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Abstract

It is well known that the standard Galerkin finite element method experiences difficulties when applied

to the Helmholtz equation in the medium to high wave number regime unless a condition of the form

hk2 < C is satisfied, where h is the mesh parameter and k is the wave number. This condition becomes

even more difficult to enforce when coupling multiple domains which may have different wave numbers.

Numerous stabilizations have been proposed in order to make computations under the engineering rule

of thumb hk < C feasible. In this work I introduce a theoretical framework for analysing a class of

stabilized finite element methods. I introduce two stabilized methods drawing inspiration from [34]

and [22]. The methods both have an absolute stability property when considering Dirichlet or Neumann

boundary conditions without condition on the mesh parameter or wave number and are shown to be stable

for an appropriate choice of stabilization parameters when considering impedance boundary conditions.

Numerically, I observe a reduction of the pollution error for given problems provided the stabilization

parameters are chosen appropriately. These stabilizations are then extended to a fictitious domain setting

using cut elements.

Using these methods provides a platform from which to analyse the effect of multi-domain coupling

on the accuracy of solutions. The stabilizations proposed previously are used in the bulk of each domain

and the coupling at the interface is handled using Nitsche’s method [47]. The coupling parameters are

chosen to be complex with positive or negative imaginary part depending on the sign in the Robin bound-

ary condition. The new fitted and unfitted domain decomposition methods have similar properties to the

original stabilized methods and both enter a similar theoretical framework. Interestingly the numerics

seem to show that the introduction of the Nitsche coupling terms preserve the reduction of pollution ef-

fect noted earlier for the fitted domain decomposition methods for both unstructured and non-matching

meshes.
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8 Contents

General Convention

Throughout this report, C will be used to denote a generic constant that is independent of wavenumber

k and mesh size h, unless otherwise stated.

.
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Chapter 1

Introduction

Waves are naturally occurring phenomena that arise in numerous areas of Engineering and Physics.

Acoustic waves are of particular interest in the areas of seismology and ocean acoustics. The speed of a

wave is related to the density and compressibility of the medium through which it travels. Simply stated

the more dense/ less compressible the medium the faster the wave. In many practical situations the wave

being modelled will pass through numerous different materials which affect its speed and can give rise to

coupled systems. It is therefore desirable to have a method for calculating the solutions of these problems

reliably. In most practical applications it is possible to reduce the complexity of the wave equation by

making certain assumptions about the solution. Under the assumption that waves are steady-state with

constant frequency !, the Helmholtz equation can be derived. Recall the wave equation

@2

@t2
U(x, t) = c2�U(x, t). (1.1)

From our assumption solutions have the form U(x, t) = u(x)ei!t, which reduces the wave equation to

@2

@t2
u(x)ei!t

= c2�u(x)ei!t

u(x)
@2

@t2
ei!t

= c2ei!t

�u(x)

�!2u(x)ei!t

= c2ei!t

�u(x)

��u(x)� !2

c2
u(x) = 0.

Finally letting k =

!

c

gives

��u(x)� k2u(x) = 0. (1.2)

The resulting equation is referred to as the homogeneous Helmholtz equation. Equations of this form

also occur in areas of physics involving Maxwell’s equation and Schrödinger’s equation.

A Partial Differential Equation (PDE) like Helmholtz equation is usually stated as a boundary value

problem. That is, find a solution to the equation on a given domain that satisfies certain conditions on
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the domain’s boundary. For the resulting system to be considered well posed it is necessary to choose

appropriate boundary conditions. When dealing with an interior problem, solutions of Helmholtz are

said to be stationary wave solutions and can be considered with either Dirichlet or Neumann boundary

conditions. For the interior problem well-posedness comes from the Fredholm alternative which says

that

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

� either k2 is not an eigenvalue in the spectrum of �� and the Helmholtz equation admits a

unique solution

� or k2 is an eigenvalue in the spectrum of �� and the corresponding eigenfunctions are

solutions of the homogeneous Helmholtz equation with zero right hand side hence the

boundary value problem is not well posed

Alternatively, one can also consider an exterior problem in this case solutions are referred to as progres-

sive wave solutions. Here �� with Dirichlet or Neumann boundary conditions is not self-adjoint and

does not have a compact inverse in L2
(⌦). For the exterior problem it is necessary to impose an extra

condition to guarantee uniqueness of solutions. This condition is know as the Sommerfeld radiation

condition and asks that

|ru · n+ iku| 6 C

|x| d+1
2

at infinity,

where n is taken to be the outward facing normal of a sphere centred a O of a radius R such that |x| = R

as R tends to 1 and d 2 {2, 3} is taken to be the dimension of the problem. A proof that this leads

to a well posed problem can be found in [46]. This condition essentially ensures that no energy can

be reflected back into the system from infinity. I shall be using the first order approximation of the

Sommerfeld radiation condition which is a Robin boundary condition.

When considering a PDE, like Helmholtz, on a complicated domain the Finite Element Method (FEM)

is usually the engineering method of choice. The FEM is a method for approximating the solution of

a PDE numerically and involves reformulating the PDE into a weak form. This manipulation involves

multiplying by a test function and integrating over the domain of the problem. It is true that if the new

equation is satisfied for all test functions in some test space then the element that satisfies this condition is

the solution to the original PDE in some trial space. The FEM replaces the trial and test spaces with finite

dimensional approximations and the solution is represented by the function in the finite dimensional trial

space that satisfies the weak formulation for all test functions in the finite dimensional test space.

When dealing with elliptic, positive definite problems, well-posedness of the continuous and discrete

problems are a direct result of the Lax-Milgram theorem. In this case the term positive definite is taken

to mean that the sesquilinear form A(·, ·) is coercive or V -elliptic,

Definition 1.0.1 (Coercivity, V -ellipticity). Letting V be a Hilbert space, a sesquilinear form A(·, ·) :
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V ⇥ V 7! C is said to be coercive if there exists a real constant ↵ > 0 such that

A(u, u) > ↵kuk2
V

.

Lemma 1.1 (Lax-Milgram). Let V be a Hilbert space. Then given a bounded, coercive sesquilinear

form A : V ⇥ V 7! C and a bounded linear functional f defined on V , there exists a unique element

u0 2 V such that

A(u0, v) = (f, v) 8 v 2 V.

A proof of Lax-Milgram’s lemma can be found for example in [56]. It can be shown that Helmholtz

equation on a bounded domain in the low wave number regime satisfies the Lax-Milgram lemma when

considered with Dirichlet boundary conditions. The coercivity assumption is broken as k increases

therefore the user is forced to leave the Lax-Milgram framework. To illustrate the complications faced

when attempting to prove coercivity let us consider the Helmholtz problem on a domain ⌦ with Dirichlet

boundary conditions. The sesquilinear form A(·, ·) is then given by

A(u, v) = (ru,rv)0,⌦ � k2(u, v)0,⌦ 8 v 2 V, (1.3)

where we define our space V as

V
def
= {v 2 H1

(⌦) : v = 0 on @⌦}. (1.4)

It follows that

A(u, u) = kruk20,⌦ � k2kuk20,⌦

= (1� ↵)kruk20,⌦ + ↵kruk20,⌦ � k2kuk20,⌦, ↵ 2 [0, 1].

Since the space, V , is designed such that u vanishes on the boundary the following Poincaré inequality,

kruk20,⌦ > 1

C2
p

kuk20,⌦,

holds for a positive constant C
p

. Which gives

A(u, u) > (1� ↵)kruk20,⌦ +

↵

C2
p

kuk20,⌦ � k2kuk20,⌦

> min{(1� ↵),
↵

C2
p

� k2}kuk21,⌦.
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So the form is coercive under the condition

k < C�1
p

.

In most practical applications this inequality does not hold and the problem is indefinite. This does

not mean that the weak form of the Helmholtz problem is ill-posed but it does mean that the standard

finite element analysis based on the Lax-Milgram lemma will not carry over from the continuous to the

discrete case without some extra work. It can be shown that the Helmholtz equation on weak form is

uniquely solveable using an argument found in [42]. The argument relies on the fact that the Helmholtz

equation satisfies a Gårding inequality which implies existence if it can be shown that the solution of the

adjoint problem is unique, see for example [53].

Consider the following Helmholtz equation on a Lipschitz bounded domain ⌦

��u� k2u = f in ⌦ (1.5)

ru · n+ iku = g on @⌦, (1.6)

for f 2 H�1
(⌦) and g 2 H� 1

2
(@⌦), then letting V

def
= H1

(⌦) the weak form is given by

A(u, v) = (ru,rv)0,⌦ � k2(u, v)0,⌦ + ik hu, vi0,@⌦ = (f, v)0,⌦ + hg, vi0,@⌦ 8 v 2 V, (1.7)

and the adjoint problem is given by

A(v, u) = (ru,rv)0,⌦ � k2(u, v)0,⌦ � ik hu, vi0,@⌦ 8 v 2 V. (1.8)

Then solutions are unique if

A(u, v) = 08 v 2 V =) u = 0.

By letting v = u,

kruk20,⌦ � k2kuk20,⌦ + ikkuk20,@⌦ = 0. (1.9)

Considering the imaginary part implies that u = 0 on @⌦. This gives that u 2 H1
0 (⌦) is the solution of

the homogeneous problem

(ru,rv)0,⌦ � k2(u, v)0,⌦ = 0 8 v 2 V. (1.10)
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Notice that it is possible to extend the function u in the following manner

û(x) =

8

>

<

>

:

u(x) for x 2 ⌦

0 for x 2 ˆ

⌦ \ ⌦

The extended function now satisfies (1.10) on ˆ

⌦. Therefore û solves the homogeneous Helmholtz equa-

tion and vanishes on ˆ

⌦ \⌦. A continuation argument, see for example [40], then shows that û = 0 on ⌦

also.

To prove existence and uniqueness of FE solutions there are two main approaches. The first is to show

that the sesquilinear form obeys a discrete inf-sup condition. The inf-sup condition is a more general

version of the coercivity condition in Lax-Milgram’s theorem which gives information about the stability

of a sesquiliner form. Firstly, let’s introduce the Babuška theorem a proof of which can be found in [4]

which acts as a generalization of Lax-Milgram.

Theorem 1 (Babuška). Assume that sesquilinear form A(·, ·) : V1 ⇥ V2 7! C on Hilbert spaces V1, V2

satisfies

(B1) Continuity

9M > 0 : |A(u, v)| 6 Mkuk
V1kvkV2 , 8u 2 V1, v 2 V2 (1.11)

(B2) inf-sup Condition:

9� > 0 : � 6 sup

v2V2\{0}
|A(u,v)|

kukV1kvkV2
, 8u 2 V1 \ {0} (1.12)

(B3) “Transposed” inf-sup Condition:

sup

u2V1\{0} |A(u, v)| > 0, 8v 2 V2 \ {0} (1.13)

and let f : V2 7! C be an antilinear bounded functional defined on V2. Then there exists a unique

element u0 2 V1 such that

A(u0, v) = f(v) 8v 2 V2.

The solution u0 satisfies the bound

ku0kV1 6 1

�
kfk

V

0
2
. (1.14)

From this theorem it is clear that properties (B2) and (B3) may not hold on a FE subspace V
h

of the

infinite dimensional space V as the supremum will generally decrease when taken over a subspace. This
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leads to the discrete inf-sup condition. Essentially assume that conditions of Theorem 1 are satisfied for

a sesquilinear form A(·, ·) : V1⇥V2 7! C on V1⇥V2 where V1,V2 are Hilbert spaces. Now let V h

1 ⇢ V1,

V h

2 ⇢ V2 be subspaces, then if A(·, ·) also satisfies

(B2

h

) the discrete inf-sup condition

9�
h

> 0 : �
h

6 sup

vh2V

h
2 \{0}

|A(uh,vh)|
kuhkV1kvhkV2

, 8u
h

2 V h

1 \ {0}, (1.15)

(B3

h

) the transposed condition

sup

uh2V

h
1 \{0}

|A(u
h

, v
h

)| > 0 8v
h

2 V h

2 \ {0}, (1.16)

then there exists a unique element u0
h

2 V h

1 such that

A(u0
h

, v
h

) = f(v
h

), 8v
h

2 V h

2 .

It can be shown that the standard Galerkin FEM with piecewise linear elements applied to Helmholtz

on weak form satisfies the discrete inf-sup condition on a bounded star-shaped domain with smooth

boundary under the assumption (1 + k2)h < C see, for example, [42]. Under this assumption and

replacing the standard H1 norm with the k dependent norm,

kvkH = krvk0,⌦ + |k|kvk0,⌦.

it is possible to obtain �
h

= O(k�1
) and a quasi optimal error estimate

ku� u
h

kH 6 C3 inf

vh2Vh

ku� v
h

kH.

This restriction is far too stringent for most practical applications but is necessary for stability. The

problems arise in the high wave number regime where it is necessary to take a vast amount of mesh

points to ensure that the discrete system is well posed.

Another technique for analysing the FEM for the solution of Helmholtz problems comes from an obser-

vation by A.Schatz [49] regarding indefinite bilinear forms. It is possible to use this method to deduce

the standard FEM is stable and quasi-optimal, although this result only holds if the mesh size h is small

enough. Schatz’s argument relies on the associated adjoint problem being uniquely solvable and requires

the following inequalities to hold



20 Chapter 1. Introduction

• Continuity

|A(u, v)| 6 Mkuk1,⌦kvk1,⌦ 8u, v 2 H1
0 (⌦).

• Gårding inequality

C1kvk21,⌦ � C2kvk20,⌦ 6 |A(v, v)| 8v 2 H1
0 (⌦).

Allowing C1 = 1 and C2 = 1 + k2 it is obvious to see that Helmholtz equation satisfies the Gårding

inequality. The argument of Schatz is as follows: Let u 2 H1
0 (⌦) be the exact solution of the Helmholtz

equation and u
h

2 V
h

be the discrete solution given by the standard Galerkin method. From the Gårding

inequality stated above it holds that

ku� u
h

k21,⌦ � (1 + k2)ku� u
h

k20,⌦ 6 |A(u� u
h

, u� u
h

)|. (1.17)

Using Galerkin Orthogonality and the continuity estimate given above, gives

|A(u� u
h

, u� u
h

)| = |A(u� u
h

, u)| (1.18)

6 Mku� u
h

k1,⌦kuk1,⌦. (1.19)

Combining the previous two results and dividing through by ku� u
h

k1,⌦ yields

ku� u
h

k1,⌦ � (1 + k2)
ku� u

h

k20,⌦
ku� u

h

k1,⌦
6 Mkuk1,⌦. (1.20)

Noticing that ku�uhk0,⌦

ku�uhk1,⌦
6 1 gives the following estimate

ku� u
h

k1,⌦ � (1 + k2)ku� u
h

k0,⌦ 6 Mkuk1,⌦. (1.21)

Now using Nitsche’s trick it is possible to derive an estimate of the form

ku� u
h

k0,⌦ 6 Chku� u
h

k1,⌦. (1.22)

where h defines the mesh parameter. Using (1.21) in conjunction with (1.22) gives existence and unique-

ness of discrete solutions again under the condition h < C

(1+k

2) . The argument uses the fact that under

the condition h < C

(1+k

2) , u = 0 implies that u
h

= 0. This asserts that the homogeneous equation has a

unique solution. Then using the fact that V
h

is finite dimensional implies that u
h

exists and is unique for

each u 2 H1
0 (⌦). The argument, leads to the same condition as the inf-sup condition, ie (1+ k2)h < C.

As stated earlier this condition becomes too computationally restrictive for large k.
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In practice one would like a method that works under the condition kh < C, meaning that regardless of

the wavenumber a fixed number of points per wavelength is sufficient to achieve a certain accuracy. The

problem with the standard FEM is that if only this condition is assumed to hold, stability is lost under

increasing wavenumber. This loss of stability causes a couple of problems. The first is that existence

and uniqueness of discrete solutions is no longer guaranteed and the second is that if a discrete solution

does exist the method may not converge to that solution at an optimal rate. Numerous schemes have

been devised to help alleviate these issues which have worked to great effect for the 1-D problem. In

[34] Harari and Hughes introduced a Galerkin Least Squares (GLS) stabilization to improve the stability

properties of the scheme which completely eliminates pollution in the 1-D case for an appropriate choice

of penalty parameter. However, in 2-D this parameter is highly dependent on the angle of propagation

of the wave which is not generally known a priori. This scheme was shown to be coercive for piecewise

affine elements but the analysis does not carry to higher order elements. In [31] Feng and Wu applied a

discontinuous Galerkin method with penalty on the jump of the solution and its derivatives over element

faces to the problem. Since then Wu and Du have extended this idea in [28] to penalise the jumps of

higher order terms for higher order methods using continuous finite element spaces. The CIP method was

analysed in the 1-D case by Zhu, Burman and Wu in [22] and shown, for piecewise affine elements, to

be absolutely stable. In this paper it is also shown, through a dispersion analysis, that the pollution effect

can be eliminated for an appropriate choice of stabilization parameter. This was partly the motivation

for Chapter 2, where I provide an abstract analysis for robust stabilized finite element methods which

perform no worse than the standard FEM but are stable under the condition kh < C for an appropriate

choice of stabilization parameters. I present improved a priori error estimates of the same type as in [22]

for piecewise linear elements for two stabilized methods, then explore the potential of these method to

reduce the pollution effect numerically.

The focus of the first part of this project is to develop a stabilized FEM that is robust under the condition

kh < C. This condition is the minimum requirement since waves are typically hard to discretize due

to the large number of unknowns required to obtain an accurately resolved wavelength. The explanation

comes from the Nyquist sampling theorem which when applied to Helmholtz equation states that in or-

der to fully resolve each wave it is necessary to use a minimum of 10 ⇠ 12 elements per wavelength.

The FEM experiences two types of difficulties when (1 + k2)h is large, even if kh < C, firstly the

linear system becomes ill-conditioned and could in principle have zero eigenvalues. Secondly, the finite

element solution suffers from the so called “pollution effect”, i.e. the dispersion error is so large that the

optimal approximation property of the FEM no longer holds in the pre asymptotic regime. These prob-

lems can be avoided by using higher order elements although this introduces its own issues. Increasing

the polynomial order of the elements in your FE space has a negative impact on the conditioning of the

system matrix and requires the use of an appropriate preconditioner. In practice these preconditioners
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are usually low order methods which suffer from the problems discussed previously. Also for high order

methods to be considered cost effective they must have superior convergence to low order methods, this

requires additional regularity assumptions which are not always satisfied. The goal of this project is to

ultimately develop a geometrically unfitted finite element method for the solution of Helmholtz equation

which uses cut elements. These methods are known to only converge optimally for piecewise linear

elements unless certain assumption are made about the interface. This motivates the need for a reliable

low order method for solving the Helmholtz equation.

Once robust methods have been analysed the next step in the project is to provide a way of coupling

two or more Helmholtz systems, using the technique of Nitsche introduced in [47] to weakly impose the

coupling (or transmission) conditions across the interface. Chapter 3 introduces stabilized finite element

methods for generalized boundary conditions using the technique of Nitsche to weakly enforce Dirichlet

boundary conditions. The methods can be seen to enter the same theoretical framework introduced in

Chapter 2. The final part of Chapter 3 introduces a new fictitious domain method using cut elements for

the solution of Helmholtz equation. Classical fictitious domain methods are typically sub-optimal with

poor accuracy and very few papers exist that consider the Helmholtz equation in this setting. The new

method proposed is shown to be optimally convergent in the asymptotic regime and shown to be stable

for an appropriate choice of stabilization parameters. The theoretical results are backed up numerically.

In the final chapter new stabilized fitted and unfitted domain decomposition methods are presented

which can also be shown to enter a similar theoretical framework as proposed in Chapter 2. The multiple

domain case highlights the need for robust methods as, in the case of coupled systems with different

wave numbers, mesh restraints become harder to satisfy. The condition for the standard FEM becomes

max{k
i

}2h < C which may be too restrictive if each sub-domain has vastly different wave numbers.

Problems of this type could typically arise in ocean acoustics where the water has a different density to

the seabed. This causes waves to travel at different speeds through each medium and results in different

wave numbers. It can be seen numerically that the newly proposed stabilized domain decomposition

methods have advantages over the non-stabilized coupling techniques also proposed.



Chapter 2

Stabilized FEM for Wave equations

2.1 The Helmholtz equation

The numerical solution of the Helmholtz problem is challenging due to the indefinite character of the

equation in weak form. In particular for high wave numbers the computational cost may be prohibitive

due to the pollution effect. It is well known that the standard Galerkin discretization is not stable unless

the condition k2h small enough is satisfied [49, 38]. Indeed this condition has to be satisfied both to

ensure that the system matrix is invertible and to ensure that optimal convergence is obtained. In the

high wave number regime, optimal convergence is typically obtained only for k2h small enough. This

behaviour improves when high order approximation spaces are used and the dissipation relations have

been carefully unearthed [1, 43]. The engineering rule of thumb on the other hand is that kh should be

small enough, i.e. each wavelength should be resolved on a sufficiently large number of mesh cells, that

ideally could be kept constant as the wave number increases. A remedy for the stability problems of

the standard Galerkin method was suggested by Harari and Hughes in [34]. The idea was to stabilize

the Helmholtz equation using the addition of a least squares perturbation similar to the SUPG method

that had been so successful for the stabilization of convection–dominated flow problems. In [34] it

was proven that for piecewise affine finite elements the Galerkin Least Squares (GLS) bilinear form, is

coercive and hence the discrete problem is stable. This analysis however does not carry over to higher

polynomial approximation. Using a multiscale argument Oberai and Pinsky [48] argued that a penalty on

the normal gradient should be included in the formulation. Similar ideas were then used in combination

with the discontinuous Galerkin (DG) method by Feng and Wu in order to stabilize the DG formulation

of the Helmholtz equation [31]. Here a penalty was introduced on all the derivatives and it was shown

that the discrete system is well posed without conditions on the mesh-parameter and the wave number.

In recent work by Wu [54] the Continuous Interior Penalty (CIP) method, introduced by Douglas and

Dupont [27] for advection dominated flows and later analysed by Burman and Hansbo [18], was used for

the stabilization of the Helmholtz equation. The CIP-method has also been applied successfully to the
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stabilization of different problems in elasticity [29, 19]. A very detailed analysis was carried out by Wu

and co-workers in the papers [54, 57, 22], showing once again that the discrete system is well posed and

that in one space dimension there is an interval in which the penalty parameter can be chosen so that the

pollution effect is eliminated. In this chapter I propose two stabilized FEMs that have similar properties

from the point of view of analysis. Drawing first on the ideas of [34, 48, 54] a GLS-type stabilization

both on the element residual, and the jump of the normal gradient over element faces is proposed.

I then show that the least squares term in the interior of the elements may be replaced by a face oriented

penalty term on the jump of the Laplacian, leading to a method similar to that proposed by Du and Wu

[28] in the case of quadratic polynomials. I show that both the GLS method and the CIP method with

penalty on jumps of first and second order derivatives are stable for all polynomial orders under the

condition kh < C, where C is dependent on the choice of stabilization parameters, and that a priori error

estimates of the same order as the standard Galerkin method under the condition k2h < C hold. In the

case of piecewise linear elements I then prove an improved estimate for piecewise linear elements which

shows that, although the estimates contain the standard pollution term, the error is upper bounded by

data. As in [54] numerical evidence suggests that the method has some potential to reduce the pollution

effect for a given problem if a good value of the stabilization parameter is known.

Consider the complex Helmholtz equation in ⌦ ⇢ Rd.

L(u) = f in ⌦

R(u) = g on @⌦

9

=

;

(2.1)

where I have used L(.) = ��(.)�k2(.) to denote the Helmholtz operator and R(.) = r(.) ·n+ ik(.) to

denote the Robin operator. The Robin operator, when stated in this way, can be thought of as a first order

approximation of the Sommerfeld radiation condition which guarantees uniqueness of the Helmholtz

equation. For the subsequent analysis it is useful to also consider the adjoint problem

L(z) =  in ⌦

R⇤
(z) = 0 on @⌦

)

(2.2)

where R⇤
(.) = r(.)·n�ik(.) denotes the Robin boundary operator for the adjoint problem. The adjoint

problem comes from

(Lu, v)0,⌦ = (u,L⇤v)0,⌦.
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Letting L denote the Helmholtz operator, choosing g = 0 and performing an integration by parts gives

(Lu, v)0,⌦ = (��u� k2u, v)0,⌦ (2.3)

= (ru,rv)0,⌦ � k2(u, v)0,⌦ + ik hu, vi0,@⌦ (2.4)

= (u,��v)0,⌦ � k2(u, v)0,⌦ +ik hu, vi0,@⌦ + hu,rv · ni0,@⌦
| {z }

(I)

. (2.5)

Since hu, vi0,@⌦ :=

R

@⌦ uv̄ is a complex inner product the boundary terms (I) simplify to

(I) =

Z

@⌦
ur(v̄) · n+ ik

Z

@⌦
uv̄ (2.6)

=

Z

@⌦
u (r(a� ib) · n+ ik(a� ib)) (2.7)

=

Z

@⌦
u (ra · n+ kb� irb · n+ ika)
| {z }

(w)

. (2.8)

Taking the complex conjugate of w gives

w = ra · n+ kb+ irb · n� ika (2.9)

= r(a+ ib) · n� ik(a+ ib). (2.10)

Therefore, the problem reduces to

(Lu, v)0,⌦ = (u,L⇤v)0,⌦ + hu,rv · n� ikvi0,@⌦ (2.11)

This implies that the boundary condition for the adjoint problem should be

R⇤
(v) = rv · n� ikv = 0

Assuming ⌦ is a bounded convex domain, it is known that the solution of (2.1) satisfies the following

bounds, see [42]

kkuk0,⌦ + kuk1,⌦ . C
f,g

, kuk2,⌦ . kC
f,g

, (2.12)

where C
f,g

= kfk0,⌦ + kg
R

k0,@⌦ +

1
k

kg
R

k1/2,@⌦. Under the same assumptions the adjoint problem

satisfies similar bounds

kkzk0,⌦ + kzk1,⌦ . k k0,⌦, kzk2,⌦ . kk k0,⌦. (2.13)

It is possible, if one assumes more regularity of f, g
R

, to extend the estimates given above to higher order
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Sobolev spaces. A proof of this can be found in [28], the idea uses the standard regularity estimate for

Laplacian with Neumann boundary condition as well as an induction argument. The result generalizes

to

kuk
s,⌦ . ks�1C

s�2,f,g, (2.14)

where C
s�2,f,g

def
= kfk0,⌦ + kgk0,� +

P

s�2
j=0 k

�(j+1)
⇣

kfk
j,⌦ + kgk

j+ 1
2 ,�

⌘

.

With the standard regularity results stated I would like to introduce an abstract formulation to denote

Helmholtz equation given in weak form. Using this formulation the problem becomes: find u 2 H1
(⌦)

such that

A(u, v) = L(v), 8v 2 H1
(⌦), (2.15)

where

A(u, v) := (ru,rv)0,⌦ � k2(u, v)0,⌦ + i(ku, v)0,@⌦

and

L(v) := (f, v)0,⌦ + hg, vi0,@⌦ .

2.2 Stabilized finite element formulations

The finite element method has been employed to solve a wide range of PDEs since its inception in the

1950’s. The ability of the method to provide a good approximation to the underlying problem relies on

two main properties. The first is that the discrete space V
h

, in which solutions are sought, has reasonable

approximation properties to the space V where solutions exist. The second property is that the problem

can be approximated in a proper mathematical setting which guarantees consistency, stability and con-

tinuity. Often when issues arise in practice it can be attributed to one leaving this mathematical setting.

The stabilized finite element methods that I will be introducing here are designed to be consistent with

the underlying problem and also have additional continuity properties to make them stable for appropri-

ate mesh parameters. Before I introduce these methods I introduce the finite element space. Let T
h

be a

quasi-uniform triangulation of ⌦ where quasi-uniformity is as defined in (A.4) and let V
h

be defined by

V
h

def
= {v 2 H1

(⌦) : v|
⌧

2 P
p

(⌧) 8 ⌧ 2 T
h

, p 2 N},

where P
p

(⌧) denotes the space of polynomials of order at most p when restricted to ⌧ . Since the two

stabilized methods I will be introducing each include at least one penalty term acting on the jump of

some quantity over internal element faces it is also beneficial to define F
int

as the set of all interior

faces,

F
int

def
= {F : F = ⌧1 \ ⌧2 6= ; where ⌧1, ⌧2 2 T

h

}.
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Since I would like to analyse a class of stabilized FEMs which have similar properties, there is an

advantage to introducing an abstract formulation. Using this abstract formulation the problem becomes:

Find u
h

2 V
h

such that

A
h

(u
h

, v
h

) = L
h

(v
h

) 8 v
h

2 V
h

(2.16)

where

A
h

(u
h

, v
h

) = A(u
h

, v
h

) + s(u
h

, v
h

) and L
h

(v
h

) = L(v
h

) + s(u, v
h

).

Observe that since s(u, v
h

) appears in the right hand side of (2.16) this quantity must be known. This is

typically the case if s(., .) is a residual based stabilization. s(., .) is assumed to be a sesquilinear form

that may have a dependence on the mesh parameter h.

It is useful to note for the subsequent analysis that the abstract formulation stated in (2.16) obeys a

Galerkin Orthogonality type relationship.

Lemma 2.1 (Galerkin Orthogonality). Let u be the exact solution of (2.1) and u
h

be the discrete solution

of (2.16). Then

A(u� u
h

, v
h

) = �s(u� u
h

, v
h

) 8 v
h

2 V
h

. (2.17)

Proof. The proof is standard

A(u, v
h

)�A
h

(u
h

, v
h

) = A(u, v
h

)�A(u
h

, v
h

)� s(u
h

, v
h

) (2.18)

= A(u� u
h

, v
h

)� s(u
h

, v
h

) (2.19)

= L(v
h

)� L(v
h

)� s(u, v
h

) (2.20)

= �s(u, v
h

) (2.21)

which gives

A(u� u
h

, v
h

)� s(u
h

, v
h

) = �s(u, v
h

). (2.22)

The claim follows immediately.

2.3 A priori error estimates and well-posedness of the discrete

system
The main theorem of this section is a result about the well-posedness of the discrete system, the result

relies upon a set of assumptions on the stabilization s(., .) and the discrete form A
h

(., .) introduced

previously. I show that under these assumptions a priori error estimates can be derived without making

assumptions on k or h. This guarantees the discrete system is well-posed and also shows that under

the condition k2h < C the method converges optimally. To enter the framework of the theorem the
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stabilization must be chosen appropriately. The first assumption on the stabilization is that there exists

some type of energy semi-norm |.|I with the following properties |.|I : V
h

7! R such that

C|u
h

|2I 6 |A
h

(u
h

, u
h

)|, for some C > 0. (2.23)

where u
h

be the discrete solution of (2.16). It can be noted that if |.|I is taken to be a norm on V then

this estimate is analogous to the coercivity assumption of Lax-Milgram. I also ask that the following

Cauchy-Schwarz type inequality holds for some semi-norm |.|
s

: V 7! R which is associated to the

stabilization,

|s(v, w)| 6 C|v|I|w|s 6 |v|I|w|I 8 v, w 2 V. (2.24)

It will become clear later that for the stabilizations I introduce these results hold by introducing stabi-

lization parameters with non-zero complex components. The Cauchy-Schwarz type inequality ensures

that the whole stabilization can be upper bounded by its Imaginary part.

The subsequent analysis also relies on the existence of an appropriate interpolation operator ⇡
h

: V 7!

V
h

. This operator should adhere to the standard interpolation estimates stated for piecewise linear ele-

ments

ku� ⇡
h

uk0,⌦ + hkr(u� ⇡
h

u)k0,⌦ 6 Ch2|u|2,⌦, (2.25)

and

ku� ⇡
h

uk0,⌦ + hkr(u� ⇡
h

u)k0,⌦ +

X

⌧2Th

h2
⌧

kD2
(u� ⇡

h

u)k0,⌧ 6 Chp+1|u|
p+1,⌦, (2.26)

for piecewise polynomial elements of order p > 1. The operator should also be chosen in conjunction

with a norm k.k⇤ such that the following continuity estimate is satisfied

|A(u� ⇡
h

u, v
h

)|+ |s(u� ⇡
h

u, v
h

)|+ 2kku� ⇡
h

uk0,@⌦Rkvhk0,@⌦R 6 Mku� ⇡
h

uk⇤|vh|I. (2.27)

A second continuity assumption is posed purely on the sesquilinear form A(., .) and is designed to

include the interpolation error of the adjoint problem. In this estimate z and  are taken to be the exact

solution and source term of the adjoint problem as posed in (2.2), respectively.

|A(u� ⇡
h

u, z � ⇡
h

z)| 6 C(kh)hp|u|
p+1,⌦k k0,⌦. (2.28)

For the analysis to hold some control is needed over ⇡
h

z. This control is asserted through a stability

estimate of the form

|⇡
h

z|
s

6 Ckhk k0,⌦. (2.29)
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which is required to show that the discrete solution converges to the exact solution in L2
(⌦). Finally the

theorem requires interpolation estimates in |.|I and k.k⇤. Notice that these results highlight the similarity

of the assumptions on the sesquilinear form.

ku� ⇡
h

uk⇤ 6 Chp|u|
p+1,⌦ (2.30)

and

|u� ⇡
h

u|I 6 Chp|u|
p+1,⌦ (2.31)

Now that the groundwork has been laid it is possible to construct our theorem

Theorem 2. Let u 2 Hp+1
(⌦) be the unique solution of (2.15) and u

h

2 V
h

be a solution of (2.16).

If (2.16) satisfies properties (2.23)-(2.31) and k > 1 then the stabilized formulation admits a unique

solution which satisfies the following a priori error estimates

|u� u
h

|I 6 Chp|u|
p+1,⌦ (2.32)

ku� u
h

k0,⌦ 6 C(kh)hp|u|
p+1,⌦ (2.33)

kr(u� u
h

)k0,⌦ 6 C
�

1 + (k2h)
�

hp|u|
p+1,⌦. (2.34)

Considering the case u 2 H2
(⌦) the following estimates hold

|u� u
h

|I 6 CkhC
f,g

(2.35)

ku� u
h

k0,⌦ 6 C(kh)2C
f,g

(2.36)

kr(u� u
h

)k0,⌦ 6 C(kh+ k3h2
)C

f,g

. (2.37)

To begin the proof of the theorem I first consider the convergence of |u� u
h

|I.

Lemma 2.2 (Convergence of |u�u
h

|I). Under the assumptions of Theorem 2 the following convergence

result holds

|u� u
h

|I 6 Chp|u|
p+1,⌦. (2.38)

Proof. Let u� u
h

= u� ⇡
h

u
| {z }

⌘

+⇡
h

u� u
h

| {z }

⇠h

From the triangle inequality and (2.31) it is clear that:

|u� u
h

|I 6 C (|⌘|I + |⇠
h

|I) .
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Turning our attention to |⇠
h

|2I and using Galerkin Orthogonality followed by (2.27) reveals that

C|⇠
h

|2I 6 |A
h

(⇠
h

, ⇠
h

)|

= |A
h

(⇡
h

u, ⇠
h

)� (L(⇠
h

) + s(u, ⇠
h

))|

= |A
h

(⌘, ⇠
h

)|

6 Mk⌘k⇤|⇠h|I,

dividing both sides by |⇠
h

|I and applying (2.30) yields the desired result,

|u� u
h

|I 6 Chp|u|
p+1,⌦.

With this result in hand it is now possible to estimate the rate of convergence in L2
(⌦). In order to obtain

this result I have used a modified duality argument that uses the Galerkin orthogonality property stated

in (2.17). The result also relies on the fact that

|⇠
h

|I 6 Chp|u|
p+1,⌦, (2.39)

which comes directly from the proof of Lemma (2.2).

Lemma 2.3 (Convergence of ku� u
h

k0,⌦). Under the assumptions of Theorem 2 the following conver-

gence result holds

ku� u
h

k0,⌦ 6 C(kh)hp|u|
p+1,⌦. (2.40)

Proof. The proof of convergence in the L2 norm makes use of the adjoint problem given in (2.2). Let

z 2 H2
(⌦) and  2 L2

(⌦) be the exact solution and source term from (2.2), respectively. It follows

using a modified duality argument and the Galerkin Orthogonality of the discrete sesquilinear form that

(u� u
h

, )0,⌦ = A(u� u
h

, z)

= A(u� u
h

, z � ⇡
h

z)� s(u� u
h

,⇡
h

z)

6 |A(u� u
h

, z � ⇡
h

z)� s(u� u
h

,⇡
h

z)|.

Then using the same trick as before let u� u
h

= ⌘ + ⇠
h

the problem simplifies to

(u� u
h

, )0,⌦ 6 |A(⌘, z � ⇡
h

z)|+ |A(⇠
h

, z � ⇡
h

z)|+ |s(⌘,⇡
h

z)|+ |s(⇠
h

,⇡
h

z)|

= I + II + III + IV.
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It follows directly from (2.28) that

I 6 C(kh)hp|u|
p+1k k0,⌦.

II relies on the fact that

|A(⇠
h

, z � ⇡
h

z)| = |A(⇠
h

, z � ⇡
h

z)|.

Expanding this gives

|A(⇠
h

, z � ⇡
h

z)| = |(r(z � ⇡
h

z),r⇠
h

)0,⌦ � k2(z � ⇡
h

z, ⇠
h

)0,⌦ (2.41)

�ik hz � ⇡
h

z, ⇠
h

i0,@⌦R
| (2.42)

= |A(z � ⇡
h

z, ⇠
h

)� 2ik hz � ⇡
h

z, ⇠
h

i0,@⌦R
| (2.43)

6 |A(z � ⇡
h

z, ⇠
h

)|+ |2k hz � ⇡
h

z, ⇠
h

i0,@⌦R
|. (2.44)

Which implies from (2.27), (2.30) and Lemma (2.2)

II 6 M |⇠
h

|Ikz � ⇡
h

zk⇤ (2.45)

6 Ckh (hp|u|
p+1,⌦) k k0,⌦. (2.46)

An application of the Cauchy Schwarz type inequality (2.24) to terms III and IV gives

III + IV 6 C|⌘|I|⇡hz|s + C|⇠
h

|I|⇡hz|s (2.47)

= C (|⌘|I + |⇠
h

|I) |⇡hz|s. (2.48)

Using the interpolation estimate (2.31) on the first term and the stability estimate (2.29) on the third term

reduces to

III + IV 6 C (hp|u|
p+1,⌦ + |⇠

h

|I) khk k0,⌦. (2.49)

Finally applying (2.39) to the second term gives the desired result

III + IV 6 C (hp|u|
p+1,⌦ + hp|u|

p+1,⌦) khk k0,⌦ (2.50)

= Ckh (hp|u|
p+1,⌦) k k0,⌦. (2.51)
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Lemma 2.4. The stabilized form A
h

(., .) defined in (2.16) satisfies a Gårdings inequality of the form

kr⇠
h

k20,⌦ 6 k2k⇠
h

k20,⌦ + 2|A
h

(⇠
h

, ⇠
h

)|. (2.52)

Proof. The weak formulation (2.15) shows that

kr⇠
h

k20,⌦ = k2k⇠
h

k20,⌦ +Re [A(⇠
h

, ⇠
h

)] .

Adding and subtracting Re [s(⇠
h

, ⇠
h

)] gives

kr⇠
h

k20,⌦ = k2k⇠
h

k20,⌦ +Re [A
h

(⇠
h

, ⇠
h

)]�Re [s(⇠
h

, ⇠
h

)] .

From (2.24)

kr⇠
h

k20,⌦ 6 k2k⇠
h

k20,⌦ + |A
h

(⇠
h

, ⇠
h

)|+ |s(⇠
h

, ⇠
h

)| (2.53)

6 k2k⇠
h

k20,⌦ + |A
h

(⇠
h

, ⇠
h

)|+ |⇠
h

|2I, (2.54)

and since |A
h

(⇠
h

, ⇠
h

)| > C|⇠
h

|2I the Gårding inequality in the lemma holds.

Lemma 2.5 (Convergence of kr(u� u
h

)k0,⌦). Let u 2 Hp+1
(⌦), for p > 1/2 be the exact solution of

(2.1). It holds that the numerical solution u
h

2 V
h

, given by a stabilized method which conforms to the

assumptions made in Theorem 2, satisfies the following a priori error estimate

kr(u� u
h

)k0,⌦ 6 C
�

1 + k2h
�

hp|u|
p+1,⌦. (2.55)

Proof. From the triangle inequality

kr(u� u
h

)k0,⌦ 6 kr⌘k0,⌦ + kr⇠
h

k0,⌦.

where ⌘ and ⇠
h

are as defined previously. From (2.25) or (2.26), kr⌘k0,⌦ 6 Chp|u|
p+1,⌦ therefore it is

enough to show that

kr⇠
h

k0,⌦ 6 C
�

1 + k2h
�

hp|u|
p+1,⌦.

Using the Gårding inequality (2.52) it holds that

kr⇠
h

k20,⌦ 6 k2k⇠
h

k20,⌦ + 2|A
h

(⇠
h

, ⇠
h

)|.
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The first term is bounded using the triangle inequality followed by Lemma 2.3 and (2.25) or (2.26)

k⇠
h

k0,⌦ 6 ku� u
h

k0,⌦ + k⌘k0,⌦ (2.56)

6 C((kh) + h)hp|u|
p+1,⌦ (2.57)

6 C(kh)hp|u|
p+1,⌦. (2.58)

The last line comes from the assumption that k > 1. The second term is handled in the same way as in

the proof of (2.2).

|A
h

(⇠
h

, ⇠
h

)| 6 Mk⌘k⇤|⇠h|I (2.59)

6 Ch2p|u|2
p+1,⌦. (2.60)

The result then follows

kr(u� u
h

)k0,⌦ 6 C
�

1 + k2h
�

hp|u|
p+1,⌦.

The well-posedness of the discrete system follows directly from this error estimate noticing that

ku� u
h

k1,⌦ 6 C(1 + kh+ k2h)kuk1,⌦. (2.61)

Using the argument of Schatz [49], let u
h

be the solution of (2.16) and u = 0 the solution of (2.1), then

(2.61) implies that u
h

= 0. This implies that the homogeneous equation has a unique solution and since

V
h

is finite dimensional u
h

exists and is unique for all u 2 H1
(⌦).

2.3.1 Galerkin Least Squares method with interior penalty on the normal gradi-

ent

The first method to be analysed is an adaptation of the popular Galerkin Least Squares (GLS) method.

The GLS method has been popularized by Hughes et al. and has been used to great effect in the approx-

imation of advection-diffusion equations. In [34] Harari and Hughes introduced the GLS method for the

numerical solution of Helmholtz equation. It was shown that the method is stable for piecewise linear

elements however this analysis does not carry over to higher order elements. The method was introduced

to improve the stability of the formulation and was shown to greatly reduce the pollution error in 1D.

In fact it can be shown, using dispersion analysis, that the GLS method can eliminate the pollution term

in the 1D problem for an appropriate choice of stabilization parameter. Unfortunately, this is not the

case for problems in higher dimensions as the stabilization parameter is strongly dependent on the wave

direction. In fact it can be seen numerically that if the underlying solution does not have a dominant
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direction then the GLS has similar performance to the standard Galerkin method for the approximation

of Helmholtz equation.

From this it is clear that the GLS method, on its own, is fairly limited in its ability to solve Helmholtz in

Rd for d > 1. In [48] Oberai and Pinsky added an additional stabilization term which took into account

the residuals of inter-element boundaries in an attempt to overcome the problems experienced by the

GLS method. The paper uses dispersion analysis to show that the method displays minimal phase error

for bilinear quadrilateral finite elements, although does not look at the numerical stability of the method.

Drawing inspiration from these papers I add a penalty term on the jump of the normal gradient over

element faces and a least squares term giving additional control of the boundary condition to the standard

GLS method proposed in [34]. This stabilization will be shown to satisfy the assumptions of Theorem

2. In addition to this the method can be shown to satisfy the following improved a priori error estimates.

kk(u� u
h

)k0,⌦ 6 Cmin{1, k3h2}C
f,g

, (2.62)

kr(u� u
h

)k0,⌦ 6 C(kh+min{1, k3h2})C
f,g

, (2.63)

for piecewise linear elements.

Introducing the method in the abstract formulation stated previously, the problem becomes: find u
h

2

V
h

such that

A
h

(u
h

, v
h

) = L
h

(v
h

) 8 v
h

2 V
h

,

where

s(u
h

, v
h

) =

X

⌧2Th

h2
⌧

�1,⌧ (L(uh

),L(v
h

))0,⌧ +

X

F2Fint

h
⌧

�1,⌧ hJru
h

K, Jrv
h

Ki0,F

+�1h hR(u
h

),R⇤
(v

h

)i0,@⌦R
, (2.64)

where �1,⌧ , �1,⌧ ,�1 2 C and J·K defines the jump over element faces such that for ⌧1, ⌧2 2 T
h

with

⌧1 \ ⌧2 6= ;

Jrv
h

K = rv
h

· n|
⌧1 +rv

h

· n|
⌧2 .

The first term given in the stabilization is referred to as the GLS term. Notice that I am allowed to take

second order derivatives since u
h

is C1 when considered element-wise. Summing over all elements

then gives the GLS term as seen in the stabilization. The fact that the exact solution u must satisfy (2.1)

on all subdomains of ⌦ is then used to make the term consistent.

X

⌧2Th

h2
⌧

�1,⌧ (L(u),L(vh))0,⌧ =

X

⌧2Th

h2
⌧

�1,⌧ (f,L(vh))0,⌧ .
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The second term in the stabilization is referred to as the CIP term. This term penalises the jump of the

gradient over element faces. Since u is assumed to be smooth

X

F2Fint

h
⌧

�1,⌧ hJruK, Jrv
h

Ki0,F = 0.

The third and final term is a GLS term on the boundary and, in a similar manner to the first term, it holds

that

�1h hR(u),R⇤
(v

h

)i
@⌦R

= �1h hgR,R⇤
(v

h

)i0,@⌦R
.

Since the stabilization can be evaluated for the exact solution u it can be concluded that the method can

be expressed using the abstract formulation (2.16).

To show that the formulation enters the mathematical framework of the theorem it is necessary to pick an

appropriate operator ⇡
h

: V 7! V
h

. In the following analysis I choose the standard Lagrange interpolant,

a definition of which can be found in [30]

⇡
h

def
= I

h

: C0
(

¯

⌦) 7! V
h

.

It is shown in [30] that Assumptions (2.25) and (2.26) hold for this choice of ⇡
h

. The following lemma

asserts the weak coercivity property and Cauchy-Schwarz type inequality hold for the stabilization for

|.|2I : V
h

7! R defined as

|u
h

|2I
def
= k(1� Im[�1]hk)kuh

k20,@⌦R
+

X

⌧2Th

h2
⌧

Im [�1,⌧ ] kL(uh

)k20,⌧

+

X

F2Fint

h
⌧

Im [�1,⌧ ] kJru
h

Kk20,F + Im[�1]hkr(u
h

) · nk20,@⌦R
(2.65)

Lemma 2.6. Under the conditions 0 < Im[�1]hk < 1, Re[�1] = 0 and given Im [�1,⌧ ] , Im [�1,⌧ ]

and Im [�1] > 0, 8⌧ 2 T
h

the form |.|I given by (2.65) is a semi-norm on V
h

, moreover the following

identity holds

|u
h

|2I = Im [A
h

(u
h

, u
h

)] . (2.66)

Proof. The initial claim follows by inspection. The identity follows by expanding Im [A
h

(u
h

, u
h

)]

Im [A
h

(u
h

, u
h

)] = k(u
h

, u
h

)0,@⌦R + Im [s(u
h

, u
h

)]

= kku
h

k20,@⌦R
+

X

⌧2Th

h2
⌧

Im [�1,⌧ ] kL(uh

)k20,⌧ +

X

F2Fint

h
⌧

Im [�1,⌧ ] kJru
h

Kk20,F

+Im
h

�1h hR(u
h

),R⇤
(u

h

)i0,@⌦R

i
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Considering the final term gives

Im
h

�1h hR(u
h

),R⇤
(u

h

)i0,@⌦R

i

= Im
⇥

�1h
�

kr(u
h

) · nk20,@⌦R
� k2ku

h

k20,@⌦R

+ hr(u
h

) · n, iku
h

i0,@⌦R
+ hiku

h

,r(u
h

) · ni0,@⌦R

⌘i

Since the last two terms are the complex conjugates of one another the expression simplifies to

Im
h

�1h hR(u
h

),R⇤
(u

h

)i0,@⌦R

i

= Im[�1]h
�

kr(u
h

) · nk20,@⌦R
� k2ku

h

k20,@⌦R

�

With this result it is clear that under the conditions of the lemma, (2.23) holds.

The theorem also asks that the operator I
h

is stable with respect to |.|
s

: V
h

7! R, which I define as

|.|2
s

def
=

X

⌧2Th

|�1,⌧ |h2
⌧

kL(.)k20,⌧ +

X

F2Fint

|�1,⌧ |h⌧

kJr(.) · nKk20,F + |�1|hkR⇤
(.)k20,@⌦R

, (2.67)

and that the operator has the required interpolation properties in |.|I and k.k⇤.

Lemma 2.7. Under the conditions hk < Im[��1
1 ], Re[�1] = 0 and given Im [�1,⌧ ] , Im [�1,⌧ ] and

Im [�1] > 0 where Im [�1,⌧ ] > CRe [�1,⌧ ] , Im [�1,⌧ ] > CRe [�1,⌧ ] 8⌧ 2 T
h

the GLS/CIP stabilization

satisfies assumptions (2.23), (2.24), (2.29), (2.30) and (2.31) for

k.k⇤
def
=

X

⌧2Th

h�1
⌧

|�1,⌧ |�1/2k.k0,⌧ +

X

F2Fint

(|h
⌧

�1,⌧ |)�1/2k.k0,F + (|h�1|)�1/2k.k
@⌦R + |.|I,

and ⇡
h

denoted by I
h

as the standard Lagrange interpolant.

Proof. Let us begin our analysis by stating that (2.23) is clearly satisfied for an appropriate choice of

stabilization parameters. Since

|u
h

|2I = Im [A
h

(u
h

, u
h

)]

6 |A
h

(u
h

, u
h

)|.

Assumption (2.24) holds after a simple application of the Cauchy-Schwarz inequality followed by an
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application of the triangle inequality.

|s(v
h

, w
h

)| =

�

�

�

�

�

X

⌧2Th

h2
⌧

�1,⌧ (L(vh),L(wh

))0,⌧ +

X

F2Fint

h
⌧

�1,⌧ hJrv
h

K, Jrw
h

Ki0,F

+ �1h hR(v
h

),R⇤
(w

h

)i0,@⌦R

�

�

�

6
X

⌧2Th

h2
⌧

|�1,⌧ |kL(vh)k0,⌧kL(wh

)k0,⌧ +

X

F2Fint

h
⌧

|�1,⌧ |kJrv
h

Kk0,F kJrw
h

Kk0,F

+h|�1|kR(v
h

)k0,@⌦RkR⇤
(w

h

)k0,@⌦R

6
X

⌧2Th

h2
⌧

|�1,⌧ |kL(vh)k0,⌧kL(wh

)k0,⌧ +

X

F2Fint

h
⌧

|�1,⌧ |kJrv
h

Kk0,F kJrw
h

Kk0,F

+h|�1| (kr(v
h

) · nk0,@⌦R + kkv
h

k0,@⌦R) kR⇤
(w

h

)k0,@⌦R

6 C|v
h

|I|wh

|
s

.

To obtain the second inequality one simply applies the triangle inequality to the term kR⇤
(w

h

)k0,@⌦R .

Assumption (2.31) is the interpolation estimate in the I semi-norm. To show that this holds, let ⌘ =

u� I
h

u and � = Im [�1] then recall

|⌘|2I = k(1� �hk)k⌘k20,@⌦R
| {z }

(1a)

+

X

⌧2Th

h2
⌧

Im [�1,⌧ ] kL(⌘)k20,⌧
| {z }

(1b)

+

X

F2Fint

h
⌧

Im [�1,⌧ ] kJr⌘Kk20,F
| {z }

(1c)

+�hkr⌘ · nk20,@⌦R
| {z }

(1d)

.

Applying the Cauchy-Schwarz inequality and the trace inequality given in the Appendix (A:4)

(1a) 6
X

⌧2Th

C2
T

k(1� hk�)
⇣

h�1/2
⌧

k⌘k0,⌧ + h1/2
⌧

kr⌘k0,⌧
⌘2

.

Letting h = max

⌧2Th

{h
⌧

} and applying (2.25) or (2.26) implies

(1a) 6 C2
T

(kh)(1� kh�)
�

Ch2p|u|2
p+1,⌦

�

.

Since I have assumed kh < C the required result follows. The proof of (1b), (1c) and (1d) follows in a

similar manner. It is possible to use the linearity of the operator L(.) followed by the triangle inequality

to expand (1b) as such,

(1b) 6
X

⌧2Th

h2
⌧

|�1,⌧ |
⇥

k�⌘k20,⌧ + 2kk2⌘k0,⌧k�⌘k0,⌧ + kk2⌘k20,⌧
⇤

6 Cmax{|�1,⌧ |}
�

h2p|u|2
p+1,⌦ + 2(kh)2h2p|u|2

p+1,⌦ + (kh)4h2p|u|2
p+1,⌦

�

= Cmax{|�1,⌧ |}
�

(kh)2 + 1

�2
h2p|u|2

p+1,⌦.
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Once expanded the result follows from applying the interpolation estimates given by (2.26) for elements

of polynomial order greater than 1. The same result holds for piecewise linear polynomials after noting

that the terms

k�(u� I
h

u)k0,⌧ = k�uk0,⌧ 6 Ckuk2,⌧ .

(1c) is dealt with by a simple use of the trace inequality (A:4)

(1c) 6 C
X

⌧2Th

X

F2@⌧

h
⌧

|�1,⌧ |kr⌘ · nk20,F

6 Cmax{|�1,⌧ |}h2p|u|2
p+1,⌦.

Then using the trace inequality and the interpolation estimates (2.25) and (2.26) gives the required result.

(1d) 6 |�1|h
X

F⇢@⌦R

⇥

kr⌘ · nk20,F
⇤

6 C|�1|h2p|u|2
p+1,⌦,

which gives that

|⌘|I 6 CI,GLS

hp|u|
p+1,⌦,

where

CI,GLS

def
= kh(1� kh�1) + C

�

max{|�1,⌧ |}((kh)2 + 1)

2
+max{|�1,⌧ |}+ |�1|

�1/2
.

Assumption (2.29) asks that the operator I
h

is stable with respect to |.|
s

. It is possible to justify this

claim after noting that for a sufficiently smooth z

|z � ⇡
h

z|
s

6 |z � ⇡
h

z|I 6 CI,GLS

h|z|2,⌦

which using the regularity estimate given in (2.13) implies that

|z � ⇡
h

z|2
s

6 C2
I,GLS

h2|z|22,⌦ (2.68)

|⇡
h

z|2
s

� |z|2
s

6 C2
I,GLS

(hk)2k k20,⌦ (2.69)

|⇡
h

z|2
s

6 C2
I,GLS

(hk)2k k20,⌦ + |z|2
s

. (2.70)

Since z is the solution of the dual problem it is assumed to be smooth this infers the CIP terms in the

stabilization vanish. Notice that the penalty on the Robin boundary condition is also zero from how the
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problem is posed. Therefore the only term that remains is the GLS term. Which gives

|⇡
h

z|2
s

6 C2
I,GLS

(hk)2k k20,⌦ +

X

⌧2Th

h2
⌧

�1,⌧kL(z)k20,⌧ (2.71)

|⇡
h

z|2
s

6 C2
I,GLS

(hk)2k k20,⌦ + h2
max{�1,⌧}k k20,⌦ (2.72)

|⇡
h

z|
s

6 Chkk k0,⌦. (2.73)

It only remains to prove assumption (2.30), which is shown using the following argument.

k⌘k2⇤ =

X

⌧2Th

h�2
⌧

|�1,⌧ |�1k⌘k20,⌧
| {z }

(2a)

+

X

F2Fint

(h
⌧

|�1,⌧ |)�1k⌘k20,F
| {z }

(2b)

+(�1h)
�1k⌘k20,@⌦R

| {z }

(2c)

+ |⌘|2I
|{z}

(2d)

.

(2a) is bounded using the interpolation estimates proposed in (2.25) or (2.26). Using the trace inequality

(A:4) shows that (2b) satisfies the required bound.

(2b) 6
X

⌧2Th

(h
⌧

|�1,⌧ |)�1k⌘k20,@⌧ (2.74)

6 C
X

⌧2Th

(h
⌧

|�1,⌧ |)�1
⇣

h�1/2
⌧

k⌘k0,⌧ + h1/2
⌧

kr⌘k0,⌧
⌘2

(2.75)

6 C
X

⌧2Th

|�1,⌧ |�1
�

h�1
⌧

k⌘k0,⌧ + kr⌘k0,⌧
�2 (2.76)

6 Cmax{|�1,⌧ |}�1h2p|u|2
p+1,⌦. (2.77)

Using a similar argument (2c) can be shown to satisfy

(2c) 6 C|�1|�1h2p|u|2
p+1,⌦. (2.78)

Finally (2d) follows as shown previously. Keeping track of our constant gives

C⇤,GLS

= C
⇣

|�1|�1/2
+ |�1|�1/2

+ |�1|�1/2
+ CI,GLS

⌘

.

Since all of the assumptions in the lemma hold the proof is complete.

The other assumptions that are made are continuity results on the discrete form A
h

(., .) and A(., .).

Proposition 1 (Continuity). Let u 2 Hp+1
(⌦) and I

h

: C0
(

¯

⌦) 7! V
h

be the standard Lagrange

interpolant then it follows that the GLS/CIP discrete sesquilinear form satisfies Assumptions (2.27) and
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(2.28). Let ⌘ def
= u� I

h

u then,

|A(⌘, v
h

)|+ |s(⌘, v
h

)|
| {z }

(3)

+2kk⌘k0,@⌦kvhk0,@⌦ 6 Ck⌘k⇤|vh|I 8v
h

2 V
h

. (2.79)

Proof. It is simple to show that the last term on the left hand side respects the continuity estimate there-

fore it is enough to analyse (3). Performing an element-by-element integration by parts on the first term

in the formulation, gives

(3) = |
X

⌧2Th

(⌘,��v
h

)0,⌧ �
X

⌧2Th

k2(⌘, v
h

)0,⌧ +

X

⌧2Th

h⌘,rv
h

· ni0,@⌧ + ik h⌘, v
h

i0,@⌦R
|

+|s(⌘, v
h

)|

= |
X

⌧2Th

(⌘,��v
h

� k2v
h

)0,⌧ +

X

F2Fint

h⌘, Jrv
h

Ki0,F + h⌘,rv
h

· n+ ikv
h

i0,@⌦R
|

+|s(⌘, v
h

)|.

Which after using the triangle and Cauchy-Schwarz inequalities implies that

(3) 6
X

⌧2Th

k⌘k0,⌧kL(vh)k0,⌧ +

X

F2Fint

k⌘k0,F kJrv
h

Kk0,F + k⌘k0,@⌦RkR⇤
(v

h

)k0,@⌦R + |⌘|I|vh|I.

After noticing that the right hand norms in the first, second and forth terms appear in |v
h

|I and the ⌘

terms appear in k⌘k⇤, where k.k⇤ is defined as in (2.7) it is necessary to show the third term is controlled

by |.|I. This is shown by a simple application of the triangle inequality

kR⇤
(v

h

)k0,@⌦R 6 krv
h

· nk0,@⌦R + kkv
h

k0,@⌦R (2.80)

6 C|v
h

|I. (2.81)

with this result it follows that

|A
h

(⌘, v
h

)| 6 Mk⌘k⇤|vh|I.

The final result for the discrete sesquilinear form (2.28) is to show an additional boundedness result.

|A(u� I
h

u, z � I
h

z)|
| {z }

(⇤)

6 Chp|u|
p+1k k0,⌦.
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Applying the triangle and Cauchy-Schwarz inequalities to the first term gives

(⇤) 6 kr(u� I
h

u)k0,⌦kr(z � I
h

z)k0,⌦ + k2ku� I
h

uk0,⌦kz � I
h

zk0,⌦

+kku� I
h

uk0,@⌦kz � I
h

zk0,@⌦

6 C(kh)hp|u|
p+1k k0,⌦ + C(kh)3hp|u|

p+1k k0,⌦ + C(kh)2hp|u|
p+1k k0,⌦

6 C(kh)hp|u|
p+1k k0,⌦.

I have used the trace inequality (A:4) to deal with the term on the boundary. The second line then follows

by an application of our interpolation estimates (2.25) or (2.26) depending on the polynomial order of

our elements. Note that both obtain the same result.

The preceding Lemma and Proposition show that the GLS/CIP method fits into the framework proposed

by Theorem 2. It is possible to improve the a priori error estimates given by the Theorem when using

piecewise linear elements.

Proposition 2. (Improved Error Estimates) Let u 2 Hp+1
(⌦), for p > 1/2, be the unique solution of

(2.15) and u
h

2 V
h

, where V
h

is the space of piecewise linear functions then for kh 6 1 the GLS/CIP

method satisfies the following improved a priori error estimates

kk(u� u
h

)k0,⌦ 6 Cmin{1, k3h2}C
f,g

,

kr(u� u
h

)k0,⌦ 6 C(kh+min{1, k3h2})C
f,g

,

Proof. It was shown earlier in (2.56) that the following discrete approximation result holds,

k⇠
h

k0,⌦ 6 C(kh)hp|u|
p+1,⌦,

which assuming sufficient regularity gives

k⇠
h

k0,⌦ 6 (kh)2C
f,g

,

multiplying both sides by k implies that

kk⇠
h

k0,⌦ 6 k3h2C
f,g

. (2.82)

From the definition of the formulation

Re [A(⇠
h

, ⇠
h

)] = kr⇠
h

k20,⌦ � kk⇠
h

k20,⌦,
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rearranging this gives

kk⇠
h

k20,⌦ = kr⇠
h

k20,⌦ �Re [A(⇠
h

, ⇠
h

)] .

Using the fact that Re[A(u
h

, u
h

)] 6 |A
h

(u
h

, u
h

)|

kk⇠
h

k20,⌦ 6 kr⇠
h

k20,⌦
| {z }

(4a)

+ |A
h

(⇠
h

, ⇠
h

)|
| {z }

(4b)

. (2.83)

Considering (4a) element-wise and performing an integration by parts gives

(4a) = (r⇠
h

,r⇠
h

)0,⌦ (2.84)

=

X

⌧2Th

⇣

h⇠
h

,r⇠
h

· ni0,@⌧ � (⇠
h

,�⇠
h

)0,⌧

⌘

(2.85)

= Re

"

X

⌧2Th

⇣

h⇠
h

,r⇠
h

· ni0,@⌧ � (⇠
h

,�⇠
h

)0,⌧

⌘

#

. (2.86)

For piecewise linear elements the second order derivatives vanish so this simplifies to

(4a) = Re

"

X

F2Fint

h⇠
h

,r⇠
h

· ni0,F + h⇠
h

,r⇠
h

· ni0,@⌦R

#

. (2.87)

Since Re[h⇠
h

, ik⇠
h

i0,@⌦R
] = 0 it is possible to add this term to deal with the Robin condition.

(4a) = Re

"

X

F2Fint

h⇠
h

,r⇠
h

· ni0,F + h⇠
h

,r⇠
h

· n+ ik⇠
h

i0,@⌦R

#

(2.88)

6
X

F2Fint

kk⇠
h

k0,F kk�1Jr⇠
h

Kk0,F
| {z }

(4a0)

+ kk⇠
h

k0,@⌦kk�1
(r⇠

h

· n+ ik⇠
h

)k0,@⌦R
| {z }

(4a00)

. (2.89)

Applying the trace inequality (A:4) and the local inverse inequality (A:5) reveals

(4a0) 6 C
X

⌧2Th

⇣

h�1/2
⌧

kk⇠
h

k0,⌧ + h1/2
⌧

krk⇠
h

k0,⌧
⌘

X

F2Fint

kk�1Jr⇠
h

Kk0,F

6 Ch�1/2kk⇠
h

k0,⌦

 

X

F2Fint

kk�1Jr⇠
h

Kk20,F

!1/2

.

Noticing that the jump terms appear in the semi-norm |.|I using a result from Lemma 2.2 yields

(4a0) 6 Ch�1/2kk⇠
h

k0,⌦
�

(hmax{|�1,⌧ |)�1}k�1|⇠
h

|2I
�1/2

6 C(hk)�1
max{|�1,⌧ |�1/2}kk⇠

h

k0,⌦|⇠h|I

6 Cmax{|�1,⌧ |�1/2}kk⇠
h

k0,⌦Cf,g.



2.3. A priori error estimates and well-posedness of the discrete system 43

Applying the same ideas to (4a00) shows that

(4a00) 6 C|�1|�1/2kk⇠
h

k0,⌦Cf,g.

It follows from Theorem 2 that

(4b) 6 (kh)2C
f,g

.

Now note that from (4a) and (4b)

kk⇠
h

k20,⌦ 6 C 0kk⇠
h

k0,⌦Cf,g + (kh)2C2
f,g

. (2.90)

Applying the arithmetic-geometric inequality (A:1) to the first term on the right hand side gives

kk⇠
h

k20,⌦ 6 1

2

kk⇠
h

k20,⌦ +

1

2

C 02C2
f,g

+ (kh)2C2
f,g

(2.91)

kk⇠
h

k20,⌦ 6 C 02C2
f,g

+ 2(kh)2C2
f,g

(2.92)

kk⇠
h

k20,⌦ 6
⇣

C 02
+ 2(kh)2

⌘

C2
f,g

. (2.93)

Taking kh 6 1 and combining the result with (2.82) gives the estimate

kk⇠
h

k0,⌦ 6 Cmin{1, k3h2}C
f,g

.

Which then implies using Gårding inequality that

kr⇠
h

k0,⌦ 6 (Cmin{1, k3h2}+ kh)C
f,g

. (2.94)

It is worth noting that although the estimate still contains the standard pollution term the errors are both

upper bounded by data. So to conclude the GLS/CIP method proposed here is stable if the stabiliza-

tion parameters are chosen to have strictly positive imaginary components and the Robin stabilization

parameter is chosen appropriately. Also the method satisfies improved a priori error estimates for piece-

wise linear elements. Numerical evidence seems to suggest that varying the real part of the stabilization

parameters can reduce the pollution effect for certain problems. It would appear that the amplitude of

the numerical solution is controlled by the imaginary part of the stabilization, whilst the real part of the

stabilization effects the numerical dispersion. To really understand the capability of the method to reduce

the pollution effect one would need to perform a dispersion analysis and choose stabilization parameters

to minimize phase lag. Although this is interesting it is not the focus of this particular work and the
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interested reader is advised to read [1] to obtain an understanding of this. One dimensional dispersion

relations have been studied by Wu and co workers in [22] for the CIP method and in [28] the authors

use the optimal parameters for the one dimensional problem and see a reduction in pollution in the two

dimensional case. A two dimensional dispersion analysis is performed for the GLS method on regular

and hexagonal meshes in [7].

2.3.2 Continuous Interior Penalty method with penalty on the jumps of first and

second derivatives

The CIP method was first introduced by Douglas and Dupont for elliptic and parabolic equations in

[27]. The method has since been applied with some success to a number of problems by Burman and

co-workers, including Oseen’s Equations [16] and the Convection-Diffusion equation [11], [18]. More

recently the CIP method has been applied to Helmholtz equation by Wu and co-workers and was shown

to eliminate the pollution effect in 1 dimension for an appropriate choice of stabilization parameters.

The correct choice of parameter is given by a dispersion analysis performed in [22]. Unfortunately this

analysis becomes trickier in higher dimensions and makes strong use of the structure of the underlying

mesh. In the paper [28] by Du and Wu the authors suggest introducing a penalty on the jumps of

higher order derivatives up to the polynomial order of the elements used. The parameters are chosen by

making the 1 dimensional problem pollution free. The numerical results in this paper look promising

and show that the method is capable of reducing the pollution effect present in the standard Galerkin

method. However it appears that the effect of the higher order derivatives becomes less important as

the polynomial order increases. This could be attributed to the fact that the standard Galerkin method

performs well for higher order elements.

The second method that I have chosen to analyse is similar to the method introduced in the paper by Du

and Wu. For piecewise linear and piecewise quadratic elements the methods are almost identical, the

only difference being that I choose to add a GLS term to penalise the Robin-boundary condition so that

the method fits into my abstract framework. The method that I present has the advantage of achieving

the same theoretical convergence and stability as the method of Du and Wu without needing to introduce

additional penalty terms on the jump over element faces of higher order derivatives when the polynomial

order of elements is increased. The method differs from the GLS/CIP method that I introduced earlier in

that the penalty terms only act on the skeleton of the mesh. Since the first order CIP terms and the jump

of the Laplacian is assumed to be zero for the exact solution u there are less terms to be evaluated on

the right hand side. An interesting observation regarding the CIP method that I will use is that it satisfies

the same improved a priori error estimates for piecewise linear elements as was shown for the GLS/CIP

method.
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Introducing our CIP stabilization the abstract formulation becomes: find u
h

2 V
h

such that

A
h

(u
h

, v
h

) = L
h

(v
h

),

where

s(u
h

, v
h

) =

X

F2Fint

h3�2,⌧ hJ�u
h

K, J�v
h

Ki0,F +

X

F2Fint

h�2,⌧ hJru
h

K, Jrv
h

Ki0,F

+�2h hR(u
h

),R⇤
(v

h

)i0,@⌦ , (2.95)

where �2,⌧ , �2,⌧ ,�2 2 C . The first term in s(., .) represents the jump of the Laplacian over element

faces. Notice that again this is allowed since elements u
h

2 C1
(⌧) when restricted to the element ⌧ ,

for piecewise linear elements this term is zero. As I mentioned earlier that assuming u smooth gives

X

F2Fint

h3�2,⌧ hJ�uK, J�v
h

Ki0,F = 0.

The last two terms in the stabilization are also present in the GLS/CIP method so I will not discuss them

any further.

Now that I have introduced the stabilization I would like to show that it enters the mathematical frame-

work of Theorem 2. It is necessary to choose an appropriate operator ⇡
h

: V 7! V
h

that satisfies the

assumptions of the Theorem. For this purpose I choose ⇡
h

: L2
(⌦) 7! V

h

to denote the L2 orthogonal

projection defined in the Appendix A.5. The reason for this choice will be made clear in the subsequent

analysis. It is well known that the L2 orthogonal projection satisfies the interpolation estimates of As-

sumptions (2.25) or (2.26). As for the case with the GLS/CIP stabilization the following lemma asserts

that the weak coercivity property on |.|2I : V 7! R defined by

|u
h

|2I
def
= k(1� Im[�2]hk)kuh

k20,@⌦R
+

X

F2Fint

h3
⌧

Im [�2,F ] kJ�(u
h

)Kk20,⌧

+

X

F2Fint

h
⌧

Im [�2,⌧ ] kJru
h

Kk20,F + Im[�2]hkr(u
h

) · nk20,@⌦R
, (2.96)

and Cauchy-Schwarz type inequalities hold for the CIP stabilization. The Theorem also asks that the

interpolation estimates (2.30) and (2.31) hold for the L2 projection and that the L2 projection adheres to

the stability estimate (2.29) for

|.|2
s

def
=

X

F2Fint

|�2,⌧ |h3
⌧

kJ�(.)Kk20,F +

X

F2Fint

|�2,⌧ |h⌧

kJr(.) · nKk20,F + |�2|hkR⇤
(.)k20,@⌦R

, (2.97)

Lemma 2.8. Let k > 1, kh < Im[�2]�1, Re[�2] = 0, Im[�2], Im[�2] > 0, Im[�2] > CRe[�2] and
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Im[�2] > CRe[�2] then the CIP stabilization, taken on a quasi uniform mesh, satisfies Assumptions

(2.23), (2.24), (2.29), (2.30) and (2.31) for

k⌘k⇤
def
=

X

⌧2Th

(h2
⌧

|�2,⌧ |)�
1
2 k⌘k0,⌧ +

X

F2Fint

(h
⌧

|�2,⌧ |)�
1
2 k⌘k0,F + (h|�2|)�

1
2 k⌘k0,@⌦R + |⌘|

1
2
I ,

and ⇡
h

as the standard L2 orthogonal projection.

Proof. To begin the proof of the lemma I start by showing the weak coercivity property as in Assumption

(2.23). Once again the proof follows from noticing that under the conditions of the lemma |.|I is a semi-

norm on V
h

and that

|u
h

|2I = Im [A
h

(u
h

, u
h

)]

Expanding the right hand side confirms the claim

Im [A
h

(u
h

, u
h

)] = k(u
h

, u
h

)0,@⌦R + Im [s(u
h

, u
h

)]

= kku
h

k20,@⌦R
+

X

F2Fint

h3
⌧

Im [�2,⌧ ] kJ�u
h

Kk20,F +

X

F2Fint

h
⌧

Im [�2,⌧ ] kJru
h

Kk20,F

+Im
h

�2h hR(u
h

),R⇤
(u

h

)i0,@⌦R

i

.

Considering the final term in a similar way to that of the GLS method concludes the claim. Next I show

that the stabilization satisfies a type of Cauchy-Schwarz inequality with respect to |.|
s

ie Assumption

(2.24) holds.

s(v
h

, w
h

) =

X

F2Fint

h3�2,⌧ hJ�v
h

K, J�w
h

Ki
F

+

X

F2Fint

h�2,⌧ hJrv
h

K, Jrw
h

Ki
F

+�2h hR(v
h

),R⇤
(w

h

)i
@⌦R

6
X

F2Fint

h2
⌧

|�2,⌧ |kJ�v
h

Kk0,F kJ�w
h

Kk0,F +

X

F2Fint

h
⌧

|�2,⌧ |kJrv
h

Kk0,F kJrw
h

Kk0,F

+|�2|hkR(v
h

)k0,@⌦RkR⇤
(w

h

)k0,@⌦R

6
X

F2Fint

h2
⌧

|�2,⌧ |kJ�v
h

Kk0,F kJ�w
h

Kk0,F +

X

F2Fint

h
⌧

|�2,⌧ |kJrv
h

Kk0,F kJrw
h

Kk0,F

+|�2|h (kr(v
h

) · nk0,@⌦R + kk(v
h

)k0,@⌦R) kR⇤
(w

h

)k0,@⌦R

6 C|v
h

|I|wh

|
s

.

The proof uses the Cauchy-Schwarz inequality in L2 and asks that the real parts of the stabilization

parameters can be bounded by their respective imaginary parts. To show the stability of the L2 projection

in |.|
s

, Assumption (2.29), it is beneficial (for the sake of notation) to treat individual terms separately,
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consider

|⇡
h

z|
s

=

0

B

B

B

B

B

@

X

F2Fint

h3
⌧

Im [�2,⌧ ] kJ�⇡hzKk20,F
| {z }

(5a)

+

X

F2Fint

h
⌧

Im [�2,⌧ ] kJr⇡hzKk20,F
| {z }

(5b)

+ Im [�2]hkR⇤
(⇡

h

z)k20,@⌦R
| {z }

(5c)

1

C

A

1/2

.

To show (5a), let us once again make use of the trace and inverse inequalities given by (A:4) and (A:5)

respectively and the stability of the L2 projection. It should be noted that this term is zero for piecewise

linear approximation spaces. Since the underlying mesh is assumed quasi-uniform the L2 projection is

known to be stable in the broken H2
(T

h

) norm, a definition for this norm can be found in the appendix

section.

(5a) 6
X

⌧2Th

X

F2@⌧

h3
⌧

|�2,⌧ |k�⇡hzk20,F (2.98)

6
X

⌧2Th

Ch3
⌧

|�2,⌧ |h�1k�⇡
h

zk20,⌧ (2.99)

6 Ch2|�2,⌧ |k�⇡hzk20,Th
(2.100)

6 C|�2,⌧ |h2|z|22,⌦ (2.101)

6 C|�2,⌧ |(hk)2k k20,⌦. (2.102)

To bound (5b) in the required way it is useful to note that since the exact solution of the dual problem z

is assumed to be smooth the CIP terms of first order are zero. Adding this term followed by the use of

the trace inequality (A:4) and interpolation estimates (2.25) or (2.26) the desired result is obtained

(5b) =

X

F2Fint

h
⌧

Im[�2,⌧ ]kJr(z � ⇡
h

z)Kk20,F (2.103)

6 hmax{|�2,⌧ |}
X

⌧2Th

X

F2@⌧

kr(z � ⇡
h

z) · nk20,F (2.104)

6 C|�2,⌧ |h
⇣

h�1/2kz � ⇡
h

zk1,Th + h1/2kz � ⇡
h

zk2,Th

⌘2
(2.105)

6 C|�2,⌧ |h2|z|22,⌦ (2.106)

6 C|�2,⌧ |(hk)2k k20,⌦. (2.107)

(5c) follows by noticing that R⇤
(z) = 0 on the boundary. Subtracting this and then applying the trace
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inequality (A:4) and interpolation estimates (2.25) or (2.26) gives

(5c) 6 |�2|h
X

F⇢@⌦R

�

kr(z � ⇡
h

z) · n� ik(z � ⇡
h

z)k20,F
�

6 |�2|h
X

F⇢@⌦R

�

kr(z � ⇡
h

z) · nk20,F + 2kkz � ⇡
h

zk0,F kr(z � ⇡
h

z) · nk0,F

+kk(z � ⇡
h

z)k20,F
�

6 C|�2|(1 + kh)2h2|z|22,⌦

6 C|�2|(1 + kh)2(hk)2k k20,⌦.

Combining these results proves Assumption (2.29). The proof of Assumption (2.31) follows in a similar

manner, however since u 2 Hp+1
(⌦) we are not limited to H2

(⌦) regularity. The only additional terms

that must be investigated are the boundary terms. Both terms conform after an application of the trace

inequality and the interpolation results for the L2 projection.

kk⌘k20,@⌦R
= k

X

F⇢@⌦R

k⌘k20,F (2.108)

6 Ck
⇣

h�1/2k⌘k0,Th + h1/2|⌘|1,Th

⌘2
(2.109)

6 Ck
⇣

hp+1/2|u|
p+1,⌦

⌘2
(2.110)

6 C(kh)h2p|u|2
p+1,⌦. (2.111)

The second inequality follows similarly.

�2hkr⌘ · nk20,@⌦R
= �2h

X

F⇢@⌦R

kr⌘k20,F (2.112)

6 C�2h
⇣

h�1/2kr⌘k0,Th + h1/2|r⌘|1,Th

⌘2
(2.113)

6 C�2 (h
p|u|

p+1,⌦)
2 (2.114)

6 C�2h
2p|u|2

p+1,⌦. (2.115)

The final assumption to verify is the interpolation estimate in the *-norm, (2.30). I shall omit the proof

of this since it follows in the same vein as it did for GLS/CIP case.

The previous lemma has verified that the CIP stabilization satisfies the interpolation assumptions in

Theorem 2 as well as assumptions about the stability of the L2 projection in |.|
s

and the weak coercivity

property. The only assumptions left to verify are results regarding the continuity of the forms A
h

(., .)

and A(., .).
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Proposition 3 (Continuity). Let u 2 Hp+1
(⌦) for p > 1/2 and ⇡

h

: L2
(⌦) 7! V

h

be the standard L2

orthogonal projection then it follows that the CIP discrete sesquilinear form satisfies Assumptions (2.27)

and (2.28)

Proof. Let ⌘ = u� ⇡
h

u, then as before since functions in V
h

are C1 on each element ⌧ 2 T
h

then it is

possible to perform an integration by parts over each ⌧ to obtain

|A
h

(⌘, v
h

)| = |
X

⌧2Th

(⌘,��v
h

)0,⌧ � k2(⌘, v
h
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h⌘,rv
h
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(⌘,��v
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· nKi
F

+ h⌘,rv
h

· n+ ikv
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+ s(⌘, v

h

)|.

The omission of the low order term k2(⌘, v
h

)0,⌧ comes from the definition of the L2 projection

(u� ⇡
h

u, v
h

)0,⌦ = 0 8 v
h

2 V
h

,

exploiting this property again allows us the freedom to add a term (⌘, x
h

)0,⌧ , where x
h

2 V
h

|A
h

(⌘, v
h

)| = |
X

⌧2Th

(⌘,��v
h
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· n+ ikv
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Since this statement holds for any x
h

2 V
h

I can take the infimum over V
h

of the first term

|A
h

(⌘, v
h

)| 6 inf

xh2Vh

X

⌧2Th
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h
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· n� ikv
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6 k⌘k⇤|vh|I.

The last step comes from using the fact that

inf

xh2Vh

X

⌧2Th

k�v
h

� x
h

k20,⌧ 6 C
X

F2Fint

h
⌧

kJ�v
h

Kk20,F ,

a proof for which can be found in [15]. Finally, Assumption (2.28) follows in a similar manner to the



50 Chapter 2. Stabilized FEM for Wave equations

GLS/CIP case

|A(⌘, z � ⇡
h

z)| = |(r⌘,r(z � ⇡
h

z))0,⌦ � k2(⌘, z � ⇡
h

z)0,⌦ + hik⌘, z � ⇡
h

zi
@⌦R

|

6 kr⌘k0,⌦kr(z � ⇡
h

z)k0,⌦ + kk⌘k0,⌦kk(z � ⇡
h

z)k0,⌦

+kk 1
2 ⌘k

@⌦Rkk
1
2
(z � ⇡

h

z)k
@⌦R .

The result now follows immediately after an application of the trace inequality (A:4) to the last term and

then using the interpolation estimates for the L2 projection given by (2.25) or (2.26).

An interesting observation is that for piecewise linear elements this method and the GLS/CIP method

proposed earlier are almost identical. The only difference being that the low order term in the least

squares stabilization is not present in this method. However from the point of view of analysis the

improved a priori error estimates hold in both cases. The proof that the CIP method proposed in this

section satisfies the bounds given by (2.62) and (2.63) is identical to the proof for the GLS/CIP method.

2.4 Numerical examples

This section aims to verify the theoretical results given previously both of the stabilized method’s pro-

posed are tested against the standard Galerkin method. The numerical results appear to verify the claims

of the theorem and in some cases work better than anticipated. Since the parameter in the standard GLS

technique proposed in [34] is known to rely heavily on the wave direction of the underlying solution it

would be interesting to see if this is the case with the GLS/CIP and CIP stabilizations.

The stabilization parameters used in the following section have been chosen with the aim of reducing

the pollution effect. A range of parameters have been considered and later I will discuss their sensitivity.

The parameters have been chosen by testing an array of different selections using a series of “for loops”

and using a search command to find the choice of parameters with the lowest L2 error for a range of

different k and h. The L2 errors were stored in a large array and for this reason have not been included

in the proceeding section. All computations in this section where performed using the UMFPACK solver

in the FreeFEM++ package which is available from http://www.freefem.org/.
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for Numerous k and h do

initialization;

for Imaginary part of parameters in a certain bound do

for Real part of parameters in a certain bound do

Solve ;

print relative L2 error ;

end

end

search Parameters with minimum relative error ;

if Parameters for k
n�1, hn�1 match parameters for k

n

, h
n

then

accept parameters;

else

try an average of the parameters;

end

n++;

end
Algorithm 1: Parameter Search

The parameters that have been chosen as optimal are:

The parameters for GLS/CIP stabilization using piecewise affine elements are

�1,⌧ = �0.0287 + 0.00216i, �1,⌧ = �0.003 + 0.00025i,�1 = 0 + 0.00025i.

and for piecewise quadratic elements

�1,⌧ = �0.01435 + 1.08⇥10

�3i, �1,⌧ = �7.5⇥10

�4
+ 6.25⇥10

�5i,�1 = 0 + 6.25⇥10

�5i.

The parameters for CIP stabilization using piecewise affine elements are

�2,⌧ = �0.0287 + 0.00216i,�2 = 0 + 0.00025i.

and for piecewise quadratic elements

�2,⌧ = �0.01435 + 1.08⇥10

�3i, �2,⌧ = �3.75⇥10

�4
+ 3.125⇥10

�5i,�2 = 0 + 1.5625⇥10

�5i.

The parameters have been optimized using the Bessel solution that I present below. The robustness of

these parameters is then tested using a plane wave solution. Note that for our analysis to hold the sign of
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the imaginary parts of the parameters must change when being applied to the plane wave solution since

the sign in the Robin boundary condition is different.

2.4.1 Bessel solution

The Bessel function is an interesting case since the solution has no dominant wave direction. This

example was studied in [28].

The problem is designed such that

u =

cos

⇣

k
p

x2
+ y2

⌘

k
� CJ0

⇣

k
p

x2
+ y2

⌘

. (2.116)

where

C =

cos(k) + i sin(k)

k (J0(k) + iJ1(k))
.

and J0(.) and J1(.) are Bessel functions of the First Kind. ie:

J
↵

(x) =
1
X

m=0

(�1)

m

m!(m+ ↵)!

⇣x

2

⌘2m+↵

8↵ 2 N0.

and

J�↵

(x) = (�1)

↵J
↵

(x).

We pose the following problem on the unit square ⌦ = [0, 1]⇥ [0, 1]

8

>

<

>

:

��u� k2u = f in ⌦

ru · n+ iku = g
R

on @⌦

For our ansatz to be the solution let

f =

sin(k
p

x2
+ y2)

p

x2
+ y2

.

Naturally, it is possible to obtain the Dirichlet boundary conditions by using the exact solution at the

boundary. However, I must now find g
R

.

g
R

=

(xn
x

+ yn
y

)

p

x2
+ y2

h

CkJ1(k
p

x2
+ y2)� sin(k

p

x2
+ y2)

i

�ik

"

cos(k
p

x2
+ y2)

k
� CJ0(k

p

x2
+ y2)

#

.

where n
x

and n
y

are the x and y components of the normal vector.

The following convergence plots were created using the optimal parameters stated above, on a structured

mesh see for example [32].
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Figure 2.1: Convergence plot for the Bessel Solution using piecewise linear elements on a structured
mesh

Figure 2.1 shows that the numerical methods all reach optimal convergence. The stabilized methods

can be seen to begin converging for much coarser meshes than the standard Galerkin method. It is also

interesting to note that the stabilized methods never obtain a relative error higher than 1 which appears

to agree with the improved error estimates proven in the previous section. The standard Galerkin method

does not respect this estimate which essentially means that there is no limit to how bad the solution can

be.

Figure 2.2: Pollution study for Bessel Solution using piecewise linear elements on a structured mesh

Figures 2.2 and 2.3 are designed to test the accuracy of the numerical methods under the constraint

kh = C. The mesh is refined globally the idea being that as the mesh is refined the value of k increases.

As expected, the relative error for the standard Galerkin method increases with k which is a direct

consequence of numerical pollution. What is surprising with the plot showing the results using piecewise
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Figure 2.3: Pollution study for Bessel Solution using piecewise quadratic elements on a structured mesh

linear approximation is the fact that the stabilized methods appear to maintain a constant error in the

kh = C regime. This would appear to suggest that the methods have some potential to substantially

reduce the pollution error for a given problem on a structured mesh. The piecewise quadratic plot is not

as convincing but the methods do still seem to reduce the pollution effect as the gradients of the error

curves for the stabilized methods appear less steep than for the standard Galerkin method.

Figure 2.4: Convergence plot for the Bessel Solution using piecewise linear elements on an unstructured
mesh

Figures 2.4 and 2.5 show that all methods converge at the rate that the theory predicts for unstructured

meshes, see for example [32]. Again the stabilized methods appear to begin converging optimally for

a coarser mesh when considering piecewise linear elements and seem to respect the improved error

estimates in the same way as they did for the structured mesh example. As was the case previously, the

advantages of the stabilizations are not as apparent in the case of piecewise quadratic elements.

Finally, Figures 2.6 and 2.7 show pollution studies for unstructured meshes using piecewise linear and
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Figure 2.5: Convergence plot for the Bessel Solution using piecewise quadratic elements on an unstruc-
tured mesh

Figure 2.6: Pollution study for Bessel Solution using piecewise linear elements on an unstructured mesh

quadratic elements respectively. Figure 2.6 shows a reduction in the pollution effect for piecewise linear

elements. The reduction is not as prominent as for the structured mesh since the stabilization parameters

appear to be dependent on how the solution is oriented with respect to the mesh. Even though the

image is not as clear as for the structured mesh there is still an argument for the stabilized methods

ability to reduce the effect of numerical pollution. Interestingly enough, Figure 2.7 seems to show the

stabilizations working well to reduce the pollution error. It would have been interesting to extend this

to higher wavenumber k although the system becomes ill conditioned in this regime and appropriate

preconditioners must be employed to ensure that iterative solvers converge to a reliable solution in an

appropriate time frame.
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Figure 2.7: Pollution study for Bessel Solution using piecewise quadratic elements on an unstructured
mesh

2.4.2 Plane wave solution

The plane wave solution has been constructed to test the robustness of the methods. As mentioned previ-

ously a clear limitation to the standard GLS method is the requirement to know a priori a wave direction

to choose the correct stabilization parameter. This knowledge is not usually available in practice.

Let’s begin by showing that u = ei(k1x+k2y) is a solution of the problem

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

��u(x, y)� k2u(x, y) = 0 (x, y) 2 [0, 1]⇥ [0, 1]

@u(x,y)
@y

= �ik2u(x, y) for y = 0

@u(x,y)
@x

= �ik1u(x, y) for x = 0

@u(x,y)
@y

= ik2u(x, y) for y = 1

@u(x,y)
@x

= ik1u(x, y) for x = 1

It can be seen immediately that

@2u(x, y)

@x2
= �k21e

i(k1x+k2y)

@2u(x, y)

@y2
= �k22e

i(k1x+k2y).

Which when substituted into our problem gives

k21e
i(k1x+k2y)

+ k22e
i(k1x+k2y) � k2ei(k1x+k2y)

= 0.

So taking k1 = k cos(✓) and k2 = k sin(✓), where ✓ can be thought of as the angle of propagation (wave
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direction), gives

�

k2cos2(✓) + k2sin2(✓)� k2
�

ei(k1x+k2y)
= 0

=)
�

k2
�

cos

2
(✓) + sin

2
(✓)
�

� k2
�

ei(k1x+k2y)
= 0

=)
�

k2 � k2
�

ei(k1x+k2y)
= 0.

u clearly satisfies the boundary conditions and is therefore a solution to the Helmholtz equation.

Figure 2.8 shows the convergence of the methods for a moderate wave number k = 10 on a structured

mesh. The graph verifies the theory as all methods achieve second order convergence for ✓ = ⇡/n where

n 2 {2, 3, 4, 5}. The stabilized methods are seen to be more accurate than the standard Galerkin method

with the GLS/CIP method slightly more accurate than the CIP method for a structured mesh. Natural

logs have been used in all of the following log� log graphs.
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Figure 2.8: Convergence plot for the plane wave solution using piecewise linear elements on a structured
mesh with k = 10

Figure 2.9 shows the convergence of the methods for k = 100 on a structured mesh. Initially none of the

methods perform very well. This is because the mesh is not refined enough to fully resolve each wave

length. I mentioned earlier the engineering rule of thumb is to have 10 ⇠ 12 elements per wavelength.

However

� =

2⇡

k
, h =

p
2

N
(2.117)

�

h
=

p
2⇡

N

k
. (2.118)
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For Figure 2.9 N 2 {50, 100, 200, 400} and k = 100, this gives that �

h

2 { ⇡p
2
,
p
2⇡, 2

p
2⇡, 4

p
2⇡}

the rule of thumb is only met in the last case. The standard Galerkin method performs poorly and for

✓ 6= ⇡

2 does not begin to converge until each wavelength is fully resolved. The stabilized methods

reach optimal convergence quicker than the standard Galerkin method and remain more accurate. An

interesting observation is that all of the methods seem better equipped to handle the case ✓ =

⇡

2 . This

is not the case for the unstructured mesh and can be explained by the nature of the solution. Since

the solution for ✓ =

⇡

2 travels along the boundary, the number of elements per wavelength is better

represented by �

h

2 {⇡, 2⇡, 4⇡, 8⇡} since h 2 { 1
50 ,

1
100 ,

1
200 ,

1
400} along the boundary. This means that

the wave is better resolved in this case.

4 4.5 5 5.5 6 6.5
�6

�4

�2

0

log(N)

lo
g

of
R

el
at

iv
e

L2
Er

ro
r

Convergence Plane Wave Solution (P1)

k = 100 Structured Mesh

Std Gal ⇡/2
Std Gal ⇡/3
Std Gal ⇡/4
Std Gal ⇡/5
CIP ⇡/2
CIP ⇡/3
CIP ⇡/4
CIP ⇡/5
GLS/CIP ⇡/2
GLS/CIP ⇡/3
GLS/CIP ⇡/4
GLS/CIP ⇡/5
O(h2)

Figure 2.9: Convergence plot for the plane wave solution using piecewise linear elements on a structured
mesh with k = 100

Figures 2.10 and 2.11 show the convergence of the methods for different values of k. Since the mesh is

unstructured the direction of the wave has less influence on the accuracy of the solutions. The structure

the mesh appears to have little effect on the accuracy of the CIP method but the GLS/CIP stabilization

seems to perform better on the unstructured mesh. All methods can be seen to converge optimally.

The following figures aim to determine the effectiveness of the stabilizations in eliminating the pollution

error from numerical solutions. Here the log of the relative error is plotted against log(N) with kh =

C. The analysis says that the relative error should grow with k since ku � u
h

k0,⌦ = O((kh)2) and

kuk0,⌦ = O(k�1
) therefore the relative error is

ku� u
h

k0,⌦
kuk0,⌦

= O(k3h2
) (2.119)
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Figure 2.10: Convergence plot for the plane wave solution using piecewise linear elements on an un-
structured mesh with k = 10
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Figure 2.11: Convergence plot for the plane wave solution using piecewise linear elements on an un-
structured mesh with k = 100

Since kh is taken to be constant the error is expected to grow with k. Figure 2.12 shows that the

standard Galerkin method performs as would be expected, with the relative error growing with k. The

two stabilized methods, on the other hand, remain constant which indicates the methods are pollution

free in this case. What is even more interesting is the fact that this works for a range of ✓.

Figure 2.13 shows a clear reduction in the pollution effect for kh = 0.5. The choice of kh = 0.5 is equiv-

alent to approximately 12 elements per wavelength. In the figure k 2 {12.5
p
2, 25

p
2, 50

p
2, 100

p
2}.
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Figure 2.12: Pollution error using piecewise linear elements on a structured mesh where kh = 0.1

The figures would suggest that an appropriate choice of parameters can help reduce the pollution error

for specific problems on a structured mesh. However, it is unsurprising that the same reduction is not

present in the case of the unstructured mesh. Figures 2.14 and 2.15 show that the stabilized methods do

not decrease the pollution error on the unstructured mesh. This seems logical since the pollution error in

this case is caused by the wave number of the exact solution k not matching the discrete wave number

k
h

. This causes the numerical solution to become out of phase with the exact solution and leads to an

error. For a more detailed discussion on this see [1]. On a structured mesh the stabilization parameters

all act in the same way on the numerical solution and can adjust the discrete wave number to match

that of the exact solution. In the case of the unstructured mesh the wave cuts the mesh at a variety of

different angles and therefore it would seem less likely that the stabilizations would be able to alleviate

the pollution effect for constant stabilization parameters.
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Figure 2.13: Pollution error using piecewise linear elements on a structured mesh where kh = 0.5
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Figure 2.14: Pollution error using piecewise linear elements on an unstructured mesh where kh = 0.1
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Figure 2.15: Pollution error using piecewise linear elements on an unstructured mesh where kh = 0.5

Figure 2.16 shows the convergence for all of the methods for piecewise quadratic elements at low wave

number k = 10. The methods all appear to converge optimally in accordance with the theory and are

almost indistinguishable from each other.

Figure 2.17 shows the convergence of the methods for k = 100 here the stabilized methods provide a

better approximation than the standard Galerkin method but not by the same margin as for the piecewise

linear elements.

Figure 2.18 shows that all the methods obtain the expected convergence for piecewise quadratic elements
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Figure 2.16: Convergence plot for the plane wave solution using piecewise quadratic elements on a
structured mesh with k = 10
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Figure 2.17: Convergence plot for the plane wave solution using piecewise quadratic elements on a
structured mesh with k = 100

on an unstructured mesh for low wavenumber k = 10 and Figure 2.19 shows the pollution effect in the

pre-asymptotic regime.
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Figure 2.18: Convergence plot for the plane wave solution using piecewise quadratic elements on an
unstructured mesh with k = 10
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Figure 2.19: Convergence plot for the plane wave solution using piecewise quadratic elements on an
unstructured mesh with k = 100
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Figure 2.20 shows how the methods handle the pollution error for kh = 0.2 on structured mesh. The

GLS/CIP method seems less affected by the pollution error than the standard Galerkin method and

the CIP method appears to be pollution free. Figure 2.21 shows how the methods are able to control

pollution for a more practical choice of kh = 1.0. Here the pollution error is clearly present for the

standard Galerkin and the GLS/CIP methods. On the other hand, the CIP stabilization seems to damp

the effects of the numerical pollution for the given choice of parameters.
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Figure 2.20: Pollution error using piecewise quadratic elements on a structured mesh where kh = 0.2
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Figure 2.21: Pollution error using piecewise quadratic elements on a structured mesh where kh = 1.0

An interesting observation can be seen when applying our piecewise quadratic numerical methods to
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unstructured meshes. Figures 2.22, 2.23 and 2.24 all exhibit strange behaviours. Figure 2.22 shows the

methods converging as the mesh is refined holding kh constant. This is better than can be expected and

it is unclear why this is the case. Taking kh closer to the engineering rule of thumb shows the standard

Galerkin method acting as would be expected and the GLS/CIP method providing a more accurate but

still polluted approximation of the exact solution. Interestingly the CIP method still converges in this

case and the same can be said about Figure 2.24.

3 3.5 4 4.5 5 5.5

�12.2

�12

�11.8

�11.6

�11.4

log(N)

lo
g

of
R

el
at

iv
e

L2
Er

ro
r

Pollution Plane Wave Solution (P2)

kh = 0.2 Unstructured Mesh

Std Gal ⇡/2
Std Gal ⇡/3
Std Gal ⇡/4
Std Gal ⇡/5
CIP ⇡/2
CIP ⇡/3
CIP ⇡/4
CIP ⇡/5
GLS/CIP ⇡/2
GLS/CIP ⇡/3
GLS/CIP ⇡/4
GLS/CIP ⇡/5

Figure 2.22: Pollution error using piecewise quadratic elements on an unstructured mesh where kh = 0.2
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Figure 2.23: Pollution error using piecewise quadratic elements on an unstructured mesh where kh = 1.0
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Figure 2.24: Pollution error using piecewise quadratic elements on an unstructured mesh where kh =

1.25

2.4.2.1 Sensitivity study of parameters

To study the sensitivity of the parameters I vary them individually by minimizing the error in the L2

norm between the FE solution u
h

and the exact solution u. I vary the parameters one at a time as this

helps to give an indication of how sensitive the parameters are to the wave direction.

I begin by considering the GLS/CIP stabilization. Note that in the case studied in this section the theory

states that the imaginary parts of the parameters should be less than zero since they should be chosen to

match the sign in the Robin boundary condition. The first parameter I consider is the imaginary part of

the GLS parameter �1,⌧ .
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Figure 2.25: Parameter sensitivity study for Im[�1,⌧ ] using piecewise linear elements where kh =

1p
2
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Figure 2.25 shows distinct minima for each angle ✓. The steepness of the curves gives an indication as

to the sensitivity of the parameters. The choice of parameter that I have chosen is close enough to the

minimum of the curves to still be accurate but is has been picked to reduce numerical pollution. In Figure

2.26 I consider the imaginary part of the CIP parameter �1,⌧ . Here the parameter is much less sensitive

and allows the user more freedom to vary the parameter and retain accuracy. In fact after considering

Figures 2.27 and 2.28 it would seem that the choice of CIP parameter has much less impact on the error

of the solution than its GLS counterpart. In practice this is much more desirable since it is very rare that

you know the optimal choice of parameter for a particular problem a priori. Figures 2.29 and 2.30 seem

to show that the method is rather sensitive to the choice of Im[�1] for the case ✓ = ⇡/2. The analysis

suggests that this term is crucial to ensure the stability of the method.
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Figure 2.26: Parameter sensitivity study for Im[�1,⌧ ] using piecewise linear elements where kh =

1p
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Figure 2.27: Parameter sensitivity study for Re[�1,⌧ ] using piecewise linear elements where kh =
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Figure 2.28: Parameter sensitivity study for Re[�1,⌧ ] using piecewise linear elements where kh =

1p
2
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Figure 2.29: Parameter sensitivity study for Re[�1] using piecewise linear elements where kh =

1p
2

Figures 2.31-2.34 show that without the GLS term the choice of CIP parameter becomes more sensi-

tive. This can be attributed to the fact that for piecewise linear elements the CIP parameter is the only

stabilization term present in the bulk.
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Figure 2.30: Parameter sensitivity study for Im[�1] using piecewise linear elements where kh =

1p
2
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Figure 2.31: Parameter sensitivity study for Im[�2,⌧ ] using piecewise linear elements where kh =
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Figure 2.32: Parameter sensitivity study for Re[�2,⌧ ] using piecewise linear elements where kh =

1p
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Figure 2.33: Parameter sensitivity study for Re[�2] using piecewise linear elements where kh =

1p
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Figure 2.34: Parameter sensitivity study for Im[�2] using piecewise linear elements where kh =
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Chapter 3

Fictitious domain methods for Helmholtz

equation using cut elements

3.1 Introduction
In problems of practical importance the boundary for a given domain is often determined by data or some

type of Computer Aided Design (CAD) software. This can lead to domains having complex geometries

that can be costly to mesh. In order to avoid such costs a variety of methods have been introduced which

aim to decouple the geometry of the physical domain from that of the background mesh. The Ficti-

tious Domain (FiDo) method was first introduced in a FE framework by Glowinski in [26]. Previously,

FiDo methods had been used numerically to extend the capabilities of the Finite Difference method by

enabling applications to complex geometries. The method introduced by Glowinski used Lagrange mul-

tipliers to enforce the Dirichlet boundary conditions for the physical problem. The resulting saddle point

problem was then solved iteratively using a conjugate gradient algorithm. The main motivations behind

introducing fictitious domain methods in a FE setting are:

• The mesh does not have to fit the boundary of the physical domain which reduces the cost of

calculations.

• The extended domain can be chosen such that the resultant mesh is ‘simple’ which can benefit the

user when solving the linear system.

• The extended domain can be chosen to be fixed in time dependent problems even when the physical

domain is allowed to evolve with time.

For the reasons stated above, fictitious domain methods have been of great interest when solving prob-

lems involving fluid structure interaction. Classical FiDo methods define a continuous extension of the

underlying problem from the physical domain onto the computational domain. These classical tech-

niques typically have poor accuracy due to the lack of approximation properties over the physical do-
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main. In more recent work by Burman and Hansbo [20],[21] techniques were introduced that allow

the solution to become discontinuous inside each element that is intersected by the boundary. In these

papers the authors allow the boundary of the physical domain to arbitrarily cut the background mesh

using Lagrange multipliers or Nitsche’s method to weakly enforce Dirichlet boundary conditions. The

problem is only evaluated on the physical domain which introduces cut elements leading to the name

CutFEM methods. A key result in these papers relies on an important observation by Stein in [51] which

I will discuss later in the chapter. The main fictitious domain techniques that have been proposed with

cut elements are:

• Lagrange Multiplier methods ([26], [20])

• XFEM ([35], [24])

• Nitsche’s method ([21],[14])

One thing that all of these methods have in common is the fact that they all impose boundary conditions

using the weak formulation rather than building them into the solution space. One inherent advantage to

this is that, since the solution space in this framework is much larger, the user is less likely to run into

computational problems such as numerical locking when performing simulations. In this chapter I will

be introducing a Nitsche-based fictitious domain method. The main advantages that Nitsche’s method

has over XFEM and Lagrange multipliers is that it is easy to implement and analyse. An advantage

that this method has over existing fictitious domain methods designed for Helmholtz equation is that it

does not require the introduction of Lagrange multipliers which add to the complexity of the method.

Lagrange multiplier methods rely on introducing additional unknowns, increasing the complexity of

the linear system and leading to saddle point problems requiring a careful choice of discrete spaces

to ensure stability. Nitsche’s method does not introduce any additional unknowns and can be solved

directly. XFEM relies on introducing additional enrichments to the FE space, which can be difficult to

construct if the spaces are to remain H1
(⌦)-conforming and have optimal approximation properties.

In this chapter I will first extend the stabilized methods introduced previously using Nitsche’s method to

consider general boundary conditions. The use of Nitsche’s method is a popular alternative to classical

Lagrange multiplier methods as it is a consistent, optimally convergent method that does not introduce

extra variables to be solved for. I will show that the new methods are optimally convergent using a

similar analysis to what was presented in the previous chapter. Then, numerical studies are presented

to demonstrate the potential of these methods for reducing the pollution effect. Following the discus-

sion of generalized boundary conditions, I introduce a new fictitious domain method for the solution of

Helmholtz equation using the CutFEM technique introduced by Burman and Hansbo in [20] and [21].

After introducing some important notation and concepts, I analyse the new method and show that it is
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optimally convergent. Finally, I present a numerical study to compare the stabilized fictitious domain

methods introduced with a fictitious domain method recently proposed in [58].

3.2 Generalized boundary conditions
The boundary conditions for any PDE contain important information regarding the physical problem

being solved. It is therefore an added benefit to have reliable numerical methods that are capable of

handling generalized boundary conditions. When considering the problem of acoustic scattering the

boundary conditions describe the physical properties of the scatterer. Dirichlet boundary conditions are

used to model a surface that has very low acoustic impedance compared to the acoustic impedance of the

carrier medium. This type of surface is called sound soft. Conversely, Neumann boundary conditions

are used to model a surface that has a very high acoustic impedance compared to the acoustic impedance

of the carrier medium. This type of surface is referred to as being sound hard. The Robin condition can

be thought of as a blend of the pair where the acoustic impedance of the surface is of similar magnitude

to that of the carrier medium. To ensure that the problem is well posed, it is necessary to also include

the Sommerfeld Radiation condition which ensures that no energy is allowed to enter the system from

infinity. This will once again be modelled using the first order approximation given as a Robin boundary

condition.

Our problem is then the following
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>
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:

L(u) = f in ⌦

u = g
D

on @⌦
D

ru · n = g
N

on @⌦
N

R(u) = g
R

on @⌦
R

.

(3.1)

For the subsequent analysis it is useful to also consider the adjoint problem
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:

L(z) =  in ⌦

z = 0 on @⌦
D

rz · n = 0 on @⌦
N

R⇤
(z) = 0 on @⌦

R

.

(3.2)

To ensure well posedness of the problem I assume that meas
d�1(@⌦R

) > 0.

Let ⌦ be a bounded domain with smooth boundary or a bounded convex domain such that there exists

an x0 2 ⌦ such that

(x� x0) · n 6 0 8x 2 @⌦
D

(3.3)

(x� x0) · n = 0 8x 2 @⌦
N

(3.4)

(x� x0) · n > C 8x 2 @⌦
R

(3.5)
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the solution of Helmholtz equation is known to satisfy the following bounds for any f 2 L2
(⌦), g

D

2

H1/2
(@⌦

D

), g
N

2 H3/2
(@⌦

N

) and g
R

2 H3/2
(@⌦

R

) a proof can be found in [36].

kkuk0,⌦ + kuk1,⌦ . C
f,g

, kuk2,⌦ . (k + 1)C0
f,g

, (3.6)

where C
f,g

= kfk0,⌦+kg
R

k0,@⌦R+kg
N

k0,@⌦N +k3/2kg
D

k0,@⌦D and C0
f,g

= kfk0,⌦+kg
R

k1/2,@⌦R
+

kg
N

k1/2,@⌦N
+ kkg

D

k1/2,@⌦D
.

Under the same assumptions the adjoint problem satisfies similar bounds

kkzk0,⌦ + kzk1,⌦ . k k0,⌦, kzk2,⌦ . kk k0,⌦. (3.7)

Using standard FE techniques a problem posed with these boundary conditions would usually be solved

by imposing the Dirichlet boundary conditions as essential boundary conditions. This means that the

space V0, in which solutions are sought, is restricted to functions that satisfy the Dirichlet boundary

conditions as given in (3.1) on @⌦
D

. The natural choice of V0 would be:

V0
def
= {v 2 H1

(⌦) : v = 0 on @⌦
D

}.

The Neumann and Robin conditions are said to be imposed as natural boundary conditions and are

implemented in the weak formulation. The idea of Nitsche’s method is to impose the Dirichlet boundary

conditions using the weak formulation and hence remove the restriction on the solution space V i.e.

V
def
= {v 2 H1

(⌦)}.

Nitsche proposed enforcing the Dirichlet boundary conditions using a penalty method. To show this I

will first derive the weak formulation. The problem becomes: Find u 2 V such that

a(u, v) = l(v) 8 v 2 V.

where

a(u, v) = (ru,rv)0,⌦ � k2(u, v)0,⌦ � hru · n, vi0,@⌦ .

and

l(v) = (f, v)0,⌦.

Let T
h

be a quasi-uniform triangulation of the domain ⌦ where quasi-uniformity is as defined in (A.4)

and

V
h

def
= {v

h

2 V : v
h

|
⌧

2 Pp

(⌧) 8 ⌧ 2 T
h

, p 2 N}.
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The finite element method writes: Find u
h

2 V
h

such that

a(u
h

, v
h

) = l(v
h

) 8 v
h

2 V
h

.

After deriving the weak formulation in the usual way and moving to a discrete setting, the symmet-

ric method of Nitsche then proposes the addition of two extra terms in order to enforce the Dirichlet

boundary condition. In the classical formulation proposed by Nitsche a symmetry term is introduced

to preserve the symmetry of the method whilst also acting as a residual term to impose the Dirichlet

boundary condition. Although this term preserves the symmetry of the method, the analysis shows that

to ensure stability a penalty term, ↵ hu
h

, v
h

i0,@⌦D
, must also be added. In recent work it has been shown

that this term can be omitted by changing the sign of the symmetry term although I will not consider that

case in this work.

For the problem to scale correctly and for the method to enter the analysis of Theorem 2 the penalty

parameter should be taken such that ↵ = i�
D

h�1, where �
D

2 R+. Notice that the method is consistent

since u = g
D

on @⌦
D

.

(ru
h

,rv
h

)0,⌦ � k2(u
h

, v
h

)0,⌦ � hru
h

· n, v
h

i0,@⌦D
| {z }

consistency

�hu
h

,rv
h

· ni0,@⌦D
| {z }

symmetry

(3.8)

+↵ hu
h

, v
h

i0,@⌦D
| {z }

penalty

+ hiku
h

, v
h

i0,@⌦R

= l(v
h

) + ↵ hg
D

, v
h

i0,@⌦D
+ hg

D

,rv
h

· ni0,@⌦D
+ hg

N

, v
h

i0,@⌦N
+ hg

R

, v
h

i0,@⌦R
. (3.9)

It can be seen that the problem still conforms to the same abstract framework as before. Except in this

case I would like to pose the stabilization form in two parts; one that describes the stabilization on the

interior of the domain and the other that describes the stabilization on the boundary. It still follows that

A
h

(u
h

, v
h

) = A(u
h

, v
h

) + s(u
h

, v
h

) = L(v
h

) + s(u, v
h

) = L
h

(v
h

). (3.10)

However in this case

A(u
h

, v
h

) = a
h

(u
h

, u
h

)� k2(u
h

, v
h

)0,⌦ + hiku
h

, v
h

i0,@⌦R
,

and

s(u
h

, v
h

) = s⌦(uh

, v
h

) + s
@⌦(uh

, v
h

), (3.11)

where

a
h

(u
h

, v
h

) = (ru
h

,rv
h

)0,⌦ � hru
h

· n, v
h

i0,@⌦D
� hu

h

,rv
h

· ni0,@⌦D
,
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and s⌦(uh

, v
h

) represents a stabilization over the interior of the domain, and s
@⌦(uh

, v
h

) is the stabi-

lization acting on the boundary. Again I consider two cases for the stabilization over the domain, namely

the GLS/CIP and CIP methods proposed previously. The GLS/CIP stabilization is given by

sG⌦(uh

, v
h

)

def
=

X

⌧2Th

h2
⌧

�1,⌧ (L(uh

),L(v
h

))0,⌧ +

X

F2Fint

h
⌧

�1,⌧ hJru
h

K, Jrv
h

Ki0,F , (3.12)

and the CIP stabilization is given by

sC⌦(uh

, v
h

)

def
=

X

F2Fint

h3
⌧

�2,⌧ hJ�u
h

K, J�v
h

Ki0,F +

X

F2Fint

h
⌧

�1,⌧ hJru
h

K, Jrv
h

Ki0,F . (3.13)

The stabilization over the boundary shall be defined as

s
@⌦(uh

, v
h

) = i�
N

h hru
h

· n,rv
h

· ni
@⌦N

+ i�
R

h hR(u
h

),R⇤
(v

h

)i
@⌦R

+i�
D

h�1 hu
h

, v
h

i
@⌦D

.

I have also introduced a least squares penalty term for the Neumann boundary condition. This ad-

dition means that the proposed method will once again fit into the framework of Theorem 2 for

�
j,D

,�
j,N

,�
j,R

2 R+ where j 2 {1, 2}. For the remainder of this section the subscript j is used

to distinguish between the different coefficients used in the different stabilized methods, j = 1 is used

for GLS/CIP stabilization and j = 2 for CIP method. As before I will show that the stabilized method

satisfies all of the assumptions of the theorem by showing that the interpolation estimates hold and by

proving the continuity of the form. Some of the results carry over from the analysis of the stabilizations

with just Robin boundary conditions and to avoid repetition I shall just state where I have used a previous

result.

For the following analysis it is useful to introduce the following definitions. Let u
h

2 V
h

|u
h

|2I,G
def
= k(1� �1,Rkh)kuh

k20,@⌦R
+ max

⌧2Th

{Im [�1,⌧ ]}h2
X

⌧2Th

kL(u
h

)k20,⌧

+max

⌧2Th

{Im [�1,⌧ ]}h
X

F2Fint

kJru
h

Kk20,F + �1,Dh�1ku
h

k20,@⌦D

+�1,Nhkru
h

· nk20,@⌦N
+ �1,Rhkru

h

· nk20,@⌦R
, (3.14)
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and

|u
h

|2I,C
def
= k(1� �2,Rkh)kuh

k20,@⌦R
+ max

⌧2Th

{Im [�2,⌧ ]}h3
X

⌧2Th

kJ�u
h

Kk20,⌧

+max

⌧2Th

{Im [�2,⌧ ]}h
X

F2Fint

kJru
h

Kk20,F + �2,Dh�1ku
h

k20,@⌦D

+�2,Nhkru
h

· nk20,@⌦N
+ �2,Rhkru

h

· nk20,@⌦R
. (3.15)

Lemma 3.1. For 0 < �1,Rkh < 1 and max

⌧2Th{Im [�1,⌧ ]},max

⌧2Th{Im [�1,⌧ ]},�1,D, �1,N ,�1,R >

0 it follows that |u
h

|2I,G, as defined in (3.14), is a norm on V
h

.

Proof. The proof follows directly from the definition.

Lemma 3.2. For 0 < �2,Rkh < 1 and max

⌧2Th{Im [�2,⌧ ]},max

⌧2Th{Im [�2,⌧ ]},�2,D, �2,N ,�2,R >

0 it follows that |u
h

|2I,C , as defined in (3.15) is a semi-norm on V
h

.

Proof. The proof follows directly from the definition.

It is also useful to introduce the two additional semi-norms which are associated to the stabilizations

|.|
s,G

: V
h

7! R for GLS/CIP and |.|
s,C

: V
h

7! R for CIP which are defined as

|.|2
s,G

def
=

X

⌧2Th

|�1,⌧ |h2
⌧

kL(.)k20,⌧ +

X

F2Fint

|�1,⌧ |h⌧

kJr(.) · nKk20,F + |�1,D|h�1k(.)k20,@⌦D

+|�1,N |hkr(.) · nk20,@⌦N
+ |�1,R|hkR⇤

(.)k20,@⌦R
. (3.16)

and

|.|2
s,C

def
=

X

F2Fint

|�2,⌧ |h3
⌧

kJ�(.)Kk20,F +

X

F2Fint

|�2,⌧ |h⌧

kJr(.) · nKk20,F + |�2,D|h�1k(.)k20,@⌦D

+|�2,N |hkr(.) · nk20,@⌦N
+ |�2,R|hkR⇤

(.)k20,@⌦R
. (3.17)

Lemma 3.3. Under the assumption hk < ��1
R

the Nitsche formulation given in (3.10) satisfies assump-

tions (2.23), (2.24), (2.29), (2.30) and (2.31) for

k(·)k2⇤,G
def
=

X

⌧2Th

|�1,⌧ |�1h�2
⌧

k(·)k20,⌧ +

X

F2Fint

(|�1,⌧h⌧

|)�1 k(·)k20,F + (|�1,N |h)�1 k(·)k20,@⌦N

+|�1,D|�1hkr(·) · nk20,@⌦D
+ (|�1,R|h)�1 k(·)k20,@⌦R

+ sG⌦((·), (·)), (3.18)

and ⇡
h

is the standard Lagrange interpolant when the GLS/CIP stabilization, proposed in (2.64), is used
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over the interior of the domain ⌦ or

k(·)k2⇤,C
def
=

X

⌧2Th

|�2,⌧ |�1h�1
⌧

k(·)k20,⌧ +

X

F2Fint

(|�2,⌧h⌧

|)�1 k(·)k20,F + (|�2,N |h)�1 k(·)k20,@⌦N

+|�2,D|�1hkr(·) · nk20,@⌦D
+ (|�2,R|h)�1 k(·)k20,@⌦R

+ sC⌦((·), (·)), (3.19)

and ⇡
h

is the standard L2 projection when the CIP stabilization, proposed in (2.95), is used over the

interior of the domain ⌦.

Proof. The proof is a direct result of the fact that

|u
h

|2I = Im[A
h

(u
h

, u
h

)]. (3.20)

Recall that

Im[A
h

(u
h

, u
h

)] = Im[A(u
h

, u
h

)] + Im[s⌦(uh

, u
h

)] + Im[s
@⌦(uh

, u
h

)]. (3.21)

Analysing term by term shows that Im[A(u
h

, u
h

)] = kku
h

k20,@⌦R

Im[A(u
h

, u
h

)] = Im
h

(ru
h

,ru
h

)0,⌦ � k2(u
h

, u
h

)0,⌦ � hru
h

· n, u
h

i0,@⌦D

�hu
h

,ru
h

· ni0,@⌦D
+ ik hu

h

, u
h

i0,@⌦R

i

= Im
h

kru
h

k20,⌦ � k2ku
h

k20,⌦ � hru
h

· n, u
h

i0,@⌦D
� hu

h

,ru
h

· ni0,@⌦D

+ik hu
h

, u
h

i0,@⌦R

i

= Im
h

kru
h

k20,⌦ � k2ku
h

k20,⌦ � 2Re[hru
h

· n, u
h

i0,@⌦D
] + ikku

h

k20,@⌦R

i

.

The last line comes from equation (A:11) in the Appendix. The term Im[s⌦(uh

, u
h

)] is straightfor-

ward to deduce for both of the interior stabilizations introduced earlier therefore I shall omit this step.

Analysing the final term

Im[s
@⌦(uh

, u
h

)] = Im
h

i�
N

h hru
h

· n,ru
h

· ni0,@⌦N
+ i�

R

h hR(u
h

),R⇤
(u

h

)i0,@⌦R
(3.22)

+i�
D

h�1 hu
h

, u
h

i0,@⌦D

i

= Im
h

i�
N

hkru
h

· nk20,@⌦N
+ i�

R

h hR(u
h

),R⇤
(u

h

)i0,@⌦R
(3.23)

+i�
D

h�1ku
h

k20,@⌦D

⇤

= �
N

hkru
h

· nk20,@⌦N
+ �

R

h
�

kru
h

· nk20,@⌦R
� k2ku

h

k20,@⌦R

�

(3.24)

+�
D

h�1ku
h

k20,@⌦D
.
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Adding together all of the terms proves the claim (3.20). Assumption (2.23) follows after noticing

Im [A(u
h

, u
h

)] < kA(u
h

, u
h

)k . (3.25)

The proof of assumption (2.24) follows from noticing that

|s(v
h

, w
h

)| 6 |s⌦(vh, wh

)|+ |s
@⌦(vh, wh

)| (3.26)

6 |v
h

|I|wh

|
s

+ |s
@⌦(vh, wh

)|, (3.27)

so it is enough to show that |s
@⌦(vh, wh

)| 6 |v
h

|I|wh

|
s

. Once again this can be shown through an

application of the Cauchy-Schwarz inequality followed by an application of the triangle inequality.

|s
@⌦(vh, wh

)| 6 |�
N

|hkrv
h

· nk0,@⌦N krw
h

· nk0,@⌦N + �
D

h�1kv
h

k0,@⌦Dkwh

k0,@⌦D

+�
R

hkrv
h

· nk0,@⌦ + kkv
h

k0,@⌦RkR⇤
(w

h

)k0,@⌦R

6 |v
h

|I|wh

|
s

.

Since assumption (2.29) has already been shown for the stabilization terms acting on the interior of the

boundary it is enough to show that the additional boundary terms satisfy the assumption. Using the

same trick as when dealing with the Robin boundary stabilization previously, an application of the trace

inequality and assumptions (2.25) or (2.26) yields the desired result.

It has already been shown that Assumption (2.30) is satisfied by the stabilizations in the previous section.

Therefore the result will hold if the additional terms in the norm k.k⇤ satisfy the same bound. This is

indeed the case and the proof comes from an application of the trace inequality (A:4) and the interpolation

estimates (2.25) or (2.26). The first additional term is the normal derivative on the Dirichlet boundary

and is handled in the following way

|�
D

|�1hkr⌘ · nk20,@⌦D
6 |�

D

|�1h
X

⌧2Th\@⌦D

C2
T

⇣

h�1/2
⌧

kr⌘k0,⌧ + h1/2
⌧

|r⌘|1,⌧
⌘2

6 |�
D

|�1hCh2p�1|u|2
p+1,⌦

= |�
D

|�1Ch2p|u|2
p+1,⌦.

The same steps are used in handling the term on the Neumann boundary

(|�
N

|h)�1 k⌘k20,@⌦N
6 (|�

N

|h)�1
X

⌧2Th\@⌦N

C2
T

⇣

h�1/2
⌧

k⌘k0,⌧ + h1/2
⌧

|⌘|1,⌧
⌘2

6 (|�
N

|h)�1 Ch2p+1|u|2
p+1,⌦

= |�
N

|�1Ch2p|u|2
p+1,⌦.
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Finally (2.31) follows from a similar argument.

So it has been shown that the interpolation results hold for the Nitsche formulation. It is now sufficient

to shown that the forms A(., .) and A
h

(., .) have the continuity properties required by the theorem.

Proposition 4 (Continuity). Let u 2 Hp+1
(⌦) for p > 1/2 and ⇡

h

be either the standard Lagrange

interpolant or the standard L2 orthogonal projection for the GLS/CIP or CIP interior stabilizations

respectively. It follows that the discrete sesquilinear form given by (3.10) satisfies assumptions (2.27)

and (2.28) for the respective star norms given by (3.18), (3.19).

Proof. Assumption (2.27) can be satisfied for the GLS/CIP stabilization by letting ⌘ = u � I
h

u where

I
h

: C0
(

¯

⌦) 7! V
h

is the standard Lagrange interpolant. It follows that

|A(⌘, v
h

)|+ |s(⌘, v
h

)| 6 |A(⌘, v
h

)|+ |s
GLS/CIP

(⌘, v
h

)|+ |s
@⌦(⌘, vh)|. (3.28)

It is immediate from the definitions in (3.14), (3.18) and (3.15), (3.19) that the last two terms can be

decomposed in a way that satisfies the continuity assumption for either stabilization. The only question

is whether the same can be said about the form A(., .)

|A(⌘, v
h

)| = |(r⌘,rv
h

)0,⌦ � k2(⌘, v
h

)0,⌦ � hr⌘ · n, v
h

i0,@⌦D
� h⌘,rv

h

· ni0,@⌦D

+ik h⌘, v
h

i0,@⌦R
|

= |
X

⌧2Th

⇣

(⌘,��v
h

)0,⌧ � k2(⌘, v
h

)0,⌧ + h⌘,rv
h

· ni0,@⌧
⌘

� hr⌘ · n, v
h

i0,@⌦D

�h⌘,rv
h

· ni0,@⌦D
+ ik h⌘, v

h

i0,@⌦R
|

= |
X

⌧2Th

(⌘,��v
h

� k2v
h

)0,⌧ +

X

F2Fint

h⌘, Jrv
h

Ki0,F + h⌘,rv
h

· ni0,@⌦N

�hr⌘ · n, v
h

i0,@⌦D
+ h⌘,R⇤

(v
h

)i0,@⌦R
|.

The last line uses the equality

X

⌧2Th

h⌘,rv
h

· ni0,@⌧ =

X

F2Fint

h⌘, Jrv
h

Ki
F

+h⌘,rv
h

· ni0,@⌦D
+h⌘,rv

h

· ni0,@⌦N
+h⌘,rv

h

· ni0,@⌦R
.

The Dirichlet boundary term cancels with the boundary term from the integration by parts on @⌦
D

. Now

recall the stabilizations

|s
@⌦(⌘, vh)| = |i�

N

h hr⌘ · n,rv
h

· ni0,@⌦N
+ i�

R

h hR(⌘),R⇤
(v

h

)i0,@⌦R

+i�
D

h�1 h⌘, v
h

i
@⌦D

|

6 |i�
N

h hr⌘ · n,rv
h

· ni0,@⌦N
+ i�

R

hkR(⌘)k0,@⌦R (krv
h

· nk0,@⌦R + kkv
h

k0,@⌦R)

+i�
D

h�1 h⌘, v
h

i
@⌦D

|.
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In the case of the GLS/CIP method

|sG⌦(⌘, vh)| = |
X

⌧2Th

h2
⌧

�1,⌧ (L(⌘),L(vh))0,⌧ +

X

F2Fint

h
⌧

�1,⌧ hJr⌘K, Jrv
h

Ki
F

|.

Then the result follows from noticing that the right hand term in each inner product appears in |.|I,G to

give the last line. So it can be concluded, after an application of the Cauchy-Schwarz inequality in all

terms, that

A
h

(⌘, v
h

) 6 k⌘k⇤,G|vh|I,G.

where

k⌘k2⇤,G =

X

⌧2Th

|�1,⌧ |�1h�2
⌧

k⌘k20,⌧ +

X

F2Fint

(|�1,⌧h⌧

|)�1 k⌘k20,F + (|�1,N |h)�1 k⌘k20,@⌦N

+|�1,D|�1hkr⌘ · nk20,@⌦D
+ (|�1,R|h)�1 k⌘k20,@⌦R

+ sG⌦(⌘, ⌘).

The argument for the CIP case is similar, except now I use the L2-projection instead of the Lagrange

interpolant which eliminates the k2 term and is used to handle the Laplacian after an integration by parts

as shown previously.

Assumption (2.28) requires that the discrete sesquilinear form satisfies the following inequality,

A(u� ⇡
h

u, z � ⇡
h

z) 6 C(kh)hp|u|
p+1,⌦k k0,⌦.

Since it has been shown in the previous section that this is indeed the case for the majority of the terms

in A
h

(., .), it suffices to show that the extra boundary terms satisfy the condition.

Let ⌘ = u�⇡
h

u and ⌘0 = z�⇡
h

z where ⇡
h

is either choosen to be the Lagrange interpolant (GLS/CIP

case) or the L2 projection (CIP case). In fact ⇡
h

can be chosen as any operator that satisfies Assumption

(2.25) for linear elements or Assumption (2.26) for higher order elements. The extra terms from the

Nitsche form are as follows

hr⌘ · n, ⌘0i0,@⌦D
| {z }

(A)

+ h⌘,r⌘0 · ni0,@⌦D
| {z }

(B)

+ |�
D

|h�1 h⌘, ⌘0i0,@⌦D
| {z }

(C)

+ |�
N

|h hr⌘ · n,r⌘0 · ni0,@⌦N
| {z }

(D)

.

The first term (A) can be shown to satisfy (2.28) after applying the Cauchy-Schwarz inequality followed

by the trace inequality (A:4).

(A) 6 kr⌘ · nk0,@⌦Dk⌘0k0,@⌦D

6
X

⌧2Th\@⌦D

C
T

�

h�1
⌧

kr⌘k20,⌧ + h
⌧

|r⌘|21,⌧
�1/2 X

⌧2Th\@⌦D

C
T

�

h�1
⌧

k⌘0k20,⌧ + h
⌧

|⌘0|21,⌧
�1/2

6 Chp�1/2|u|
p+1,⌦h

3/2|z|2,⌦

6 C(hk)hp|u|
p+1,⌦k k0,⌦.
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The last two lines come from the interpolation result (2.25) for linear elements or Assumption (2.26) for

higher order elements. In the case of piecewise linear elements it holds that

|r⌘|1,⌧ 6 |u|2,⌧ ,

since D2⇡
h

u|
⌧

= 0.

Similarly, the second term (B) can be shown to satisfy (2.28) after applying the Cauchy-Schwarz in-

equality followed by the trace inequality (A:4).

(B) 6 k⌘k0,@⌦Dkr⌘0 · nk0,@⌦D

6
X

⌧2Th\@⌦D

C
T

�

h�1
⌧

k⌘k20,⌧ + h
⌧

|⌘|21,⌧
�1/2 X

⌧2Th\@⌦D

C
T

�

h�1
⌧

kr⌘0k20,⌧ + h
⌧

|r⌘0|21,⌧
�1/2

6 Ch1/2|z|2,⌦hp+1/2|u|
p+1,⌦

6 C(hk)hp|u|
p+1,⌦k k0,⌦.

Once again the last two lines come from the interpolation results (2.25) for linear elements or Assumption

(2.26) for higher order elements. In this case for piecewise linear elements use is made of the fact that

D2⇡
h

z|
⌧

= 0.

The third term (C) is upper bounded using the Cauchy-Schwarz and trace inequalities followed by the

interpolation results given in (2.25) or (2.26). Since there are no second order derivatives required in this

estimate, the trick used in the previous two cases is not necessary.
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D
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C
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�

h�1
⌧
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|⌘0|21,⌧
�1/2
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D

|h�1Chp+1/2|u|
p+1,⌦h

3/2|z|2⌦

6 C(hk)hp|u|
p+1,⌦k k0,⌦.

Finally, the last term can be bounded in the same way. Making use of the fact that D2⇡
h

u|
⌧

= 0 and

D2⇡
h

z|
⌧

= 0 for piecewise linear elements
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(D) 6 |�
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Rounding up all of the results concludes the proof.

It has been shown that the stabilized methods can now handle general boundary conditions without

leaving the framework of Theorem 2. This flexibility is important when considering problems of practical

importance as the boundary conditions contain information about the physical properties of the scatterer

which I mentioned earlier. In conclusion, the stabilized methods I have introduced have been shown to be

stable for general boundary conditions provided the stabilization parameters are chosen appropriately.

The analysis also shows the method to have quasi-optimal a priori error estimates in the asymptotic

regime ie for k2h < C.

3.2.1 Numerical Results

The numerical results presented in this section have been performed using the Bessel solution intro-

duced in (2.116). All computations in this section where performed using the UMFPACK solver in the

FreeFEM++ package which is available from http://www.freefem.org/.

I pose the following problem on the unit square ⌦ = [0, 1]⇥ [0, 1]

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

��u� k2u = f in ⌦

u = g
D

for x = 0, y 2 [0, 1]

u = g
D

for x 2 [0, 1], y = 0

ru · n = g
N

forx = 1, y 2 [0, 1]

ru · n+ iku = g
R

for x 2 [0, 1], y = 1

For our ansatz to be the solution let

f =

sin(k
p

x2
+ y2)

p

x2
+ y2

.

The plots are designed to compare the convergence rates for three numerical methods. The first method

is the standard Galerkin method. This method can be obtained from either of the stabilized methods

presented earlier by setting the stabilization parameters to 0. The other two methods analysed here are

the CIP and GLS/CIP methods, using the stabilization parameters obtained in chapter 2, as presented

with general boundary conditions. The additional Nitsche penalty parameters are taken to be 10.
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Figure 3.1 compares the convergence rates of the different methods for piecewise linear elements on a

structured mesh. The plot shows that the stabilized methods are more accurate than the standard Galerkin

method for this particular problem and obtain optimal convergence for a coarser mesh.

Figure 3.1: Convergence plot for generalized boundary conditions using piecewise linear elements on a
structured mesh

Figure 3.2 compares the convergence of the three numerical methods using piecewise linear elements on

an unstructured mesh. The plot, as expected, is fairly similar to the structured mesh case. The stabilized

methods reach optimal convergence for a coarser mesh size than the standard Galerkin method and

are also more accurate. Figures 3.1 and 3.2 seem to demonstrate the potential of the proposed stabilized

method to reduce the pollution effect, even with weakly imposed boundary conditions, if the stabilization

parameters are chosen optimally.

Figures 3.3 and 3.4 compare the convergence of the three numerical methods for piecewise quadratic

elements on a structured and unstructured mesh respectively. The standard Galerkin method performs

better (as expected) in these plots. The GLS method is the most accurate in the under resolved regime

for k = 100, 200 but does not reach optimal convergence as quickly as the CIP method. For k = 400

the CIP method begins converging first and provides a more reliable solution than both other methods.

It should be noted that although the stabilized methods appear to yield better results than the standard

Galerkin method they are also more expensive to compute making the comparison difficult to quantify.

3.2.2 Plane wave solution

The following problem has been designed to demonstrate qualitatively the ability of the Nitsche’s method

to reduce pollution when solving Helmholtz equation.
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Figure 3.2: Convergence plot for generalized boundary conditions using piecewise linear elements on an
unstructured mesh

Figure 3.3: Convergence plot for generalized boundary conditions using piecewise quadratic elements
on a structured mesh
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:

��u(x, y)� k2u(x, y) = 0 (x, y) 2 [0, 1]⇥ [0, 1]

u(x, 0) = eik1x

u(0, y) = eik2y

@u(x,y)
@y

= ik2u(x, y) for y = 1

@u(x,y)
@x

= ik1u(x, y) for x = 1
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Figure 3.4: Convergence plot for generalized boundary conditions using piecewise quadratic elements
on an unstructured mesh

Figure 3.5 shows the real part of the numerical solution of the plane wave problem given by the standard

Galerkin method and the two stabilized methods introduced previously. The problem is solved using

a structured mesh of the same form as shown, where N characterises the number of elements used to

discretize the boundary, for example a 50 ⇥ 50 mesh describes a mesh on a rectangular domain having

exactly 50 elements that share an edge/face with each side of the domain. The standard Galerkin method

introduces spurious oscillations generated by a loss of stability which are not present in the exact solution.

These oscillations do not appear in the stabilized methods presented.

Figure 3.6 aims to replicate similar results using an unstructured mesh. The structure of the mesh plays

an important role in the calculation of numerical solutions to the plane wave problem. For this particular

example the numerical solution is less accurate on the structured mesh which is why I have chosen to

present a solution with larger wave number in the unstructured case. The standard Galerkin method can

again be seen to lose stability causing it to differ from the exact solution. The stabilized methods seem

to limit the introduction of unwanted oscillations and appear to provide a solution similar to the exact

solution.
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(a) Standard Galerkin solution (b) GLS/CIP solution (c) CIP solution

(d) Sample Mesh N ⇥N , N = 50 (e) Exact solution

Figure 3.5: Solution plots for k ⇡ 70, N = 200, ✓ = ⇡

5

(a) Standard Galerkin solution (b) GLS/CIP solution (c) CIP solution

(d) Sample Mesh N ⇥N , N = 50 (e) Exact solution

Figure 3.6: Solution plots for k ⇡ 173, N = 400, ✓ = ⇡

5

3.3 Fictitious domain method
In this section I introduce a fictitious domain method for the solution of Helmholtz equation using cut

elements. In practice when solving PDEs, such as Helmholtz equation, engineers must often consider
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problems on complex domains. The meshing of these complicated geometries can become computa-

tionally expensive especially when considering evolving domains in which the mesh must be updated

at every time step. The fictitious domain method is used to embed the complex domain into a simpler

one and, by using a fixed background mesh, can avoid these issues. These advantages are beyond the

scope of this work but are used as additional motivations to the use of fictitious domain methods for the

solution of Helmholtz equation. The main motivation in this instance is the application to multi-domain

coupling and extension to include an unfitted interface.

⌦⌦

@⌦
⌦

⇤

T
h

Figure 3.7: Physical and computational domain

Figure 3.5 shows an example of a cut mesh that I will be considering in this section. The physical domain

⌦ is embedded in the background mesh T
h

. Unlike conventional methods, the fictitious domain method

that I consider does not fully discretize the domain ⌦. The boundary @⌦ of the physical domain is not

discretized since the CutFEM method assumes that the cut elements can be integrated over exactly, this

can be thought of as a semi-discretization. ⌦

⇤ is referred to as the extended domain. Its purpose will

become evident during the analysis.

In [21] a stabilized Nitsche method was proposed by Burman and Hansbo to implement a fictitious do-

main method using cut elements for the solution of the Poisson equation. It was noted by the authors that

in order to ensure that the method was robust a stabilization term known as the ghost penalty, introduced

by Burman in [12], must be added to ensure that the method is coercive on the entire computational

domain. The method introduced in this section will use the ideas from [21] to develop a fictitious do-

main method for the solution of Helmholtz equation. It is interesting to note that the new method does

not require the addition of the ghost penalty for accuracy since I choose to take the stability parameters

defined in Nitsche’s method to be purely imaginary. If I had chosen to take these parameters to be real

I would need to introduce the ghost penalty term. Another motivation for introducing the ghost penalty

to this method would be that it can be used to improve the stability of iterative solvers. The new method

will be shown to fit into the framework of Theorem 2 and numerical evidence will be presented to back

up the claims of optimal convergence.
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Considering the complex Helmholtz equation in ⌦ ⇢ Rd, where ⌦ is a smooth convex domain such that

integrals over cut elements can be evaluated exactly, the Helmholtz equation is given as

��u� k2u = f in ⌦

ru · n+ iku = g
R

on @⌦

)

. (3.29)

with the associated adjoint problem

��z � k2z = f in ⌦

rz · n� ikz = 0 on @⌦

)

. (3.30)

The stabilized finite element method in this case can be written:

A
h

(u
h

, v
h

) = A(u
h

, v
h

) + s(u
h

, v
h

), (3.31)

where
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and
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⌧2Th
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h

),L(v
h

))0,⌧\⌦ +
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F2Fi
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⌧
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hJru
h

K, Jrv
h

Ki0,F\⌦

+h� hR(u
h

),R⇤
(v

h

)i0,@⌦ , (3.33)

where L(.) def
= ��(.) � k2(.), R(.)

def
= r(.) · n + ik(.) and R⇤

(.)
def
= r(.) · n � ik(.). Let T

h

⇢ R2

denote a computational mesh consisting of quasi-uniform, shape regular triangles ⌧ , as defined in (A.4)

and (A.3), such that ⌦ ⇢ T
h

. The finite element space in this case is defined as

V
h

def
= {v

h

2 C0
(⌦) : v

h

|
⌧

2 Pp

(⌧)8 ⌧ 2 T
h

}. (3.34)

It is also useful to define the set of all interior faces as

F
i

def
= {F 2 T

h

: F \ ⌦ 6= ;}, (3.35)

where F denotes an element face. Finally, I introduce the set of elements cut by the interface as

G
h

def
= {⌧ 2 T

h

: ⌧̄ \ � 6= ;}, (3.36)

For the following analysis to hold it is important that the boundary of the domain ⌦ is resolved to
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a reasonable degree of accuracy. To ensure this is the case it is important to specify the necessary

assumptions as presented in [14].

FD1: The intersection between @⌦ and a face F 2 F
i

is connected. That is, the boundary does not

intersect an interior face more than once.

FD2: For each element ⌧ intersected by @⌦ there exists a line (plane for d = 3) S
⌧

and a piecewise

smooth parametrization � : S
⌧

\ ⌧ 7! @⌦ \ ⌧ .

FD3: Assume that there is an integer N > 0 such that element ⌧ 2 G
h

there exists an element ⌧ 0 2 T
h

\

G
h

and at most N elements {⌧}N
i=1 such that ⌧1 = ⌧, ⌧

N

= ⌧ 0 and ⌧
i

\⌧
i+1 2 F

i

, i = 1, . . . , N�1

i.e. the amount of faces crossed in order to go from a cut element to an element completely inside

the domain is uniformly bounded.

The following analysis relies on an important observation by Stein [51] which asserts the existence of a

so called extension operator:

Definition 3.3.1 (Extension Operator). Let u 2 Hp

(⌦), where ⌦ ⇢ Rd with Lipschitz boundary. Then

for ⌦ ⇢ ⌦

⇤ ⇢ Rd there exists an operator E
p

: Hp

(⌦) 7! Hp

(⌦

⇤
) such that

Eu|⌦ = u,

and

kE
p

uk
p,⌦⇤ 6 Ckuk

p,⌦.

Definition 3.3.1 allows me to analyse the CutFEM fictitious domain method on an extended domain. It

is therefore beneficial to introduce ⌦

⇤ as the extended domain such that:

⌦

⇤ def
= {⌧ 2 T

h

: ⌧ \ ⌦ 6= ;}.

The extension property also allows me to introduce notation to denote an extended interpolation operator.

Let I
h

: Hp

(⌦

⇤
) 7! V

h

be any interpolation operator. Then I define its associated extended operator

I⇤
h

: Hp

(⌦) 7! V
h

where

I⇤
h

v
def
= I

h

E
p

v,

for any v 2 Hp

(⌦).

It is useful to note that a variant of the standard interpolation estimates hold for this operator.

Lemma 3.4 (Interpolation Estimates). Let u 2 Hp+1
(⌦) and I

h

: C0
(⌧̄) 7! V (⌧) be the standard
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Lagrange interpolant. It holds that for 0 6 s 6 p

|u� I
h

u|
s,⌧

6 Chp�s+1|u|
p+1,⌧ . (3.37)

Given that T
h

is shape regular it also holds that for Hp+1
(⌦

⇤
) 3 u⇤ def

= E
p+1u

ku⇤ � I⇤
h

uk
s,⌦⇤ 6 Chp�s+1kuk

p+1,⌦. (3.38)

Also under the same assumptions

ku� I⇤
h

uk
s,⌦ 6 hp�s+1kuk

p+1,⌦. (3.39)

Proof. A proof for (3.37) can be found in numerous Finite Element textbooks for example [30]. The

proof of (3.38) follows from (3.37) since u⇤ 2 Hp+1
(⌦

⇤
) implies

ku⇤ � I⇤
h

uk
s,⌦⇤ 6 Chp�s+1|u⇤|

p+1,⌦⇤ . (3.40)

(3.38) then follows directly from the definition of the extension operator, see Definition 3.3.1. The final

result is obtained from using the fact that

Eu|⌦ = u,

which implies that

ku� I⇤
h

uk
s,⌦ 6 ku⇤ � I⇤

h

uk
s,⌦⇤ (3.41)

6 Chp�s+1kuk
p+1,⌦. (3.42)

The last step is a result of the stability of the extension.

Since the fictitious domain method does not require the mesh to fit the boundary, it is necessary to

introduce an additional trace inequality that handles the case where the intersection @⌦ \ ⌧ 6= @⌧ .

Lemma 3.5 (Trace Inequality). Under the conditions given in FD1�FD3 the following trace inequality

kvk0,⌧\@⌦ 6 C
T

⇣

h�1/2
⌧

kvk0,⌧ + h1/2
⌧

krvk0,⌧
⌘

, (3.43)

holds for all v 2 H1
(⌦

⇤
) .

Proof. A proof can be found in [33]

With the preceding lemmas in place it is now possible to show that the new formulation fits into the
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framework of Theorem 2. The following definitions are introduced to help simplify the subsequent

analysis. Let |u
h

|I be defined as

|u
h

|2I
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= k(1� Im [�] kh)ku
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Lemma 3.6. For 0 < Im [�] kh < 1 and max

⌧2Th{Im [�
⌧

]},max

⌧2Th{Im [�
⌧

]}, Im [�] > 0 it

follows that |u
h

|2I,G, as defined in (3.44), is a norm on V
h

.

Proof. The proof follows directly from the definition.

The following norm is also useful in the subsequent analysis |.|
s
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7! R.
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and finally k.k⇤ : V 7! R
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Lemma 3.7. Let u 2 Hp+1
(⌦) and z 2 H2

(⌦) be the solution of the primal and adjoint Helmholtz

problems given in (3.29) and (3.30) respectively. Then it follows that for Im [�]�1 > hk the fictitious

domain formulation given in (3.31) with stabilization given by (3.33) satisfies assumptions (2.23), (2.24),

(2.29), (2.30) and (2.31) for the associated norms given by (3.44) - (3.46) and interpolant

⇡
h

def
= I⇤
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: C0
(⌦) 7! V

h

. (3.47)

Proof. The proof of the first two assumptions follows in a similar manner as shown previously so to avoid

repetition I will exclude the justification here. The proof of (2.30) follows using a similar methodology

to that presented previously
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Using the fact that z is the exact solution of the dual problem gives
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Applying the triangle inequality to the first term gives
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All that is then left to show for the first term is
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The result follows from using the interpolation estimates given by (3.39) for elements of order p > 1

and for the piecewise linear case the result follows from noticing

�I⇤
h

z = 0,

on each element, reducing the first term to

X

⌧2Th

h2
⌧

�
⌧

k�zk20,⌧\⌦ 6 Ch2kzk22,⌦.

The second term, after an application of the trace inequality given by (A:4), simplifies to

X

F2Fi

h
⌧

�
⌧

kJr(z � I⇤
h

z)Kk20,F\⌦ 6 C2
T

X

⌧2Th

h
⌧

�
⌧

�

h�1
⌧

kz � I⇤
h

zk20,⌧ + h
⌧

kr(z � I⇤
h

z)k20,⌧
�1/2

6 C(hk)2k k20,⌦.

Finally, the last term is bounded by using the triangle inequality

h�kR⇤
(z � I⇤

h

z)k20,@⌦ = h�
X

⌧2Th

kR⇤
(z � I⇤

h

z)k20,@⌦\⌧

(3.50)

6 h�
X

⌧2Th

kr(z � I⇤
h

z) · nk20,@⌦\⌧

+ kik(z � I⇤
h

z)k20,@⌦\⌧

, (3.51)
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followed by an application of the trace inequality, given in (3.43), on the resulting terms giving

h�
X

⌧2Th

�

kr(z � I⇤
h

z) · nk20,@⌦\⌧

�

6 h�
X

⌧2Th
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⌧

kr(z⇤ � I⇤
h

z)k20,⌧+ (3.52)

h
⌧

|r(z⇤ � I⇤
h

z)|21,⌧
�1/2

6 Ch2kzk22,⌦, (3.53)

and

h�
X

⌧2Th
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h
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6 h�
X

⌧2Th

C2
T

k2
⇣

h�1
⌧

kz⇤ � I⇤
h

zk20,⌧ + h1/2
⌧

kr(z⇤ � I⇤
h

z)k20,⌧
⌘1/2

6 C(kh)2h2kzk22,⌦.

The proof is then concluded by using the regularity estimates for the dual problem. Next, the proof of

Assumption (2.30). Let ⌘ = u� I⇤
h

u

|⌘|2I = k(1� hk�)k⌘k20,@⌦ +

X

⌧2Th

h2
⌧

�
⌧

kL(⌘)k20,⌧\⌦ +

X

F2Fi

h
⌧

�
⌧

kJr(⌘)Kk20,F\⌦ + h�kr⌘ · nk20,@⌦.

It is clear that each term can be shown to be bounded, as required, using similar techniques to the proof

of (2.29). The final assumption is to show (2.31)

k⌘k2⇤ =

X

⌧2Th

kh�1
⌧

��1/2
⌧

⌘k20,⌧\⌦ +

X

F2Fi

k(h
⌧

�
⌧

)

�1/2⌘k20,F\⌦

+k(h�)�1/2⌘k20,@⌦.

The first term can be easily bounded using the interpolation estimate given in (3.39) whilst the second

and third terms follow from an application of the trace inequalities given in (A:4) and (3.43) respectively.

Then an application of the interpolation estimate given in (3.39) can be applied to give the required

result.

Proposition 5 (Continuity). Let u 2 Hp+1
(⌦), for p > 1 and I⇤

h

: C0
(⌦) 7! V

h

be the extended La-

grange Interpolant. It follows that the discrete sesquilinear form A
h

(., .) given by (3.31) with GLS/CIP

stabilization satisfies assumptions (2.27) and (2.28) for the *-norm given by (3.46).

Proof. The proof of assumption (2.27) follows by an integration by parts over the physical domain ⌦.
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Once again this operation must be performed element by element.

|A(u� ⇡⇤
h

u, v
h

)| = |(r(u� ⇡⇤
h

u),rv
h
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u, ikv
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This simplifies to
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+

X
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u, Jrv
h
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An application of the Cauchy-Schwarz inequality reveals

|A(u� ⇡⇤
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Finally, the proof is complete by applying the triangle inequality to the adjoint Robin condition
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6 ku� ⇡⇤
h

uk⇤|vh|I.

The proof of (2.28) follows from an application of the triangle and Cauchy-Schwarz inequalities such

that

|A(u� I⇤
h

u, z � I⇤
h

z)| 6 kr(u� I⇤
h

u)k0,⌦kr(z � I⇤
h

z)k0,⌦ + k2ku� I⇤
h

uk0,⌦kz � I⇤
h

zk0,⌦

+kku� I⇤
h

uk0,@⌦kz � I⇤
h

zk0,@⌦.

The result then follows directly from our interpolation estimates.

The lemma and proposition assert that the method enters the framework of Theorem 2 without the need
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of additional stabilization. The method is therefore stable for appropriate choices of stabilization pa-

rameters and will observe quasi-optimal convergence rates. It is worth noting that this theory can be

extended to include the generalized boundary conditions discussed in the previous section.

3.3.1 Numerical Results

In the following section I introduce 3 fictitious domain methods for comparison. The analysis of the

fictitious domain method presented in the previous section can be extended to consider the Dirichlet and

Neumann using the techniques introduced in the first half of the chapter. The first method introduced

below, (3.56), was analysed by Zou, Aquino and Harari in [58] and was shown to respect the same con-

vergence estimates as the stabilized methods presented in this chapter. Unlike the stabilized methods that

I have presented the results only appear to hold under the condition k2h < C. The second method intro-

duced below, (3.57), has not been analysed but can be thought of as a blend between the real Nitsche’s

method analysed by Zou et al and the Nitsche’s method analysed earlier in this chapter. Finally, the last

method (3.58) is the stabilized method that I introduced earlier.

A(u
h

, v
h

)

def
= (ru

h

,rv
h

)0,⌦ � k2(u
h

, v
h

)0,⌦ � hru
h

· n, v
h

i0,@⌦D
+ ik hu

h

, v
h

i0,@⌦R
. (3.54)

Definition 3.3.2 (Real Nitsche Method). Let u be the exact solution of the Helmholtz problem defined

in �
R

, ˆ�
R

2 R+ and A(u
h

, v
h

) be as defined in (3.54). Then the Real Nitsche method is defined as

A
h

(u
h

, v
h

) = L(u
h

) + S
R

(u, v
h

). (3.55)
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. (3.56)

Definition 3.3.3 (Imaginary Nitsche Method).

S
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h hru
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. (3.57)
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Definition 3.3.4 (Fully Stabilized Method). Let �
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, ˆ�
I

2 R+
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. (3.58)

The numerical results presented in this section have been performed using the Bessel solution introduced

in (2.116). All computations in this section where performed using the CutFEM library in the FEniCs

software package which is available from https://fenicsproject.org/.

Let ⌦ ⇢ R2 be a ball with radius 0.5 centred at (0, 0)

8

>

>

>

>

<

>

>

>

>

:

��u� k2u = f in ⌦

u = g
D

on @⌦
D

ru · n+ iku = g
R

on @⌦
R

where @⌦
D

def
= @⌦ \ [0,�0.5]⇥ [�0.5, 0.5] and @⌦

R

def
= @⌦ \ @⌦

D

. For our ansatz to be the solution

let

f =

sin(k
p

x2
+ y2)

p

x2
+ y2

.

The domain ⌦ and background mesh are as presented in Figure 3.5. The stabilization parameters are

choosen as the optimal parameters studied in the previous chapter. The newly introduced Nitsche

paramters are both taken to be 1.0

Figure 3.8 shows a convergence study of three methods. The first method denoted “ImagNitsche” en-

forces Dirichlet boundary conditions on part of the boundary using Nitsche’s method. The penalty

parameter introduced by Nitsche’s method is purely imaginary in this case. No additional stabilization

is included in this method. The second method denoted “RealNitsche” also enforces Dirichlet boundary

conditions on part of the boundary using Nitsche’s method although in this case the penalty parameter

is taken as real. The final method presented, denoted “FullStab”, is the fully stabilized fictitious domain

method given by (3.31).

The plot shows that the stabilized method behaves as the theory would suggest, reaching optimal conver-

gence when the mesh becomes sufficiently fine. “ImagNitsche” behaves well and converges optimally

for low wave number but does not converge optimally for the case k = 50. Finally, the “RealNitsche”

method behaves strangely even at low wavenumber which could perhaps be expected considering this

case is the furthest from the framework of Theorem 2.

The second figure in this section is a pollution study that fixes kh = C. The mesh is then refined
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Figure 3.8: Convergence study for fictitious domain method using piecewise linear elements

(subsequently increasing k) and the relative L2 error is plotted against the wavenumber. In the previous

cases it was possible to tune the stabilization parameters to reduce the effect of numerical pollution

for a given test case. Unfortunately, after trying a number of different combinations of stabilization

parameters I was unable to replicate this result for the fictitious domain case. Figure 3.9 shows that the

fully stabilized fictitious domain method is slightly more accurate but does little to reduce the pollution

effect. All methods can be seen to be affected by numerical pollution. An interesting observation is

that the “RealNitsche” method has an unexplained peak for the same mesh refinement as it did in the

previous plot. This is most likely the result of an unfavourable cut.
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Figure 3.9: Pollution study for fictitious domain method using piecewise linear elements



Chapter 4

Multi-domain coupling for Helmholtz

equations

4.1 Introduction

Multi-domain coupling is an area of practical importance in numerous fields of physics and engineering.

Partial Differential Equations used to model physical phenomena often rely on various parameters which

depend on the material properties of the underlying domain. For instance, the wave number in the

Helmholtz equation is inversely proportional to the square root of the density of the medium in which

it is being modelled. In areas such as Seismology it is necessary to model huge domains with varying

underlying properties. This type of problem leads to a coupling of multiple Helmholtz type equations

with different wave numbers. A natural way to model this type of problem mathematically is to use

some type of domain decomposition method. Domain decomposition methods have numerous uses in

the numerical solution of PDEs since they are highly adaptable and perfect candidates to extort the power

of parallel computing. The goal of this work is to develop a robust domain decomposition method to

study the coupling of multiple Helmholtz systems.

One of the most important factors to consider when designing a domain decomposition method is how to

enforce continuity across the interfaces between sub-domains. The options fall into two main categories

• Iterative procedures

• Direct procedures

Iterative procedures, like the alternating Schwarz method presented by Lions in [41], enforce continuity

across the interface by passing information from one sub-domain to the next iteratively. This process

can be computationally expensive and when considering a problem, like Helmholtz equation with highly

contrasting wave numbers, these computational costs can be either computationally prohibitive or lead

to slow methods that take a long time to converge. On the other hand, direct methods using Lagrange
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multiplier techniques lead to a solvable global system directly but also introduce additional unknowns

that must be solved for. An alternative approach, which has become increasingly popular, is to enforce

continuity across the interface using Nitsche’s method. Nitsche’s method has the advantage of being

a direct method that does not introduce any additional unknowns and is consistent with the underlying

PDE.

Nitsche’s method was introduced in the context of multi-domain coupling in a paper by Hansbo and

Hansbo [33] and has also been shown have a host of different applications including:

• Enforcing inter-element continuity in various DG methods [2].

• Fitted domain decomposition methods with matching and non-matching meshes [8],[52].

• Fictitious domain methods [20].

• Unfitted domain decomposition methods using cut elements [33],[58], [55],[13].

In this section I will introduce and analyse new domain decomposition methods capable of coupling

multiple Helmholtz type equations with varying wave numbers. A variant of Nitsche’s method is used

to enforce the transmission conditions across the boundary. The method can be seen to fit into a sim-

ilar mathematical framework as I proposed in Theorem 3 which I will present in this chapter. I will

demonstrate the robustness of the method by applying it to both matching and non-matching grids in the

fitted case and later extend the method to consider the case of an embedded interface that does not fit the

computational mesh. Optimal convergence follows from the satisfaction of the assumption of Theorem

3 that I will verify below. The theoretical results are then verified numerically.

4.2 The coupled problem

Let ⌦ be a star-shaped bounded domain in Rd with boundary @⌦. Now let ⌦ be divided into two non-

overlapping, polygonal sub-domains ⌦1 and ⌦2 with interface � such that

� =

¯

⌦1 \ ¯

⌦2.

Int

0

@

[

j

⌦

j

[ �

1

A

= ⌦ where j 2 {1, 2}. (4.1)

It is also useful to introduce the following notation

@⌦
j

= @⌦ \ ¯

⌦

j

.

to define the intersection between the boundary of our domain and the boundary of our sub-domains.
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Denote the space of square integrable functions on ⌦1[⌦2 by L2
(⌦1[⌦2). Let ↵ = (↵1, ...,↵n

) 2 Nn

be a multi-index with |↵| =
P

n

i=1 ↵i

. For m 2 N0, Hm

(⌦1 [ ⌦2) denotes the set of functions u 2

L2
(⌦1 [ ⌦2) such that all weak partial derivatives @↵u with |↵| 6 m are also in L2

(⌦1 [ ⌦2). Spaces

L2
(⌦1 [ ⌦2) and Hm

(⌦1 [ ⌦2) are equipped with norms:

kuk20,⌦1[⌦2

def
=

Z

⌦1[⌦2

|u|2. (4.2)

kuk2
m,⌦1[⌦2
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=

X

|↵|6m

✓

Z

⌦1

|@↵u|2 +
Z

⌦2

|@↵u|2
◆

. (4.3)

In this setting it is now possible to define the coupled problem as defined in [9]. Consider two complex

Helmholtz equations coupled in ⌦. The problem then becomes: find u = (u1, u2) 2 Hp

(⌦1[⌦2), such

that
�r · (µ

j

ru)� !2⇢
j

u = f in ⌦

j

ru · n+ i!
q

⇢j

µj
u = g on @⌦

j

u|1 = u|2 on �

µ1ru|1 · n� = µ2ru|2 · n� on �,

9

>

>

>

>

=

>

>

>

>

;

(4.4)

where j 2 {1, 2}, n� is the outward facing normal with respect to ⌦1, ! is the frequency of the harmonic

oscillations and the coefficients µ
j

and ⇢
j

are strictly positive and bounded functions which represent

characteristics of the non-dispersive medium. I shall assume that

max

j

{µ
j

}
min

j

{µ
j

} < C and
max

j

{⇢
j

}
min

j

{⇢
j

} < C.

The values of these coefficients depend on the physics of the problem being solved. The additional

boundary conditions imposed on the interfaces between sub-domains are introduced to enforce continuity

over the global domain and are known as the transmission conditions. Transmission conditions of this

type are popular in modern Discontinuous Galerkin methods where each element can be considered an

individual sub-domain. It is useful in my analysis to note that the primal problem stated in (4.4) has a

uniquely defined associated adjoint problem which is defined as

�r · (µ
j

rz)� !2⇢
j

z =  in ⌦

j

rz · n� i!
q

⇢j

µj
z = 0 on @⌦

j,R

z|1 = z|2 on �

µ1rz|1 · n� = µ2rz|2 · n� on �,

9

>

>

>

>

=

>

>

>

>

;

(4.5)

where j 2 {1, 2} and n� is the outward facing normal with respect to ⌦1. Notice that since µ
j

is

allowed to vary between sub-domains the Neumann transmission condition must be adjusted to include

this variation. The adjoint Problem comes from
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Since JuK = 0 on � this simplifies to
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This implies that the boundary condition for the adjoint problem should be

R⇤,j
(v) = rv · n� ikv = 0,

and the jump over the interface should be

JvK = 0.

Therefore the adjoint problem is

L⇤
(z) = �r · (µ

j

rz)� !2⇢
j

z =  in ⌦

j

(4.7)

R⇤
(z) = rz · n� i
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⇢
j

µ
j

z = 0 on @⌦
j

(4.8)

JzK = 0 on � (4.9)

In the case that ⇢
j

= µ
j

= 1 the standard domain dependent regularity results hold via the methods

found in either [42] or [25]. For ⌦ a bounded convex domain it holds that

!kuk0,⌦ + kuk1,⌦ . C
f,g

, kuk2,⌦1[⌦2 . !C
f,g

, (4.10)
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where C
f,g

= kfk0,⌦+kg
R,j

k0,@⌦j +
1
!

kg
R,j

k1/2,@⌦j
. Under the same assumptions the adjoint problem

satisfies similar bounds

!kzk0,⌦ + kzk1,⌦ . k k0,⌦, kzk2,⌦ . !k k0,⌦. (4.11)

A regularity estimate for the case ⇢
j

discontinuous can be found in [37] where the authors use the ideas

in [25] to derive a regularity result, which is of the same order as the classical results providing ⇢
j

has

certain nice properties. The regularity for the high-contrast Laplacian was studied in [23]. More recently

the regularity of the acoustic transmission problem has been studied by Moiola and Spence in [44]. The

authors derive estimates for the case where ⌦1 is star shaped and ⌦2 = Rn \ ¯

⌦1. The result relies on

the source term having compact support and sufficient regularity. The authors remark that it is possible

to extend the results of the paper to the truncated case where ⌦2 is a star shaped domain containing ⌦1

and the radiation condition is replaced by the impedance boundary condition.

Therefore, taking ⌦1, ⌦2 star shaped with ⌦1 ⇢ ⌦2 and

⇢1
⇢2

6 1 6 µ1

µ2

I assume that the transmission problem as posed in (4.4), for ! >> 0, satisfies the following regularity

estimate
X

j

µ
j

kruk20,⌦j
+ !2⇢

j

kuk20,⌦j
6
X

j

✓

C(⌦

j

)

µ
j

+

C 0
(⌦

j

)

2

⇢
j

◆

C0
f,g

, (4.12)

where C0
f,g

= kf
j

k20,⌦j
+ kg

R,2k20,@⌦2
+

1
!

2 kgR,2k21/2,@⌦2

Assuming sufficient regularity on u it is possible to derive the following estimates

X

j

kuk22,⌦j
6 Cmax

j

⇢

!2⇢
j

µ
j

�

C
f,g

, (4.13)

and
X

j

kzk22,⌦j
6 Cmax

j

⇢

!2⇢
j

µ
j

�

k k20,⌦. (4.14)

4.3 The fitted domain decomposition method

As I have already mentioned domain decomposition methods exist in many forms. In this section I shall

pose a new fitted domain decomposition method for the coupling of multiple Helmholtz systems. A

fitted domain decomposition method refers to a method where the mesh is designed such that it fits the

interface exactly. To experience the full benefits of this method the interface should be simple enough to

be modelled accurately by the mesh and remain fixed to avoid re-meshing. One drawback of the method

is that it requires the user to know the exact position of the interface in order to construct an appropriate
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mesh.

When considering fitted domain decomposition methods it is possible to imagine two cases. The first is

where the meshes on either side of the interface share the same common nodes. I will refer to this as

a fitted domain decomposition method with matching mesh. The second case is where the meshes on

either side of the interface do not share all of the same common nodes. I will refer to this as a fitted

domain decomposition method with non-matching mesh. In this section I shall consider both matching

and non-matching meshes and present numerical results for both cases. In [8] the authors showed the

versatility of Nitsche’s method for handling both matching and non-matching mesh cases for Poisson’s

equation. In this section I explore the capabilities of a similar Nitsche style coupling for applications

involving Helmholtz equation.

4.3.1 Preliminaries

Before introducing the formulation it is useful to introduce the following notation. Let {T j

h

}
h

denote a

family of quasi-uniform and shape regular triangulations fitted to sub-domain ⌦

j

where shape regularity

and quasi uniformity are defined as in (A.3) and (A.4) respectively.

These triangulations introduce a ‘trace’ mesh on the interface which is defined as

Gj

h

def
= {E : E = ⌧ \ �, ⌧ 2 T j

h

}. (4.15)

It is also useful to define the set of elements that have an edge in the trace mesh

T� = {⌧ 2 T1,h [ T2,h : @⌧� = ⌧̄ \ � 6= ;}. (4.16)

In order to derive optimal a priori error estimates it is necessary to define

h
def
= max{h

⌧

, h
E

: ⌧ 2 T j

h

, E 2 Gj

h

, j 2 {1, 2}}, (4.17)

where h
⌧

and h
E

denote the diameter of an element ⌧ 2 T j

h

and E 2 Gj

h

. The analysis requires that the

meshes on both domains are of comparable size.

Assumption 1. There exist positive constants C1, C2, C 0
1 and C 0

2 such that

C1hE1 6 h
E2 6 C2hE1 and C 0

1h⌧1 6 h
⌧2 6 C 0

2h⌧1 , (4.18)

holds for all pairs (E1, E2) 2 T 1
h

⇥ T 2
h

, with E1 \ E2 6= ; and (⌧1, ⌧2) 2 T 1
h

⇥ T 2
h

.
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Finally, I introduce the space

Fj

int

def
= {F : F = ⌧1 \ ⌧2 8 ⌧1, ⌧2 2 T j

h

}, (4.19)

to denote the space of all internal faces in a triangulation T j

h

.

On the interface I shall use the notation:

JvK def
= v1 � v2, (4.20)

to define the jump of v over �.

{v} def
=

v1 + v2
2

, (4.21)

to define the average of v over �.

Remark 1. It is useful to note that if I choose to fix n�
def
= n1 on the interface it is also true that

n�
def
= �n2 which implies that on the interface the jump average becomes

{rv · n�}
def
=

rv1 · n1 �rv2 · n2

2

. (4.22)

4.3.2 The formulation

The following analysis is restricted to the case of 2 sub-domains. The extension to a larger number of

sub-domains is a fairly straightforward exercise. The following analysis only considers matching meshes

but it is not too difficult to extend this to the non-matching case. Introducing the continuous space,

V j

def
= {v

j

2 H1
(⌦

j

) : rv
j

· n 2 L2
(�), v

j

|
@⌦\@⌦j = 0}, for j 2 {1, 2}, (4.23)

I define my finite element space as V
h

def
= V 1

h

⇥ V 2
h

V j

h

def
= {v

j

2 V j

: v
j

|
⌧

2 Pp

(⌧) 8 ⌧ 2 T j

h

: p 2 N}, (4.24)

where Pp denotes a polynomial of degree p. It is useful in the subsequent analysis to pose the numerical

method using the following abstract formulation. The problem becomes find u
h

2 V
h

: such that

A
h

(u
h

, v
h

) = A(u
h

, v
h

) + S(u
h

, v
h

) = L(v
h

) + S(u, v
h

) = L
h

(v
h

), (4.25)



108 Chapter 4. Multi-domain coupling for Helmholtz equations

where the sesquilinear form A(., .) represents the Nitsche formulation applied to the physical problem

and is given by

A(u
h

, v
h

) =

2
X

j=1

(µ
j

ru
j

,rv
j

)0,⌦j � (!2⇢
j

u
j

, v
j

)0,⌦j + hi!�
j

u
j

, v
j

i0,@⌦j
� h{µru

h

· n�}, JvhKi0,�

� hJu
h

K, {µrv
h

· n�}i0,� ,

where �
j

=

p
⇢
j

µ
j

and the global stabilization term S(., .) representing the additional non-physical

terms introduced to improve stability is expressed as

S(u
h

, v
h

) =

⌦

i�1h
�1Ju

h

K, Jv
h

K
↵

0,�
+

D

iˆ�1hJµru
h

· n�K, Jµrv
h

· n�K
E

0,�
+

2
X

j=1

s
j

(u
h

, v
h

).

The local stabilization s
j

(., .) is taken to be the GLS/CIP or CIP methods which act on the interior of

the subdomain ⌦

j

as well as the boundary least squares term strengthening the control of the impedance

boundary condition on @⌦
j

. The GLS/CIP stabilization form is defined as

s
j

(u
h

, v
h

)

def
=

X

⌧j2T j
h

�j1,⌧h
2
⌧

(Lj

(u
h

),Lj

(v
h

))0,⌧j +

X

Fj2Fj
int

�j1,⌧h⌧

hJµ
j

ru
h

· nK, Jµ
j

rv
h

· nKi0,Fj

+ �1h
⌦

Rj

(u
h

),R⇤,j
(v

h

)

↵

0,@⌦j
, (4.26)

where Lj

(.)
def
= �r · (µ

j

r(.)) � !2⇢
j

(.), Rj

(.)
def
= r(.) · n + i!

q

⇢j

µj
(.) and R⇤,j

(.)
def
= r(.) · n �

i!
q

⇢j

µj
(.). The CIP stabilization form is defined as

s
j

(u
h

, v
h

)

def
=

X

Fj2Fj
int

�j0,⌧h
3
⌧

hJr · (µ
j

ru
h

)K, Jr · (µ
j

rv
h

)Ki0,Fj
(4.27)

+

X

Fj2Fj
int

�j0,⌧h⌧

hJµ
j

ru
h

· nK, Jµ
j

rv
h

· nKi0,Fj
(4.28)

+ �0h
⌦

Rj

(u
h

),R⇤,j
(v

h

)

↵

0,@⌦j
, (4.29)

Finally, the linear form L(.) on the RHS is defined as

L(v
h

)

def
=

2
X

j=1

(f, v
h

)0,⌦j + hg, v
h

i0,@⌦j
. (4.30)

Remark 2. The Nitsche term added to the formulation A(., .) is equal to zero for u as the exact solution

of (4.4).

hJuK, {µrv · n�}i0,� = 0 8 v 2 V 1 ⇥ V 2

this term is equivalent to the symmetric term added in the Nitsche formulation to weakly impose Dirichlet
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boundary conditions. The consistency term in the Nitsche formulation is equivalent to the term

h{µru
h

· n�}, JvhKi0,�

Observe that for u, as the exact solution of the coupled problem given in (4.4), the stabilization term

S(., .) satisfies the following equality

S(u, v
h

) =

2
X

j=1

0

@

X

⌧2T j
h

�j1,⌧h
2
⌧

(f,Lj

(v
h

)))0,⌧ + �1h hg,R⇤
(v

h

)i0,@⌦j

1

A . (4.31)

Lemma 4.1. The solution u = (u1, u2) to (4.4) satisfies

A
h

(u, v) = L
h

(v) 8 v 2 V.

Proof. It is immediate from (4.4) that

A(u, v) + S(u, v) = L(v) + S(u, v) 8 v 2 V. (4.32)

=) A(u, v) = L(v) 8 v 2 V. (4.33)

It can then be shown that

L(v) =

2
X

j=1

(f, v
j

)0,⌦j + hµ
j

g, v
j

i0,@⌦j
(4.34)

=

2
X

j=1

h

(µ
j

ru
j

,rv
j

)0,⌦j � !2⇢
j

(u
j

, v
j

)0,⌦ � i!�
j

hu
j

, v
j

i0,@⌦j

�hµ
j

ru
j

· n
j

, v
j

i0,�
i

=

2
X

j=1

h

(µ
j

ru
j

,rv
j

)0,⌦j � !2⇢
j

(u
j

, v
j

)0,⌦ � i!�
j

hu
j

, v
j

i0,@⌦j

i

�h{µru · n�}, JvKi0,� .

Since JuK = 0 on � it holds that

0 = �hJuK, {µrv · n�}i0,� . (4.35)

Using (4.34) and (4.35) concludes the proof.
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4.3.3 Mathematical framework for the coupled problem

The first assumption on the stabilization is that there exists some type of energy semi-norm |.|I with the

following properties |.|I : V
h

7! R such that

|u
h

|2I 6 |A
h

(u
h

, u
h

)|. (4.36)

It can be noted that if |.|I is taken to be a norm on V then this estimate is analogous to the coercivity

assumption of Lax-Milgram. I also ask that the following Cauchy-Schwarz type inequality holds for

some semi-norm |.|
s

: V 7! R which is associated to the stabilization,

|s(v, w)| 6 |v|I|w|s 6 |v|I|w|I 8 v, w 2 V. (4.37)

The Cauchy-Schwarz type inequality ensures that the whole stabilization can be upper bounded by the I

semi norm.

Recall that the analysis also relies on the existence of an appropriate interpolation operator ⇡
h

: V 7! V
h

which should respect the following estimate. For piecewise linear elements

ku� ⇡
h

uk0,⌦ + hkr(u� ⇡
h

u)k0,⌦ 6 Ch2|u|2,⌦1[⌦2 , (4.38)

and for piecewise polynomial elements of order p > 1

ku� ⇡
h

uk0,⌦ + hkr(u� ⇡
h

u)k0,⌦ +

X

⌧2Th

h2
⌧

kD2
(u� ⇡

h

u)k0,⌧ 6 Chp+1|u|
p+1,⌦1[⌦2 . (4.39)

I also assume the existence of a norm, k.k⇤, such that the following continuity estimate is satisfied

|A(u� ⇡
h

u, v
h

)|+ |s(u� ⇡
h

u, v
h

)|+2C(⇢
j

, µ
j

)!ku� ⇡
h

uk0,@⌦Rkvhk0,@⌦R 6 Mku� ⇡
h

uk⇤|vh|I.

(4.40)

A second continuity assumption is posed purely on the sesquilinear form A(., .) and is designed to

include the interpolation error of the adjoint problem. In this estimate z and  are taken to be the exact

solution and source term of the adjoint problem, as posed in (4.5), respectively.

|A(u� ⇡
h

u, z � ⇡
h

z)| 6 C(⇢
j

, µ
j

)(!h)hp|u|
p+1,⌦1[⌦2k k0,⌦. (4.41)

However, for the analysis to hold some control is needed over ⇡
h

z. This control is asserted through a

stability estimate of the form

|⇡
h

z|
s

6 C(⇢
j

, µ
j

)!hk k0,⌦, (4.42)
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which is required ensure sharpness of our L2
(⌦) convergence estimate. Finally, the theorem requires

interpolation estimates in |.|I and k.k⇤

ku� ⇡
h

uk⇤ 6 Chp|u|
p+1,⌦1[⌦2 , (4.43)

and

|u� ⇡
h

u|I 6 Chp|u|
p+1,⌦1[⌦2 . (4.44)

Now that the groundwork has been laid it is possible to construct our theorem. The main differences

between Theorem 3 and Theorem 2 are the additional coefficients which must be handled appropriately

and the use of broken norms.

Theorem 3. Let u 2 Hp+1
(⌦1 [ ⌦2), for p > 1/2 be the unique solution of (2.15) that satisfies the

assumed regularity given in (4.13) and u
h

2 V
h

be the solution of (2.16). If (2.16) satisfies properties

(4.36)-(4.44) then the formulation admits a unique solution which satisfies the following a priori error

estimates

|u� u
h

|I 6 Chp|u|
p+1,⌦1[⌦2 (4.45)

ku� u
h

k0,⌦ 6 C(⇢
j

, µ
j

) (!h)hp|u|
p+1,⌦1[⌦2 (4.46)

kr(u� u
h

)k0,⌦1[⌦2 6 C(⇢
j

, µ
j

)

�

1 + (!2h)
�

hp|u|
p+1,⌦1[⌦2 . (4.47)

Proof. The proof follows the same outline as Theorem 2.

In the formulation the coupling terms on the interface are enforced using Nitsche’s method which was

introduced earlier and has become a popular way of coupling two or more domains. The jump and

average terms come from applying Nitsche boundary conditions to the interface between ⌦1 and ⌦2 then

fixing a normal direction n� with respect to the interface. This technique has been applied to a number

of different problems with some success. The novel aspect of the method introduced in (4.25) is the

introduction of an additional penalty term which penalises the jump of the flux across the interface. This

additional penalty parameter gives absolute stability when considering Dirichlet or Neumann boundary

conditions and also ensures stability in the regime max

j

{!�j}µ2
j

h

< ��1
0 for the CIP stabilization or

max

j

{!�j}µ2
j

h

< ��1
1 for the GLS/CIP formulation. It will become clear in the following analysis why

this term has been introduced. In order for the Nitsche coupling terms to enter the analytic framework I

have fixed the penalty parameters to be purely imaginary which is also a unique property of this method.
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4.3.4 Mathematical tools

For the following analysis it is beneficial to introduce the following semi-norms which act on the stabi-

lization. Let |.|I : V
h

7! R then for u
h

2 V
h

|u
h

|2I
def
=

2
X

j=1

0

@!�
j

(1� !�
j

µ2
j

�
✏

h)ku
h

k20,@⌦j
+

X

F2Fj
int

(1� ✏)�
✏,⌧

h3
⌧

kJr · (µru
h

)Kk20,F

+

X

⌧2T j
h

✏h2
⌧

�
✏,⌧

kLj

(u
h

)k20,⌧ +

X

F2Fj
int

�
✏,⌧

h
⌧

kJru
h

· nKk20,F + h�
✏

kru
h

· nk20,@⌦j

1

A

+�
✏

h�1kJu
h

Kk20,� +

ˆ�
✏

hkJµru
h

· n�Kk20,�. (4.48)

Another useful semi-norm is closely related |.|
s

: V
h

7! R

|u
h

|2
s

def
=

2
X

j=1

0

@�
✏,j

hkru
h

· n� i
!�

j

µ
j

uk20,@⌦j
+

X

F2Fj
int

(1� ✏)�
✏,⌧

h3
⌧

kJr · (µru
h

)Kk20,F

+

X

⌧2T j
h

✏�
✏,⌧

h2
⌧

kLj

(u
h

)k20,⌧ +

X

F2Fj
int

�
✏,⌧

h
⌧

kJru
h

· nKk20,F

1

A

+�
✏

h�1kJu
h

Kk20,� +

ˆ�
✏

hkJµru
h

· n�Kk20,�, (4.49)

where ✏ 2 {0, 1}, this provides a switch between the CIP and GLS/CIP methods. When ✏ = 0 the

stabilization reduces to the CIP method and when ✏ = 1 the stabilization is the GLS/CIP method.

Lemma 4.2. Given ✏ 2 {0, 1}, Re [�
✏

] = Re
h

ˆ�
✏

i

= Re [�
✏,j

] = 0, min

j

{Im
⇥

��1
✏,j

⇤

} > h!�j

µ

2
j

and the

imaginary parts of all penalty parameters are strictly positive, the sesquilinear form A
h

(u
h

, u
h

), defined

in (4.25), satisfies the equality

|.|2I = Im [A
h

(u
h

, u
h

)] ,

for |.|I, as defined in (4.48), which under the conditions of the lemma defines a semi-norm on V
h

.

Proof. The proof follows by noticing that

Im [A
h

(u
h

, u
h

)] = Im [A(u
h

, u
h

)] + Im [S(u
h

, u
h

)] . (4.50)

Inspecting these forms individually shows that

A(u
h

, u
h

) =

2
X

j=1

µ
j

kruj

h

k20,⌦j
� !2⇢

j

kuj

h

k20,⌦j
+ i!�

j

kuj

h

k20,@⌦j

�2Re
h

h{µru
h

· n�}, Juh

Ki0,�
i

,
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where the last line follows from an application of (A:11). Taking the imaginary part of this gives

Im [A(u
h

, u
h

)] = !�
j

kuj

h

k20,@⌦j
, (4.51)

Investigating the stabilization term

S(u
h

, u
h

) = i�
✏

h�1kJu
h

Kk20,� + iˆ�
✏

hkJµru
h

· n�Kk20,� +

P2
j=1 sj(u

j

h

, uj

h

), (4.52)

and taking the imaginary parts gives

Im [S(u
h

, u
h

)] = �
✏

h�1kJu
h

Kk20,� +

ˆ�
✏

hkJµru
h

· n�Kk20,� + Im
h

P2
j=1 sj(u

j

h

, uj

h

)

i

. (4.53)

The claim follows from an application of the Cauchy-Schwarz inequality to the term Im
h

P2
j=1 sj(u

j

h

, uj

h

)

i

as shown previously. The claim that |.|I defines a semi-norm on V
h

is immediate, under the conditions

of the lemma, from its definition.

It is also useful to introduce the following norms on V . For ✏ = 1 let k|(·)k| : V 7! R where

k|(·)k|2 def
=

2
X

j=1

0

@

2

4

X

⌧j2Tj,h

(h2
⌧j
|�1,⌧j |)�1k(·)k20,⌧j +

X

Fj2Fj
int

(h
⌧j |�1,⌧j |)�1k(·)k20,Fj

+µ
j

(h|�1,j |)�1k(·)k20,@⌦j

i

+ h|�1|�1k{µr(·) · n�}k20,� + (h|ˆ�1|)�1k{(·)}k20,�

+|(·)|2
s

�

, (4.54)

and for ✏ = 0 let k(·)k⇤ : V 7! R where

k|(·)k|2⇤
def
=

2
X

j=1

0

@

2

4

X

⌧j2Tj,h

(h2
⌧j
|�0,⌧j |)�1k(·)k20,⌧j +

X

Fj2Fj
int

(h
⌧j |�0,⌧j |)�1k(·)k20,Fj

+µ
j

(h|�0,j |)�1k(·)k20,@⌦j

i

+ h|�0|�1k{µr(·) · n�}k20,� + (h|ˆ�0|)�1k{(·)}k20,�

+|(·)|2
s

⌘

. (4.55)

It is clear to see that these are both norms on V so I shall omit the proof.

4.3.5 A priori error estimates

In the following section the finite element scheme defined by (4.25) will be analysed using the theoretical

framework introduced in Theorem 3. Well posedness of the discrete system is a direct result of the a

priori error estimates derived in the analysis. In order to show that the coupled formulation fits into the

framework of Theorem 3 I first show that the stabilization has the weak coercivity property and respects

the interpolation estimates given by assumptions (4.36), (4.37), (4.42), (4.43) (4.44).
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Lemma 4.3. Under the assumptions given in Lemma 4.2 the domain decomposition method introduced

in (4.25) satisfies the weak coercivity and Cauchy-Schwarz properties given by, (4.36) and (4.37) respec-

tively, for |.|I defined in (4.48) and |.|
s

defined in (4.49).

Proof. The weak coercivity property follows directly from Lemma 4.2 since

|u|2I = Im [A
h

(u
h

, u
h

)] (4.56)

6 |A
h

(u
h

, u
h

)|. (4.57)

The Cauchy-Schwarz style inequalities follow from

|S(v
h

, w
h

)| = �0h
�1 hJv

h

K, Jw
h

Ki0,� + �1h hJrv
h

· nK, Jrw
h

· nKi0,� + s(v
h

, w
h

)

6 �0h
�1kJv

h

Kk0,�kJwh

Kk0,� + �1hkJrv
h

· nKk0,�kJrw
h

· nKk0,� +

2
X

j=1

|s(vj
h

, wj

h

)|.

An application of the Cauchy-Schwarz inequality gives

|s(v
h

, w
h

)| 6 |s(v
h

, v
h

)| 12 |s(w
h

, w
h

)| 12 .

Which proves the result.

Lemma 4.4. Under the same assumptions as Lemma 4.2 the semi-norm |.|I, defined in (4.48), satisfies

(4.42) and (4.44) for both GLS/CIP and CIP stabilizations introduced in Chapter 2 where ⇡0
h

is chosen to

be the Lagrange interpolant proposed in (2.64) and ⇡1
h

the L2 projection on each sub-domain proposed

in (A.5) respectively. The norms (4.54) and (4.55) both satisfy (4.43) for the same respective choice of

⇡
h

.

Proof. For the purpose of this proof it is beneficial to introduce some additional notation to handle the

two different cases. Let

�j
⌧

= ✏�j1,⌧ and ˆ�j
⌧

= (1� ✏)�j0,⌧ ,

where ✏ 2 {0, 1}. I also introduce the interpolation operator ⇡✏

h

where ⇡0
h

is the L2 projection defined

in (A.5) and ⇡1
h

is the standard Lagrange Interpolant. Using this notation allows me to study both the

GLS/CIP and CIP methods introduced in Chapter 2 simultaneously. As stated earlier in the Chapter I

will use ✏ as a switch to change between stabilizations, noting that when ✏ = 0 the stabilization in the

interior of each sub-domain is the CIP method and when ✏ = 1 the stabilization in the interior of each
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sub-domain is the GLS/CIP method. Therefore using this notation it holds that

|⇡✏

h

z|2
s

=

2
X

j=1

2

4

X

Fj2Fj
int

ˆ�j
⌧

h3
⌧

kJr · (µr⇡✏

h

z)Kk20,Fj
+

X

⌧j2T j
h

�j
⌧

h2
⌧

kL(⇡✏

h

z)k20,⌧j (4.58)

+

X

Fj2Fj
int

�j
✏,⌧

h
⌧

kJµr⇡✏

h

z · nKk20,Fj
+ �

✏

h�1kJ⇡✏

h

zKk20,� (4.59)

+

ˆ�
✏

hkJµr⇡✏

h

z · nKk20,� + �
✏,j

hkR⇤,j
(⇡✏

h

z)k20,@⌦j

i

. (4.60)

The first, second, third and sixth terms all follow trivially by arguing in a similar way to Lemmas 2.7 and

2.8. In order to not repeat myself I will ignore these terms in the proof. Considering the fourth term and

using the fact that the jump of z is zero over the interface � it follows that,

(IV ) = �
✏

h�1kJz � ⇡✏

h

zKk20,� (4.61)

6 �
✏

h�1kz1 � ⇡✏

h

z1k20,� + �0,�h
�1kz2 � ⇡✏

h

z2k20,� (4.62)

6 �
✏

h�1
2
X

j=1

X

⌧j2Tj,h

kz
j

� ⇡✏

h

z
j

k20,@⌧j . (4.63)

Applying the trace inequality (A:4) and using the interpolation estimates that the operator ⇡
h

is assumed

to respect completes the proof for the fourth term

(IV ) 6 C�
✏

h�1
2
X

j=1

X

⌧j2Tj,h

⇣

h�1/2
⌧j

kz
j

� ⇡✏

h

z
j

k0,⌧j + h1/2
⌧j

kr(z
j

� ⇡✏

h

z
j

)k0,⌧j
⌘2

(4.64)

6 C�
✏

h�1
⇣

h3/2|z|2,⌦
⌘2

(4.65)

6 C�
✏

max

j

⇢

⇢
j

µ
j

�

(!h)2k k20,⌦. (4.66)

The fifth term is bounded in a similar vein. Combining these results completes the claim. To prove the

interpolation estimate for ⇡✏

h

in the I semi-norm it is again easier to consider each term separately. Let

⌘✏ = u� ⇡✏

h

u

|⌘✏|2I = (�
✏

h�1
)kJ⌘✏Kk0,�

| {z }

(AI)

+(

ˆ�
✏

h)kJµr⌘✏ · n�Kk�
| {z }

(BI)

+ Im [s(⌘✏, ⌘✏)]
| {z }

(CI)

+

2
X

j=1

!�
j

ku✏k20,@⌦j

| {z }

(DI)

.

The proof of the terms (CI) and (DI) are similar to the results seen previously so I shall not include

them in the proof. The new terms are (AI) and (BI). The first term (AI) can be shown to satisfy the

estimate given in (4.44) by first applying the triangle inequality to expand the jump condition into two
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separate terms on the trace of the elements intersected on the boundary

(AI) 6 (|�
✏

|h�1
)

X

⌧2T�

(k⌘✏1k0,@⌧� + k⌘✏2k0,@⌧�)
2

6 |�
✏

|C2
T

X

⌧2T�

�

h�1
⌧

k⌘✏k0,⌧ + kr⌘✏k0,⌧
�2

6
2
X

j=1

|�
✏

|CC2
T

h2p|u|2
p+1,⌦j

.

The second line comes from taking the trace inequality over all elements intersecting �. Finally, the

estimate follows using the interpolation estimates that the operator ⇡✏

h

is assumed to satisfy. The second

term, (BI) is bounded in a similar way

(BI) 6 (|ˆ�
✏

|h)
X

⌧2T�

(kµ1r⌘✏1 · n�k0,@⌧� + kµ2r⌘✏2 · n�k0,@⌧�)
2

6 |ˆ�
✏

|max{µ1, µ2}C2
T

X

⌧2T�

(kr⌘✏k0,⌧ + h
⌧

|r⌘✏|1,⌧ )2

6
2
X

j=1

|ˆ�
✏

|max{µ1, µ2}CC
T

h2p|u|2
p+1,⌦j

.

Summing up the four terms and square rooting gives the required estimate. The final assumption (4.43)

is a result about the interpolation properties of the operator ⇡
h

with respect to an appropriate norm. The

proofs are similar for both the GLS/CIP case and the CIP case. With this in mind I shall prove the

GLS/CIP case and just state the result for the CIP stabilization. Again for ease of notation I shall break

the *-norm into components to be considered separately. Let ⌘ def
= u� ⇡1

h

u

k|⌘✏k|2 =
2X

j=1

0

BBBBBB@

2

6666664

X

⌧j2Tj,h

(h2
⌧j |�1,⌧j |)

�1k⌘k20,⌧j +
X

Fj2Fj
int

(h⌧j |�1,⌧j |)
�1k⌘k20,Fj

+ (µjh|�1,j |)�1k⌘k20,@⌦j

| {z }
A⇤

3

7777775

+h|�1|�1k{µr⌘ · n�}k20,�| {z }
B⇤

+(h|�̂1|)�1k{⌘}k20,�| {z }
C⇤

+ |⌘|2s|{z}
D⇤

1

CA .

First I shall consider A⇤. It is clear that the first term is bounded immediately by the interpolation results

that ⇡✏

h

is assumed to satisfy. The other two terms require an application of the trace inequality (A:4)
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and then can be bounded in the same way as the first term.

A⇤ =

2
X

j=1

2

4

X

⌧j2Tj,h

(h2
⌧j
|�1,⌧j |)�1k⌘k20,⌧j +

X

Fj2Fj
int

(h
⌧j |�1,⌧j |)�1k⌘k20,Fj

+ µ
j

(h|�1,j |)�1k⌘k20,@⌦j

3

5

6 C
2
X

j=1

max

⌧2T j
h

{|�1,⌧j |�1}h2p|u|2
p+1,⌦j

+

X

⌧j2Tj,h

C2
T

(|��1
1,⌧j |+ |µ

j

��1
1,j |)

⇣

h�1
⌧j

k⌘k0,⌧ + kr⌘k0,⌧
⌘2

6 C
2
X

j=1

h2p|u|2
p+1,⌦j

.

The second component B⇤ involves an average which is handled in a similar way to the jump terms seen

earlier. The average is split into two terms with an application of the triangle inequality. Then the trace

inequality is used to enable the use of the interpolation estimates given in (4.38) and (4.39).

B⇤ 6 1

4

h|�1|�1
X

E2Gj
h

(kµ1r⌘1 · n�k0,E + kµ2r⌘2 · n�k0,E)2

6 1

4

|�1|�1
max

j

µ2
j

C2
T

X

⌧2T�

(kr⌘k0,⌧ + h
⌧

|r⌘|1,⌧ )2

6
2
X

j=1

|�1|�1Cmax

j

µ2
j

h2p|u|2
p+1,⌦j

.

Once again care should be taken when considering the case of piecewise linear elements since

|r⇡
h

u|1,⌧ = 0. This means that the final term must be bounded by noticing

|r⌘|1,⌧ = |ru|1,⌧ 6 C|u|2,⌧ .

The third component C⇤ is bounded in a similar way to B⇤.

C⇤ 6 1

4

h�1| ˆ�1|�1
X

E2Gj
h

(k⌘1k0,E + k⌘2k0,E)2

6 | ˆ�1|�1C2
T

X

⌧2T�

�

h�1
⌧

k⌘k0,⌧ + kr⌘k0,⌧
�2

6
2
X

j=1

| ˆ�1|�1CC2
T

h2p|u|2
p+1,⌦j

.

The bound on D⇤ follows as shown previously. It should be noted that the star norms are very similar for

both cases; CIP and GLS/CIP and the proof for the CIP case is almost identical to that of the GLS/CIP

case. So I just state the result

k|⌘k|⇤ 6
2
X

j=1

CC
T

�

|��1
2 |+ |��1

2 |+ |�2|�1
+ |�0|�1

+ |�1|�1|+ C
s

�

1
2 hp|u|

p+1,⌦j ,
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where ��1
2 = max

⌧j2T j
h
{|��1

2,⌧j |}, �
�1
2 = max

⌧j2T|
j
h
{|��1

2,⌧j |},�
�1
2 = max{|��1

21 |, |��1
22 |} and C

s

is the

constant given from D⇤

Now that I have shown the stabilization fits into the theoretical framework of the theorem and also that

the operator ⇡
h

has the correct interpolation properties all I must now show is that the forms A
h

(., .) and

A(., .) have the required continuity properties.

Proposition 6 (Continuity). Let u 2 Hp+1
(⌦1 [ ⌦2), for p > 1/2, and z 2 H2

(⌦1 [ ⌦2), be the

exact solutions to the primal and dual problems defined by (4.4) and (4.5) respectively. It holds that the

domain decomposition method given by (4.4) satisfies assumptions (4.40) and (4.41) of Theorem 3 for

⇡✏

h

as defined in Lemma 4.4 and k.k⇤
def
= ✏k|.k|+(1�✏)k|.k|⇤ as given in (4.55) and (4.54) for ✏ 2 {0, 1}

.

Proof. The proof of Assumption (4.40) is possibly the most technical but follows the same ideas as

shown previously. A couple of manipulations are required to deal with the terms acting on the interface.

I begin once again by considering the first term of A
h

(u � ⇡
h

u, v
h

) element wise and performing an

integration by parts.

Let ⌘✏ = u� ⇡✏

h

u,

2
X

j=1

(µ
j

r⌘✏
j

,rv
j

)⌦j =

2
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j=1

X

⌧j2Tj

(r✏⌘
j

, µ
j
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j

)0,⌧j

=

2
X
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X

⌧j2Tj,h

(⌘✏
j

,�r · (µ
j
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j

))0,⌧j +
⌦

⌘✏
j

, µ
j
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j

· n
↵

0,@⌧j

=

2
X

j=1

0

@

X

⌧j2Tj

(⌘✏
j

,�r · (µ
j

rv
j

))0,⌧j +

X

Fj2Fj
int

⌦

⌘✏
j

, Jµ
j
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j

· nK
↵

0,Fj

+

⌦

µ
j

⌘✏
j

,rv
j

· n
↵

0,@⌦j

⌘

+ h⌘✏1, µ1rv1 · ni0,� + h⌘✏2, µ2rv2 · ni0,� .

This gives rise to the usual terms on each subdomain with a couple of additional terms acting on the

interface. These last two terms allow us to deal with the fifth term in A
h

(⌘✏, v
h

). This statement becomes

more obvious after a closer inspection of the fifth term in A
h

(⌘✏, v
h

)

�hJ⌘✏K, {µrv
h

· n�}i0,� = �1

2

h⌘✏1, µ1rv1 · n�i0,� � 1

2

h⌘✏1, µ2rv2 · n�i0,�

+

1

2

h⌘✏2, µ1rv1 · n�i0,� +

1

2

h⌘✏2, µ2rv2 · n�i0,� .
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Adding the two terms from our integration by parts and simplifying gives

=) �1

2

h⌘✏1, µ1rv1 · n�i0,� � 1

2

h⌘✏1, µ2rv2 · n�i0,� +

1

2

h⌘✏2, µ1rv1 · n�i0,�

+

1

2

h⌘✏2, µ2rv2 · n�i0,� + h⌘✏1, µ1rv1 · n�i0,� � h⌘✏2, µ2rv2 · n�i0,�
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2
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1

2
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1

2
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�1

2

h⌘✏2, µ2rv2 · n�i0,�

=

1

2

h⌘✏1, Jµrv · n�Ki0,� +

1

2

h⌘✏2, Jµrv · n�Ki0,�

= h{⌘✏}, Jµrv · n�Ki0,� .

It is this that motivates the addition of the non-standard penalty term in our stabilization. From this the

sesquilinear form reduces to

|A
h

(⌘✏, v
h

)| =

�

�

�

�

�

�

2
X

j=1

2

4

X

⌧j2Tj
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))0,⌧j � (⌘✏
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X

Fj2Fj
int

⌦

⌘✏
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, Jµrv
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· nK
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0,Fj
+

⌦

µ
j

⌘✏
j

,rv
j

· n+ i!�
j

v
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↵

0,@⌦j

3

5

�h{µr⌘✏ · n�}, JvhKi0,� + h{⌘✏}, Jµrv
h

· n�Ki0,� + S(⌘✏, v
h

)

�

�.

The proof now follows in a similar vein as in the previous chapter and depends on which stabilization we

choose. If ✏ = 1 the stabilization on the interior of each sub-domain is equivalent to the GLS/CIP sta-

bilization introduced earlier. Recalling that ⇡1
h

: C0
(

¯

⌦) 7! V
h

is the Lagrange interpolant and applying

the Cauchy-Schwarz inequality it follows that

|A
h

(⌘1, v
h

)| 6 Mk|⌘1k||v
h

|I (4.67)

= Mk⌘1k⇤|vh|I. (4.68)

Similarly recall that for ✏ = 0 the stabilization on the interior of each sub-domain reduces to the CIP

stabilization and ⇡0
h

: L2
(⌦) 7! V

h

is the L2-projection. This eliminates the low-order terms and allows

us to further exploit the orthogonality property to bound the Laplacian by the second order jumps in our

stabilization. The only difference from before is that this argument must be used on both domains. Using

the aforementioned technique and an application of the Cauchy-Schwarz inequality gives

|A
h

(⌘0, v
h

)| 6 Mk|⌘0k|⇤|vh|I (4.69)

= Mk⌘0k⇤|vh|I, (4.70)
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which completes the claim.

Assumption (4.41) follows using the same arguments as before on each subdomain and using

kvk20,⌦1[⌦2
= kvk20,⌦1

+ kvk20,⌦2
.

The interface terms are the only terms that have not been shown to satisfy the assumption, namely

�

�

�
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(I)
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(IV )

, (4.71)

where, as previously, ⌘✏ = u� ⇡✏

h

u and ⇣✏ = z � ⇡✏

h

z.

I begin by expanding the jump and average terms of (I). Using the fact that the mesh fits the intersection

� exactly, I can consider each term element wise. In the last line I use the triangle inequality to get an

upper bound on (I)
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.

It is then possible to use the Cauchy-Schwarz inequality and Trace inequality to bound each term and

get
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and
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where the final inequalities come from the interpolation estimates for both the Lagrange interpolant and

L2-projections given by (4.38) or (4.39). It should be noted that once again in the piecewise linear case

second order derivatives of elements of V
h

are zero. However, it is possible to obtain the bound using

the fact that u and z are in H2
(⌦1 [ ⌦2). A similar argument holds for the (II),
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Again applying the Cauchy-Schwarz and Trace Inequalities as well as our interpolation estimates sim-
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and
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All that needs to be shown now is that the additional terms in the stabilization, the interface terms, are

bounded in a similar way. Once again I begin by splitting the jump terms and considering them element-

wise. The final line comes from an application of the triangle inequality followed by Cauchy-Schwarz.
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The fourth and final term on the interface is the Neumann penalty. Once again I decompose the jump



4.3. The fitted domain decomposition method 123

terms and apply the triangle and Cauchy-Schwarz inequalities.
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The resulting term can then be bounded using the trace inequality followed by an application of the

interpolation estimate (4.39) for elements of polynomial order p > 1 or using the regularity of the

solution u for p = 1.
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Summing all of these results concludes the proof of the proposition.

4.3.6 Discussion

Since all of the assumptions of Theorem 3 hold the domain decomposition method introduced is stable

under the condition min

j

{��1
✏,j

} > h!�j

µ

2
j

and respects the a priori error estimates given. This formulation

enables the user to couple multiple Helmholtz systems under the condition max

j

{
q

!

2
⇢j

µj
}h 6 C which

has benefits in several areas of Physics and Engineering. One limitation of the method is the fact that the
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user must know a priori where the interface is and design a mesh to track it. This provided the motivation

to design a fictitious domain method that does not require the mesh to fit the interface. The purpose of

the domain decomposition method presented here is to provide a platform to study the efficiency of the

Nitsche coupling technique when solving Helmholtz. Since the stabilized methods presented have been

able to reduce the pollution effect for certain problems it is interesting to study whether the introduction

of the coupling terms introduces numerical pollution. The numerical evidence would suggest that the

coupling terms do not introduce a substantial amount of pollution and seem to highlight the need for a

method that reduces pollution in the bulk. All computations in this section where performed using the

UMFPACK solver in the FreeFEM++ package which is available from http://www.freefem.org/.

4.3.7 Numerical Results

Let ⌦1 be [0, 1]⇥ [0, 0.5] and ⌦2 be [0, 1]⇥ [0.5, 1], the model problem is defined as

�r · (ru)� !2⇢1u = f1 in ⌦1
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(4.72)

Taking ⇢
j

!2
= k2

j

the problem is designed such that

u =

cos

⇣

k1
p

x2
+ y2

⌘

k1
� CJ0
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k1
p

x2
+ y2

⌘

where

C =

cos(k1) + i sin(k1)

k1 (J0(k1) + iJ1(k1))

and J0(.) and J1(.) are Bessel functions of the First Kind. For the stabilized methods proposed in (4.25)

the calculations are performed using the same choice of parameters as taken in Chapter 2. The Nitsche

coupling parameters are taken to be ↵0 = ↵1 = 1 which numerical evidence seems to suggest is a

good choice. In order to present some comparison I also consider the case where all of the stabilization

parameters acting on the bulk of each domain are taken to be 0 with ↵0 = ↵1 = 1, I refer to this case as

the ‘no stabilization case’ or just ‘Nitsche’s’ case.
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(a) Standard Galerkin solution k1 = k2 = 250

(b) GLS/CIP solution k1 = k2 = 250

Figure 4.1: Solution plots for domain decomposition problem with matching meshes
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(a) CIP solution k1 = k2 = 250

(b) Exact solution k1 = k2 = 250

Figure 4.2: Solution plots for domain decomposition problem with matching meshes
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Figures 4.1 and 4.2 show the numerical solution for the domain decomposition problem with matching

meshes. The stabilized methods appear to conserve the correct wave number whilst the standard Galerkin

solution becomes out of phase with the exact solution compare the phase of the solutions in the upper

right corner.
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Figure 4.3: Convergence comparison for domain decomposition using piecewise linear elements with
non-matching mesh

Figure 4.3 shows that the domain decomposition methods on non matching meshes achieve O(h2
) con-

vergence for piecewise linear elements which supports the theory in the previous section. The stabilized

methods are almost indistinguishable in the figure which would appear to suggest that the GLS term is

perhaps not that important in the domain decomposition case. Figure 4.4 gives an example of a non-

matching mesh.

Figure 4.4: Example of a non-matching mesh



128 Chapter 4. Multi-domain coupling for Helmholtz equations

5 5.5 6 6.5

�10

�8

�6

�4

log(N)

Std k =25

CIP k =25

GLS k =25

Std k =100

CIP k =100

GLS k =100

Std k =200

CIP k =200

GLS k =200

O(h2)

Figure 4.5: Convergence comparison for domain decomposition using piecewise linear elements with
matching mesh

Figure 4.5 shows that the domain decomposition methods on matching meshes achieve O(h2
) conver-

gence for piecewise linear elements which supports the theory in the previous section. In this case it

seems that the GLS term actually has a negative impact on the methods. The CIP method performs well

and is the least affected by numerical pollution. The GLS/CIP method is less affected by numerical

pollution than the standard Galerkin method. However, it does not perform particularly well in the case

of low wave number k. Figure 4.6 gives an example of a matching mesh.

Figure 4.6: Example of a matching mesh
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Figure 4.7: Convergence comparison for domain decomposition using piecewise quadratic elements with
matching mesh

Figure 4.7 shows that the methods achieve O(h3
) convergence on matching meshes for piecewise

quadratic elements which also supports the theory in the previous section. The CIP method is the least

affected by numerical pollution however all methods seem to perform well in the piecewise quadratic

case.
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Figure 4.8: Comparison of domain decomposition methods with matching mesh for kh = C which
demonstrates the the stabilized methods’ ability to reduce pollution

Figure 4.8 demonstrates the stabilized methods ability to reduce the pollution effect. It is worth noting

that these results are similar to those presented without multi-domain coupling. This would seem to

imply that the Nitsche coupling terms do not introduce any noticeable pollution.

In conclusion, the domain decomposition method does not appear to introduce any more numerical

pollution than what is already present in the numerical methods, this is further verified when considering

Figure 4.9 which seems to demonstrate a reduction in pollution using a non-matching mesh. This is an

encouraging result since it would appear that if you have a suitable numerical method for the bulk you
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can couple those methods effectively using the techniques presented here. The numerics would suggest

that the CIP stabilization has a slight edge over the GLS/CIP method in the situations studied.

Figure 4.9: Comparison of domain decomposition methods using piecewise linear elements with a non-
matching mesh for kh = C

4.3.8 Conclusion

The numerical results presented in this section use the same stabilization parameters as were presented

for the Bessel solution previously. In addition these methods include two coupling parameters which are

both taken to be 1.0i. The numerics appear to show the domain decomposition method is more resilient

to the pollution effect than the standard Galerkin method. Both of the stabilized methods converge

optimally and perform well under the constraint kh < C. What is perhaps more surprising is how well

the stabilized methods perform for non-matching meshes.

4.4 Unfitted domain decomposition

In the following section I propose an unfitted domain decomposition method using cut elements to solve

Helmholtz equation on a domain with an acoustically permeable embedded interface. As mentioned

previously, the wavenumber present in the Helmholtz equation is dependent upon the material properties

of the medium through which it is being scattered. In a practical setting the location of the interface

is usually determined by data and can be difficult to mesh exactly. It is also feasible that the interface

could evolve with time which would require remeshing at every time step. Using the ideas of the ficti-

tious domain method presented in Chapter 3, it is possible to design an unfitted domain decomposition

method capable of modelling the coupling of multiple domains. In this section I analyse the potential



4.4. Unfitted domain decomposition 131

of using cut elements to solve a coupled Helmholtz system where the interface does not fit the mesh.

The cut finite element method was introduced by Hansbo and Hansbo in [33] and has since been applied

to Stoke’s and the Convection-Diffusion equations with relative success. The Helmholtz problem has

recently been addressed in this setting in [55] where the authors consider a Nitsche style approach to

weakly enforce transmission conditions across the interface. The method that I propose differs from the

aforementioned work in that it introduces a stabilization to obtain a method that has an absolute stability

property for Dirchlet boundary conditions or Neumann boundary conditions and can be shown to be

stable for an appropriate choice of stabilization parameters when considering impedance boundary con-

ditions. The method introduced considers a semi-discretization of the domain in the sense that I assume

that integration on the interface and over cut elements can be performed exactly.

I begin the section by introducing some useful notation to simplify the subsequent analysis. With the

necessary definitions in place, I introduce the formulation for an unfitted domain decomposition method

which I will show fits into a similar mathematical framework as proposed in Theorem 3. The method

is shown to be stable under certain conditions on the penalty parameters introduced and is designed to

reduce the dependence between the discretization and the geometric description of the problem whilst

remaining optimally convergent and consistent. Optimal error estimates are a result of Theorem 3 and

numerical evidence is then presented to back up the analysis.

4.4.1 Preliminaries

Considering the coupled problem, as defined in section 4.2, it is useful to introduce the following no-

tation. Let {T
h

}
h

be a family of quasi-uniform, shape-regular triangulations fitted to ⌦ where shape

regularity and quasi uniformity are defined as in (A.3) and (A.4) respectively. For each triangular ele-
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⌧
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It is useful to define the set of elements cut by the interface as
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and since the interface is no longer fitted to the mesh it is useful to introduce the following notation

�

h

:= {⌃
h

: ⌃

h

= ⌧ \ � 8 ⌧ 2 T
h

}, (4.75)
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to denote the interface element-wise, ⌃
h

is depicted in 4.10. Using this notation it is possible to define

the open discrete domains

⌦

j

h

def
= Int

0

@

[

⌧j2T j
h

⌧̄
j

1

A , (4.76)

as well as the sets of corresponding interior faces restricted to

Fj

h

def
= {F

j

= Int(@⌧1 \ @⌧2) : ⌧1, ⌧2 2 T j

h

}. (4.77)

On the interface I shall use the notation:

JvK def
= v|⌦1 � v|⌦2 , (4.78)

to define the jump of v over �.

{v} def
=

v|⌦1 + v|⌦1

2

, (4.79)

to define the average of v over �.

Figure 4.10: Cut element example

Remark 3. It is useful to note that if I choose to fix n�
def
= n1 on the interface it is also true that

n�
def
= �n2 which implies that

{rv · n�}
def
=

rv|⌦1 · n1 �rv|⌦2 · n2

2

. (4.80)

4.4.2 The formulation

Using the finite element space:

V j

h

def
= {v 2 H1

(⌦

j

h

) : v|
⌧

2 Pp

(⌧), and v|
@⌦j\� ⌘ 0},
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for j 2 {1, 2} it is possible to introduce an unfitted domain decomposition method using the following

abstract formulation. The coupled problem posed in (4.4) becomes find u
h

2 V 1
h

⇥ V 2
h

such that

A
h

(u
h

, v
h

) = A(u
h

, v
h

) + S(u
h

, v
h

) = L(v
h

) + S(u, v
h

) = L
h

(v
h

) 8 v
h

2 V
h

, (4.81)

where u 2 Hp+1
(⌦1 [ ⌦2) is the exact solution of the coupled problem defined in (4.4). Using the

notation vj
def
= v|⌦j the discrete sesquilinear forms are given by

A(u
h

, v
h

) =

2
X

j=1

✓

(µ
j

ruj

h

,rvj
h

)0,⌦j � !2⇢
j
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h

, vj
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)0,⌦j + i!�
j

D

uj

h

, vj
h

E

0,@⌦j

◆

�h{µru
h

· n�}, JvhKi0,� � hJu
h

K, {µrv
h

· n�}i0,� ,

and

S(u
h

, v
h

) =

2
X

j=1

s
j

(uj

h

, vj
h

) +

i↵0

h
hJu

h

K, Jv
h

Ki0,� + i↵1h hJµru
h

· n�K, Jµrv
h

· n�Ki0,� ,

where n� is taken to be the outward pointing normal from ⌦1 to ⌦2 and ↵0,↵1 are real constants with

the same sign as the imaginary parts of the stabilization parameters in s
j

(., .). The local stabilization

s
j

(., .) is taken to be the GLS/CIP method which acts on the interior of the subdomain ⌦

j

as well as on

the boundary given by @⌦
j

. The GLS/CIP stabilization form is defined as

s
j

(u
h

, v
h

)

def
=

X

⌧j2T j
h

�j1,⌧h
2
⌧

(Lj

(u
h

),Lj

(v
h

))0,⌧j\⌦j + �1h
⌦

Rj

(u
h

),R⇤,j
(v

h

)

↵

0,@⌦j

+

X

Fj2Fj
h

�j1,⌧µj

h
⌧

hJru
h

· nK, Jµrv
h

· nKi0,Fj
, (4.82)

where Lj

(.)
def
= �r(µ

j

r(.)) � !2⇢
j

(.), Rj

(.)
def
= r(.) · n + i!

q

⇢j

µj
(.) and R⇤,j

(.)
def
= r(.) · n �

i!
q

⇢j

µj
(.). Finally the linear form L(.) is given by

L(v
h

) = (f, v
h

)0,⌦ +

2
X

j=1

hg
j,R

, v
h

i0,@⌦j
. (4.83)

It was shown in (4.34) that the fitted domain decomposition method proposed earlier is consistent by

letting u
h

= u. Following a similar argument shows that the unfitted domain decomposition method is

also consistent. The unfitted domain decomposition method is also adjoint consistent.
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4.4.3 Mathematical tools

For the following analysis it is beneficial to introduce the following definitions which act on the stabi-

lization introduced in (4.82). Let |.|I : V 1
h

⇥ V 2
h

7! R then for u
h

2 V 1
h

⇥ V 2
h

|u
h

|2I
def
=

2
X
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0

@!�
j

(1� !�
j

µ2
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�
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X
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�1kJu
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Kk20,� + ↵1hkJµru
h

· n�Kk20,�. (4.84)

It is also useful to define |.|
s

: V 1
h

⇥ V 2
h

7! R

|u
h

|2
s

def
=

2
X

j=1

0

@�
j

hkru
h

· n� i
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j

µ
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+
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kLj
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X
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�1kJu
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· n�Kk20,�. (4.85)

For an appropriate choice of stabilization parameters both |.|I and |.|
s

define semi-norms on V 1
h

⇥ V 2
h

.

Lemma 4.5. Given Re [↵0] = Re [↵1] = Re [�
j

] = 0, min

j

{Im
⇥

��1
j

⇤

} > h!�j

µ

2
j

and the imaginary

parts of all penalty parameters strictly positive |.|I is a semi-norm on V 1
h

⇥ V 2
h

.

Proof. The proof is immediate from the definition.

Lemma 4.6. Under the same conditions as in Lemma 4.5 |.|
s

is also a semi-norm on V 1
h

⇥ V 2
h

.

Proof. The proof is immediate from the definition.

In order to perform the following analysis it is necessary to choose extension operators as given in [51]

Ep

j

: Hp

(⌦

j

) 7! Hp

(⌦) such that (Ep

j

v)|⌦j = v and

kEp

j

vk
p,⌦ 6 Ckvk

p,⌦j 8 v 2 Hp

(⌦

j

), p 2 N0. (4.86)

Let I
h

be the standard Lagrange interpolant and define

I⇤
h

v
def
=

�

I⇤
h,1v1, I⇤

h,2v2
�

, where I⇤
h,j

v
j

def
= (I

h

Ep

j

v
j

)|⌦j . (4.87)
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I demonstrated earlier in (3.39) that the extended Lagrange interpolant satisfies the following estimate

ku� I⇤
h

uk
s,⌦ 6 hp�s+1kuk

p+1,⌦. (4.88)

It was shown in [33] that if the interface satisfies assumptions [FD1-FD3] given in Chapter 3 then the

following lemma holds.

Lemma 4.7. Under mesh assumptions [FD1-FD3] there exists a constant C
T

, dependent on �, such

that

kvk20,⌃h
6 C

T

�

h�1
⌧

kvk20,⌧ + h
⌧

krvk20,⌧
�

8 v 2 H1
(⌧), (4.89)

where C
T

is independent of the mesh and ⌃

h

is as defined in (4.76).

Finally, I introduce the norm k.k⇤ : V 1
h

⇥ V 2
h

7! R

k(·)k2⇤
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=

2
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, (4.90)

where

|u|2
S

⇤
def
=

2
X

j=1

0

@

X

⌧2T j
h

�
⌧

h2
⌧

kLj

(·)k20,⌧\⌦j
+

X

F2Fj
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�
⌧

h
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kJr(·) · nKk20,F

+�
j

hkRj

(·)k20,@⌦j

⌘

+

↵0

h
kJ(·)Kk20,� + (↵1h)kJµr(·) · nKk20,�.

4.4.4 A priori error estimates

In the following section I will prove that the unfitted domain decomposition method proposed in (4.81)

fits into the mathematical framework proposed earlier. An important observation is that since the frame-

work does not rely on a coercivity result it is possible to omit the introduction of any additional stabi-

lization terms such as the Ghost penalty which was introduced by Burman in [12] and has been used

to great effect for fictitious domain methods involving cut elements, see Figure 4.10 for an example of

a cut element. It is interesting to note that the Ghost penalty is actually contained in the CIP part of

the stabilization over element faces. No additional stabilization is needed to ensure the integrity of data

where the intersection of the cut element and the physical domain become small.

Lemma 4.8. Under the assumptions on the stabilization parameters given in (4.5), the unfitted domain

decomposition method introduced in (4.81) satisfies the weak coercivity and Cauchy-Schwarz estimates

given in (4.36) and (4.37) respectively for |.|I defined in (4.84) and |.|
s

defined in (4.85).
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Proof. Under the assumptions of the Lemma |.|I it is simple to show that,

|u
h

|2I = Im [A
h

(u
h

, u
h

)] (4.91)

6 |A
h

(u
h

, u
h

)|, (4.92)

(4.36) follows trivially. The Cauchy-Schwarz type inequality in (4.37) asks that the stabilization respects

an estimate of the form,

(a)
def
= |S(v

h

, w
h

)| 6 |v
h

|I|wh

|
S

,

the result follows after an application of the triangle and Cauchy-Schwarz inequalities
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.

Using a similar proof it is possible to show

|S(v
h

, w
h

)| 6 |v
h

|
S

⇤ |w
h

|I.

Lemma 4.9. Let u 2 Hp+1
(⌦1 [ ⌦2), for p > 1/2, and z 2 H2

(⌦1 [ ⌦2), be the exact solutions

to the primal and dual problems defined by (4.4) and (4.5) respectively. Under the assumptions on the

stabilization parameters given in (4.5), the semi norm |.|I defined in (4.84) satisfies (4.42) and (4.44) for

the unfitted domain decomposition method introduced in (4.81) with interpolation operator I⇤
h

taken to

be the extended Lagrange interpolant proposed in (4.87). For the same choice of I⇤
h

the norm introduced

in (4.54) satisfies (4.43).

Proof. I begin the proof by first investigating the stability of the extended Lagrange interpolant in |.|
S

.

Recall that since the exact solution, z, of the adjoint problem (4.5) is assumed to be smooth in each

sub-domain and the adjoint Robin boundary condition applied to z vanishes on @⌦
j

, I can add it into the

CIP and Robin boundary penalty terms. This is also true for the penalty term on the interface since the

exact solution, z, is assumed to satisfy the interface conditions for the adjoint problem. Using this trick
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of adding zero the following holds
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With the addition of the exact solution z, the estimate follows using the standard interpolation results

which can be shown to hold for the extended Lagrange interpolant for each term bar the GLS term. To

conclude the proof note that
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From this it follows that
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The proof is completed using the triangle inequality and interpolation estimates as well as H2 stability

of the interpolant.
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For higher order elements the result follows as a direct consequence of the interpolation estimates for

the extended Lagrange interpolant.

To complete the proof of the proposition I must show the additional interpolation estimates given by

(4.43) and (4.44).

|u� I⇤
h

u|I 6 C
2
X

j=1

hpkuk
p+1,⌦j .
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Let ⌘⇤
j

:= uj � I⇤
h
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It is possible to bound the terms in the bracket above by applying a combination of the standard trace

inequality (A:4), triangle inequality and extended interpolation results (4.88). However, the terms on

the interface must be treated slightly differently. Since the interface is allowed to arbitrarily cut the

background mesh the user is left with cut elements where only a section of the element belongs to a

domain ⌦

j

. Cut elements are defined as elements that are intersected by the interface �. In this scenario

the interface is no longer described on the boundary of elements and the standard trace inequality is no

longer valid. Therefore, in order to prove the result, I must use the cut element trace inequality (4.89)

stated earlier.
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After an application of the cut element trace inequality, the results follow from the extended Lagrange

interpolation estimates given in (4.88).
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.

The final interpolation result to show is (4.43), which demonstrates the approximability of u in the star

norm. That is

k⌘⇤k⇤ 6 Chpkuk0,p+1.
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Recall the definition of the star norm
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Similarly to the previous estimate the majority of terms can be shown to satisfy the result using the

standard trace inequality (A:4), triangle inequality and extended interpolation results (4.88). Once again

it is only the cut elements on the interface that require special attention and the estimate follows trivially

after an application of the cut element trace inequality (4.89). I state the results below for completeness.
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Collecting the results concludes the proof.

Now that the interpolation and stability estimates have been proven the only thing left to show are the

continuity results of Theorem 3.

Proposition 7 (Continuity). Let u 2 Hp+1
(⌦1 [ ⌦2), for p > 1/2, and z 2 H2

(⌦1 [ ⌦2), be the

exact solution to the primal and dual problems posed in (4.4) and (4.5), respectively. Then it holds that

the unfitted domain decomposition method given by (4.81) satisfies assumptions (4.40) and (4.41) of

Theorem 3 for ⇡
h

defined as the extended Lagrange interpolant, I⇤
h

given in (4.87), and k.k⇤ as given in

(4.90).
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Proof. To prove (4.40) it is enough to show that
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uk0,@⌦Rkvhk0,@⌦R 6 Cku� I⇤
h
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follows trivially.

To show that (A) satisfies the estimate I begin by performing an element-wise application of integration

by parts to the first term in a similar way to how I treated the domain decomposition method. However,

in the case of the unfitted domain decomposition method the interface introduces cut elements. The

integration by parts is performed element-wise up to the interface as shown in Figure 4.11. Note that this

is perfectly acceptable as the element is allowed to be discontinuous across the interface.

Figure 4.11: Example of the domain of integration for cut elements, where ⌧
j

def
= ⌧ \ ⌦

j

This integration introduces additional terms at the interface in a similar way to the domain decomposition

method described earlier. The important distinction being that the interface is no longer fitted to the mesh.

Performing the integration shows
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. (4.94)

Comparing the new interface terms present in the integration by parts with the existing interface terms
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in the formulation gives

(I) =

X
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After collecting like terms the interface terms reduce to
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X

⌃h2�h

1

2

h⌘⇤1 , Jµrv
h

· n�Ki0,⌃h
+

1

2

h⌘⇤2 , Jµrv
h

· n�Ki0,⌃h
(4.98)

=

X

⌃h2�h

h{⌘⇤}, Jµrv
h

· n�Ki0,⌃h
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The jump term in the right hand argument is present in the stabilization. As was the case for the domain

decomposition method presented earlier, this term emphasises the need to stabilize continuity of the

fluxes over the interface. Collecting results shows that the physical form A(., .) respects the continuity

estimate given by (4.40).
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6 k⌘⇤k⇤|vh|I . (4.101)

Finally, the stabilization term s(., .) can be shown to satisfy (4.40) after an application of Cauchy-

Schwarz. Recal the continuity estimate (4.40)

|A(u� ⇡⇤
h

u, z � ⇡⇤
h

z)| 6 C(µ
j

, ⇢
j

)h!(hp

)kuk
p+1,⌦1[⌦2k k0,⌦,

confirmation of this claim follows from the interpolation results that hold for the extended Lagrange

interpolant as well as the assumed regularity estimate associated with the adjoint problem. Continuity of
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the first term in A(., .) follows directly in this manner.
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}. Notice that, like in the fitted domain decomposition method, the

constant in the continuity estimate is related to the contrast in constants µ
j

associated with the Laplace

operators in the coupled problem. The credibility of the result relies on the assumption that this constant

is bounded. The low order term follows in an equally straightforward manner,
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The terms on the fitted boundary are treated in the same way as for the fitted domain decomposition

method presented earlier. The result is presented here for completeness and follows after an application

of the trace inequality.
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The interface terms follow in a similar way to the fitted domain decomposition case. An application of

the Cauchy-Schwarz inequality gives

h{r(u� ⇡⇤
h

u) · n�}, Jz � ⇡⇤
h

zKi0,� 6 k{r(u� ⇡⇤
h

u) · n�}k0,�kJz � ⇡⇤
h

zKk0,�.

The result follows after an element-wise application of the cut element trace inequality followed by the
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use of the extended interpolation estimates derived earlier.
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For completeness I state the results.
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Repeating a similar process for the second interface term
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completes the proof.

The unfitted domain decomposition method proposed in (4.82) has been shown to enter the same math-

ematical framework as the fitted domain decomposition method proposed in the previous section. It can

be seen that for sufficiently regular u results are optimal.

4.4.5 Numerical Results

Let ⌦ ⇢ R2 be [�0.6, 0.6] ⇥ [�0.6, 0.6]. Define ⌦1 as a ball of radius 0.5 centred at (0, 0) and ⌦2
def
=

⌦ \ ¯

⌦1. The problem is defined as
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Taking ⇢
j

!2
= k2

j

the problem is designed such that

u =

cos

⇣

k1
p

x2
+ y2

⌘

k1
� CJ0

⇣

k1
p

x2
+ y2

⌘

where

C =

cos(k1) + i sin(k1)

k1 (J0(k1) + iJ1(k1))

and J0(.) and J1(.) are Bessel functions of the First Kind. For the stabilized method proposed in (4.81)

the calculations are performed using the same choice of parameters as taken in Chapter 2. The Nitsche

coupling parameters are taken to be ↵0 = ↵1 = 1 which numerical evidence seems to suggest is a good

choice. In order to present some comparison I also consider the case where all of the stabilization pa-

rameters acting on the bulk of each domain are taken to be 0 with ↵0 = ↵1 = 1, I refer to this case as the

‘no stabilization case’ or just ‘Nitsche’s’ case. All computations in this section where performed using

the CutFEM library in the FEniCs software package which is available from https://fenicsproject.org/.

The first case to consider is the case where k1 = k2 = k. Figures 4.12 and 4.13 show that both methods

reach optimal convergence in the low wave number regime. The stabilized method seems to reach the

asymptotic regime for k = 50 faster than its non stabilized counterpart. Interestingly, the non stabilized

case performs rather well although I do not have an analysis to back this up. In this regime the unfitted

case achieves optimal convergence for piecewise linear elements.

Figure 4.12: Convergence study for an unfitted domain decomposition method with no stabilization
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Figure 4.13: Convergence study for an unfitted domain decomposition method with GLS/CIP stabiliza-
tion

In the case when k1 6= k2 Figure 4.14 shows that the unfitted domain decomposition method with GLS

stabilization still reaches optimal convergence. An unexplained observation is that the Nitsche’s method

seems to achieve super convergence in this regime. It has been observed that the penalty-free Nitsche’s

method obtains super convergence of O(h1/2
) in [10]. However, it is still an unexplained phenomenon.

Figure 4.14: Convergence comparison between a stabilized and unstabilized unfitted domain decompo-
sition method coupling domains with different wave numbers



Chapter 5

Conclusion

In conclusion, I have introduced an abstract analysis with which to analyse a class of residual-based

stabilized FEMs for the solution of Helmholtz problems. This analysis was then extended to consider

the coupling of multiple Helmholtz equations which resulted in a new geometrically unfitted domain

decomposition method capable of solving Helmholtz equation with an embedded interface.

In Chapter 2 new stabilized methods were introduced and shown to fit into the abstract framework for

an appropriate choice of stabilization parameters. The methods were shown to be optimally convergent

in the asymptotic regime and improved error estimates were also presented when considering piecewise

linear elements. Numerical evidence suggested that the stabilized methods showed some promise for

reducing the pollution effect for a couple of specific problems for an appropriate choice of stabilization

parameter. The reason for this improvement is an open question and in order to investigate this, at least in

the case of structured meshes, one would need to perform a detailed 2 dimensional dispersion analysis.

The reduction in pollution is problem specific and evidence does not suggest that these methods can be

considered pollution free.

In Chapter 3 the stabilized methods are extended to handle generalized boundary conditions using a

modified version of the technique of Nitsche [47] to weakly impose essential boundary conditions. The

stabilized methods are seen to be absolutely stable when considering sound hard and sound soft interior

problems and respect the same a priori error estimates presented in Chapter 2. Numerical evidence

was presented to back up the theoretical results and the same reduction of pollution was observed. In

the second part of Chapter 3 a new fictitious domain method using cut elements was proposed for the

solution of Helmholtz equation. This method was shown to be optimally convergent but did not show

the same potential for reducing the pollution effect as the methods proposed previously. To the author’s

knowledge this is the first fictitious domain method proposed for Helmholtz, in a finite element setting,

that has been shown to be stable under the condition kh < C.

Finally, in Chapter 4, I expand the abstract framework introduced in Chapter 2 to include the case of

multi-domain coupling. In the first part of the chapter the modified Nitsche’s method introduced in
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Chapter 3 was used to weakly impose continuity across an interface between multiple domains where

the mesh was assumed to fit the interface exactly. The method was shown to enter the mathematical

framework and optimal a priori error estimates were obtained. Surprisingly, numerical evidence was

presented which suggested that the new method retained the ability of the stabilized methods to reduce

numerical pollution for certain problems. In the second part of Chapter 4 a new geometrically unfitted

domain decomposition method using cut elements was presented which was shown to be optimally con-

vergent and stable under the condition max

j

p

!2⇢
j

h < C. Unsurprisingly, the reduction in numerical

pollution was not present when considering cut elements.

The methods presented in this report have shown potential for solving the Helmholtz equation and have

culminated in the introduction of two methods that are designed to reduce the dependence between

the geometric description of the PDE and its discretization. Possible future work would be to test the

potential of these methods in a practical setting where the interface is evolving. Another interesting topic

would be to explore the potential of extending these methods to the elastic Helmholtz equation.
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Appendix

A Useful Inequalities
I also introduce the following inequalities, proofs of which can be found in [30] which I will be using

repeatedly in this paper.

Lemma A.1 (Arithmetic-Geometric Inequality). Let x, y 2 R and ✏ > 0. Then

x2

✏
+ ✏y2 > 2xy. (A:1)

The proof for this is relatively simple

(

xp
✏
� y

p
✏)2 > 0 (A:2)

x2

✏
+ ✏y2 � 2xy > 0. (A:3)

Lemma A.2 (Trace Inequality). Let ⌧ be a finite element in Rd with diameter h
⌧

. Then there exists a

constant C
T

such that

kvk0,@⌧ 6 C
T

(h�1/2
⌧

kvk0,⌧ + h1/2
⌧

krvk0,⌧ ), (A:4)

for all v 2 H1
(⌧).

Proof. A proof can be found in [30]

Lemma A.3 (Inverse Inequality). Let v 2 V
h

. Then

krvk0,⌧ 6 C
I

h�1
⌧

kvk0,⌧ . (A:5)

Proof. A proof can be found in [30]

Definition A.1 (Fractional Sobolev spaces). For 0 < s < 1 and 1 6 p < +1, the so-called Sobolev
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space with fractional exponent is defined as

W s,p

(⌦) =

(

u 2 Lp

(⌦) :

|u(x)� u(y)|
|x� y|s+

d
p

2 Lp

(⌦⇥ ⌦)

)

. (A:6)

Furthermore, when s > 1 is not an integer, letting � = s� [s] where [s] is the integer part of s, W s,p

(⌦)

is defined as

W s,p

(⌦) = {u 2 W [s],p
(⌦) : @↵u 2 W �,p

(⌦), 8↵, |↵| = [s]}. (A:7)

Definition A.2 (Star-shaped domain). Let ⌦ ⇢ RN be a bounded Lipschitz domain. ⌦ is said to be

star-shaped if there exists a real constant C > 0 and a point x0 2 ⌦ such that

(x� x0) · n > C 8x 2 @⌦

where n denotes the outward facing normal with respect to ⌦. ⌦ is said to be star-shaped with respect to

the set B if, for all x 2 ⌦, the closed convex hull of {x} [B is a subset of ⌦

Definition A.3 (Shape regularity). A family of meshes {T
h

}
h>0 is said to be shape-regular if there exists

�0 such that

8h, 8 ⌧ 2 T
h

, �
⌧

=

h
⌧

⇢
⌧

6 �0

where ⇢
⌧

is the diameter of the largest ball B
⌧

contained in ⌧ such that ⌧ is star-shaped with respect to

B
⌧

.

Definition A.4 (Quasi-uniformity). A family of meshes {T
h

}
h>0 is said to be quasi-uniform if and only

if it is shape-regular and there is C such that

8h, 8 ⌧ 2 T
h

, h
⌧

> Ch

Definition A.5 (L2 Orthogonal Projection). Let (., .)0,⌦ denote the L2
(⌦) scalar product with associated

norm k.k0,⌦. Let V be a closed subspace of L2
(⌦). The orthogonal projection from L2

(⌦) to V is

defined to be the operator ⇡
h

: L2
(⌦) 7! V such that

(⇡
h

u, v) = (u, v)8v 2 V (A:8)

Lemma A.4 (Interpolation Estimate for the standard Lagrange Interpolant). Let I
h

: C0
(⌧̄) 7! V (⌧) be

the standard Lagrange interpolant and u 2 Hs+1
(⌧). Then

ku� I
h

uk0,⌧ +

s

X

j=1

hj |u� I
h

u|
j,⌧

6 hs+1|u|
s+1,⌧ (A:9)
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Proof. A proof can be found in [30]

Lemma A.5 (Interpolation Estimate for the standard L2 Orthogonal Projection). Let ⇡
h

: L2
(⌦) 7!

V (⌦) be the standard L2 orthogonal projection and u 2 Hs+1
(⌦). Then
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Proof. A proof can be found in [30]

Lemma A.6 (Addition of complex inner products). Let A,B 2 C and h., .i denote the complex L2 inner

product. It holds that

hA,Bi+ hB,Ai = 2Re [hA,Bi] (A:11)

Similarly

hA,Bi � hB,Ai = 2iIm [hA,Bi] (A:12)

Proof.
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Lemma A.7 (Parallelogram Law). Let V be a complex inner product space, then it holds that 8x, y 2 V

kx+ yk2 + kx� yk2 = 2

�

kxk2 + kyk2
�

. (A:13)
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Proof.

kx+ yk2 + kx� yk2 = hx+ y, x+ yi+ hx� y, x� yi

= hx, xi+ hx, yi+ hy, xi+ hy, yi+ hx, xi � hx, yi � hy, xi+ hy, yi

= 2 (hx, xi+ hy, yi)

= 2

�

kxk2 + kyk2
�

.

Lemma A.8 (Polarisation Identity). Let V be a complex inner product space, then it holds that 8x, y 2 V

hx, yi = 1

4

�

kx+ yk2 � kx� yk2 + ikx+ iyk2 � ikx� iyk2
�

. (A:14)

Proof. Expanding each term on the RHS shows that

kx+ yk2 = hx, xi+ hx, yi+ hy, xi+ hy, yi ,

�kx� yk2 = �hx, xi+ hx, yi+ hy, xi � hy, yi ,

ikx+ iyk2 = i hx, xi+ hx, yi � hy, xi+ i hy, yi ,

�ikx� iyk2 = �i hx, xi+ hx, yi � hy, xi � i hy, yi .

Summing each of these components gives

kx+ yk2 � kx� yk2 + ikx+ iyk2 � ikx� iyk2 = 4 hx, yi .

The proof is concluded by dividing both sides by 4.
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Computational Mechanics: New Trends and Applications, CIMNE, Barcelona, Spain, 1998.

[53] J. WLOKA, Partial Differential Equations, Cambridge University Press, 1987.

[54] H. WU, Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high

wave number. Part I: Linear version, IMA J. Numer. Anal. 34 (2013), pp. 1266–1288

[55] E.L. YEDEG, E. WADBRO, P. HANSBO, M. LARSON AND M. BERGGREN, A Nitsche-type

Method for Helmholtz Equation with an Embedded Acoustically Permeable Interface, Comp. Meth.

Appl. Mech. and Engrg., 304 (2016), pp. 479–500

[56] K. YOSIDA, Functional Analysis, Springer-Verlag, Berlin, (1980).

[57] L. ZHU AND H. WU, Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation

with high wave number. Part II: hp version, SIAM J. Numer. Anal., 51 (2013), pp. 1828–1852

[58] Z. ZOU,W. AQUINO AND I. HARARI, Nitsche’s method for Helmholtz problems with embedded

interfaces, Internat. J. Numer. Methods Engrg., 110 no. 7 (2017), pp. 618–636


