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Abstract 

Context: Small for gestational age (SGA) can be a result of fetal growth restriction, associated with 

perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood.  

Objective: The aim of the present study was to gain more insight into prenatal growth failure and 

determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more 

CNVs and disturbed methylation and sequence variants may be present in genes known to be 

associated with fetal growth.   

Design: A prospective cohort study of subjects with a low birthweight for gestational age. 

Setting: The study was conducted at an academic pediatric research institute. 

Patients: A total of 21 SGA newborns with a mean birthweight below the 1st centile and a control 

cohort of 24 appropriate for gestational age newborns were studied. 

Intervention: Array comparative genomic hybridization, genome-wide methylation studies and 

exome sequencing were performed. 

Main Outcome Measures: The numbers of copy number variations, methylation disturbances and 

sequence variants. 

Results: The genetic analyses demonstrated three CNVs, one systematically disturbed methylation 

pattern and one sequence variant explaining the SGA. Additional methylation disturbances and 

sequence variants were present 20 patients. In 19 patients, multiple abnormalities were found.  

Conclusion: Our results confirm the influence of a large number of mechanisms explaining 

dysregulation of fetal growth. We conclude that copy number variations, methylation disturbances and 

sequence variants all contribute to prenatal growth failure. Such genetic workup can be an effective 

diagnostic approach in SGA newborns. 
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Introduction 

The process of human fetal growth is steered by fetal and maternal genetic factors that affect the 

intrauterine environment to ensure effective nutrient exchange between mother and fetus via the 

placenta. SGA has been defined either as being <10th centile for weight at a given gestational age or as 

having a birth length or weight standard deviation score (SDS) of <-2.0 (<2.3rd centile) (1). SGA can 

be a result of fetal growth restriction (FGR), which is defined as a fetus being unable to reach its 

individual growth potential (2). FGR is associated with significant perinatal morbidity and mortality 

(3) and babies with FGR can be predisposed to metabolic diseases later in life (4).  

 Thirty to fifty percent of the variation in weight at birth can be explained by genetic or 

epigenetic causes (5), which include chromosome imbalances, sequence variants and epigenetic 

disturbances. The London Dysmorphology Database contains over 400 entities associated with 

prenatal growth failure (6). Numerous studies on epigenetic influences, especially DNA methylation 

disturbances, have also been performed (7). Despite this research, mechanisms behind prenatal growth 

failure are only poorly understood, at least in part due to the heterogeneous nature of growth 

disturbances. Consequently, an appropriate diagnostic workup for SGA newborns is not well 

established, and questions remain to what extent which genetic factors contribute, what the optimal 

care pathway is for the child, and how we provide adequate counselling to parents. 

 Aim of the present study is to gain further insight into prenatal growth failure and determine 

whether a combination of genomic analyses is an effective diagnostic approach for SGA newborns. 

We used array comparative genomic hybridization (array-CGH) to detect copy number variations 

(CNVs), genome-wide methylation studies to uncover methylation disturbances, and “whole” exome 

sequencing (WES) to detect sequence variants in a cohort of SGA newborns. We hypothesized that 

CNVs explaining the SGA may be found, disturbed methylation may be present in genes known to be 

aberrantly methylated in low birthweight newborns, and that sequence variants may be present in 

genes targeted because of their known association with SGA.   
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Methods 

Patients 

We selected 21 SGA newborns and their parents from the Baby Bio Bank (BBB) and Moore Cohort. 

The BBB contains biological samples and clinical data from 2,515 pregnancies, collected between 

2000 and 2014. The Moore cohort consists of 319 trio samples collected from newborns and their 

parents between 1991 and 1994, including a small FGR cohort. 

 Inclusion criteria for this study included: weight at birth at or below 10thth centile, availability 

of parental samples and absence of major structural malformations, to be in accordance to our study 

aims to study severe IUGR newborns without clues for a specific diagnosis. No pre-eclampsia/HELLP 

syndrome, maternal systemic disease, medication use during pregnancy or maternal smoking was 

present, except one mother (SGA4) who was a moderate smoker during pregnancy and one other 

mother (SGA3) who had pre-existing essential hypertension for which she received treatment. SGA17 

was a pregnancy termination at 22 weeks of gestation (reason unknown to us), and was included 

because of the markedly low weight for gestational age without malformations or other clues for a 

specific diagnosis. 

 A control cohort of appropriate for gestational age (AGA) newborns (n = 24) was selected 

from the Preeclampsia And Non-preeclampsia Database (PANDA) Biobank based on birthweight for 

GA closest to the 50th centile and an equal distribution of GA and mode of delivery in relation to the 

SGA cases. The PANDA Biobank collected placental biopsies, umbilical cord blood samples and 

maternal blood samples of 400 women with either preeclampsia or normotensive pregnancies, between 

2006 and 2010.  

 The SDS of weight at birth were calculated using the 1990 British growth references (8) for 

the British cases and the 1991 reference data for the Dutch controls (9). Descriptive statistics for 

analyzing demographic data was performed in IBM SPSS Statistics, version 22. 

 Ethical approval for all studies was obtained (BBB Research Ethics Committee references: 

09/H0405/30 and 09/h0405/30+5, Moore cohort reference: 2001/6029, PANDA Biobank 

AMC2005_133). 
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Targeted genes 

We performed literature searches on (1) genes known to be aberrantly methylated in SGA 

(Supplemental Table 1) (2) genes known to be involved in regulation of DNA methylation 

(Supplemental Table 2) and (3) genes in which sequence variants are associated with disorders with 

SGA as part of the phenotype (Supplemental Table 3). These genes will be referred to as ‘targeted 

genes’.  

  

DNA isolation  

DNA was obtained from biopsies from the fetal side of the placenta near the umbilical cord insertion. 

DNA from parental blood samples and the cases were extracted using DNEasy Blood and Tissue Kit 

(Qiagen, CA, USA). DNA from the control samples was biopsied from the maternal site of the 

placenta and extracted according to the Gentra protocol (Qiagen, CA, USA). To minimize the risk of 

maternal blood contamination, placenta biopsies were washed in phosphate-buffered saline and stored 

in RNAlater. To verify whether no maternal DNA contamination has occurred, clustering of male 

samples and female samples was investigated by principal component analysis. 

Array CGH  

The array comparative genomic hybridization (array-CGH) analysis was performed using Agilent 

180K oligo-array (Amadid 023363) (Agilent Technologies, Inc., Palo Alto, CA), with 13kb overall 

median probe spacing and GRCh37/hg19 browser. Standard methods were used for labelling and 

hybridization. Samples were hybridized against a pool of 40 healthy sex-matched human reference 

samples. Data were analyzed with Genomic Workbench 6.5 (Agilent, Santa Clara, CA and Cartagenia 

(BENCHlab CNV v5.0 (r6643)). 

Genome-wide methylation array  

Bisulfite conversion of genomic DNA was performed using EZ DNA Methylation Kit (Zymo 

Research, CA, USA). Converted DNA samples were randomized across one batch and hybridized on 

Infinium Human Methylation 450K BeadChip array (Illumina, Inc., CA, USA), carried out by a 

certified Illumina service provider (ServiceXS, Leiden, the Netherlands). The 450K BeadChip applies 
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both Infinium I and II assays and examines >450.000 CpG sites across the genome. Due to the 

bisulfite conversion, the array recognized methylated and unmethylated loci and expresses the degree 

of methylation in β-values, ranging from 0 (fully unmethylated) to 1 (fully methylated). 

 Quality control of the Illumina 450k assay was performed using MethylAid (10). Raw data 

were provided by ServiceXS and used for statistical analysis. A file containing the β-value 

methylation data including annotation was produced by GenomeStudio. Methylation data from 

GenomeStudio and sample phenotype data were exported to R statistical analysis environment (R 

version 2.15.2) (http://www.r-project.org), where a single sample analysis (11) was performed. This 

allows analysis of genome-wide methylation data in small sample sizes, where each case is 

individually compared to a control cohort. The method combines Illumina Methylation Analyzer 

(IMA) package (version 3.2.1) and Crawford-Howell t-test (11). The IMA package performs a basic 

quality control and pre-processes methylation data. Any CpG sites with missing values and samples 

with  >75% CpG sites having a p-value >0.05, CpG sites where >75% samples have detection p-value 

>1e-5, probes on the X and Y chromosomes and probes containing SNP(s) were removed. The β-values 

were converted to M-values by logit transformation (12). Quantile normalization was used to reduce 

unwanted technical variation across samples. Peak correction (13) was applied to correct differences 

between Infinium I and Infinium II type assays. As all cases and controls were hybridized on the same 

batch, no batch correction was required. Differences between pre-processed M-values of all single 

cases and the controls were determined using Crawford-Howell t-test.  

 Given the large number of significantly differentially methylated probes in our patients 

resulting from the single sample analysis, a script in Python (version 2.7) (https://www.python.org/) 

was used for further filtering of data. Probes with a β value difference of at least 20%, adjusted p-value 

<0.05 and a minimum of three differentially methylated probes within 2000 base pairs, allowing for 

reduction of false positive findings, were selected for hypermethylated and hypomethylated probes, 

respectively. Probes without gene annotation were removed from further analysis. Genes found to be 

hypermethylated and hypomethylated at the same time in the same patient were removed. First, 

genome-wide methylation patterns in SGA newborns were analyzed against previously reported 

literature (Supplemental Table 1). Second, other genes that were differentially methylated in >5 
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patients were selected.  

  In order to investigate the significance of the present methylation findings, we analysed the 

cohort of controls as if they were cases: the results in a single control was analysed against the 

remaining controls, and this was performed for each control. We carried out this analysis for the 

candidate genes as well as for the untargeted genes differentially methylated in >5 controls.   

  For the permutation analysis, the fraction of probes showing significant differential 

methylation (p-values below the threshold of 1.0e-2) were compared between the 50 candidate genes 

and randomly selected 50 genes within the same sample. This random selection was carried out 1000 

times per sample and the mean value was generated for the comparison. The fraction of the probes 

having significant differential methylation is expected to be higher in the 50 candidate genes compared 

to the 50 randomly selected samples. If it is significantly higher, the permutation p-value would be less 

than 0.05, making them more likely candidates.  

 

Exome sequencing  

“Whole” Exome Sequencing (WES) was performed by BGI (Hong Kong). In total 41 samples were 

analyzed using Agilent SureSelect Human All Exon V5 (50M) kit and high throughput sequencing 

technology of Complete Genomics, at 100x coverage. The samples consisted of 10 trios from 

newborns with the lowest birthweights and their parents (SGA1, SGA3, SGA6, SGA15 – SGA21) and 

11 singletons of the remaining newborns. For each sample BGI analyzed and provided reads, results of 

mappings, and basic bioinformatics analysis (including alignment and assessment, SNP and InDel 

calling, basic annotation and statistics, SNP validation). At our institution data were further annotated, 

including pathogenicity prediction data, allowing for subsequent filtering of variants. Variants were 

kept for further examination if mutation types (SO terms) with “high” and “moderate” impact 

(Ensembl Variation - Predicted data, ensemble.org), 1K genome minor allele frequency (MAF) <0.05, 

ExAC allele frequency <0.05, read depth ≥30, quality score ≥30. Variants with known non-pathogenic 

significance and a combined SIFT and PolyPhen prediction of “tolerated” and “benign” were 

discarded. 

 Subsequently, we checked variants in targeted genes known to cause a low birth weight 



8 
 

(Supplemental Table 3), and determined the likelihood of pathogenicity. Ethnicity-specific MAF 

were obtained from 1000 Genome, ExAC and GO-ESP databases. Second, potential de novo variants 

were selected and verified in IGV (Integrative Genomics Viewer, Broad Institute) in the 10 patients of 

whom sequencing results from both newborn and parents were available. Lastly, homozygous and 

compound heterozygous mutations were analyzed. All variants in genes discussed in Results and 

Discussion have been validated by Sanger sequencing.  

  

Results  

Patients 

All 21 SGA cases (SGA1 – SGA21) had a birth weight (BW) for gestational age (GA) below the 3.4th 

centile, 19 were below the 2.3nd centile and 14 patients below the 1st centile. Table 1 shows other 

demographics of the study group and the control samples. Separate clustering of male cases and 

control samples from female samples was confirmed, indicating that no maternal DNA contamination 

was measured (Supplemental Figure 1).  

Array CGH 

The array-CGH yielded abnormalities in three patients. Patient SGA1 showed a mosaic trisomy of 

chromosome 16 in 70% of the cells (arr[19] 16p13.3q24(64,381-90,163,114)x2~3). Another mosaic 

imbalance, mosaic Turner syndrome, was seen in patient SGA11 (arr Xp22.33q28(61,091-

155,009,479)x1~2). Patient SGA17 had a deletion of 11p13-p14.1 (arr[h19] 11p14.1p13(29,663,942-

33,400,789)x1) causing WAGR syndrome (Wilms tumor, Aniridia, Genital anomalies and mental 

Retardation).  

Genome-wide methylation   

Quality control of the Illumina 450k assay showed no failed samples for bisulphite conversion, 

hybridization and overall methylation threshold. Table 2 shows methylation changes in genes known 

to be aberrantly methylated in low birthweight newborns which we targeted first (see Methods and 

Supplemental Table 1). Differential methylation was seen in 12 patients of which nine had 

differential methylation in more than one gene. As patient SGA3 shows an extensively aberrant 
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methylation profile (Figure 1), the results for this patient are presented separately. Subsequently, all 

genes found in an untargeted study to be differentially methylated in five or more patients, were 

analysed (Supplemental Table 4), showing 28 hypermethylated genes and 6 hypomethylated genes. 

Analysis of our control cohort showed 45 differentially methylated genes present in >5 individuals. 

Out of the 34 genes resulting from the case analysis, in total 12 genes (35%) appeared to be the same 

genes. SGA3 showed differential methylation in 26 targeted genes known to be aberrantly methylated 

in low birthweight newborns (Supplemental Table 5). A possible explanation for this extensively 

disturbed methylation pattern in SGA3 would be an alteration in a gene known to be involved in (the 

regulation of) DNA-methylation (see Methods and Supplemental Table 2). Of these, four were 

hypermethylated and 11 hypomethylated (Supplemental Table 6). Additionally, WES data were 

checked for sequence variants in genes involved in regulating DNA-methylation (Supplemental 

Table 6), showing a heterozygous missense mutation in MPHOSPH8 (p.Asp460Tyr). The same 

variant, with a known minor allele frequency (MAF) of 2-3% (rs75390100), was found in two other 

patients (SGA2 and SGA15). This high MAF excludes this variant to be the sole  (Mendelian) cause of 

the IUGR but we cannot exclude that it contributes to a polygenic or multifactorial origin of the IUGR. 

 Due to an administrative error, three samples (SGA5, SGA9 and SGA12) could not be 

included in the genome-wide methylation analysis.   

  Analysis of the control cohort yielded a total of eight of the targeted genes (CDKN1C, NPR3, 

NR3C1, FOXP1, H19, TBX15, WNT2 and ZIC1) that were differentially methylated. Seven of those 

genes were also found in our case analysis with a comparable number of individuals and methylation 

in the same direction as the cases (or both hypermethylation and hypomethylation). The permutation 

analysis showed the probes within the 50 candidate genes resulting from our study (Table 2 and 

Supplemental Table 5) had consistently higher fraction of probes below the threshold value 

compared to the randomly selected genes, except for four patients (Supplemental Table 7). In 

addition, 7/18 samples had P-values <0.05. 

Exome sequencing 

Exome sequencing without filtering yielded over 70,000 single nucleotide variants and ~5.000 InDel 
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variants in the 21 patients studied. After filtering (see Methods) we first evaluated sequence variants in 

genes that if mutated are known to be associated with disorders in which a low birthweight is part of 

the phenotype (Supplemental Table 3). This targeted analysis yielded potentially pathogenic 

heterozygous variants in 32 genes, one homozygous variant and two compound heterozygous variants 

(Supplemental Table 8). In this targeted gene panel, no de novo variants were identified in newborns 

of whom sequencing data of the parents were available. In patients in which no WES was performed 

in their parents, variants were sequenced by Sanger in parents and showed inheritance of all variants 

from one or both parents.  

 Second, de novo variants in untargeted genes were analyzed in silico (see Methods). Two de 

novo single nucleotide variants were predicted to be potentially pathogenic (Supplemental Table 8). 

Third, we analyzed all WES data for homozygous variants in untargeted genes, and found three 

homozygous missense mutations of potential interest (Supplemental Table 8). Lastly, we evaluated 

data for compound heterozygous mutations in untargeted genes and found one compound 

heterozygous variant (Supplemental Table 8). All variants described have been validated by Sanger 

sequencing. The recommendation of the American College of Medical Genetics and Genomics was 

followed in interpreting variants. 

 

Discussion  

In the present study we investigated 21 SGA newborns using a combination of array-CGH, genome 

wide methylation array and exome sequencing. In four patients (19%), we found a genetic 

abnormality that likely contributes to their low birthweight.  

 Three CNVs (14%) were detected in the present cohort, a relatively higher number compared 

to previous reports in patients with SGA or short stature (14). Mosaic trisomy 16 is known to lead to 

a high risk of prenatal abnormalities (15), frequently including SGA, and can thus be considered a 

valid explanation for SGA in patient SGA1. Patient SGA11 showed mosaicism for monosomy X. 

About 50% of individuals with Turner syndrome have a mosaic karyotype (16), and it typically 

includes a low birth weight. In patient SGA17 an 11p14.1-p13 deletion, as seen in WAGR syndrome, 
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was identified. This syndrome features reduced intrauterine growth as a known phenotype (17).  

  

 As hypothesized in advance, methylation disturbances in several genes known to be aberrantly 

methylated in low birthweight newborns, were found. In general, more hypermethylation than 

hypomethylation was found in the present cohort. A methylation abnormality potentially involved in 

SGA was detected in 13 patients, of which five showed differential methylation in several imprinted 

genes from the 11p15.5 imprinted region associated with fetal growth restriction, including 

CDKN1C, KCNQ1, IGF2AS, INS and IGF2 (18). However, when each control was analyzed versus 

the remaining controls, similar to the case analyses, similar differential methylation of the majority 

of these genes in control individuals were found. This suggests that these findings are not significant 

as a Mendelian cause for the disturbed intrauterine growth. On the other, hand, the control versus 

controls analyses also showed that the differential methylation of KCNQ1, IGF2AS, INS and IGF2 

were solely differently methylated in the case series, which increases the likelihood (but does not 

prove) these contribute to fetal growth restriction. In addition, probes within the candidate genes had 

consistently higher fraction of probes below the threshold value compared to the randomly selected 

genes in the majority of cases, as shown in the permutation analysis. Seven out of 19 samples 

showed a permutation p-value <0.05, when only one would be expected by chance. Therefore, these 

results were consistent with the overall findings of this study: the 50 candidate genes showed 

differences in a small proportion of the patients, some of whom also carried potential genetic 

variants as well. 

 Methylation disturbances in untargeted genes were considered if the disturbance was present 

in at least 5 patients. Such changes were detected in 34 genes, six of these (PIK3R1, DIXDC1, 

ESRRG, TBX15, GGT1 and FGF8) appeared to be of specific interest, in view of their known 

functions. However, given thatanalysis of the control cohort yielded a similar amount of genes 

including overlap in 12 genes between the cases and controls, these results are unlikely to be 

significant, at least when considering them as Mendelian causes for the FGR.  

 Although promoter methylation is generally associated with reduced gene expression and 

methylation of a gene itself typically with increased gene expression (19), DNA methylation differs 
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pre- and postnatally both quantitatively and in terms of CpG versus non-CpG methylation in utero. 

Therefore, hypermethylation does not necessarily lead to decreased transcription and 

hypomethylation to increased transcription Furthermore, the location of the hypermethylated or 

hypomethylated region within the gene can be crucial in relation to the consequences for expression: 

for example, methylation of a promoter can cause a reduced gene expression while methylation of 

exons to increased gene expression. Therefore, understanding the consequences of the direction of 

differential methylation currently remains uncertain. RNA expression studies should provide insight 

in the consequences of the hyper- and hypomethylation detected in the present candidate genes. 

 In contrast to the generally more frequent hypermethylation profile in the present cohort, 

patient SGA3 showed a predominant hypomethylation pattern and an extensively disturbed 

methylation profile. First, an external epigenetic influence, such as tobacco smoke or infectious 

pathogens, could be the cause of this observation (20). The essential hypertension of SGA3’s mother 

may be of importance in this respect. Second, a mutation in genes regulating DNA methylation, such 

as the DNMTs and TETs(21), could theoretically cause widespread DNA methylation disturbances. 

Also maternal mutations in so called ‘maternal-effect genes’ such as NLRP5, NLRP7 I and 

KHDC3L(22) can cause multi-locus imprinting disturbances in their offspring, usually resulting in 

hypomethylation at multiple loci and seen primarily in female offspring (23). We were unable to 

detect any of such mutations in SGA3. Lastly, disturbed methylation of 15 genes known to be 

involved in (regulation of) DNA methylation was present in SGA3. Especially the abnormal 

methylation of DNMT1, DNMT3B, TET1, UHRF1 and ZFP57 may be of interest as abnormal 

methylation of one of these may have had a subsequent extensive effect.  

 The evaluation of exome sequencing, targeted for genes associated with disorders in which a 

low birthweight is part of the phenotype, uncovered 37 sequence variants in 35 genes. In evaluating 

results we took into account the variability of pattern of inheritance of variants in a single gene, and 

the possibility that variants may not act in a Mendelian manner but can also act in a polygenic or 

multifactorial manner. Each reported finding may be involved in fetal growth restriction since if 

mutated, these genes can cause malformation syndromes, skeletal dysplasias and endocrine 

disorders. Our analyses showed several sequence variants that are plausible candidates for causality, 
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while the majority remain of uncertain significance. One strong candidate is the splice acceptor 

variant in SOS1 (c.3347-1G>A). This variant has been described previously in patients with Noonan-

syndrome and IUGR (24). Given the earlier reported patients and the low MAF, this variant deserves 

further investigation to confirm its potential pathogenic nature. When assessing the different 

sequence variants for potential pathogenicity, it is important to stress that in our opinion it is likely 

that in most patients the cause of FGR will not be monogenic but rather polygenic. This implies that 

there will be changes in either one or more gene and/or in the methylation pattern, such that each 

individually will not cause a major health problem (and will be present in controls as well). In this 

multifactorial model, combinations of a series of such changes will lead to disturbed growth. The 

size of the present study is too limited to reveal complex interactions, however, to provide 

comparison to future studies, sequence and differential methylation data is available in the 

Supplemental Tables.  

 We found de novo mutations in two untargeted genes. MTUS1 is a tumor suppressor gene 

controlling cell proliferation, however no function interfering with fetal growth is known so the 

meaning of this variant remains uncertain. The protein encoded by LZTS2 acts as a tumor suppressor 

and is involved in regulating embryonic development by the Wnt signaling pathway. Homozygous 

mutations were found in four genes, all of uncertain significance. One patient was homozygous for 

the p.Val316Ala variant in MTHFD1. MTHFD1 is important for folate metabolism and embryonic 

development and a mutation in this gene has been associated with fetal hypotrophy. Given the 

contradictory classifications by the prediction programs, the significance of this variant is uncertain. 

Compound heterozygous variants of interest were found in two targeted genes and one untargeted 

gene, all likely benign or of uncertain significance.  

 Our results do not indicate the presence of a single, unifying theme explaining the 

dysregulation of fetal growth, and confirm previous findings that growth in utero is influenced by a 

large number of genes. We demonstrate that there is no predominant type of genetic abnormality 

present in SGA newborns: copy number variations, methylation disturbances and sequence variants 

may all contribute in part to the phenotype. In 19 patients, combinations of a CNV, (multiple) 

sequence variants and (multiple) methylation disturbances are present. Each of these will require 
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detailed and sophisticated investigations to better understand their significance. Our results mirror a 

similar study in children with postnatal growth failure (25), using a similar approach in evaluating 

variants in genes known to be associated with short stature as well as studying variants in other, 

untargeted genes (25). The latter authors highlight the multitude of genetic causes for short stature 

and the complexity of interpretation of variants and their pathogenicity, which resembles the 

observations in the present study.  

 We acknowledge limitations of the present study. The size of our cohort is small and the 

power to draw general conclusions is limited. The genetic heterogeneity within the present cohort 

also appears high. We therefore used an individual-based data analysis approach for the methylation 

study to enable suitable data analysis. Using filtering strategies based on population allele 

frequencies as in the present study limits the ability to determine the pathogenicity of WES variants, 

since such data lack individual phenotypic data. Ideally, for future studies our AGA newborns should 

be sequenced to serve as a control population to allow determining pathogenicity of combinations of 

variants detected by exome sequencing. Furthermore, we had no access to clinical follow-up data of 

the presently studied cohort. The large number of variants of uncertain significance inhibits 

investigating each individual variant extensively; ideally, each variant would require a separate, 

detailed study.  

 We conclude that copy number variations, methylation disturbances and sequence variants 

may all contribute in part to prenatal growth failure. This study shows genetic disturbances in SGA 

are complex and likely polygenic. The results of these studies in individual patients may have 

important consequences for patient care and counselling of patients and their families. Further 

research is still required to determine whether such genetic workup can become an effective 

diagnostic approach in SGA newborns. 
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Figure 1. Number of Differentially Methylated Probes per Patient 

 

Legend Figure 1.  

Total number of differentially methylated probes per patient out of 485,577 interrogated probes, after single case analysis and further probe filtering (see 

Methods). An extensively disturbed methylation profile is evident in patient SGA3, and patient SGA15 has an increased number of hypermethylated probes in 

comparison to the other patients 
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Figure 1. Number of Differentially Methylated Probes per Patient 

 
Legend Figure 1. Total number of differentially methylated probes per patient out of 485,577 interrogated probes, after single case analysis and further probe filtering (see 

Methods). An extensively disturbed methylation profile is evident in patient SGA3, and patient SGA15 has an increased number of hypermethylated probes in comparison to 

the other patients.  
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Table 1. Demographics of 21 SGA Newborns and 24 Controls Appropriate for Gestational Age  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GA=gestational age; BW=birth weight; SDS=standard deviation score  

Patient ID Gender GA BW (grams) BW (centile) BW (SDS) Ethnicity Mode of delivery 

Cases 

SGA1 Female 33.00 1220 0.41 -2.64 Caucasian Caesarean section 

SGA2 Female 38.00 1980 0.51 -2.57 African Vaginal 

SGA3 Female 33.71 640 4.7E-5 -4.91 South American Caesarean section 

SGA4 Female 39.00 2435 3.36 -1.83 Caribbean Caesarean section 

SGA5 Female 34.00 1350 0.59 -2.52 Asian Caesarean section 

SGA6 Female 39.57 2120 0.22 -2.85 Caucasian Vaginal 

SGA7 Male 38.00 2080 0.69 -2.46 South American Vaginal 

SGA8 Male 38.00 2140 1.04 -2.31 Caucasian Vaginal 

SGA9 Male 34.43 1543 1.04 -2.31 Caucasian Caesarean section 

SGA10 Male 39.57 2320 0.62 -2.50 Caucasian Vaginal 

SGA11 Female 38.57 2180 1.10 -2.29 African Caesarean section 

SGA12 Female 39.00 2385 2.56 -1.95 African Caesarean section 

SGA13 Male 38.57 2280 1.36 -2.21 Asian Caesarean section 

SGA14 Female 37.14 2017 1.83 -2.09 Caribbean Vaginal 

SGA15 Female 31.71 474 3.14E-4 -4.52 Caucasian Caesarean section 

SGA16 Male 39.00 2090 0.24 -2.82 African Caesarean section 

SGA17 Male 22.00 236 0.13 -3.00 Caucasian Termination of 

pregnancy 
SGA18 Male 36.00 1600 0.21 -2.86 Caucasian Caesarean section 

SGA19 Male 37.00 1782 0.26 -2.80 Caucasian Caesarean section 

SGA20 Male 40.00 1874 0.01 -3.69 Caucasian Vaginal 

SGA21 Male 40.00 2220 0.20 -2.88 Caucasian Vaginal 

Mean ± SD - 36.49 ± 4.14 1760 ± 640 0.78 ± 0.88 -2.76 ± 0.77 - - 

Controls 

Mean ± SD - 37.48 ± 4.10 2953 ± 926 53.83 ± 15.51 0.10 ± 0.42 - - 
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Table 2. Differential Methylation in Genes Known to Be Aberrantly Methylated in Low Birthweight Newborns   

Patient 

ID 

 

Gene 

 

 

 

 

 

 

Chromosome (MapInfo) 

 

Control  

β-value 

(mean) 

Case  β-

value 

(mean) 

No. of 

probes  

Main gene function(s) and influence(s) on fetal growtha 

 

 

 

Comparison with control cases 

Hypermethylation Direction of methyation No. of controls 

SGA11 

SGA15  

 

CDKN1C 

 

11 (2905931-2907008) 

11 (2906667-2907073)  

 

0.14 

0.21 

 

0.41 

0.48 

 

5 

4  

 

Imprinted gene in 11p15.5 region, highly expressed in 

placenta. Upregulation associated with IUGR placentas, loss 

of function associated with Beckwith-Wiedemann syndrome, 

gain of function with Silver-Russel syndrome* 

Hypermethylation 1 

SGA4 FGF14 13 (103052362-103052943) 0.16 0.44 3 Hypomethylation associated with SGA or FGR - - 

SGA13 GNAS; 

GNASAS 

20 (57414162-57414539) 0.62 0.83 3 Hypomethylation of GNASAS associated with SGA. 

Decreased expression of GNAS observed in IUGR placentas 

- - 

SGA1 

SGA7 

FOXP1 3 (71631050-71631744) 

3 (71631050-71631744) 

 

0.09 

0.09 

0.45 

0.46 

4 

4 

 

Increased methylation associated with FGR 

 

Hypermethylation 1 

SGA14  

SGA20 

NPR3 5 (32710614-32711429) 

5 (32710231-32711517) 

 

0.24 

0.12 

0.49 

0.39 

4 

6 

 

Hypermethylation associated with  FGR 

 

Hypermethylation 3 

SGA14 NR3C1 5 (142784522-142785258) 0.22 0.47 3 

 

Differential methylation in  this glucocorticoid receptor in 

placenta correlated with birth weight  

Hypermethylation 3 

SGA11 

SGA14 

SGA15 

SGA17 

SGA20 

SGA21 

 

TBX15 1 (119530600-119530702) 

1 (119530600-119531093) 

1 (119530600-119530702) 

1 (119530048-119530932) 

1 (119530600-119530702) 

1 (119530600-119531093) 

0.28 

0.31 

0.28 

0.35 

0.28 

0.30 

0.58 

0.55 

0.64 

0.58 

0.57 

0.61 

3 

3 

3 

4 

3 

4 

Promotor hypomethylation leads to TBX15 decrease in FGR 

placentas 

Both 3** 

SGA7 

SGA11 

SGA13 

SGA16 

WNT2 7 (116963193-116963502) 

7 (116962950-116964012) 

7 (116962950-116963502) 

7 (116962950-116963502) 

0.18 

0.19 

0.17 

0.17 

0.52 

0.51 

0.48 

0.48 

5 

7 

6 

6 

WNT2 promoter methylation in placenta is associated with 

low birthweight 

Both 6** 

SGA10 

SGA15 

SGA21 

ZIC1; 

ZIC4 

3 (147125714-147127662) 

3 (147125712-147126206) 

3 (147126763-147127662) 

0.30 

0.43 

0.21 

0.58 

0.66 

0.57 

5 

6 

6 

Decreased methylation associated with SGA or FGR Both 6** 

Hypomethylation   

SGA17 

 

 

IGF2AS; 

INS-IGF2; 

IGF2 

 

11 (2162406-2162616) 

 

 

0.44 

 

 

0.17 

 

 

5 

 

 

IGF2 is imprinted and highly expressed in placenta, 

hypomethylation of H19/IGF2 control region is associated 

with FGR.  INS-IGF2 involved in growth and metabolism. 

IGF2AS isimprinted and expressed in antisense to IGF2 

- - 

SGA13 

 

KCNQ1; 

KCNQ1OT1 

11(2721207-2721383) 

 

0.49 

 

0.24 

 

4 

 

Upregulated KCNQ1 and loss of KCNQ1OT1 associated 

with IUGR; genetic variants of KCNQ1 associated with 

Beckwith-Wiedemann syndrome 

- - 

SGA1 TBX15 1 (119526060-119527377) 0.68 0.42 4 Promotor hypomethylation leads to TBX15 decrease in FGR 

placentas 

Both 1** 

SGA17 WNT2 7 (116964012-116964802) 0.35 0.11 4 WNT2 promoter methylation in placenta is associated with 

low birthweight 

Both 2** 
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For references see Supplemental Table 1; *Clinical diagnosis uncertain due to unavailable detailed phenotyping, ** controls with methylation in same direction as case.  


