A cascade is defined as an event of at least one node defaulting as a result of the
default of one vulnerable node. Typically a value of 5% of nodes defaulting is chosen
in numerical analyses, I also choose this value in my analysis in appendix A.2.2.
When a cluster of vulnerable banks exists that is larger than the average degree 〈k〉
of the network, global cascades will occur [135]. If the clusters are smaller than 〈k〉,
then the network is too fragmented for a global cascade to occur. An important
insight provided by Watts is that the frequency of global cascades is approximated
by the size of largest cluster of vulnerable and immediately adjacent nodes.

Adaptation to interbank networks

Hurd (2016) [74, p. 117ff] as well as Gai and Kapadia (2010) [59] adapt the Global
Cascade model to directed interbank networks. The size and probability of global
cascades in Hurd’s adaptation are very similar to Watts’ experimental results [74,
p. 132]. For a similar study see Amini et al (2012 and 2016), who study the stylised
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facts of interbank networks using cascading models and statistically quantify the
notion of contagious links based on the exposures of banks [5, 6].

The applicability of Watts’ (and Hurd’s) analytical model to real-world networks
is limited because the model assumes that loops are absent in the generating function
of networks, which is also referred to as the locally tree-like independence property
[93]. Interbank networks, as described in the previous sections, are characterised by
more frequent local clustering than expected from a random null model. In fact,
even in ER networks loops exist, even though they may be very long when networks
become large in the thermodynamic limit. It can therefore be questioned in how
far Watts’ and by extension Hurd’s model can approximate the size of vulnerable
clusters in interbank networks whose size does not reach the thermodynamic limit.
I discuss this question in section 3.6.

3.3 Methods

3.3.1 Counterparty default risk - Furfine model

The counterparty default risk algorithm is based on the work by Furfine [58]. The
dynamics are based on an interbank network that is represented by a weighted
directed adjacency matrix Lij, in which each entry represents the borrowing amount
of bank i (the borrower) from bank j (the lender).

Each bank is associated with a balance sheet that consists of assets and liabilities
including interbank assets and liabilities, as well as equity capital. A lender j is
assumed to have defaulted when its borrower i defaults on its liabilities towards bank
j and this liability is larger than the equity of bank j, formally: Lij > Ej. Where Ej
is the equity of the lender j, which is the difference between total assets and total
liabilities. A lender may also default if the liability of a defaulted individual borrower
is smaller than the lender’s equity. This may occur when multiple borrowers default
such that the resulting cumulative losses exceed the equity capital of the lender.

For each bank i a state variable indicates whether it is active θi = 0 or in default
θi = 1. The following steps are used to measure the cascade resulting from the
failure of a bank, which is referred to as the seed:

1. A seed node q is selected between 1 and n, the number of nodes in the network
described by the liability matrix L. Set θq = 1 and θi = 0 for all other nodes.

2. Banks update their balance sheets. For each lender j set θj = 1 if the following
holds

Ej <

n∑
i

Lijθi, (3.1)
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presuming zero recovery from a failed bank.

3. If new lenders failed in step 2, return to step 2; otherwise exit.

I define a contagious event as an event in which the above algorithm results in
at least one failure beyond the seed. I use the following three measures to describe
counterparty default risk:

• Contagion probability: The probability of observing a contagion event, which
indicates the robustness of the network. It is computed as the probability of
observing a contagion event in the network across all seeds.

• Conditional extent of contagion: The average number of banks that failed
when a contagion event occurs, averaged across all seeds.

• Maximum extent of contagion: The largest observed contagion event across
all seeds.

3.3.2 Interbank stress propagation - DebtRank

The DebtRank algorithm measures the total relative fraction of equity lost following
an initial shock on the equity of some or all the banks in an interbank network L.
Shocks propagate via the leverage matrix Λij =

Lji

Ei
, such that the interbank assets

of lender i towards its borrowers are expressed as a fraction of the lender’s equity.
This shift of indices in Λij with respect to Lji ensures that shocks propagate from
the borrower to the lender.

The state of a lender i across time hi(t) measures the relative fraction of equity
lost. At the first time step t = 1 a shock 0 < Si < 1 is applied to all or some of
the lenders’ (seeds’) equity hi(1) = Si. The state of all affected banks is updated
according to the following rule:

∆h(t+ 1) = Λ∆h(t), (3.2)

where ∆h(t) = h(t+1)−h(t), which measures the losses that occurred between two
time steps. The algorithm converges at time step T when the lenders experience no
additional stress. The total DebtRank Ri of each lender i is computed as the sum
of the relative fraction of equity lost excluding the initial shock Si at t = 1:

Ri =
T∑
t=2

∆hi(t). (3.3)
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The stability of the leverage matrix can be expressed with its largest eigenvalue
λmax. When λmax < 1 the system is stable such that it will eventually settle to
h(t) = 0, when the system is not stable λmax > 1, then the system will not settle
such that losses will infinitely compound [17].

3.3.3 Network topology characteristics

This section introduces the most important metrics that I will use to describe the
topologies of the networks that I study.

Degree The degree ki of node i is the number of other nodes it is connected to in
the network described by the binary adjacency matrix A with n number of nodes.
For directed matrices a distinction is made between the in- kini and out-degree kouti

of node i.

kini =
n∑
j=1

Aij, kouti =
n∑
j=1

Aji. (3.4)

The average in- 〈kin〉 and out- 〈kout〉 degree of a network are always equal, because
the number of edges e in a network are equal to the sum of all in- (or out-) degrees,
see Newman (2010) [103, p. 135]:

e =
n∑
j=1

kinj =
n∑
j=1

koutj , (3.5)

〈kin〉 =
1

n

n∑
j=1

kinj =
1

n

n∑
j=1

koutj = 〈kout〉. (3.6)

The total degree of a node is the sum of its in- and out-degree, and the average
degree of the network 〈k〉 is the average over all nodes’ total degree. 〈k〉 can also be
computed as

〈k〉 =
2e

n
. (3.7)

Density The density is a measure of what fraction of links between nodes that
could be present, are actually present in the network:

d =
e

n(n− 1)
, (3.8)

where n− 1 is used as nodes are not allowed to have self-loops.

Clustering The clustering coefficient is a ratio that indicates how many connec-
tions between neighbouring nodes exist [103]. The clustering coefficient for node i
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is computed as follows:

Ci =
number of pairs of neighbours of i that are connected

number of pairs of neighbours of i
. (3.9)

Mixing The mixing pattern of nodes in the binary adjacency matrix A describes
the manner in which nodes link to one another. Assortativity refers to the tendency
of similar nodes to link together, for instance high-degree nodes connecting to other
high-degree nodes, disassortativity describes the opposite behaviour [101, 100].

The mixing pattern score is typically expressed in a range from −1 (perfectly
disassortative) over 0 (neutral mixing) to 1 (perfectly assortative) and is computed
as follows:

r =

∑
ij(Aij − kikj/2n)xixj∑
ij(kiδij − kikj/2n)xixj

, (3.10)

where xi and xj are the measures of interest of nodes i and j, in this case their
degrees ki and kj, and δ is the Kronecker delta. The mixing pattern score is the
Pearson correlation coefficient adapted to networks [103, p. 229].

Core-periphery structure

I use the core-periphery detection algorithm introduced by Lip [85]. In a core-
periphery structure banks are divided into sets of core and periphery banks. An
idealised core-periphery structure is a network in which all core banks are connected
with one another; and the periphery banks have only links to the core and no links
among themselves. In a network of size n the Lip algorithm identifies c the number
of core banks, that minimizes the following error function:

e(c) =
c(c− 1)

2
−
∑n

i=n−c+1 ki

2
+

∑n−c
i=1 ki
2

, (3.11)

where nodes are sorted in ascending order of their total degree ki. The first term in
the above equation represents the maximum number of links in the core for a given
number of c core banks, the second term reflects the number of actual links in the
core, and the third term the number of links between peripheral nodes.

Lip’s definition of core-periphery structures does not exactly correspond to the
definition given by Craig and von Peter (2014), who describe another commonly
used algorithm [44]. The authors add the requirement that each core bank must
act as an intermediary that provides interbank lending between peripheral banks
that do not interact among themselves. The final results of both core-periphery
algorithms have been shown by Fricke et al (2014) to be very similar in practice
in the Italian e-MID interbank market [57]. For a more detailed discussion of the
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literature on core-periphery structures see my literature review in section 2.1.2.

Triadic Motifs

A triad is a constellation of three nodes [103, p. 199]. When taking into account the
in-, out- and reciprocated links among three nodes, 13 different motifs are possible,
as described by Milo et al in 2002 [94]. See fig. 3.1 for an overview of the motifs
that I study in this project and section 3.2.2 for a literature review.

I measure the number of times t each of the following triadic motifs appears in
the binary adjacency matrix A, which I chose for their different impact on financial
stability that is reported by Squartini et al (2013) [125]:

• Motif 1 Safe motif, in which one node has outgoing links to two others. These
two vertices are not connected to each other:

t1 =
n∑

i 6=j 6=k

(1− Aij)AjiAjk(1− Akj)(1− Aik)(1− Aki); (3.12)

• Motif 5 Neutral risk motif, which is identical to triad motif 1 but for a con-
nection between the two other vertices:

t5 =
n∑

i 6=j 6=k

(1− Aij)AjiAjk(1− Akj)Aik(1− Aki); (3.13)

• Motif 9 Highest risk motif, in which each of the three nodes is connected to
one another node with a link in the same direction, forming a directed loop:

t9 =
n∑

i 6=j 6=k

(1− Aij)Aji(1− Ajk)AkjAik(1− Aki); (3.14)

• Motif 13 Less risky motif, as all three vertices are connected with reciprocated
links:

t13 =
n∑

i 6=j 6=k

AijAjiAjkAkjAikAki. (3.15)

Figure 3.1: Illustration of the triadic motifs studied in this chapter.
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Since each node can form a unique triad with two different nodes, the number
of times t a motif occurs may be higher than the number of nodes n in the network.
For instance motif 5 could occur six times despite it consisting of the same nodes,
because the links point in the opposite direction in the other occurrences. In my
analysis I am interested in assessing the financial stability of individual nodes that
are members of a motif. I therefore identify and analyse the unique members of the
individual motifs.

3.3.4 Null model networks

In this section I describe the three null models that I use to reconstruct the real
network.

Erdős-Rényi networks

The simplest kind of random graph was introduced by Erdős and Rényi (ER) in
1959 [51]. For each possible pair of nodes a link is placed between two nodes with
probability

p = c/(n− 1), (3.16)

where c is the desired average degree of the graph. Equation 3.16 is easily proven
since the average degree of a graph is 〈k〉 = 2e/n as shown in (3.7), the expected
average degree of a random graph is

c = (n− 1)p. (3.17)

The graph G(n, p) occurs with probability

P (G) = pe(1− p)(
n
2)−e, (3.18)

which is the binomial distribution [103, p. 400].

Random rewiring of directed networks

The directed configuration model (DCM) randomly reassigns (rewires) the directed
edges between two nodes to another set of two nodes [48, 90]. This ensures that the
degree distribution, including the in- and out-degrees of each node, is maintained,
as it can be seen in fig. 3.2.
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Figure 3.2: Rewiring steps in the directed configuration (rewired) model.

Fitness model networks

I use the fitness model as described by Musmeci et al (2012) [98] following the earlier
introduction of the method by Caldarelli et al (2002) [38] and Garlaschelli (2004)
[61]. Each node is assigned two fitness values, which determine the likelihood of
this node to connect with other nodes. The essence of the fitness model is that the
fitness values are assumed to be proportional to the topological metrics that are
to be estimated. In my case the fitness values are the lending yai and borrowing yli
propensities of bank i, that are assumed to be proportional to the in- and out-degree
of bank i. Beyond these constraints the fitness model ensures that the generated
ensemble of networks is maximally random.

The fitness model approach requires its users to have an understanding of the the-
oretical reason underlying the assumption that the fitness metrics are proportional
to the topological metrics. The understanding that the degree of a bank scales with
its interbank activity is well understood in the literature, and has in fact been proven
in many studies [23, 38, 44, 61, 98]. Large banks in terms of their interbank activity
are those banks that are the most interconnected in the interbank network. These
banks therefore tend to have large in- and out-degrees, which correspond to their
large interbank borrowing and lending. This applies in reverse to small banks, which
borrow and lend less relative to large banks, and have correspondingly smaller in-
and out-degrees in the interbank network.

The fitness values for bank i are calculated as follows:

yli =
li∑n
j=1 lj

(3.19)

and
yai =

ai∑n
j=1 aj

, (3.20)
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where l and a are vectors of length n representing the total interbank liabilities and
assets of each bank i, respectively.

Next, the probability that node i borrows from node j is given by:

pij =
zyai y

l
j

1 + zyai y
l
j

, (3.21)

where z is the only free parameter of the model. z is estimated by minimising the
following function:

min
[1

2

n∑
i=1

n∑
j 6=i

(pij − ki)2
]
, (3.22)

since half over the sum of pij must equal e the number of edges by the definition
given in (3.7).

RAS algorithm

After generating the binary directed adjacency matrix A via one of the three null
models described above, I ensure that its diagonal is zero Aii = 0 to avoid self-loops.
Following this, I assign edge weights to A with the RAS algorithm.

The deterministic RAS or iterative proportional fitting (IPF) algorithm con-
structs the weighted directed adjacency matrix β of size n such that each entry βij
corresponds to the relative weight of each exposure to the total interbank volume
[13, 14, 23]. I firstly set β = A. I assign the relative edge weights in two steps:

1. Even Step: Update β with relative borrowing propensity of bank i adjusted
by yli, its relative liabilities:

βij =
βij∑n
k=1 βik

yli. (3.23)

2. Odd Step: Update β with the relative lending propensity of bank i adjusted
by yai , its relative assets:

βji =
βji∑n
k=1 βki

yai . (3.24)

This algorithm is run until convergence, which is the point at which the L1-error
is equal to zero [112]. The L1-error is computed as follows:

eij = |βij − yli|+ |βji − yai |. (3.25)

The mathematical literature on the RAS algorithm assumes complete matrices,
in which all elements are non-zero. It follows from this assumption that the matrix
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has non-zero row and column marginals, because as t → ∞ an element βij would
vanish in a row or column with a marginal value of zero [63]. t is the iteration of
the RAS algorithm. This assumption is unlikely to be met in sparse networks, such
as interbank networks. I address the problem of zero elements by ensuring that no
matrix element of a zero row or column marginal is of a non-zero value. To achieve
this I remove all edges in A that are in rows or columns with zero marginals. I
then address the problem of vanishing row and column marginals by running the
algorithm only on rows and columns whose marginals are non-zero.1

Moreover, with real world data it is very rare to achieve perfect convergence of
the error function (3.25) to zero. I therefore break the L1-error function into two
parts, that represent the odd and even step. Following this split, the threshold for
the update from the odd step to be accepted depends on the preceding step, i.e.
the even step and vice versa [63]. For the odd step the upper-bound is defined as
follows:

ej ≤
∑
i

yli log max
j:βij>0

βij(t+ 3)

βij(t+ 1)
, (3.26)

i.e. the upper bound is the largest change of any value in βij after one iteration
of both steps. In all 10,000 simulations that I undertook, the algorithm converged
after 2 full iterations with an error smaller than 10−17 in each step. As a reference
the average edge weight in β is 7× 10−5 and the minimum edge weight is 8× 10−8.

Finally, I multiply the estimated matrix β by the total interbank volume
∑

i ai

to assign the actual edge weights.

3.4 Analysis of the Austrian Interbank Network

In this section I provide an overview of the Austrian interbank network. I describe
its basic topology and financial contagion and conclude the section by discussing the
connection between its local topology and financial contagion.

3.4.1 Description of interbank data

The exposures in the dataset that I analyse are encoded into a matrix of interbank
liabilities L, whose element Lij represents the liabilities of bank i towards bank
j.2 The dataset in the first quarter of 2006 consists of n = 846 banks (nodes) with

1Because of this I increase p for Erdős-Rényi graphs by the relative proportion of banks that
have no in- or out-going links, as this is the rough proportion of edges that will be set to 0 by the
RAS algorithm (this affects around 300 links in the Austrian network in the first quarter of 2006,
which has e = 14, 519 edges in total), specifically: p = e

(n∗(n−1))−(n∗s) where s is the number of
banks with kout = 0 or kin = 0.

2These exposures exclude short-term lending of less than one month.



62 CHAPTER 3. SYSTEMIC RISK: TOPOLOGY AND DYNAMICS

e = 14, 519 interbank loans (edges). In addition to the information on banks’ mutual
exposures, I have data of the total assets and liabilities as well as the equity capital of
each bank. Figure 3.3 below shows the distribution of the equity capital, interbank
assets and liabilities for each bank in the first quarter of 2006. The distributions look
very similar for the other quarters. The average equity capital is ≈EUR81m and the
average interbank assets and liabilities are ≈EUR169m. The average of interbank
assets and liabilities are identical, because they consist entirely of bilateral lending
relationships within the network.

Figure 3.3: Distribution of equity capital, interbank assets and liabilities of each
bank in the first quarter of 2006.

When I discuss the topology of the Austrian interbank network I refer to my
analysis of the first quarter of 2006 only, whereas for my analysis of financial con-
tagion I refer to all 12 quarters from 2006 until 2008. The topology of the Austrian
network is relatively stable across the quarters and the topology of the network
based on data of the first quarter of 2006 is representative of all other quarters
under investigation. I show that the results are very similar across the quarters in
appendix A.1.1, where I present the topological results for the first quarter of 2007
and 2008.

3.4.2 Basic overview of network topology

The network is relatively sparse with a density of 2% and an average degree 〈k〉 of
34.3. The average in- and out-degree of the network is about 17, and the distribu-
tions of in- and out-degrees of banks are heavy-tailed, as it can be seen in the black
line in fig. 3.4. This shows that there are many banks with relatively low degree and
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a few hubs with a very large degree. The mixing pattern score of −0.59 indicates
that the network is disassortative, as small banks tend to connect to large banks,
which is a typical behaviour observed in interbank networks [132, 44, 75]. The clus-
tering coefficient, averaged over all nodes, at 0.37 is much larger than expected in
a random graph with the same average degree, in the ER networks for instance the
average clustering coefficient is 0.006. 72 out of the 846 banks in the network are
in the core. This indicates that less than 10% of banks, the core banks, account for
the majority of the interbank activity in the Austrian network. A summary of the
topological analysis can be found in table 3.1.

Figure 3.4: Degree distribution of the real network (black), Erdős-Rényi (blue) and
fitness model (red) networks. The distribution corresponding to the configuration
model is not shown because of its perfect overlap with the real network. Whilst
the Erdős-Rényi network has a substantially different degree distribution to the real
network, the fitness model closely matches the real network’s heterogeneity. The
degree distribution therefore appears to be induced by the heterogeneity of balance
sheet sizes, which are the inputs of the fitness model.

3.4.3 Counterparty risk

Counterparty default risk is the risk of a bank i, the borrower, defaulting on its
liabilities towards bank j, the lender. Following the computations outlined in sec-
tion 3.3.1, I find across the 12 quarters in 2006 to 2008 and across all nodes in the
Austrian network, that the probability of contagion ranges from 5% to 14%, the
average contagion extent from 19 to 91 and the maximum size of a cascade observed
ranges from 157 to 343, see fig. 3.6 in the next section for a graphical illustration
of these measures. It is interesting to note that at the time of the onset of the
financial crisis, towards the end of 2007 and beginning of 2008, the contagion extent
increases. This confirms that systemic risk increased during the financial crisis.
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Counterparty risk can also be measured with the DebtRank algorithm. I shocked
each bank by imposing a 1% loss on its equity and measured the total resulting
DebtRank. Following this procedure, I found that the initial value of this shock
is on average across all banks amplified by a factor between 1.4 and 8.6 by the
interactions of the banks across the 12 quarters. See fig. 3.6d in the next section
for a depiction of the DebtRank amplification. As with the contagion extent, the
DebtRank increases at the onset of the financial crisis. The amplification that I
observe is at times higher than the amplification across European listed banks of up
to 6 times measured by Bardoscia et al (2015) [17].

In agreement with my literature review in section 2.1.2, the Austrian network
exhibits a robust-yet-fragile topology. The network is robust against failures of
a random bank as indicated by the relatively small contagion probability. It is
however fragile should a systematically important bank default. This fragility is
indicated by the relatively large maximum contagion extent, which shows that in
the largest measured event of contagion 40% of the network defaulted. Speaking
from a financial perspective the apparent robustness of banks is to be expected, as
lenders anticipate a small fraction of their counterparties to default. Lenders in all
developed countries are required by law to hold a minimum equity capital buffer to
absorb potential losses, for further information see the Basel III rules [22].

The contribution of the local topology to systemic risk

To better understand the counterparty default risk in the Austrian network, I analyse
its local topology through the contagiousness of banks that are members of specific
triadic motifs. See fig. 3.1 for a depiction of the motifs that I study in this chapter.

To understand the contagiousness of the various triadic motifs I identified the
unique individual banks that are its members. The number of unique banks is
computed such that each bank is counted only once. I report the unique number of
banks that are members of each motif in table 3.1. I then calculated the average
extent of contagion of these subsets of banks for each motif in the Austrian network
based on the first quarter of 2006. In the literature review in section 3.2.2, I described
that motif 9 is the riskiest motif from a financial point of view. This is confirmed in
the Austrian interbank network, as the 105 unique banks that are part of this motif
have an average extent of contagion of 14.2, which is the largest contagion extent
of the four motifs under investigation. The members of motif 5 have an average
contagion extent of 6.9 and the banks in motif 13 have an average extent of 10.4. In
comparison the ”safe“ triad type 1, is formed by 416 unique banks, which have the
smallest average extent of contagion at 6.7.
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3.5 Analysis of Reconstructed Networks

In this section I outline the performance of the Erdős-Rényi (ER), the directed
configuration (rewired) and fitness null models as defined in section 3.3.4, in re-
constructing the Austrian network. Using each null model I created 10,000 network
reconstructions for each quarter from 2006 until 2008, on which I employed the RAS
algorithm to assign edge weights. I then performed the same analysis presented for
the real network in the previous section 3.4 on these reconstructed networks.

3.5.1 Network topological properties

The central question in comparing reconstructed and real networks is to what extent
reconstructed networks are capable of recreating the topology and dynamics of real
networks. The set-up of the three null models guarantees that the reconstructed
networks have the same average degree as the real network. Significant differences
emerge when considering other topological properties. I report a summary of the
topological properties for each network in table 3.1. From the table it can be seen
that Erdős-Rényi networks are very different from the real network, while the other
two models can reproduce some properties of the real network. The strong difference
of the Erdős-Rényi random networks to the real network is not surprising, since the
degree distributions of the two networks have different properties, as it can be seen
in fig. 3.4 in the previous section.

Both the fitness and configuration models display assortativity, clustering, and
core-periphery patterns similar to the real network. The fact that these properties
are preserved when the links of the real network are randomly rewired suggests that
these properties are induced by the degree distribution of the network. In other
words, given the sequence of in- and out-degrees observed in the real network, it
is not possible to match links that would produce a network with assortativity,
clustering, and core-periphery structure much different from the real network. This
means that these values may not be associated with the decision-making process
of banks underlying the formation of the network and implies a very constrained
degree sequence in the real network. This result is surprising because the rewiring
process destroys degree correlations. On the other hand, for the triadic motifs I
observe strong deviations between the real and the reconstructed networks, as it
can be seen in table 3.1 for the first quarter of 2006. In appendix A.1.1 I present the
topological results for the first quarter of 2007 and 2008, to show that the results
are very similar across the quarters.
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Metric Rewired Erdős-Rényi Fitness Model Real Network

Basic

Nodes (n) 846 846 846 846
Edges (e) 14, 519 (14, 519|14, 519) 14, 468 (14, 316|14, 549) 14, 519 (14, 397|14, 642) 14, 519
Density (d) 0.0203 (0.0203|0.0203) 0.0202 (0.0200|0.0205) 0.0203 (0.0201|0.0205) 0.0203
Degree (〈k〉) 34.3239 (34.3239|34.3239) 34.2041 (33.8440|34.5674) 34.3240 (34.0355|34.6147) 34.3239
Assortativity −0.58 (−0.58| − 0.58) 0.0 (0.00|0.00) −0.40 (−0.40| − 0.40) −0.5946
Global Clustering 0.39 (0.38|0.39) 0.0058 (0.0056|0.0059) 0.30 (0.29|0.31) 0.3672
Core Size 72 (72|72) 45 (44|45) 68 (67|69) 72
Core-Periphery Error 0.0495 (0.0495|0.0495) 0.9180 (0.9086|0.9274) 0.0741 (0.0701|0.0782) 0.0495
Cosine Similarity 0.713 (0.705|0.722) 0.0454 (0.0073|0.0711) 0.6613 (0.6564|0.6665) NA
RMSD 0.072 (0.072|0.073) 0.1597 (0.1379|0.1859) 0.0787 (0.0783|0.0790) NA

Triads

# of nodes in Motif 1 764 (753|774) 845 (845|845) 771 (764|779) 416
# of nodes in Motif 5 499 (487|510) 844 (843|845) 766 (758|774) 406
# of nodes in Motif 9 138 (127|149) 796 (792|800) 500 (485|515) 105
# of nodes in Motif 13 174 (170|178) 0 (0|0) 287 (276|298) 187

Table 3.1: Summary statistics of topological properties of the real and reconstructed
networks. For the reconstructed networks the metrics are averaged over 10,000
simulations and rounded to the nearest significant integer that can be described
with confidence. The figures in the brackets represent the 10% and 90% quantiles,
respectively. Results presented refer to the first quarter of 2006.

The similar values of assortativity, clustering and core-periphery patterns in the
real and fitness model networks suggest, that the distribution of interbank lending
volumes has a significant impact on the interbank network structure. In fact, in the
fitness model the probability of two banks being connected solely depends on their
total interbank assets and liabilities. This can clearly be observed in fig. 3.4, where
I plot the degree distribution of the real and the fitness model networks.

In fig. 3.5 I plot the distributions of edge weights for the real and reconstructed
networks. As for the degree distribution, the strongest deviation is observed be-
tween the real and Erdős-Rényi networks, while the distributions observed for the
fitness and rewired networks are closer to the real network. Erdős-Rényi networks
in particular have a much larger number of small edges and a heavier tail relative
to the real network. This is due to the fact that in ER networks nodes have more
similar degrees than in the real network. Banks that are hubs in the real network
now have a much smaller degree in ER networks, which forces them to allocate
their interbank assets and liabilities across fewer counterparties. This leads to the
over-expression of large weights with respect to the real network. In contrast, as it
can be seen in fig. 3.5 the configuration and fitness model networks have a smaller
tail than the real network but a higher abundance of moderately sized edges. The
RAS algorithm is used to assign edge weights to all three null model networks. Since
the RAS algorithm attempts to maximise the entropy of a network, it creates an
edge weight distribution that is less heterogeneous than that of the real network [7].
Despite the fact that the RAS algorithm is provided with the heterogeneous fitness
values as marginal constraints.
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Figure 3.5: Edge weight distribution of the real network (black), random Erdős-
Rényi (ER) network (blue), configuration model (pink) and the fitness model (red).
Due to the allocation of edge weights using the RAS algorithm for all null models,
the edge weight distribution of the three null models is much more similar than the
degree distribution shown in fig. 3.4. Nonetheless, it can clearly be seen that the
ER networks consist of a much larger abundance of small edge weights and a longer
tail that reflects larger edge weights.

To achieve an understanding of the estimation error of each null model I compute
the cosine similarity and the root mean squared deviation (RMSD). The cosine
similarity C is based on the Euclidean dot product and can be interpreted as the
weighted probability of observing an edge in a reconstructed network in the same
position as in the real network. Denoting by Lij the matrix of interbank liabilities
of the real network and by L(0)

ij that of a reconstructed network, C is computed as

C =

∑
ij LijL

(0)
ij√∑

ij L
2
ij
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ij L

(0)
ij

2
. (3.27)

The cosine similarity is bound between 0 and 1, where C = 1 indicates that the two
matrices are identical.

The RMSD, which measures the relative fraction of misallocated interbank vol-
ume, is defined as

RMSD =

√∑
ij

(
Lij − L(0

ij

)2

∑
ij Lij

. (3.28)

The cosine similarity between ER networks and the real network is 0.05, for the
rewired it is 0.71 and for the fitness networks 0.66 on average. The RMSD for ER
networks relative to the real network is 0.16, 0.07 for the rewired and 0.08 for the
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fitness networks, as I also report in table 3.1. The very low similarity of the ER
networks to the real network comes as no surprise, following the description of the
performance of the ER networks in this section. However, since the fitness model
requires much less prior information than the configuration model, the relatively
equal performance of the configuration and fitness model in producing networks with
high similarity and relatively little deviation from the real network is surprising.

3.5.2 Analysis of counterparty risk in the reconstructed net-

works

I now describe the financial contagion properties of the reconstructed networks.
For each model I reconstruct 10,000 realizations and carry out the same stress test
exercise on these networks, that I discussed in section 3.4 for the real network. In
fig. 3.6 I present the results of these investigations across the 12 quarters from 2006
until 2008 for each null model. The shaded area in fig. 3.6 represents the respective
10% and 90% quantiles as boundaries and the respective average for each null model
is shown as a dotted line. The black lines in these plots are drawn in correspondence
to the values observed in the real network.

Overall it can be seen in fig. 3.6 that the null model estimates change in step with
the values observed in the real network for contagion probability, contagion extent
and maximum extent. However, all three metrics in the null models rarely corre-
spond to the exact values observed in the real network across time. In particular, the
null models consistently overestimate the contagion probability and underestimate
the contagion extent. In contrast, all reconstructed networks offer a good estimate
of the the DebtRank amplification observed in the real network. As I will discuss in
the following sections, the reason for the good performance of the null models with
respect to the DebtRank algorithm, is due to its dependence on interbank leverage
and global topological properties, such as the density, which the null models recon-
struct well. On the other hand, the Furfine algorithm depends strongly on the local
topology, which the null models cannot reconstruct well.

Figure 3.6 shows that the fitness model provides an overall better estimation
of the network stability relative to the other null models. In particular, for the
contagion probability and extent the fitness model offers the best estimate of the
real network. The real network is in fact an instance of the ensemble of fitness
model networks in a small number of quarters, such as the first quarter of 2006
and the second quarter of 2008. However, in other quarters the measuring error
of the fitness model is high at levels up to 100%. This is surprising because the
previous literature has shown the fitness model to be very accurate [41, 97, 123]. A
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possible reason for this is that previous studies have not studied the ability of null
models to estimate counterparty default risk as defined by the Furfine algorithm.
For the DebtRank amplification shown in fig. 3.6d, I find that the fitness model
networks provide very good predictions of the values observed in the real network,
and that the fitness model networks have the tightest prediction boundaries of the
three null models. The good performance with respect to the DebtRank algorithm
is in agreement with the previous literature [41].

Erdős-Rényi networks give quite different results with respect to the real network
and also have relatively much wider confidence intervals than the configuration and
fitness model networks. ER networks strongly overestimate the probability of con-
tagion and they persistently underestimate the conditional and maximum extent of
contagion to a larger degree than the other null models. This is consistent with the
fact that the real network has a heavy-tailed degree distribution, which is on average
more robust with respect to random failures, but more fragile when the seed of con-
tagion is a large degree node, as I explain in section 2.1.2. ER networks on the other
hand are characterised by binomial degree distributions that do not have a heavy
tail. Whilst the estimates of the ER networks are much better for the DebtRank al-
gorithm, its prediction boundaries are wide relative to the configuration and fitness
model. The fact that the ER networks can reproduce the DebtRank amplification
well, despite their strong topological differences to the real network, shows that the
DebtRank algorithm is driven strongly by global topological properties such as the
density and interbank leverage. Information on interbank leverage in particular, is
provided to the ER networks via the RAS algorithm.
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(a) Contagion probability. (b) Contagion extent.

(c) Maximum Contagion Extent. (d) DebtRank Amplification.

Figure 3.6: Main contagion measures across 12 quarters from 2006 until 2008. Black
line shows the measure of the real network. The shaded areas show the 10% and
90% quantiles of the null models respectively and the dotted lines their averages.
Blue refers to Erdős-Rényi, pink to configuration and red to fitness model networks.
The measured values of contagion in the reconstructed networks generally do not fit
those observed in the real network, except for the DebtRank amplification shown
in panel (d). The null model estimates are more robust across time than the values
observed in the real network, due to their dependence on the relatively more stable
total interbank assets and liabilities via the RAS algorithm.

If it was expected that Erdős-Rényi networks cannot reproduce the contagion
patterns of the real system, it is surprising that the rewired networks perform worse
than those generated via the fitness model. Whilst the contagion probability as
estimated by the configuration model does change in lock-step with that of the real
network, its estimate is much larger. Equally, for the contagion extent its estimate is
consistently smaller than that of the real network. Only for the DebtRank algorithm
does the configuration model produce a good estimate. This is surprising because
the configuration model is given the entire degree sequence of the real network.

The reason for the poor performance of the configuration model is the following.
When links are randomly rewired it may happen that a link that goes from a large
lender to a large borrower, is rewired in such a way that the large lender is now
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lending to a small borrower. This causes the new link to have a much smaller weight
than the original link, and therefore both the large lender and the large borrower
will have to reallocate their investments across their counterparties, which results
in financially unsound lending allocations. This happens to a lesser extent in the
fitness model, in which large lenders are connected preferentially to large borrowers.
This is also reflected in fig. 3.8a and fig. 3.8b, which show that the average equity
loss is much lower in the rewired compared to the fitness model.

It can also be observed in fig. 3.6 that the estimates of the null models are more
similar across time, i.e. more constant, relative to the real network with respect
to the results of the Furfine algorithm. Contagion probability and extent critically
depend on specific arrangements in the local network topology. The null model
networks, as discussed in the previous sections, perform well in reconstructing the
higher-order properties of the real network, yet cannot accurately capture the local
topology, which is a strong facilitator of financial contagion. In addition, the edge
weights of all three null models are fitted with the RAS algorithm, which is based
on the total interbank assets and liabilities of each bank. The total interbank assets
and liabilities are relatively much more stable across time than individual interbank
exposures. This contributes to the relative stability of the null model contagion
estimates compared to the values observed in the real network. In contrast for the
DebtRank algorithm shown in fig. 3.6d, this difference in the stability of the conta-
gion probability and extent between the reconstructed and real networks does not
occur. The reason for this is that unlike the Furfine algorithm, the DebtRank algo-
rithm does not strongly depend on the specific arrangements of bilateral exposures
between banks.

Trajectories of contagion across time

In addition to the final state of the contagion dynamics, I also compare the trajec-
tories observed in the different null model networks due to the Furfine algorithm.
Figure 3.7a shows for the first quarter of 2006, which is representative of the results
across all quarters, the average number of banks that failed at each iteration step,
scaled by the total number of contagion events, i.e. the number of banks (seeds)
that cause a contagion event. This analysis shows that whilst in the real network
contagion unfolds over 4 rounds, in the reconstructed networks there are on average
about 7–8 rounds of contagion that involve a relatively smaller number of banks.
The profiles of the trajectories are also different, contagion in the real network
abruptly stops, as it remains relatively high at all iterations, while in the recon-
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structed networks the contagion rounds decay exponentially.3 This wider spread of
less impactful contagion events in the reconstructed networks may be due to the
RAS algorithm, which aims at creating homogeneous edge weight distributions de-
spite the heterogeneously distributed marginals, and is common to the three models
used. Indeed, given the similarity of the trajectory profiles across the null models,
financial contagion may mostly be influenced by the distribution of interbank assets
and liabilities. In appendix A.1.2 I show this analysis also for the first quarter of
2007 and 2008 to prove that this behaviour is similar across the quarters.

(a) Total number of banks failed in each it-
eration of the dynamic scaled by the num-
ber of contagion events.

(b) Total number of banks failed across
all iterations of the dynamic scaled by the
total number of banks.

Figure 3.7: Trajectories of financial contagion due to the Furfine algorithm. Conta-
gion is more abrupt and concentrated in the real relative to the null model networks.
Black line shows the measure of the real network. Blue refers to Erdős-Rényi, pink
to rewired and red to fitness model networks. L.H.S. figure based on network of first
quarter of 2006 only, which is representative of all other quarters. Trajectories are
cut off at iteration 10, which in some simulations do not decay until iteration step
20. R.H.S. the shaded areas show the 10% and 90% quantiles of the null models
respectively and the dotted lines their averages.

Figure 3.7b shows the total number of failed banks across all iteration steps
scaled by the total number of banks n in the network. Interestingly, whilst the null
models can capture the average number of failed banks relatively well, from the
third quarter of 2007 the values observed in the real network are suddenly much
higher than those in the reconstructed networks. This corresponds to the onset of
the financial crises, in which many more banks failed. Note that the counterparty
default algorithm provides a stylised picture of the failure of banks, its results do not
necessarily correspond to actual failures during the financial crisis. The inability of

3The trajectories are computed as follows. For each round of contagion I count the additional
banks that defaulted for each seed, I then sum the total defaults for each round and divide this
sum by the number of contagion events in the first round. Each sum is divided by the number of
contagion events in the first round, rather than by the number of contagion events in each round,
to achieve a value that is comparable across rounds.
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the null models to reflect this change in the real network, corresponds to my previous
explanation of the slow changing nature of the total interbank assets and liabilities
on which the edge weights of the null models are based via the RAS algorithm. For
this reason the local topology of the reconstructed network cannot quickly pick up
on the regime change in the real network, such that the number of failures in the
reconstructed networks is relatively stable compared to the real network. For this
reason only the configuration model with access to the entire degree distribution,
pink in fig. 3.7b, can pick up on the sudden regime change in the real network.

Concentration of risk

The shorter trajectory profiles of the real network, in which more banks fail in each
iteration, point to a higher concentration of risk in the real relative to the recon-
structed networks. The length of the trajectory profiles as well as the contagion
extent and probability of the real and reconstructed networks provide only an indi-
rect view of the concentration of risk. A more direct measure of the concentration of
risk is the amount of equity capital lost in each of the networks due to counterparty
default risk as measured by the Furfine algorithm. It can be seen in fig. 3.8 that in
the reconstructed networks the average and maximum equity lost per node is lower
compared to the real network. Indeed, it can be seen that similarly to the contagion
extent shown in fig. 3.6b, that the null models underestimate the average equity
failed and generally overestimate –except for ER networks– the maximum equity
failed, as with the maximum contagion extent, shown in fig. 3.6c. It is also notice-
able that the ER networks have the widest confidence intervals and that, again, the
fitness model appears to provide the most realistic estimates of the real network.

From this analysis it can be concluded that the trajectories of the reconstructed
networks are less impactful than in the real network, not only in terms of the number
of banks that fail, but also in terms of the amount of equity capital that is lost.
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(a) Average equity lost across all nodes in
one network.

(b) Maximum equity lost across all nodes
in one network.

Figure 3.8: Equity capital lost due to counterparty default risk as measured by the
Furfine algorithm across 12 quarters from 2006 until 2008. Black line shows the
measure of the real network. The shaded areas show the 10% and 90% quantiles
of the null models respectively and the dotted lines their averages. Blue refers to
Erdős-Rényi, pink to configuration and red to fitness model networks. Similarly to
the contagion extent shown in fig. 3.6b, the null models underestimate the equity
lost, thereby indicating a lower concentration of risk in their networks.

Contribution of local network topology to systemic risk

Following my analysis of the influence of triadic motifs on financial contagion in
the Austrian network in the previous section 3.4.3, I continue this analysis in this
section for the reconstructed networks. In particular, I test the ability of the null
models to reproduce the number of unique banks that are members of each triadic
motif. As noted previously, for the topological analyses my results are based on the
network representing the first quarter of 2006 as a representative case. See fig. 3.1
for an overview of the motifs that I analyse and table 3.1 for a summary of these
results.

Overall, I find that the number of banks in each motif cannot be reproduced by
the null models. This suggests that these motifs are related to the decision-making
process of banks and are genuine features of the network formation process [121, 10].

Given that none of the null models include constraints on the triadic motifs, such
as a requirement for reciprocity, it is unsurprising that all null models overestimate
motif 1, the simplest kind of triad to generate by chance. In contrast, the null
models overestimate to a much smaller extent the abundance of members in the
most connected triad motif 13, in which each connection is reciprocated. Since
the configuration model is provided with the entire degree distribution of the real
network, its estimate of 174 unique banks as members of triad 13 comes close to
the real network with a count of 187. Given the homogeneous degree distribution
of the ER networks, due to which very few nodes exist that have a very low degree,
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the ER networks significantly overestimate motifs 1, 5 and 9. For the same reason
ER networks do not create nodes of sufficiently high connectivity to form the fully
reciprocated motif 13.

Whilst the null models cannot recreate the exact values of contagion of the
individual motif members in the real network, the relative ranking of riskiness of
the motifs is consistent in the null models with the findings of the real network, that
I presented in section 3.4.3. For instance, the average extent of contagion across
the banks that form the risky motif 9 in the fitness networks is 6.5. This value is
larger than the average extent of contagion of 4.8 across the safer motif 1 nodes in
the fitness network, and thus confirms the relative ranking of the contagiousness of
the motifs. However, the average contagion of 6.5 observed in the fitness networks
for motif 9 is much lower than the average of 14.2 that I observe in the same motif
in the real network.4

3.6 Vulnerable Cluster

I now develop a deeper intuition of the propagation of financial contagion by in-
troducing the concept of a cluster of vulnerable banks. So far only a theoretical
case has been made for the identification, analysis and interpretation of vulnerable
clusters, as I described in the literature review in section 3.2.3. I first provide an
intuition for vulnerable clusters. I then show how the concept of vulnerable clusters
can be employed to understand financial contagion in real networks. In particular,
I explain the higher concentration of risk in the real interbank network relative to
the reconstructed networks, that I identified in section 3.5.2, via a larger single gi-
ant vulnerable cluster in the real network. In appendix A.2 I describe and test the
method that I developed to identify the vulnerable clusters.

3.6.1 Intuition

The definition of a vulnerable cluster (VC) of banks is an extension of the definition
of the Furfine counterparty default risk algorithm that I outline in section 3.3.1. I
define a VC as follows:

1. A bank is vulnerable if it can be failed by the default of only one of its coun-
terparties;

4As a reference, the 10% and 90% quantiles support this conclusion: The respective bounds of
the average contagion extent for the fitness networks are 4.3 and 5.2 for motif 1 and 5.9 and 7.2
for motif 9.
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2. A vulnerable bank is connected to at least one other vulnerable bank, to form
a cluster;

3. It follows that the failure of one bank in this cluster defaults all members of
its cluster.

Typically there are multiple VCs in a network, here I am interested in the largest
of these, which also bears the largest risk and that I refer to as the Giant Vulnerable
Cluster (GVC). In the following I will refer to robust banks as those banks that are
not vulnerable. Robust banks that are adjacent to the GVC and can fail a member
of the VC, constitute the extended giant vulnerable cluster (EGVC).

The sketch in fig. 3.9 provides an intuition of these definitions. A GVC of size 7

implies that a seed can set in motion a cascade of 7 bankruptcies. In the sketch the
robust bank 10 for instance would fail bank 2, which in turn can fail banks 1;3; 6;
and 7 these in turn would fail banks 4 and 5.

Figure 3.9: A schematic illustration of the (extended) giant vulnerable cluster
(GVC). Unfilled nodes are in the GVC, filled nodes are robust banks out-with the
GVC, but part of the EGVC. Each robust and vulnerable bank is capable of trig-
gering the failure of the entire GVC. Only ”vulnerable“ exposures are shown, which
could lead to the default of a lender if the borrower is unable to repay.

3.6.2 Vulnerable clusters in the real and reconstructed net-

works

In this section I describe the results of the VC identification algorithm that I em-
ployed on the real and reconstructed networks. I describe the algorithm in ap-
pendix A.2.

The identification of the GVC among the vulnerable clusters in the reconstructed
networks is not as straightforward as in the case of the Austrian network. In the
Austrian network, as I describe in appendix A.2, all but 3 vulnerable nodes are
in one giant vulnerable cluster of size 47. However, in the reconstructed networks
as I summarise in table 3.2, it can be seen that there is no single individual giant
vulnerable cluster. Instead there are many smaller vulnerable clusters in the recon-
structed networks. In fact, the average size of the largest observed vulnerable cluster
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is always smaller in the reconstructed networks compared to the real network. The
abundance in the ER networks is very large, due to the homogeneous spread of links
and edge weights, which creates a much larger frequency of contagion events [117].

Vulnerable cluster Real ER Rewired Fitness
Abundance 1 846 16 4
Maximum size 47 46 28 12

Table 3.2: Abundance and average maximum size of vulnerable clusters in real and
reconstructed networks. There is no single giant vulnerable cluster in the recon-
structed networks, but a much larger abundance of individual vulnerable clusters.
This shows that the local concentration of risk is much larger in the real network.
The values for the reconstructed networks are averaged over 10,000 simulations.
Results shown for the first quarter of 2006.

The fact that there is no single GVC in the reconstructed networks shows that the
null models cannot estimate the local concentration of risk in the real network. The
multiple small vulnerable clusters in the reconstructed networks bear significantly
less risk than the single giant vulnerable cluster in the real network.

3.7 Discussion and Future Developments

The main goal of this chapter is to study the required amount of information in or-
der to reconstruct a real interbank network. Through a comparison of the required
amount of information for each reconstructed network, the difference in their topolo-
gies can be investigated to discover the driving mechanisms of financial contagion.
So far the literature has been divided in studies of the ability of null models to recon-
struct networks and in studies of the contagion mechanisms in interbank networks.
By combining these two research strands, I can judge the ability of Erdős-Rényi,
directed configuration (rewired) and fitness null models to construct networks with
levels of financial contagion similar to that of a real network.

My analysis across time shows that whilst the fitness and configuration mod-
els capture the general trends in financial contagion as measured by the Furfine
algorithm for counterparty default risk, they do not accurately estimate the exact
values of contagion observed in the real network. This is surprising as the previous
literature has shown that the fitness model provides very accurate results. Previous
studies have focused on the ability of the fitness model to reconstruct the topology
of interbank networks and not their financial contagion via the Furfine algorithm
[23, 123, 61, 41]. On the other hand, the null models, in particular the fitness model,
measure the DebtRank relatively well, which is in agreement with the previous lit-
erature [41].
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Whilst the topological properties of the fitness and rewired networks are similar
to the Austrian network in terms of their assortativity and clustering, the abundance
of triadic motifs is substantially different with respect to the real network. Coun-
terparty default risk as measured by the Furfine algorithm depends strongly on the
particular arrangement of the local network topology rather than global topological
properties. The DebtRank algorithm on the other hand depends more on the global
topological properties of the network and interbank leverage. This difference in the
dependencies of the two algorithms explains why the reconstructed networks can
estimate well the dynamics of the DebtRank but not those of the Furfine algorithm.

The good performance of the fitness model relative to the other two null models
suggests that knowing the density of the network and the total interbank assets and
liabilities of each bank might be sufficient to perform reliable tests to assess the
stability of an interbank lending network, at least at the aggregate level. Moreover,
I note that, although the fitness model provides the relatively best approximation
of the absorbing state of the dynamics due to the Furfine algorithm, the contagion
trajectories, which show the unfolding of contagion, are significantly different from
those observed in the real network. I link this deviation to the fact that risky banks
are more clustered amongst each other in the real network, suggesting a higher
concentration of systemic risk. The adaptation of the vulnerable cluster to systemic
risk proved useful in understanding this conclusion. The giant vulnerable cluster
is much larger in the real relative to the reconstructed networks, which indicates a
higher concentration of risk in the real network.

Future studies should focus their efforts on redefining the fitness model, partic-
ularly to better estimate triadic clustering and the vulnerable cluster via the distri-
bution of vulnerable nodes. The estimation of the local topology may be enhanced
by considering the reciprocated configuration model [124]. Vulnerable clusters are
a convenient tool to connect the contagion patterns of a network to its topology.
My analysis of vulnerable clusters highlights the importance of the local topology
together with the edge weight distribution as the defining factors of the robust-
yet-fragile nature of interbank networks. For this reason, the interplay of the local
topology and edge weight distribution requires further investigation. The similar-
ity of the contagion trajectories of the three null models despite their very different
topologies, suggests that the edge weights have a strong influence on financial conta-
gion. The edge weights were fitted using the RAS algorithm on each reconstructed
network. An important question to be addressed is therefore whether the edge
weight distribution determines the size of contagion trajectories, with the role of
the local topology being reduced to providing a necessary structure for contagion
to propagate. This would suggest that it is more important to control the equity
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capital levels of banks, rather than to focus on the exact nature of their lending
relationships in an interbank network.
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Chapter 4

Topological Determinants of Control
Energy

4.1 Introduction

4.1.1 Motivation

Many phenomena can be modelled using complex networks from neural networks,
over interbank networks to social networks. In theoretical studies and applications
of networks it is often of interest to change the state of nodes in a network. In
neural networks for instance, one may aim to control epilepsy, the source of which
are overfiring neurons [29]. Similarly, most research on interbank networks has the
ultimate goal to make financial systems more resilient [36] and in social networks it
is often desired to change a group’s perception of a particular issue [136].

Control theory applied to networks stands to provide the solution to the problem
of managing the state of networks. Control theory has been extensively studied in
the field of engineering since the 1960s beginning with seminal studies by Kalman
[80]. The central goal in control theory is to drive a dynamical system from an initial
state to a desired final state by exerting an external influence upon the system. Be-
ginning with a study by Liu et al in 2011 interest arose in applying control theory to
complex networks [86]. Research has shown that control theory can provide insights
into networks, for instance by identifying the essential nodes that are required to
exert structural control in a network [47, 60, 88, 113]. The most important aspect of
controlling networks, the cost of achieving the control target as measured via con-
trol energy, is not yet understood. Understanding the properties of control energy
will show whether control problems are practically achievable in terms of their cost.
Previous studies have indicated that control energy requirements may be very large
and control targets therefore not achievable [137, 138]. These studies only investi-
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gated the theoretical boundaries of control energy, but not how it is affected by the
topological properties of networks. Indeed, most previous research has focused on
defining the structural controllability of networks, which describes the topological
constraints in controlling networks [78, 86, 88, 99, 104, 111, 116]. Much more re-
search is therefore required to discover the feasibility of applying control theory to
networks.

Ill-defined problem of control energy

Sparse networks provide the most relevant applications for control theory, because
most real networks tend to be sparse, as I discuss for interbank networks in sec-
tion 2.1.2. The controllability Gramian W is a matrix that provides the energy
Ei required by each node i to be driven to its control target. The sum across all
nodal energies Ei provides the total network control energy E. For sparse networks
Sun and Motter (2013) show that W is liable to be ill-conditioned. The recipro-
cal condition number indicates the degree to which a matrix is ill-conditioned and
describes the inverse of the relative numerical error when using W . A reciprocal
condition number of 1 indicates that the matrix is well-conditioned and 0 that it is
singular. The reciprocal condition number of W ranges from 10−4 for networks with
n = 50 nodes and 10−18 for n = 250 [128]. Due to this computational uncertainty
no complete analytical description of Ei exists.

In sparse networks the analytical problem of calculating the control energy re-
duces to finding the eigenvalues of sparse matrices. The nodal energies depend on
the eigenvalues of W , which is based upon the adjacency matrix that defines the
connections between nodes. Yan et al (2012) provide theoretical bounds on the con-
trol energy E using the Rayleigh-Ritz method to approximate the eigenvalues of W
for directed and weighted scale-free networks. They find that the lower boundary is
Emin = 1/λmax and the upper boundary is defined as Emax = 1/λmin [137]. With an
increasingly heterogeneous degree distribution the bounds Emin and Emax diverge,
due to the complexity of managing the different nodal dynamics. These bounds can
therefore not provide a thorough understanding of the influence of network topology
on control energy E.

4.1.2 Research objective and approach

In this project I investigate the impact of network connectivity, network size and the
degree distribution on the properties of control energy. I devise a simple simulation
to compute the control energy of Erdős-Rényi (ER) and scale-free (SF) networks.
This simulation provides a first step in defining the topological determinants of
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control energy. The simulation is set up in such a way as to avoid the numerical
issues that I outline in (4.3) in the literature review. I achieve this by studying small
networks with n = 2, 000 and controlling all nodes nd = n.

I additionally take a mean-field approach to provide an analytical solution to
the problem of computing the control energy of ER networks. Mean-field theory
is a standard method in statistical physics to study the dynamics of large complex
systems. By averaging across nodal degrees and states, I solve a simpler optimisation
problem than by computing the controllability GramianW . This additionally avoids
the computational issues arising through the use ofW that I outlined in the previous
section.

Contributions

In this project I make the following three main findings and contributions:

1. An increase in the network connectivity results in a decreasing control energy
requirement due to a coordination advantage: As nodes become increasingly
connected, they push one another to their common target state, resulting in a
lower external input requirement.

2. I provide an analytical proof of the coordination advantage based on a mean-
field approximation.

3. The coordination advantage diminishes with an increasing distance between
the target states of neighbouring nodes. Nodes with different target states
cannot push one another towards a common goal, which results in a larger
control energy requirement.

4.2 Related Work

In this section I review the literature on control theory and its recent application
to networks. I first provide a general discussion of the concepts of control theory. I
then introduce the literature on control energy, which defines the cost of controlling
a system. Lastly, I discuss the literature on the impact of network topology on
control energy, which is the main focus of this project.

4.2.1 Control theory on networks

Control theory encompasses all necessary methods in defining the controllability of
a (non-)linear system to drive it from its current state to a target state. To simplify
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the analysis of control problems, system dynamics are typically linear and defined
such that the relations between nodes do not change across time. These systems are
referred to as linear time-invariant (LTI) systems [115]. I outline the set-up of LTI
systems in section 4.3.1.

4.2.2 Defining the controllability of a dynamical system

In control problems the goal is to move a system from a given state defined by the
state vector ~x(t0) to a final state ~x(tf ), where the entries of ~x(t0) are x1 = x2 =

. . . = xn = 0 and n is the number of nodes in the system. A system is controllable
if it is possible to drive it to the desired final state ~x(tf ) in finite time tf from the
original state ~x(t0).

The initial research that defined the controllability of dynamical systems was
undertaken by Kalman in the 1960s [80]. To test the controllability of a LTI system
the linear combination [A,B] is studied, as I outline in detail in section 4.3.1. In tra-
ditional control problems A represents a set of linear functions, whereas in network
control problems G(A,B) represents a directed weighted network A with external
controls B. The number of drivers, the nodes that exert the external influence upon
the nodes, is referred to as nd.

Kalman’s rank condition is used to test the controllability of a LTI system [80].
The controllability matrix of size n× (n× nd) is defined as follows

C ≡ [B,AB,A2B, · · · , An−1B], (4.1)

which is the linear combination of A and B. It’s full rank is

rank C = n. (4.2)

If rank C < n then C is rank deficient and the system is not fully controllable. In
this case, the formal solution to drive the system to ~x(tf ) does not span the entire
state space, as the vectors of C are not linearly independent. In terms of network
control, rank deficiency means that each node cannot be individually accessed by
the controller, such that the network is not fully controllable [86].

4.2.3 Control energy

One of the most important aspects of control theory is the cost of driving a system
to its target state. The required control energy is crucial in determining whether a
control target is reachable in practical terms.

As I describe in the methodology section 4.3.4, the Gramian matrix W is crucial
in defining the total network control energy E. Since the Gramian W grows in size
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proportionally to n and since most networks are not complete, the chance of W
being singular, i.e. ill-conditioned, increases as n→∞, especially when the number
of links does not increase at the same rate as n. For similar reasons, the reciprocal
condition number γ is also significantly reduced when the control time increases
tf → +∞ and when nd → 1 [86, 106, 128, 137].

Even though the traditional controllability criterion based on Kalman’s rank
condition would indicate that a network is controllable, control may not be practi-
cally feasible as the energy is not calculable. The cost of controlling a network is
infinitely high when W cannot be inverted, which is the case when W is singular.
Sun and Motter (2013) show that γW the reciprocal condition number of W , has a
size in the order of 10−4 for n = 50 and for n = 250 in the range of 10−12 and 10−18,
depending on nd [128]. A reciprocal condition number of 0 defines singular matri-
ces. Sun and Motter (2013) find a critical threshold γW ≈ 10−10 below which most
computations fail numerically. This threshold corresponds to nd/n ≈ 20% of nodes
being controlled, such that when a lower fraction of nodes is controlled most com-
putations fail. For SF networks this controllability transition is less sharp as their
degree distribution is more heterogeneous, which results in a broader dispersion of
the entries of W [128].

Theoretical bounds on the control energy

Theoretical bounds on E have been provided by Yan et al (2012), who use the
Rayleigh-Ritz method to approximate the eigenvalues of W [137]. These approx-
imations are provided for undirected and directed weighted ER and SF networks.
When the adjacency matrix A is positive-definite the bounds are Emin = 1/λmax

and Emax = 1/λmin, if on the other hand A is negative-definite, the upper bound
will vanish exponentially as tf → ∞. This is due to the largest eigenvalue λmax

growing exponentially with tf , as longer time intervals lead to a larger control en-
ergy requirement. When nd is increased, the lower bound decreases whilst the upper
bound increases. This follows from the fact that driver nodes tend to be low de-
gree nodes, which are more difficult to access and therefore more costly to control
[86, 72, 137]. Pasqualetti et al (2014) provide a similar analysis on the bounds of
control energy [106]. Showing for undirected networks with constant nd, that E
increases exponentially with n. In turn, when nd is a fixed fraction of the network
size, then the energy grows independently of n.

To summarise, the bounds on the control energy E that have been found by
the existing literature are very wide, especially when the degree distribution is het-
erogeneous. They therefore do not provide an understanding of the topological
determinants of E. In the following cases significant reductions in the reciprocal
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condition number of W are observed, such that the control energy E cannot be
computed:

tf → +∞ (control time);

n→ +∞ (number of nodes);

nd → 1 (number of driver nodes);

lim
e→1

e

n(n− 1)
(density).

(4.3)

4.2.4 The impact of network topology on control energy

In this section I review the literature on the impact of the topology of networks on
control energy. Since the main focus of this project is to study the influence of the
topology on control energy, this literature review provides an essential background
to my analysis.

A network consisting of well connected clusters in the form of strongly connected
components (SCC), each controlled by an individual driver node, requires less en-
ergy than a network in which driver nodes are placed randomly [106]. Pasqualetti
et al (2014) develop a decoupled control strategy by placing a driver node in each
of the network’s SCCs [106]. Importantly, the authors show that the strategy is
scalable and bounded by the maximal energy requirements for clusters, rather than
the entire network. However, the requirement of the existence of SCCs rules out
most real world networks, in which SCCs are rare [102]. An additional major re-
striction of the decoupled control strategy is that a feedback mechanism in the form
of reciprocal links must exist between the SCCs. Given the precise analysis of the
network topology that underlies the decoupled control strategy, it is unsurprising
that its energy requirements are lower compared to a strategy in which driver nodes
are placed randomly.

Cowan et al (2012) discuss the importance of nodal dynamics for the controlla-
bility of networks [43]. Cowan et al suggest that in practical control problems inac-
cessible nodes may simply be ignored to significantly reduce the very large control
energy requirement of isolated nodes. Future work should investigate the practical-
ity of such an approach, by providing an understanding of the role of inaccessible
nodes in real networks. I partly address this problem in the fourth project by show-
ing that the removal of isolated nodes significantly reduces the external input. The
removal of isolated nodes is sensible in interbank networks, as isolated nodes are a
result of the way scholars construct interbank networks, rather than a reflection of
truly isolated banks in the real system, see section 6.5. A further example of the
effect of isolated nodes are gene regulatory networks. In gene regulatory networks a
small number of nodes are sufficient to control the majority of a network [87]. The
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small number of driving nodes required in gene regulatory networks is due to a high-
degree of co-regulation in these networks. In this case the small part of the network
that is not controlled by the driver nodes is frequently ignored by practitioners [87].

In section 4.2.3 I introduce the numerical controllability threshold for control
energy. Research by Sun and Motter (2013) shows, that when a fraction of less
than nd/n = ND < 20% of nodes is controlled in a network that the controllability
Gramian is ill-conditioned, such that the energy cannot be computed. The thresh-
old of 20% is much higher than suggested by the theoretical results of structural
controllability [128]. In response, Nie et al (2016) investigated the effect of degree
correlations on the numerical threshold [104]. The authors find that disassortative
networks generally require a higher fraction of driver nodes than networks with neu-
tral and assortative degree mixing. For instance, an ER network of size n = 100

with average degree 〈k〉 = 2 requires ND = 60% with neutral degree mixing r = 0,
but with disassortative mixing r = −0.7 it requires a larger fraction of ND = 70%.
This effect is stronger for SF networks, such that for a SF network of size n = 100

with a power-law exponent γ = 3 and r = 0 the fraction of drivers is ND = 80% and
for r = −0.7 it is ND = 95%. Additionally, the relative fraction of drivers increases
with the network size when the density does not increase at the same rate. On the
other hand, when the average degree 〈k〉 increases, the required fraction of drivers
decreases as nodes can be reached more easily. This study by Nie et al shows the
limitations of the current applicability of control theory to networks. Given the low
connectivity of some nodes in real networks, it is often impractical to control all
nodes in a network. This makes the computation of control energy impossible in
many cases.

4.3 Methods

4.3.1 Control system set-up

A linear control system consists of a set of inputs, outputs and state variables whose
behaviour is defined by a set of linear state equations and is expressed as a linear
time-invariant (LTI) system [115]:

~x(t+ 1) = A~x(t) +B~u(t) (4.4)

where:

• ~x(t) ∈ Rn is the state vector, with n representing the number of nodes;
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• A ∈ Rn×n is the state matrix, representing the weighted directed adjacency
matrix, describing the connections between the nodes;

• B ∈ Rn×m is the input matrix, representing the matrix of the weights of the
inputs upon the nodes, with m representing the number of inputs;

• ~u(t) ∈ Rm is the input vector.

Since the system is time-invariant, A and B are constant in time. The dynamics
in this chapter are described in discrete time.

Formally an LTI system is represented by a directed graph G(A,B). The element
aij of matrix A denotes the influence of node i upon node j. The element bik of the
input matrix B reflects the strength of the control signal acting on node i.

4.3.2 Static method for scale-free network generation

I use the static method developed by Goh et al (2001) to generate directed scale-free
networks [67]. An empty adjacency matrix A is set up of size n × n. The n nodes
are indexed with an integer i ∈ {1, 2, . . . , n}.

A control parameter z in the continuous range [0, 1] defines the power-law expo-
nent as follows γ = (1 + z)/z. The probability that node i has a link to node j is
assigned as p = i−z and is normalised as p = p/

∑n
i=1 pi.

To build the adjacency matrix A, the desired number of edges e is iterated
through sequentially whilst picking an ingoing node i and an outgoing node j with
probability pi and pj, respectively. An edge is added between them to Aij, unless
an edge already exists, whilst ensuring that the diagonal is empty Aii = 0 to avoid
self-loops.

4.3.3 System stability

This section describes the mathematical background to the stability properties of
the solutions to linear time-invariant (LTI) systems.

Uniform exponential stability defines the boundedness and symptotic behaviour
of ~x(t) [115]. A system ~x(t0+1) = A~x(t0) is described as uniformly and exponentially
stable when a finite constant β exists, such that

∞∑
t=0

‖At‖2 ≤ β. (4.5)

This equation implies |λ1| . . . |λn| < 1, because setting a real eigenvalue λ ≥ 1
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and ~v the associated eigenvector, such that

At~v = λt~v, t > 0, (4.6)

and taking ~x(0) = ~v, then the solution ~x(t) = At~v grows unboundedly as t → ∞.
It follows that a necessary and sufficient condition for uniform exponential stability
is that limt→∞A

t = 0. This is guaranteed when |λ1| . . . |λn| < 1. A result of this is
that limt→∞ ~x(t) = 0 for any ~x(t0) > 0.

4.3.4 Control energy

State transition matrix

The state vector ~x(t) at time t can be expressed in terms of the transition matrix
Φ(k, t) = Ak−t, for k ≥ t, as

~x(t+ 1) = Φ(k, t)~x(t). (4.7)

Φ has the following transition property [115]:

~x(t2) = Φ(t2, t1)~x(t1), (4.8)

where
~x(t1) = Φ(t1, t0)~x(t0). (4.9)

This in turn implies the composition property:

Φ(t, j) = Φ(t, k)Φ(k, j), j ≤ k ≤ t. (4.10)

Controllability Gramian

In order to compute E(tf ) the total energy required to control the system, the
controllability Gramian, which provides the eigenenergies Ei of the system, is defined
as follows:

W (t0, tf ) =

tf−1∑
t=t0

Φ(tf , t+ 1)BBTΦ(tf , t+ 1)T , (4.11)

tf > t0. W must be positive definite (PD) for the system to be controllable within
tf time steps [115]. If it is not controllable in this period, it may be controllable at
a later time t > tf .
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Control input and control energy

When the control energy is minimised it follows from (4.11) that the minimal control
input ~u(t) required to reach the target state ~x(tf ) is

~u(t) = BTΦ(tf , t+ 1)TW (t0, tf )
−1~x(tf ), t ∈ [t0, tf ]. (4.12)

For a proof see Rugh [115, p. 483f]. The total energy required is

E(tf ) =

tf∑
t=1

‖~u(t)‖2
2, (4.13)

where ‖~v‖2 ∀ ~v ∈ Rn denotes the Euclidean norm ‖~v‖2 ≡
√
~vT~v.

4.4 Topological Properties of Network Control En-

ergy

In this section I describe the results of my simulations and analytical work on the
topological determinants of network control energy.

4.4.1 Simulation set-up

The simulations in this project are set up as follows. Weighted and directed Erdős-
Rényi (ER) networks A are generated of size n = 2, 000 with an average degree 〈k〉
in the range of [0.5, 100], see equation (3.18). Scale-free (SF) networks are generated
using the static method described in section 4.3.2, with a power-law exponent γ = 3

and an average degree 〈k〉 in the same range as for ER networks.1 The SF networks
are relatively small and can therefore not technically be described as scale-free,
however I refer to these networks as scale-free for convenience. The edge weights
for both ER and SF networks are drawn from a normal distribution with µ = 0.009

and σ = 10−4. µ is chosen such that the system A is stable, i.e. |λmax| < 1.
Following section 4.3.3 any non-zero vector on the trajectory of the system is a

viable target state, as the system naturally reverts to zero. The target state ~x(tf )

is therefore set as: x1(tf ) = x2(tf ) = . . . = xn(tf ) = 1 and ‖~x(tf )‖2 = 1 for the
interval [t0, tf ], where t0 = 1 and tf = 3. This is a standard set-up in the control

1I do not report results on 〈k〉 > 100, because the average edge weight µ would need to be
decreased in order for the necessary stability condition |λmax| < 1 to hold. An analysis across all
possible 〈k〉 in the range [0, 2, 000] would therefore not compare the same networks. Note however
that when both ER and SF networks are fully connected, their energy requirements are necessarily
identical.
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literature [115, 137, 138, 106]. A relatively short interval is chosen in order to provide
a clearer intuition. I show in section 4.4.3 that the length of the chosen time interval
has a small effect upon the results. I will show the effect of changing tf and the
distribution of ~x(tf ) in this chapter.

The number of drivers is set as nd = n. The number of simulated networks for
a given 〈k〉 is 5, 000. In order for the control simulation to be successful the actual
achieved final state x̃(tf ) must be within a certain distance of the target state ~x(tf ).
I find that in all simulations |x̃(tf )−~x(tf )|

~x(tf )
< 10−6, which is the standard distance

criterion used in the literature [128]. All computed controllability Gramian matrices
W are positive definite.

4.4.2 Increasing network connectivity reduces control energy

It can be seen in fig. 4.1 that the total energy E required to control a network
is a monotonous function of the average degree 〈k〉 in ER and SF networks. As
the connectivity between nodes increases, nodes push one another to their common
target state. This endogenous interaction results in a lower energy requirement,
which I refer to as the coordination advantage. It can also be seen in fig. 4.1 that
the energy requirement decreases more abruptly in SF relative to ER networks. This
is due to the presence of a small number of hub nodes in SF networks. Hub nodes
have a very large degree, which allows them to reach almost all nodes in a network.
They are therefore able to coordinate the states of most nodes in a network, in
contrast to ER networks in which hub nodes do not exist.

Figure 4.1: Average total network control energy E across simulations as a function
of the average degree 〈k〉 for ER and SF networks. Inset: for n = 100, in which the
difference between ER and SF networks is less strong.
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I find that that the total energy requirement increases monotonically with the size
of a network. Because I normed the target vectors ‖~x(tf )‖2 = 1, I can compare the
energy requirements across the different network sizes shown in fig. 4.1. In smaller
compared to larger SF networks, hub nodes have a lower degree relative to the
average node. The relative fraction of nodes whose state can be coordinated by hub
nodes is therefore reduced in smaller compared to larger SF networks. Due to the
diminishing effect of hub nodes on the total network energy, the energy requirement
of smaller SF networks is therefore accordingly higher. It can clearly be seen in
fig. 4.1 that the energy requirement in the smaller SF networks is much closer to
ER networks when n = 100 shown in the inset, in contrast to the case of n = 2, 000.
Whilst the energy requirement at ≈ 0.8 is almost identical for ER networks of size
n = 100 and n = 2, 000, the energy requirement for SF networks with n = 100 is
higher than for n = 2, 000.

4.4.3 Analytical solution to optimal control

In this section I provide an analytical derivation of the control problem. Computing
the energy requirements of networks analytically is computationally intensive and
may fail if the controllability Gramian W (4.11) is ill-conditioned. I take the mean-
field approach to derive a simpler analytical solution to the problem of finding the
minimum control energy. For a general introduction to the mean-field approach see
Sethna (2006) [120, p. 284].

Set-up of the problem

The essence of the mean-field approximation for ER networks is that the state and
input of each node is approximated by the average state and input across all nodes:

n∑
j=1

Aij ≈
n∑
j=1

pij = pn = 〈k〉, (4.14)

where pij is the probability of node i and j being connected.
So far I set ~x(t+ 1) = A~x(t) +B~u(t) according to the LTI system equation (4.4).

Since nd = n, B can be omitted as B = I the identity matrix. Additionally, I set
α = 〈k〉µ. In the following set of equations it can be seen that when each node
can be assumed to have the same degree, which is the essence of the mean-field
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assumption, that the LTI system equation (4.4) reduces to:

x(1) = u(1)

x(2) = αu(1) + u(2)

x(3) = α2u(1) + αu(2) + u(3)
...

x(tf ) = αtf−1u(1) + αtf−2u(2) + . . .+ u(tf )

=
∑tf

t=1 α
tf−tu(t).

(4.15)

The optimisation problem accordingly reduces to

min
u

tf∑
t=1

|u(t)|2

s.t.

tf∑
t=1

αtf−tu(t) = x(tf ). (4.16)

Solution of the optimisation problem

To solve (4.16) I first state the problem that I seek to minimise as follows

L(u, λ) =

tf∑
t=1

u(t)2 − λ
( tf∑
t=1

αtf−tu(t)− x(tf )
)
. (4.17)

The first order conditions are ∂L
∂u(t)

= 2u(t)− λαtf−t = 0

∂L
∂λ

=
∑tf

t=1 α
tf−tu(t) = x(tf )

(4.18)

and I rearrange such that u(t) = λα
tf−t

2
and insert u(t) into ∂L

∂λ∑tf
t=1 α

2(tf−t)λ

2
= x(tf ). (4.19)

The summation term represents a geometric series that can be simplified with an
intermediate step as:∑tf

t=1 α
2(tf−t)λ

2
= x(tf ) ⇒ α2tfλ

∑tf
t=1 α

−2t

2
= x(tf ) (4.20)

α2tfλ

2

α−2tf (α2tf − 1)

α2 − 1
= x(tf ) ⇒ λ

2

α2tf − 1

α2 − 1
= x(tf ). (4.21)
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Equation (4.21) yields

λ =
2x(tf )(α

2 − 1)

α2tf − 1
, (4.22)

which I insert into u(t), to arrive at the final expression for the input

u(t) =
αtf−t

2

2x(tf )(α
2 − 1)

α2tf − 1
⇒ αtf−t(α2 − 1)x(tf )

α2tf − 1
. (4.23)

This allows the energy requirement to be expressed as

E =

∑tf
t=1 α

2(tf−t)(α2 − 1)2x(tf )
2

(α2tf − 1)2
(4.24)

=
(α2 − 1)2x(tf )

2α2tf
∑tf

t=1 α
−2t

(α2tf − 1)2
(4.25)

=
(α2 − 1)2x(tf )

2α2tf

(α2tf − 1)2
α−2tf

α2tf − 1

α2 − 1
(4.26)

=
α2 − 1

α2tf − 1
x(tf )

2, (4.27)

where in (4.26) I again made use of the fact that the summation term represents a
geometric series. I then finally arrive at the expression of the control energy E using
another geometric series transformation

E =
x(tf )

2∑tf−1
t=0 α2t

. (4.28)

Results of mean-field approximation and comparison with numerical sim-
ulations

This final result of the solution for E (4.28) confirms the coordination advantage.
The minimum energy required reduces with an increasing average degree expressed
by α. The energy computed from (4.28) together with the averaged results across
5,000 numerical simulations on ER networks with n = 100 are shown in fig. 4.2a. The
figure shows an excellent match between the analytical solution and the numerical
simulations.

The analytical expression of E (4.28) further suggests that the impact of increas-
ing the control time tf reduces the energy requirement, which decays exponentially
as tf →∞. E asymptotes when tf ≈ 20 as I show in fig. 4.2b.
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(a) Control energy as a function of 〈k〉. (b) Control energy as a function of tf for 〈k〉 =
100.

Figure 4.2: L.H.S.: Average across 5,000 ER network simulations (straight line)
together with analytical solution (dashed line) from eq. (4.28) for tf = 3 (blue and
red respectively) and tf = 50 (black and green respectively). The analytical and
numerical solutions match perfectly. R.H.S.: Analytical solution as a function of tf
for 〈k〉 = 100.

Distribution of network control energy

Figure 4.3 shows the control energy distribution for ER and SF networks. Whilst the
energy distribution is homogeneous for ER networks, it has tail for SF networks. The
networks in the tail of the SF energy distribution are characterised by a relatively
lower abundance of small degree nodes and a relatively higher abundance of hubs.
This suggests that hubs are able to reduce the energy requirement.

(a) ER networks. (b) SF networks.

Figure 4.3: Distribution of total energy E for ER and SF networks, here shown for
〈k〉 = 25, which is representative of all average degrees.
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4.4.4 Topological determinants of control energy

Having presented the coordination advantage together with an analytical derivation,
I present the results of investigations on the topological determinants of control
energy in the remainder of this chapter.

I begin this section with an analysis of nodal energies Ei. Nodal energies as a
fraction of the total network energy Ei

E
are much more varied for SF than for ER

networks as shown in fig. 4.4. Each of the individual points in the scatter plot
4.4 represent Ei

E
for each node averaged over all simulations. The figure therefore

depicts the expected energy of controlling a node with a given degree ki. It can
also be seen in fig. 4.4 that the relative fraction of energy required by hub nodes is
several magnitudes larger than for an average node in SF networks.

(a) ER networks. (b) SF networks.

Figure 4.4: The figures represent the expected fractional nodal energy Ei

E require-
ment for a given degree ki averaged across all simulations for ER and SF networks,
where the colours represent the different average degrees 〈k〉. The fraction is almost
identical for nodes across all nodal degrees in ER networks, but highly heterogeneous
for SF networks, with hub nodes requiring the largest fraction of the energy.

The inverse participation ratio (IPR) is an indicator of the concentration of
observations, which allows an investigation of the variation of nodal energies. The
IPR has a lower bound of 1 when one node requires all control energy and an
upper bound n when each node requires an identical amount of energy. The IPR is
calculated as

IPR =
1∑n
i=1 p

2
i

, (4.29)

where pi = Ei

E
for each node i. As it can be seen in fig. 4.5 the energy is concentrated

in fewer nodes as the average degree 〈k〉 increases in SF networks, in which the IPR
falls to ≈ 700. In ER networks this concentration of nodal energies is essentially
absent.
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Figure 4.5: The inverse participation ratio (IPR) for ER (blue) and SF (red) net-
works. The concentration of nodal energies is much higher in SF relative to ER
networks.

4.4.5 Absence of coordination advantage when nodal states

deviate

I now investigate the impact of the distribution of the target state vector entries
xi(tf ) on the properties of control energy. The existence of the coordination advan-
tage is to be understood with regards to a specific goal in controlling a network. In
the simulations presented so far, all nodes had the same target states. I will now
look at the case in which each node has a different target state.

Figure 4.6a shows the total energy E as a function of the average degree 〈k〉
for various distributions of ~x(tf ) for ER and SF networks. In the figures the label
Identical refers to the case when all nodes have identical target states as described
in section 4.4.1 and used as the base case for the analysis throughout the previous
sections. The label Normal Distribution refers to a target vector with a normal
distribution N (µ = 1, σ = 1). The label Uniform Sphere refers to a uniform sphere
that is also normally distributed but around zero N (µ = 0, σ = 1). In order to keep
this analysis comparable I set all target state vectors to the same norm ‖~x(tf )‖2 = 1.
It can be seen in fig. 4.6a that the higher the variation amongst the nodal states,
the more control energy is required.
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(a) Total control energy E. (b) Inverse participation ratio (IPR).

Figure 4.6: Total network control energy E and inverse participation ratio (IPR)
as a function of the average network degree 〈k〉 for various target vector entry dis-
tributions. Blue lines reflect results for ER networks and red lines for SF networks.
Straight lines reflect the case when each node has an identical target state, dashed
lines when the target states are normally distributed around one and dashed-dot
lines when target states are distributed in a uniform sphere around zero. When
nodal target states deviate as shown by the normal and uniform sphere distribu-
tions, the energy requirement increases (L.H.S.) and the nodal energies are much
more concentrated, in particular for low 〈k〉 (R.H.S.).

Figure 4.6b shows that the concentration of the fractional nodal energies Ei

E
for

smaller 〈k〉 is much higher in the case of deviating relative to identical target states.
This suggests that target states have a strong influence upon the distribution of
nodal energies.

The variation in the fractional nodal energies Ei

E
can also be studied by plotting

the values directly as a function of nodal degrees ki across all 〈k〉. I have previously
shown in fig. 4.4a that the nodal energies are essentially unchanged as a function
of the degree of nodes in the case of identical targets for ER networks. This is also
the case for target states that are distributed normally around one and zero for ER
networks. In contrast, I showed for SF networks in fig. 4.4b, that nodal energies scale
very strongly as a function of nodal degrees due to the presence of large hub nodes.
This is also the case for normally distributed target vectors, albeit at a less strong
scale, as the maximal nodal energy fraction of a hub node is ≈ 8× 10−3 as shown in
fig. 4.7a and ≈ 4 × 10−4 for the uniform sphere depicted in fig. 4.7b, compared to
0.02 in the case of identical target states shown in fig. 4.4b. The fractional energy
requirement across nodes is therefore increasingly homogeneous when nodal target
states deviate.
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(a) SF networks: Normally distributed. (b) SF networks: Uniform sphere.

Figure 4.7: The figures represent the expected fractional nodal energy requirement
Ei

E for a given degree ki averaged across all simulations for SF networks for normally
distributed target vector entries and the uniform sphere. As opposed to the case
of identical nodal target states, shown in fig. 4.4, the distribution of the energy
requirements across nodes is less dependent upon ki. In fact, in the case of the
uniform sphere shown in panel (b) nodal energies are much more evenly split across
nodal degrees. The colours represent the different average degrees 〈k〉. I do not
show the respective figures for ER networks, as their nodal energies change very
little as a function of ki with respect to the different distributions, see fig. 4.4 as a
reference.

The lower dependence of the energy of a particular node upon its degree when
nodal target states deviate, can be understood when plotting Ei

E
as a function of

the nodal target state xi(tf ). Nodes with a target state of zero require no external
input, as nodes naturally move to their stable fixed point at zero. Nodes with a
target state of larger magnitude |xi(tf )| require more energy, independent of the
sign of their target state. When plotting nodal energies as a function of the target
states, a tick shape emerges in the case of a normally distributed target vector, as
it can be seen in fig. 4.8a for a network with an average degree of 〈k〉 = 5. The
tick shape is due to a higher frequency of positive target states in the normally
distributed target vector with µ = 1 and ‖~x(tf )‖2 = 1. As the average network
degree increases, the tick shape disappears and transforms into a U-shape, which
can be seen in fig. 4.8b for 〈k〉 = 95. The reason for the change in the shape of the
behaviour of nodal energies is that with an increasing interaction of nodes, the energy
is more evenly spread throughout the network. The increasing homogeneity of nodal
energies through the coordination of nodal activities is evidenced by the majority
of the observations being in the centre of fig. 4.8b. These plots are very similar for
ER and SF networks, for reasons of brevity I therefore only show the results for
SF networks. This behaviour is also similar for the uniform sphere and the normal
distribution, I therefore only present the results for the normal distribution.
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(a) Normally distributed for networks with 〈k〉 = 5. (b) Normally distributed for networks with 〈k〉 = 95.

Figure 4.8: Fractional nodal energies Ei

E for each nodal target state xi(tf ) averaged
across all simulations. The figures represent the expected fractional nodal energy
requirement for a given nodal target state xi(tf ) for normally distributed target
vector entries. The colours represent the different average degrees 〈k〉. Figures
shown refer to SF networks, the figures for ER networks are very similar.

The behaviour of the fractional nodal energies as a function of the individual
nodal target states xi(tf ) explains the higher total control energy requirement that
is observable in fig. 4.6a, when nodal target states deviate. With an increasing
deviation of nodal target states the coordination advantage is reduced. When each
node has a different target state, endogenous network effects cannot reduce the
external network energy requirement, as each node needs to move into a different
direction in the state space. In this case the control energy is concentrated in fewer
nodes, which results in a significant decrease in the IPR, which can be observed in
the dashed(-dot) lines in fig. 4.6b. The reason for this is that nodal energies are
the highest for nodes with target states of the largest magnitudes and the lowest for
nodes with target states close to their stable fixed point at zero.

4.5 Discussion and Future Developments

In this project I have shown that the cost of controlling a network, measured by
control energy, decreases as a function of its average degree. In particular, I have
shown that endogenous effects in networks reduce control energy. As the network
connectivity increases, nodes are able to push each other towards their common
target state. This coordination advantage results in a lower exogenous requirement
for control energy, which is amplified in scale-free networks due to the presence of
hub nodes. Hub nodes reach throughout the network and are thus able to coordinate
the states of a large fraction of the nodes in a network.

It follows from this result that larger SF networks require less control energy
than smaller SF networks with target states of the same norm. This is due to much
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larger hub nodes in larger networks. The large degree of hub nodes is driven by the
power-law nature of the degree distribution in scale-free networks, that emerges in
a much stronger fashion in large networks. I note that due to the computational
limitations of the control energy, the networks that I study in this project with 2,000
nodes are relatively small. The behaviour of the control energy in much larger scale-
free networks may be more stable relative to smaller networks. In ER networks
on the other hand, the energy requirement is relatively speaking independent of
the network size. Moreover, I find that the coordination advantage is significantly
diminished when nodal target states diverge. When each node has a different target
state, nodal interactions cannot result in a coordination advantage, because each
node is required to move into a different direction in the state space.

According to structural controllability the driver nodes of a network are low
degree nodes [86]. In this project my focus on reducing control energy revealed that,
especially in scale-free networks, larger degree nodes require the largest fraction of
energy but reduce the overall energy requirement. This implies a trade-off between
reducing the number of driver nodes, by controlling only nodes of low degree, and
a reduction of control energy by controlling only nodes of large degree. This trade-
off is of high relevance to applications of network control theory [43] and should
therefore be investigated in future studies to identify an optimal control strategy.

Lastly, the analytical derivation that I presented confirms that control energy
is reduced when nodal interactions increase. The mean-field analytical solution to
the optimal control problem provides a more straight-forward solution to computing
the control energy, as compared to the standard methodology based on the control-
lability Gramian matrix. However, the mean-field solution cannot provide detailed
analytical solutions that are potentially achievable by the Gramian matrix. Such
solutions include the control of a smaller number of nodes, instead of all nodes,
which is a core problem for future work.

The contributions that I have made in this project may find several applications
in real networks. In social networks for instance, a small fraction of nodes are
frequently more sticky to their opinion than most other nodes; and in interbank
networks a subset of nodes is much less resilient than others. For practitioners, for
example organisations that desire to influence public opinion or financial regulators,
this suggests that some agents, represented as hubs in their networks, should be
given the highest focus as they can coordinate large parts of networks.
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Chapter 5

Reverse Stress Testing Interbank
Networks

5.1 Introduction

5.1.1 Motivation and research objective

In this third project of my thesis I use the insights of the previous two projects to
develop a methodology to manage systemic risk. Specifically, I introduce a method
to reverse stress test interbank networks. Using this method I reverse engineer the
dynamics of stress propagation to identify the minimal exogenous shocks that need
to be applied to each bank in the network to cause a specific loss of equity.

The focus of research carried out so far has been mainly to develop models
to understand how exogenous shocks are amplified by the endogenous dynamics
in an interbank network. I discuss this type of research on financial contagion in
section 3.2.1. In contrast, in this chapter I study the reverse problem. I compute
the time trajectories of shocks of minimal size that need to affect banks to produce
a final loss of equity larger than a given threshold. The solution of this reverse
problem is useful to identify stress scenarios that would lead to systemic events and
with which it is therefore possible to identify the vulnerabilities of a financial system.

5.1.2 Approach

The reverse stress testing framework is inspired by (network) control theory, which
is a methodology from engineering, that has recently been introduced to complex
systems [86]. I study control theory in the second project to develop the methodolog-
ical background for the reverse stress testing framework. In control theory the goal
is to drive a system (in this case a network representing interbank lending between

103
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banks) from an initial state to a desired target state (in this case to a minimum level
of financial losses) with the least effort (in this case the smallest exogenous shocks
to the balance sheets of banks).

After I introduce the methodology of the reverse stress testing framework in
the next section, I apply the framework to real data in a case study, in which I
reverse stress test a system composed of the 44 largest European banks that are
the constituents of the STOXX Europe 600 Banks index. This index is the major
equity benchmark of the most significant financial institutions in Europe. For each
bank I collected from Bloomberg data on total interbank lending, total interbank
borrowing and equity capital levels. I use the RAS algorithm to reconstruct the
matrix of interbank exposures, which I outline in section 3.3.4. I then compute the
trajectories of shocks of minimal size needed to reach a final level of distress within a
given time horizon under a linear model of distress propagation, using the DebtRank
algorithm that I describe in section 3.3.2. I choose this contagion algorithm because
of its simplicity and because it can be considered as a first-order approximation for
a more generic class of contagion algorithms [17, 19].

5.1.3 Contributions

The main contributions and findings of this project are:

• introduction of a framework to reverse stress test interbank networks;

• as the largest eigenvalue of the matrix of interbank leverages increases the
optimal shocks become smaller and concentrate in a smaller set of banks;

• the distribution of optimal shock sizes is identified, thus providing a ranking
of banks in terms of their systemic importance;

• this ranking can be used to make the system more robust through the imple-
mentation of targeted equity capital requirement policies.

5.2 Related Work

Reverse stress testing is a regulatory requirement in the United Kingdom (UK) and
the European Union at the level of individual institutions. The Financial Conduct
Authority (FCA), one of the UK’s financial regulators, describes it as complementary
exercise to general stress and scenario testing in its handbook (section SYSC 20).
In standard stress testing a forward-looking methodology is employed, in which
scenarios are selected to predict their potential impact on the financial health of
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banks. Reverse stress testing on the other hand looks backward by identifying the
scenarios that cause a specific loss to a bank. This way of identifying stress scenarios
is the major advantage of reverse stress testing. Instead of relying on the judgement
of experts to select scenarios, the most dangerous scenarios are identified via the
methodology.

Previous work on reverse stress testing has focused on developing frameworks
for the risk analyses of individual institutions and not of financial systems as a
whole [69]. Some studies are dedicated to optimising scenario selection and defining
probability distributions of the numerous intertwined driving variables across asset
classes. For two recent reviews see Glasserman et al (2015) [64] as well as Flood
and Korenko (2015) [55], and for a mathematical approach to worst case scenario
selection see McNeil and Smith (2012) [92]. In brief, these papers find that a decrease
in economic activity in a country and a steeper interest rate curve are the most risky
scenarios for banks. Moreover, given the large data requirements of reverse stress
tests, there is a large estimation risk in reverse stress testing [69].

5.2.1 Measuring the contribution of banks to systemic risk

The reverse stress testing framework that I develop in this chapter, is inspired by
(network) control theory, I explain this connection in section 5.3.2. In this section I
review recent work that applies control theory to interbank networks. In particular,
I review the idiosyncratic contribution of each bank to the overall systemic risk in
a network, which provides an essential background to the policy experiment that
I develop in section 5.5.4, which is based on banks’ individual systemic contribu-
tions. For a more general literature review on systemic risk and control theory, see
section 2.1 and section 4.2, respectively.

Research concerned with controlling interbank networks has so far only consid-
ered their structural controllability, that defines the topological features that need
to be present in order for a network to be controllable. A conceptual introduction
to the application of control theory to interbank networks has been provided by
Galbiati et al (2013) [60]. On a large payments network Galbiati et al find that
there is no correlation between the feedback centrality of a bank, which measures
the average centrality of the neighbours of a node, and whether it is a driver or
not. A driver in network control theory is a node that receives an external control
input, for instance an exogenous financial shock, and propagates this input to its
neighbours in the network. Using data of the e-MID interbank market the authors
found that the average degree of driving nodes is lower than the average degree of
the network, in all periods under investigation from 1999 until 2009. Interestingly,
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the share of the largest lenders who are drivers increases significantly in the run-up
to the financial crisis. This suggests an increasing concentration of risk and a clus-
tering of core banks, as found previously in a study by Squartini et al (2013) [125],
that focused on the impact of clustering in interbank networks on systemic risk; and
that I describe in section 3.2.2.

Delpini et al (2013) [47] find, in agreement with Galbiati et al (2013) [60], that
driver nodes are neither the most interconnected hubs nor the largest lenders in
interbank networks. The number of drivers as a fraction of the total network size
ND, is an efficiency and resilience indicator for control. ND decreases with a higher
time aggregation of bilateral exposures in the network. Monthly time aggregation
is optimal in order to reduce ND to < 30%, whereas ND = 60% when exposures are
aggregated on a daily basis. Within smaller time windows relationships with many
small borrowers appear, which tend to have a smaller connectivity and therefore
increase the required number of drivers [47].

Contribution of banks to systemic risk in financial network theory liter-
ature

Independently of control theory, there are different methods that study the con-
tribution of individual banks to the systemic risk of an interbank network. One
such strand of the systemic risk literature was discussed in section 2.1.2, where I
focused upon the robust-yet-fragile nature of networks. To briefly recap, it has been
shown that the connectivity of Erdős-Rényi (ER) and scale-free (SF) networks are
relatively stable with respect to a random removal of nodes [2]. However, when
the nodes with the largest degrees are removed first, then SF networks disintegrate
much faster relative to ER networks, due to the significant role of large degree nodes
in coordinating SF networks. Roukny et al (2013) apply this insight to interbank
networks by comparing the impact of random versus targeted shocks and varying
other properties, such as the leverage of banks [114]. It was shown in the study that
the effect of shocking the most connected banks in an interbank network is very
similar in ER and SF networks when markets are liquid. In liquid markets banks
can recover a large fraction of the value of non-performing, i.e. likely to default,
debt by selling it in the market. However, when markets are illiquid, such that
non-performing debt can only be sold with large losses –so called fire-sales, then the
impact of targeted attacks is much larger in SF relative to ER networks [114].

Another strand of the systemic risk literature is based on a game theoretic anal-
ysis of the contribution of individual lenders to systemic risk. In these studies the
contribution of a lender is measured by its relative weight of the overall interbank
lending volume and the riskiness of its borrowers. For an introduction to this lit-
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erature see Drehman and Tarashev (2013) [49]. Glasserman et al (2014) provide
boundaries on the probability of the failure of a specific bank and estimate the
impact of its failure upon the network [65]. By comparing the relative lending pro-
portion of a bank in a network, which is the potential loss caused by its default to
the equity of its neighbours, the probability of it defaulting other banks can be re-
cursively measured. The authors confirm their method in an empirical study based
on the data generated by the European Banking Authority 2011 Stress Test. Inter-
estingly, Glasserman et al show that the boundaries on the probability of default
hold independently of the network topology.

Lastly, Thurner et al (2013) build an agent-based model of banks that interact
in an interbank network [131]. The authors study a normal mode, which replicates
typical behaviour observed in real interbank networks, such as a heavy-tailed dis-
tribution of losses. A transparent mode is also studied, in which lenders have an
incentive to extend loans only to low-risk banks. In this mode the DebtRank of
each bank in the network is computed and published at each time step to the other
banks. Lenders are incentivised to lend to banks in an increasing manner of their
DebtRank. In this mode risk is significantly reduced, primarily because the risk is
now much less concentrated in the network. Importantly, in the transparent mode
the overall lending volume is identical to the normal mode, the only difference being
that risks are now more homogeneously spread throughout the network. This study
shows that systemic risk is significantly influenced by banks that have high levels of
leverage.

5.3 Methods

5.3.1 Reverse stress testing problem set-up

In this section I outline the methodology that underlies the reverse stress testing
framework. A system of n banks is studied, which interact through a network of
mutual exposures (interbank assets and liabilities), via a dynamical setting in which
the equity of banks is updated in discrete time-steps. It is assumed that a bank
holds in its portfolio external assets that are not part of the modelled network in
addition to interbank assets.

Aij(t) denotes the value of the exposure of bank i to bank j at time t, Ei(t)
is the equity of bank i at time t, Aext

i (t) the value of external (i.e. non-interbank)
assets of bank i at time t, and finally Li describes the liabilities of bank i, which
are assumed to be constant over time. A further assumption is that banks do not
rebalance their portfolio (i.e. the number of shares they own of an asset is assumed
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to be constant), so that the changes in the balance sheet of a bank are only due to
changes in the price of the bank’s assets.

From the balance-sheet identity it follows that

Ei(t) =
n∑
j

Aij(t) + Aext
i (t)− Li. (5.1)

I consider a situation in which the value of external assets is subject to random
market fluctuations, while the value of the interbank assets of a bank at time t
depends on the equity of its counterparties at time t− 1. Following Battiston et al
[23, 26] I assume that the relative devaluation of an interbank asset is proportional
to the relative devaluation of the equity of the counterparty:

Aij(t)− Aij(0)

Aij(0)
= β

Ej(t− 1)− Ej(0)

Ej(0)
, (5.2)

where β is a positive constant related to the strength of contagion between counter-
parties. Therefore the equity of bank i evolves in discrete time according to

Ei(t) = β
n∑
j

Aij(0)Ej(t− 1)

Ej(0)
+ Aext

i (t)− Li. (5.3)

Following Battiston et al [23] I define hi(t) = Ei(0)−Ei(t)
Ei(0)

and Λij =
Aij(0)

Ei(0)
, so that

hi(t) = β
n∑
j

Λijhj(t− 1) +
Aext
i (0)− Aext

i (t)

Ei(0)
. (5.4)

The quantity Λij represents the importance for bank i of its interbank asset associ-
ated with bank j measured in terms of i’s equity. For instance, if the value of the
interbank asset drops by 1%, bank i would experience a loss of Λij% of its equity.
For this reason, Λij is referred to as the matrix of interbank leverages [23].

I further define ui(t) =
Aext

i (0)−Aext
i (t)

Ei(0)
, which represents the contribution to the

relative equity loss of bank i due to shocks to its external assets between times 0

and t, so that

hi(t) = β
n∑
j

Λijhj(t− 1) + ui(t). (5.5)

The interpretation of time t in this external asset shock scenario could for instance
be days and the time horizon T could refer to the time of maturity of a liability or
time scales in a regulatory framework.

I now imagine a situation in which I want to reverse stress test the system over
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a time horizon T . In particular, I assume to be at time t = 0 and I look for the
trajectories of shocks {~u(1), ~u(2), . . . , ~u(T )} to external assets that can lead at time
T to losses equal or greater than a given threshold, i.e. such that

hi(T ) =
T∑
t=1

n∑
j=1

βT−t
(
ΛT−t)

ij
uj(t) ≥ `i, (5.6)

with i ∈ {1, 2, . . . , n}, and where `i is the threshold associated with the loss of bank
i.

There are many possible trajectories that satisfy the constraints (5.6); here I
am interested in identifying those that minimize fluctuations of relative losses on
external assets over time, i.e. for which the following quantity is minimized:

K ≡
n∑
i=1

T∑
t=1

(ui(t)− ui(t− 1))2 . (5.7)

The cost function K can be interpreted as the aggregate size of the exogenous shock
affecting the system. I do not make a distinction between positive or negative shocks.
I select this cost function because I seek to identity the smallest exogenous shocks
that should hit the system to cause a given final loss. I refer to these shocks as
”worst case shocks“. I note also that the underlying DebtRank algorithm is linear,
such that a shock of 1% or 10% has a linear effect on the size of the resulting losses.

In summary, the following optimisation problem is to be solved to reverse stress
test a system

min

(
1

2

n∑
i=1

T∑
t=1

∆ui(t)
2

)
, (5.8)

s.t.
T∑
t=1

βT−t
(
ΛT−t)

ij
uj(t) ≥ `i ∀i.

where ∆ui(t) = ui(t) − ui(t − 1) and it is assumed that ui(0) = 0 for all i. ∆ui(t)

represents the loss due to shocks on external assets experienced by bank i between
times t − 1 and t. The optimisation problem can be more conveniently written in
terms of the cumulative variable ∆u as

min

(
1

2

n∑
i=1

T∑
t=1

∆ui(t)
2

)
, (5.9)

s.t.
T∑
t=1

βT−t
t∑

s=1

(
ΛT−t)

ij
∆uj(s) ≥ `i ∀i.
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Note that the reason for why I set up the optimisation as an inequality rather than an
equality, is that I am interested in identifying the optimal, i.e. minimal, shock that
leads to a given systemic loss. If I were to force each bank to reach a specific targeted
loss, then some relatively more unstable banks that experience losses higher than
the target losses would require negative losses, i.e. equity injections, to be stabilised
to achieve the lower losses that were set as the target losses. This is clearly counter-
intuitive in a stress-testing scenario, and I therefore set up the optimisation problem
as an inequality.

5.3.2 Link to network control theory

The last expression (5.9) is of a form that can be solved using optimal control
theory, which I study in depth in the previous chapter [115, 126]. In fact, the set-up
of control problems is similar to the analytical approach to the framework (5.9) that
I develop in section 5.6. The standard control dynamics are linear time-invariant
(LTI) and evolve as follows:

~x(t+ 1) = A~x(t) +B~u(t). (5.10)

As I outlined above, the input ui(t) of bank i at time t is the cumulative loss of
external assets experienced by bank i up to that time. In order to see the similarity
of the optimisation problem to that in control theory, note that in control problems
ui(t) is the external input required to drive a dynamical system to its desired state
`i at the end of the control period T . Specifically, ~x = h and A = Λ. Since all nodes
receive external inputs in the reverse stress testing framework, the input matrix B
is equal to the identity matrix I and can therefore be omitted. See section 4.2 for a
discussion of control theory.

5.4 Analysis of Homogeneous System

In order to develop an intuition on the behaviour of the solutions of (5.9), I first
consider the simple case of a homogeneous system in which all banks have the same
interbank leverage c, i.e. the matrix Λ is such that

∑n
j Λij = c for all i. In this case

all banks are the same, in that they are subject to the same dynamic and to the
same constraint. Therefore, by symmetry, also the trajectories of worst case shocks
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are the same for all banks. The optimisation problem (5.9) reduces to

min

(
1

2

T∑
t=1

∆u(t)2

)
, (5.11)

s.t.
T∑
s=1

T∑
t=s

λT−t∆u(s) ≥ `,

where λ = βc and ∆u(t) = u(t) − u(t − 1), as before I set u(0) = 0 and I have
exchanged the order of the sums over t and s (

∑T
t=1

∑t
s=1 =

∑T
s=1

∑T
t=s).

This problem can be easily solved with the method of Lagrange multipliers,
which brings

∆u(t) =

∑T
r=t λ

T−r∑T
s=1

(∑T
r=s λ

T−r
)2 ` (5.12)

and

K =
`2∑T

s=1

(∑T
t=s λ

T−t
)2 (5.13)

=
(λ− 1)3(λ+ 1)`2

T (λ2 − 1) + λ (λT − 1) (λT+1 − λ− 2)
. (5.14)

From this formula it can be seen that, upon increasing the time horizon T over which
stress propagates, the size of exogenous shocks needed to produce the sought final
loss progressively reduces and goes to zero in the limit T → ∞. This is expected,
as shocks can reverberate over a longer time horizon, and eventually an infinite
sequence of infinitesimal shocks can lead to the final loss `.

However, the behaviour of the cost function for long time horizons shows the
existence of two very distinct regimes: When λ > 1 the cost function approaches
zero exponentially as K ∼ λ−2T `2, while when λ < 1 the cost function decays to
zero much more slowly, as K ∼ `2(λ−1)2

T
. The reason for this behaviour is that for

λ > 1 shocks are exponentially amplified by the dynamics.
A similar behaviour can be observed for a general matrix of interbank leverages,

where the largest eigenvalue λmax of βΛ discriminates between the two regimes. I
study this case in the following section.

5.5 Case Study Based on Largest European Banks

In the following sections I discuss an empirical application of the reverse stress
test framework based on the optimisation problem (5.9) to an interbank system
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representing the largest banks in the European Union. I explore the results of this
problem of reverse engineering financial contagion via the following variables:

1. the largest eigenvalue λmax of the interbank leverage matrix, which determines
the stability of the dynamics [17]. For simplicity of notation, I refer to λmax as
the largest eigenvalue of the matrix βΛ and I vary λmax by changing β. When
λmax < 1 the dynamics are stable, but when λmax > 1 the dynamics are not
stable;

2. the minimal financial loss `i, which is the target state of the optimised dynam-
ics;

3. the time horizon T ;

4. the quantityKi =
∑T

t ∆ui(t)
2, which expresses the size of the exogenous shock

experienced by bank i over the time horizon T .

5.5.1 Description of data

I collected data from Bloomberg of the 44 banks belonging to the STOXX Europe
600 Banks index, ticker symbol: SX7P.1 In particular, for each bank I collected
information on its equity, total interbank assets (advances and loans to banks) and
total interbank liabilities (deposits due to other banks) for the entire year of 2015.

Figure 5.1 below shows the distribution of the equity capital, interbank assets
and liabilities for each bank. The average equity capital is ≈EUR5.1bn and the
average interbank assets ≈EUR3.2bn and for interbank liabilities ≈EUR3.7bn. As
a reference, these numbers are much larger than those of the Austrian network
discussed in the first project. The reason for this is that I here study the largest
European banks, whereas in the Austrian network I investigated banks of all sizes.

1Index constituents as of 11th November 2016.
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Figure 5.1: Distribution of equity capital, interbank assets and liabilities of each
bank in 2015.

On the basis of this data, I used the RAS algorithm to construct a matrix of in-
terbank exposures to represent an interbank lending network, see section 3.3.4 where
I outline the algorithm. Starting from total interbank assets and liabilities of each
bank, the RAS algorithm allows an allocation of interbank loans across counterpar-
ties [13]. If no further constraints are added, the outcome of the RAS algorithm is a
complete weighted network of interbank claims. Although real interbank networks
are far from complete [32, 54, 56, 125], here for simplicity I consider this limiting
case that allows me to focus on the mechanics of reverse stress testing only, rather
than on the interplay between network topology and financial contagion. In the
next chapter, which describes the fourth project, I study the STOXX network with
different densities.

5.5.2 Aggregate properties of optimal shocks

Figure 5.2a shows the behaviour of the cost function K as a function of λmax for
different time horizons and for `i = 0.1 for all i. It can be seen that the size of
exogenous shocks decreases as a function of λmax across all T . As λmax increases the
endogenous dynamics of the network lead to a larger amplification of the distress,
such that a lower magnitude of exogenous shocks is required to reach the target loss
`i.

For a similar reason larger T result in smaller K independently of λmax. The
endogenous network dynamics propagate the distress of the previous time step,
thereby reducing the exogenous shock requirement as T is increased. Because the
iteration map (5.5) does not reach a fixed point when λmax > 1, even in the absence
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of exogenous shocks beyond the first time step (i.e. u(t) = 0 for any t > 1), it is
expected that the size of the exogenous shocks K will go towards zero exponentially
fast in the limit T →∞. This is indeed the case, as shown in the inset of fig. 5.2a.

The behaviour is qualitatively similar for any value of final losses `, as I show in
fig. 5.2b, where I plot the cost function K as a function of λmax and `, for T = 20.
I choose this time horizon because the behaviour of K is similar to larger T and
its computation is much less intensive. From this figure it can be seen that when
λmax is large enough the shock needed to cause the sought final losses is relatively
independent of `, while it increases with ` when λmax < 1.

(a) Size of shock K as a function of λmax for var-
ious control times T and `i = 0.1. Inset: K as
a function of T for λmax = 1.5. When λmax > 1
shocks decay exponentially fast.

(b) Cost function K as a function of the target
losses `i = ` and λmax. For large λmax the cost
function is independent of the final loss. Results
refer to T = 20.

Figure 5.2: Size of shock K in STOXX network.

Figure 5.3 provides a similar picture of these results. It shows what I refer to as
the loss fraction, which is the total amount of equity that is shocked externally, or
lost, as a fraction of the total equity in the system to cause a specific loss `. Since
none of the edge weights (exposures) are negative in the network, this fraction always
stays below one. The loss fraction indicates the extent to which the endogenous
network dynamics amplify the exogenous shocks. This amplification increases as a
function of λmax and thus results in lower required exogenous shocks Ki for each
bank.
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Figure 5.3: The loss fraction measures the total amount of equity externally shocked
as a fraction of the total equity in system. Shown as a function of the target losses
`i = ` and λmax. The loss fraction always remains below one, indicating that the
endogenous network dynamics propagate the losses.

5.5.3 Concentration of risk

I have so far looked at the properties of the aggregate shock, however the proposed
methodology allows me to obtain the distribution of shocks across banks in the
system. This information is useful as it enables me to rank banks in terms of their
contribution to the aggregate shock, and to identify potential concentrations of
vulnerability in the system. If the optimal aggregate shock is uniformly distributed
across all banks, then I would expect the system to be more resilient with respect to
idiosyncratic failures of individual banks. Although the system might be vulnerable
with respect to common factors that affect the portfolios of banks. If the shock is
instead highly concentrated in a few banks, the system is vulnerable with respect to
the failure of these banks.
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Figure 5.4: Distribution of the standardized shock of each node (z-score) for different
values of λmax. Shown for T = 20 and for `i = 0.1. s is the standard deviation and
µ the mean of the respective distribution of nodal shocks Ki for each λmax. As λmax

increases larger relative deviations with respect to the mean amplitude are observed
in the right tail of the distribution.

Figure 5.4 shows the distribution of standardized shocks, i.e. the z-score of each
nodal shock Ki, across all banks for three different values of λmax: 0.5, 1, and 1.5.
The z-score is defined as Ki−µ

s
, where s is the standard deviation and µ the mean

of the respective distribution of nodal shocks Ki. As it can be seen from the figure,
the distribution of shocks is strongly affected by λmax. In particular, I observe that
shocks appear to become more concentrated for higher values of λmax. Indeed, for
higher values of λmax I observe a stronger correspondence of the z-score to the total
interbank liabilities of each bank i, i.e.

∑n
j=1 Aji. In fact, the largest z-score of 5

seen in fig. 5.4 corresponds to the bank with the largest interbank liabilities.
This concentration of systemic risk can be quantified by computing the inverse

participation ratio (IPR), defined as

IPR =
1∑n
i=1 p

2
i

, (5.15)

where pi = Ki

K
for each node i. The IPR has a lower bound of 1 when the shock

is concentrated in one node, and an upper bound of n when the shock is equally
spread across all nodes.

As it can be seen in fig. 5.5a, the IPR is unaffected by `, it decreases significantly
as λmax approaches 1, and it becomes constant for λmax > 1. Figure 5.5b shows that
the IPR is relatively unaffected by the time horizon T .
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(a) Inverse participation ratio (IPR) as a function
of the target losses `i = ` and λmax for T = 20.

(b) Inverse participation ratio (IPR) as a function
of λmax for various time horizons T and `i = 0.1.

Figure 5.5: Inverse participation ratio (IPR) in the STOXX network. The nodal
shocks become more concentrated as λmax increases.

I have shown that increasing λmax leads to a reduction of the aggregate size of the
shock K needed to drive the system towards a certain loss and to a concentration of
nodal shocks upon a smaller set of banks. I stress here that these two behaviours have
different roots. The reduction of K is due to the fact that the system becomes more
unstable as leverage increases. The concentration of risk is due to the heterogeneity
of leverage across banks. In fact, in the homogeneous system considered in section
5.4 this concentration does not occur. The heterogeneity of banks’ leverages, shown
in fig. 5.6, suggests that some banks have lent significantly more than others relative
to their equity capital. Some banks therefore contribute to the risk of the system
much more than other banks, which leads to the concentration of shocks observed
in fig. 5.5a. The interbank leverage of a bank is defined as the ratio between its
total interbank assets and its equity. The interbank leverage of bank i is therefore
calculated as

∑n
j=1 Λij.
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Figure 5.6: Histogram of interbank leverages of each bank in the STOXX network
under investigation. It can be seen that lenders have heterogeneous strategies for
their interbank leverage, defined as the ratio of the total amount lent (assets) over
a bank’s equity capital.

The observed concentration of risk as measured by the IPR is one of the most
significant findings of this project. It indicates that as the strength of the interactions
between nodes becomes stronger, a decreasing number of nodes in the system can
cause systemic events. In other words, while for λmax < 1 a large fraction of nodes
need to experience stress in order for the system to observe significant losses, when
λmax > 1 only a few nodes are sufficient to cause significant losses. In the next
section I will use this insight to devise a policy experiment to reduce the observed
system losses.

5.5.4 A simple policy experiment

In the following experiment I intend to show that the systemic vulnerabilities in the
high λmax regime can be associated with a small set of banks, in which the aggregate
shock is concentrated. I run the dynamic (5.5) forward whilst applying the shocks
that have been computed through the reverse stress test framework to a subset of
the nodes (i.e. using as u(t) the result of the optimisation (5.9)). I then compute
the final loss R observed in the system divided by the final loss observed when all
banks are stressed at once R0 and plot this ratio as a function of the fraction of
stressed banks.

Figure 5.7 shows the result of this experiment for different values of λmax when
the banks that are stressed are selected in a descending order of their nodal shock
Ki. I also show in the circled lines the results for the benchmark case, in which the
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stressed banks are randomly selected. As expected, deviations from the benchmark
case become larger as the system becomes more unstable. The concentration of
systemic risk in the system can be seen particularly when λmax = 1.5 (black line), in
which case the exogenous shock of 5 banks can lead to roughly 70% of all observed
final losses. Note that when banks are randomly selected then no such concentration
is observed (circles in equivalent colours in the figure).

Figure 5.7: Incremental addition of ui(t) to banks in a decreasing order of the size
of their individual shocks Ki for various λmax. The circles represent the average
across 500 simulations in which banks were randomly selected (same colours as for
the three lines corresponding to the three different λmax shown in the legend). For
λmax = 1.5 the shock on the first five banks already accounts for 70% of final losses.
Results shown for T = 20 and `i = 0.1. As noted before, the behaviour is very
similar for larger values of T .

Set-up of equity capital policy

The previous insights can be used to design a policy for the equity requirements of
individual banks, that aims to reduce the observed financial losses under the scenario
identified through the reverse stress test framework.

I use the contribution of each bank to the aggregate shock to rank banks in terms
of their systemic impact. In particular, I consider a situation in which I increase
the total capital in the system by 5% and a policy by which this additional capital
is spread across banks proportionally to the size of the shock computed from the
reverse stress test, i.e. bank i receives a proportion Ki/K of the total additional
capital. I then compare this policy with a benchmark according to which the equity
of each bank is increased by 5%. This benchmark mimics the case of a homogeneous
(relative) increase in the capital requirement of banks. For both policies, I compute
the total relative losses R =

∑n
i hi(T ) via DebtRank under the scenario identified
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through the reverse stress test and compare it with the total losses observed in
absence of policy intervention R0.

Currently, the world-wide Basel III capital regulations stipulate a minimum level
of equity capital of 4.5% of a bank’s total assets plus an additional 2.5% conserva-
tion buffer of a bank’s total risk-weighted assets. Moreover, national regulators may
require an additional capital increase of up to 2.5% if an increase in risk is observed
across the system [22]. Put together these requirements are referred to as the Com-
mon Equity Tier 1 ratio. The definition of risk-weighted assets is thus a crucial
factor in determining the level of equity capital. In brief, each asset held by a bank
is given a factor based on its riskiness, which scales its weight in the aggregation
of total risk-weighted assets. My policy approach of increasing the equity capital is
thus different to current regulations. The focus of this section is to identify whether
this difference is warranted, by testing the effectiveness of my policy in stabilising
the system.

Note that my suggested 5% capital increase is not unrealistic. The European
Banking Authority (EBA) reported after its 2016 stress test exercise of the 51 largest
banking institutions in Europe, that the average Common Equity Tier 1 ratio in-
creased from 8.9% at the end of 2010 to 13.2% at the end of 2015. This corresponds
to an increase of ≈ 50% of the equity capital across these banks [52]. Additionally,
there is a large overlap between the banks involved in the stress tests of the EBA
and the STOXX index used in this project. In fact, 10 out of the 15 European banks
classified as global systemically important banks in 2015 are in the top 15 of my
ranking of banks based on their systemic importance Ki [53].

Results of policy experiment

The results of this policy exercise are shown in fig. 5.8a. As it can be seen in
fig. 5.8a when λmax < 1 the benchmark and Ki-based policies achieve a similar
reduction of total losses, while the Ki-based policy becomes more effective when
λmax > 1. The reason for this result is that the explosive dynamics when λmax > 1

lead to a concentration of systemic risk in a few banks on which an effective policy
should concentrate.



5.5. CASE STUDY BASED ON LARGEST EUROPEAN BANKS 121

(a) Comparison of two policies to reduce the ob-
served total financial losses. In both policies an
additional equity capital of 5% was allocated in dif-
ferent manners to each bank. When λmax < 1 the
benchmark policy is slightly more effective than
the Ki-based policy, however when λmax > 1 the
Ki-based policy is significantly more effective.

(b) Results of financial loss reduction for the Ki-
based policy as a function of λmax for different
amounts of equity capital injected into the system.
The percentage in the legend indicates the increase
of the total equity capital of the system. The effec-
tiveness of increasing capital injections has rapidly
vanishing returns of scale.

Figure 5.8: Results of policy experiments. Losses R are recomputed after the equity
was increased and expressed as a fraction of the original losses R0 on the y-axis.
These results are shown as a function of λmax along the x-axis. Results shown for
T = 20 and `i = 0.1.

Figure 5.8b shows that a larger increase in the additional capital to be allocated
to the equity base of each bank results in a further reduction of losses. The figure
shows this for the policy based on my ranking of nodes in terms of their systemic
importanceKi. However, the impact of an increased equity allocation has decreasing
returns of scale in terms of the reduction of financial losses. The impact of an increase
from 1% to 2% is much larger than the impact of a 4% increase relative to that of
5%. This behaviour occurs for the benchmark policy as well, but in this case it
is not as pronounced, for this reason I do not show the result separately. This is
due to the fact that the Ki-based policy is much more effective in allocating the
additional equity as compared to the benchmark, and therefore leads to a stronger
reduction of losses that cannot be significantly improved with even larger equity
capital injections.

The decreasing returns of scale of the policy are of high relevance to financial
regulators. Higher capital requirements come at large costs to banks, not only due
to the costs involved in raising the additional capital, but also in terms of lower
returns. The fact that equity capital requirements beyond a certain level lead to
drastically diminished marginal reductions in risk, points towards an optimal trade-
off between the costs of increasing equity capital requirements and their effectiveness
in reducing risk. In other words, reducing the leverage of the most risky lenders is
sufficient to significantly increase the stability of an interbank market. This result
corresponds to the insights provided by Poledna et al (2016), who show that a
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systemic risk tax would force banks to lend money more homogeneously [109]. More
homogeneous lending practices do not reduce the overall interbank volume, but
avoid large cascades of bank failures by reducing the largest leverages. See also
section 5.2.1 where I discuss similar studies.

5.5.5 Robustness of results

To test the robustness of the results presented in this chapter I collected data of
the previous year (2014) and following year (2016) to compare to the simulations
in this project, which are based on 2015 data. I chose these years as the financial
conditions in the period from 2014 to 2016 are similar, and thus make the robustness
test more straightforward. The results are very similar across the years. The total
shock K and its properties such as the IPR are almost indistinguishable across the
three years. Furthermore, the ranking of nodes is very robust across time, such that
the results of the equity capital policy are very similar in 2014 and 2016 compared
to the 2015 results presented in this chapter. In fig. 5.9 I show the relation of the
nodal shocks for each bank across the three years in scatter plots. The correlation
between nodal shocks across different years is always larger than 0.9. The strong
similarity between the years is due to the stability of the equity, interbank assets
and liabilities of the individual banks.

(a) Ki in 2014 against 2015 (b) Ki in 2015 against 2016 (c) Ki in 2014 against 2016

Figure 5.9: Scatter plots comparing nodal shocks Ki for each bank across three
years 2014, 2015 and 2016. It can clearly be seen that the nodal shocks are very
similar across the years. Results shown for T = 20 and `i = 0.1.

5.6 Analytical Approach to the Optimisation Prob-

lem

To provide a deeper intuition for the reverse stress testing framework, I present an
analytical derivation to the optimisation problem that underlies the framework.
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I restate the main optimisation problem (5.9), as follows

min

(
1

2

n∑
i=1

T∑
t=1

∆ui(t)
2

)
,

s.t.
n∑
j

T∑
s=1

T∑
t=s

βT−t
(
ΛT−t)

ij
∆uj(s) ≥ `i, ∀i, (5.16)

I exchanged the order of the sums over t and s (
∑T

t=1

∑t
s=1 =

∑T
s=1

∑T
t=s) and made

the aggregation over each node j explicit to simplify the following derivation.
I set D(t) = (βΛ)T−t, the function to be minimised is then:

L =
1

2

∑
i,t

∆ui(t)
2 −

∑
i

ηi

(∑
j

T∑
s=1

T∑
t=s

Di,j(t)∆uj(s)− `i
)

(5.17)

where ηi refers to the Lagrange multipliers for each node i, used to enforce the
constraints of the function L. The partial derivatives are: ∂L

∂∆uk(r)
= ∆uk(r)−

∑
i ηi
∑T

t=rDi,k(t) = 0

∂L
∂ηi

=
∑

j

∑T
s=1

∑T
t=sDi,j(t)∆uj(s)− `i = 0.

(5.18)

Where

∆uk(r) =
∑
i

ηi

T∑
t=r

Di,k(t). (5.19)

Inserting ∆uk(r) into ∂L
∂ηi

results in

n∑
j

T∑
s=1

T∑
t=s

Di,j(t)
∑
e

ηe

T∑
r=s

De,j(r) = `i. (5.20)

To simplify this expression into matrix notation I set

Φi,j(s) =
T∑
t=s

Di,j(t), (5.21)

such that I arrive at
n∑
e

T∑
s=1

n∑
j

Φi,j(s)Φe,j(s)
+ηe = `i, (5.22)

where + denotes the transpose. I additionally set

Wi,j =
T∑
s=1

n∑
k

Φi,k(s)Φj,k(s)
+. (5.23)
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Wi,j in turn allows me to set

ηi =
n∑
j

W−1
i,j `j. (5.24)

I thus finally arrive at the solution for the inputs

∆uk(r) =
n∑
i

Φi,k(r)
n∑
j

W−1
i,j `j (5.25)

=
(

Φ(r)+W−1~̀
)
k
. (5.26)

It can be seen that the solution to the optimisation problem of the reverse stress
testing framework can be neatly summarised in the W operator. The matrix W

serves a similar function as the Gramian matrix in control problems, described in
eq. (4.11).

Conditions for a successful solution to the optimisation problem In order
for a solution to this linear inequality constrained optimisation problem to be found,
the Karush-Kuhn-Tucker (KKT) conditions need to hold. For the simplified problem
of

min
(∑

i

f(xi)
)

(5.27)

s.t.
∑
i

g(xi) ≥ ci,

where f is a generic function, g a generic constraint function and c a constraint, all
used as a general representative case. The function to be minimised is

L(xi, λ) = f(xi)−
∑
i

λi

(
g(xi)− ci

)
, (5.28)

the KKT conditions are

1. ∂L
∂xi

= 0 ∀ i;

2. λj ≥ 0 ∀ j;

3. g(xi) ≥ cj or if λj = 0 then λ(g(xi)− cj) = 0.

5.6.1 Comparison of analytical and numerical results

In this section I present the results of a numerical solution to the optimisation
problem (5.16), to cross check my analytical derivation (5.26). It can be seen in
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fig. 5.10a that the result of the analytical solution for the cost function K agrees
with the result of the numerical solution for the optimisation problem.

As λmax increases the number of Lagrange multipliers η that are set to zero
increases, indeed when λmax > 1.1 all but one η are set to zero, as I show in fig. 5.10b.
The reason for this is that when λmax is large, the dynamics are very unstable, such
that an infinitely small perturbation to the system causes most nodes to overshoot
their target `i. In other words, the analytical solution asymptotes zero, because the
constraint `i is non-binding (slack) for most nodes. Their Lagrange multipliers η
therefore have to be set to zero according to the KKT conditions described above. ηi
(5.24) in other words expresses the exogenous shock that is required to cause bank
i a certain fraction of equity losses.

(a) Cost function K as a function of λmax for the
numerical (blue) and analytical solution (red). It
can be seen that the analytical solution agrees with
the numerical simulations.

(b) Number of Lagrange multipliers η set to zero
as a function of λmax. The nodes for which ηi is
set to zero overshoot their target `i, for which the
constraint is thus non-binding.

Figure 5.10: Results from analytical solution (5.26) for exogenous shocks K.

5.7 Discussion and Future Developments

In this chapter I introduced a framework to reverse engineer distress propagation
in financial networks. I reversed the standard stress testing approach by setting
a specific outcome, the loss of a certain fraction of the equity of each bank, and
looking for the scenario with smallest shocks that could lead to such an outcome
over a given time horizon.

I considered a system of interbank borrowing relationships based on 2015 annual
data of the equity, interbank lending and borrowing of the 44 largest stock exchange
listed European banks. My analysis of the preceding and following years shows that
the insights resulting from this case study are robust across years. I found that at
the aggregate level the size of the optimal exogenous shock decreases as the largest
eigenvalue λmax increases. At the same time the shock becomes concentrated in
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a smaller number of banks. Based on the optimal pathways of shock propagation
identified in my analysis, I ranked banks in terms of their systemic impact. Using this
ranking I suggested a simple policy of capital allocations that significantly reduces
the vulnerability of the system, with respect to the identified scenario in the regime
of high endogenous amplification.

Furthermore, I derived an analytical solution of the reverse stress testing frame-
work, which can be applied to other networks and be used to obtain analytical proofs
of the behaviour of the total exogenous shocks. The main insight of the analyti-
cal solution is that the reverse stress test dynamic can be summarised in the W
operator, whose inverse provides the nodal shocks of each bank.

5.7.1 Future developments

My analysis can be improved in several directions to widen the applicability of the
reverse stress testing framework and to explore different channels of contagion.

First of all, I used a simple linear dynamical rule of distress propagation. Al-
though common in the literature of financial contagion, this assumption can at best
be considered an approximation of the true dynamics. In a more general case, it
is still possible to write an optimisation problem analogous to (5.9) to perform the
reverse stress test. The main difference with respect to the case considered here,
would be the presence of a non-linear constraint, but the optimisation problem could
still be solved numerically.

Secondly, I only considered the DebtRank algorithm as a means of stress prop-
agation in interbank networks. Other important channels of contagion operate in
interbank networks, without which a complete understanding of the propagation of
risk in a network is not possible. I discuss these channels of contagion in section 3.2.

A third limitation of my analysis is the fact that I only considered direct long
exposures between banks. Banks interact in many ways in the real world, and a more
realistic scenario would consider a multilayer description of the network of interbank
interactions. In this respect, my present analysis corresponds to an aggregation of
the multilayer structure into a single layer [110, 71, 82]. However, it would be
important to look also at the disaggregated multilayer structure to reflect different
loan maturities, because the properties of aggregated and non-aggregated systems
have been shown to differ in some cases [71].

Fourth, I considered the case of banks as passive investors. This is certainly a
useful benchmark, but a more realistic scenario would also account for the reaction
of banks to changing market conditions. For instance banks normally adjust their
equity capital levels and interbank activities following the default of one of their
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borrowers.
In spite of all the present limitations, this analysis suggests that reverse stress

testing is a useful tool for the identification of vulnerabilities at the systemic level,
and I believe this is an interesting avenue for future investigation with potentially
relevant policy implications.
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Chapter 6

Reverse Stress Testing Interbank
Networks - The Influence of Topology

6.1 Introduction

6.1.1 Motivation and approach

In the previous chapter I introduced the reverse stress testing framework and focused
on its dynamics rather than the influence of network topology on the framework. In
this project I test the impact of network topology on the framework by investigating
how the behaviour of the exogenous shock changes in interbank networks with dif-
ferent topologies. It is of particular interest to study the performance of the equity
capital policy, which aims to reduce the observed system losses.

I study two different systems. Firstly, I apply the reverse stress testing framework
to the STOXX network with different densities. The network describes the interbank
exposures between the 44 largest European banks that are the constituents of the
STOXX Europe 600 Banks index. Secondly, I apply the framework to the Austrian
interbank network, which I also study in the first project of this thesis. The Austrian
interbank network with 846 nodes is much larger than the STOXX network and
also more heterogeneous. I have information on the bilateral exposures between
individual banks in the Austrian network, whereas I construct the STOXX network
using the RAS algorithm with information only of the total interbank assets and
liabilities of each bank. This detailed information on the Austrian network supports
the representativeness of my results.

With the insights of the comparison between the STOXX and Austrian networks
in hand, I can explicitly study the ability of null models to reconstruct the reverse
stress testing dynamics. In particular, I test three different network null models to
estimate the size of the exogenous shock of the Austrian network. I consider Erdős-
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Rényi, the directed configuration (rewired) and fitness null models. Within studies of
systemic risk, network null models are used to reconstruct interbank networks from
limited information. As I discuss in section 2.2, the reconstruction of networks is of
interest as it is often difficult to obtain complete information on the interbank lending
and borrowing activities between financial institutions. This lack of information can
be due to privacy concerns and the lead time of financial reporting, amongst other
reasons [97]. Practitioners thus regularly work with reconstructed networks to study
financial contagion [7, 9, 23, 41, 48, 95, 98, 123].

In this project the reconstruction exercise allows me to investigate the ability
of null models to estimate a new stress testing dynamic and to further study the
influence of network topology on the reverse stress testing framework. I put a
particular emphasis upon the fitness model, as it performed well in the first project
and in experiments in the literature [23, 41, 61, 123]. Given the breadth of this
experimental approach, this chapter presents a synthesis of all previous projects in
this thesis.

6.2 Density Comparison across STOXX Networks

In this section I present the results of an analysis of the STOXX network with
different densities. I generated the STOXX networks of varying densities by tuning
the density parameter of the RAS algorithm based on the same data of the full year
2015 interbank assets and liabilities of the 44 largest European banks, which are the
constituents of the STOXX Europe 600 Banks index. For each network density I
created 100 simulations and I present the averaged results across these simulations.
For an introduction to the RAS algorithm see section 3.3.4 and for a description of
the STOXX network see section 5.5.1. I describe the methodology underlying the
reverse stress test framework in section 5.3.

In order to keep the results comparable across different densities, I express the
results as a function of β, which scales the strength of the interactions between
nodes in the matrix of interbank leverages Λ, measured by βλmax as I describe in
section 5.3. λmax is the largest eigenvalue of Λ, which changes with the network
topology.

6.2.1 Exogenous shock across densities

I find that the connectivity of a network, in this analysis expressed by the network
density, has a strong effect on the properties of the exogenous shockK that is applied
via the reverse stress test framework. I study the average exogenous shock

√
K/n
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instead of the total exogenous shock, as it allows me to compare the size of the shock
across different network sizes. As it can be seen in fig. 6.1a when β is large, the
average exogenous shock decreases as the density of the STOXX network increases.
The pace of the decrease of the exogenous shock accelerates as β increases. This
indicates that networks of higher connectivity are more risky in terms of the reverse
stress testing framework, as a smaller shock results in the same losses. There is an
extensive literature on the effect of network connectivity on financial stability that
I discuss in section 3.2.2.

(a) For larger β the average exogenous shock de-
creases as a function of the density, whereas it is
almost unchanged for smaller values of β.

(b) Dip in the IPR for densities < 50% when β is
large, i.e. when λmax > 1, due to poorly connected
nodes.

Figure 6.1: Average exogenous shock
√
K/n and inverse participation ratio (IPR)

as function of network density for various β. The blue lines refer to λmax ≈ 0.5,
pink to λmax ≈ 1.0 and red to λmax ≈ 1.5. Shown for target loss `i = 0.1 and time
horizon T = 20. Dashed lines show the 10% and 90% quantiles, respectively. As it
can be by the tight dashes lines, the results are stable across all simulations.

I find that a large fraction of the decrease of the exogenous shock K seen in
fig. 6.1a is due to the disappearance of isolated nodes defined as kini = 0, when the
density increases. With a decreasing density the likelihood increases that nodes do
not have an incoming link. For the purposes of reverse stress testing this means that
these nodes cannot be influenced by the endogenous network dynamics. The nodal
shockKi of low degree nodes is thus relatively independent of β, such that low degree
nodes require the largest Ki. I define Ki =

∑T
t ∆ui(t)

2 as the size of the exogenous
shock that affects bank i over the time horizon T . I show the dependence of the
average exogenous shock on the number of isolated nodes in fig. 6.2a. The figure
shows that in networks with a density of 10% and β = 1.0, the average exogenous
shock is much larger when the network has a higher number of isolated nodes. In
the case of networks with a density of 10%, all of the 100 simulated networks have at
least four isolated nodes, in comparison in networks of density 50% only 9 networks
have one isolated node.
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(a) Average exogenous shock as a function of the
number of isolated nodes.

(b) Inverse participation ratio as a function of the
number of isolated nodes.

Figure 6.2: Average exogenous shock
√
K/n and inverse participation ratio (IPR)

for each of the 100 generated STOXX networks with density 10% and β = 1.0
(λmax = 1.5). Isolated nodes (kin = 0) are a core driver of the average exogenous
shock and the IPR.

To understand the distribution of shocks across nodes I compute the inverse
participation ratio (IPR). The IPR is an indicator of the concentration of nodal
shocks and is computed as

IPR =
1∑n
i=1 p

2
i

, (6.1)

where pi = Ki

K
for each node i. The IPR has a lower bound of 1 when the shock

is concentrated in one node, and an upper bound of n when the shock is equally
spread across all nodes. As with the exogenous shock K, the IPR is also unchanged
as a function of the density for β < 0.7 (λmax < 1) as it can be seen in fig. 6.1b.
However, for β > 0.7 (λmax > 1) a dip occurs for densities lower than 50%. This
dip is due to poorly connected nodes taking up most of the nodal shocks, which
drastically increases the concentration of shocks when the density is 10%. Once the
network density increases, the IPR can return to its natural rate of concentration
at ≈ 9, as it can be observed in the full STOXX network in fig. 5.5a. Figure 6.2b
shows that the IPR linearly increases as a function of the number of isolated nodes
for β = 1.0 (λmax = 1.5) in networks with a density of 10%.

6.2.2 Equity capital policy

I now use the concentration of nodal shocks in an equity capital policy to reduce the
observed system losses. The equity capital policy, that I introduce in section 5.5.4, is
based on a ranking of banks in order of their nodal shocks Ki. The core mechanism
of the policy is that the total equity capital in the system is increased by 5% and
the additional equity capital is allocated to banks in proportion of their nodal shock
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Ki/K. After allocating the additional capital, I reapply the reverse stress test
framework to recompute the total cumulative losses R =

∑n
i hi(T ) and compare

this to the original losses R0 before I increased the capital.
As it can be seen in fig. 6.3a the effectiveness of the Ki-based policy depends on

the density of the network. When the density is larger than 50% the policy works
well. Indeed, its performance is similar to that in the complete STOXX network,
shown in fig. 5.8a. However, as the density tends towards zero the policy works
increasingly less well. The reason for the worse performance of the policy is due to
poorly connected nodes and in particular nodes with zero in-degree. As noted in
the previous section, when the network density is low the likelihood increases that
nodes are isolated. The effect of isolated nodes is particularly apparent when β > 0.7

(λmax > 1), since most nodes only require a very small exogenous shock, whereas
isolated nodes require a much larger shock. Isolated nodes are therefore allocated
most of the additional equity, which is allotted according to the relative fraction of
nodal shocks Ki/K. These isolated nodes also tend to have small outgoing links
both in terms of number and weight, they can therefore not effectively propagate
the additional equity, which leads to the decreased effectiveness of the policy.

(a) Comparison of the Ki-based policy as a func-
tion of the network density for selected β. The
policy works less well for densities lower than 50%,
as most of the additional equity is allocated to iso-
lated nodes.

(b) Comparison of the benchmark (relative) policy
as a function of the network density for selected β.
Policy works well across all densities as each node
receives an equal (relative) increase in its equity
capital.

Figure 6.3: Comparison of policies across different densities of the STOXX network.
Results shown for target loss `i = 0.1 and time horizon T = 20. Dashed lines show
the 10% and 90% quantiles, respectively. As it can be by the tight dashes lines, the
results are stable across all simulations.

This point becomes clearer in comparison with the relative (benchmark) policy
shown in fig. 6.3b, which performs equally well across all densities. In the case of the
benchmark policy each node receives an equal relative increase of its equity capital
of 5%, such that the well-connected nodes can propagate the additional equity to
reduce the observed losses.
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The effectiveness of any policy, as measured by the reduction of total losses,
thus crucially depends on the ability of the system to reach each node in order to
propagate the additional equity capital. Note however that the mere addition of
incoming edges with minimal weight to those nodes with kin = 0, does not improve
the effectiveness of the Ki-based policy. In order for the additional equity to be
propagated by these nodes, their edge weights need to be of a similar size to the
average edge weight in the network.

6.3 Comparison to Austrian Network

In this section I describe the results of applying the reverse stress testing framework
to the Austrian interbank network introduced in the first project. Note that I here
study data from the first quarter of 2006. The Austrian network is much larger with
n = 846 nodes compared to n = 44 in the STOXX network. Additionally, whilst I
had to estimate the individual interbank assets and liabilities in the STOXX net-
work, I obtained the complete interbank relationships between banks in the Austrian
network.

6.3.1 Reverse stress testing the Austrian network

When comparing the behaviour of the average exogenous shock
√
K/n and the IPR

(6.1) in the Austrian network and the STOXX networks as a function of λmax, a
similar behaviour can be observed. In particular, K increases with the target losses
` and decreases with λmax, as it can be seen in fig. 6.4a. Moreover the IPR is
independent of ` and drops rapidly as λmax increases, see fig. 6.4b. I do not show
the comparison across time T , as the behaviours are very similar to those shown for
the STOXX network in the previous chapter in fig. 5.2a and fig. 5.5b.
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(a) Average exogenous shock across all banks as a
function of the target losses `i = ` and λmax.

(b) Inverse participation ratio (IPR) as a function
of the target losses `i = ` and λmax.

Figure 6.4: Average exogenous shock
√
K/n and inverse participation ratio (IPR)

for the Austrian network. Results shown for T = 20.

Despite these similarities between the Austrian and STOXX networks, it can be
seen upon closer inspection that the distribution of exogenous nodal shocks shown
in fig. 6.5, is more heterogeneous in the Austrian relative to the STOXX network,
which is shown in fig. 5.4. A core reason for this difference is the larger underly-
ing heterogeneity of the nodes in the Austrian network, which leads to a relatively
higher concentration of exogenous shocks in the Austrian network. The larger het-
erogeneity in the Austrian network is due to the fact that in the STOXX network
I have information only on the subset of the largest European banks, whereas in
the Austrian interbank network I have information on banks of all sizes. I measure
the difference in the concentration between the two networks with the relative de-
crease of the IPR rather than the absolute size of the IPR, as the Austrian network
has much more nodes than the STOXX network. In the STOXX network when
λmax = 1.5 the IPR is a fraction of 0.21 of the IPR measured when λmax = 0.1. In
contrast for the Austrian network this fraction is lower at 0.09. Exogenous nodal
shocks are thus relatively more concentrated in the Austrian than the STOXX net-
work. Overall, it can also be seen that the average exogenous shock in the Austrian
network shown in fig. 6.4a is smaller than that of the STOXX networks shown in
fig. 6.1a. As a reference, the density of the Austrian network is 2%.
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Figure 6.5: Distribution of the standardized shock of each node (z-score) for different
values of λmax in the Austrian network. Results shown for T = 20 and for `i = 0.1.
s is the standard deviation and µ the mean of the respective distribution of nodal
shocks Ki for each λmax. As λmax increases larger relative deviations with respect
to the mean amplitude are observed in the right tail of the distribution.

6.3.2 Policy experiment

Using the distribution of nodal shocks Ki I create a ranking of banks in the identical
manner as in section 5.5.4, that is build on the concentration of nodal shocks. I run
the dynamics described in equation (5.5) forward and apply the shocks ui(t) that
where computed via the reverse stress test framework (5.9) at each time step to
banks in a decreasing order of Ki. At the end of each iteration I compute the final
losses R observed in the system and divide these by the final losses observed when
all banks are stressed at once R0.

Figure 6.6 shows the result of this experiment for different values of λmax. Simi-
larly to the STOXX network shown in fig. 5.7, it can be seen that as λmax increases
a large fraction of the observed total losses is achieved with relatively few nodal
shocks added to the network. In comparison to the STOXX network this behaviour
is more extreme in the Austrian network, as around 5 banks account for almost all
of the final losses, whereas in the STOXX network the respective fraction is 70%.
This difference is due to the higher concentration of nodal shocks in the much larger
Austrian network, that I described at the end of the previous section and is shown
in fig. 6.5.
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Figure 6.6: Incremental addition of ui(t) to banks in a decreasing order of the size of
their individual shocks Ki for various λmax. Results shown for T = 20 and `i = 0.1.

Equity capital policy

Turning to the equity capital policy, it can be seen in fig. 6.7a that the relative
(benchmark) policy, in which each bank receives a 5% increase of its equity capital,
performs equally well across the STOXX and Austrian networks. In both networks
the policy leads to a reduction of losses of approximately 60%.

(a) Comparison of different policies to reduce the
observed total financial losses in the full Austrian
interbank network.

(b) Comparison of different policies for the Aus-
trian subnetwork with n = 225 in which no node
has kin = 0 and kout = 0.

Figure 6.7: Equity capital policies applied to the Austrian network. The Ki-based
policy in the subnetwork (R.H.S.) is much more effective than in the full network
(L.H.S.).

The Ki-based policy in the Austrian network is faced with a similar problem
as in the STOXX network. In the Austrian network with n = 846 the policy is
much less effective relative to the benchmark policy and is indeed ineffective when
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λmax > 1. This, again, is due to the presence of isolated nodes with kin = 0, which
command almost all of the exogenous shocks and are therefore allocated almost
all of the additional equity. These isolated nodes cannot effectively propagate the
additional equity due to their small number of outgoing links and generally lower
edge weights. This problem is solved when employing the policy on the Austrian
subnetwork with n = 225, in which no node has kin ≤ 1 and kout ≤ 1. In this case
the Ki-based policy works similarly well as in the STOXX network by reducing the
observed total losses by 90%, as shown in fig. 6.7b.

Investigation of the effectiveness of the policy

Despite the increased effectiveness of the Ki-based policy in the subnetwork, a spike
still occurs in the policy’s ability to reduce the losses at λmax ≈ 1.5, as it can be seen
in fig. 6.7b. To show that the effectiveness of the policy is related to connectivity of
the network, I study the increasing k-cores of the Austrian subnetwork. The k-core
is a subnetwork in which all nodes with degree smaller than k are removed. It can
be seen in fig. 6.8 that the spike disappears when rerunning the policy experiment
on increasing k-cores of the Austrian subnetwork. For the 5-core with n = 161 the
spike decreased and shifted to a higher λmax and for the 6-core with n = 147 the
spike disappeared.

In summary, when the equity is not adequately allocated by the network, the
effectiveness of the equity capital policy is drastically reduced. This analysis shows
that having incomplete information on the local topology of a network can signifi-
cantly impair the ability of policy-makers to reduce systemic losses.

Figure 6.8: Ki-based policy for the subnetwork with n = 225 in comparison to the
5-Core with n = 161 and the 6-Core with n = 147. As the connectivity increases,
indicated by the k-core, the policy becomes more effective.
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6.3.3 Robustness tests

To test the robustness of the results presented in this section for the reverse stress
testing exercise on the Austrian network of the first quarter of 2006, I performed
the same tests based on data of the Austrian interbank network in the first quarter
of 2007 and 2008. The results are very similar at the aggregate level of the total
exogenous shockK and the policy. I show these results for the first quarter of 2007 in
appendix A.3. I was not able to compare the results across the quarters at the nodal
level. The information on the Austrian interbank networks that I obtained from the
Austrian Central Bank (Österreichische Nationalbank) is anonymised, which makes
it impossible to accurately identify individual banks across time. Note however that
for the STOXX robustness tests, which I outline in section 5.5.5, I obtained public
information from Bloomberg. This allowed me to compare nodal shocks Ki across
time and to confirm that also the results at the nodal level are robust.

6.4 Reconstruction of Reverse Stress Testing Dy-

namics in Austrian Network

In the previous section I have shown that the properties of the reverse stress testing
framework are robust in the STOXX network and the Austrian interbank network.
Given the similarity of the results of the reverse stress testing framework in both
networks, I now investigate whether it is possible to reconstruct the reverse stress
test dynamics using network null models. I therefore reconstructed the Austrian
network with the Erdős-Rényi (ER), the directed configuration (rewired) and the
fitness null models, which I also study in the first project. The results presented in
this section are based on 1,000 simulations for each null model.

6.4.1 Estimate of exogenous shock

Figure 6.9 shows the average exogenous shock as a function of β for each of the three
null models, with the errorbars indicating the 5th and 95th percentiles, respectively.
The performance of the ER networks is the worst of the three null models when
β < 0.24 as they overestimate K, however the ER networks perform better than the
fitness networks when β > 0.24. It can be seen in fig. 6.9 that the fitness networks
drastically overestimate K as β increases. The rewired networks, whilst always
slightly overestimating K, have the best performance of the three null models. The
errorbars are relatively tight for the configuration and fitness model networks and
their boundaries do not change the overall picture of the performances of the null
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models. It is noteworthy that the errorbars of the ER networks are significantly
larger relative to the other null model networks.

The main goal of using null models is to estimate the properties of the real
network, including its largest eigenvalue λmax. I therefore present the results in this
section as a function of β. By multiplying the null model networks with the β of
the real network, instead of supplying the null models with the desired λmax, I can
test the ability of the null models to reproduce the λmax of the real network. This
is particularly important because λmax changes slightly with the network topology.
For a translation of the β values to the corresponding λmax values see table 6.1.

λmax 0.1 0.5 1.0 1.5
β 0.02 0.12 0.24 0.35

Table 6.1: Conversion table for λmax to β in the real network.

As a benchmark I have also plotted the maximum entropy version of the Aus-
trian interbank network in fig. 6.9, which represents the full network version of the
Austrian interbank network fitted with the RAS algorithm. It can be seen in the
figure that when β < 0.24 the exogenous shock matches that of the real network.
When β > 0.24 the exogenous shock K is slightly lower in the maximum entropy
network. This is due to the higher ”connectivity“ of the maximum entropy network,
which allows the shocks to propagate through the network more easily. This is a
behaviour that is commonly observed in maximum entropy interbank networks [95].1

1Note that 39 banks in the real network have zero interbank liabilities and 3 banks have zero
interbank assets. For this reason the RAS algorithm cannot fit any edges for these banks. I address
this problem by running the algorithm only on rows and columns whose marginals are non-zero.
The maximum entropy network thus has edges on all entries of the weighted and directed adjacency
matrix A except for these nodes and the diagonal Aii for all nodes i.
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Figure 6.9: Average exogenous shock
√
K/n for the three null models and the real

network. The error bars indicate the 5th and 95th percentiles, respectively. Maxi-
mum entropy network plotted as a benchmark. The configuration model performs
best out of the three null models, the ER networks perform worse than the fitness
networks when β < 0.24, with this relation being reversed when β > 0.24. Results
shown for T = 20 and `i = 0.1.

Given the importance of the largest eigenvalue λmax in determining the dynamics,
it could reasonably be assumed that the ability of the null models to estimate λmax
drives the performance of the null models. To test this I compute the z-score, which
measures the deviation of the distribution of λmax in the null model simulations
relative to the real network. Surprisingly, the z-score is the lowest for the ER
networks at −0.004, followed by the rewired networks at −0.846 and the fitness
model networks at 1.215. The performance of the null models can thus not be
explained by their ability to measure the largest eigenvalue, as the ER networks do
not perform best in measuring K, but have the lowest measuring error for λmax.

6.4.2 Concentration of nodal shocks

I find that, a similar picture of the performance of the null models with respect to
K is also found for the inverse participation ratio (IPR) (6.1), which is an indicator
of the concentration of nodal shocks. It can be seen in fig. 6.10 that the rewired
networks somewhat overestimate the IPR and when β > 0.24 they underestimate
it. The fitness networks significantly underestimate the IPR when β < 0.24, but for
β > 0.24 this reverses as the fitness networks overestimate the IPR. This relatively
poor performance is noteworthy as the general behaviour of the IPR is to decrease,
i.e. the exogenous shocks become more concentrated as β increases. However,
instead the IPR as measured by the fitness networks displays the opposite behaviour
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when β > 0.24.

Figure 6.10: Inverse participation ratio (IPR) as a function of β for the three null
models and the real network. The error bars indicate the 5th and 95th percentiles,
respectively. Maximum entropy network plotted as a benchmark. Results shown for
T = 20 and `i = 0.1.

The poor performance of the fitness model is surprising given that it has achieved
good results in the simulations in my first project and in the previous literature
[23, 123, 61, 41]. I obtained further insights into the relatively poor performance of
the fitness networks by investigating the nodal shocks Ki. The following two plots
in fig. 6.11 show the average nodal shock for each bank across the three null models
against the nodal shock in the real network for β = 0.12 and β = 0.35. It can
clearly be seen that the fitness networks have the largest outliers. This is confirmed
in table 6.2 below, which shows the root mean squared distance (RMSD) for each
null model for three different β. The RMSD is the highest for the ER networks
when β < 0.24, but for β > 0.24 it is the largest for the fitness networks. The
configuration model always performs best across all β.
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(a) β = 0.12. (b) β = 0.35.

Figure 6.11: Nodal shocks Ki in log-scale for the three null model networks shown
vis-à-vis the expectation from the real network. The fitness network has the largest
outliers.

β ER Rewired Fitness
0.12 0.214 0.119 0.130
0.24 0.186 0.085 0.118
0.35 0.052 0.020 0.109

Table 6.2: Root mean squared distance of nodal energies with respect to the real
network. The configuration model always performs best and the fitness model has
the largest error when β is large.

6.4.3 Role of network topology in reverse stress testing

An analysis of the isolated nodes can provide an explanation for the poor perfor-
mance of the fitness model. The rewired and ER networks correctly estimate the
number of isolated nodes. The real network has 39 such nodes. The configuration
model performs well because it is given the complete degree distribution of the real
network. The ER networks, despite having the largest measuring error with respect
to nodal degrees, perform well as the information of isolated nodes is implied by the
linking probability p, see equation (3.18). The fitness networks on the other hand
have on average 140 such isolated nodes. Because isolated nodes cannot be affected
by other nodes in the network and therefore require much more external influence,
K is larger in the fitness networks.

To confirm this hypothesis I undertook the following experiment. In the fitness
networks and the real network I removed all nodes that are isolated only in the
fitness networks, whilst ensuring that during this removal process additional nodes
that become isolated are also removed. I then recomputed the average exogenous
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shock both for the reduced real and all 1,000 fitness network simulations. The result
of this experiment is shown in fig. 6.12.

Figure 6.12: Average exogenous shock
√
K/n as a function of β for the fitness

networks and real network, in which the isolated nodes in the fitness networks have
been removed from both networks. The match between the two networks is almost
perfect, suggesting that the poor performance of the fitness networks is due to their
overestimation of the abundance of isolated nodes.

It can be seen in the figure that the average total shock per node is now much
closer to the real network, leading to an almost perfect match with the real net-
work. The poor performance of the fitness model networks therefore results from
the relatively high abundance of isolated nodes in the fitness networks relative to
the real network. This insight also explains why in fig. 6.10 the IPR of the fitness
networks increases as β increases, instead of decreasing as in the real network. As
a network becomes increasingly unstable the isolated nodes command the highest
fraction of exogenous shocks. Given the relatively high abundance of isolated nodes
in the fitness networks, the IPR must therefore increase relative to the real network,
as most other nodes require much less energy when the network is unstable.

6.4.4 Robustness tests

I undertook robustness tests of these results by rerunning the null model reconstruc-
tion exercise for the Austrian network in first quarter of 2007 and 2008. As before
I generated 1,000 networks for each of the three null models and compared the re-
sults of the reverse stress test exercise to that of the real network. I find that the
results are very robust across time and I show these for the first quarter of 2007 in
appendix A.4. The behaviour of the null models is almost indistinguishable across
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the three quarters at the aggregate level. Again as noted in section 6.3.3, due to the
anonymised nature of the Austrian interbank data I am not in a position to compare
the results at the nodal level.

6.5 Discussion and Future Developments

In this chapter I presented the results of applying the reverse stress testing frame-
work to different networks. I tested the reverse stress test framework on the STOXX
network with different densities, the Austrian interbank network and the networks
generated by the Erdős-Rényi, directed configuration (rewired) and fitness null mod-
els. In particular, the goal of this chapter is to investigate the topological determi-
nants of the aggregate size of the exogenous shock to cause a certain level of losses.

Across all networks I find that the main properties of the reverse stress test
framework are robust. Specifically, I find that the size of the exogenous shock K
decreases as a function of the largest eigenvalue of the leverage matrix λmax, which
acts as an amplifier of the dynamics. In the STOXX network K is not affected by
the density when λmax < 1, however when λmax > 1 the exogenous shock decreases
as a function of the density. I relate this behaviour of K to the connectivity of the
network. When the connectivity of a network is increased, exogenous shocks can
more easily propagate throughout the network, which results in a lower exogenous
shock requirement.

The distribution of nodal shocks in the Austrian network is more heterogeneous
relative to that of the STOXX network. The presence of relatively larger nodes in
the Austrian compared to the STOXX network, leads to a higher concentration of
nodal shocks in these larger nodes – which in turn increases the concentration of
nodal shocks in the network.

The equity capital policy, which involves the targeted allocation of additional
equity capital to reduce the observed losses, performs equally well across the different
networks when the density is larger than 50%. For lower densities the presence of
isolated nodes results in a reduced effectiveness of the policy. In these cases the
connectivity of the network is not sufficient for the additional equity capital to be
effectively spread throughout the network. I observe a similar effect in the Austrian
network, in which the effectiveness of the equity policy is increased when nodes of
very low degree are removed.

Isolated nodes also play an influential role in the ability of the null models to
estimate the size of the exogenous shock in the Austrian network. I surprisingly
find that the fitness model has the highest estimation error for the exogenous shock
out of the three null models when λmax > 1. The configuration model performs
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best across all values of λmax as it is given the entire degree distribution of the real
network. The good performance of the configuration model relies on the pivotal
role that the local topology plays for the exogenous shock to propagate the network
effectively. Surprisingly, the ability of the null models to measure λmax is not a core
driver of their performance. The ER networks have the closest fit to the λmax of the
real network, yet they do not outperform the rewired networks. Instead, I find that
the relatively poor performance of the fitness networks is due to their overestimation
of isolated nodes. When the isolated nodes that are present in the fitness but not
the real network are removed, the adjusted fitness networks have an almost perfect
match with the real network.

The reduced effectiveness of the equity capital policy and the reverse stress test-
ing framework as whole is an artefact of my experimental set-up, rather than a
limitation of the framework itself. In real interbank systems true isolated banks do
not exist for multiple reasons. The main source of liquidity and additional interest
income for commercial banks is their interbank network, such that each bank has
connections with a part of the interbank market in its country of residence. Fur-
thermore, in the networks that I study here, a snapshot of the system is taken at
a particular point in time. A small bank may not have been active in the inter-
bank market in this particular time period. Isolated nodes should therefore not be
a limitation of this framework in a real use-case.

In summary, the local topology has a significant impact on the size of the ag-
gregate exogenous shock K. In particular when the largest eigenvalue λmax of the
leverage matrix is larger than one, a poorly connected network will have a much
larger exogenous shock requirement in order to achieve the targeted losses. This
insight is reflected in the ability of the three null models to reproduce the dynamics
of the real network. A small error in the measurement of the local topology can
lead to a large difference in the size of the exogenous shock, as is it can be seen in
the fitness networks due to isolated nodes and in the ER networks through the large
error bars of the exogenous shock estimate.

6.5.1 Future developments

In addition to the extensions and future work mentioned in the previous chapter in
section 5.7, this project could be extended by testing different network topologies and
different dynamics of shock propagation. An additional avenue for future research
is to shock only some rather than all nodes in the network. This may present a
more realistic application of the reverse stress testing framework. Studies of smaller
networks using control theory show that the required fraction of drivers, to whom
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the exogenous control input is applied, is relatively small at around 20% [128].
For larger networks however, which is particularly the case when applying control
theory to real-world networks, the required number of drivers is much larger. For
the Austrian network for instance, the computation of the control input is currently
only possible when around 80% of nodes are also driver nodes. Moreover, studies
on the structural controllability of interbank networks have shown that networks
with smaller time aggregation are more difficult to control, I describe these studies
in section 5.2.1. Shocking less than all banks in real interbank networks, may thus
be an ambitious goal for future research.
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Chapter 7

Conclusion and Discussion

7.1 Conclusions of Individual Projects

In this thesis I investigate the influence of the topology of interbank networks on
financial contagion. I used the insights that I develop in this thesis to propose a
methodology to manage systemic risk in interbank networks with different topolo-
gies. In the following four sections I summarise and discuss the contributions of each
project. In the final section of this chapter I discuss common themes of my results
across all projects and highlight avenues for future research.

7.1.1 First project: Systemic risk - Disentangling the influ-

ence of interbank network topology and dynamics

In the first project I study the required amount of information to reconstruct the
financial contagion of a real interbank network. Previous studies investigated the
ability of null models to capture the topology of interbank networks, but did not
contrast their ability to estimate financial contagion.

I use a unique dataset of each bilateral exposure of all Austrian banks between
2006 and 2008. This dataset is particularly interesting because it captures the onset
of the financial crisis. I find that the fitness model performs better in estimating
financial contagion and network topology than Erdős-Rényi random networks and
the directed configuration (rewired) model. The better performance of the fitness
model in comparison to the configuration model is surprising as it is provided with
information only of the total interbank assets and liabilities of each bank, rather
than each bilateral exposure as in the configuration model. I therefore conclude that
information on the aggregate interbank activity of a bank is sufficient to ascertain
its individual exposures to other banks.

The null models measure the DebtRank of the Austrian network well, as Debt-
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Rank depends on the global topological properties such as the density, which the null
models reconstruct well. DebtRank furthermore depends on the interbank leverage,
which is indirectly provided to the null models via the RAS algorithm that allocates
the edge weights to each null model and is based on the total interbank assets and
liabilities of each bank. In contrast, the null models are only able to capture general
trends in financial contagion as measured by the Furfine counterparty default risk
model, but cannot reconstruct the precise values of contagion observed in the real
network. Through my investigations I show that the reason for the poor perfor-
mance of the null models is due to their inability to accurately reproduce the local
topology of the real interbank network. The local topology is crucial in defining the
emergence and propagation of counterparty default risk as measured by the Furfine
algorithm. I find that the local topology in the real network is characterised by
a higher concentration of risk relative to the reconstructed networks. This higher
concentration of risk is due to a larger vulnerable cluster in the real compared to the
reconstructed networks. The vulnerable cluster is a set of banks, whose members
default when only one of their counterparties defaults.

7.1.2 Second project: Topological determinants of

control energy

I use optimal control theory to study the cost of managing the dynamics of a complex
system. In particular, I investigate the required control energy of driving a network
to a desired target state. The previous literature on optimal control theory in
networks had only been able to compute the energy to control networks in highly
limited settings. In this project I derive analytical solutions for the control energy
in Erdős-Rényi networks and performed numerical simulations on Erdős-Rényi and
scale-free networks. In this way I discover that the control energy depends crucially
on network connectivity.

Networks of low connectivity are more costly to control as nodes cannot influence
one another. As the network connectivity increases, nodes push and pull one another
to their common target state and thereby reduce the need for an external control
input. This coordination advantage reduces, when nodes have increasingly different
target states, as they cannot help one another in reaching their target state, such
that the required external energy increases. Moreover, the coordination advantage
is more pronounced in scale-free networks. This is due to the relatively much larger
degree of some nodes in scale-free networks, which can coordinate the state of a
large subset of nodes.
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7.1.3 Third project: Reverse stress testing interbank net-

works

Using the insights of the first and second projects I develop a framework to reverse
stress test interbank networks. This method is a novel approach of applying reverse
stress tests at the systemic level. It allows the identification of a set shocks that
need to hit the equity capital of banks to result in a specific equity loss in the entire
system. The framework is different to the standard forward-looking approach to
financial contagion, which measures the outcome of an initial shock.

I study the reverse stress testing framework analytically and on a network repre-
senting the largest financial institutions in the European Union. I find that the size
of the exogenous shock that needs to hit a system crucially depends on the stability
of the system. When the system is stable, as indicated by the largest eigenvalue
λmax of the matrix of interbank leverages being smaller than 1, the required shock
is much larger than the shock that needs to hit a system that is unstable, i.e. when
λmax > 1.

Moreover, I find that when the stability of the system increases, that the nodal
exogenous shocks become increasingly concentrated in a few risky banks. I use the
increasing concentration of risk in a subset of banks to create a ranking of banks
in order of their systemic importance. Based on this ranking I implement a policy
to provide targeted capital injections to each bank, that increase with the systemic
importance of each bank. I show that using this policy the original losses of the
system can be reduced by up to 95%.

7.1.4 Fourth project: Reverse stress testing interbank net-

works - The influence of topology

In the fourth and final project I test the impact of different network topologies on the
reverse stress testing framework. I find that the framework is robust across different
topologies, as the exogenous shock has similar properties to those found in the third
project. Moreover, I find that the exogenous shock is independent of the network
density when the network is stable. In contrast, when the network is unstable, which
is indicated by the largest eigenvalue λmax of the matrix of interbank leverages being
larger than one, the exogenous shock decreases as a function of an increasing network
density. When the network is well connected, as indicated by a high density, the
most risky banks can more easily cause losses across the network, which results in a
lower exogenous shock requirement. Equally, the equity capital policy is much more
effective in reducing the overall system losses in networks with larger rather than
smaller densities. The policy injects targeted amounts of additional equity capital
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into banks based on their systemic importance.
I additionally test the reverse stress testing framework on reconstructed networks

of the Austrian interbank network. I build the reconstructed networks using the
Erdős-Rényi random networks, the directed configuration (rewired) and the fitness
null models, which I introduce in the first project. In contrast to the first project, I
find that the fitness model performs worst out of the three null models in estimating
the size of the exogenous shock. The poor performance of the fitness model is due
to its overestimation of the connectivity of large nodes and its underestimation of
the connectivity of small nodes, which increases the exogenous shock requirement.
The configuration model performs best in estimating the exogenous shock and the
concentration of nodal shocks. I show that the good performance of the configuration
model is due its specific knowledge of the topology of the real network, which is
crucial for the nodal shocks to propagate throughout the network.

7.2 Conclusion and Discussion across Projects

Across the results of my four projects I identified some common themes, which I
summarise and discuss in this section.

1. Strong effect of the most connected nodes. In the second project I find
that the control energy required to drive a system to its target state scales as
a function of the average degree of the network. This is an effect that I term
the coordination advantage, as nodes with a larger degree require the largest
fraction of control energy but also coordinate the states of many nodes in the
network and thereby reduce the overall energy requirement. These nodes of
large degree –hub nodes– are a distinctive feature of scale-free networks, result-
ing from the power-law nature of their degree distribution. The coordination
advantage can also be observed in a similar manner in the interbank networks
to which the reverse stress testing framework is applied. In this context I find
that banks of larger degree require a larger fraction of the exogenous shock and
that STOXX networks with a higher connectivity require a smaller total ex-
ogenous shock. Moreover, in the first project I find that highly leveraged hub
nodes in the Austrian interbank network are the largest sources of potential
financial instability via the extended vulnerable cluster.

2. The difficulty of disentangling the effect of edge weights from the
local topology. In the first project I find despite the strong topological
differences of the three null model networks, that the trajectories of contagion
are very similar in all three networks. Since I fit the edge weights across all null
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model networks with the RAS algorithm, I deduce that the size of contagion
events across iterations is strongly influenced by edge weights, i.e. the size of
the exposures between banks. The size of the edge weights is expressed as the
leverage of each exposure of a lender in the matrix of interbank leverages in
the third and fourth projects. In these projects I show that larger leverages
significantly increase financial contagion, which confirms the importance of
edge weights that I find in the first project.

3. The influence of network diversification on financial contagion. The
different projects intermittently touch on the issue of diversification in inter-
bank networks. As I discuss in the literature review, the impact of increased
network connectivity upon financial stability is particularly evident when in-
terbank leverage is high. In the first project on the Austrian network for
instance, the larger concentration of risk in the Austrian relative to the recon-
structed networks is shown through a larger vulnerable cluster, which contains
highly leveraged banks and that bears a significant fraction of the counterparty
default risk in the real network. Furthermore, in the third and fourth project
the reverse stress testing framework shows that more densely connected nodes
and higher interbank leverages lead to more fragile systems, as shocks can
more easily propagate in the STOXX and Austrian interbank networks.

4. The importance of the local topology in the propagation of financial
contagion. Interestingly, none of the null models are able to reconstruct
the local topology of the Austrian network. The local topology is crucial in
routing the dynamics of networks, which is a finding that was confirmed in
all four projects. In the first project I find that specific triadic motifs, in
particular the unreciprocated loop, results in higher financial contagion. This
is particularly noticeable through the relatively strong changes in the contagion
metrics measured in the Austrian network via the Furfine algorithm, which
strongly depend on the existence, size and direction of bilateral exposures
between banks. In the fourth project I show that knowledge of the specific
bilateral connections between banks is essential for the equity capital policy to
function effectively. Isolated nodes in particular absorb most of the additional
equity capital, but cannot propagate it sufficiently well throughout the network
to increase network stability.

5. Policy implications resulting from the importance of the local topol-
ogy. An important implication of the results across my projects is that policy
interventions in interbank markets need to be tailored to each bank. Highly
leveraged banks with large exposures to many counterparties pose the most
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substantial risks for the stability of interbank markets. Moreover, poorly di-
versified banks present a high risk not only to their own stability, i.e. by
having poor access to liquidity, but also to the entire network as they hin-
der the diversification of risk. I show this with the equity capital policy in
the fourth project, as isolated nodes cannot propagate the additional equity
capital that they receive to increase the stability of the network. This is par-
ticularly important in the light of the marginal utility of higher equity capital
requirements that I identify in the third project. The additional equity capital
provided to the most systemically important banks, to enable these banks to
reduce their leverage, accounts for the largest reduction in systemic risk. For
this reason increasing banks’ capital requirements has a marginal utility in
reducing systemic risk, since even small but targeted equity capital injections
address the most significant sources of financial instability.

7.3 Future Developments

Beyond the specific suggestions made in the individual projects, the following future
steps could be taken to improve research on systemic risk.

In order to improve the applicability of the reverse stress testing framework,
control theory, in particular the computation of control energy, should be developed
for non-linear dynamics. A step towards this ambitious goal would be to consider
time-varying instead of time-invariant adjacency matrices. Each time an input, or
shock, is injected into an interbank network via the reverse stress testing framework,
the entries of the leverage matrix on which the DebtRank algorithm evolves could
in theory be readjusted to reflect the updated leverage of banks. This would result
in a richer understanding of financial contagion.

I show in this thesis that the overall differences between types of networks, for
instance their degree distribution and assortativity, accounts only for some of the
differences in the dynamics of networks. If the drivers of financial contagion are
to be understood, then the local topology of networks should be studied in future
research. For instance, in this thesis I show the importance of the local topology
using triadic motifs and the vulnerable cluster, which account for large parts of the
observed dynamics. The local topology is also crucial in the measurement of the
pace of financial contagion. For instance, to measure the unknown β parameter of
the DebtRank algorithm in a real interbank network, which defines the strength of
the interactions between nodes, an exceptionally detailed view at very small time
scales of bilateral exposures is required. Much more research should be undertaken
to understand how these very small building blocks of networks arise and influence
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dynamics. However, many studies have shown that an investigation of triads proves
difficult in real networks [10]. Many convoluted factors contribute to real interbank
network dynamics. This complexity of financial contagion renders it practically
impossible to isolate the effect of the local topology, let alone individual triadic
motifs.

In response to the difficulty of isolating the driving factors of systemic risk, some
studies, such as those by Adrian and Brunnermeier, investigate systemic risk only at
the aggregate level [27, 1, 33]. These studies use econometric risk measures such as
Conditional Value at Risk (CoVaR) and SRISK, that depend on aggregate factors
such as the overall equity capital in a banking system and relative bank size in terms
of total assets. By using aggregate instead of bilateral information on banks, these
studies avoid the data availability problem in network studies due to slow reporting
and privacy issues. Scholars argue that these econometric methods are less prone
to underestimate systemic risk, because their measures depend on aggregate market
prices, which represent the integration of the assessment of all risk factors by market
participants.

In contrast, the network approach to systemic risk can only address a few chan-
nels of contagion at a time. This is due to the complexity of the models and the large
data requirements at the nodal level. The network approach therefore leaves out
some channels of financial contagion, which can result in an underestimation of risk.
However, research on interbank networks, including my thesis, has shown that only
network analyses of contagion can reveal the significant amplification of risk due to
the endogenous dynamics in financial systems. My reverse stress testing framework
may offer a way to combine the econometric and network theoretic approach to
systemic risk. The exogenous shock modelled in my framework can be treated as
an aggregate market variable that is propagated through the network. This would
allow the endogenous risk that results from an aggregate exogenous shock, to be
measured at the nodal level. The emergence of multilayer networks is important in
this regard, as they allow the combination of different asset classes and channels of
contagion in a single system.

Overall, it is important to recall that the total elimination of systemic risk is
not the goal of policy-makers nor desirable for market participants. An economy is
only free and open when it is characterised by natural cycles of ”boom-and-bust“.
The famous instability hypothesis from Hyman Minsky suggests that stability is
destabilizing: Optimistic market participants take more risks, which sow the seeds
of future busts. In fact, the European Central Bank’s Composite Stress Indicator
was at its all time low before the financial crisis of 2008. The volatility of financial
markets is again at all time lows in these days. It is at times as these that systemic
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risk studies must prove their worth, by highlighting sources of endogenous risk and
by making suggestions to inhibit the most risky activities in booms and thereby
prevent the worst possible scenarios during busts.



Appendix

A.1 Properties of the Topology and Financial Con-

tagion in the Austrian Network and its Recon-

structed Networks in Different Quarters

A.1.1 Topological measures

In the main text in section 3.4 I described the topology of the Austrian network only
for the first quarter of 2006. I also presented the results on the ability of the three
null models to reconstruct the topology of the Austrian network only for the first
quarter of 2006. I showed information only for one quarter for reasons of brevity,
because the results across the quarters are very similar. I here prove this point by
presenting the topological properties of the Austrian network and the reconstructed
networks for the first quarter of 2007 in table A.1 and for the fist quarter of 2008 in
table A.2.

Metric Rewired Erdős-Rényi Fitness Model Real Network

Basic

Nodes (n) 834 834 834 834
Edges (e) 13, 740 (13, 740|13, 740) 13, 740 (13, 590|13, 893) 13, 740 (13, 619|13, 861) 13, 740
Density (d) 0.0198 (0.0198|0.0198) 0.0198 (0.0196|0.0200) 0.0198 (0.0196|0.0200) 0.0198
Degree (〈k〉) 32.9496 (32.9496|32.9496) 32.9504 (32.5899|33.3165) 32.9486 (32.6595|33.2398) 32.9496
Assortativity −0.55 (−0.55| − 0.55) 0.0 (0.00|0.00) −0.41 (−0.42| − 0.41) −0.5760
Global Clustering 0.36 (0.36|0.37) 0.0058 (0.0056|0.0059) 0.32 (0.31|0.32) 0.3428
Core Size 73 (73|73) 43 (43|44) 66 (65|67) 73
Core-Periphery Error −0.0392 (−0.0392| − 0.0392) 0.9218 (0.9121|0.9315) 0.0692 (0.0651|0.0733) −0.0392
Cosine Similarity 0.664 (0.656|0.674) 0.0458 (0.0069|0.0870) 0.6714 (0.6669|0.6766) NA
RMSD 0.072 (0.072|0.073) 0.1610 (0.1391|0.1844) 0.0766 (0.0763|0.0769) NA

Triads

# of nodes in Motif 1 764 (757|771) 834 (834|834) 748 (740|755) 389
# of nodes in Motif 5 493 (481|505) 832 (831|834) 746 (738|754) 411
# of nodes in Motif 9 142 (131|154) 777 (772|782) 467 (452|482) 124
# of nodes in Motif 13 158 (154|162) 0 (0|0) 255 (244|265) 174

Table A.1: Summary statistics of topological properties of the real and reconstructed
networks. For the reconstructed networks, the different metrics are averaged over
10,000 simulations and rounded to the nearest significant integer that can be de-
scribed with confidence. The figures in the brackets represent the 10% and 90%
quantiles, respectively. Results presented refer to the first quarter of 2007.
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Metric Rewired Erdős-Rényi Fitness Model Real Network

Basic

Nodes (n) 825 825 825 825
Edges (e) 13, 944 (13, 944|13, 944) 13, 893 (13, 744|14, 048) 13, 943 (13, 823|14, 062) 13, 944
Density (d) 0.0205 (0.0205|0.0205) 0.0204 (0.0202|0.0207) 0.0205 (0.0203|0.0207) 0.0205
Degree (〈k〉) 33.8036 (33.8036|33.8036) 33.6809 (33.3188|34.0558) 33.8002 (33.5103|34.0897) 33.8036
Assortativity −0.56 (−0.56| − 0.56) 0.0 (0.00|0.00) −0.42 (−0.42| − 0.41) −0.5837
Global Clustering 0.34 (0.34|0.34) 0.0060 (0.0058|0.0061) 0.32 (0.31|0.32) 0.3166
Core Size 75 (75|75) 44 (43|45) 67 (66|68) 75
Core-Periphery Error −0.0351 (−0.0351| − 0.0351) 0.9165 (0.9068|0.9263) 0.0618 (0.0578|0.0658) −0.0351
Cosine Similarity 0.664 (0.656|0.675) 0.0449 (0.0081|0.0795) 0.6313 (0.6266|0.6366) NA
RMSD 0.072 (0.071|0.073) 0.1529 (0.1345|0.1725) 0.0766 (0.0763|0.0769) NA

Triads

# of nodes in Motif 1 761 (755|768) 825 (825|825) 744 (736|751) 399
# of nodes in Motif 5 476 (464|487) 824 (823|825) 740 (731|748) 414
# of nodes in Motif 9 151 (140|162) 769 (765|773) 463 (448|478) 114
# of nodes in Motif 13 161 (157|165) 0 (0|0) 261 (250|271) 174

Table A.2: Summary statistics of topological properties of the real and reconstructed
networks. For the reconstructed networks, the different metrics are averaged over
10,000 simulations and rounded to the nearest significant integer that can be de-
scribed with confidence. The figures in the brackets represent the 10% and 90%
quantiles, respectively. Results presented refer to the first quarter of 2008.

A.1.2 Trajectory profiles

In fig. 3.7a I showed the trajectory profiles of financial contagion due to counterparty
default for the first quarter of 2006 and noted that the behaviour is similar in the
other quarters. In the below fig. A.1 I present the same plot for the first quarter of
2007 and 2008, to show the similarity of the trajectories of the null models relative
to the real network across the quarters. It can be seen that fig. 3.7a for 2006, looks
very similar to fig. A.1a for 2007, in which the trajectories of the real network are
more abrupt and impactful compared to the null models. The trajectories in the
real network are also more impactful relative to the reconstructed networks in the
first quarter of 2008, which I show in fig. A.1b. However, in this case the profiles
in the real network are much larger in the second and third iterations relative to
the first iteration. This behaviour is also observed in the second and third quarters
of 2008 and is due to a much higher fragility of lenders at the onset of the global
financial crisis of 2008. The inability of the null models to pick up on this change
in the shape of the profiles, provides further evidence that the null models cannot
capture the local topology of the real network.
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(a) First quarter of 2007. (b) First quarter of 2008.

Figure A.1: Trajectories of financial contagion, measured as the total number of
banks failed in each iteration of the dynamic scaled by the number of contagion
events in the first iteration. Black line shows the measure of the real network.
Blue refers to Erdős-Rényi, pink to configuration and red to fitness model networks.
X-axis cut-off at 10 iterations.

A.2 Identification of Vulnerable Clusters

In this section I outline the algorithm that I developed to identify vulnerable clusters
in real networks. Furthermore, I present the results of numerical simulations to prove
the effectiveness of the algorithm, which I use in section 3.6.

A.2.1 Vulnerable cluster identification algorithm

In this section I introduce a method to identify the (extended) giant vulnerable clus-
ter in interbank networks. As mentioned in the literature review in section 3.2.3, the
fractional size of the extended giant vulnerable cluster approximates the probability
of a global cascade, i.e. the contagion probability. When applying the analytical
models of Watts [135] and Hurd [74] to real networks several problems arise that
may result in a breakdown of the approximation of the fractional EGVC size of the
contagion probability:

1. The analytical model assumes a pure branching structure, i.e. a network with-
out loops. Loops frequently occur in real networks and distort the estimation
of financial contagion, as they may increase systemic risk in a particularly
dense part of the network by introducing a negative feedback loop between
nodes [125].

2. In the analytical model the size of a global cascade is defined as a relative
fraction of the network size, whereas in the Furfine model I assume a con-
tagion event to occur when one bank fails beyond the seed, i.e. an absolute
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threshold value defines a global cascade. I study the effect of this assumption
in appendix A.2.2.

With these complications in mind, I now outline the vulnerable cluster identifi-
cation method. The VCs were identified using a breadth-first algorithm, for details
see Newman (2010) [103, p. 315ff]. This algorithm is in essence the counterparty
risk model, described in section 3.3.1, adjusted by a weak-link condition: One bor-
rower i must be sufficient to cause a single lender j to default, see section 3.6.1 for
a definition. In the following I will refer to this algorithm as the VC identification
algorithm.

When defaulting each bank in the network once as a seed, 375 unique banks fail
following the Furfine algorithm in the Austrian network based on the first quarter
of 2006. Out of these 375 failed banks, 353 are vulnerable with respect to one
other bank, the remaining 22 banks are therefore classified as robust. Since I am
interested in finding the largest cluster of vulnerable banks in a network, i.e. the
giant vulnerable cluster (GVC), I run the VC identification algorithm on the subset
of 353 vulnerable banks. As a result I find 47 unique vulnerable nodes that form a
cluster with other vulnerable nodes, which I refer to as the GVC.

The EGVC consists of the set of nodes that constitute the GVC as well as the
robust nodes that are immediately adjacent to it and can fail at least one GVC
member. I therefore run the counterparty risk algorithm again with the set of GVC
members as lenders and all robust banks as borrowers. After running this algorithm
I identified an EGVC of size 116. The fractional size of the EGVC 116/846 ≈
0.14 approximates well the contagion probability in the Austrian network of 0.14

in the first quarter of 2006. This good match reflects the effectiveness of the VC
identification algorithm.

A.2.2 Simulations to confirm the efficacy of the VC identifi-

cation algorithm

In this section I show that the VC identification algorithm developed in the previous
section successfully identifies the (extended) giant vulnerable cluster in controlled
experimental settings. I undertake this analysis to compare the effectiveness of my
identification algorithm to the numerical simulations undertaken by Hurd (2016)
[74].

Figure A.2a and fig. A.2b show the results of running the Furfine counterparty
default risk algorithm on synthetic interbank networks with n = 1, 000 and various
average degrees 〈k〉 as shown on the x-axis, averaged over 1,000 simulations for each
〈k〉. The underlying degree distribution is created with the Erdős-Rényi approach
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and the interbank balance sheets are homogeneously distributed as described in the
following appendix A.2.3.

(a) Contagion event defined as 1 node de-
faulting beyond the seed.

(b) Contagion event defined as 5% of
nodes in the network defaulting.

Figure A.2: Reproduction of experiments undertaken by Watts and Hurd, to prove
the efficacy of the VC identification algorithm [135, 74]. Figures represent the aver-
ages over 1,000 simulations at each average degree 〈k〉 on the x-axis. The fractional
EGVC size approximates the contagion probability almost perfectly. L.H.S.: In net-
works with 10 < 〈k〉 < 20 the fractional EGVC size does not match the contagion
probability, as they are typically defined as > 5% of nodes failing.

In particular, fig. A.2a and fig. A.2b show the contagion probability computed
using the Furfine algorithm and the fractional EGVC size for the assumption of
a contagion event occurring when one bank defaults beyond the seed and when
more than 5% of nodes default, respectively. The EGVC is measured using the
VC identification algorithm that I developed in the previous section. As in the
experiments of Watts and Hurd, the global cascade frequency (contagion probability)
is approximated by the fractional EGVC size when a global cascade is defined at
the 5% threshold [74, 135]. In networks with a larger average degree the typical
contagion event is small, such that contagion events are more likely to occur and
the approximation therefore breaks down when the contagion threshold is defined
as 1 node beyond the seed, as it can be seen in fig. A.2a for 10 < 〈k〉 < 20.

This analysis shows that my VC identification algorithm works well in approx-
imating the contagion probability with the fractional EGVC size and that it can
reproduce the analytical results of Hurd and Watts, who introduce the theoretical
model.

A.2.3 Creation of synthetic bank balance sheets

In appendix A.2.2 I undertake numerical experiments in which I measure the abun-
dance of vulnerable clusters in a network composed of banks that are based on
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synthetic balance sheets. In this section I describe the methods used to create these
synthetic bank balance sheets.

I adapt the setting suggested by Gai and Kapadia (2010) to create homogeneous
balance sheets [59]. The creation of interbank exposures presumes the prior creation
of a binary directed adjacency matrix A of size n via the Erdős-Rényi method as
per eq. (3.18). The interbank assets and liabilities as well as the equity capital are
assigned as follows.

• Equity: 4 for all banks;

• Total interbank assets for bank i: ai = 20 ∀ kouti > 0, which each lender spreads
uniformly amongst its counterparties;

• The individual loan amounts are assigned as follows to create the weighted
directed liability matrix Lij:

Lij =


aj
koutj

if Aij = 1

0 if Aij = 0.
(A.1)

• Total interbank liabilities for bank i are the sum across all its liabilities towards
its lenders j:

li =
n∑
j=1

Lij. (A.2)

The total interbank assets and the equity of each bank are exogenously set, the
interbank liabilities of each bank are endogenously determined by the binary adja-
cency matrix A. The entire volume is held constant at n ∗ 20 across all simulations,
to ensure that interbank networks have an identical interbank volume independent
of the density of the underlying binary adjacency matrix A.

A.3 Reverse Stress Testing the Austrian Interbank

Network across Quarters

In section 6.3 I presented the results of the reverse stress testing framework applied
to the Austrian framework based on data of the first quarter of 2006. Here I show
the core results that I presented in the main text, for the first quarter of 2007 to
prove the robustness of my results.

In fig. A.3a I show the average shock as a function of the target losses ` and
the largest eigenvalue λmax of the leverage matrix. Similarly, in fig. A.3b I show
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the results for the inverse participation ratio. It can be seen that as for 2006 in the
main text, that the average shock decreases as a function of λmax in fig. A.3a and
that nodal shocks become more concentrated as a function of λmax in fig. A.3b.

(a) Average exogenous shock function as a function
of the target losses `i = ` and λmax.

(b) Inverse participation ratio (IPR) as a function
of the target losses `i = ` and λmax.

Figure A.3: Average exogenous shock
√
K/n and inverse participation ratio (IPR)

for the Austrian network based on data for the first quarter of 2007. Results shown
for T = 20.

In fig. A.4a I show a comparison of the benchmark and the Ki-based policy that
both aim to reduce the observed losses in the Austrian network, based on data of
the first quarter of 2007. It can be seen that as for the 2006 data shown in fig. 6.7a,
that the benchmark policy is more effective than the Ki-based policy. In fact, again,
the Ki-based effectiveness decreases as λmax increases beyond one. To show that
this is due to isolated nodes defined as kin = 0, I applied the two policies to a
subnetwork of the Austrian network in which I have removed all nodes with kin ≤ 1

and kout ≤ 1. I show the result of this exercise for the subnetwork with n = 219

in fig. A.4b, which shows that the Ki-based policy is now more effective than the
benchmark. The figure shows, as for the network based on 2006 data presented
in fig. 6.7b, that the effectiveness of the Ki-based policy crucially depends on the
abundance of poorly connected nodes.
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(a) Comparison of policies to reduce the observed
losses in the full Austrian interbank network.

(b) Policies for Austrian subnetwork with n = 219
in which no node has kin ≤ 1 and kout ≤ 1.

Figure A.4: Equity capital policies applied to the Austrian network based on the
first quarter of 2007. The Ki-based policy is much more effective in the subnetwork
(R.H.S.) than in the full network (L.H.S.).

A.4 Reverse Stress Testing the Austrian Interbank

Network and its Reconstructions in Different

Quarters

In section 6.4 I tested the ability of three null models to reconstruct the reverse
stress testing dynamics in the Austrian network. In particular, I used the Erdős-
Rényi (ER), the directed configuration (rewired) and the fitness null models based
on data of the first quarter of 2006. In section 6.4.4 I described that I performed
robustness tests of these experiments based on data of the first quarter of 2007 and
2008. I here show these results for the first quarter of 2007 that are based on 1,000
simulations for each null model.

Figure A.5 shows the average shock per node for the real network and the three
null models. It can be seen as in the main text in fig. 6.9, that the configuration
model always performs best and that the fitness model has the largest measuring
error when β > 0.24 (λmax > 1).
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Figure A.5: Average exogenous shock
√
K/n for the three null models and the real

network as a function of β. The error bars indicate the 5th and 95th percentiles,
respectively. Results shown for T = 20 and `i = 0.1 based on data for the first
quarter of 2007.

Figure A.6 shows the concentration of nodal shocks as measured by the inverse
participation ratio for 2007. The behaviour is very similar to the same analysis
shown for 2006 in fig. 6.10. The configuration model measures the nodal shock
concentration best and the ER networks perform worst, with the exception of large
values of β, when the fitness model performs worst. This is due to the large number
of isolated nodes in the fitness networks relative to the real network, which decreases
the concentration of shocks, as I explain in section 6.4.3.
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Figure A.6: Inverse participation ratio (IPR) as a function of β for the three null
models and the real network. The error bars indicate the 5th and 95th percentiles,
respectively. Results shown for T = 20 and `i = 0.1 based on data of the first
quarter of 2007.

Lastly, I study the nodal shocks estimated by the null models relative to those
of the real network. For 2006 I show the results of this analysis in fig. 6.11. Below
in fig. A.7 I show the same analysis for data based on the first quarter of 2007. The
figure shows that as for 2006, the fitness model networks have the largest deviations
from the real network both for β = 0.12 and for β = 0.35.

(a) β = 0.12. (b) β = 0.35

Figure A.7: Nodal shocks Ki in log-scale for the three null model networks shown
vis-à-vis the expectation from the real network. The fitness networks have the
largest outliers.
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