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Abstract We discuss research on the teaching and learning of uncertainty, with a particular 

emphasis on quantifiable aspects as might be represented by probability. We acknowledge 

earlier reviews of the field by integrating research, especially from the last ten years, with 

previous studies. In particular, we focus on three issues, which have become increasingly 

significant: 1. the realignment of previous work on heuristics and biases; 2. conceptual and 

experiential engagement with uncertainty; 3. adopting a modeling perspective on probability. 

The role of the teacher in shaping the learning environment in various critical ways emerges 

as a key finding. In the concluding section, we indicate promising directions for research, 

including the need for more exploratory research in new areas such as the role of modelling 

and carefully designed experiments to test hypotheses that are apparent from more 

established studies. 
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6.1 Introduction 

The notion of uncertainty is a broad concept that includes phenomena that lie outside the 

domain of statistics, which focuses on uncertainty due to random variation, when it is often 

possible to make inferences and predictions. Within this subset of uncertainty, it is sometimes 

possible to measure how uncertain a phenomenon is, and we refer to this term as 

‘probability’. Probability theory provides tools for expressing, quantifying and modelling 

uncertainty. This chapter focuses on research concerning those key ideas and issues in 

uncertainty and probability that are seen as conceptual links to statistics. We first give an 

overview of the previous reviews related to the topic and then introduce our approach to 

reviewing the research literature beyond those covered in the preceding documents. 

There have been several edited books (e.g., Kapadia and Borovcnik 1991, Jones 2005, 

Chernoff and Sriraman 2014) and a number of major review chapters and reports on research 

in probability since probability and statistics started to become part of the mainstream school 

mathematics curricula in many countries. In his review in the Handbook of Research on 

Mathematics Teaching and Learning, Shaughnessy (1992) set the stage by addressing the 

absence of probability and statistics in school mathematics, particularly in the US prior to 

‘The Curriculum and Evaluation Standards for School Mathematics’ (NCTM 1989). He then 

used philosophical and historical influences in the development of probability as the 

backdrop for research in probability and statistics. In Shaughnessy’s (1992) review, studies in 

the research literature were clustered in three main areas: 1. different types of thinking used 

in making an inference or judgment under uncertainty (i.e., heuristics, biases and 

misconceptions) that are identified and documented primarily within the psychology research 

tradition, such as the influential work of Daniel Kahneman and Amos Tversky in 1970s and 

1980s; 2. development of concepts of probability in different age levels; 3. effects of 
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interventions, such as types of tasks, instructional approaches, and use of computer 

technology, on students’ conceptions of probability. 

Another important review of the existing research at that time by Borovcnik and Peard (1996) 

focussed on probabilistic thinking and teaching of probability in the school mathematics 

curriculum. Borovcnik and Peard shed light on what hindered learning of probability by 

making distinctions between probability and other mathematical concepts and similarly 

between probabilistic thinking and other types of thinking (logical and causal). They also 

described how the history of teaching probability evolved both in Europe and the US as 

probability and statistics became part of the school mathematics curricula in different 

countries. Then various didactical approaches aiming to enhance teaching probability were 

discussed. 

In the Second Handbook of Research on Mathematics Teaching and Learning, Jones, 

Langrall and Mooney’s (2007) chapter revealed how much progress had been made both in 

the treatment of probability in curriculum documents and the research tradition since 

Shaughnessy’s (1992) review. One of the focuses of Jones et al. (2007) was the content and 

pedagogical insights of three curriculum documents from the US, the UK and Australia at 

different grade levels (elementary, middle and high school), which were published around the 

same time. In these curriculum documents, introduction of probability to students started at 

early grades in the elementary school while they began to focus on more advanced ideas in 

probability at the high school level. In terms of pedagogy, the tasks at the elementary grades 

were more in line with students’ experiences in the way that they allowed students to test 

their intuitions and overcome their misconceptions. As students reached advanced levels, 

investigations and applications were emphasised. Simulations and modelling chance 

situations, which had been suggested in Shaughnessy’s (1992) review, were seen to become 

part of the middle grades and high school curricula (Jones et al. 2007). 
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The research literature covered in Jones et al. (2007) also reflected these changes in 

mathematics curricula by focusing on various conceptual topics relevant to probability, such 

as chance and randomness, sample space, probability measurement (including conditional, 

theoretical and empirical probabilities) and cognitive models of probabilistic reasoning. 

Related to the research on teaching of probability, Jones et al. highlighted the contributions 

made about teachers’ content knowledge, pedagogical content knowledge and knowledge of 

student cognition in probability. Another distinct topic raised in this review was the idea of 

probability literacy based on Gal’s (2005) work and its implications for content and 

pedagogical approaches in probability instruction. 

Bryant and Nunes (2012) provided a detailed report on research documenting children’s 

difficulties in learning and reasoning about probability and recommendations for future 

research, particularly on methodological aspects. They argued that four ideas in probability 

were key to successful learning in probability: 1. understanding randomness and its 

consequences; 2. analysing the sample space; 3. quantifying probability as a ratio; 4. 

developing correlational reasoning which involved the coordination of the previous three 

ideas. The omission of aggregate thinking as relating to distribution – rather than just sample 

space - is surprising in the light of research reported below. 

More recently Watson, Jones and Pratt (2013) took a critical approach when reviewing 

research studies into students’ reasoning about uncertainty, many of which were mentioned in 

the previous reviews. Unlike others written mainly for researchers, the primary aim of this 

work was to elaborate the research-based findings to support pre-service and in-service 

teachers’ understanding of the key issues about students’ learning about probability. Given 

the technological tools that have become available in recent years, the use of simulations and 

modelling to help students develop reasoning about uncertainty was again emphasised in 

Watson et al.’s review, including for young students. 
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Our aim in this chapter is to focus on three issues that we see as key developments emerging 

out of the history of the topic as captured by previous reviews mentioned above. The first 

issue, the realignment of heuristics and biases, is chosen because the research on heuristics 

has been a major focus of research in the field for many decades and a recent publication 

makes it timely to reconsider that body of work. The second issue, conceptual and 

experiential engagement with uncertainty, gives an account of recent developments in the 

main effort of research in the field, some of which might in fact be influenced by the first 

issue. The third issue, adopting a modelling perspective on probability, emerges directly from 

considerable development in the use of technology for teaching and learning and also for 

researching students’ ideas about uncertainty. As we introduce each of these three key issues 

in the following sections, we give an overview of the research in learning and teaching of 

probability over the last ten years and look forward to future research in this domain. 

 

6.2 The Realignment of Heuristics and Biases 

6.2.1 Introduction 

We begin our review with discussion of an issue that has informed - some would say beset - 

research on probabilistic thinking for several decades. The issue in question was a particular 

focus of the review of research in probability and statistics, which is now more than two 

decades old (Shaughnessy 1992), and has led to an industry of research identifying 

misconceptions and correlating them in support of, or in contradiction to, the original work. 

We speak of course about the seminal work by Daniel Kahneman and Amos Tversky (for 

example, Kahneman, Slovic and Tversky 1982), which claimed to catalogue the biases 

inherent in heuristics that we all use to make judgements of chance. This research has 

recently achieved new currency because of Kahneman’s publication on ‘Thinking Fast and 
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Slow’ (2011a), which has re-conceptualised the original research and, in doing so, has 

responded to some of the original criticisms. Kahneman’s realignment of his own work on 

heuristics has implications for interpretation of the wealth of research on probabilistic 

thinking, especially as related to misconceptions, that has emanated from the original work in 

the 1970s and 1980s. 

Our approach to discussing this key issue will be first to summarise the original work. This 

can be done briefly since there are many full accounts available elsewhere, not least in the 

review by Shaughnessy (1992). We will then discuss some of the criticisms that emerged 

over subsequent years. All of this will be preparation for a detailed account of Kahneman’s 

fresh perspective on that work, followed by a discussion of whether the old criticisms still 

stand and implications for research in the field. 

Kahneman and Tversky conducted a series of carefully designed psychological experiments 

where subjects were given tasks, either orally or in paper and pencil form. Kahneman and 

Tversky noted the errors that subjects made when their responses were compared with 

normative probabilistic or statistical solutions to the task. They identified a number of 

patterns in those errors and accounted for these patterns in terms of the subjects using rules of 

thumb, perhaps subconsciously, which they referred to as heuristics. Kahneman and Tversky 

explained how errors resulted from the bias, which was inherent in the heuristics being used. 

As explained above, it would be inappropriate here to detail the huge array of heuristics 

identified, especially as each of the heuristics also has many variations and specific types. 

Nevertheless, some readers may wish to have a sense of the original work without needing to 

know all of that detail, so we will describe here two of the main heuristics identified by 

Kahneman and Tversky. 



International Handbook on Research in Statistics Education  Part II April 28, 2017 

7 

6.2.2 Two Heuristics from the Original Research and Recent Developments 

When people use the representativeness heuristic, they judge the likelihood of an event 

according to how well the outcome experienced matches the system that generated the 

outcome or the population from which the outcome was drawn. The well-known gambler’s 

fallacy might be accounted for by use of the representativeness heuristic. Thus, after 

observing six successive red numbers appear on the roulette wheel, the gambler might place 

his bet on the appearance of a black number (an approach referred to as negative recency). 

Kahneman and Tversky argue that the gambler might believe that the outcomes should match 

the sample space, which consists of an equal number of red and black numbers and so the 

judgement may have been made that a black number should appear in order to ‘correct’ the 

sequence of reds. The representativeness heuristic operates in the gambler’s judgement by 

attempting to match the outcomes with the sample space. 

Another situation in which the representativeness heuristic can lead to erroneous judgement is 

when a specific condition is regarded as more probable than a single general one, often 

referred to as the conjunction fallacy. For example, given a pen portrait description of Linda 

as a woman who is single, outspoken and very bright, and deeply concerned with issues of 

discrimination and social justice, it is not unusual for subjects to respond that Linda is more 

probably a bank teller and active in the feminist movement than that Linda is a bank teller. 

Kahneman and Tversky argue that the representativeness heuristic will often provide correct 

judgments but, since representativeness does not allow for the vagaries of random chance, 

nor the laws of probability, there will be situations in which representativeness generates the 

wrong judgement, a systematic error that the authors refer to as ‘bias’. 

A second major heuristic identified by Kahneman and Tversky is ‘availability’. People 

sometimes make a judgement about the chance of an event on the basis of how easily they are 
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able to evoke particular instances of the same or similar events. For example, the risk of a 

crash by the aeroplane in which you are travelling may seem disproportionately high (when 

compared to the frequency of recorded accidents) if there has been a recent widely reported 

tragic case of such an incident in which many people died. As with representativeness, the 

availability heuristic will often generate a correct judgement but how easily instances of an 

event can be evoked is highly sensitive to the salience of the event. The salience of an event 

is not generally related to its likelihood, which results in a bias inherent in the availability 

heuristic. 

In the last ten years there has been further research on the trajectory over time of heuristics 

and biases and errors. Bennett (2014) studied 163 first year college students (though this 

group was divided into several treatments so the sample size for any one experiment was in 

the low thirties). The study found that students working on tasks inspired by the Monty Hall 

problem demonstrated a strong tendency for their decisions to be shaped by the ‘endowment 

effect’, an unwillingness to tempt fate by changing one’s mind about a decision in the light of 

further information, even when a rational decision according to probability theory would be 

to do so. 

Chiesi and Primi (2009) investigated how the errors due to negative (and positive) recency 

developed or receded with age. They tested 23 primary school third graders, 25 primary 

school fifth graders and 35 college students. They found that, whereas positive recency (in 

which, for example, the gambler would bet on another red number at the roulette wheel after 

a sequence of red numbers) decreased with age, the negative recency effect was unaffected 

over time. 

Kustos and Zelkowski (2013) examined misconceptions in probability tasks in the form of a 

survey consisting of open-ended structured questions for between 500 and 600 students 

across grades 7, 9, 11 and also those of 40 third year pre-service mathematics teachers. These 
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misconceptions included inter alia recency effects and representativeness, in other words 

some of the errors that arise, according to Kahneman and Tversky, from biases in heuristic 

thinking. They found that the recency effect and representativeness dissipated with age. 

There is an evident discrepancy between the above two studies of how misconceptions 

arising from heuristic thinking develop. The large-scale study of Kustos and Zelkowski 

suggests that factors in the development of students in middle to high achieving schools in 

Alabama have a positive impact on the students’ probabilistic reasoning. Although the 

researchers offer implications for teaching, these must be regarded as speculative as 

pedagogy was not investigated in the study. The smaller study of Chiesi and Primi took place 

in Italian public schools and it is entirely possible that factors impacting on the development 

of these students were very different. It is also possible that the sample size in this study was 

too small. Further research is needed before we can understand these conflicting results and it 

may be that a better theoretical understanding of heuristic thinking is needed before we can 

really predict how errors might be affected by schooling or age. A new theoretical 

understanding is perhaps now beginning to emerge and is discussed later in this section. 

6.2.3 Criticisms of Kahneman and Tversky’s Original Work on Heuristics 

The main critic of the heuristics and biases approach of Kahneman and Tversky has been 

Gerd Gigerenzer. In his own work, Gigerenzer has advocated the use of natural frequencies 

instead of probabilities or proportions to communicate risk (e.g., Meder and Gigerenzer 

2014). Bodemer, Meder and Gigerenzer (2014) demonstrated that people with a wide range 

of numeracy levels were less likely to interpret relative risk reductions in heart disease as 

absolute reductions when the baseline risks were presented in frequency format than when 

they were presented as percentages. We note however that Diaz and Batanero (2009) 

conducted a comparison of performance amongst 206 students, who took a test after a 

teaching unit on conditional probability, with a comparable group of 177 students, who took 
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the test before the course. They argue that detailed analysis of the types of errors apparent at 

different stages of a solution led them to teaching approaches that have demonstrated 

improvement in performance, even when probabilities rather than natural frequencies were 

used in conditional probability problems. (Specific cases where they did not find 

improvement are reported below.) 

Gigerenzer (1991) has argued that some of the errors identified by Kahneman and Tversky 

disappear when the information is presented in a frequency format. Kahneman (1996) in turn 

has responded that their own studies supported the notion that presentation format impacted 

on the use of heuristics. However, he argued that this did not undermine the observation that 

subjects made systematic errors when presentations were not frequency based. Kahneman 

added that, though these errors might have been reduced, they did not disappear when the 

format was changed to one of natural frequencies, except perhaps in some very specific types 

of heuristic, such as the conjunction fallacy. Interestingly, in the Diaz and Batanero (2009) 

study, using probabilities rather than natural frequencies, the conjunction fallacy was one of 

the few errors that was resistant to improvement through their teaching methods. 

Gigerenzer (1994) has also argued that there are difficulties with Kahneman and Tversky’s 

focus on errors, which requires a normative position against which to judge the subjects’ 

responses. They argue that there is fundamental disagreement amongst statisticians about the 

nature of probability, especially in relation to unique events, where a frequentist 

interpretation of probability does not apply. Of course, in many situations frequentist and 

subjective interpretations of probability converge and Kahneman (1996) pointed out that 

much of their historical work was not based around subjective probabilities. In fact, 

Gigerenzer’s (1993) philosophical position regarded people’s use of heuristics as rational 

acts, where decision-making apparatus has evolved so that decisions can be made when time 

and resources are limited. In his view, such apparatus rationally seeks out heuristic-based 
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methods of decision-making at the expense of accuracy and that these rational methods can 

be more accurate than formal methods. Hence, whereas Kahneman and Tversky have 

presented a fallible human who makes errors due to the use of inherently biased heuristics, 

Gigerenzer has offered a rational human who uses heuristics that are often accurate to make 

quick decisions on complex judgements of chance. 

Perhaps, this theoretical difference goes to the heart of the prolonged dispute that has 

stretched across many publications, through the 1980s and 1990s. Although in his review, 

Shaughnessy (1992, p. 470) referred to the Kahneman and Tversky work as providing a 

theoretical framework for mathematics educators, one criticism of the work has been that it is 

in fact atheoretical. In response, Kahneman (1991) argued: 

I take the distinctive feature of theory to be a commitment to completeness (within 

reason) and a consequent commitment to critical testing, in a specified domain of 

refutation, which is often quite narrow. (p. 143) 

The difficulty for educationists lie in how to interpret Kahneman and Tversky’s original work 

without a theoretical account of knowledge, thinking and learning. The catalogue of errors 

might be interpreted as suggesting that fallibility with respect to judgements of chance is 

integral to the human condition, which would be a bleak interpretation for those who hope to 

intervene in a student’s understanding of probability. On the other hand, perhaps awareness 

of the bias in the use of heuristics, such as representativeness and availability, could be 

sensitised with the possible effect of improved judgements of chance. Clearly, as 

psychologists with an interest in decision-making, Kahneman and Tversky were not 

attempting to offer advice to educationists. Nevertheless the recent publication, ‘Thinking 

Fast and Slow’, by Kahneman (2011a), does situate the original research in a theoretical 

framework, which makes it possible to interpret the implications of the original work in new 
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ways, and perhaps sheds new light on the theoretical difference between Kahneman and 

Gigerenzer. 

6.2.4 Heuristics as Part of System 1 and System 2 Thinking 

Kahneman (2011a) has recently adopted dual process theory, and in particular the 

terminology of Stanovich and West (2000), to refer to System 1 thinking as automatic, quick 

and requiring little or no effort with no sense of voluntary control. In contrast, he stated that 

System 2 thinking is effortful, often involving complex computations, associated with 

agency, choice and concentration. To take one of Kahneman’s examples, look at the 

following problem: 17 x 24. System 1 tells you immediately that this is a multiplication 

problem (and may even allow you to estimate a rough answer). However, to compute the 

actual value requires the slow thinking of System 2. Loosely speaking, if System 1 were 

regarded as intuition, System 2 could be thought of as formal reasoning. Kahneman argued 

that much decision-making, and certainly that which involved the heuristics he had identified 

in his earlier work, operated at the automatic, largely subconscious, level of System 1, 

whereas the careful application of scientific theory and procedures to reach a decision 

demanded the effort of System 2. While System 1 by default was triggered automatically to 

make quick decisions, often with limited evidence, occasionally System 2 was activated when 

System 1 ran into trouble, such as when System 1 did not generate an answer, but System 2 

required more time and resources. We can offer another illustrative example taken from a 

probability study by Kazak (2015). Consider a game in which two bags contain counters. One 

bag has 3 blue counters and 1 red counter. The other has 1 blue and 3 red counters. A player 

chooses one counter from each bag and wins if the colours match. Typically, the symmetry of 

the bags leads students to a swift judgement (System 1) to think the game is fair insofar as 

there appears to be an equal chance of winning. However, a careful calculation of the sample 

space (System 2) shows that the chances of winning and losing are not equal.  

�
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It is worth noting that Fischbein (first in his seminal work of 1975 and then through many 

subsequent publications) developed a substantial account of the part played in probabilistic 

thinking by our primary (unschooled) and secondary (systematically-trained) intuitions. The 

description of System 1 thinking seems to match rather well this account of primary and 

secondary intuitions. 

It is interesting to note that Babai, Brecher, Stavy and Tirosh (2006), studying probabilistic 

reasoning, reported results that could be interpreted as supporting the operation of System 1 

and System 2 in that reasoning. They studied the responses and response times of 68 16 and 

17- year-old Israeli students to 20 ‘congruent’ test items where the solution was expected to 

be in line with an intuitive response and 20 ‘incongruent’ items in which the solution was 

regarded as counter-intuitive. They found not only that accurate responses were more 

prevalent amongst congruent items but also that correct responses to congruent items were 

quicker than correct responses to incongruent items. This finding is consistent with System 1 

finding immediate solutions to the congruent items but System 2 needing to find a more 

effortful solution to the incongruent items. 

System 1 cannot be switched off (Stanovich and West 2000), so training System 2 to be less 

accepting of System 1 when System 1 readily finds a solution may become the focus for 

educationists. In Fischbein’s terms, this could be one focus for promoting secondary 

intuitions. This is especially important for teachers and researchers of probabilistic thinking, 

identified by Kahneman as a conceptual field where System 1 often uses non-stochastic 

intuitions to respond to uncertainty. 

At one level, we might recognise here Gigerenzer’s portrayal of an evolved system that 

allows the heuristics (of System 1) to operate much of the time, perhaps forgoing accuracy 

(of System 2), for the benefit of speed (of System 1). Kahneman identifies a rich host of 

mechanisms that System 1 uses in order to reach quick answers to questions. For example, he 
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claims that one technique is to substitute an easier question than the one actually posed. 

According to Kahneman, substitution is in fact a particularly prevalent cause of heuristic 

errors in the field of probability and statistics. For example, System 1 cannot correlate 

information about baseline frequencies alongside intuitions about resemblance and so the 

representativeness heuristic tends to determine the decision. According to Kahneman, faced 

with a question about likelihood, System 1 substitutes a simpler question about resemblance. 

Another example is apparent when System 1 substitutes a question about the frequency of an 

event with a question about how easily similar instances come to mind, with the consequence 

that the availability heuristic tends to determine the answer. 

Chernoff (2012) demonstrated the use of attribution substitution in probabilistic reasoning 

amongst 59 pre-service elementary and middle-school teachers. In an unusual variation on 

the tasks typically used to test for representativeness, the subjects were asked which of two 

answer keys (A C C B D C A A D B or C C C B B B B B B B) was least likely to be the 

answer key for a 10 question multiple choice maths quiz, each question having four possible 

responses. They were also asked for an explanation. (An answer key is the coded list of 

correct responses.) Chernoff concluded that certain individuals, when presented with one 

question, possibly unknowingly answered a different question, substituting a variety of 

heuristic attributes, such as ‘most resembling’ in place of ‘most likely’. 

In contrast to Gigerenzer’s emphasis on the rationality of people’s use of heuristics, 

Kahneman’s focus remains on how people’s reliance on System 1 leads to systematic errors. 

6.2.5 Implications of System 1 and System 2 for Probabilistic Thinking 

One of System 1’s techniques for making quick decisions is to readily draw causal inferences 

from the evidence immediately available. When presented with data, System 1 will begin to 

observe patterns and form impressions as possible causal explanations. System 2 typically 
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accepts these explanations. This accounts for how we mistakenly see patterns in random 

behaviour, design in arbitrary events, intention in the accidental. According to Kahneman, 

this technique of System 1 explains why people, when presented with randomly generated 

data, use heuristics to predict how the sequence will extend. This attribute of System 1 also 

provides an account of why people confuse association with causation, attributing causality to 

patterns in data that might have no causal connection in reality: 

people are prone to apply causal thinking inappropriately to situations that require 

statistical reasoning. Statistical thinking derives conclusions about individual cases from 

properties of categories and ensembles. Unfortunately, System 1 does not have the 

capability for this mode of reasoning; System 2 can learn to think statistically, but few 

people receive the necessary training. (Kahneman 2011a, p. 77) 

In the Diaz and Batanero (2009) study, participants often confused causality and 

conditionality, and they typically assumed that the likelihood of an event could not be 

affected by the likelihood of an event that has already happened. These errors were resistant 

to improvement through their teaching methods. Perhaps because System 1 searches for 

causations, there is a tendency to account for conditional relationships as if they were causal 

with time dependence. 

The difficulty people have in recognising a situation as amenable to a statistical interpretation 

has been well documented. Konold (1989) referred to people’s tendency to focus on what 

happened, rather than on strategic probabilistic approaches, as the ‘outcome’ approach. Thus, 

focussing on outcomes, System 1 might easily infer causations even when the patterns 

noticed are explained merely by the vagaries of chance. 

Lecoutre, Rovira, Lecoutre and Poitevineau (2006) investigated how 20 grade 3 pupils, 20 

psychology researchers and 20 mathematics researchers, all based in Rouen in France, 
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decided on whether given situations might involve randomness. 16 items were presented on 

cards and varied according to whether: 1. the items were events from everyday life 

experiences or a repeatable process that might involve random variation; 2. the items 

addressed the subject as ‘you’ or not; 3. the possible outcomes were equally likely or 

asymmetric. First the subjects were asked to categorise the 16 items for themselves and then 

they were asked which items involved randomness. The researchers concluded that subjects 

decided randomness was involved when they could recognise probabilistic reasoning, for 

example by being able to compute a probability, making probability rather than randomness 

the foundational idea. Subjects decided randomness was not involved when they thought 

determinism played the larger part or when causal factors could be identified. Since System 

1, according to Kahneman, is constantly searching for causal patterns, it is perhaps not 

surprising that the possibilities for a stochastic approach tend to be ignored and people 

demonstrate the outcome approach. 

Smith and Hjalmarson (2013) examined 32 pre-service mathematics teachers’ conceptions of 

random processes with respect to the traditional game of ‘rock, paper, scissors’. Teachers 

found it difficult to reconcile equality of winning outcomes for each player with the human 

interference apparent when choosing how to place their fingers in the game. System 1 all too 

easily recognises the human element as a causation but this conflicts with notions of fairness, 

often associated with randomness (Pratt 2000, Paparistodemou, Noss and Pratt 2008, 

Paparistodemou 2014). The pre-service teachers did ultimately decide that the outcomes were 

not generated randomly. The researchers concluded that understanding of the nature of 

randomness developed during their instructional sequence as a result of making the 

generating process explicit and focussing on whether that constituted random generation or 

not. 
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In their early work, Kahneman and Tversky introduced the so-called ‘Law of Small 

Numbers’ to describe how people behave as if the Law of Large Numbers applies to short 

sequences as well. There is a tendency to underestimate the need for samples with large 

numbers in order to draw reliable inferences. Kahneman now explains this in terms of System 

1. When samples are small, apparent patterns can be identified simply because extreme 

results are more likely to happen than if the sample were large, and System 1 tends to 

attribute causal explanations to those patterns. 

More broadly, Kahneman argues that we easily think associatively, metaphorically and 

causally and these styles of thinking are more suited to System 1 than is statistical thinking. It 

remains an open question as to whether educationists will be able to find ways of training or 

educating their students such that System 2 would be less accepting of System 1 answers in 

identifiable scenarios. There is some evidence, presented below, to suggest that this may be 

possible. At the point that System 2 is required to affirm System 1’s answer, it might be 

possible to teach System 2 to be less easily convinced in certain scenarios that capture typical 

probabilistic and statistical situations. 

6.2.6 Intervention Studies on Heuristics and Biases 

Below, we focus on intervention studies, which may suggest pedagogic methods to address 

the difficulties that seem to be generated through System 1 thinking. 

Fast (2007) conducted a study of 54 female Zimbabwean students. A test, consisting of 

questions of the sort used by previous researchers to identify misconceptions, was 

administered. The students were found to make errors in their responses that were consistent 

with representativeness, availability and other heuristics. Source analogues were constructed 

and offered to the students through interviews. These analogues were designed to be 

structurally similar to the initial test items but were intended to generate normative responses 
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and so be the basis of knowledge reconstruction, which was evaluated as generally 

successful. For example, a source analogue might pose a similar problem to that posed by the 

original test item but with the situation amended so that the numbers were more extreme. 

Thus, in the original test, subjects were asked whether a sports team, thought to be better 

performer, would be more likely to win against a supposedly inferior team in a playoff based 

on 5 matches or 9 matches. In contrast, the analogue question compared a single play-off 

match with a 5-game playoff. The intention was that subjects would be able to use common 

sense to find the correct response to the analogue question, and then recognise its structural 

similarity with the original test item. A delayed post-test suggested that the analogues 

continued to provide anchors for normative thinking one month later. The process of 

knowledge reconstruction was seen as critical. Even though this research was based on a 

fairly small and specific group, the above intervention raises the question whether, in 

Kahneman’s terminology, the use of analogues might offer a bridge towards normative 

thinking by sensitising System 2 to a set of scenarios in which System 1’s automatic and 

quick response might otherwise be problematic. 

Another approach has been demonstrated over several years, in the work of Pratt (2000) and 

Pratt and Noss (2002, 2010), where the intervention was based around children mending 

computer-based ‘gadgets’, virtual simulations of everyday random generators, whose 

configuration could be edited to make them work properly. These 10 to 11-year-old children 

tended not to recognise that attributes of randomness in the short-term (e.g., unpredictability, 

lack of control over the outcomes, irregularity in results) differed from attributes of 

randomness in the long term, at least from the aggregated perspective (where relative 

frequencies become predictable and aggregated results have a regularity to them). From the 

Kahneman perspective, these children’s System 1 heuristic thinking appeared to suggest that, 

when chance was operating, it was just a matter of luck. By working with the gadgets, the 
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children gradually became aware of patterns in the aggregated view over the long term. Pratt 

and Noss (2010) concluded that the key elements in the intervention design were: 1. enabling 

the testing by children of their personal conjectures; 2. seeking to enhance the explanatory 

power of knowledge that might offer a route to normalised knowledge; 3. constructing a task 

design that would be seen by the children as purposeful and allow them to appreciate the 

power of the mathematical idea of distribution; 4. designing a representation of distribution 

that could be initially used as a control point by the children and subsequently become a 

representation with predictive power. These design constructs perhaps offer some further 

insight into what might be needed in order to sensitise System 2 to the need to distinguish 

between scenarios with small versus those with large numbers. 

Paparistodemou et al. (2008) also used a computer-based microworld to study 23 5 to 8-year-

old children’s ideas about fairness. The children were challenged to build a lottery machine 

by arranging a spatial configuration of red and blue balls, off which a small white ball would 

bounce. When the white ball hit a red ball, a character called the ‘space kid’ moved in one 

direction and when a blue ball was hit, the space kid moved in the opposite direction. The 

aim was to keep the space kid near to his starting position. Some of the children’s 

configurations exploited symmetry so that in effect the white ball bounced in turns from red 

to blue and back to red. Others exploited random bouncing so that it was impossible to 

predict which colour would be hit next. These two approaches were associated with 

deterministic and stochastic strategies respectively. By placing emphasis on fairness in an 

expressive environment, the children were able to imagine fairness not only in terms of turn 

taking but also in terms of the vagaries of chance. The design constructs listed above (Pratt 

and Noss 2010) seem to apply to this study as well, especially with respect to 1, 2 and 3. 

Kahneman might argue that the approach used in the Paparistodemou et al. (2008) provides 
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System 2 with new possibilities for how fairness, when detected by System 1, might be 

interpreted. 

An intervention by Canada (2006) might be seen as analogous to that by Paparistodemou et 

al. but with respect to variation in probability situations. Canada’s use of hands-on activities, 

supplemented by small-group and whole-class discussion of variation, with pre-service 

teachers may enhanced their appreciation of how variation plays a role in statistical thinking.  

Another approach that might enhance students’ System 2 recognition of the possible 

weakness in System 1’s proposed solution is to improve teachers’ pedagogical knowledge of 

the types of reasoning students might use. Such a development might alert teachers to the 

need to artificially engage their students’ System 2 thinking, with the aspiration that, after 

sufficient training, their students might begin to recognise such situations for themselves. 

There appears at least to be a deficit in teachers’ knowledge about students’ probabilistic 

reasoning. In an interesting study, Watson and Callingham (2013) examined the probabilistic 

reasoning of 247 students, mostly from years 7 to 11, and compared that to how their 26 

teachers recognised their students’ reasoning. Some of the students’ reasoning was unfamiliar 

to the teachers suggesting that there might be value in findings ways of enhancing the 

teachers’ pedagogical knowledge in this area. 

6.2.7 Discussion 

In this section, we have considered a key issue that has emerged in research on heuristics for 

making judgements of chance because of Kahneman’s (2011a) recent publication on two 

reasoning systems. Our perspective is that this issue is very important for researchers in 

statistics education, who are interested in randomness and probabilistic thinking, because 

dual process theory allows us to interpret research in the field in new ways. 
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The debate between Kahneman and Gigerenzer continues. In ‘Thinking Fast and Slow’, there 

are several references by Kahneman to Gigerenzer’s criticisms. In fact, Kahneman takes the 

opportunity to criticise Gigerenzer’s notion of fast and frugal heuristics on the basis that, in 

Kahneman’s view, there is no imperative for the brain with its massive processing power to 

be frugal. Meanwhile, Gigerenzer (2012) has described how methods of making rational 

choices are inefficient when key factors influencing the decision are unknown. For more 

recent developments in this ongoing debate, see Kahneman (2011b) and Gigerenzer (2014), 

where there is a chapter on revolutionising schools through a risk-based curriculum. This 

emphasis on a risk-based curriculum is in line with Fischbein and other researchers who have 

argued for many years that the curriculum is predominately anchored in deterministic 

reasoning (deduction, proof, algorithms) and has historically ignored stochastic reasoning 

under uncertainly (statistical thinking). 

Overall, we have summarised Kahneman’s application of dual process theory to his research 

and we have re-interpreted recent research in those terms as a means to offer insight into its 

implications. Nevertheless, we acknowledge that it is perhaps too early to offer a critical 

evaluation of the realignment of the heuristics research as proposed by Kahneman beyond the 

discussion above about implications. In subsequent sections, we address other issues which 

we see as recent key developments in research on probabilistic thinking and, although the 

emphasis will move away from Kahneman’s ‘Thinking Fast and Slow’, we invite the reader 

to attempt to interpret this research from that perspective, which might indeed yield further 

insights. 

 

6.3 Conceptual and Experiential Engagement with Uncertainty 

6.3.1 Introduction 

�
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Probability is a means to quantify uncertainty in random processes. Understanding how the 

concept of probability historically developed provides a perspective for interpreting current 

research results on students’ conceptions of probability. One important aspect of probability 

that appeared in the mid 1600s is its duality (Hacking 1975, Weisburg 2014). The dual notion 

of probability implies that on the one hand probability is considered as degree of belief 

(subjective notion) and on the other hand it refers to stable frequencies in the long run 

(objective notion). Another approach to estimating probability, especially in games of chance, 

involves a priori method that requires an assumption of equiprobability. 

Accordingly, there are three main schools of thought in probability theory that have different 

conceptions/interpretations of probability. From the classical view, the probability of an event 

is a ratio of the number of favoured outcomes to the total number of equally likely outcomes. 

In the frequentist view, the probability of an event is defined as the limit of the relative 

frequency of the observed outcomes as the number of trials increases indefinitely when a 

random experiment is repeated under identical conditions. The subjective interpretation of 

probability emphasizes personal probability relative to our background knowledge and 

beliefs. 

The ongoing historical debates about different interpretations of probability have been also 

reflected in school curricula and in teaching of probability, such as theoretical, empirical, and 

subjective probabilities (see Jones et al. 2007). While existing research on heuristics revealed 

the inconsistencies between students’ informal conceptions of probability and formal theory 

of probability (see earlier section on heuristic thinking), many recent research studies 

investigated how students’ probabilistic conceptions developed and the ways to support them. 

In this section we focus on this body of research. The first part focuses on research that is 

primarily about students’ understanding, though we suggest implications for teaching. 
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Subsequent parts consider how such understandings might be influenced by teachers, through 

the tasks they choose, their pedagogic approaches, and the tools they offer to their students. 

6.3.2 Recent Research on Conceptual Development 

Given the historical development of various meanings of probability, the concept of 

probability has a slippery aspect. Furthermore, the seminal work by Piaget and Inhelder 

(1951) and Fischbein (1975) offered a starting point for much research, reviewed in detail 

elsewhere (Shaughnessy 1992, Borovcnik and Peard 1996), that showed how the learning of 

probability is troublesome. More recently, several researchers have been particularly 

interested in the development of these conceptions from a variety of theoretical perspectives. 

Below we first summarise that work and then, in the final subsection, we draw together the 

implications for teaching. 

Kafoussi’s (2004) study focussed on the early development of quantitative reasoning about 

the likelihood of chance events during a classroom teaching experiment in a kindergarten. 

Individual interviews with children were conducted before and after the teaching experiment. 

Responses of the 5-year-old children during the pre-interviews tended to rely on subjective 

beliefs when judging the likelihood of given events. While children were able to identify all 

possible outcomes of a single-stage chance experiment, they could not give a complete 

answer for a two-stage experiment. They also seemed to have difficulties in comparing the 

likelihood of events when the task involved comparing of numbers of objects in a box rather 

than sizes of sections on a spinner. The post-interview results suggested considerable 

progress in children’s probabilistic thinking showing a shift from subjective conceptions to a 

‘naive quantitative reasoning’ as in Jones, Langrall, Thornton and Mogill’s framework (1997, 

p. 121). Kafoussi argued that 5–year–olds’ conceptual development was fostered during the 

teaching experiment as they began to: 1. discuss what counted as ‘different’ outcomes in a 

two-stage experiment; 2. consider the empirical results from an experiment as a solution to a 
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probability problem; 3. predict the results of a probability situation with equiprobable 

outcomes without conducting an actual experiment. 

Prediger (2008) reported on a clinical interview study with ten pairs of 10–11-year-old 

children by focussing on their individual conceptions of chance situations in a game context 

before any probability instruction at school. Prediger found three categories of conceptions 

when children were explaining or justifying the outcomes or their predictions: everyday 

conceptions, empirical conceptions and theoretical conceptions. She was cautious about 

simply making a correspondence between these individual conceptions and three 

interpretations of probability (subjective, frequentist and classical). She suggested that some 

of these student conceptions could later be developed into a subjective conception of 

probability or a frequentist conception. However, one pair of students seemed to develop a 

notion of a classical interpretation of probability when talking about the number of different 

ways to find the sum of two die. Apart from this one example where the students had a 

learning trajectory progressing from everyday conceptions to the classical conception of 

probability, the other pairs seemed to move back and forth between different conceptions. 

Prediger however did not treat the individual conceptions that were not theoretically sound as 

misconceptions in a traditional sense (i.e. (mis)conceptions to be substituted by the 

mathematically appropriate ones). Using the approach of horizontal development in the 

conceptual change research tradition, she considered students’ everyday conceptions “as 

concurrent conceptions which co-exist with newly developed mathematical conceptions even 

in the long run” (Prediger 2008, p. 142). Similar to previous findings (Konold, Pollatsek, 

Well, Lohmeier, & Lipson, 1993; Pratt & Noss, 2002), the students’ fluctuations between 

different conceptions during the task suggested that an individual might hold a range of views 

(from informal to formal) at the same time and use different ones depending on how they 

perceived the stochastic situation or what they paid attention to (single outcome vs. long run 
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or short term vs. long term contexts). The horizontal view suggested a complementary 

perspective to the vertical view of conceptual change focussing on transformation of 

misconceptions to mathematical conceptions. Adopting this approach to conceptual 

development in probability seemed to provide a valuable perspective on ‘typical’ persevering 

misconceptions and how to re-conceptualise them to help learners. 

Furthermore, Schnell and Prediger (2012) applied the vertical and horizontal conceptual 

change approach to the development of students’ conceptions of the empirical law of large 

numbers. However, their main focus in this paper was on the theoretical contribution of their 

fine-grained method for analysing the microprocesses of constructing conceptions by using a 

notion of ‘construct’ as the unit of analysis and of building links among them as a webbing of 

constructs. By microprocesses, they referred to moving from an initial construct to an 

advanced one or changing the function of a construct as new relations between constructs 

were formed. Schnell and Prediger argued these microprocesses would contribute to the 

vertical and horizontal conceptual changes, suggesting the possibility of a successful 

trajectory from a ‘haphazard’ view of changes in the chance outcomes to a stabilized view of 

patterns in the long-term context. 

As shown in previous research on heuristics, students often come to classrooms with 

alternative conceptions of probability. Teachers need to be aware of these different 

interpretations of probability for helping learners develop the formal ideas. From this 

perspective, the study of Liu and Thompson (2007), focusing on teachers’ understandings of 

probability on various tasks, is of importance. Research was conducted with eight high school 

teachers participating in an 8-week seminar on teaching and learning of probability and 

statistics with deeper understanding from a constructivist perspective. Liu and Thompson 

focused on teachers’ ‘stochastic conception of probability’ which they aligned to the 

frequentist view; in contrast, they argued that a ‘relative proportion conception of probability’ 
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can sometimes be drawn upon without consideration of a repeatable stochastic process. Some 

other non-stochastic interpretations of probability, observed in teachers’ responses and 

discussions, seemed to resemble those that students often have, for example: 1. the outcome 

approach (Konold 1989); 2. reduction of sample space for a probabilistic event (i.e. given that 

either an event will happen or it will not happen, the probability is either 1 or 0); 3. the 

principle of indifference approach to probability (i.e. the probability is 50% because an event 

may happen or not). Liu and Thompson argued that these non-stochastic interpretations 

would actually depend on how people conceived the given situation. 

6.3.3 The Impact of Task Design on Conceptual Understanding of Probability 

Conceptual development of probabilistic ideas is, of course, shaped by experience. For 

example, according to Ainley, Pratt and Hansen (2006), students’ conceptual understanding 

of the utility of a probabilistic idea is connected with their sense of the purposefulness of the 

task in which they are engaged. In pedagogic situations, tasks set by the teacher can 

sometimes seem artificial, lacking purpose or relevance from the perspective of the student, 

perhaps because the teacher is very aware of their responsibility to teach the syllabus. The 

challenge, and it is recognised as non-trivial, is to create tasks that are seen as purposeful by 

the student but result in the student gaining appreciation of how the statistical idea is 

powerful in helping them to complete the task. 

An example lies in Pratt’s (2000) study of children configuring computer simulations of 

random generators such as coins, spinners and dice, referred to as gadgets. The children 

found the task of trying to make the gadgets work properly purposeful and it led inexorably to 

them gaining a sense of how a probability distribution, contextualised in this study as the 

workings box of the gadget, had the power to predict aggregated outcomes in the long term 

but not in the short term. More generally, Ainley et al. suggested a range of heuristics for 

designing tasks that are likely to connect purpose and utility; tasks might: 1. have an explicit 



International Handbook on Research in Statistics Education  Part II April 28, 2017 

27 

end product; 2. involve making something for another audience to use; 3. contain 

opportunities for pupils to make meaningful decisions. 

6.3.4 Scaffolding and Dialogic Thinking 

As seen in the previous sections, misconceptions or biases that hinder students’ probabilistic 

thinking are well documented. There are a few research studies examining how the pedagogic 

approach of the teacher might facilitate learning of probability. 

Corter and Zahner (2007) initially worked with 26 graduate students in an introductory 

statistics course to examine the use of external visual representations in probability problem 

solving. Each participant was asked to solve eight probability problems using a structured 

interview protocol. This exploratory study indicated that students used a variety of visual 

representations and that the appropriate ones tended to facilitate students’ problem solving. 

Zahner and Corter (2010) further researched the role of the external visual representations on 

solving probability problems (such as what kinds of representations were used for different 

problems, how and when) with another 34 graduate students. The interview-based research 

suggested that certain representations used spontaneously by the students helped them 

perform better in solving particular problems compared to those not using any. Selecting and 

using appropriate external representations in presented problems seemed to be an important 

part of the problem solving process in this study. 

Ruthven and Hofmann (2013) described the development of a probability module for early 

secondary school using classroom based design research. A distinctive feature of this module 

was its pedagogical approach that was based on prior research on effective ways of teaching 

mathematics and science, especially in the UK context. This pedagogical intervention 

involved a teaching approach where students were encouraged to express their ideas, give 

explicit reasons for their thinking and take different perspectives, an approach termed 
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‘dialogic’ (see Mercer and Sams 2006). Dialogic talk used in small group work and whole 

class discussions during the activities became a tool that helped students move from their 

informal ideas about probability, including some of those heuristics and biases mentioned 

above (mainly used in System 1 thinking mode) to formal probabilistic reasoning (i.e. System 

2). Further evidence from Kazak, Wegerif and Fujita (2015a), working with groups of 10 to 

12-year-old children, supported the idea that scaffolding for dialogue as well as for content, 

alongside the use of technological tools, helped to generate breakthroughs in probabilistic 

thinking. 

Kazak, Wegerif and Fujita (2015b) explored whether an analysis of two 12 year-old students’ 

activity based on dialogic theory might offer new insights compared to a Piagetian or 

Vygotskian analysis. The students were exploring the fairness of a variety of chance games, 

which they played manually but also built in TinkerPlots 2.0 software (Konold and Miller 

2011, http://www.tinkerplots.com/). The researchers found that the Piagetian and Vygotskian 

analyses ignored what for most viewers of the activity was a very obvious phenomenon. The 

recordings of the activity showed how the students engaged in laughter, sometimes quite 

raucous, a phenomenon ignored by Piaget and Vygotsky, but of great interest to Bakhtin, 

whose work inspired the dialogic approach (Bakhtin, 1986). According to the authors, 

laughter creates space and openness for participants to switch perspective, and so to take the 

point of view of the other. More generally, they argued that switching perspective was 

facilitated by the good relationship between the participants, including the teacher, good 

humour being one indicator of such a relationship. 

6.3.5 The Role of Technology 

In considering how teachers might influence students’ understanding, we have so far 

considered recent research on task design, scaffolding through external visualisations and 

dialogic approaches. We now consider the tools, in particular technological tools, that they 
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might offer their students. Research continues to suggest that certain types of technology, 

used within carefully designed situations, can offer opportunities for probabilistic learning 

that stretch beyond those available in everyday experience. Biehler, Ben-Zvi, Bakker and 

Makar (2013) provided a recent review on such possibilities at school level. That review 

emphasised in conclusion some recurrent important points in the design of the learning 

environment that incorporates the use of technology: 1. skill was needed, by the user or the 

teacher, to know when it was appropriate to adopt a hands-on approach and when software 

might help; 2. one key feature of modern pedagogic statistical software laid in its dynamic, 

visual and personal nature; 3. one key focus needed to be on reasoning with aggregates; 4. the 

tension between adopting the power that technology offered and the time it took to learn and 

adapt to that technology needed to be addressed. With our specific focus on probability, we 

elaborate below a few research-based studies which we believe add to the above list of 

specific proposals for the design of a probabilistic learning environment but which were not 

detailed in that broader review. 

Earlier, we mentioned Pratt’s (2000) study in which 10 and 11-year-old children began to 

acknowledge that there were regularities in the aggregated results of random processes even 

though the same could not be said in the short term. In the previous section on heuristics, we 

set out the design constructs that, according to Pratt and Noss (2010), supported the 

development of those insights. Apart from those aspects of the design, it is clear that the 

technological environment provided the opportunity to gather artificial experience of the long 

term because the technology offered systematic feedback, quickly and repeatedly, which 

would not usually have been the case in everyday experience. 

Similar results have been reported by Lee and Lee (2009), when children cheered for a 

chosen colour to be the most frequent in repetitions of computer simulated draws of marbles 

from a bag, only to find that the result was rather predictable, except in a short run. They 
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concluded that, in similar conditions to those reported by Pratt and Noss, students began to 

notice variability in small samples and regularity in large samples. When it came to 

interpreting the impact of adding some new data in small samples (more change/instability) 

vs. in large samples (less change, more stability) in the computer simulation results, other 

semiotic tools, such as the use of metaphors in combination with technology (Abrahamson, 

Gutiérrez, & Baddorf , 2012), helped students make sense of the visual phenomenon. 

Ben Zvi, Aridor, Makar and Bakker (2012) studied how children aged 10-11 years expressed 

uncertainty while they conducted informal investigations of data. The students used 

TinkerPlots 2.0 to make informal inferences on samples of data where the sample size was 

gradually increased. The students initially oscillated between deterministic and relativistic 

statements. Eventually, a basic probabilistic language began to emerge. The authors 

concluded that more sophisticated inference-making was encouraged by attending to 

students’ expressions of uncertainty when making judgements about trends in data. 

Abrahamson, Berland, Shapiro, Unterman and Wilensky (2006) proposed an additional role 

for the computer. The authors of the paper discovered conflicts in their interpretations of a 

computer simulation in which three boxes were randomly coloured green or blue. A single 

run resulted in any one of eight possible configurations, called keys (for example, green, 

green, blue is one key). The authors happily ran the simulation without disagreement. When 

the authors began to create probabilistic models of the situation, they discovered their 

apparent agreement was not founded on the same epistemological assumptions. It was 

possible to model either the length of a run of repeated guesses until a specific key appeared 

or the frequency of a particular key in various size samples of guesses. The authors found it 

difficult to agree on how the first model failed to generate the expected bell-shaped curve, a 

disagreement that was only resolved when the authors had had the opportunity to program the 

situations, were confident that the program was bug free and had corrected any errors in 
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thinking through discussion. Programming on the computer was for them a necessary step to 

expose and critique underlying assumptions and models, differences, which had not been 

apparent from simply running a prepared simulation. Chaput, Girard and Henry (2008) made 

a similar point about modelling, which has some commonalities with programming insofar as 

both require the learner to express their ideas about what is being programmed or modelled. 

They argued that the use of modelling in statistics education is a delicate process because of 

the problematic epistemological basis of probability. They contended that the advantage of 

using computers resides not so much in their power and efficiency as in the analysis of 

random situations that needs to be done in order to design the model and translate that design 

into computer instructions. 

In a sense, programming and discussion in Abrahamson’s reflective article above acted to 

bridge across the differing probabilistic assumptions that the authors had held. Abrahamson 

and Wilensky (2007) reported how the design of pedagogical situations, including the use of 

technology, supported students to bridge intuitively, cognitively or historically conflicting 

ideas in probability. They referred to these conflicting ideas as being at opposite poles of a 

learning axis. They set out to design bridging tools that were intentionally ambiguous with 

respect to these extremes. These tools were presented as part of a broader learning 

environment, designed to stimulate engagement with and argumentation about the 

epistemological ambiguity. There is a connection here in how Abrahamson and Wilensky 

exploited ambiguity to set up cognitive conflict, subsequently resolved through discussion, 

and how Pratt and Noss (2010) referred to blurring control and representation in the way that 

the computer-based simulations were configured and used. 

In summary, we might ask what have we learned about the role of technology in the teaching 

and learning of probability to add to the findings in the Biehler et al. review (2013). Certainly 

there is support (Lee and Lee 2009, Pratt 2000) for the idea that extended experience with the 

�
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virtual, repeatable and artificial experience offered by some technological environments can 

contribute to a focus on aggregate thinking called for in that review, with the result that 

students can begin to distinguish between variability in the short term and regularity in the 

long term. In addition, there is growing evidence (Abrahamson et al. 2006) that programming 

models might for some clarify epistemological distinctions in probability. Biehler et al. 

highlighted the concern that in some situations teachers might judge that adopting 

technological approaches is more time consuming than is warranted by the benefits that 

accrue and this could be a view taken by some teachers with respect to programming. The 

development of bridging tools (Abrahamson and Wilensky 2007) that have a degree of 

ambiguity with respect to contrasting epistemologies might offer a similar role to 

programming and be less time consuming for the student. 

6.3.6 Discussion 

In the first section of this chapter, we summarised the research on heuristics and biases and 

reviewed recent developments in theory that linked that earlier work to System 1 and System 

2 thinking. According to Kahneman’s account, System 1 thinking is relatively automatic and 

is best controlled by careful training of System 2. In the current section, we set out to review 

recent research to build on earlier reviews about how that might best be done. 

What is clear from this review is the critical role played by teachers. Examples of this, cross 

referenced to the literature drawn on in this section, are: 

1. offering more empirical hands-on experience of random variation (Biehler et al. 2013); 

2. the artful selection of digital tools and other types of external representations (Pratt 2000, 

Zahner and Corter 2007, Lee and Lee 2009, Biehler et al. 2013); 

3. focussing such experience on prediction to tease out what counts as different outcomes 

(Kafoussi 2004); 
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4. recognising the complexity of different epistemologies of probability and helping students 

to bridge the apparent discrepancies through programming or specially designed tools 

(Abrahamson et al. 2006, Abrahamson and Wilensky 2007, Liu and Thompson 2007, 

Prediger 2008); 

5. acknowledging the importance of task design, since the situation in which random 

variation is met influences how people think about probability and because purposeful 

tasks can, if carefully designed, lead to a sense of the power of the probabilistic concepts 

(Ainley et al. 2006); 

6. offering opportunities for students to express their ideas with their peers and through 

technology so that ideas can be negotiated and perhaps converge (Ruthven and Hoffman 

2006, Ben Zvi et al. 2012, Kazak et al. 2015a, Kazak et al. 2015b). 

Some of the above ways in which teachers might support learning of probability are 

especially suited to an approach in which probability is seen as a key part of creating or 

exploring models of situations that are amenable to a statistical interpretation. Modelling is 

therefore the focus of the next section in this chapter. 

 

6.4 Adopting a Modelling Perspective on Probability 

6.4.1 Introduction 

One of the striking developments in recent research on probability (and its connections to 

statistics more generally) is the increased emphasis on modelling. Models have always been a 

key element of statistics as a discipline in the way that they describe data probabilistically 

(for example in the form of probability distributions or analytical methods such as analysis of 

variance). According to Wild and Pfannkuch (1999), modelling is also an important 

component of statistical reasoning. The emergence of modelling in teaching and learning has 
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no doubt been driven by the increasing access to technology and improved software, 

especially that aimed at learners. Modelling appears to have the potential to facilitate the 

methods by which teachers can support learners, as listed in the previous subsection. Indeed, 

modelling promises to offer a connection between data and probability (Konold and Kazak 

2008) that is meaningful to learners and may provide an approach that enables learners to 

appreciate the power of probability, at a time when dice and card games have become less of 

a focus of play for the younger generation than in the past. 

Modelling approaches tend to place emphasis simultaneously on data and uncertainty. 

Models can be developed to fit real data but the fit will not be exact, requiring a probabilistic 

element to the model in order to account for the variation in the data. Computational models 

can be executed to generate virtual data, which may approximately reflect the real data if the 

model was a good one. 

Theoretical distributions and sample spaces can be thought of as models and so we begin this 

section by considering research in these areas. Subsequently, we consider research that 

addresses explicitly how a modelling perspective on probability might influence 

understanding (see Chapter 7). 

6.4.2 Understanding Empirical and Theoretical Distributions 

In their earlier review of student learning of probability, Jones et al. (2007) commented that, 

in view of its importance in curricula, it was surprising that at that time there was little 

research on student conceptions of experimental probability. They did quote limited evidence 

about the difficulty students experience in making links between the sample space of a 

random generator and outcomes actually generated. They also noted the proclivity for 

students not to realise the connection with the use of large samples until they were able to 

spend extended periods working with simulations that allowed the use of samples of any size. 
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There has since then been further research on students’ understanding of theoretical and 

empirical distributions. 

Ireland and Watson (2009), researching 10–12 year-old students, concluded that it was 

insufficient for educators to focus on the calculation of theoretical probabilities and the 

observation of experimental outcomes. According to their study, the connection between 

experimental and theoretical probability needed to be taught and experienced explicitly, by 

encouraging the creation of new correct probabilistic intuitions, the prediction of outcomes, 

the performance of experiments and the evaluation of outcomes as advocated by Fischbein 

(1975). 

More recently, English and Watson (2016) conducted such a teaching experiment on 91 9 and 

10-year-olds, who tossed one and two coins, explored relative frequencies through graphing 

in TinkerPlots 2.0, which they also used to simulate large scale tossing of coins. They 

concluded that working with the sampler in TinkerPlots 2.0 seemed to help students to 

recognise that the frequency of two heads and two tails approached 25% while the frequency 

of one head and one tail approached 50%. However, this experiment took place in only one 

school and on one school day. 

It is commonly thought that students observe how data from an experiment converges on the 

theoretical distribution. In fact, Lee, Angotti and Tarr (2010), reporting on how 11–12 year 

olds used a computer simulation to decide which of six companies were producing fair dice, 

concluded that it was not the cycling between model and data that was critical but developing 

well-connected conceptual links between model and data. Konold, Madden, Pollatsek et al. 

(2011) suggested that constructing such a link was non-trivial for some students who 

appeared to lack a notion of a ‘true’ probability. Their subject appeared to distrust the idea 

that the theoretical probability was in fact the true probability exactly because the theoretical 

probability almost always failed to predict exactly what happened when the experiment was 



International Handbook on Research in Statistics Education  Part II April 28, 2017 

36 

repeated. Indeed, to them, it was the experimental probability that reported what really 

happened. 

A teaching episode reported by Noll and Shaughnessy (2012) focussed on samples and 

sampling distributions in probability tasks. In this episode students were engaged in making 

inferences about both known and unknown mixtures of coloured objects (i.e. estimating 

population proportions) based on empirical data obtained from repeated sampling. 

Researchers studied the impact of team teaching between the regular teachers and the 

investigators across six middle and high school classrooms. They concluded that teaching 

which focused explicitly on distributions, especially sample-to-sample variability, enhanced 

students’ reasoning about empirical sampling distributions. 

6.4.3 Understanding Sample Space 

Bryant and Nunes (2012) conducted a literature review for the Nuffield Foundation on 

children’s understanding of probability. They regarded working out the sample space as one 

of four key demands in learning about probability. Moreover, generating representations, 

such as tree diagrams, organised lists, and dot plots, based on sample space outcomes can 

support drawing conclusions and provide evidence for predictions (Fielding-Wells 2015, 

Kazak and Pratt 2015). In their earlier review of student learning of probability, Jones et al. 

(2007) also noted the importance of sample space but they reported a range of difficulties in a 

concept that was not as straight forward as might be thought. They quoted research that 

identified difficulties: 1. in identifying possible outcomes even in simple random 

experiments; 2. in systematically generating all outcomes; and 3. through failing to consider 

the sample space when determining probabilities. 

Nunes, Bryant, Evans, Gottardis and Terlektsi (2014) reported on how to support generating 

and using the sample space in quantifying the probability of an event in primary grades. They 
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claimed that the conceptual schemas, such as classification, logical multiplication and ratio, 

which children begin to develop earlier in other domains (i.e. subtraction), can be used in 

understanding sample space. Nunes et al. designed an intervention study to test their 

conjecture that sample space could be taught in primary school by building on children’s 

prior knowledge of these three concepts. In their study, one group of 10-11 year-olds 

participated in a teaching programme focussing on classification, logical multiplication and 

the use of ratios to quantify the probability of an event. Another group of participants (a 

comparison group) received instruction promoting mathematical problem solving that was 

not related to sample space and probability. The third group (a waiting-list control group) was 

taught by the class teacher and did not participate in a particular teaching programme until 

after the study. The study showed that the children in the intervention programme performed 

significantly better than their counterparts in both comparison groups. However, there was no 

significant difference between the problem-solving group and the unseen control group on 

any of the post-tests. According to Nunes et al., an instructional programme promoting the 

use of tree diagrams supported students’ development of combinatorial understanding. This 

in turn was needed to understand how to generate a sample space by building on the concepts 

of classification and logical multiplication. After systematically identifying all possible 

outcomes and classifying those into favourable and unfavourable cases in the sample space, 

students used the ratios to quantify the probability of an event. We note however that the 

suggested approach in this intervention study is only applicable to limited situations where 

the classical probability definition is used, where the sample space is discrete rather than 

continuous, and where each possible outcome is equally likely. 

The aggregation of cases (as favourable and unfavourable), mentioned by Nunes et al. (2014), 

is a crucial step in determining the probability of an event by using ratios. However studies 

by Francisco and Maher (2005) and Nilsson (2007) indicate that this idea was challenging to 
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students in complex probability situations. For example, Francisco and Maher’s (2005) study 

showed that while students were able to list all possible outcomes in combinatoric problems, 

they had difficulties in identifying the sample space in a probability problem and, 

particularly, in determining the denominators of the probability ratio. 

Nilsson (2007) focussed on the notion of sample space as a model for probability predictions 

in chance games. This study explored the strategies used by students (ages 12-13) when pairs 

were asked to distribute a set of markers on a game board numbered from 1 to 12 and to play 

the game against the other group by looking at the sum of two unusual dice. Students used the 

following pairs of designed dice in the game: (111 222) and (111 222), (222 444) and (333 

555), (1111 22) and (1111 22), (2222 44) and (3333 55), where, for example, (111 222) 

represents a 6-sided die with three 1s and three 2s on its faces. In each of these four different 

game settings, an analysis of sample space for totals of two dice was required for making a 

decision about the distribution of markers on the game board. The study showed that students 

intuitively began to use what they considered as the sample space to decide the most/least 

likely totals in a given dice set-up. However, their focus was on the resulting sums by looking 

at only the proportions of numbers available on the individual dice, rather than examining the 

number of different combinations to get each sum. Hence, their incomplete sample space 

provided a limited model for their decisions in different dice set-ups. 

Abrahamson (2009a, 2009b) reported on the single case of Li, an 11-year-old student, using a 

specially designed scoop, which collected four marbles from a large pot, containing green 

and blue marbles in equal numbers. Any one scoop therefore contained one of 16 equally-

likely outcomes. First, Li was asked what would happen if the researcher were to scoop the 

marbles. Second, he was given card and crayons and asked to colour in all the different 

scoops. Third, Li was asked to create a combinations tower, in effect a histogram of the 

number of (say) green marbles in a scoop. These tasks lay a foundation for the Binomial 
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probability distribution, which is typically one of the first formal models used by statisticians 

and taught in an advanced statistics course at high school level and in an introductory 

statistics course at university level. For example, they are relevant to modelling one-

dimensional random walk problems, especially for young students (e.g., Kazak 2010) and the 

distribution of gender in 12-children families (e.g., Biehler, Frischemeier and Podworny 

2015). 

In a detailed analysis of the clinical interview that took place around these three tasks, 

Abrahamson reported that Li’s initial perception of the likelihood of events such as 2 green 

and 2 blue marbles was undermined by the need to construct the various permutations in the 

second and third tasks. Li saw no reason not to consider some of those permutations as 

redundant repeats. When the repeats were ignored, it seemed that there were five events (0, 1, 

2, 3 and 4 blue marbles in a scoop), and there was no apparent reason for not thinking of 

these five as equally likely. According to Abrahamson, it was only when Li was able to make 

a ‘semiotic leap’ that he was able to use the tools to warrant his initial correct intuitive 

perceptions. 

The use of such bridging tools might initially have been meaningless but, as the tools were 

well designed from a pedagogical and epistemological point of view, they led to semiotic 

leaps such as recognising why the events in the five-point sample space were not in fact 

equally likely. In the study reported by Pratt (2000), the students needed to re-align fairness 

away from the totals of two dice to the individual combinations in what Abrahamson would 

have termed a semiotic leap. 

Given the difficulties students often encounter in generating and using sample space in 

probability contexts, Chernoff and Zazkis (2011) suggested a new term, ‘sample set’, as a 

bridging tool between student-generated lists of outcomes and the conventional sample space 

consisting of equiprobable outcomes. A sample set was used to refer to any set of all possible 
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outcomes of an event. For example, in Abrahamson’s (2009a) four-marble task, {4 green and 

0 blue, 3 green and 1 blue, 2 green and 2 blue, 1 green and 3 blue, 0 green and 4 blue} would 

be a sample set listing all possible outcomes of the scoop experiment. Unlike some students’ 

thinking, this is not the sample space used in computing probabilities as ratios because the 

listed outcomes are not equiprobable. Consequently it leads to an incorrect answer as seen in 

Li’s case (Abrahamson 2009a). Chernoff and Zazkis argued for a pedagogical approach that 

“without compromising mathematical rigour, acknowledges the learner and serves as a bridge 

between personal, sometimes naive, and conventional knowledge.” (p. 19). 

6.4.4 The Role of Modelling 

For a typical statistician, a model can be imagined as a generator of data comprised of a main 

effect (signal) that explains much of the variation together with residual or unexplained 

variation, sometimes referred to as random error (Wild 2006). With modern software, 

computational models can actually generate data, akin to the statistician’s way of thinking 

about the model. In Section 6.3.1, we discussed the differing epistemologies of probability. 

Depending on the given situation, probability can be interpreted as a theoretical solution 

based on an equiprobable sample space, a relative frequency in the long run, or a subjective 

degree of belief. Shaughnessy (1992) advocated a modelling perspective. As seen in several 

research studies in the Jones et al. (2007) review chapter, probability can be viewed as a tool 

for modelling uncertain situations and making simulation-based inferences (Watson, Jones 

and Pratt 2012). 

Although several studies below have demonstrated some promise as to how a modelling 

approach might support aggregate thinking, in relating to distribution and sample space, 

learning to model is non-trivial. Indeed, speaking about science, Lehrer and Schauble (2010) 

emphasised the difficulties faced by novices. In fact, Pfannkuch and Ziedins (2014) proposed 

that more emphasis be placed on helping students to appreciate the purpose of modelling. 

�

�
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More specifically they suggested that models be categorised as ‘good’ or ‘bad’, or otherwise 

that no model currently exists. In that way, they suggested that students could engage in 

modelling activity either to use a good model, improve a bad model or create a model where 

one does not exist. 

The Role of Modelling in Understanding Distribution. 

Modelling promises to offer some leverage in dealing with the issues raised above about the 

challenge of connecting sample space, theoretical and empirical distribution. Konold, 

Harradine and Kazak (2007) used a data modelling approach in exploring middle school 

students’ understanding of distributions. The modelling activities in a series of tasks that 

focussed on a ‘data factory’ metaphor involved using TinkerPlots 2.0 modelling capabilities 

to create a distribution that would match the expected data in the real-world, such as hair 

length of females and males. Using a similar approach, Lehrer, Kim and Schauble (2007) 

examined 5th-6th grade students’ use of TinkerPlots 2.0 tools to model a distribution of 

repeated measurements of their teacher’s head. Student-generated models included an 

estimate value of the true length of the circumference using the median of the real 

measurements and the combination of some random errors, such as reading error and ruler 

error. Comparing simulation results in TinkerPlots 2.0 with the actual data helped students 

revise their model. Both studies suggested these types of data modelling tasks with young 

students as a foundation for important ideas in statistical inference. 

Prodromou and Pratt (2006, 2013) studied pairs of students aged between 14 and 16 years as 

they worked with a specially designed microworld where the students controlled the throw of 

a basketball. Control was exerted through sliders, which controlled variables such as the 

angle of release. These variables worked either deterministically or stochastically by 

changing the parameter value and varying the spread around that value, thus introducing 

variation into the basketball throw. Within this setting, Prodromou and Pratt (2006) focussed 
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on students’ development of two perspectives on data generated by the computer simulations, 

which were called modelling and data-centric perspectives. They distinguished the two 

perspectives on distribution as they suggested different ways of perceiving variation. The 

researchers proposed that: 1. the modelling perspective emerged when students manipulated 

the tools controlling the position and spread of the distribution; 2. the data-centric perspective 

was revealed when students focussed their attention on variation and the shape of the 

emerging data. They also argued that being able to coordinate these two perspectives was 

essential in viewing data as a combination of signal and noise, which is a fundamental idea in 

statistical thinking (Konold and Pollatsek 2002). 

Drawing upon the coordination of two perspectives on distribution, Prodromou’s (2012) work 

with pre-service primary school teachers focussed on making connection between the 

empirical probability and the theoretical probability of the sum of two dice. The findings 

showed that pre-service teachers paid attention to the variation in the empirical data 

distribution (data-centric perspective on distribution) and the stability of the relative 

frequencies in the long run with a resemblance to the theoretical distribution (modelling 

perspective). A few of them also were able to make the connection from theoretical 

probabilities (modelling) to empirical probabilities (data-centric) as a way to make 

predictions. 

The Role of Modelling in Understanding Sample Spaces. 

Konold and Kazak (2008) highlighted the model fit idea to connect the empirical distribution 

and the expected (theoretical) distribution. Within this approach students tried to make sense 

of observed data with regard to a model when making a prediction; they sometimes revised 

their model on the basis of data. Students tended to make their initial predictions based on 

their experiences or beliefs about the likelihood of random events, which were often in 

conflict with the accepted theory. Konold and Kazak argued that engaging students in 
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developing the sample space in which the compound event occurred provided a theoretical 

model and facilitated their explanations for the distribution of actual and/or simulation data 

generated in TinkerPlots 2.0. They also suggested that by evaluating differences, or the fit, 

between the expected distribution based on the sample space and the distributions obtained 

from the simulations, they began to perceive observed data as a noisy version of the 

theoretical expectation (the signal) in relation to the size of data collected. Hence, this model 

fit approach provided a context to focus students’ attention on sample space, which was often 

a challenging concept especially when students encountered compound events, as suggested 

by the studies mentioned in 6.4.3. 

Most recently, the importance of the sample space analysis is also shown by the studies 

presented at the SRTL9, which investigated the role of building models in developing 

students’ informal inference skills in games of chance (Fielding-Wells 2015, Kazak and Pratt 

2015). In the context of a chance game seen on a popular television game show, Fielding-

Wells (2015) discussed that structuring the sample space using a tree diagram provided a 

theoretical model and helped children (aged 10-11) make informal inferences based on the fit 

between the model and the data from experiments with the game device. In the context of 

another chance game involving the sum of two dice, Kazak and Pratt (2015) working with 

pre-service middle school mathematics teachers also reported on a case in which the 

probability model based on sample space emerged from engaging in both the combinatorial 

analysis of possible outcomes and empirical data both from playing the game physically and 

from simulations in TinkerPlots 2.0. 

6.4.5 Discussion 

Our review of research in this section suggests modelling as an emerging perspective for 

engaging students in probability contexts. This area of research is relatively new and still 
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exploratory in the sense that conjectures are still being formed about how to support students’ 

understanding of probability and ideas using a modelling approach. 

As seen in the studies above, one advantage of the modelling perspective is that it brings 

statistical and probabilistic ideas together. These examples generally involve focussing on the 

match between the data generated empirically and the expected distribution based on sample 

space. In several of these studies the role of technology is also worth noting in facilitating 

even very young students’ understanding of probability. In addition, the modelling 

perspective appears to be relevant to promoting informal and formal statistical inference, 

which is addressed in Chapter 8 of this Handbook, while students are expected to draw data-

based conclusions. Research specifically on modelling is reported in Chapter 7. 

6.5 Conclusion 

In this final section, we summarise in broad terms each of the three central themes. For more 

detailed findings of our analysis, please refer to the discussions in each of the three main 

sections. In addition to this broad summary, we consider gaps in the research and future 

directions. 

This chapter has focussed on research into how students learn to address uncertainty and how 

teachers support them in that process. The focus has been on that type of uncertainty that is 

more or less quantifiable. That is to say we have not discussed research on somewhat less 

tangible aspects of uncertainty, such as the ‘black swans’ (Taleb, 2010), totally unpredictable 

events that can have dire consequences. While these other types of uncertainty are socially 

very important and interesting, the statistics educator is particularly concerned about 

situations that might incorporate randomness, quantified through probability. To this end, we 

have focussed here primarily on recent research, which we have contextualised within 

previous reviews of related research. 
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In the first section of this chapter, we discussed how the research on heuristics and biases has 

been re-presented as underpinned by dual process theory, potentially offering new insights 

into the many difficulties teachers and researchers have unearthed over the years regarding 

understanding probability. In particular, the new theoretical basis for the research on 

heuristics may point to innovative pedagogies to support the triggering of System 2 thinking 

when making judgements under uncertainty. We discussed some of the more promising 

research in this area. There needs to be further research to identify how, in Kahneman’s 

terminology, System 2 might be better trained to recognise scenarios in which System 1’s 

solution is likely to be biased. In Gigerenzer’s terminology, research is needed to identify 

pedagogic approaches that lead to more accurate fast and frugal heuristics. The important 

theoretical distinction here is that Kahneman’s ideas hold out little hope for improvement in 

System 1 but rather in identifying how better to use System 2, whereas Gigerenzer would 

focus on researching better heuristics. 

In the second section, we elaborated further by considering the impact of how tasks are 

designed, technology is adopted, and more generally how students are taught on the 

development of probability as a concept. This research presents the clear conclusion that 

teachers are central if students are to develop the slow thinking of System 2 to manage in a 

more sophisticated way the quick intuitions of System 1. 

The second section summarised how, post Jones et al. (2007), there has been an increasing 

number of research studies focussing on students’ understanding of the relationship between 

experimental and theoretical probabilities with the availability of new technology tools. 

However, there is still a scarcity of research when the sample space is continuous and also in 

the area of subjective probability at the school level. We found no research on Bayesian 

methods at this level (see Chapter 15 for more on Bayesian methods). Pedagogical 

approaches, including task design, to bridging the three dominant interpretations of 

�
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probability need to be developed and tested in classroom settings. The second section ends by 

summarising what appear to be key aspects of how teachers might have a positive effect. 

Further research on task, tool and activity setting design is needed to identify how best to 

offer hands on purposeful experience that promotes discussion and prediction, and bridges 

different epistemological perspectives. 

The third section points out that, perhaps driven by advances in the use of technology and in 

software development for educational purposes, probability can be presented as a 

mathematical model of (quantifiable) uncertainty. Indeed, such software allows the student to 

express their understanding of chance in the form of computational probabilistic models that 

can be executed. A modelling perspective on probability seems to offer a bridge that might 

help learners to coordinate the potentially confusing classicist, frequentist and subjectivist 

epistemologies of probability. 

At the very least, when students create such models, they engage in activity that crosses any 

artificial boundaries that may otherwise have been set up between probability and statistics. 

Curricula have for many years tended to separate probability from statistics. Such a 

separation might render probability somewhat meaningless as students struggle to recognise 

any utility for the topic. Modelling approaches can counter that danger. As well as the 

examples described in the third section above, there are many others scattered in the book as 

a whole (see, for example, the chapter on informal statistical inference). Nevertheless, a 

modelling approach brings with it some new difficulties, touched on in the third section. 

Most educational research on modelling in this field is recent because modern technological 

tools have opened up new possibilities; perhaps as a result, the promise that modelling offers 

to help learners link probability and statistics remains open to further exploration. There 

needs to be more exploratory research that clarifies how pedagogic approaches might exploit 

the potential of modelling for probabilistic learning, while providing pathways through the 

�
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obstacles for learners that no doubt will become more evident. One challenge is how to 

design tasks that make modelling seem purposeful to learners so that they can begin to 

engage with its utility or power. Another challenge is how to provide guidance on what 

makes a model effective. At the same time, there is still need for investigating the role of 

other visualisation tools (physical materials, diagrams and so on) and teacher scaffolding in 

promoting the modelling approach especially during off-computer tasks. 

Although such research would be exploratory, there may be other research opportunities, 

which can test verifiable conjectures. Bryant and Nunes (2012) argue that much of the 

research on children’s understanding of probability is based on good ideas but that its design 

is limited. They call for many more cross-sectional and longitudinal studies as well as 

intervention projects that test causal hypotheses about the factors involved in children’s 

learning of probability. Testing causal hypotheses is difficult in educational research because 

there is an ethical dimension that resists the construction of randomised controlled trials. 

Nevertheless there are now some examples of where this has been possible and Bryant and 

Nunes call for more. The field is now relatively mature and this review alongside earlier ones 

may help to identify opportunities for this type of systematic research that tests well 

formulated hypotheses. Of course, there continues to be a need for exploratory studies in less 

well-developed topics, such as in the area of modelling, where clear and testable hypotheses 

are not yet available. 
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