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ABSTRACT

Hot water and space heating account for about 80% of total energy consumption in the residential sector
in the UK. It is thus crucial to decarbonise residential heating to achieve UK's 2050 greenhouse gas
reduction targets. However, the decarbonisation transitions determined by most techno-economic en-
ergy system models might be too optimistic or misleading for relying on cost minimisation alone and not
considering households' preferences for different heating technologies. This study thus proposes a novel
framework to incorporate heterogeneous households' (HHs) preferences into the modelling process of
the UK TIMES model. The incorporated preferences for HHs are based on a nationwide survey on
homeowners' choices of heating technologies. Preference constraints are then applied to regulate the
HHs' choices of heating technologies to reflect the survey results. Consequently, compared to the least-
cost transition pathway, the preference-driven pathway adopts heating technologies gradually without
abrupt increases of market shares. Heat pumps and electric heaters are deployed much less than in the
cost optimal result. Extensive district heating using low-carbon fuels and conservation measures should
thus be deployed to provide flexibility for decarbonisation. The proposed framework can also incorporate
preferences for other energy consumption technologies and be applied to other linear programming-
based energy system models.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In 2008, the UK Climate Change Act set a legally-binding target
to reduce greenhouse gas (GHGs) emissions by 80% below 1990
levels by 2050 [1]. Residential sector accounts for about 24.2% of
total GHG emissions in the UK [2]. Specifically, space and water
heating contribute to 83% of total residential energy consumptions.
It is thus crucial to dramatically decarbonise residential heating
with low-carbon heating technologies to achieve the UK GHG
reduction target. According to CCC's estimation, around 13% of
homes should be heated by heat pumps and heat networks from
low-carbon sources, which means at least 2.3 million heat pumps
should be deployed by 2030. Nonetheless, CCC has also pointed out
the transformation of residential heat sector will require radical
behavioural adjustments, which are highly uncertain [3]. Moreover,
there is a lack of evidence to show how plausible it is to expect such
radical adjustments.

Techno-economic energy system models, such as TIMES models,
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are often used for constructing energy system transition pathways
[4—6]. Such models, however, can sometimes provide misleading
outcomes, as they generally only consider technology and cost at-
tributes and determine least-cost transition pathways for satisfying
future energy service demands. These models assume all actors or
consumers in the energy system to behave economically rationally
and have full information for the whole planning horizon [7]. As it’s
also assumed that the actors are homogenous, small price varia-
tions can cause sudden changes of technology portfolios, which is
known as “bang-bang” effect (e.g. all consumers preferring a gas
boiler and, after a small cost change, all consumers switch to heat
pumps), a major problem encountered with techno-economic en-
ergy system models such as TIMES [8]. In reality, the behaviour of
consumers is not always economically rational due to e.g. lack of
information or influential socio-demographic factors [9]. Especially,
it has been shown in previous studies that there is a wide range of
factors that might influence homeowners' decisions, such as
gender, age, income, dwelling type, existing technology, and so on
[10—15]. These are elements that can't be captured when relying on
a single, cost minimising representative actor. Therefore, in order to
be able to capture all the relevant drivers and hurdles of an energy
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system transition, it is important to consider household heteroge-
neity and corresponding preferences when modelling the
transition.

Household behaviour in terms of technology adoption is usually
simulated in models by constraining the speed and ceiling of
technology diffusion in the optimisation framework (see e.g.
Refs. [16] and [17]). These constraints are usually based on aggre-
gate historical trends and experts' judgements. There is thus a
danger that the model might only reflect the preconceived notions
of the modellers [18]. Due to the ease of implementing such
diffusion constraints, however, this approach has been adopted in
many techno-economic models. For instance, Kannan and Strachan
[19] used a single representative household to represent the resi-
dential sector in UK MARKAL while the technology adoption was
constrained by historical uptake rates. Although Dodds [20] intro-
duced 36 effective house categories into UK MARKAL to assess
decarbonisation strategies for residential heating, the technology
growth constraints were still based on historical trends and sub-
jective judgements. Similarly, Energy System Modelling Environ-
ment (ESME), an energy optimisation model for the UK, imposes
user-defined limits on the annual maximum technology deploy-
ment for three dwelling types in the domestic sector [21]. Com-
parable growth constraints are also found in MESSAGE-III to
regulate new investment in technologies [22].

To address this issue, there have been several previous studies
focusing on developing new modelling frameworks to incorporate
household heterogeneity and household behaviour directly into
techno-economic energy models. These studies mainly use hurdle
rates or intangible costs to represent households' preferences for
new technologies. Moreover, none of the previous studies has
explicitly considered district heating and conservation measures
along with individual heating technologies for residential heating.

For instance, Smeureanu et al. [9] modelled in the SOCIAL-
MARKAL model how an information campaign induced behav-
ioural change and altered lighting demand in the residential sector.
On the other hand, Daly et al. [23] and Pye and Daly [24] modelled
travel behaviour, modal choice between private cars, buses, and
trains, in TIMES models and ESME respectively, using fixed travel
time budgets for short- and long-distance trips and allowing in-
vestments into infrastructure that decreases travel time (e.g. bus
lanes). These studies, however, do not take consumer heterogeneity
into account, nor capture any non-cost preferences beyond the time
budget.

Other studies have focused more on household heterogeneity in
the techno-economic models. For example, Cayla and Maizi [8]
encapsulated households' behaviour into the TIMES-Households
models to evaluate diffusions of heating technologies and vehicle
stock. Residential and transport sectors were each classified into a
number of segments, based on characteristics such as house type
and vehicle ownership. Households' investment behaviour was
then reflected through discount rates related to households' in-
come level and evaluated based on a nationwide survey [25].
However, consumers' preferences for alternative technologies,
beyond the one they currently had, were not explored in the survey.
Furthermore, Bunch et al. [26] incorporated behavioural effects
from vehicle choice models into a TIMES model to assess the
transition to new vehicle types. Consumers were categorised into
groups to represent consumer heterogeneities related to adoption
barriers (e.g. access to refuelling infrastructure, range anxiety) and
related inconvenience costs were estimated for each combination
of consumer group and technology. The same methodology was
later adopted also by McCollum et al. [27]. As the inconvenience
costs are rarely negative, the transition to low-carbon vehicles
slowed down when consumers' behaviour was included into the
model. In absolute terms, however, the modelled technology

transition could still be sudden, as the model continues to make
decisions based on cost competitiveness of technologies and
merely requires stronger signals than previously before switching
to novel technologies.

Nonetheless, not all influential factors on consumers' technol-
ogy adoption can be easily translated into costs. For example,
households' previous heating technology significantly affects their
decisions on the next heating technology [14]. The influence of
current heating technology can neither be translated into intan-
gible cost nor be easily represented in the previously proposed
modelling frameworks, especially, and as suggested in
Refs. [14,28,29], heating technology costs might not be as influen-
tial as other perceptions and socio-demographic factors and
modelling frameworks based on monetary terms alone might
therefore no longer be suitable. As a consequence of this, it is
critical to develop a more flexible modelling approach to incorpo-
rate those influential non-monetary factors to households' prefer-
ences and decision making for determining low-carbon transitions
of residential heating in the UK.

This study thus aims to develop a new modelling framework
that would incorporate those more complex influential factors into
a techno-economic energy systems model, UK TIMES (UKTM) [30].
The influential factors to UK homeowners' preferences for heating
technologies are first identified through a nationwide survey [31].
The number of representative household types to be included in the
model is then reduced through a cluster analysis approach. HHs,
formulated based on the characterising influential factors, are then
introduced into the model and their decisions are then regulated
through constraints reflecting the identified households' prefer-
ences. The research procedure is illustrated in Fig. 1.

In the following sections, the major findings of the nationwide
survey on homeowners' choice of heating technology are first
addressed in Section 2. Section 3 briefly describes the application of
a cluster analysis approach to reduce the number of representative
households. Section 4 addresses the representation of residential
heating in the UKTM model and how HHs are integrated into it. The
proposed formulation of how preferences are included is explained
in Section 5. Section 6 presents the results of the analyses, while
section 7 draws out the main conclusions from the study.

2. Homeowners' preferences for heating technology adoption

Numerous studies have been dedicated to investigating factors
influencing households' willingness to adopt alternative heating
systems in many countries, such as Germany [14,32—37], Sweden
[38,39], Norway [13,29,40—42], Finland [15,43], Ireland [10], Greece
[11], Italy [12] and Tunisia [44]. According to these studies, influ-
ential factors vary considerably among countries and it is thus
essential to identify country-specific influential factors for UK
homeowners. However, previous UK studies [28,45—49] mostly
adopted qualitative analysis and considered a limited range of
factors, such as age, income, and house type, while ignoring a wider
range of socio-demographic factors, such as education and
geographical region of the country.

A nationwide survey in the UK was thus carried out to collect
households' stated preferences of heating technologies in response
to various technology conditions, such as upfront cost, lifetime, and
so on. Along with respondents' choices, their socio-demographic
characteristics were also gathered in the survey. The collected
survey results were then used to construct a discrete choice model
(DCM) to identify most influential factors among the wide range of
factors considered in the survey. The survey is briefly described in
the Appendix.

The discrete choice model (DCM) can estimate the probability of
a specific selection among alternatives under the influence of
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Fig. 1. Research procedure to incorporate homeowners' preferences in the energy
system model.

attributes related to the choice [50]. Several studies have used these
consumer choice models for residential heating technology choice
using various fuel types [12—15, 43,45,46]. Our survey results,
which contain both a wide range of socio-demographic factors and
technology attributes from the choice experiments, were analysed
by the multinomial logit model (MNL) to identify the most influ-
ential factors for homeowners' preferences for heating technology
adoption.

The statistically significant factors are shown in Table 1. Heaters
were categorised into four types: Gas heaters, electric heaters, heat
pumps, and solid fuel boilers. Influential factors are found in 5
categories, including existing technology, socio-demography, re-
gion, dwelling, and awareness of eco-technology. Each factor might
only influence specific technologies and only when that factor is
within a specific range. For example, having currently an electric
heater increases the likelihood to adopt solid fuel boilers in the
future, but lowers the possibility of choosing an electric heater
again. On the other hand, households with gas heaters tend to
adopt gas heaters again, but the ownership of gas heaters does not
increase or decrease their likelihood to choose other types of
heaters. Interestingly, costs of heaters were found not to be influ-
ential, which is aligned with the suggestions in Refs. [14,28,29].

The most significant factors to almost all heaters identified in
the study are existing technology, number of bedrooms, the region
of the UK the consumer lives in and the awareness of eco-
technologies. To simplify the disaggregation of HHs in the model,
only existing technology and number of bedrooms were taken into
account to classify households. First, UK region was ignored due to
the limited number of sampled homeowners in some regions. Next,

although the awareness of eco-technologies also influences
homeowners' decisions, the impacts for preferences are relatively
minor across various technologies. Finally, even though house type
and income are significant for specific heaters, those can be re-
flected by number of bedrooms. According to the statistics of En-
glish Housing Survey (EHS) [51], number of bedrooms is highly
correlated to household income and dwelling type; therefore, it is
an ideal proxy to represent those household characteristics.

3. Cluster analysis

HHs should be categorised by the identified factors in the pre-
vious section. However, every factor contains several levels, such as
5 levels for the number of bedrooms. The total number of HHs can
increase exponentially while taking all levels of multiple factors
into account simultaneously. Including the full level of detail would
significantly increase the computational burden, while providing
diminishing returns in terms of representing accurately home-
owners' preferences. Therefore, it is essential to aggregate factor
levels into fewer number of level groups so that the number of HHs
could be reduced considerably, while simultaneously sacrificing as
little of the accuracy as possible.

A simple cluster analysis method, k-means, was thus applied to
aggregate factors levels into groups with similar adoption prefer-
ences. As indicated in Tan et al. [52], cluster analysis refers to al-
gorithms for grouping data objects based only on information
found in the data that describes the objects and their relationships.
The goal is that the objects within a group be similar to one another
and different from the objects in other groups. K-means algorithm
[53] is one of the widely used clustering algorithms. To divide data
points into K groups, K initial centroids are chosen randomly from
the data. K is user-specified parameter which is the desired number
of clusters. Each data point is then assigned to the closest centroid
and the collection of points belonging to a centroid is a cluster. The
centroid of each cluster is then updated based on the points
assigned to the cluster. The aforementioned procedure is repeated
to update the centroids of clusters until no point changes in each
cluster [52]. The objective function of the algorithm can be
formulated as follows to minimise the distance between points
within the same cluster.

K
miny >[I — will? M

i=1 x€S5;

where y; is the mean of points in cluster S;. In this study, the dis-
tance between two HHs is defined as the summation of differences
of adoption rates for heating technologies.

The cluster analysis procedure was then applied to aggregate 5
household types by number of bedrooms into clustered groups. The
clustered results are shown in Fig. 2. In the original divisions by
number of bedrooms, as presented in Fig. 2(a), obvious differences
can be found in the adoption rates of heating technologies corre-
sponding to various numbers of bedrooms. However, households
with certain numbers of bedrooms are more similar to each other.
As shown in Fig. 2(b)~(d), households with 1, 2, and 3 bedrooms
have more consistent preferences compared to those with 4 and 5
or more bedrooms.

Overall, gas heaters are always the most popular heater to all
households, no matter the number of bedrooms. However, the
adoption rates for other heater types fluctuate considerably
depending on the number of bedrooms. For example, households
with 5 or more bedrooms are more likely to choose heat pumps and
solid fuel boilers than households with less rooms are. Since the
patterns of adoption rates of 1, 2 and 3 bedrooms are similar
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Table 1
Influential factors to homeowners' preferences for heating technology adoption.

Category Influence on adoption Candidate heating technology
Gas heater Electric heater Heat pump Solid fuel boiler
Existing technology + Gas heater Heat pump Electric heater
Solid fuel boiler
_ Electric heater
Socio-demography + Age Age (<60) Age (35—44)
Income (>80 k)
Income (30 k~80k)
_ Income (<15k)
Region + East Midland London East Midland Scotland
North East Scotland York & Humber
Dwelling + Detached Number of bedrooms Number of bedrooms
Semidetached
_ Flat
Awareness of eco-technology + Insulation Insulation PV
Heat pump Wood pellet boiler
PV
CFL Smart meter

Electric storage heater

Heat pump

+: positive influence as level/value of factor increases; -: negative influence as level/value of factor increases.

according to Fig. 2(a) and (b), those three types of households can
be grouped into a single household type without losing much in-
formation. As a result, three household types with 1-3, 4, and 5
bedrooms, as illustrated in Fig. 2(c), were adopted to represent
households' heterogeneous preferences for heating technologies.
The existing heating technology is also a significant factor in
determining the preferences of a household. The existing
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technologies are in this study aggregated under four types of
heating technologies: Gas heaters (GAS), electric heaters (ELC), heat
pumps (HP), and solid fuel boilers (SOLID). Since heating technol-
ogies have been grouped into 4 types, the cluster analysis was not
applied to further reduce the number of types. The adoption rates
for each existing heating technologies are shown in Fig. 3. Gas
heaters are still the favourite choices for homeowners, no matter

100%
80%
<
- 60%
o
e 40%
S
< 20% I
0% mB_N III ll.l
HP  SOLID
ml m23 m4 m5ormore
(b)
100%
o 80%
3
&
- 60%
]
s 40%
[e)
©
< 20% I
0% m . .l

ELC SOLID

m1~4 m5or more

(d)

Fig. 2. Adoption rates of heating technologies for (a) non-clustered household types, (b) 4 clustered household types, (c) 3 clustered household types, and (d) 2 clustered household

types by bedroom number.
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what heating technologies are currently installed. Nonetheless,
when a household uses a specific technology, it's much more likely
to pick that technology again, compared to households switching to
another non-gas technology (or a household switching from
another technology to that one). This is especially pronounced with
heat pumps, with 40% of the owners choosing a heat pump also for
the next heating choice.

Consequently, the adoption rates of heating technologies for
three aggregate household types with four existing heater types are
shown in Table 2. In the survey samples, there were no households
with 4 or 5 bedrooms using heat pumps. Therefore, the adoption
rates for those households cannot be estimated from the survey.
The preferences of households with 1-3 bedrooms using heat
pumps are therefore assumed to also represent the possible pref-
erences for these households. As illustrated in Fig. 2(c), the same
existing heater types could have various influences on preferences
in different household types. For example, households with solid
fuel boilers would have 14.9% and 37.5% of chances of selecting heat
pumps for households with 1—3 bedrooms and 5 bedrooms
respectively. Therefore, it is essential to take both household type
and existing heater type into account when determining the pref-
erences of households.

4. Heterogeneous households in the UK TIMES model

As discussed in the previous section, the preferences of different
household types can differ significantly. Therefore, it is important
to represent these diverse preferences in the modelling of heating
technology adoption. The proposed framework in this study is
implemented to the UKTM model, used by the UK Department of
Business, Energy & Industrial Strategy (BEIS) [54] and therefore one
of the most influential energy system models in the UK. In the
following sections, the UKTM model is first briefly introduced,
followed by a more detailed description of how residential heating
in considered in UKTM. Finally, the new structure with HH types in
the UKTM is explained.

4.1. UK TIMES model

UKTM has been developed by the UCL Energy Institute as the
successor to the UK MARKAL model [55]. It is based on the model
generator TIMES (The Integrated MARKAL-EFOM System) [7],
which is developed and maintained by the Energy Technology
Systems Analysis Programme (ETSAP) of the International Energy
Agency. Besides its academic use, UKTM is the central long-term
energy system pathway model used for policy analysis at the CCC

100.0%
90.0%
80.0% Existing
o 70.0% technology
2 60.0%
S 50.0%
S 40.0%
©
< 30.0%
20.0%
al
0.0% J - -
GAS ELC HP SOLID
Candidate technology
=GAS mELC HP = SOLID

*GAS: gas heater; ELC: electric heater; HP: heat pump; SOLID: solid fuel boiler

Fig. 3. Adoption rates of heating technologies (x-axis) for households with various
existing heating technologies (coloured bars).

Table 2
Adoption rates of heating technologies for three household types with four existing
heater types [31].

Household type Existing heater Candidate heater

GAS ELC HP SOLID
1-3 bedrooms GAS 75.7% 4.7% 11.5% 8.1%
ELC 62.7% 14.8% 11.9% 10.6%
HP 53.1% 3.1% 40.6% 3.1%
SOLID 65.2% 3.7% 14.9% 16.2%
4 bedrooms GAS 78.9% 2.2% 11.7% 7.3%
ELC 75.0% 4.2% 12.5% 8.3%
HP 53.1%° 3.1% 40.6%° 31
SOLID 67.7% 0% 24.0% 8.3%
5 bedrooms GAS 60.2% 6.3% 19.9% 13.6%
ELC 40.0% 2.5% 45.0% 12.5%
HP 53.1%° 3.1% 40.6%° 31
SOLID 47.5% - 37.5% 15.0%

"GAS: gas heater; ELC: electric heater; HP: heat pump; SOLID: solid fuel boiler.
2 As there were too few households with 4 or 5 bedrooms in the sample, these
values are based on the data for 1-3 bedrooms households.

and Department for Business, Energy & Industrial Strategy (BEIS)
[2,54].

As described in Daly and Fais [30], UKTM is a bottom-up, tech-
nology-rich, dynamic, linear programming optimisation model
consisting of numerous alternative energy supply/end-use tech-
nologies and describing the whole UK energy system. The model is
comprised of eight supply-side and demand-side sectors, such as
resource, process, electricity, residential sectors. All sectors are
calibrated to the base year 2010 to be consistent with the official
energy statistics [56], including the existing stock of energy tech-
nologies and their characteristics. The temporal variations of en-
ergy supply and demand are represented in 16 time-slices (four
intra-day times-slices in four seasons). UKTM minimises total
welfare costs (under perfect foresight) to meet the exogenously
defined energy demands under a range of input assumptions (e.g.
technology parameters are drivers of energy demand (GDP and
population growth, for example)) and additional constraints (such
as maximum technology penetration rates and deployment po-
tentials). The model delivers a cost optimal, system-wide solution
for the energy transition over the coming decades [57].

4.2. Residential heating

Due to its important role in residential energy demand, heating
is depicted in UKTM in detail, with a range of heating technologies
included as alternatives for fulfilling current and future heat de-
mands. Heat can be supplied, for example, by a wide range of
boilers, such as conventional gas condensing boilers, wood pellet
boilers, air-source or ground-source heat pumps, micro-CHPs,
electric storage heaters or other types of electric heaters, or even
through district heating networks. The generated heat is then
delivered to existing or new houses through pipeline radiator or
underfloor heating system. For standalone heaters, no delivery
pipeline is required. The ageing existing stock of houses in the UK is,
on average, fairly poorly insulated and requires more heating de-
mand than new houses do [58]. Several conservation measures,
such as wall insulation, loft insulation, double glazing, and hot
water cylinder insulation, are available for the model to reduce
heating consumption in the existing houses. As for district heat, it
can be supplied by a CHP plant, an electric immersion heater, a
boiler station (with various fuel alternatives), a fuel cell, or a central
solar heating plant. Fuel switch is also taken into account in the
framework, as the model can decide to replace natural gas with
biogas for CHPs and boilers, in order to reduce GHG emissions.
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Secondary energy carriers, such as electricity and hydrogen, are
also considered for heating in the model. While, for example,
hydrogen based heating solutions are relatively costly in compari-
son to conventional technologies today, heat decarbonisation re-
quirements may, under stringent mitigation scenarios, make the
technologies competitive, as they allow the decarbonisation to take
place in the upstream processing sector. Electric heaters and heat
pumps provide similar mitigation alternatives.

4.3. New structure with heterogeneous households

The new schematic of the residential heating sector, reflecting
the various household preferences affecting technology choice, can
be represented as shown in Fig. 4. HH types, HH1 to HHn, were
introduced into the residential heating sector. The heating tech-
nologies available to the average household in original structure
were duplicated for each household type, so that all HHs can choose
any heating technologies available in the market to meet their
heating demands.

As the households' preferences are influenced by number of
bedrooms, in this study, households were divided into three types,
including households with 1—3 bedrooms, 4 bedrooms and 5 and
more bedrooms.

Furthermore, to simplify the formulation of the proposed pref-
erence model on heating technology adoption, the numerous
heating technologies were grouped into four heater types, district
heating technologies, and conservation measures. The four heater
types include gas heaters (including micro CHP), electric heaters,
heat pumps, solid fuel boilers to match with the types considered in
the survey on homeowners' preferences. As for the type of electric
heaters, central, night storage, and standalone electric heating
systems were grouped in the same type.

Finally, the remaining heating technologies not covered by
above four types were removed from the set of options available to
the model for future years. These heaters include coal heaters, oil
heaters and standalone solar water heaters. First, oil and especially
coal heaters have a relatively modest market share, are not fav-
oured by homeowners [28] and are expected to be phased out for
heat decarbonisation [19]. Second, solar water heaters can only
generate about half of year-round water needs, these technologies
should be integrated with other heating technologies [28]. There-
fore, hybrid systems combining solar water heaters with other

Set of heating technologies for HH1

heating technologies are considered instead. These hybrid systems
are grouped to technology types based on the non-solar technol-
ogy. For example, the hybrid systems integrating gas heaters and
solar water heaters are classified as gas heaters.

With the newly introduced household types and technologies,
adoption preferences for each household type can be regulated
through a range of newly introduced constraints, as will be
explained in the following section.

5. Preference model on heating technology adoption
5.1. Conceptual framework

With newly introduced household types in the model, the
preferences of each household type for heating technologies can
then be represented correspondingly. In the base year 2010, the mix
of heating technologies is calibrated to the historical records in
DECC [56] and allocated to the three household types according to
the statistics in the EHS [51]. In the model, households choose new
heating technologies whenever the heating technologies reach the
end of lifetime or heat demands increases and existing capacity is
no longer enough to fulfil the demand. Preferences of households,
as suggested in Table 2, are applied according to the type of
household and the existing heating technology. For example, for
households with 1—3 bedrooms, when gas heaters are installed
originally, shares of newly installed gas heaters, electric heaters,
heat pumps, and solid fuel boilers should be 75.7%, 4.7%, 11.5%, and
8.1% respectively. This new formulation, therefore, takes us from
cost optimisation to the other end of the spectrum; costs no longer
play a role for the choice of the heating technology and, as the
survey suggested, decisions are fully driven by non-monetary fac-
tors. Our new formulation can thus be seen to provide, together
with the cost optimising variant of the model, a range for how
diffusion of technologies in the residential sector might proceed.

Furthermore, district heating or conservation measures can also
be applied for heat provision or reduction in households. For dis-
trict heating networks, strong policy support from the government
is required to construct the infrastructure, e.g. the installation of
heat pipelines to already built-up areas, to enable the consumer to
choose the technology. In other words, individual homeowners
cannot simply choose to switch to district heating, if there is no
heating network in place. It is, therefore, assumed that policy
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Fig. 4. Simplified representation of the new residential heating sector with duplicated sets of heating technology for each household type in UKTM.
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makers have higher influence on the development of technology
and the adoption of district heating is determined by the model
based on the cost competitiveness compared to other heating
technologies, subject to conservative assumptions concerning its
maximum market share. As the focus of our study is on the choice
of heating technologies, the adoption of conservation measures is
also determined by the model based on the cost competitiveness
alone.

From the technical modelling perspective, the most challenging
part of the decision procedure in the proposed model is to deter-
mine the preferences based on the previously adopted heater types
for each household type throughout the model horizon. An
approach has thus been developed to trace the lost heat provision
of the decommissioned heating technologies of each heater type for
each household type at each time-step. The lost heat provision is
then replaced by heat from new heating technologies, which are
selected according to the corresponding preferences. More details
will be given in the following section.

5.2. Preference model

To implement the conceptual framework in the UKTM, the new
preference model will regulate the adoption behaviour of individ-
ual household types. In the model description below, the existing
system equations, related to e.g. energy supply, transformation,
delivery, consumption etc., in the UKTM are omitted. The defini-
tions of variables used in the following equations are listed in
Table 3. Four heater types are taken into account, gas heaters (GAS),
electric heaters (ELC), heat pumps (HP), and solid fuel boilers
(SOLID).

K
Z hi,](,t + dhitt + CSU,"’t =TI X THD[

i=1,..,N (3)
k=1
K
Z nhilj,kﬁt + Tldhi‘]‘_’t + NCsvjj ¢ > vhij‘t,] — Uh,‘_j_’t (4)
k=1

K
nhije = PFjre > nhijre i=1,..,N;j,k
k=1

= GAS, ELC, HP, SOLID (5)
K

CAPACT}, x nCjy, = ; nhyj (6)

dh;, < DH;, i=1,...,N (7)

csvip <GSV i=1,...,.N (8)

DH;; > DH;; 4 i=1,...,N 9)

CSVip > CSVip 4 i=1,...,N (10)

other existing sysetm constraints

Equation (2) is the objective function which determines optimal
combinations of technologies across the energy system, including
heating technologies in the residential sector, with minimal total
system cost and while satisfying all the constraints. Equation (3)
ensures the total heat provided by heating technologies in each
household type can fulfil the corresponding heat demand of that
household type. The ratios (r;) of heat demands for individual

Minimize ET: N EK: Coke X NCipp -+ Other existing system costs hogsehold types _to the total residentia_l heat demand (THD;) are
S55F " estimated according to the demographic profile of the household
) types in the UK and the corresponding average floor areas of each
household type based on EHS. The heat demands of each household
Subject to type are expected to increase since the total residential heat
Table 3
Definitions of variables in the preference model.
Variable Definition
i Household type
j The previously adopted heater type
k The newly adopted heater type
t Modelling year
K Total number of heater types
N Total number of household types
T Total number of modelling years
THD; Total heat demand in the residential sector in year t
T The ratio of heat demand of household type i to the total residential heat demand
Cikt The net present cost of the heater type k installed in year ¢t per unit of capacity
NCj g ¢ New capacity additions of heater type k in household type i in year t
R Heat provided by heater type k to household i in year t
dh;, Heat provided by district heating network to household type i in year t
CSvj ¢ Conserved heat demand of household type i in year t
DH;j, The maximum potential of district heating for household type i in year t
CSVi, The maximum potential of conservation measures for household type i in year t
vhyj, Heat provision of the vintage heater type j to household i in year t
nhyjg, Heat provided by newly installed heater type k in year t in household i which had heater type j in year t-1
ndh;; New provision of heat from district heating network in year t to household type i which had heater type j in year t-1
nesvije New conservation of heat in year t in household type i which had heater type j in year t-1
PFjjj¢ Household type i's preference ratio of adopting heater type k in year t while heater type j is installed previously

CAPACT,,

Coefficient to convert capacity to heat provision for heater type k




P-H. Li et al. / Energy 148 (2018) 716—727 723

160
140
120
100
80
60
40
20
0 ]

1~3 bedrooms

PJ

5 or more
bedrooms

4 bedrooms

Fig. 5. Maximum potentials of district heating for each household type in urban area
by 2050.

demand continues increasing for the higher population and hous-
ing stock in the future.

Equation (4) ensures the lost heat provision of vintage heaters of
a specific heater type in each household type can be replaced by the
heat provision from new heating technologies, including individual
heating technologies, district heating network (ndh;;,), and con-
servation measures (ncsv;j,). This equation is essential to enable
the model to trace the required heat demands for each household
type with a specific existing heater type in year t-1. With the traced
heat demands, preferences for heating technologies can then be
applied to regulate choices of each household type. The right hand
side of the equation evaluates the lost heat provision of a heater
type by comparing the difference in heat provisions of vintage
heaters of heater type j between year t — 1 and year t. According to
the left hand side of the equation, the household type i can then
choose heaters k, district heating, and conservation measures to fill
the lost heat provision.

Furthermore, the adoption rates of individual heater types for
each household type are regulated by Equation (5). The share
(PF;j k) of new heat provision from heater type k of the total new
heat provision for the household type i with existing heater type j is
matched with the corresponding adoption rate in Table 2. The
adoption rate can also vary over time to reflect changes in prefer-
ences for new heating technologies. This equation also regulates
the technology adoption for the new heat demands for new
households. Since those households do not have existing technol-
ogies, the constraints then only reflect the influences of number of
bedrooms on preferences. Finally, Equation (6) is the capacity
constraint for the new heating technologies.

Since the preference constraints only apply to heater types, it
means individual heating technologies grouped under a given
heater type can still compete with each other based on their energy
efficiency and costs (e.g. gas heaters and micro-CHPs).

Equation (4) suggests that households can choose district
heating and conservation measures to fulfil heat demands if those
technologies are more cost-effective. However, not every

Table 4
Definitions of scenarios for various preference settings.

Heat Provision by Technology in LGHG_Cost
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Fig. 6. Heating technology mix for the case without preference-related constraints.

household is suitable for these as district heating is only feasible in
urban areas and conservation measures are much more effective in
ageing housing stock. Equations (7) and (8) are then imposed to
limit the maximum potentials of district heating and conservation
measures in each household type. We follow Element Energy [59],
which estimated the maximal potential of district heating in the UK
by 2050 to be about 136 PJ. Since district heating is much more
likely to be economically feasible in urban areas [59], the potential
for each household type was estimated based on the share of the
household type in urban area according to EHS. The estimated
potentials for three household types are illustrated in Fig. 5. On the
other hand, the total potential of conservation measures by 2050
was adopted from DECC's study for evaluating the impact of Green
Deal, an energy efficiency policy for domestic buildings, which is
about 154 PJ [60]. The potential is redistributed among three
household types according to the proportions of heat demand in
each household type.

Finally, equations (9) and (10) ensure the installed district heat
network and conservation measures should be functional after
being introduced into the system. In other words, there will be no
redundant heating facilities in the system. As a result, households
cannot just switch back to individual heating technologies for heat
provision while there are district heat network and conservation
measures in place.

6. Results and discussions

Two scenarios were applied to investigate the impacts of pref-
erences for heating technologies. The definitions of these scenarios
are listed in Table 4. The GHG targets are the same for both sce-
narios, including the legally binding 2050 target to reduce GHG
emissions by 80% on the levels of 1990 and the five carbon budgets
[61]. Our first scenario (LGHG_Cost) functions as the reference case

Scenario GHG emission targets Preference settings

LGHG_Cost 1% to 5th UK Carbon Budget and 80% reduction on 1990 level by 2050 (constraining cumulative Without preference related constraints
emissions from 2030 to 2050)

LGHG_Pref 15 to 5th UK Carbon Budget and 80% reduction on 1990 level by 2050 (constraining cumulative With preference related constraints

emissions from 2030 to 2050)
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Heat Provision by Household Type in LGHG_Pref

) < <
N [a] [a]
a ) )
o

2010 2015 2020 2025 2030 2035 2040 2045 2050

900
800
700 0
600
500
400
300
200

100

BD4 ms

BD5

BD123 M ]
BD4 ms—

BD5 mmmmm (

BD123 m —
BD4 m—
BD5 mmwmm(
BD4 msm——

BD5

BD123

BD4 memss—

BD5

BD123

BD5

BD123

BD5  mmmm—

BD123

PJ
o
BD4 mm—
BD5 mmmm
BD4 m—
BD5 i (
BD123 M

BD123

m Heating technologies District heating O Conservation

* BD123: households with 1~3 bedrooms; BD4: households with 4 bedrooms; BD5: households with 5 or more
bedrooms.

Fig. 7. Types of heating measures for each household type for the case with preference
constraints.

and does not take into account the new preference formulation. On
the other hand, LGHG_Pref further incorporated preference related
constraints, allowing us to assess what the impact of these con-
straints may be for the residential sector and energy system as a
whole. Preference constraints were applied to all households,
including those renting houses. Our aim is to compare and contrast
the two scenarios, one relying purely on cost driven decisions and
the other purely on non-cost elements, in order to understand the
magnitude of the uncertainty created by consideration of behaviour
on the cost effective system transition.

The heat provision by technology for the case LGHG_Cost is
illustrated in Fig. 6. Since there was no preference applied in the
model, the model optimised the whole energy system to achieve
the predefined GHG emission targets with minimum system costs.
In the early stage of the modelling period, gas heaters are still the
favourite technologies while GHG emissions can be reduced with
lower costs in other sectors. With the stricter GHG emission targets
after 2030, share of gas for heating starts to decline and more and
more of the gas heaters are efficient micro-CHPs. Approaching
2050, low-carbon electricity is used more and more, to further
decarbonise the sector by rapidly increasing the share of heat
pumps during the last 10 years of the model horizon. Conservation

Heat Provision by Technology in LGHG_Pref
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0
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m Gas heater u Elc heater m Solid heater

District heating = Other

= Heat pump

O Conservation

Fig. 8. Heating technology mix for the case with preference-related constraints.

Difference of Heat Provision by Technology:
LGHG_Pref - LGHG_Cost
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Fig. 9. Differences of heating technology mix between cases with and without
preference-related constraints.

measures are cost-effective and are therefore introduced into the
system from early on and up to the maximum potential by 2035. It
is also noteworthy that the heat provision from district heating is
limited, about 12.6 P] by 2050.

The heat provisions by household type and by technology for
case LGHG_Pref are shown in Fig. 7 and Fig. 8 respectively. The
influences of the preferences on heating technology choices are
revealed by the differences of heat provision, system costs, GHG
emissions, and carbon prices between the cases of LGHG_Pref and
LGHG_Cost, as shown in Figs. 9—11.

As illustrated in Fig. 7, individual household types attain heat
from various mixes of heating technologies for their continually
increasing heat demands. While individual heating technologies
remain the major heat supply sources, district heating also provides
considerable heat to each household type, especially for house-
holds with 1-3 bedrooms. Due to the cost-effectiveness, conser-
vation measures reach the maximum potentials by 2020 for 5
bedrooms and by 2035 for 1-3 bedrooms and 4 bedrooms. More-
over, district heating plays a more crucial role in LGHG_Pref than it
does in LGHG_Cost. By 2050, heat provisions from district heating
reach more than 60% of the maximum potential for 1-3 bedrooms
and 4 bedrooms, which are about 106 PJ and 12 PJ respectively, and
the maximum potential for 5 bedrooms, which is about 7.8 PJ.

As shown in Fig. 8, the transition of heating technologies is
much smoother than that in the previous case. For example, unlike
in LGHG_Cost, heat pumps are introduced from very beginning of
the modelling period, following the preferences of certain per-
centage of gas using households that would consider to adopting
heat pumps. On the other hand, the share of heat provision from
electric heaters is limited throughout the modelling period. This is
due to the relative low preference rates for electric heaters, ranging
from 2.2% to 14.8%. Even current users of electric heaters living in
households with 1—3 bedrooms are much more likely to move to
another technology, especially gas heaters. Finally, the share of gas
heaters declines over time. In the base year, almost all the heat
provision is from gas heaters. The decommission of gas heaters
opens the chance to introduce other heater types into the system
and while gas heaters are still the most common choice for the new
heater, they are not as common a choice as they are in the current
stock. Moreover, the increasing share of district heating and con-
servation measures reduces the full volume of heat provision for
which gas heaters compete over.

Fig. 8 also shows that heat provision from district heating is
much larger than that in the previous case, starting from the
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Fig. 10. Differences of annual undiscounted energy system costs between cases with
and without preference-related constraints.

Difference of GHG Emissions by Sector:
LGHG_Pref - LGHG_Cost

10 . I
0

g 5
S )
o
; 2010 2015 2020 2025 203 2035 204 2045 2050
-10
-15
-20 -
mmm Agriculture & Land Use Services Electricity
Industry Residential Transport

= Hydrogen mmm Processing mmm Upstream

mmm Non-energy use —Total net emissions

Fig. 11. Differences of GHG emissions by sector between cases with and without
preference-related constraints.

beginning of the modelling horizon. In LGHG_Pref, preferences
drive households to adopt heat pumps, even when the cost is much
higher than that of competing technologies. To reduce the total
costs, the model introduces more district heating and conservation
measures than it does in LGHG_Cost. From the perspective of the
system wide planner (i.e. government), it's more cost effective to
provide district heating for the consumers than to allow them to
choose more costly individual heating systems. The fuel used for
district heating also changes over time, as the tightening GHG
emissions targets requires further reductions from all sectors. To
reduce GHG emissions from district heating, fuels are switched
sequentially from natural gas, hydrogen, and electricity to solid
fuel, latter being more expensive but with zero GHG emission
(bioenergy is assumed to be carbon neutral). At first, gas boilers are
adopted for district heating, then gradually replaced by hydrogen-
fuelled boilers. As approaching 2050, electric heaters gradually
dominate; finally, solid fuel boilers are also deployed to generate
heat for district heating.

The differences between these two cases are further revealed in
Fig. 9. The positive values indicate the heat provisions of corre-
sponding technologies are higher in the case of LGHG_Pref. Before
2040, in LGHG_Pref, there is much more heat from electric heaters,
heat pumps, solid fuel boilers, and district heating, to replace heat
from gas heaters in LGHG_Cost. As noted, in LGHG_Pref

conservation measures are also adopted much earlier and, as
LGHG_Cost, reach maximum potential by 2035. The pattern
changes abruptly from 2045, when in LGHG_Cost heat provision
from heat pumps is rapidly expanded to cut off GHG emissions
dramatically. As a result, in LGHG_Cost 141.56 P] more heat is pro-
vided by heat pumps in 2050.

As mentioned in previous sections, LGHG_Cost uses more gas
heaters in the early stage and switches to heat pumps and electric
heaters approaching 2050. Therefore, LGHG_Cost consumes much
more natural gas in the beginning but requires more electricity in
the last 10 years than LGHG_Pref does. LGHG_Pref, on the other
hand, consumes more electricity before 2040 and uses more nat-
ural gas after 2045. This is because of the higher deployment of heat
pumps and electric heaters before 2040 and the higher adoption of
gas heaters after 2045. The preference constraints also lead to
higher adoption of solid fuel boilers, so that the consumption of
biofuels is higher in LGHG_Pref over the modelling period. In
addition, LGHG_Pref also consumes more solar from 2040. This
means there are more hybrid heating systems with solar water
heaters are adopted. Finally, more hydrogen is also used for district
heating in LGHG_Pref (mixed with natural gas). In terms of total net
fuel consumption, the LGHG_Pref requires less fuels before 2040 for
there are more energy efficient heaters in place, such as heat
pumps. After 2045, however, LGHG_Pref consumes more fuels as
heat pumps in LGHG_Cost increase sharply.

Furthermore, as indicated in Fig. 10, the total system costs are
higher over almost all the modelling periods in LGHG_Pref. The
higher costs are due to the investments in more expensive heating
technologies, such as heat pumps, solid fuel boilers and district
heating, before 2040. In contrast, since 2045, LGHG_Cost adopts
more heat pumps which leads to the higher costs in the electricity
sector. At the same time, LGHG_Pref spends more on natural gas as
gas heaters are deployed more widely. Although the total net costs
by 2050 are similar between these two cases, the accumulative
system cost difference is up to 129.2 billion GBP for the whole
modelling period (over 3 billion annually, in net present value).

Finally, the differences of GHG emissions by sector between
these two cases are shown in Fig. 11. As presented by the total net
emissions, the GHG emissions are basically the same before 2030
for the fixed targets of the 1st to 5th Carbon Budgets. However, as
LGHG_Pref consumes more electricity for heat provision, the GHG
emissions are higher in electricity sector than that in LGHG_Cost.
Furthermore, the low emissions from heating allows the model to
choose fossil fuels for hydrogen production to reduce total system
costs — and therefore move emissions from end use to the con-
version sector. After 2035, the imposed constraint of fixed cumu-
lative GHG emissions gave the model some flexibility to reduce
total system costs by deciding on the timing of the GHG reductions.
Therefore, LGHG_Cost chose cheaper but more carbon intensive
technologies, such as gas heaters, to reduce system costs at first.
Then, more expensive low-carbon heating technologies are chosen
later when the cost of technologies fall further. As a result,
LGHG_Cost has higher GHG emissions between 2035 and 2040, but
emit less GHGs after 2045. Lastly, the higher emissions in
LGHG_Pref from 2045 are for the higher consumption of hydrogen.
More hydrogen, produced from natural gas and coal, is consumed
in both the residential and service sectors.

7. Conclusions

Long-term energy planning models, such as TIMES model, are
usually applied to develop least cost decarbonisation pathways for
the energy system, including the residential heating sector. How-
ever, the cost optimising, linear programming framework of these
models assumes economically rational, homogeneous actors, is
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sensitive to cost assumptions of technologies and can suddenly
switch fully to alternative technologies. To overcome these weak-
nesses, and to offer a counterfactual to purely cost driven approach,
a novel framework has been developed to incorporate heteroge-
neous homeowners' preferences for heating technologies into the
UKTM model. This allows us to simulate the diffusion of technol-
ogies based on empirical data, instead of relying on somewhat
subjective growth constraints [17].

The nationwide survey identified existing technologies, age,
income, region, dwelling characteristics, and knowledge of eco-
technology as the six most influential factors for determining
homeowners' preferences for heating systems. Among those fac-
tors, existing technologies and number of bedrooms are the most
persistent and representative ones and therefore chosen to be
taken into account when modelling the penetration of heating
technologies in the UK energy system. Cost was found not to have a
statistically significant impact on homeowners' choices.

As shown in our study, without considering preferences of the
heterogeneous households, the energy system model adopts as
many gas heaters as possible during the coming decades, with a
dramatic increase in the share of heat pumps towards the end of
the time horizon. Such a rapid transition, however, is driven by
the cost optimisation approach and does not appear plausible in
light of the households' preferences that were surveyed. Since
the survey indicates that households are heterogeneous and
adoptions of heating technologies for households are influenced
by the technologies these households currently have, abrupt
changes in the technology mix are unlikely to happen over a
short period.

By incorporating households' preferences into the updated
model, the penetration of heating technologies shows a more
gradual and smoother development than those in the standard
model. This shows how the residential sector might be gradually
decarbonised as consumers move from one technology regime to
another, as described by the observed preferences. However, solely
relying on households' preferences for individual heating technol-
ogies does, in our scenario, imply costs that are high enough to
trigger investments in district heating and conservation to reduce
the need for house specific heating technologies. The introduction
of district heating provides the system higher flexibility for heat
decarbonisation. For instance, even if the penetration of low-
carbon heaters, such as heat pumps, would not proceed as
rapidly as hoped, district heat network can further decarbonise
residential heating by switching to low- or zero-emissions fuels,
such as biofuels or hydrogen produced with CCS. The government
should thus strengthen supporting policies to introduce district
heating in urban areas in larger scale as early as possible. Also,
conservation measures are highly cost-effective and not in conflict
with other heating measures. The maximum potential of these
measures was thus always exploited before 2050 in both study
cases. To reduce total costs for residential heating, these no-regret
measures should also be widely installed in ageing housing stock to
reduce heat demand.

The proposed preference model has successfully incorporated
households' preferences into the energy systems model. However,
in the survey, only four heater types were considered for their fuels
and installation requirements. For future works, a more detailed
survey on homeowners' preferences for heating technologies is
essential for distinguishing homeowners' attitudes toward extra
candidate heating technologies, such as micro-CHPs. In addition,
the influential factors were based on the stated preferences from
the survey. To further verify those factors, experiments on revealed
preferences should be carried out in the future. Furthermore, when
more samples are available, other influential factors, such as region,
might become representative enough to be applied in the same

framework to investigate the influences to provide more compre-
hensive insights. Finally, preferences might vary over time after
more low-carbon heating technologies are introduced. Temporal
variations of preferences can also be applied in the proposed
framework to explore the sensitivities of energy systems to
temporally varying preferences.

This study is the first of its kind to explicitly incorporate influ-
ential factors to homeowners' preferences for heating technologies
in a linear programming framework, the UK TIMES model. Unlike
previous studies, this study not only considers household hetero-
geneity but also successfully incorporates an endogenously
changing temporal preference element into the modelling process.
Moreover, the framework can also be applied to households' pref-
erences for other end-use energy technologies whenever the cost is
not crucial to preferences, and is also suitable for other linear
programming-based energy models, not only limited to TIMES
model.
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