
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=raag21

Annals of the American Association of Geographers

ISSN: 2469-4452 (Print) 2469-4460 (Online) Journal homepage: http://www.tandfonline.com/loi/raag21

Revisiting the Past: Replicating Fifty-Year-Old Flow
Analysis Using Contemporary Taxi Flow Data

Urška Demšar, Jonathan Reades, Ed Manley & Michael Batty

To cite this article: Urška Demšar, Jonathan Reades, Ed Manley & Michael Batty (2017):
Revisiting the Past: Replicating Fifty-Year-Old Flow Analysis Using Contemporary Taxi Flow Data,
Annals of the American Association of Geographers, DOI: 10.1080/24694452.2017.1374164

To link to this article:  https://doi.org/10.1080/24694452.2017.1374164

© 2018 The Author(s). Published with
license by Taylor & Francis© Urška Demšar,
Jonathan Reades, Ed Manley, and Michael
Batty

View supplementary material 

Published online: 27 Nov 2017.

Submit your article to this journal 

Article views: 287

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=raag21
http://www.tandfonline.com/loi/raag21
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/24694452.2017.1374164
https://doi.org/10.1080/24694452.2017.1374164
http://www.tandfonline.com/doi/suppl/10.1080/24694452.2017.1374164
http://www.tandfonline.com/doi/suppl/10.1080/24694452.2017.1374164
http://www.tandfonline.com/action/authorSubmission?journalCode=raag21&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=raag21&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/24694452.2017.1374164
http://www.tandfonline.com/doi/mlt/10.1080/24694452.2017.1374164
http://crossmark.crossref.org/dialog/?doi=10.1080/24694452.2017.1374164&domain=pdf&date_stamp=2017-11-27
http://crossmark.crossref.org/dialog/?doi=10.1080/24694452.2017.1374164&domain=pdf&date_stamp=2017-11-27


Revisiting the Past: Replicating Fifty-Year-Old Flow
Analysis Using Contemporary Taxi Flow Data

Ur�ska Dem�sar ,* Jonathan Reades ,y Ed Manley ,z and Michael Batty z

*School of Geography & Sustainable Development, University of St. Andrews
yDepartment of Geography, King’s College London

zCentre for Advanced Spatial Analysis, University College London

Over sixty years ago, geography began its so-called quantitative revolution, where for the first time statistical
methods were used to explain the spatial nature of geographic phenomena. Computers made some of this possi-
ble, but their limited power did not allow for more than relatively small analytic explorations and consequently
many of these earlier ideas are now buried in the mists of time. Here we attempt to replicate one of these early
analyses using taxi flow data collected in 1962 and originally used by Goddard (1970; then at the London
School of Economics) to extract functional regions within London’s city center. Our experiment attempts to
replicate Goddard’s methodology on a modern taxi flow data set, acquired through Global Positioning System
tracking. We initially expected that our analysis would be directly comparable with Goddard’s, potentially pro-
viding insights into temporal change in the spatial structure of the city core. Attempts at replicating the origi-
nal analysis have proved enormously difficult, however, for several reasons, including the many subjective
choices made by the researcher in articulating and using the original method and the specific characteristics of
contemporary taxi flow data. We therefore opt to replicate Goddard’s approach as closely and as logically as
possible and to fill in gaps based on statistically informed choices. We have also run the analysis on two spatial
scales—Central London and a wider area—to explore how scales of analyses that were beyond the capacities of
Goddard’s early computations also help to shape our understanding of the results he obtained. Key Words:
comparative spatial analysis, movement analytics, principal component analysis (PCA), quantitative method develop-
ment, replication.

六十多年前, 地理学展开了所谓的计量革命, 其中统计方法首度被用来解释地理现象的社会本质。计算

机让此一方法部分成为可能, 但其有限的力量, 却仅能考量相对小型的分析探讨, 因而导致诸多早期的想

法, 被深埋在时间之中。我们于此运用在 1962 年搜集、并且原本由哥达德 (1970 年, 接着是在伦敦政经

学院) 用来取得伦敦市中心功能区域的出租车流数据, 尝试复製此般早期的分析。我们的实验, 企图透过

全球定位系统追踪, 在当代出租车流数据集中复製哥达尔的方法。我们原本期待自身的分析能够直接与

哥达尔的研究进行比较, 并对于城市中心空间结构的时间变迁提出洞见。但复製原本分析的尝试, 却因

诸多原因, 证实是相当困难的, 包括研究者在表达与使用原初方法时做出的诸多主观选择, 以及当代出租

车流数据的特徵。我们因此选择最接近和最具逻辑的方法来复製哥达尔的方法, 并根据统计所告知的选

择来填补阙如。我们同时在两个空间尺度上进行分析——伦敦市中心与较广泛的区域——探讨超出哥

达尔早期计量能力的分析尺度, 如何有助于形塑我们对他所得到的研究结果之认识。 关键词： 比较空

间分析,移动分析,主成分分析 (PCA),计量方法发展,复製。

Hace m�as de sesenta a~nos que la geograf�ıa empez�o la llamada revoluci�on cuantitativa, mediante la cual por pri-
mera vez se usaron m�etodos estad�ısticos para explicar la naturaleza espacial de los fen�omenos geogr�aficos. Los
computadores hicieron posible algo de esto, aunque su limitado poder solo permiti�o exploraciones anal�ıticas rel-
ativamente peque~nas y consecuentemente muchas de estas ideas tempraneras se hallan ahora sepultadas en las
nieblas del tiempo. Aqu�ı intentamos replicar uno de aquellos an�alisis usando datos del flujo de taxis recolecta-
dos en 1962, utilizados originalmente por Goddard (1970; entonces en la London School of Economics) para
extraer regiones funcionales dentro del centro urbano de Londres. Nuestro experimento intenta replicar la
metodolog�ıa de Goddard a partir de un conjunto moderno de datos de flujo de taxis, adquirido por medio de ras-
treo del Sistema de Posicionamiento Global. Inicialmente esper�abamos que nuestro an�alisis ser�ıa directamente
comparable con el de Goddard, generando potencialmente perspectivas del cambio temporal en la estructura
espacial del n�ucleo de la ciudad. Sin embargo, los intentos por replicar el an�alisis original han resultado
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enormemente dif�ıciles por varias razones, incluyendo las numerosas decisiones subjetivas del investigador para
articular y usar el m�etodo original, y las caracter�ısticas espec�ıficas de los datos contempor�aneos sobre flujo de
taxis. En consecuencia, optamos por replicar el enfoque de Goddard tan cerca y tan l�ogicamente como fuese
posible, llenando los vac�ıos con base en selecciones estad�ısticamente respaldadas. Tambi�en hemos corrido el
an�alisis a dos escalas espaciales ––el centro de London y un �area m�as amplia–– para explorar el modo como las
escalas de los an�alisis que estuvieron fuera de las capacidades de los c�alculos de Goddard tambi�en ayudan a con-
figurar nuestra comprensi�on de los resultados obtenidos. Palabras clave: an�alisis espacial comparativo, anal�ıticas del
movimiento, an�alisis de componentes principales (PCA), desarrollo del m�etodo cuantitativo, r�eplica.

S
ixty years ago, geographers first began to explore
spatial patterns using rudimentary statistical
methods that sought to extract the key determi-

nants of spatial structure at a range of scales from a
multitude of independent variables (Berry 1964,
1970). Regression, correlation, principal components,
and factor analysis represented the cutting edge of
quantitative geography. In 1970, Goddard published
an article detecting functional regions in a set of inter-
actions (taxi traffic flows) between small partitions
(zones) in a very large city center. Goddard (1970)
collected and coded movement data from taxi drivers’
log books produced as part of the London Traffic Sur-
vey in 1962, from which he was able to generate an
origin–destination flow matrix describing properties of
taxi movement in London. He then applied a combi-
nation of statistical and data mining techniques to
extract overlapping functional regions shaped by trips
to and from important locations (e.g., mainline rail
stations) distributed around London’s central core.

Goddard was not the only person at this time using
transportation and communication flow data to derive
regions rooted in functional interactions. This was, in
fact, quite a popular approach to the analysis of urban
structure (e.g., Berry 1964; Illeris and Pedersen 1968;
Davies 1979), bolstered by the emergence of spatial
interaction modeling (Voorhees 2013). However, the
basic question of how best to partition a city into
coherent regions based on the movement patterns
through the urban space remains germane. Indeed, our
increased mobility and ability to interact at a distance
makes the data-driven interrogation and derivation of
regional structure more important than ever. Flow
data, however, have changed a great deal since the
1960s, becoming much more extensive through the
development of sensors and systems able to capture
data in real time and complementing or even sup-
planting the manual surveys that were the dominant
mode of collection in the past. Reflecting the preoccu-
pations of our “network society” (Castells 1996),
methods derived from social network analysis are par-
ticularly popular (Dem�sar, �Spatenkova, and Virrantaus

2007; Ratti et al. 2010; Expert et al. 2011). O’Sullivan
and Manson (2015) also noted a rapid increase in
physicists working on geographical topics, including
flows and interactions—articulating and “solving the
city” in these terms (Bettencourt and West 2010).

In this article, we explore the potential relevance of
one of these early flow-based regionalization methods
to modern flow data and contemporary problems.
Through replication, we hope to revitalize and reex-
amine a regionalization methodology rooted in a com-
bination of principal component analysis (PCA) and
hierarchical clustering to derive a set of internally
coherent regions based on the patterns of taxi flows.
We do so using modern Global Positioning System
(GPS) taxi tracking data that we expected would pro-
vide an opportunity to investigate how the functional
structure of taxi movement in London has changed in
the last fifty years. In seeking to replicate Goddard’s
work, though, we discover that a straightforward step-
by-step replication is impossible; instead, we are forced
to “reinvent” certain steps to obtain interpretable and
useful results. Nonetheless, although we uncover some
long-overlooked issues in the original work, we also
find that this approach offers specific analytical advan-
tages over more recent—and trendy—regionalization
methods borrowed from network science and social
network analysis (for an overview, see Farmer and
Fotheringham 2011), an issue to which we return in
the Conclusion.

The remainder of this article is structured as follows.
First we set the context by reviewing the literature on
PCA, flow-based regionalization methods, and
application of PCA to flow data. Then we introduce
the taxi data used by Goddard and those that we have
worked with. In the Methodology section, we set out
Goddard’s methodology step by step and in parallel
describe changes that were required to adapt it,
together with a logical reasoning that led us to each
specific change. This is followed by the results of the
two spatial scales of analysis, first for central London
(to follow the geographic extent of Goddard’s study)
and an extension to the wider city. We conclude with
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a discussion of how revisiting seminal works such as
this can bring new insights to contemporary research
and lead to new knowledge derived from modern flow
data.

Related Work

Understanding PCA

Since its development at the beginning of the twen-
tieth century, PCA has been used in a range of scien-
tific disciplines, including geography (Dem�sar et al.
2013) for dimensionality reduction, orthogonalization,
and the exploration of data cloud structures. A full
mathematical description of PCA can be found in Jol-
liffee (2002), whereas here we briefly review the
aspects of the method that are relevant to the analysis
and interpretation of our and Goddard’s results.

PCA defines a linear mapping between the n varia-
bles defining some original data space and a new,
orthogonal coordinate system that is aligned with the
directions of greatest variance in the data. Imagine
freely rotating the axes within a cloud of data points
so that the first axis aligns with the widest part of the
cloud, the second axis with the next widest part, and
so on. Each axis is orthogonal (i.e., at right angles) to
all the others and hence they are linearly independent
from one another and can be treated as independent
variables for descriptive and analytical purposes. These
new axes are known as principal components (PCs).

For data analysis, PCs are typically derived from the
correlation or covariance matrices rather than from the
direct data matrix. In the covariance matrix, the vari-
ance on each variable is taken without standardization,
whereas in the correlation matrix all variables are stan-
dardized to the same scale. If the variables have very
different scales (e.g., one is measured in centimeters per
year and another in kilometers per hour) then the
covariance matrix will be strongly biased by the abso-
lute numerical value of the smaller scale. The selected
matrix (covariance or correlation) is then processed via
eigendecomposition to yield a set of eigenvector and
eigenvalue pairs. In Goddard’s and our cases, the PCA
decomposition is applied on a correlation matrix.

The eigenvectors define the transformations (e.g.,
scaling and rotation) needed to move between the
original and new coordinate systems, whereas the
eigenvalues give the scaling factor of the transforma-
tion. Consequently, the direction of each eigenvector
corresponds to one PC, and the amount of variance

explained by the PC can be derived from the magni-
tude of the respective eigenvalue. When sorted
according to their eigenvalues, the first PC is oriented
in the direction of the greatest variance in the data
cloud, the second PC in the direction of the next
greatest amount of variance, and so on.

In an m £ n data matrix, the new space defined by
the eigenvectors can have at most min(m,n) dimen-
sions; that is, the space is bound by the minimum of the
columns or the rows of the matrix. In spatial applica-
tions, it is usually the case that n << m (i.e., there are
many more observations in space than there are attrib-
utes at each location), and so normally there are at
most n PCs derived from the original data. Much of the
information contained in the original data, however,
can often be reconstructed from an even smaller set (k,
where k<< n) of eigenvectors: those with the k largest
eigenvalues. PCA is therefore often used for dimension-
ality reduction, where the selection of an appropriate k
depends on the individual data set; heuristics exist for
this purpose, and some, such as the scree plot (Berthold
and Hand 2007), are graphical, whereas others, such as
the contributed variance (Jolliffee 2002), are prag-
matic. Our analysis employs both types of heuristics, as
further described in theMethodology section.

The Use of Flow Data for Regional Analysis

The use of transportation and communications flow
data to derive regions rooted in functional interactions
can be traced back to the rise of transportation plan-
ning in the 1950s (Voorhees 2013) and the increased
accessibility of computers able to perform matrix anal-
yses at speed (Berry 1964). Although today’s desktop
and server systems might make some of the analytical
challenges faced by these earlier researchers seem
almost quaint, the basic question of how best to parti-
tion a set of zones into analytically useful regions
remains a major preoccupation of urban geography
and spatial analysis (Roth et al. 2011; Reades and
Smith 2014).

Although it is well understood that different region-
alization methods can produce substantially different
optimal sets of smaller regions, there are two areas that
merit particular attention. First, it is easy to forget that
there exist many possible realizations of that partition-
ing, depending on which attributes are given weight
and why; second, it is rarely noted that many parti-
tioning methods exclusively assign each zone to a sin-
gle region based on some concept of containment or
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integration. Given that we can easily select arbitrary
temporal or spatial slices from the data set, the manner
in which we process, clean, and select data for the
analysis will have a significant effect on the regions
identified: Weekday data might better capture regions
rooted in workplace interactions, whereas weekend
data might be better for understanding social or recrea-
tional connections.

The second issue is more subtle because the exclu-
sive association between zones (nodes) and regions
(groups of nodes) can be a natural, and indeed power-
ful, approach to understanding human geography
(Ratti et al. 2010; Expert et al. 2011). Where, for
instance, though, there is evidence of polycentricism
and of multiple business centers generating and
receiving large numbers of trips across a wide area
(Taylor, Evans, and Pain 2006), it is worth asking
whether this type of exclusive partitioning is appro-
priate. A study undertaken by Zhong et al. (2014),
although appropriate for exclusive regional defini-
tions, is not appropriate for improving our ability to
see overlapping flows where one zone contributes to
multiple regions simultaneously. Additional issues
arise with constraints governing permissible regions;
for instance, intramax modeling of commuting flows
not only makes exclusive assignments of zones to
regions but also requires that the region be consti-
tuted from a set of contiguous zones (Nielsen and
Hovgesen 2008). Indeed, Goddard (1970) experi-
mented with the impact of contiguity constraints as
part of his own analysis.

Flow Analysis Using PCA

PCA for spatial analysis became particularly popular
in the 1960s and 1970s, as it was one of the first tools
available to examine structure in large data sets since,
in 1970, spatial interaction data sets were bigger than
anything seen thus far. Typically, PCA was employed
as a preprocessing orthogonalization method to enable
subsequent clustering or cross-classification for group-
ing areas into regions on the basis of interzonal similar-
ity (Berry 1964). Although less common, a number of
studies also attempted to use it on flow data in transpor-
tation (Black 1973), telecommunications (Goddard
1973), and, as in this application, taxi journeys (God-
dard 1970). Many further uses for PCA have since been
found in a geographical context (see Dem�sar et al.
[2013] for an extensive review), but they are not rele-
vant for our replication experiment.

Data

The Changing Nature of Geographical Data

The data in Goddard’s (1970) paper were drawn
from log books completed by a 10 percent sample of
London’s Black Cab taxi drivers during a week in July
1962 as part of the London Travel Survey (LTS). The
log book data included journeys made while cruising
for fares, as well as the usual fare-paying trips, and
were then manually coded to one of sixty-nine traffic
analysis zones (TAZs) created by the Office of Popula-
tion, Census and Surveys from the 1961 Census. The
exact number of journeys undertaken by taxis that
year is not known, but we estimate from Goddard’s
diagrams that the daily weekday average is on the
order of 18,000 trips. The sample would have been
manually tabulated into an origin–destination (O/D)
matrix suitable for encoding on punch cards as part of
a scheduled run—with a turnaround time of twenty-
four hours—on the university mainframe. The direct
scaling of tabulation effort and physical storage media
with data volumes placed tight constraints on the scale
of analysis that were then feasible.

In contrast, the modern taxi data set, made avail-
able through a partnership with the minicab firm
Addison Lee (hereafter called AddLee), was accessed
over a high-speed digital network. There are key differ-
ences, of course, in the business models used by Black
Cabs and AddLee. In fact, back in 1962 when the
Black Cab data were assembled, the term business
model was unknown and these taxis operated very
largely from hailing on the street or by customers going
to known taxi ranks. AddLee, however, is bookable
and thus skewed toward business accounts (dominated
by the movements from high-profile wealthy home
and work locations like the City of London). The
AddLee data set contains some 1.3 million passenger
journeys made between 1 December 2010 and 28 Feb-
ruary 2011 using any of the firm’s 2,500 vehicles; it is
both complete and spatially extensive, covering all of
Greater London and not just the central core.

From AddLee we get a similar weekday average
of 19,000 journeys, but we now have access to all
of the data, not just a sample, although we should
note that there are other taxi firms for which we
have not been able to access data. Exact origin and
destination were available both via the computer-
ized fleet management system and each vehicle’s
GPS logs. Because the precision of GPS data theo-
retically enables us to identify address-level origins
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and destinations, the data were spatially aggregated
to minimize the risk of reidentification (Zheleva
and Getoor 2007). The aggregation was made to
the TAZs currently used by Transport for London
that we will define as n origins i D 1, 2, . . ., n and
m destinations j D 1, 2, . . ., m. This generates a
trip matrix [Tij], which constitutes the basic data for
the comparison. Figure 1 shows the relevant histori-
cal and contemporary TAZ boundaries, emphasizing
the overall stability of these units.

Based on the stability of the spatial units, we expected
to be able to replicate Goddard’s procedure in the area of
Central London to the point of obtaining comparable
results, while also extending the analysis to the entire
metropolitan region. In the interests of focusing on
functional urban regions (Hall 2009) embodied in work-
day travel, we selected only journeys that began after 7
a.m. and finished before 8 p.m. Figure 2 provides an
overview of theAddLee data at our two analytical scales.
Figure 2A shows the same Central London geography
analyzed by Goddard in 1970, and Figure 2B shows a
larger inner London set of zones capturing wider flows.

Method

Following Goddard’s paper, our analysis consisted of
four steps:

1. Applying PCA to London taxi flows.
2. Dimensionality reduction and rotation.
3. Definition of overlapping functional regions

from PC loadings and scores.
4. Definition of nonoverlapping regions based on

scores’ similarity.

In this section, we discuss each of these four steps and
describe how we replicated them using our modern data.

Step 1: Replicating the Analysis: Applying PCA
to London Taxi Flows

As described previously, the data for this analysis
consist of an O/D trip matrix [Tij] of AddLee vehicle
flows between TAZs in London. Each element Tij of
this matrix, also known as a flow matrix, gives us a
count of taxi trips starting at origin TAZi and ending at
destination TAZj. The diagonal elements represent
intrazone flows. Goddard’s original matrix covered cen-
tral London and was relatively small (69£ 69), whereas
theAddLee data permits us to define both a comparable

region—consisting of the 133 £ 133 matrix [TC
ij ] that

most closely resembles Goddard’s own study area—
and a wider region RI spanning Central and inner Lon-
don with a matrix [TI

ij] that is 391 £ 391 in size. Note
that there is, of course, no reason why the analysis
could not be applied to the entire data set, a matrix of
1,168 zones that is seventy-seven times larger than
Goddard’s and includes a major addition to the main-
line station—the international airport—but this takes
us further away from any kind of comparative study.
Moreover it is only possible now with contemporary
computing technologies and was simply impossible
when Goddard undertook his analysis.

The trip matrices are viewed as a spatial data set, such
that origins can be considered observations and destina-
tions are treated as variables. This approach can be
thought of as a destination-based analysis, but the trip
matrix could be transposed to create a dual problem that
treats destinations as observations and origins as variables.
This duality is beyond the scope of this analysis; however,
we note that this would provide a different picture of the
city’s functional regions. Although there has been little
explicit consideration of the empirical implications of
these primal and dual problems for flow analysis, they are
well used in multivariate analysis and are referred to as R-
mode and Q-mode PCA (Tanaka and Zhang 1999). This
issue can also be linked to developments in spatial interac-
tion and network theory where the primal and dual prob-
lems have beenmore directly considered (Batty 2013).

The first step in the procedure is to calculate the
correlation matrix Cij from the flow matrix Tij. PCA is
then applied to the correlation matrix Cij to generate a
new set of ordered dimensions, the PCs, with the
importance of each connected to the amount of varia-
tion in the raw data that it explains, which is con-
tained in the order of eigenvalues of the PCA
decomposition. Goddard then used the eigenvalues for
dimensionality reduction, which is where our replica-
tion attempt hit the first mathematical obstacle.

Step 2: Challenges for Replication: Dimensionality
Reduction and Rotation

Having extracted the PCs, Goddard reported adjust-
ing the PCs using varimax rotation. Varimax rotation
(Kaiser 1958) was developed for factor analysis (FA) to
maximize the variance explained by derived factors
while also ensuring that, as far as possible, each one is
correlated with only one of the original variables. A
similar rotation of PCs is sometimes employed in
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atmospheric science (Jolliffe 2002), but its validity is
debatable because PCs derived via the correlation or
covariance matrices already maximize variance, whereas
factors do not necessarily achieve that (see the further
discussion later). Hence, not only does rotation of the
axes in the PC space risk changing the ordering associ-
ated with eigenvalues (Daultrey 1976), but the criterion

of each rotated PC to be as closely bound as possible to
a single initial variable is not very meaningful (Harris
2001; Dem�sar et al. 2013). The use of the varimax rota-
tion therefore raises the question of which method
Goddard employed: PCA or FA.

Goddard reported drawing inspiration for his analy-
sis from Rummel’s (1967) classic monograph

Figure 1. 1970 and 2011 traffic analysis zones comparison. (A) 1970 zones from 1962 London Traffic Survey; (B) 2011 zones from London
Traffic Model.
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Understanding Factor Analysis, and the full title of his
1970 publication is “Functional Regions within the
City Centre: A Study by Factor Analysis of Taxi Flows
in Central London”; however, the article itself dis-
cusses only the use of PCA. This confusion matters
because, although FA and PCA are related techniques
designed to extract meaning from the structure of a

data cloud, there are important differences between
them. Principal among these is that FA a priori defines
how many new dimensions (factors) there should be
and fits a model to this number, whereas PCA makes
no such assumptions. Therefore, FA could be consid-
ered as a data modeling approach for a preexisting
hypothesis about the number of latent factors, whereas

Figure 2. Flows, origin, and destination volumes. (A) Undirected volumes of AddLee trips between TAZs for Central London; (B) undi-
rected volumes of AddLee trips between TAZs for inner and Central London. TAZ D traffic analysis zone. (Color figure available online.)
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PCA is a data exploratory technique. See Jolliffe
(2002, chapter 7) for a further detailed comparison of
PCA and FA.

A further important implication of this difference is
that there exists only one solution for PCs, as these
describe the data cloud in the best possible way such
that the explained variance for each axis is maximized,
whereas the model-fitting approach of FA means that,
rather than identifying a unique solution where the
variance of the new dimensions is maximized, a different
model is derived for each different set of factors. Conse-
quently, as dimensionality reduction approaches, PCA
and FA yield quite different outcomes: In FA we specify
the level of reduction because we specify the number of
dimensions and the data are mapped onto these, whereas
in PCA we select some subset of the extracted dimen-
sions that capture the desired share of the variance
and discard the rest. This latter is the procedure that
Goddard described in his paper, which implies that it
was indeed the PCA that was employed and not FA.

Fifty years on there is no way to resolve this confu-
sion: At the time, both PCA and FA on a data set of
this size employed a standard package stored on a set of
punch cards to which the data were then attached on
another set of cards. Goddard did not write the program
and was advised by the programming advisory service
based at Imperial College. Goddard was based at the
London School of Economics, but that college had no
mainframe on which multivariate software of the kind
required could be run (J. Goddard, personal communi-
cation August 2011). As users of such systems had little
control over the program itself, it is not possible to
determine what variant of PCA or FAwas used, as all of
this information is now lost in the mists of time. God-
dard is not able to remember the variant that was used.
Because neither the original data nor the original code
remain—and the latter would not be machine readable
if it did—we cannot fully reconstruct the analysis.

Given this background, we opted to put our replica-
tion on a firmer mathematical footing: We used only
PCA, did not rotate our PCs, and opted to take into
account only those PCs that contributed more than 1
percent to the variance of the data. This approach is
not only frequently used in statistics (Berthold and
Hand 2007) but is also reproducible because the final
stage is guided by the distribution of the data. Using
this procedure, in the AddLee data, seventeen PCs
were retained for the central area (RC) and nine PCs
for the larger area (Central and inner London, RI).
The contribution of each PC in the AddLee data is
illustrated in the scree plots in Figure 3: The rank of

the retained PC is shown on the x-axis and its contri-
bution to total variance is given on the y-axis. What is
most noticeable about these plots is that the contribu-
tion falls off quite rapidly and, although this result is
quite common in PCA, the magnitude of the first PC
suggests that there is one dimension that dominates
the data cloud and, consequently, one set of flows that
dominate in terms of absolute magnitude.

Step 3: Definition of Functional Regions from
Loadings and Scores

It is useful to turn again to the mathematics of PCA
for a moment to help the reader to understand how we
can use it to define functional regions. Recall that, in
effect, we are transforming the original axes so that
they align with the variance of the data cloud. If the
original data are represented by the matrix X, this
remapping means that the new PCs can be expressed
as the linear combination of the original attributes
(X1, X2, . . ., Xn), each modified by the appropriate coef-
ficient (ai1, ai2, . . ., ain); that is, the ith PC is given by
the equation

PCi Dai1�X1 Cai2�X2C ���Cain�Xn: (1)

Here, aij is the loading of variable Xj on component
PCi and refers to the variable’s role in the new dimen-
sion. The second relevant value is the score, which
refers to the remapped value of a single observation on
this new component, PCi(x). In other words, if x D
(x1, x2, . . ., xn) is the set of outbound flows from one
zone in the original data set, then its score on PCi is
the result of the calculation

PCi.x/Dai1�x1 Cai2 C ���Cain�xn: (2)

Note here the distinction between Xj, the variable or
the attribute column, and xj, the value at data point x
of the attribute Xj.

Because we have defined an O/D matrix with desti-
nations as variables, the largest absolute loadings cor-
respond to the destinations that have the strongest
effect on the variance associated with one dimension
of the data cloud. The score is the data value in the
new space of PCs; that is, the transformed value of an
observation in its ith component—in this case an ori-
gin. The absolute value of the score can be interpreted
as the effect of the origin TAZ on one of the new

8 Dem�sar et al.



dimensions, so a higher score indicates a greater con-
tribution to the flows associated with that component.

In combination, the loadings and scores of the PCs
that are retained are used to define functional regions
as follows:

� Important destinations are defined as TAZs with the
largest absolute loadings (i.e., those with the highest
jaijj). These are the destinations that have the most
influence (either positive or negative, depending on
the sign) on a particular PC.

� Important origins are TAZs with the largest absolute
scores (i.e., those with the highest jPCi(x)j). These
are the origins that are feeding the largest flows into
a particular PC.

� Functional regions are then constituted as the union
of important destinations and important origins,
one region for each PC.

An important difference from the other contemporary
network partitioning algorithms is that in this
approach it is possible for TAZs to be important desti-
nations and important origins simultaneously.

The definition of what is an important origin or des-
tination will also have an impact on the partitioning
into regions. In Goddard’s (1970) paper, importance
was gauged using a manually calculated table of load-
ings and scores with cutoff values set to 1 for absolute
loadings and to 0.5 for absolute scores. These choices
draw on the observed distribution of scores and load-
ings, but they are somewhat arbitrary and subjective
(Goddard 1970). Note also that these cutoff values are
the result of the several steps that Goddard had
employed to this point: (1) PCA, (2) dimensionality
reduction to six axes (possibly via FA), (3) varimax
rotation of these six axes (this produces loadings close
to 1), and (4) specification of a cutoff threshold based
on the loadings. Our approach is different, as we only
performed steps (1) PCA and (2) dimensionality
reduction (via PCA). Consequently, the values of the
loadings will not be comparable to Goddard’s values
because they are purely data derived with no mathe-
matical reason for their being close to 1. Instead, we use
outlier analysis (Rogerson 2006) to select the highest
loadings and scores while grounding the results in the
data for replicability: A TAZ is considered important if
and only if the absolute value of its loading or score
exceeds the value of the mean§ 1.5£ the intraquartile
range of all absolute loadings or scores on a PC.

Figure 4 demonstrates how outlier-based selection
of important values works for Central London RC. The

distribution of loadings for each PC is shown as a box-
plot in Figure 4. All PCS, except the first, have a
highly skewed distribution of values, and this is indi-
cated by the central box (which contains values
between the upper and lower quartiles) being posi-
tioned toward the lower edge of the plot. The small
crosses above the whisker are outliers, and in the case
of the loadings they therefore represent the most
important destinations. To define important destina-
tions for PC1, which has no outliers, we investigated
the results in more detail and found that selecting the
top 5 percent of loading values for PC1 yields a com-
ponent of a similar size to the other PCs.

Step 4: Clustering PCA Scores to Obtain
Nonoverlapping Functional Regions

At this point in the analysis, Goddard appears to
have felt that there was a flaw in his approach, as the
resulting regions were overlapping and the PCA did

Figure 3. Eigenvalues rank for regions. (A) Central Region and
(B) Central and Inner Regions, both using AddLee data.
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not result in an exclusive regional assignment (God-
dard 1970). He therefore proceeded to derive an alter-
native regionalization in which the zones were
clustered into groups on the basis of their similarity in
the PC score space. That is, the zones were combined
based on how “efficient” they were as origins and how
they distributed their taxi trips into each PC. In this
approach, the scores for each PC were treated as a
new, nonspatial data set. Similarity of data points in
this new space was then calculated using the Euclidean
distance in the attribute space (on scores) and the
resulting similarity matrix used in hierarchical cluster-
ing. This clustering method starts with every observa-
tion as its own cluster and then iteratively joins the
two most similar clusters into a larger cluster until all
data are grouped together and no more joins are possi-
ble (Jain, Murty, and Flynn 1999).

This approach produces a hierarchy of proximity
that can be presented as a dendrogram in which the y-
axis indicates the number of steps after which two sim-
ilar clusters can be merged into a larger cluster such
that the within-cluster similarity increase is maxi-
mized. Cutting the dendrogram at different levels (i.e.,
at a different number of executed steps of joining the
clusters) produces different partitions of the data set
into clusters. In contemporary data mining, the level
where the dendrogram is cut is normally found by cal-
culating internal cluster validation indexes that tell us
at what number of clusters the groups are at their most
coherent in terms of within-cluster similarity (Everitt
et al. 2011). Without access to such algorithms, God-
dard (1970) introduced another arbitrary choice by
simply cutting his dendrogram at the level that gener-
ates twelve clusters. He further created two sets of
clusters: one by cutting the dendrogram directly and
the other by adding a spatial contiguity criterion that
he felt to be necessary, as he was dealing with geo-
graphical areas. For the second approach he started
with sixty-nine TAZs as individual clusters and at
each step merged those two clusters that were the
most similar in terms of scores and geographically adja-
cent (although again not providing a definition of
what this adjacency should mean in geometric terms),
thus affecting the similarity order in a way that is,
again, not transparent fifty years on.

Because we had initially planned to follow God-
dard’s procedure to the letter, we also attempted to
execute his last step on our data and were at this point
faced with two problems. The first was the choice of
dendrogram cut being insufficiently described for repli-
cation; the second was the rather unexpected finding

that hierarchical clustering did not in fact reveal any-
thing particularly useful about the AddLee flows.
Figure 5 shows the dendrogram resulting from the
hierarchical clustering of the PC scores in the RI case.
The dendrogram is highly skewed, showing that there
are many TAZs that are very similar to each other
(and are consequently joined into clusters at the lower
numbers of iterations) and a few TAZs that are very
different from each other (joined into clusters at the
end of the grouping procedure).

This means that any cut of the dendrogram will
basically split the TAZs into one very large group of
TAZs that are broadly similar to each other and a set
of very small groups of TAZs that are wildly different
from one another. To put it in plainer terms, if we
try to cut the dendrogram to obtain two clusters, we
get one megacluster and one cluster containing a sin-
gle TAZ; if we try to cut the dendrogram to obtain
four clusters, then we still find one megacluster and
now have three clusters that each contain a single
TAZ. This problem exists for at least the first ten
clusters extracted from the dendrogram, so we do not
consider this outcome to be a meaningful regionaliza-
tion and have therefore decided against implement-
ing this last step. Consequently, our final result is a
set of overlapping functional regions derived directly
from Step 3. We further reflect in the Discussion

Figure 4. Distribution of origin loadings for the Central Region
(RC).
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whether the old requirement of the necessity of there
being no overlap between functional regions is still
meaningful with the movement patterns of today.

Results

Functional Regions in the Center of London

We now summarize our findings, highlighting the
most important regions obtained from our analysis,
and relate these to Goddard’s original study. Derived
from PC1, Region 1 (shown in Figure 6A) has the
densest interconnections between zones serving as
important origins and destinations simultaneously.
This result points strongly toward a core for AddLee
journeys within Central London, and Region 1 is the
only grouping that has anything resembling contiguity.
In terms of what the region actually represents, the ori-
gins are predominantly those of less-connected main-
line rail stations to the east and north, and the
destinations are predominantly in areas of luxury
accommodation and consumption. This aligns well
with the characteristics of the AddLee business model.

Figure 6B demonstrates the value of this PCA-based
approach: Region 2 contains several zones also selected
for Region 1, but it is dominated by a strong east–west
relationship based on predominantly rich residential
origins to the west and walking destinations in the
heart of the city or in the emerging agglomeration of
consulting and related firms on the South Bank around
London Bridge station. In fact, moving down through
the remaining fifteen regions shows increased disper-
sion, pointing strongly toward a different activity pat-
tern from what was captured by Goddard’s black cabs.

Region 3 (Figure 7A) serves to highlight the useful-
ness of the ranking that falls naturally out of a PCA-
based approach: We know that this region accounts
for less variance than Regions 1 and 2 and can infer a
narrower type of trip pattern, one undertaken by fewer
individuals. In principle, it is possible to disaggregate
the journeys underpinning this cluster to better under-
stand them, but their spatial location points to non-
work activity. A cluster of origins in Kensington and
Chelsea is loosely linked with destinations such as
King’s Cross station—this journey is not particularly
attractive by Tube because of congestion and a num-
ber of Tube changes that it requires—and the South
Bank. Region 4 captures flows from the northwest of
Central London to Waterloo and London Bridge sta-
tions, another journey that is more pleasant—if no
faster or cheaper—by car.

The remaining regions (see the Supplementary
Material) each account for progressively fewer of
AddLee’s journeys—recall that the percentage of vari-
ance explained can be found in Figure 3. The structure
of these regions is, of course, influenced by factors that
are not immediately evident from the map: Regions 3
and 4 (see Figure 7), for instance, also join origins and
destinations that are relatively weakly connected by
London’s Tube system; the routes between them might
involve multiple transfers and congestion. Note, how-
ever, that the AddLee data reflect a particular set of
behaviors, those of cash-rich, time-poor knowledge
workers at the top end of London’s income spectrum,
so these are not the same functional regions that would
emerge from a study of, for instance, London’s omni-
present bus system. Moreover, although here we specu-
late on the effect of the Tube and the bus system on
these two particular regions (3 and 4), it is likely that
this effect might be felt and affect the spatial patterns
of taxi traffic across all regions. It would, in fact, be
very interesting to apply the same methodology on pub-
lic transport flows, generated from Tube and bus data,
and compare the results with taxi regions. Alterna-
tively, there is scope in modeling both taxi and public
transport flow data together. All of these analyses, how-
ever, constitute their own big data research challenges
and are beyond the scope of this article.

Extending the Analysis to the Wider City

Turning now to the bigger picture, we briefly inter-
pret the larger functional geography of taxi flows as
they pertain to both Central and inner London. This

Figure 5. The hierarchical clustering dendrogram of principal
component scores for the RI case.
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scale of analysis was simply not possible in the 1960s,
so there is an interesting question here as well: Are
the patterns produced in the core reproduced at wider
scales? Does the link between prestigious residential
areas and major transit and employment sites hold, or
is there a shift in usage such that functional regions
are differently constituted?

In like manner, for the Central and inner set of 391
zones, we extracted the most important PCs, finding

nine that contributed more than 1 percent of variance.
Figure 8 shows the first two regions of our analysis, and
the remainder of the regions are in the online Supple-
mentary Materials. As in our first analysis, the first
region extracted constitutes an obvious functional
cross-cutting core for travel (Figure 8A). It is notable,
though, that at this level there is significant in-filling:
areas with in- and outflows that were not significant
when evaluating only Central London flows. The

Figure 6. The Central Region (RC) destinations. (A) The classification into the important origins, destinations, and origins C destinations
from the region derived from the first PC. (B) The same for the region derived from the second PC. Flows belonging to each respective PC
are superimposed on the map of zones and shown with varying thickness. PC = principal component. (Color figure available online.)
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second region has an altogether different structure
(Figure 8B): Although incorporating much of the first
functional region as an origin, it has a strong east–west
structure incorporating the City and London City Air-
port as well as, rather surprisingly, Croydon. Interest-
ingly, for the remaining regions (see online
Supplementary Materials), many of their origins are
zones that are currently poorly served by high-speed
links to Central London and to the airports; however,
some of these routes will be joined up from 2018 with
the launch of the new underground line Crossrail 1
and, eventually, Crossrail 2 services.

In a sense, we can see that London’s structure is still
very much monocentric: a slightly engorged central
business district (CBD) remains the main draw for—
and source of—journeys. The highest value journeys
and, by implication, the highest value interactions are
still dominated by Central London even if the center
derived from AddLee trips is rather larger than a simi-
lar study would have found fifty years ago. Overspill of
financial activity from the City of London does mean
that hedge funds are now principally located in May-
fair and to the immediate southwest, whereas success-
ful new economy and business services firms can be
found from the Old Street Roundabout to Hoxton
Square (now rebranded as Tech City), for instance.

A closer consideration of what is actually in the core
problematizes this simplistic view. First, the size of the
core is rather larger than we would have expected if it
were still a traditional style of CBD because it now
incorporates a much wider range of functions, including
entertainment, leisure, and residential areas. Second,
the range of cross-cutting flows is more complex than a
simple structure would imply. Within the CBD, the
network of flows connects zones to mainline rail sta-
tions in much the same way that Goddard (1970)
observed in the 1962 data, but it is impossible to isolate
each station as a source or sink for a given region even
though we recognize that the underlying behavior of
AddLee users might play a role in this difference. We
also see the densely traversed core spreading westward
along the Thames to include tech firms in previously
overlooked areas such as Richmond and across the
more northerly parts of South London. In short, the
core’s persistence across these extracted regions is not
purely a function of residential demand.

Conclusions and Discussion

In this article, we have attempted to replicate a some-
what forgotten quantitative regionalization methodology

from fifty years ago on modern flow data. We were moti-
vated not only by the fact that the old methodology
looked suitable for the problem of understanding the city
in terms of movement patterns within the urban space,
and we wanted to test whether this was the case, but also
and perhaps even more by the fact that we believed that
we had obtained taxi data from 2011 that were similar to
those used in the 1970 study. With these new data we
expected to be able to see the change in the functional
structure of the city as captured in themovement patterns
identifiable in taxi journeys. Although we were able to
demonstrate the utility of the old methods, we were not
able to fully replicate what had been done in 1970 for var-
ious reasons, many of them related to the inevitable social
forces that directed how this science was carried out. Here
we reflect on our experience and discuss issues that
appeared during our replication experiment.

Embarking on this comparison, we quickly found
dramatic differences between the kinds of data avail-
able then and now. Clearly, the nature of taxi trips in
our modern data is different because taxi journeys in
1962 encompassed many more types of trips than those
associated with today’s prebooking operators. The rela-
tively higher monetary and planning costs of minicab
bookings mean that, in a city like London, high-end
prebooked services are less likely to be used to pop out
to the shops but are common for trips to business
meetings or major events. In this sense, our results
highlight the extent to which AddLee data are
“socially constructed” (Johnston et al. 2014), but as is
usual in this type of analysis we have no data on the
composition and purposes of journeys for either date.
We found, too, that challenges in method replication
extend beyond the changing nature of data collection:
There are interesting, and potentially worrying, paral-
lels between the big data analyses of 1970 and those of
2015. We found ourselves unable to verify crucial
details relating to the analysis because both the
data and the code—were they even accessible any-
where other than in a museum—are simply not
machine readable any more.

So can we draw any meaningful comparisons at all?
Allowing for the substantial limitations noted earlier,
the answer is a qualified “yes.” The most striking differ-
ence is the way in which the strongest flows in the sys-
tem at both scales are no longer driven primarily by
transport; not only are the heaviest flows in the
AddLee data over surprisingly short distances but we
also see the emergence of strong residential and leisure
“poles” at some scales. Obviously, Goddard’s own data
did not extend beyond the business core, but although
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stations remain important origins and destinations in
2012, there is no longer such a strong sense of in- and
outflows and much more cross-cutting behavior. We
find no compact regions such as Goddard’s (1970) Fac-
tor 1 and Factor 3, and only more diffuse groups like
his Factor 2. The revitalization of the inner city over
the intervening fifty years means that the sociocultural
and the economic now mix in complex ways (Hutton
2004). Soho and Clerkenwell stand out in several of

the PCA-derived regions (Figure 6A) and, when com-
bined with AddLee’s business focus, this points toward
the type of mixing of work and “play” thought to cre-
ate buzz in the contemporary knowledge economy
(Storper and Venables 2004). These areas also remain
relatively poorly served by heavy transport infrastruc-
ture such as London’s Underground and rail network
and suggest that taxis are being used to fill in the gaps
in a way that Goddard’s black cabs were not.

Figure 7. Two more Central Region (RC) configurations. (A) Classification into the important origins, destinations, and origins C destina-
tions from the region derived from the third PC. (B) The same for the region derived from the fourth PC. Flows belonging to each respective
PC are superimposed on the map of zones and shown with varying thickness. PC D principal component. (Color figure available online.)
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Of course, high-value services such as those offered
in the City of London and its financial services, and by
the specialist legal firms around the Inns of the Court
on the Strand, remain heavy drivers of vehicle trips
(Figures 6B and 7A), but the most obvious contrast to
Goddard’s own results lies in the rising importance of
origins and destinations south of the Thames as shown

in Figure 7, for example. We can be confident, though,
that the biggest differences—had such data been avail-
able—would have emerged at the scale encompassed by
Figure 8: Canary Wharf and City Airport did not even
exist in 1970, but these are now the most prominent
travel origins and destinations outside of the business
and leisure core. We also see prominent residential

Figure 8. The two most important regions from the Inner and Central (RI) analysis. (A) Classification into the important origins, destina-
tions, and origins C destinations from the region derived from the first PC. (B) The same for the region derived from the second PC. Flows
belonging to each respective PC are superimposed on the map of zones. PC D principal component. (Color figure available online.)
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origins in areas such as Fulham, Clapham, and Lad-
broke Grove (Figure 8). These reflect a profound trans-
formation in the face of Central and inner London.
With the exception of Hampstead, in the 1960s these
neighborhoods were, for the most part, solidly middle
and lower middle class; today, they are bastions of hous-
ing for what the London Output Area Classification
calls the “Urban Elite” and “City Vibe” demographics
(Singleton and Longley 2015). Ultimately, these con-
trasts—driven by social, economic, infrastructural, and
behavioral factors—help us to grasp the outlines of the
underlying transformation of London from declining
metropolis to “world city,” but so great is the gulf
between these two time periods that like-for-like com-
parison is quite simply no longer possible.

On a wider level, however, it should also be noted
that our results indicate that older quantitative
approaches can continue to shed light on current
research challenges. Quantitative methods, like quali-
tative ones, go through periods of being in and out of
fashion, and we find that in this study the relatively
forgotten use of PCA offers specific benefits for flow
network analysis over more recent, computationally
intensive approaches derived from network science.
As we noted earlier, our own attempts employing cut-
ting-edge link-clustering approaches required more
than a month to complete. Unlike techniques adopted
from network analysis (Expert et al. 2011; Thomas
et al. 2012), therefore, PCA is able to cope with a
highly skewed system of flows, as occurs in the AddLee
data set, without producing a trivial partitioning in
which most clusters contain a single observation and
one cluster contains the rest of the data set. In the
context of our data, this corresponds to a trivial core–
periphery regionalization in which the entire CBD is
disaggregated into separate clusters before anything in
the periphery is split into separate groups.

Another issue thrown into relief by our procedure is
the persistence of the generally accepted idea that
functional regions should be nonoverlapping. Goddard
(1970) himself seemed to have felt that an exclusive
partitioning was desirable and the hierarchical
clustering process, with and without physical contigu-
ity constraints, enabled him to create two alternate
views of London. There was indeed a strong presump-
tion at the time among quantitative geographers that
their search was for contiguous and mutually exclusive
partitions of space into a clear hierarchy of zones. The
idea that unique, contiguous partitions are necessary
for interpreting spatial structure has weakened, how-
ever, as geographers have accepted that such

hierarchies are no longer likely to be as clear cut, nor
as desirable, as was assumed a generation or more ago.
In fact, even fifty years ago, it was possible to modify
the multivariate methods Goddard used to account for
spatial contiguity directly, but this represented the
research frontier then and such extensions were not
generally available to applied researchers.

There is now a sense that cities benefit from structural
complexity and that societies have becomemore mobile
and more able to interact in complex ways, such that
the spatial structure of cities is increasingly fragmented
into overlapping polycentric forms. Some contemporary
realizations of network analysis techniques have taken
overlapping structure as an a priori assumption in the
regionalization technique (Dem�sar et al. 2014), but
althoughwell known in physics (Ahn, Bagrow, and Leh-
mann 2010), they are not yet widely used in geography.
That the overlapping regionalization produced by
PCA—especially where the concept of regional con-
tainment is irrelevant and the desired number of regions
is not known—can be an analytical advantage in certain
contexts is not commonly recognized today.

The process of polynucleation appears to have
taken on special importance in London where districts
are highly specialized and contribute to extensive
cross-cutting transport and other flows (Hall and Pain
2006). Moreover, results from other metropolitan
areas, such as those in central Switzerland, for example
(Killer and Axhausen 2009), highlight the fact that
overlapping commuting regions in which a single zone
contributes to several regions at once could be integral
to our understanding of the modern urban landscape.
In short, our comparison of central London fifty to
sixty years ago with today suggests that there should be
a new focus on explaining how spatial structures are
continuing to evolve in complex ways. In 1970, God-
dard justified his approach using what was then called
contact theory, which was an early form of social net-
work analysis originating in Sweden from the
H€agerstrand School (Warneryd 1968). Our current
justification builds on this through new forms of net-
work science, multivariate data mining, and transport
activity modeling, but the methods for testing and
implementing these still strongly resonate with those
that were developed in the first quantitative revolu-
tion in geography. In the quest to understand the
future city, it appears that the tools introduced fifty
years ago by researchers such as Goddard will continue
to have an important role to play in our understanding
of how networks of flows determine the structure of
the contemporary city.
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