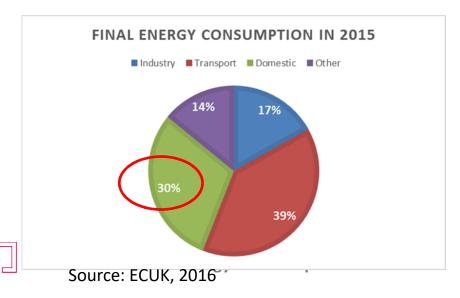


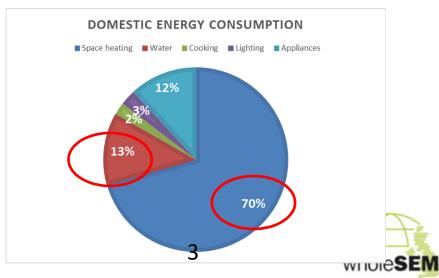
Incorporating Homeowners' Preferences for Heat Technologies in the UK TIMES Model

Dr. Pei-Hao Li (p.li@ucl.ac.uk), Research Associate
Dr. Ilkka Keppo, Senior Lecturer
UCL Energy Institute
2017 International Energy Workshop, Maryland, USA
12th-14th July, 2017

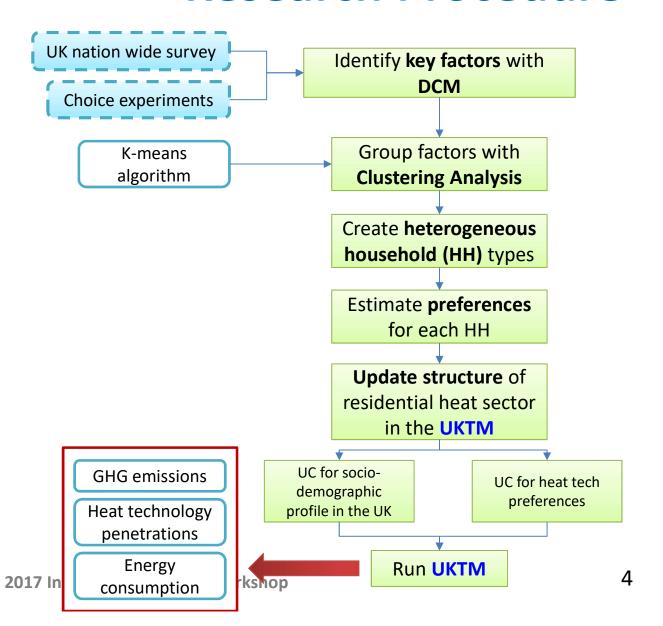
Outline

- Introduction
- Research Procedure
- Discrete Choice Model
- Clustering Analysis
- UK TIMES
- Residential Heating in UKTM
- Preference Model on Heating Technology Choice
- Results
- Conclusions and Future Works





Introduction


- 2008 UK Climate Change Act: 80% reduction by 2050
- Residential heating should be decarbonised dramatically by adopting low-carbon heat technologies
- CCC (2016): 2.3 million heat pumps by 2030; 31 million by 2050
 - Require radical behavioural adjustment
- Homeowners' preferences of heat technology choice
 - Not yet reflected in energy modelling well!

Research Procedure

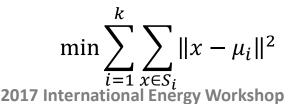
Discrete Choice Experiment (1/2)

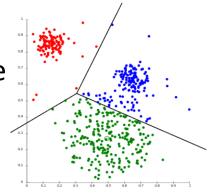
- Nationwide survey in 2015
 - 1,007 respondents
 - 721 completed choice experiment
 - 442 homeowners
- Multinomial logit model (MNL)
- Considered factors (wider range)

Example choice				
Type of heating system	Gas	Electric storage	Heat pump	Solid fuel
Upfront cost	£2,000	£1,500	£12,000	£4,000
Annual cost	£1,000	£2,300	£150	£300
CO ₂ emissions, where the typical house in the UK emits about 3 tonnes per year	Average emissions (around 3 tonnes)	Very low emissions (0-1 tonnes)	Very low emissions (0- 1 tonnes)	High emissions (more than 4 tonnes)
Lifetime (Years)	15 years	20 years	20 years	20 years
Operation hassle	None	None	Substantial	Some
PLEASE INDICATE THE SYSTEM YOU WOULD CHOOSE				

Category	Factors	
Socio-demography	Gender, age, household income, education level, work status	
Economy	Upfront cost*, annual cost* (operation & maintenance cost), responsibility of bill payment	
Environment	Carbon emission*	
Technology	Lifetime*, operation hassle*, existing heat technology	
Dwelling	Type, age, bedroom number, family size, region, length of stay	
Eco-knowledge	Awareness of eco-technologies (PV, CFL, electric storage heater, heat pump, wood pellet boiler and etc.)	

Discrete Choice Experiment (2/2)


- Significant factors
 - Region, Dwelling type, Bedroom number, Age, Income, <u>Existing heat tech</u>,
 Awareness of eco-tech
 - Consistent with previous findings (DECC, 2013)


	GAS	ELC	НР	SOLID
Existing Tech	Gas heater+ Oil boiler+	Elc Storage + Elc other -	Heat pump+ Oil boiler+	Elc other + Open fireplace+
Cost/Tech Attribute		Upfront Cost(>Gas) - Hassle -	Cost/gas cost -	Upfront cost(>gas)-
Socio- demographic	Age(<60)+	Age+	Income(<15k)-	Age(35-44)+ Income(>80k)+ Income(30k~80k)+
Region	East Mid + North East +	London + Scotland +	East Midland+	Scotland+ York&Humber+
Dwelling		Detached + Semidetached+ Flat -	Bedroom no+	Bedroom no+
Awareness	Insulation+ CFL – Elc Storage -	Smart meter – Heat pump -	Insulation+ Heat pump+ PV+ 6	PV+ Wood pellet boiler+

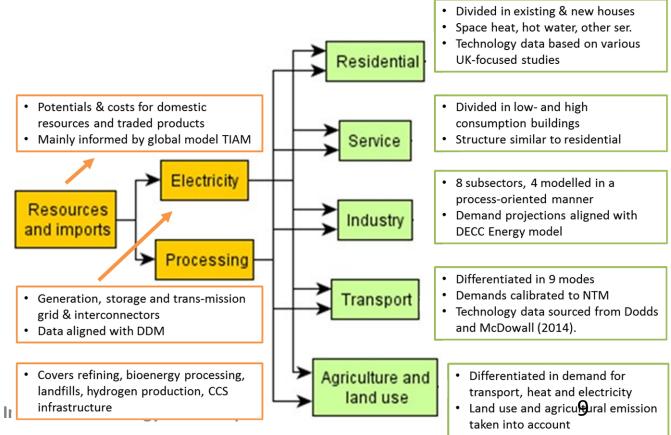
Clustering Analysis (1/2)

- Reduce total number of households
 - Easily reach thousands types
- Determine how to group attributes of factors
- Clusters for
 - Existing technology, awareness, region, bedroom number
- K-means++ algorithm
 - partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean
 - Multiple runs to find better results

Clustering Analysis (2/2)

Clusters

Existing Technology	Awareness	Region	Bedroom no
Gas Central, Elc Heater, Open fireplace	PV, Heat Pump	London, Scotland	1~3
Gas heater, Solid boiler, Solid Stove	Wood Pellet Boiler	North East	4
Oil central, Heat pump	CFL	East Midlands	5
Elc storage	Other techs	Rest regions	
	None		

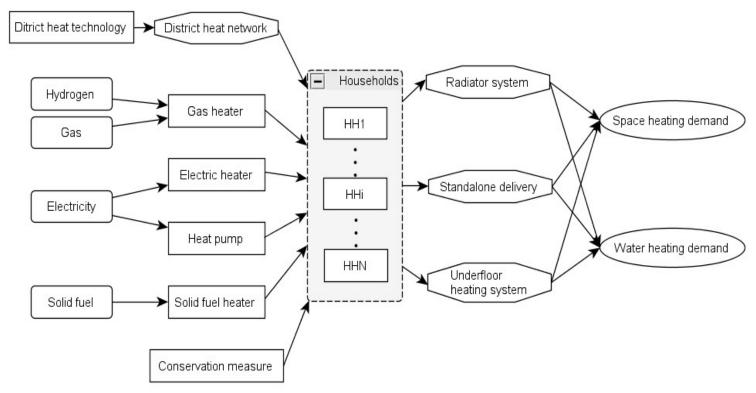


UKTM-The UK TIMES Model

- Developed by UCL Energy Institute under wholeSEM project
- Whole Energy System
- Technology-rich
- Minimum cost
- Adopted by UK government (BEIS, CCC) for policy making

Residential Heating in UKTM

- UKTM includes a wide range of heating technologies to fulfill water heating and space heating demands
- Heat technology (~100): gas central heater, electric heater, heat pump, solid fuel heater, micro-CHP, hybrid heater, district heat network
- Delivery technology: pipe radiator, underfloor, standalone



Heterogeneous Households in UKTM

- Introduce heterogeneous households into the model to represent various behaviours of each household type
- Duplicate heating technology, district heat and conservation measures for each household type (~1200 heating technologies)

Preference Model on Heating Technology Choice

Regulate households' behaviour in the model

Minimize
$$\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{k=1}^{F} c_{i,k,t} \times nc_{i,k,t} + other \ existing \ system \ costs$$
Minimize
$$\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{k=1}^{F} c_{i,k,t} \times nc_{i,k,t} + other \ existing \ system \ costs$$

Demographic constraint: heat demand spreads among household types

Growth constraint: decommissioned heating technologies in a household type should be replaced by newly chosen heating technologies (ensure heterogeneity of households in the model)

Preference constraint: reflect households' preferences for heating technologies

New capacity constraint: convert heating activity of new technology into capacity for cost estimation

Constraints on conservation (CSV) and district heating (DH):

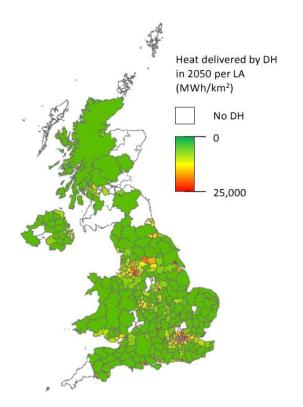
Activities of CSV and DH for each household type should be less than the corresponding maximum potential

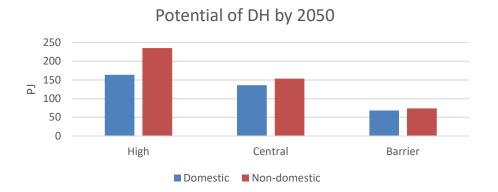
Preferences of each household type

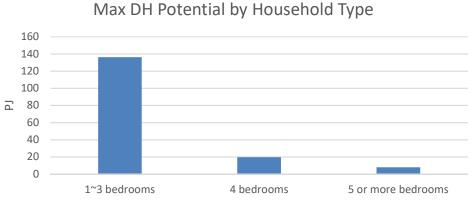
- Most influential factors:
 - No. of bedrooms, Existing heating technology
- Preference ratios
 - Samples for 4 and 5 bedrooms with existing heat pumps were missing

Household type	Existing heater	Chosen heater			
Household type		Gas	Elc	Heat	Solid
	Gas	75.7%	4.7%	11.5%	8.1%
1~3 bedrooms	Elc	62.7%	14.8%	11.9%	10.6%
1 3 bearooms	Heat	53.1%	3.1%	40.6%	3.1%
	Solid	65.2%	3.7%	14.9%	16.2%
4 bedrooms	Gas	78.9%	2.2%	11.7%	7.3%
	Elc	75.0%	4.2%	12.5%	8.3%
	Heat	53.1%**	3.1%**	40.6%**	3.1%**
	Solid	67.7%	-	24.0%	8.3%
5 bedrooms	Gas	60.2%	6.3%	19.9%	13.6%
	Elc	40.0%	2.5%	45.0%	12.5%
	Heat	53.1%**	3.1%**	40.6%**	3.1%**
	Solid	47.5%	-	37.5%	15.0%

^{**}assume the preferences are the same as those for 1~3 bedrooms







Max Potential of District Heating in the UK

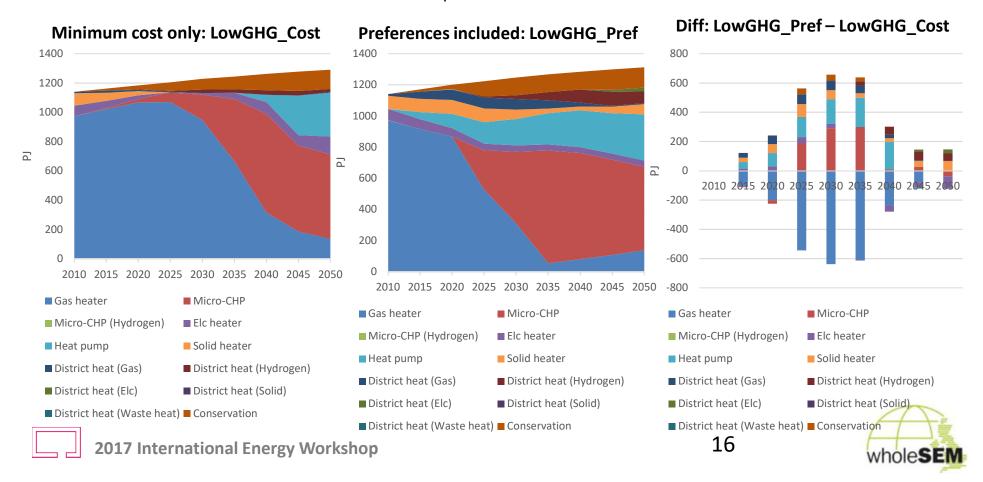
- Based on **detailed spatial analysis**: UK heat map, heat sources (waste heat from industrial sector, river and etc.)
- Introduce max potential of district heating for each household type as constraints
 - **English Household Survey**
 - Shares of households in urban area

2017 International Energy WorkshopSource: Element Energy, 2015, Research on district heating and local approaches to heat decarbonisation

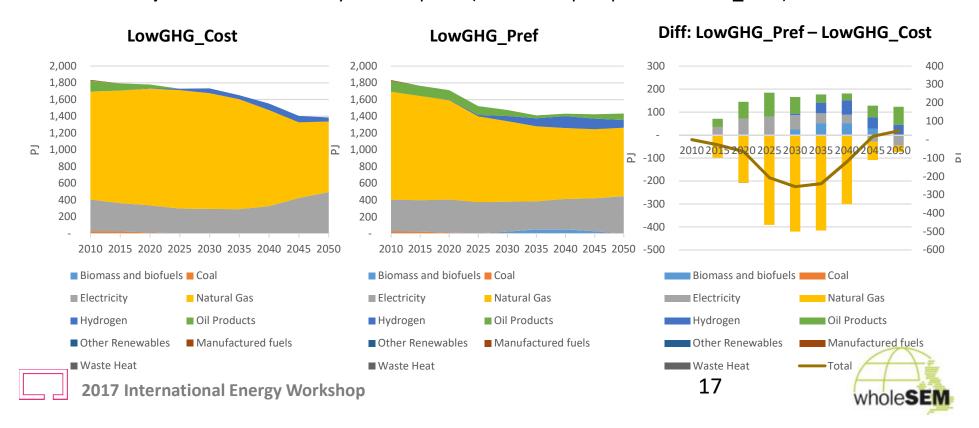
Scenarios

- To reveal the influences of households' preferences on heating technology choices
- GHG targets:
 - **The Climate Change Act 2008**: 80% reduction on 1990 level by 2050
 - **5**th **Carbon Budget:** 57% reduction on 1990 level by 2030

Scenario	GHG targets	Preference settings	
LowGHG_Cost	80% reduction on 1990 level by 2050 Carbon budgets (1st to 5th)	Without Preference related constraints	
LowGHG_Pref	80% reduction on 1990 level by 2050 Carbon budgets (1st to 5th)	With Preference related constraints	

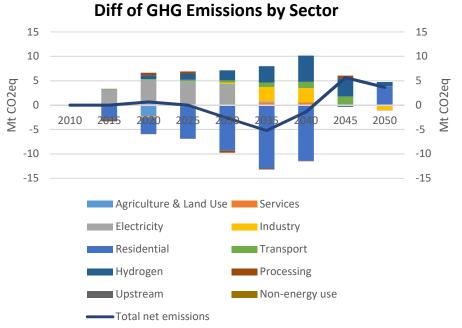


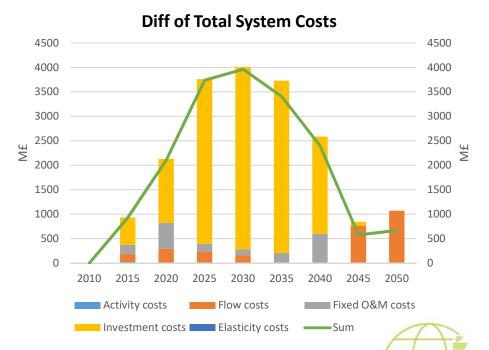
Results(1/3): Heating Technologies


- Heating technology:
 - Minimum cost: abrupt U-turn to increase heat pumps approaching 2050, more electric heaters
 - Preference: heat pumps increase gradually, more solid fuel boilers, more micro-CHP to improve efficiency
- District heating: much more; transit from gas, hydrogen to electric heating
- Conservation measure: Introduced earlier in preference case

Results (2/3): Fuel consumption in residential sector

- LowGHG_Pref:
 - Before 2045
 - Less fuel consumption before 2045: more heat pumps
 - Less gas consumption
 - More oil and electricity consumption
 - After 2030: More hydrogen consumption: district heating
 - By 2050: Less electricity consumption (more heat pumps in LowGHG_Cost)


Results (3/3): GHG Emissions and Cost


GHG Emissions

- Tradeoff between sectors
- More emissions for hydrogen production
- LowGHG_Pref: ~4 million tones of CO2eq more (2%)

Total System Cost

- More investment costs in residential sector, more flow costs approaching 2050
- LowGHG_Pref: 87.6 billion GBP more

Conclusions and Future Works

- The developed framework can well represent households' preferences in the Energy System Model (TIMES)
- With homeowners' preferences, the future projection is more realistic
- Micro-CHP and district heating are crucial to decarbonise residential heating in the UK
- Future works
 - Scenarios
 - Consider other influential factors, such as awareness of technology and subsidy
 - Sensitivity analysis
 - Variations of households' preferences

Thanks for your attention!

Dr. Pei-Hao Li
UCL Energy Institute
p.li@ucl.ac.uk

