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Summary. Univariate meta-analysis concerns a single outcome of interest measured across
a number of independent studies. However, many research studies will have also measured
secondary outcomes. Multivariate meta-analysis allows us to take these secondary outcomes
into account and can also include studies where the primary outcome is missing. We define the
efficiency E as the variance of the overall estimate from a multivariate meta-analysis relative
to the variance of the overall estimate from a univariate meta-analysis. The extra information
gained from a multivariate meta-analysis of n studies is then similar to the extra information
gained if a univariate meta-analysis of the primary effect had a further n.1 � E/=E studies.
The variance contribution of a study’s secondary outcomes (its borrowing of strength) can be
thought of as a contrast between the variance matrix of the outcomes in that study and the set
of variance matrices of all the studies in the meta-analysis. In the bivariate case this is given a
simple graphical interpretation as the borrowing-of-strength plot.We discuss how these findings
can also be used in the context of random-effects meta-analysis. Our discussion is motivated
by a published meta-analysis of 10 antihypertension clinical trials.
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1. Introduction

Univariate meta-analysis is well established as a statistical tool for research synthesis, when a sin-
gle outcome of primary interest is measured across several independent studies. Many research
studies, however, report data on multiple outcomes, with the primary outcome supported by
measures of one or more secondary outcomes. Multivariate meta-analysis offers the potential
for more accurate estimation by also taking the data on these secondary outcomes into account.
Another advantage of the multivariate approach is the potential for increasing the number of
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eligible research studies, since we can also include studies where the primary outcome is missing
and data are reported on only some of the secondary outcomes.

A key question in the expanding literature on multivariate meta-analysis is the compari-
son between multivariate and univariate approaches—how much borrowing of strength do the
secondary outcomes contribute to the estimation of the primary treatment effect? The empir-
ical examples that were discussed by Sohn (2000), Simel and Bossuy (2009) and Trikalinos
et al. (2014) mostly showed rather little difference between the results of multivariate and uni-
variate meta-analysis, even though in some of these examples the outcomes are quite highly
correlated. This has led some to question whether the multivariate approach is of any real
practical value. Other examples, however, suggest that taking the secondary outcomes into ac-
count can make a useful contribution (Fibrinogen Studies Collaboration, 2009; Riley, 2009;
Kirkham et al., 2012). Why do these differences arise? What is it about the statistical prop-
erties of the studies in a meta-analysis that determine the contribution of the secondary out-
comes?

By comparing the multivariate estimate of the primary treatment effect with the corre-
sponding univariate estimate taking only the primary outcomes into account, Jackson et al.
(2017) derived an expression for borrowing of strength, measuring the additional contribu-
tion which each study’s secondary outcome estimates make to the variance of the summary
primary treatment effect on top of the contribution of the study’s primary outcome estimate.
The corresponding expression for the total contribution of individual studies gives a measure
of study weights, analogous to the familiar use of study weights in univariate meta-analysis.
The aim of this paper is to re-examine Jackson’s formulae, to explore some of their conse-
quences and extensions and to offer a more transparent understanding of how borrowing of
strength depends on individual study characteristics. We generalize a number of points which
earlier references have made by using examples and simulation studies. Data from a published
meta-analysis of 10 clinical trials on the treatment of hypertension is taken as a motivating
example.

Section 2 gives our basic set-up, showing that the borrowing of strength that is given by the
secondary outcomes of the ith study can be written as an explicit function of two variance
matrices: the within-study variance matrix Vi and the harmonic average V̄ of all the Vis in the
meta-analysis. With an appropriate redefining of Vi (Section 2.2) this also covers cases where
one or more of the outcomes in the ith study is missing. Properties of the borrowing-of-strength
function are most easily seen in the bivariate case, where the borrowing-of-strength plot is a
useful way of interpreting the relative contributions of the two outcomes. The bivariate case is
discussed in Section 3 and illustrated by using data from the hypertension example. The bivariate
case is generalized to the multivariate case in Section 4, leading to a general formulation of the
necessary and sufficient conditions for a study to give borrowing of strength in multivariate
meta-analysis.

Section 5 follows Jackson et al. (2017) by showing that, at least as descriptive measures,
borrowing of strength in multivariate fixed effects models applies equally well to random-
effects models, thus allowing for between-studies heterogeneity in a way that is analogous to the
DerSimonian–Laird (DL) method in univariate meta-analysis (DerSimonian and Laird, 1986).
A simulation study based on the hypertension example shows the importance of distinguishing
between borrowing of strength as a descriptive measure (describing the data to hand) and as an
inferential measure (describing an underlying population model): a distinction which does not
arise in the same way for fixed effects models.

The final Section 6 gives a brief discussion of some of the important assumptions that are
made in this paper.
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2. The variance contribution of individual studies

2.1. Basic set-up
We consider a multivariate meta-analysis of n independent studies, each of which measures a
p × 1 vector y of treatment effect estimates corresponding to the p different outcomes. The
standard multivariate fixed effects model is

yi ∼N.β, Vi/, i=1, 2, : : : , n: .1/

The p × p variance matrix Vi in model (1) is specific to each study, but the unknown mean
parameter β is assumed to be the same for all studies (the fixed effects assumption). To start
with, we assume that all p outcomes are measured in all n studies in the meta-analysis.

Treating each Vi as known (the usual assumption), the score function for the unknown pa-
rameter β (the derivative of the log-likelihood) is∑

V −1
i .yi −β/, .2/

and so the maximum likelihood estimate of vector β is

β̂ =Ω
∑

V −1
i yi, .3/

where Ω is the variance matrix of β̂ given by

Ω=var.β̂/= .
∑

V −1
i /−1:

This can be rewritten as

Ω= 1
n

V̄ ,

where

V̄ = .n−1∑V −1
i /−1, .4/

the harmonic average of the Vis. Whether we use the actual within-study variances Vi, or crudely
approximate them all by V̄ , we end up with the same variance matrix of β̂.

Even if all p components of y are observed, we focus interest on estimating the treatment
effect for just one of these outcomes which, without loss of generality, we take to be the
first. So from now on we shall describe, for each study, yi1 as the scalar treatment effect es-
timate for the primary outcome and the remaining components of yi as the .p− 1/× 1 vector
of estimates for the secondary outcomes. In some cases the primary outcome may be clearly
identified from the context. For example, the bivariate (p = 2) example in Fibrinogen Studies
Collaboration (2009) concerned study estimates yi1 of a treatment effect adjusted for differ-
ences across a defined set of covariates, but it also included estimates yi2 which are partially
adjusted for just a subset of these covariates. The fully adjusted results are of primary inter-
est, but the advantage of including the secondary outcomes is that we can also take account
of studies which do not measure the full set of confounding covariates. In other cases, such
as the bivariate example that is studied in Section 3.2, we may be interested in all the out-
comes, in which case we can arbitrarily relabel the outcomes as appropriate. The essential as-
sumption is that we are interested in the separate (marginal) inferences to be made for one
or more of the outcomes rather than in the correlations between the meta-analysis estimates
across different outcomes. So we assume from now on that our primary interest is in β̂1, with
variance
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var.β̂1/=Ω11 = [.
∑

V −1
i /−1]11 = 1

n
V̄ 11,

where V̄ 11 is the .1, 1/ element of V̄ in equation (4).
A natural comparison for the multivariate estimate of β1 is univariate meta-analysis, which

looks only at the values of y1i and ignores the data on the secondary outcomes. The relevant
univariate model would then be

yi1 ∼N.β1, σ2
i /,

where

σ2
i =1TVi1,

and 1 is the unit vector 1= .1, 0, : : : , 0/T. The univariate estimate is

β̃1 =
∑

σ−2
i yi1∑
σ−2

i

with variance

var.β̃1/= 1∑
σ−2

i

:

Under model (1), both β̂1 and β̃1 are unbiased and normally distributed estimates of β1, and
so to compare their statistical properties all we need to know is the efficiency E, which is defined
by

E= var.β̂1/

var.β̃1/
=Ω11

∑
σ−2

i = 1
n

V̄ 11
∑

.1TVi1/−1: .5/

Necessarily, E�1 as the maximum likelihood estimate β̂1 is fully efficient. The smaller is E, the
greater is the relative contribution of the secondary outcomes, suggesting 1 − E as a measure
of the role of the secondary outcomes in the multivariate estimate of the primary treatment
effect. This combines the information in the secondary outcomes of all the studies in the meta-
analysis and so 1 −E can be thought of as a measure of total borrowing of strength, which is
equivalent to BoSRV

r in the notation of Jackson et al. (2017) (section 2.2). However, the simpler
notation 1 − E emphasizes its dependence on a basic statistical concept which may open up
useful interpretations taken from other areas of statistics: a possibility that is not immediately
obvious from the earlier notation.

A simple example here is the familiar interpretation of efficiency in terms of sample size:
for an inefficient estimate (efficiency E) to match the accuracy that a fully efficient estimate
(efficiency 1) can achieve with a sample size of n, the sample size would have to be increased
from n to n=E. Similarly, in meta-analysis, the extra information which the secondary outcomes
of n studies give to the estimation of β1 can be thought of as like the extra information that we
would obtain in univariate meta-analysis if we could measure the primary outcomes of a further
n.1 − E/=E studies. For example, if there are nine studies (n = 9) and E = 0:9, the advantage
of using multivariate instead of univariate meta-analysis is like finding the data for one more
study. This simple idea will be used several times in the analysis of the hypertension example in
Section 3.2 below.

The last expression in equation (5) is the ratio of the .1, 1/ element of the harmonic mean of
the Vis to the harmonic mean of the .1, 1/ elements of the Vis. These are the same thing if the Vis
are all the same, in which case E=1. If the Vis are different then E�1, which suggests another
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interpretation of 1 − E as a measure of the variation of the matrices Vi about their harmonic
average V̄ . This is analogous to the usual interpretation of the coefficient of variation (the ratio
of standard deviation to the mean) as a simple relative measure of the variation of a univariate
sample about its arithmetic mean.

These calculations are comparing the relative contributions which the primary and secondary
outcomes make to the estimation of β1 by using all n studies in the meta-analysis. To break this
down into the contributions of individual studies, define, for any study with inverse variance
matrix V −1,

T.V −1/= [ΩV −1Ω]11

Ω11
= 1

n

[V̄V −1V̄ ]11

V̄ 11
: .6/

We write the argument of equation (6) as V −1 rather than V to reflect the fact that all of the
formulae for multivariate meta-analysis that were presented earlier involve the study variances Vi

only through their inverses V −1
i . As we shall see in Section 2.2, this also simplifies the notation

in cases where there are missing data. Clearly, equation (6) is a function of two arguments,
V −1 and V̄ , and so equation (6) has further simplified the notation by suppressing the second
argument. We can do this because we are mainly interested in the contributions of individual
studies within the context of a given observed meta-analysis, in which case we can treat V̄ as if
it was fixed.

We use the function T.V −1/ to investigate the role of individual studies in three different ways,
analogous to the definitions of influence in regression analysis.

(a) Direct interpretation: from equation (3),

var.β̂1/=Ω11 =∑[ΩV −1
i Ω]11 =Ω11

∑
T.V −1

i /:

Hence, T.V −1
i / is the proportional contribution of the ith study to the variance of β̂1,

proportional in the sense that ∑
T.V −1

i /=1:

In univariate meta-analysis, V −1
i =σ−2

i and equation (6) gives T.V −1
i /=σ−2

i =Σiσ
−2
i which

is just the weight of the ith study in the weighted average β̂1. When p�2, T.V −1
i / can still

be interpreted as the weight of the ith study in multivariate meta-analysis, agreeing with
the weight wir that is derived from an orthogonal decomposition of the score function in
Jackson et al. (2017), section 3. However, the function T.V −1/ is not restricted to the V s
which happen to be represented in the meta-analysis.

(b) Add-one-in interpretation: if n is large and the variance matrix V is of the same order of
magnitude as V̄ , then, under reasonable conditions on the matrices involved,

.I +n−1V̄V −1/−1 = I −n−1V̄V −1 +O.n−2/: .7/

Post-multiplying each side of equation (7) by n−1V̄ and using equation (4), we obtain the
approximation [(

n∑
j=1

V −1
j +V −1

)−1]
11

=Ω11{1−T.V −1/}+O.n−3/: .8/

The left-hand side of equation (8) is the updated variance of β̂1 if we add a new study
with inverse variance V −1 to the meta-analysis. So, for large n, T.V −1/ is the proportional
decrease in var.β̂1/.
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(c) Leave-one-out interpretation: replacing V by −Vi in equation (8) similarly shows that
T.V −1

i / is the proportional increase in var.β̂1/ if the ith study is removed from the meta-
analysis.

The first of these properties is exact, but the second and third are only asymptotic (large n)
approximations. This reflects differences in the background studies being assumed for the add-
one-in and hold-one-out calculations, i.e. differences in the second argument V̄ in equation (6).
For example, if a study we are thinking of adding in happens to have the same variance V as an
existing study which we are thinking of leaving out, then the common value of T.V −1/ suggests
that the two effects would be the same. But one is defining this study’s contribution in terms
of the difference between having n + 1 studies and n studies, whereas the other is comparing
n−1 with n studies. If n is large there is no material difference between the two. Essentially, the
add-one-in and hold-one-out approximations are ignoring the effect that adding or subtracting
studies has on the value of V̄ . These distinctions are analogous to the different definitions of
residuals and influence in other areas of statistics. See Section 3 below for a clearer illustration
of some of these points in the simpler context of bivariate meta-analysis (p=2).

The definition of E in equation (5) arises from comparing var.β̂1/ with the value of this
variance if only the primary outcomes had been measured across the whole of the meta-analysis.
Similarly, for investigating the role of individual studies, we can ask what happens to var.β̂1/ if
we add in an extra study with variance matrix V but only take account of its primary outcome
estimate y1 ∼N.β1, σ2/ with σ2 =1TV 1. This will add σ−2.y1 −β1/ to the score function (2) for
the scalar β1 but will add nothing to the score function for the secondary outcomes. Hence the
contribution to the vector score function for the estimation of the complete vector β is

V −1
Å .y −β/,

where the matrix V −1
Å is defined as

V −1
Å =σ−211T = .1TV 1/−111T, .9/

the p×p matrix with σ−2 in the .1, 1/ position, and 0 everywhere else. The relative decrease in
var.β̂1/ is therefore (approximately)

T.V −1
Å /=T{.1TV 1/−111T}: .10/

We define the borrowing of strength B.V −1/ of a study with variance matrix V to be the difference
between equations (6) and (10):

B.V −1/=T.V −1/−T{.1TV 1/−111T}: .11/

This measures the contribution that the secondary outcomes of this particular study makes to
var.β̂1/ on top of the contribution that is made by its primary outcome. If B.V −1/ is 0 then
nothing is gained by observing the secondary outcomes. The notation T.V −1/ refers to the total
contribution of a study; the notation B.V −1/ refers to the borrowing of strength, i.e. how much
of this proportional increase in precision is contributed by the secondary outcomes.

Although the formula for T.V −1/ is only an asymptotic approximation for the variance effect
of adding a new study, as noted above we obtain exact results when adding over the existing
studies. We can similarly add the univariate contributions (10) over the existing studies to give
Ω−1

11 times

[Ω.
∑

σ−2
i 11T/Ω]11 = [.Ω1/.Ω1/T]11

∑
σ−2

i = .Ω11/2∑σ−2
i :

It follows that
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T{.1TVi1/−111T}=Ω11

∑
σ−2

i =E,

and so ∑
B.V −1

i /=1−E: .12/

This confirms that the efficiency of univariate meta-analysis can be interpreted as the total of
the proportional variance contributions of all the primary outcomes, and that the sum of the
borrowing of strengths of these studies is the proportion of the total variance which is attributable
to the secondary outcomes. For studies within the meta-analysis, B.V −1

i / is equivalent to BoSSD
ir

in the notation of Jackson et al. (2017), section 2.4, and the additivity property (12) is implied
by equations (11) and (12) of that section.

Both the functions T.V −1/ and B.V −1/ are linear functions in the sense that, for any positive
scalar constant k,

T.kV −1/=kT.V −1/ .13/

and

B.kV −1/=kB.V −1/: .14/

Now multiplying the matrix V −1 by k is like increasing the study sample size by the factor k

while keeping the relative magnitudes of the elements of V −1 the same. We can think of these
relative magnitudes as determined by the design of the study—characteristics of the population
from which we are sampling. The actual magnitudes of the elements of V −1 are then determined
by the sample size. Property (13) confirms that, if we add a new study to the meta-analysis and
double its sample size, then the decrease in variance will double. Property (14) shows that, if a
study gives no borrowing of strength so that B.V −1/=0, then B.kV −1/=0 for all k. So whether
or not a study offers any borrowing of strength depends only on the study’s design and not on
its sample size.

Riley (2009) noted that if the Vis are all the same then there is no borrowing of strength, and
so the secondary outcomes are then irrelevant as far as estimating β1 is concerned. This follows
immediately from the above formulation, since equation (6) would then give

T.V̄
−1

/= 1
n

=T{.1TV̄ 1/−111T}, .15/

and hence B.V̄
−1

/ = 0. And so, if all the Vis are the same, Vi = V̄ and so B.V −1
i / = 0 for all i;

hence E = 1. This also follows from a simple argument of sufficiency: if Vi = V̄ for all i then
the score function (2) is exactly equivalent to that of a single study with V = V̄ and y = Σyi.
But for any single study the estimate of βj is simply the jth treatment effect estimate yj. As
Riley (2009) implies, and already found here, borrowing of strength can arise only if there are
differences between the Vis. More generally, for there to be any borrowing of strength, these
differences must not be simply a matter of different sample sizes, but substantive differences in
the background and research methods that are used in each study. This generalizes the special
case of two groups of bivariate studies with proportional Vis that was discussed in Jackson et al.
(2017), section 2.2.1.

When the Vis differ and E < 1, as will usually be the case in practice, result (15) still holds
for any study with V = kV̄ for some scalar k, and so such a study will also give no borrowing
of strength. We could describe such a study as one with ‘average design’. This suggests that it
will tend to be the studies which are most atypical in terms of design which contribute most
borrowing of strength. Studies whose designs are fairly typical of the meta-analysis as a whole
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are likely to give little or no borrowing of strength, regardless of their sample sizes. Exactly what
this means will be investigated further in Sections 3 and 4.

2.2. Missing outcomes
The univariate effect in equation (10) is for a study in which only the primary outcome is
observed. More generally, suppose that only q of the p outcomes are observed; outcomes yj

with j = j1, j2, : : : , jq, with the remaining p−q outcomes assumed to be missing at random. We
can think of this as selecting a q-dimensional subvector from the p×1 vector y, which we can
write as JTy where J is the p×q incidence matrix

Jjk =
{

1 if j = jk

0 otherwise
for j =1, 2, : : : , p, k =1, 2, : : : , q:

Matrix J is simply the matrix of 0s and 1s which picks out the required components—the first
column has 1 in row j1, the second has 1 in row j2, and so on, with all other elements set to 0.
Such a study’s contribution to the score function for the corresponding subvector of β is then

.JTVJ/−1JT.y −β/: .16/

There is no contribution to the score function for the missing outcomes, and so this study’s
contribution to the score function for the complete vector β is expression (16) padded out with
0s for each of the unobserved outcomes, namely

V −1
Å .y −β/,

where now

V −1
Å =J.JTVJ/−1JT: .17/

Thus, to fit the multivariate meta-analysis model when one or more of the studies has missing
outcome estimates, we simply use the complete-data method as before but with the inverse of
Vi for each incomplete studies replaced by the appropriate matrix (17).

If all outcomes are measured, then q = p, J is the p × p identity matrix and V −1
Å = V −1 as

expected. If only the primary outcome is measured, then J =1 and V −1
Å is the previous case (9).

Of particular interest is when only the secondary outcomes are measured, since in this case we
have a study which cannot be included in a univariate analysis of the primary outcome but can
be included in a multivariate analysis which can then allow information about the unobserved
primary outcome to be imputed from the observed values of the secondary outcomes. In this
case, J is the p× .p−1/ matrix consisting of the .p−1/× .p−1/ identity matrix supplemented
with a row of 0s along the top.

Some care is needed in interpreting the notation V −1
Å . By replacing V −1 with V −1

Å for studies
with missing outcomes, the usual formulae for maximum likelihood estimation that was set
out earlier in this section continue to apply even if some, or even all, of the studies in the
meta-analysis have one or more missing outcomes. But, despite the notation, V −1

Å cannot be
interpreted as a matrix inverse (it is singular), or as the known value of V −1 for an incomplete
study. In reality, all the elements of V −1 are unknown parameters, but with complete data we
follow the usual convention of assuming that these are known because they can be consistently
estimated from the within-study data. However, with incomplete outcomes, only the submatrix
JTVJ of the full matrix V is estimable, and so we have an estimate of V −1

Å but not of V −1. The
rows and columns of 0s in V −1

Å imply that various unidentifiable correlation parameters within
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V −1 are being artificially set to 0. An equation such as equation (10) means that the contribution
of an incomplete study to the variance of β̂ is as if V −1 =V −1

Å . It does not mean that V −1 =V −1
Å

in the usual sense of a mathematical equality.
This discussion gives a formal justification for the more informal data augmentation view

that was taken by Riley (2009) and Jackson et al. (2011), who referred to missing outcomes as
equivalent to setting their variances to ∞ and their correlations to 0.

3. Borrowing of strength in bivariate meta-analysis

3.1. The borrowing-of-strength plot
In bivariate meta-analysis, with only one secondary outcome, we can obtain reasonably simple
explicit expressions for all the quantities that were discussed in the previous section. In particular,
the finding that borrowing of strength depends on differences between the Vis can be given a
constructive interpretation in terms of residuals in a regression model.

In the bivariate case, suppose that the variance matrix Vi of yi = .yi1, yi2/T is

Vi =
(

σ2
i ρiσiνi

ρiσiνi ν2
i

)
:

So .σi, νi/ are the standard errors of .yi1, yi2/, ρi is the correlation between them, and the inverse
of Vi is

V −1
i = 1

1−ρ2
i

(
σ−2

i −ρiσ
−1
i ν−1

i

−ρiσ
−1
i ν−1

i ν−2
i

)
: .18/

Adding equation (18) over the n studies, and taking the inverse, gives the harmonic mean

V̄ =nΩ= n

s11s22 − s2
12

(
s22 s12
s12 s11

)
.19/

where .s11, s22, s12/ are weighted between-studies sums of squares and products of the outcome
accuracies .σ−1

i , ν−1
i /,

s11 =∑ σ−2
i

1−ρ2
i

, .20/

s22 =∑ ν−2
i

1−ρ2
i

, .21/

s12 =∑ ρi

1−ρ2
i

σ−1
i ν−1

i , .22/

with weights depending on different functions of the within-study correlations ρi. As expected,
each of these quantities retains the feature of a harmonic average.

Apart from these differences in the weights, equations (20)–(22) are like the second-order
absolute sample moments of the n pairs .σ−1

i , ν−1
i /, suggesting a through-the-origin linear re-

gression model in which we can examine the extent to which a study’s primary accuracy σ−1

can be predicted from its secondary accuracy ν−1. Allowing for the different weights, consider
predicting ui from vi, where
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ui = ρi

.1−ρ2
i /1=2

σ−1
i ,

vi = 1

.1−ρ2
i /1=2

ν−1
i :

.23/

If we plot the n observed values of ui against the corresponding values of vi, the least squares
slope through the origin is ∑

uivi∑
v2

i

= s12

s22
,

and so the least squares prediction line is

û= s12

s22
v= s12

.1−ρ2/1=2s22
ν−1: .24/

Requiring the regression line to go though the origin is a natural requirement, since if we know
that a study has a very small sample size then we know in advance that both u and v will be
close to 0. The definitions of u and v in expression (23) have assumed complete data, but studies
with missing data can also be included as in Section 2.2. If only the primary outcome estimate
in the ith study is observed, then we take both ν−1

i and ρi to be 0, and so ui = vi = 0. If only
the secondary outcome estimate is observed, we take σ−1

i and ρi to be 0, leading to ui =0 and
vi =ν−1

i .
The plot of the n values of ui against their predicted values ûi turns out to be closely related

to the borrowing-of-strength function B.V −1
i / that was defined in Section 2. Using equations

(18) and (19), and evaluating the required matrix terms explicitly, we obtain

T.V −1
i /= [ΩV −1

i Ω]11

Ω11
= s2

22σ
−2
i −2s12s22ρiσ

−1
i ν−1

i + s2
12ν

−2
i

s22.s11s22 − s2
12/.1−ρ2

i /
:

Rewriting νi and σi in terms of ui and vi, and completing the square, gives

T.V −1
i /=Ω11

{
1−ρ2

i

ρ2
i

u2
i +
(

ui − s12

s22
vi

)2
}

:

The first term in the outer brackets is just σ−2
i , which is proportional to the univariate variance

contribution of the primary outcome, and so the borrowing of strength is just the second term

B.V −1
i /=Ω11

(
ui − s12

s22
vi

)2

=Ω11.ui − ûi/
2: .25/

Thus B.V −1
i / is proportional to the squared residual of the point .ûi, ui/ from the diagonal

prediction line u= û. For any other study with inverse variance V −1, B.V −1/ is similarly propor-
tional to the squared residual of its point .û, u/ from the line and so indicates the (approximate)
decrease in var.β̂1/ which we would obtain if we were to add this study to the meta-analysis.
The proportionality factor is

Ω11 =var.β̂1/= s22

s11s22 − s2
12

:

If the ith study has missing data, .ûi, ui/ is either .0, 0/ when the secondary outcome estimate
is missing, or ..s12=s22/ν−1

i /, 0/ when the primary outcome estimate is missing. In the first case,
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the point is always on the line and so, as expected, there can be no borrowing of strength. In
the second case, the point is down on the horizontal axis and so will generally have a non-zero
residual and so, again as expected, will contribute at least some borrowing of strength.

The .ûi, ui/ plot is easier to interpret if we first scale ui and ûi by the factor Ω1=2
11 , giving

wi =Ω1=2
11 ui =

(
s22

s11s22 − s2
12

)1=2
ρiσ

−1
i

.1−ρ2
i /1=2

and

ŵi =Ω1=2
11 ûi =

{
s2

12

s22.s11s22 − s2
12/

}1=2
ν−1

i

.1−ρ2
i /1=2

:

We call the scatter plot of wi against ŵi the borrowing-of-strength plot. Now the ith squared
residual from the diagonal line, .wi − ŵi/

2, is equal to B.V −1
i /. The combined variance contri-

butions of the secondary outcomes in the meta-analysis are indicated by the scatter of the points
about the diagonal regression line. If the points all lie on the line then B.V −1

i /=0 for all i and
so E=1. More generally, we can show from the earlier formulae that

1−E=∑.wi − ŵi/
2, .26/

and so 1−E is equal to the residual sum of squares of the points in the borrowing-of-strength
plot.

To aid interpretation of the borrowing-of-strength plot, equation (26) means that, for effi-
ciency E, the root-mean-squared distance of the points from the diagonal line w = ŵ is

d̄ =
(

1−E

n

)1=2

:

For example, to achieve 90% efficiency, the root-mean-squared distance is d̄ = .10n/−1=2. This
is indicated on the borrowing-of-strength plot by the two parallel lines

w = ŵ ±
(

1
10n

)1=2

: .27/

These lines give a visual benchmark for interpreting residuals in terms of efficiency. If the points
are predominantly inside, or predominantly outside, these lines, then the efficiency of univariate
meta-analysis is likely to be greater than, or less than, 0.9. As noted previously in Section 2.1, an
efficiency of 90% indicates that the information that is gained from the secondary outcomes in
multivariate meta-analysis is like the extra information which would be available in univariate
meta-analysis if we had an additional n=9 studies.

Equation (25) also gives us the necessary and sufficient condition for a study to give no
borrowing of strength. If .ûi, ui/ lies on the line, then ui = .s12=s22/vi and so

ρiσiνi

σ2
i

= s12

s22
: .28/

The left-hand side of equation (28) is the ratio of the covariance element in Vi (Vi12) to its
primary diagonal element Vi11, whereas the right-hand side is the ratio of the corresponding
elements of Ω, or of V̄ . For no borrowing of strength these are equal, and so
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Vi12

Vi11
= V̄ 12

V̄ 11
: .29/

Previously we noted that a study with Vi = kV̄ for some scalar constant k gives no borrowing
of strength. This is a sufficient but not necessary condition—all we need is that the top row (or
left-hand column) of Vi is proportional to the top row (or left-hand column) of V̄ . In particular,
there is no requirement on the secondary variance ν2

i per se. We show in Section 4 that this
generalizes to any number of secondary outcomes.

The borrowing-of-strength plot also illustrates two other aspects of borrowing of strength
which were discussed in Section 2. Firstly, for studies in the meta-analysis, B.V −1

i / is the pro-
portional contribution of the ith secondary outcome estimate to var.β̂1/ (the direct interpre-
tation), but, for a study outside the meta-analysis, B.V −1/ is only the approximate (large n)
contribution which the secondary outcome estimate would make if this study were added to
the meta-analysis (the add-one-in interpretation). We see the nature of this approximation in
the borrowing-of-strength plot. The line w = ŵ is the least squares line of best fit (through the
origin) for the n points .ŵi, wi/. But, if we add in the new study, the value of the scale fac-
tor Ω1=2

11 will change, affecting the co-ordinates for all the studies. So the residual of the new
point from the line fitted by least squares to the enhanced data will not be the same as the
residual from the line calculated from the original n studies alone. If n is large then adding one
more study will have only a small effect on the fitted line, and so these two residuals will be
similar.

Secondly, we have noted the linear property of the function B.V −1/ in equation (14). If we
multiply V −1 by k then both w and ŵ are scaled by the factor

√
k and so the squared residual

from the diagonal line is scaled by the original factor k, which means that B.kV −1/= kB.V −1/

as required. If V −1 gives no borrowing of strength then the point will simply move up or down
the diagonal line according to the value of k.

3.2. Example
Fig. 1 illustrates data from 10 clinical trials designed to test the effectiveness of hypertension
treatments in reducing the risk of subsequent diagnoses of cardio-vascular disease (CVD) and
stroke. This meta-analysis was originally published by Wang et al. (2005) and discussed fur-
ther in Riley et al. (2015) and Jackson et al. (2017). Each randomized controlled trial was
well balanced between active treatment and placebo but varied widely in size, from under 200
patients in trial 3 to almost 7000 patients in trial 5 (the trial numbers are consistent with pre-
vious tables, e.g. Table 1 of Riley et al. (2015)). Fig. 1 shows individual trial data for two
outcomes: the estimated log-hazard-ratio log(HR) for CVD, y1, and the estimated log(HR)
for stroke, y2. Values of y1 (crosses) and y2 (circles) are plotted against the within-study cor-
relations ρi, with the corresponding pairs of within-study confidence intervals for β1 and β2
shown as the full and broken line segments respectively. The small numbers to the left of the
confidence intervals identify the study numbers 1–10. The vertical co-ordinates of some of
the data in Fig. 1 have been slightly adjusted to aid clarity of the plot. Separate homogene-
ity tests of the values of y1 and y2 are both well consistent with fixed effects models, lead-
ing to univariate combined confidence intervals of .−0:374, −0:115/ for CVD log(HR), and
.−0:531, −0:235/ for stroke log(HR). It is not at all obvious from Fig. 1 whether a bivariate
approach, taking both outcomes into account, will lead to more accurate estimates and if so by
how much.

If the log-hazard-ratio for CVD is taken as the primary outcome, y1, the formulae in Section
2 give the respective univariate and multivariate estimates of β1 and their variances as



Secondary Outcomes in Meta-analysis 1189

log HR

co
rr

el
at

io
n

-4 -3 -2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Fig. 1. Graph illustrating the raw data for the example (the plotted points and horizontal line segments show
the within-study estimates and 95% confidence intervals for the hazard ratios for CVD and for stroke within
each of the 10 trials, plotted against within-study correlation): �, CVD estimate; , CVD confidence
interval; �, stroke estimate; — —, stroke confidence interval

β̃1 =−0:244,

var.β̃1/=0:00434,

β̂1 =−0:244,

var.β̂1/=0:00427:

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .30/

The estimates are virtually identical. The ratio of the variances is the efficiency E = 0:984,
showing that in this example the stroke data give very little extra information for the assessment
of CVD risk reduction. The last two columns of Table 1 give the total variance contribution
T.V −1

i / and the borrowing of strength B.V −1
i / for each of the 10 studies, confirming that none

of these studies gives any worthwhile contribution from the secondary outcome. We can check
directly that the borrowing-of-strength figures add up to 1−E. Fig. 2 shows the corresponding
borrowing-of-strength plot. Again we can check the theory by showing that the least squares
slope of these points is 1, and that the residual sum of squares is 1−E=0:016. The two dotted
lines are the 90% efficiency bars (27). All the points are well within these limits, confirming
the high efficiency of univariate meta-analysis and the minimal contribution of the secondary
outcomes in this case.

If the primary interest is to estimate log(HR) for stroke instead of CVD, then we use exactly
the same formulae but with the notation reversed appropriately, retaining the same values of
ρi and s12 but interchanging yi1 with yi2, σi with νi and s11 with s22. In terms of the original
notation we are now estimating β2, giving
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Table 1. Sample sizes, values of .σ,ν,ρ/, and percentage values of T.V �1
i /

and B.V �1
i / for estimating β1 in the example

Study Sample size σ ν ρ 100T (V−1) 100B(V−1)
(%) (%)

1 1530 0.41 1.08 0.16 2.5 0.02
2 349 0.36 0.41 0.64 3.3 0.02
3 172 0.45 0.59 0.10 2.5 0.34
4 4798 0.17 0.26 0.52 14.4 0.15
5 6991 0.17 0.33 0.42 14.3 0.10
6 2651 0.14 0.17 0.62 21.6 0.23
7 4736 0.14 0.14 0.69 21.4 0.04
8 268 1.08 0.91 0.35 0.4 0.08
9 2391 0.30 0.20 0.78 5.3 0.53

10 4695 0.17 0.17 0.62 14.3 0.04

Total 28581 100.0 1.55

β̃2 =−0:383,

var.β̃2/=0:00569,

β̂2 =−0:381,

var.β̂2/=0:00505,

with the new efficiency E=0:888. The two estimates are again very similar, but the multivariate
method is now noticeably more accurate. The borrowing-of-strength plot for estimating β2 is
shown in Fig. 3, which now shows a much greater dispersion about the regression line than in Fig.
2 (the mean-squared spread of the residuals is now close to the dotted 90% efficiency lines). Fig.
4 illustrates the proportional contributions which the studies make to var.β̂2/. This is a line plot:
the upper (full) line highlighting the values of T.V −1

i / (total contributions); the lower (broken)
line highlighting the corresponding values of T.V −1

i /−B.V −1
i / (univariate contributions). The

distance between the two lines matches the squared residuals in Fig. 3. The largest borrowing
of strength comes from the ninth study, where the secondary outcome accounts for almost
a third of the total variance contribution of that study. This study accounts for about a half
of the total borrowing of strength of all the studies, although its sample size is by no means
the largest (although it does have the largest correlation). The efficiency of 89% shows that the
variance of the multivariate estimate of β2 is about 10% lower than the variance of the univariate
estimate, which is roughly what we might expect if we could increase the size of a univariate
meta-analysis from 10 to 11 studies. In this sense, the value of including data on the 10 secondary
outcomes can be likened to the value of having the primary outcome estimate of one additional
study.

Comparing these two efficiencies shows that there is no symmetry in borrowing of strength: the
values of y1 make a modest contribution to the accuracy of β̂2 but the values of y2 make almost
no contribution to the accuracy of β̂1. More generally, we can show that, if E=1 (no borrowing
of strength) when estimating β1, then E will be strictly less than 1 (positive borrowing of strength)
for estimating β2 except in the special case of all the studies having the same correlation (as in
Section 3.3).

There are no missing data in these trials. To illustrate the effect that missing outcomes might
have had on this analysis, and to demonstrate the use of multivariate meta-analysis when there
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Fig. 2. Borrowing-of-strength plot for estimating β1 (E D0.984)

are missing data, imagine that we wish to estimate the CVD risk β1 when both outcomes are
available in trials 1–5 but only the stroke outcome is measured in the remaining trials 6–10. Then
we obtain

β̃1 =−0:175,

var.β̃1/=0:0117,

β̂1 =−0:196,

var.β̂1/=0:00956:

Inevitably, the variance of β̂1 is now considerably larger than the complete-data case in equation
(30). The efficiency of E = 0:815 now reflects the difference between univariate meta-analysis
using only the first five trials and multivariate meta-analysis using the information in all 10 trials.
This value of E is roughly 5=6, which is the improvement in variance that we might expect to
obtain if we could use univariate meta-analysis with the number of trials increased from 5 to 6.
In this sense, the value of including the five trials with missing primary outcomes can be likened
to the value of having one further trial with complete data.

Fig. 5 is the borrowing-of-strength plot for this missing data example. The points .ŵi, wi/

for studies 1–5 are the same as in Fig. 2 except for a rescaling of the axes, but the five points
for the missing studies are all moved vertically down to the horizontal axis. This completely
alters the size of the residuals and hence the borrowing-of-strength figures for all the trials.
Fig. 2 showed that, for estimating β1 with complete data, none of the 10 secondary values
y2 makes any useful contribution on top of the contribution of the corresponding observed
values of y1. So we might expect that with these missing data all of the borrowing of strength
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Fig. 3. Borrowing-of-strength plot for estimating β2 (E D0.888)

would come from trials 5–10 since in these trials y1 is no longer available. But this is not so, as
shown in the variance contributions plot in Fig. 6 (using the same format as Fig. 4). Now we
obtain

5∑
1

B.V −1
i /=0:144,

10∑
6

B.V −1
Åi /=0:041,

.31/

where V −1
Åi is the proxy matrix (9) for the ith trial: the 2×2 matrix with ν−2

i as the lower diagonal
element and 0s elsewhere. The sum of these two numbers in expression (31) is 0:185=1−E as
expected, but the missing studies contribute only 22% of the total borrowing of strength. This
illustrates one of the main points in Section 2.1, that the borrowing of strength that is given by
a particular study depends on how typical that study is of the meta-analysis as a whole, and
only indirectly on the statistical characteristics of the study itself. Changing the later studies
leaves studies 1–5 exactly the same but can drastically alter their borrowing of strength. We
can also see a difference if we look at the estimation of β2 with the same pattern of missing
data. We are again leaving trials 1–5 as before, but now trials 5–10 measure only the primary
outcome. Now the borrowing of strengths B.V −1

i / for the first five trials adds up to about 1%,
which is less than the sum over the same trials in the complete-data case of about 5% (Fig.
4).
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Fig. 4. Study values of T ( , multivariate variance contribution) and T �B (— —, univariate variance
contribution) for estimating β2 (E D0.888)

3.3. The special case of equal within-study correlations
A statistical understanding of the plotting co-ordinates .ŵi, wi/ in the borrowing-of-strength
plot is complicated by the fact that the weighted sums of squares and products in equations
(20)–(22) use different weights, which is also reflected in the different factors appearing in ui

and vi in equation (23). However, if the ρis are constant, ρi = ρ0 say, these differences in the
weights can be absorbed into an overall scale factor, leading to a more transparent version of
many of the formulae in Section 3.1. This special case is also of interest in its own right since, as
will be discussed in Section 5, fitting the bivariate model with constant correlations can provide
a useful sensitivity analysis in cases where the within-study correlations are not provided by the
study reports (Jackson et al., 2011).

Let .sÅ11, sÅ22, sÅ12/ be the ordinary (unweighted) sums of squares and products of the n accuracy
pairs .σ−1

i , ν−1
i /. Then, if we imagine a scatter plot of σ−1

i against ν−1
i , the least squares line of

best fit through the origin has slope sÅ12=sÅ22. Thus, for any given value of ν−1, the least squares
prediction of σ−1 is

σ̂−1 = sÅ12

sÅ22
ν−1:

Relating this to the earlier notation gives

.ui, ûi/= ρ0

.1−ρ2
0/1=2

.σ−1
i , σ̂−1

i /,

and so the ith residual in the borrowing-of-strength plot is
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Fig. 5. Borrowing-of-strength plot for estimating β1 with missing outcomes (E D0.815)

wi − ŵi =
(

ρ2
0sÅ22

sÅ11sÅ22 −ρ2
0sÅ2

12

)1=2

.σ−1
i − σ̂−1

i /:

So, with this slightly different scale factor, we can think of the borrowing-of-strength plot as little
more than a linear regression of the within-study accuracies of the primary outcomes plotted
against the corresponding accuracies of the secondary outcomes. The fact that borrowing of
strength is given by the least squares residuals again confirms that borrowing of strength is all
a matter of how the variances of individual studies fit in with the overall pattern of variances in
the meta-analysis as a whole.

3.4. Borrowing of strength as a within-study ratio
We have measured borrowing of strength in terms of B.V −1/: the variance contribution of
a study’s secondary outcome relative to the overall variance Ω11. We could instead consider
the ratio R.V −1/ = B.V −1/=T.V −1/: the contribution of the study’s secondary outcome as a
proportion of that study’s total contribution to var.β̂1/. This removes the effect of any scale
factor in V , so for a given meta-analysis R.V −1/ is a function of just two quantities: ρ, the
correlation between the outcomes, and z, the ratio of the standard errors,

z= σ

ν
:

The earlier formulae now give
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Fig. 6. Study values of T ( , multivariate variance contribution) and T �B (— —, univariate variance
contribution) for estimating β1 with missing outcomes (E D0.815)

R.V −1/= ρ2.u− s−1
22 s12v/2

ρ2.u− s−1
22 s12v/2 + .1−ρ2/u2

= .ρ− s−1
22 s12z/2

.ρ− s−1
22 s12z/2 +1−ρ2

: .32/

A contour plot of equation (32) against ρ and z gives a complete picture of how, within a
given meta-analysis (i.e. for a given value of the slope parameter s12=s22) a study’s borrowing of
strength, defined in this way, depends on individual study characteristics.

Fig. 7 shows a contour plot of R.V −1/ for s12=s22 = 0:660: the value of the slope parameter
found in the example in Section 3.2. Values of ρ are shown on the vertical axis; values of z

are shown by using a log-scale on the horizontal axis. The contour values are labelled along
the bottom and up the left-hand side of the plot. The broken line is the zero contour when
ρ= 0:660z: at these values there is no borrowing of strength. The contour plot shows that R

is large when either z is large (y1 less accurate than y2), or when z is small (y1 more accurate
than y2) and ρ is large (outcomes highly correlated). The smaller plotting symbols 1–10 in Fig.
7 show the values of .z, ρ/ for the 10 studies in the example. Most of the points are fairly close
to the zero contour: for only three of these studies is R.V −1/ > 0:1, suggesting that E is close
to 1, as found earlier. The plotting symbol X indicates the point .z, ρ/ for a study with V = V̄

defined in equation (4). This point corresponds to the harmonic mean of the 10 points labelled
1–10, and, as expected, lies on the zero contour (no borrowing of strength). The interpretation
of a study’s borrowing of strength as a contrast between V and V̄ can be seen on the graph as
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Fig. 7. Contour plot of R.V �1/ for estimating β1 (E D 0.984): the points labelled 1–10 show the values of
.z,ρ/ for the studies in the example; the point X indicates the corresponding point for matrix NV

the distance between the study’s .z, ρ/ point and the harmonic mean point X, measured in the
direction that is orthogonal to the contours in that region.

If one of the outcomes is missing, R.V −1/ becomes R.V −1
Å / and so the point .z, ρ/ lies on

the horizontal axis, to the extreme left if y2 is missing and to the extreme right if y1 is missing,
giving R.V −1

Å / equal to 0 and 1 respectively, as expected.

4. Borrowing of strength in multivariate meta-analysis

4.1. Decomposing the variance contribution of an individual study
This section looks at the generalization of Section 3 to the multivariate case with p>2. Now the
outcome estimates of the ith study are yi = .yi1, yi2/ with yi2, the secondary outcome estimates,
a .p − 1/ × 1 vector. When p = 2, all the formulae in this section reduce to the corresponding
expressions that have already been seen in Section 3.

In the multivariate case, we write Vi =var.yi/ as the partitioned matrix

Vi =
(

σ2
i σiρ

T
i Λi

σiΛiρi ΛiPiΛi

)
, .33/

where σ2
i is the variance of yi1 as before, ρi is the .p− 1/× 1 vector of correlation coefficients

between yi1 and yi2, Pi is the .p−1/× .p−1/ correlation matrix of yi2 and Λi is the .p−1/×
.p−1/ diagonal matrix of the standard deviations of the components of yi2.
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To simplify the algebra for calculating matrix inverses, define

ai =ρT
i P−1

i ρi,

bi =P−1
i ρi,

Ci =P−1
i + bib

T
i

1−ai
:

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .34/

Then, using a standard formula for the inverse of a partitioned matrix,

V −1
i = 1

1−ai

(
σ−2

i −σ−1
i bT

i Λ−1
i

−σ−1
i Λ−1

i bi .1−ai/Λ−1
i CiΛ−1

i

)
: .35/

Some of this notation can be interpreted in terms of a multiple regression of the primary on
the secondary outcome estimates within the ith study. The vector in the off-diagonal partition
of equation (35) is proportional to the vector of regression coefficients, and σ2

i .1 − ai/ is the
residual mean square. Thus ai can be interpreted as the multiple correlation R2 of this regression:
ai =0 means that the primary and secondary outcome estimates are independent; ai =1 means
that they are exactly linearly related.

Adding equation (35) over the n studies gives

Ω−1 =∑V −1
i =n.V̄ /−1 =

(
s11 −sT

12−s12 S22

)
, .36/

where

s11 =∑ σ−2
i

1−ai
,

S22 =∑Λ−1
i CiΛ−1

i ,

s12 =∑ σ−1
i Λ−1

i bi

1−ai
:

Thus the inverse of equation (36) is

Ω= V̄

n
= 1

s11 − sT
12S−1

22 s12

(
1 sT

12S−1
22

S−1
22 s12 .s11 − sT

12S−1
22 s12/S−1

22 +S−1
22 s12sT

12S−1
22

)
.37/

and so var.β̂1/ is

Ω11 = 1

s11 − sT
12S−1

22 s12
: .38/

As before, the components of Ω−1 in equation (36) are weighted sums of squares and products
of the precisions of the components of yi: σ−1

i for the primary outcome and the diagonal
elements of Λ−1

i for the secondary outcomes. The scalar s11 is the same as in the bivariate case,
S22 is the .p−1/× .p−1/ matrix of weighted sums of squares and products for the secondary
outcome precisions and s12 is the corresponding .p− 1/× 1 vector of weighted sums of cross-
products between the primary and secondary precisions. When p=2 these formulae reduce to
the corresponding quantities in Section 3, with the matrix S22 becoming the scalar s22. In the
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bivariate case, the weights that are involved in these sums are also the same, since when p= 2
the quantities that are defined in expression (34) reduce to the scalars

Pi =1,

ai =ρ2
i ,

bi =ρi,

Ci = 1

1−ρ2
i

,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.39/

where ρi is now just the ordinary scalar correlation between the two outcome estimates in the
ith study.

From equations (35), (37) and (38), the total variance contribution of the ith study is

T.V −1
i /= 1

s11 − sT
12S−1

22 s12
.1 sT

12S−1
22 /V −1

i .1 sT
12S−1

22 /T

=Ω11

(
σ−2

i

1−ai
−2σ−1

i

f T
i bi

1−ai
+f T

i Cifi

)
,

where fi is the .p−1/×1 vector

fi =Λ−1
i S−1

22 s12: .40/

As before,

T.σ−2
i 11T/=Ω11σ

−2
i ,

and so

B.V −1
i /=T.V −1

i /−T.σ−2
i 11T/=Ω11

(
σ−2

i

ai

1−ai
−2σ−1

i

f T
i bi

1−ai
+f T

i Cifi

)
:

This is a quadratic function of σ−1
i : the accuracy of the primary outcome. Completing the square

gives

B.V −1
i /=Ω11

([(
ai

1−ai

)1=2

σ−1
i − f T

i bi

{ai.1−ai/}1=2

]2

+f T
i Cifi − .f T

i bi/
2

ai.1−ai/

)
: .41/

For a given meta-analysis s12 and S22 are fixed, and so the vector fi in equation (40) is just
a linear function of the diagonal elements of Λ−1

i : the accuracies of the secondary outcome
estimates in the ith study.

For a simpler notation for equation (41), we extend the ui- and ûi-notation in the bivariate
case to

ui =
(

ai

1−ai

)1=2

σ−1
i ,

ûi = f T
i bi

{ai.1−ai/}1=2 = sT
12S−1

22
Λ−1

i bi

{ai.1−ai/}1=2 :

.42/

For a given meta-analysis (fixed values of s11, s12 and S22), ui is proportional to the accuracy of
the study’s primary outcome and vi is a scalar linear function of the accuracies of the secondary
outcomes. If we define
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gi = .f T
i bi/

2

aif TP−1
i fi

,

then, from expression (34),

f T
i Cifi =f T

i P−1
i fi + .f T

i bi/
2

1−ai
= û2

i

(
1−ai

gi
+ai

)
,

from which we obtain

f T
i Cifi − .f T

i bi/
2

ai.1−ai/
=f T

i Cifi − û2
i = .1−ai/.1−gi/

gi
û2

i :

Thus equation (41) is

B.V −1
i /=Ω11

{
.ui − ûi/

2 + .1−ai/.1−gi/

gi
û2

i

}
, .43/

and so

T.V −1
i /=Ω11

{
1−ai

ai
u2

i + .ui − ûi/
2 + .1−ai/.1−gi/

gi
û2

i

}
: .44/

Up to the scale factor Ω11 =var.β̂1/, equation (44) decomposes the total variance contribution
of the ith study into three non-negative parts, analogous to the main effects and interaction of the
two factors ui (proportional to the accuracy of the primary outcome) and ûi (a linear function
of the accuracies of the secondary outcomes). The three effects are as follows:

(a) the term in u2
i ,

1−ai

ai
u2

i =σ−2
i ,

the direct contribution of the primary outcome of the ith study as in univariate meta-
analysis;

(b) the term in .ui − ûi/
2 as in bivariate meta-analysis, measuring the difference between the

actual accuracy of the primary outcome and, in some sense, what might be expected from
the pattern of uis and ûis that is observed in the meta-analysis as a whole;

(c) the term in û2
i , the additional effect of the accuracies of the study’s secondary outcomes.

This is 0 if gi =1.

The borrowing of strength for the ith study is proportional to the sum of the second and third
terms of equation (44). The presence of the third term shows that there is a qualitative difference
in borrowing-of-strength properties between the multivariate and bivariate cases. When p= 2,
the quantities fi, bi and Pi are all scalars as in expression (39), and hence

gi = .f T
i bi/

2

aif
T
i P−1

i fi

= f 2
i b2

i

aif
2
i P−1

i

=1:

Thus, when p=2, gi =1 for all i and so the third term in equation (44) is 0.
To see the equivalence of the .ui − ûi/

2-term when p = 2, the quantity ûi in equation (44),
when expressed in the notation of Section 3.1, becomes

ûi = s12

.1−ρ2
i /1=2s22

ν−1
i ,

which is just the same as equation (24). Hence, in the bivariate case, the residual ui − ûi by using
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the definition in equation (42) is exactly the same as the residual ui − ûi that was defined earlier
in equation (25). The third term in equation (44) is still 0 in the multivariate case if gi = 1, in
which case the motivation of ûi as a least squares prediction of ui continues to hold in the sense
that Σuiûi=Σû2

i =1.

4.2. Necessary and sufficient condition for no borrowing of strength
From B.V −1

i / in equation (43), for there to be no borrowing of strength in the ith study we must
have two conditions: gi =1 and ui = ûi. We can exclude the trivial case ai =1 which would mean
that there is an exact linear relationship between the ith study’s primary and secondary outcome
estimates.

For the first condition, gi =1 if fi =kρi for any arbitrary scalar factor k. This is also a necessary
condition for gi =1, as can be verified directly by using a Lagrange multiplier calculation to find
the maximum value of gi for different values of fi. From equations (40) and (33), this means
that

Vi =
(

σ2
i k−1σis

T
12S−1

22
k−1σiS

−1
22 s12 ΛiPiΛi

)
:

Comparing this with equation (37), the equivalent condition is that the covariance vector part
of Vi in equation (33) is a scalar multiple of the corresponding covariance vector part of Ω (or
of V̄ ).

For the second condition, if fi =kρi then

ûi = f T
i bi

{ai.1−ai/}1=2 = kρT
i P−1

i ρi

{ai.1−ai/}1=2 =k

(
ai

1−ai

)1=2

,

and so

.ui − ûi/
2 = ai

1−ai
.σ−1

i −k/2:

So if ui = ûi then k =σ−1
i . This extends the proportionality between the covariance vector parts

of Vi and Ω required for gi = 1 to include also the .1, 1/ term. So the necessary and sufficient
condition for no borrowing of strength is that the first row (or first column) of Vi must be a scalar
multiple of the corresponding row or column of the harmonic mean matrix V̄ . Thus the necessary
and sufficient condition (29) in the bivariate case generalizes directly to the multivariate case,
where Vi12 and V̄ 12 are now the covariance vector components of Vi and V̄ respectively.

Note that condition (29) gives no constraint on the size of the scalar multiple k involved, and
hence no constraint on the sample size of the trial. Both small and large trials may end up giving
no borrowing of strength, including studies with large correlations between the primary and
secondary outcomes. Note also that condition (29) imposes no constraint on the .2, 2/ partition
of V in equation (33), i.e. on the distribution of the estimates for the secondary outcomes per se.

We commented in Section 4.1 that the some of the components of V −1
i in equation (35) can

be interpreted in terms of a within-study multiple regression of yi1 on yi2. We can similarly
interpret equation (29) in terms of the regression the other way round, predicting the vector
of secondary outcome estimates y2i from the primary outcome estimate y1i. The vector of
regression coefficients for the ith study would then be Vi12=Vi11, which is just the left-hand
side of equation (29). Hence the necessary and sufficient condition for the ith study to give no
borrowing of strength is that the within-study vector of regression coefficients for predicting the
secondary from the primary estimates is the same as the corresponding regression vector for a
study with the harmonic mean variance matrix V̄ .
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5. Random-effects models

The results in this paper depend on some important assumptions, most obviously the assumption
of a fixed effects model, that all studies are modelled by equation (1). This strong assumption,
that all the studies are estimating the same treatment effect β, has been widely discussed in
the univariate meta-analysis literature. Jackson et al. (2017) followed some other references
on multivariate meta-analysis by also including random-effects models. These references gen-
eralize the usual two-stage approach to univariate random-effects meta-analysis by first esti-
mating a between-studies variance matrix Ψ by Ψ̂ and then using the fixed effects model (1)
with each Vi replaced by Vi + Ψ̂. Jackson et al. (2010) showed how the familiar univariate
DL estimate (DerSimonian and Laird, 1986) can be extended to the multivariate case, using
the univariate DL estimates for each outcome taken individually, and analogous method-of-
moments estimates for each covariance component. Other methods of estimating Ψ have been
discussed in several recent references (Chen et al., 2012; Jackson et al., 2013; Ma and Mazumdar,
2011).

The borrowing-of-strength quantities E and Bi =B.V −1
i / that were discussed earlier are de-

scriptive measures of how much the multivariate estimation of β1 has been influenced by the
data on the secondary outcomes. In random-effects models, the corresponding estimates Ê and
B̂i =B.V̂

−1
REi/ calculated from the fitted marginal variance matrices V̂ REi =Vi + Ψ̂ are similarly

descriptive measures of the role of the secondary outcomes within the fitted model. The defini-
tion of E in equation (5) is only a valid measure of efficiency if the variances of the two estimates
being compared are based on a consistent model, which means that the diagonal element of Ψ̂
for the primary outcome must be the same as the univariate random-effects variance estimate
that we would obtain if we fitted a univariate random-effects meta-analysis model to the data
on the primary outcome alone. Only under this condition do we retain the same interpretation
of Ê and B̂i as discussed earlier for fixed effects models. In practice, DL estimates are almost
always used in univariate random-effects meta-analysis, suggesting that Ψ̂ should be estimated
by using a method-of-moments estimate which retains the univariate DL estimates as its diag-
onal elements. A slight modification to the truncation step in Jackson et al. (2010) is needed to
ensure that this is always so, which for bivariate meta-analysis (as in the example below) sim-
ply amounts to truncating the estimated random-effects correlation to its nearest value in the
interval [−1, 1]. We can then retain the same interpretation of Ê and B̂i as a direct comparison
of the fitted variance of β̂1 by using all of the data with the fitted variance that we would obtain
from a univariate meta-analysis using only the data on the primary outcomes. In this sense, the
theory and interpretation of borrowing-of-strength statistics for fixed effects models applies in
exactly the same way to random-effects models, as implied by the discussion in Jackson et al.
(2017), section 4.

As the variance matrices Vi are assumed known, the descriptive measures E and Bi can also
be given an inferential interpretation as estimates of the borrowing-of-strength parameters of
the true underlying model (1). However, applying this to random-effects models raises different
issues, since now the marginal variance matrices V̂ REi depend on Ψ̂, which can exhibit substantial
sampling uncertainty if n is small (Guolo and Varin, 2017). Arguably, Ψ̂ has a greater influence
on Ê and on B̂i than it has on the more usual problem of estimating β, since β̂ retains its
unbiasedness property conditionally on all possible values of Ψ̂. However, the example below
suggests that Ê and B̂i can still provide useful estimates of the borrowing-of-strength properties
of the true underlying random-effects model.

As a simple illustration in the bivariate case, suppose that the treatment effect estimates in
the example of Section 3.2 were in fact generated from the bivariate random-effects model
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yi ∼N.β, Vi +Ψ/, i=1, 2, : : : , 10, .45/

withΨ=αV̄ andα�0, where the Vis are as in Table 1 and V̄ is their harmonic mean as in equation
(4). Then by increasing α from 0 (the fixed effects model) we obtain increasing between-study
heterogeneity. A small value of α means that the fixed effects model slightly underestimates the
variability of the yis, and the assumed form of Ψ means that the pattern of variances remains
reasonably similar to those observed in the data. We can then simulate vectors yi from equa-
tion (45) and compare the borrowing-of-strength statistics that are calculated from the actual
marginal variance matrices VREi =Vi +αV̄ with the corresponding statistics calculated from the
estimated marginal variances V̂ REi =Vi + Ψ̂. For the reason discussed above, we calculate Ψ̂ by
using the slightly modified version of the method of Jackson et al. (2010) which was mentioned
earlier.

Table 2 describes the results of a small simulation study based on 1000 replications for each
of five values of α, ranging from α=0 (fixed effects) to α=2 (quite substantial heterogeneity).
We assume that the primary interest is the value of β2: the log-hazard-ratio for the risk of stroke.
The second column of Table 2 shows the actual efficiencies E based on VREi. As expected,
the entry 0.888 for α = 0 is just the fixed effects efficiency that has already been quoted in
Section 3.2. Adding the same variance matrix to each Vi has the effect of reducing the relative
differences between them, which explains why the values of E tend to increase as α increases. The
estimated efficiencies Ê based on V̂ REi vary randomly between simulations, but their sample
medians across the 1000 simulations, which are shown in the third column of Table 2, also
follow a similar pattern. We summarize the simulation results by using medians rather than
means because of skewness that is caused by the truncation of DL estimates. Section 2.1 has
shown that the actual study-specific borrowing-of-strength components Bi always add up to
1 − E and so when, in the random-effects model, Ê is different from E we cannot expect the
corresponding estimated and true borrowing-of-strength components to be exactly comparable.
However, from a practical point of view, what we would hope to see is that the studies which
show the greatest (or least) borrowing of strength under the estimated model are the same, or
substantially the same, as the studies which give the greatest (or least) borrowing of strength
under the true model. For each simulation, the extent to which this is so is measured by the
rank correlation rc.B̂i, Bi/. The fourth column of Table 2 shows the sample medians of these
rank correlations. These are satisfactorily high (90% or greater) for the smaller values of α but,
as expected, tend to deteriorate slightly as the heterogeneity increases.

Table 2. Simulation of a random-effects variant of the
example for estimating β2, comparing the estimated effi-
ciency and borrowing of strength for the fitted random-effects
model with their corresponding true values†

α True efficiency Median Median
ERE ÊRE rc(BoSi, ̂BoSi)

0 0.888 0.903 0.927
0.5 0.932 0.928 0.903
1 0.948 0.945 0.891
1.5 0.957 0.947 0.867
2 0.961 0.954 0.842

†Increasing values of α indicate increasing heterogeneity.
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6. Discussion

In most statistical problems, taking into account data on relevant covariates or confounders leads
to more accurate estimates and predictions, especially if the secondary variables are closely cor-
related with the main variable of interest. However, this is not necessarily so in meta-analysis—
multivariate meta-analysis can give little or no improvement over univariate methods even if the
secondary outcomes are closely correlated with the primary outcome. By writing the borrowing-
of-strength measure BoSSD

i1 that was proposed by Jackson et al. (2017) as the explicit function
B.V −1/ in equation (11), and then evaluating some of this function’s mathematical properties,
we have shed light on how and why individual study characteristics may or may not lead to a
useful role for secondary outcomes in multivariate meta-analysis.

The paper has made some important assumptions. The fixed effects model (1) and its appli-
cation to random-effects models has been discussed in Section 5. We have also assumed that, by
replacing a within-study inverse variance V −1 by V −1

Å in equation (17), the fixed effects formulae
continue to apply when one or more of the outcomes is missing. This is only valid under the
assumption of data missing at random, that the chance of an outcome being unreported can be
modelled as an independent chance mechanism conditional on the outcome estimates which ac-
tually are observed. Acknowledging this assumption can be crucially important in meta-analysis,
where outcome reporting bias, e.g. when several outcomes are measured but only those show-
ing a statistically significant effect are reported, is a common problem (Kirkham et al., 2010),
although the simulations in Kirkham et al. (2012) suggest that in some circumstances multivari-
ate methods can be more robust than univariate methods to departures from this assumption.
Subjective assessments of the risk of outcome reporting bias (Kirkham et al., 2010) can lead to
useful univariate bias corrections (Copas et al., 2013), and an extension to multivariate models
may also be possible.

The paper has also assumed that the Vis (or the V −1
Åi s) are known, so that borrowing-of-

strength measures can be evaluated explicitly. Riley (2009) emphasized the importance of taking
the within-study correlations into account and discussed the problem when, in practice, authors
of research papers may report only estimates and standard errors for the outcomes taken one at
a time. In that case only the diagonal elements of Vi are provided directly in study reports. If we
can obtain full data (individual patient data) for such studies, then consistent estimates of the
within-study correlations can be calculated, but in practice this may be difficult or impossible.
Various approaches to dealing with this issue have been suggested, such as sensitivity analyses
that explore a variety of within-study correlations (Jackson et al., 2011). The special case of
equal within-study correlations (Section 3.3) can be a useful starting point. Wei and Higgins
(2013) examined ways in which it may be possible to estimate these correlations retrospectively
from other information that might be available. A partial approach is to note our finding that
most borrowing of strength comes from studies whose designs are most atypical of the studies as
a whole, and so by comparing the research methods that are used in the studies it may be possible
at least to identify roughly which studies might be worth following up. Concentrating on trying
to obtain further data for just some of these studies, and using the missing data formula (17) for
other studies, may give at least some indication of whether including secondary outcomes in a
multivariate model offers the potential to improve the estimate of the primary treatment effect.

In practice the matrix Vi is calculated from the data in the ith study, and so the assumption that
the Vis are known is ignoring the sampling error in these variance estimates. Table 1 shows that
the example in Section 3.2 is based on large sample sizes, but with smaller samples the resulting
inferences can underestimate uncertainty and be biased in cases where the estimated variances
are correlated with the values of the ys. In univariate meta-analysis this bias is particularly
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noticeable in the Egger test for funnel plot symmetry (Egger et al., 1997), as demonstrated in
several simulation studies. Copas and Lozada-Can (2009) gave a general method for calculating
bias corrections for such test statistics. Berkey et al.(1995) suggested a simpler way of eliminating
bias, by smoothing the variance estimates across the studies. Assuming that study variances are
inversely proportional to study sample size, and estimating the proportionality factor from
the studies as a whole, essentially eliminates the correlation between the outcomes and their
variances. Harbord et al. (2006) suggested a similar idea. However, for estimating efficiency and
borrowing of strength as discussed in this paper, such considerations of bias are not directly
relevant as E and B.V −1

i / depend only on the Vis and not on the actual values of the yis. If each
estimated Vi is consistent then so will be the estimates of the borrowing-of-strength quantities
derived. It is important to avoid any smoothing of the Vis so that they properly reflect the
characteristics of each individual study.
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