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Excited states of defect linear arrays in silicon: A first-principles study
based on hydrogen cluster analogs
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Excited states of a single donor in bulk silicon have previously been studied extensively based on effective
mass theory. However, proper theoretical descriptions of the excited states of a donor cluster are still scarce. Here
we study the excitations of lines of defects within a single-valley spherical band approximation, thus mapping
the problem to a scaled hydrogen atom array. A series of detailed time-dependent Hartree-Fock, time-dependent
hybrid density-functional theory and full configuration-interaction calculations have been performed to understand
linear clusters of up to 10 donors. Our studies illustrate the generic features of their excited states, addressing the
competition between formation of interdonor ionic states and intradonor atomic excited states. At short interdonor
distances, excited states of donor molecules are dominant, at intermediate distances ionic states play an important
role, and at long distances the intradonor excitations are predominant as expected. The calculations presented
here emphasize the importance of correlations between donor electrons, and are thus complementary to other
recent approaches that include effective mass anisotropy and multivalley effects. The exchange splittings between
relevant excited states have also been estimated for a donor pair and for three-donor arrays; the splittings are much
larger than those in the ground state in the range of donor separations between 10 and 20 nm. This establishes a
solid theoretical basis for the use of excited-state exchange interactions for controllable quantum gate operations
in silicon.
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I. INTRODUCTION

After decades of development and incorporation of many
new materials, the core material technology of microelec-
tronics remains based on silicon. Impurities in silicon play a
vital role in its transport, magnetic, and optical properties [1].
The recent encouraging progress in deterministic positioning
of dopants in silicon [2–4] promises atom-by-atom design
and bottom-up fabrication of silicon-based nanodevices; such
nanostructures can offer not only an ultimate limit for con-
ventional electronic components such as wires [5] and tunnel
structures [6], but also a potential platform for many applica-
tions in silicon quantum electronics [1], and ultimately for new
technologies that exploit the quantum properties of electron
spin and orbital motion [7–12]. An obvious candidate for a
quantum bit (qubit) is a donor electron spin: the spin-lattice
relaxation time (T1) of donor electron spins in silicon has been
measured to be up to a few thousand seconds [13,14], and
the coherence time (T2) is up to milliseconds, limited only by
interactions with neighboring electron or nuclear spins. The
T2 can be enhanced further, to several seconds by the use of
field-insensitive “clock transitions” [15], and even further by
the use of isotopically pure 28Si.
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Recent progress has shown that the orbital degree of free-
dom of a dopant electron in silicon can also be controlled and
could potentially itself serve as a qubit. Terahertz (THz) optical
excitations (tuned to an energy-level spacing of approximately
meV) can be used to manipulate and detect Rydberg states
of donors by using a free-electron laser [16–19]. In the
density range where donor pairs are dominant, the optical
field has been used to detect and control the electron tunneling
between donor pairs of phosphorus and antimony [20], while
in three-donor clusters, the optical excitation (de-excitation)
of a shallower “control” donor has the potential to switch on
(off) the exchange interaction between the other two deeper
donors, thus forming an optically controlled quantum gate
[21,22]. There has also been growing experimental interest in
performing quantum simulations [9,23] in donor clusters. Ar-
rays of dopants in silicon [9] and quantum dots [23] have been
fabricated for the quantum simulation of the Fermi-Hubbard
model; the freedom to position the atoms arbitrarily enables
tuning of correlations by varying the interdonor distance [24].
Such a platform could be enhanced by the ability to probe the
state of the electrons using optical absorption. It is therefore
timely to study theoretically the optical properties of multiatom
donor clusters such as arrays, and in particular the effect of
excitation on the spin-spin interaction.

The electronic structure of a single dopant in silicon (or
germanium) has been extensively studied previously [25–
28]. There are mainly two types of methodologies, including
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effective mass theory (EMT) and atomistic tight-binding
(ATB) methods. Within EMT, either anisotropic hydrogenic
trial wave functions [26] or a Coulomb potential deformed
through a coordinate transformation [27] have been used to
account for the anisotropy of the conduction-band minimum.
These calculations were refined in the 1970s by adding multi-
valley effect (MVE) and the effects of deviations from a pure
Coulomb potential [29], producing agreement with experimen-
tal spectra. Recently, Gamble et al. solved the Shindo-Nara
multivalley equation [30] by including the full Bloch wave
functions of silicon [31], showing a good agreement with the
experimental energy spectrum of single phosphorus atoms, and
also gave theoretical values for donor-donor tunnel couplings.
The ATB calculation is another commonly used method, which
considers the full lattice structure of the host material [32,33].
Both approaches have produced theoretical results in excellent
agreement with the experimental ground-state energy spectrum
and hyperfine Stark shift of single phosphorus donors in sili-
con. For two electrons in a single donor (D−), ATB calculations
followed by a self-consistent Hartree method were used to
account for the electron-electron interaction in a mean-field
way, while neglecting exchange [34,35]. A full configuration-
interaction (FCI) computation has been performed for D− with
single-electron wave functions obtained from the atomistic
tight-binding method [36,37].

Studies of impurity clusters in silicon have gained a sig-
nificant surge recently [38–40]. The exchange interactions
between donors have been studied within EMT, combined with
the Heitler-London formalism [41], including variable binding
energies [42]. The electronic structure of a donor pair has
been studied by using CI within the 1s manifold [39]. Larger
donor clusters have been studied by using density-functional
theory (DFT) and the GW method (for bulk silicon) combined
with EMT [40]; this approach included implicitly the electron
correlations in the bulk, but missed the explicit Coulomb inter-
action between electrons within the multidonor “molecule.” A
combination of EMT and ATB has been employed to calculate
the electronic structure of thin dopant chains and to study the
localization of donor electrons owing to disorder [38]. In the
calculations to date, the electron correlations are either at least
partly absent, or confined to the lowest manifold of the 1s

ground states of single donors and donor pairs.
The multivalley effect and central-cell corrections (CCC)

are important for the 1s ground states where the electron is
close to the defect core, but not so important for the more
diffuse excited states. On the other hand, in the description of
the electronic structure of donor clusters, the electron-electron
correlations are known to play a vital role in both optical and
transport properties [43]. For example, the optical absorption
shows a strong signature of the ionic state of a donor pair
(D+-D− state, also called a charge-transfer state in Ref. [43]),
in which an electron hops from one donor to the other, leaving
a hole behind. The ionic state here is effectively a bound state
of the holons and doublons that are used to analyze excitations
of the Hubbard model in solid-state physics [44,45]. However,
such low-energy ionic states appear only if proper account is
taken of the intracluster correlations. In addition, the spherical-
band approximation (replacing the anisotropic effective mass
by using a single average one) turned out to be good in
predicting the ground-state energy of donors in silicon [29].

Taken together, these facts suggest that a combination of an
isotropic Hamiltonian, and wave function within the spherical
band approximation [29], with highly accurate first-principles
methods to treat electron correlation is a suitable starting point
to describe the excited states of donor clusters.

Here, we report a systematic study of the orbital excited
states and related exchange splittings of donor arrays in silicon,
within the isotropic approximation to effective-mass theory
but retaining a full treatment of correlations among the donor
electrons. In our calculations, we use hydrogen atoms to
represent silicon donors, then compute the excited states by
using CI, time-dependent Hartree-Fock (TDHF) [46,47], and
time-dependent density-functional theory (TDDFT), and at the
end scale the excitation energies by using the effective mass
and dielectric constant of silicon. From these calculations,
we are able to obtain a rich spectrum of physics for the
excited states. We have performed FCI calculations for linear
arrays consisting of up to three donors, in which the electron
correlations are fully taken into account, which we used to
benchmark the exchange-correlation functional in TDDFT.
Our TDDFT calculations provide a good approximation to
the CI results for these small arrays, and then are extended
to describe the excited states of arrays consisting of up to
10 donors. From the perspective of molecular physics, the
electronic structure of H2 is very well known, but the solid-
state environment fixes the donor separations at implantation;
hence these calculations emphasize molecular excited states in
unstable hydrogen clusters far from equilibrium.

The rest of the paper is organized as follows: we introduce
the computational details in Sec. II, discuss TDHF, TDDFT,
and FCI results in Sec. III, and draw some general conclusions
in Sec. IV.

II. COMPUTATIONAL DETAILS

We work in the single-valley isotropic approximation to ef-
fective mass theory, in which a shallow donor is a direct analog
of a hydrogen atom. We therefore neglect (i) the anisotropy
of the conduction band, (ii) deviations of the potential from
Coulomb form (in particular “central-cell” corrections), and
(iii) any resulting intervalley coupling. However, we include
a careful treatment of the correlations between the bound
electrons.

A. Effective-mass theory

Within the single-valley approximation, the effective-mass
equation [25,26] reads[

εn

(
�k0 + 1

i
∇

)
+ U

]
Fn = εFn, (1)

where the band energy εn is expanded around the band
extremum �k0 to second-order terms in (1/i)∇. Fn is the
envelope function, in terms of which the donor wave function
is expanded using

ψ =
∑

n

αnFn(�r)φn�k0
(�r), (2)

where φn�k0
(�r) = ei�k·�run�k0

(�r) is a Bloch function at the band
extremum.
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In the isotropic approximation, the effective mass tensor is
replaced by a single averaged effective mass m∗, resulting in an
effective isotropic equation for the envelope function, which
is then independent of the index n:

(
− h̄2

2m∗ ∇2 − e2

4πε0εrr
− ε

)
F (�r) = 0, (3)

where εr is the relative permittivity of the host. In this paper,
we will work with this isotropic equation as our starting point.
For silicon, m∗ = 0.33me and εr = 11.7; this leads to a set
of scaled atomic units for the hydrogenic impurity problem
(length a∗

0 = 1.94 nm, energy Ha∗ = 62 meV). For multi-
donor systems, the screened Coulomb interaction between
electrons e2

4πε0εr |�r1−�r2| can be scaled as well. Thus we have a
Hamiltonian in units of a∗

0 and the effective Hartree (Ha∗) that
reads

Ĥ =
∑
i,A

(
−1

2
∇2

i − 1

|�ri − �RA|

)
+

∑
i<j

1

|�ri − �rj | , (4)

where A runs over all the donor sites (i and j label electrons).
To solve this equation, standard molecular ab initio computa-
tional methods, including CI, TDHF, and TDDFT, can be used
to compute excited states.

B. First-principles calculation methods

For the CI calculations, we used a specially constructed
basis set designed to reproduce within an accuracy of 10−5 Ha∗

the excitation energies of 2s, 2px , 2py , and 2pz states of a
hydrogen atom. By extending the aug-cc-pCV5Z basis set for
hydrogen [48], we found that 12 (11) Gaussians with almost
equally tempered exponents ranging from 402.0/a∗2

0 (1.1/a∗2
0 )

to 0.005/a∗2
0 (0.000976563/a∗2

0 ) are required for s (p) sym-
metries, giving a total basis set of 45 Gaussians per atom, as
shown in Table I. This basis set was then employed consistently
throughout all the CI calculations. CI calculations were per-
formed for a donor pair (DA2) and a uniform three-donor array
(DA3) using the GAUSSIAN 09 [49,50] and MOLPRO [51–54]
codes. We used the symmetry-adapted cluster/configuration
interaction (SAC-CI) method [50], as implemented in GAUS-
SIAN 09, to calculate the energies and oscillator strengths. We
also performed FCI calculations in MOLPRO [53,54], which
gives only the excitation energies: the computation of oscillator
strengths within FCI has not been implemented in MOLPRO, so
they were instead estimated using the GAUSSIAN 09 code. The
SAC-CI methods implemented in GAUSSIAN 09 can be used to
compute the total-spin eigenstates, whereas MOLPRO produces
eigenstates of a given spin projection. FCI calculations can
produce accurate excitation energies and yield FCI wave
functions. However, the FCI procedure is limited by the size
(the number of electrons and the number of basis functions) of
the system as the number of configurations taken into account
increases factorially. We have performed the CI calculations
for DA2 and DA3 with increments of ≈0.07a∗

0 (≈0.14nm,
approximately one quarter of silicon lattice constant).

As an alternative to CI, TDDFT has been widely used
to compute approximately the excited states of molecules
and solids [55,56], while including an approximate treatment
of electronic correlations (detailed reviews can be found in

TABLE I. Gaussian basis set to perform TDDFT calculations,
which is slightly more diffuse than FCI calculations. Here, BF=basis
function, Exp.=exponential, and Cont.=contraction.

TDHF and FCI TDDFT

Shell BF Exp. Cont. Exp. Cont.

S 1 402.0 0.05088 402.0 0.05088
60.24 0.03948 60.24 0.03948
13.73 0.20427 13.73 0.20427

3.905 0.81844 3.905 0.81844
2 1.283 1.0 1.283 1.0
3 0.6 1.0 0.6 1.0
4 0.3 1.0 0.3 1.0
5 0.15 1.0 0.15 1.0
7 0.07279 1.0 0.07279 1.0
8 0.0207 1.0 0.0207 1.0
9 0.01 1.0 0.01 1.0
10 0.005 1.0 0.005 1.0
11 0.0025 1.0
12 0.00125 1.0
13 0.000625 1.0

P 1 1.1 1.0 1.1 1.0
2 0.5 1.0 0.5 1.0
3 0.25 1.0 0.25 1.0
4 0.125 1.0 0.125 1.0
5 0.0625 1.0 0.0625 1.0
6 0.03125 1.0 0.03125 1.0
7 0.015625 1.0 0.015625 1.0
8 0.0078125 1.0 0.0078125 1.0
9 0.00390625 1.0 0.00390625 1.0
10 0.00195313 1.0
11 0.000976563 1.0

Ref. [57]). In TDDFT, the computed excitation energies corre-
spond to the poles of the linear response of the charge density
to an external time-dependent stimulus. The linear response of
charge densities of the real system is calculated by using the
response in a noninteracting reference system, via a formalism
similar to the Dyson equation. For our TDDFT calculations,
we use an adiabatic hybrid-exchange functional [58–60] with
the proportion of exact Fock exchange tuned to match the
analytical excitation energies of 2s, 2px , 2py , and 2pz states of
a hydrogen atom as accurately as possible; this can be thought
of as seeking the best (approximate) cancellation of the self-
interaction error in the isolated atom. The optimal proportion
of exact Fock exchange was found to be 40% in order to
match the 1s → 2sp excitation energies of a hydrogen atom
(up to 10−2 Ha∗), in comparison with 20% in the conventional
hybrid-exchange functional B3LYP [61]. We have also tuned
the basis set to reproduce the 1s → 2sp excitation energies,
and found that the range for the Gaussian exponents is between
402.0/a∗2

0 (1.1/a∗2
0 ) to 0.000625/a∗2

0 (0.00390625/a∗2
0 ) for

the s (p) symmetry, leading to 43 Gaussian functions, as
shown in Table I. The basis set and corresponding fine-tuned
exchange-correlation functional, implemented in GAUSSIAN

09 code, were then used in all the TDDFT calculations for
the excited states of DA2, all the way up to DA10 (uniform
ten-donor array).
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A third option for the solution of the many-electron excited-
state problem is TDHF, which can be regarded as including
exchange but no correlations. TDHF methods can be thought
of as including some doubly-excited configurations, and elim-
inate the self-interaction error, which cannot in practice be
removed completely in TDDFT [62]. We have performed
TDHF calculations [47], implemented in the GAUSSIAN 09
code [49] and using the same basis set as the FCI calculations
for up to ten-donor arrays. TDHF and TDDFT methods share
similar formalisms to compute the excitation energies although
they use different ground states as the starting point, and
the exchange-correlation functional in TDDFT is replaced by
exchange integrals in TDHF. We use the TDHF calculations to
provide an uncorrelated reference calculation to compare with
FCI and TDDFT.

We found that in order to represent properly the states at
large donor separations, it is important to allow the static DFT
and HF solutions to find ground states with broken-symmetry
form [63], in which the Kohn-Sham (or HF) states of opposite
spin components are free to localize on different donors.
Although such a solution breaks both the spatial and spin
symmetries of the complex, it allows the best approximate rep-
resentation of the antiferromagnetic correlations in the ground
state within a single Slater determinant [63]. In practice, we
find such broken-symmetry configurations are favored when
the atomic separation is greater than approximately 5 a∗

0 ≈
10 nm (this can be compared with the experimentally observed
Mott transition in three-dimensional doped silicon, where
the electrons localize below a density of 3.7 × 1018 cm−3,
corresponding to a mean separation of approximately 6.5 nm)
[43]. As a result, our TDDFT and TDHF calculations conserve
the total spin projection MS on the quantization axis, but not
the total spin quantum number S. For TDDFT and TDHF
calculations, we have selected reasonable number of excited-
state energy eigenvalues to keep the image clear.

The arrays formed by the uniformly spaced donors are
arranged along the z direction throughout the paper, and we
discuss all symmetries within the D∞h point group. We use
distance units of nm and energy units of meV throughout. For
all the plots of the oscillator strengths, the excitation energies
are computed as the energy differences between excited states
and the ground state with the same spin, while for the plots
of excitation energies, all states are referred to the overall
lowest-spin ground state.

III. RESULTS

A. Two and three donors: configuration interaction calculations

1. Two donors

The ground state of a donor pair has a symmetry of 1�+
g .

In Fig. 1, we plot the energies of low-lying excited states, with
different spatial and spin symmetries (1,3�+

u,g and 1,3�+
u,g), as a

function of donor separation (singlet in solid curves and triplet
in dashed). These excited states converge to the excitations of
the s and p states either in the n = 2 or 3 shells in the limit of
isolated donors. The nature of the states is familiar from the
previous experimental and theoretical studies of a H2 molecule
[64,65]. The four lowest excitation energies of 1�+

u , 1�+
g , and

1�+
u,g symmetries are shown in Figs. 1(a)–1(c), respectively (in

FIG. 1. The excitation energies of DA2 as a function of donor
separation, calculated using FCI methods. The first three panels
show excitation energies of different spatial symmetries for states
converging to n = 2 and n = 3 transitions, relative to the overall
singlet ground state (1�+

g ): (a) 1�+
u and 3�+

u , (b) 1�+
g and 3�+

g

and (c) 1�+
u,g and 3�+

u,g . Singlet states are indicated by solid lines,
triplets by dashed lines. Odd-parity (u) excitations are shown in red,
even-parity (g) excitations in blue (online)—hence the red (blue)
states are accessible by electric-dipole-allowed transitions from the
even-parity singlet (odd-parity triplet) ground states. The inset to (a)
shows the CI coefficient of the ionic state in the total wave function
of the lowest 1�+

u excitation as a function of donor separation. The
splitting between the 1�+

g singlet and 3�+
u triplet ground states within

the lowest (1s) manifold as a function of donor separation is shown
in (d); the inset is the probability of the double excitation to the
1s antibonding state in the CI total ground-state wave function, as
a function of donor separation. The exchange splittings between
corresponding optically accessible excited spin states are shown in
(e) and (f): 1�+

u and 3�+
g excited states (corresponding to excitation

from the lowest manifold with z-, in red for both n = 2 and n = 3
states) are shown in (e), 1�+

u and 3�+
g states (x,y polarization, in red)

in (f), along with the ground-state exchange splittings (in black).

each case two states dissociate to n = 2 and another two to n =
3 shells). The singlet excitation energies all rise to ≈40 meV at
small separations, where the two donors are strongly coupled,
forming a molecular complex. The dominant optical transitions
are then between these delocalized molecular orbitals.

At various points, the lowest 1�+
u and 1�+

g states are formed
by different combinations of 1s, 2s, and 2pz atomic orbitals
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[43,65]: the different regimes are illustrated by the arrows in
Figs. 1(a) and 1(b). At small separations (the leftmost arrow
marking the minimum excitation energy of ≈17 meV, d <

7 nm) the excitations are predominantly between molecular
orbitals, converging to the single-electron 2pσ (1�+

u ) and
2sσ (1�+

g ) excitations in the united-atom limit [64]. Near
the center arrows (7 nm � d � 22 nm), these lowest singlet
excitations correspond closely to the ionic (or charge-transfer)
excited state, which can also be thought of as arising from the
transition between the 1sσ (bonding) and 1sσ ∗ (antibonding)
states. The excitation energy has a minimum of ≈17 meV
at an interdonor distance of ≈7 nm. At d ≈ 22 nm (centre
arrow), there is a transition where the ionic state anticrosses
with the 1s → 2sp transition; at larger separations the lowest
excitation has a predominantly single-atom 1s → 2sp char-
acter, while the charge-transfer transition increases further
in energy towards the 1s → 3sp excited states (rightmost
arrow). Meanwhile, four further 1s → 2sp transitions (1�+

u,g

and 1�+
u,g) persist with their energies almost unaffected as

long as the donor separation is larger than ≈12 nm, below
which the hybridization between orbitals in the n = 2 shell on
different atoms starts to become significant. The 1�+

g state
becomes the 3sσ state of the united atom, the 1�+

u state
leads to the united-atom 3pσ excitation, while the 1�+

u drops
briefly in energy to form the 2pπ excitation and the 1�+

g rises
steeply to form the 3dπ excitation. The upper band of 1�+

u,g

charge-transfer states (beyond the anticrossing with the single-
atom n = 2 transition) transforms below 22 nm (rightmost
arrow) into a combination of 2s, 2pz, 3s and 3pz atomic
excitations, which rises gradually in energy before splitting
at approximately 13 nm when reducing donor separations,
partially containing an ionic-state nature. The upper (�+

u )
branch then crosses the other 1s → 3sp transitions at a donor
separation of approximately 11 nm. The 1�+

g (1�+
u ) states

correspond to the 1s → 2pxy and 1s → 3pxy transitions.
The corresponding low-lying triplet excited states with

3�+
u , 3�+

g , and 3�+
u,g symmetries are shown (relative to

the singlet ground state 1�+
g ) as the dashed curves in

Figs. 1(a)–1(c), respectively. There is no charge-transfer state
(because of the exclusion principle) and the six transitions
converging to n = 2 for separated atoms remain almost degen-
erate down to d ≈ 15 nm. At this separation, when reducing
interdonor distance, one of the 3�+

u states rises sharply before
becoming the excitation to the 4f σ orbital in the united atom,
while one of the 3�+

g states drops sharply to form the 2sσ

excitation in the united atom.
Further insight into the nature of the states can be obtained

from their compositions in terms of molecular-orbital exci-
tations. The inset to Fig. 1(a) shows the CI coefficient of
the ionic state, arising from the σg(1s) → σ ∗

u (1s) (bonding to
antibonding) transition, in the total wave function of the first
1�+

u excited state; the coefficient peaks at a donor distance
of ≈7 nm, near the minimum excitation energy. At smaller
separations the lowest excitation has only partially ionic char-
acter, while at larger separations it remains substantially ionic
until the anticrossing at approximately d = 22 nm. Similarly,
the inset of Fig. 1(d) shows the probability (the square of the
CI coefficient) of the doubly excited configuration to the 1s

antibonding state in the ground-state total wave function; this

is a measure of the correlation effects in the ground state that
correct the single-particle picture. This probability increases
sharply from 1

4 to 1
2 at a donor separation of ≈5 nm, corre-

sponding to the evolution from a delocalized molecular-orbital
excitation to a localized state with one electron per donor. We
can take the separation where the probability reaches 1

2 (≈10
nm) as an indicator of the location of the Mott transition; this
is in reasonable agreement with the experimentally observed
transition density [43], as well as with the onset of the broken-
symmetry ground state in DFT that will be shown later.

A quantity of particular interest for the optical control
of spin couplings, and ultimately for the development of
optically controlled quantum gates [21,66], is the triplet-singlet
exchange splitting as a function of donor separations. The
exchange splitting here is defined as the energy difference
between corresponding triplet and singlet states (positive sign
means antiferromagnetic, negative sign ferromagnetic). Care
must be taken to compare pairs of states that are orbitally
similar, and for separations below about 10 nm, intersections
among the excited states make it difficult or impossible to
define an exchange interaction properly. Figure 1(d) shows
the exchange splitting between the 1�+

g singlet ground state
and the 3�+

u triplet ground state. For the exchange splitting
in the excited state, supposing we start from a general spin
state in the manifold of states dissociating to ground-state
atoms; this will be a linear combination of 1�+

g and 3�+
u

ground states. With light polarized along the donor pair axis
(z direction), we will excite to a corresponding combination
of 1�+

u and 3�+
g , while with light polarized perpendicular to

the axis we will make a combination of 1�+
u and 3�+

g . The
exchange splittings between the appropriate 1�+

u and 3�+
g

(1�+
u and 3�+

g ) states for a single electron excited to n = 2
and n = 3 shells, are shown in Fig. 1(e) [Fig. 1(f)]. Notice
that the splittings are generally antiferromagnetic in sign and,
as expected, considerably larger and longer range than the
exchange splitting in the ground-state manifold (shown again
for comparison). This coupling could be used to realize two-
qubit quantum gate operations by using optically excited donor
states, as mentioned previously [21].

Figure 2(a) shows the total oscillator strengths of transitions
from the overall (singlet) ground state as a function of the
interdonor distance and the excitation energy, obtained by
using a Lorenz-type broadening with a half-width 0.1 meV
(centred at the excitation energies, the height being the oscilla-
tor strength) [19]. This shows clearly the positions of optically
accessible states for different separations: at large separations,
the spectrum is dominated by the 1s → 2p and 1s → 3p

atomic transitions, while at separations below approximately
20 nm, the charge-transfer band and the corresponding an-
ticrossed (mainly 3sp) state also contribute strongly to the
oscillator strength. The ionic excitation is at ≈17 meV, which
is comparable to the experimental results in Ref. [43] if
the correction for the lowering of the 1s(A) state from the
central cell and intervalley effects is included (≈14 meV).
The charge-transfer state makes a negligible contribution to
the oscillator strength beyond the anticrossing with the 2sp

excitations (d > 22 nm). In Figs. 2(b) and 2(c), we show the
contributions to the oscillator strength along z and x (or y)
directions for all the optically accessible states, respectively,
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FIG. 2. The optical absorption of DA2 as a function of excitation
energy and donor separation. The broadened oscillator strengths for
all singlet excitations and all polarizations are shown in (a). The
oscillator strengths for polarized excitation along z, and x,y directions
are shown in (b) and (c). The corresponding plots for the triplet
excitations are shown in (e)–(g). The statistically averaged values of
these oscillator strengths for the singlet and triplet sectors, according
to the random distribution of the first-nearest neighbors, are shown in
(d) and (h), respectively, as a function of excitation energy, for a set of
donor densities (0.1 × 1017 to 1.9 × 1017 cm−3 with 0.2 × 1017 cm−3

increments). We also show the corresponding mean donor distance
for each density. The red vertical lines in (d) and (h) correspond to the
donor ground-state ionization energy ( 1

2 Ha∗ ≈ 31 meV) within the
EMT approximation. Only those states converging to n = 2 or n = 3
transitions at large separations are included.

which correspond to � and � transitions. Figure 2(d) shows
the averaged oscillator strength as a function of energy for
a distribution of nearest-neighbor distances corresponding to
random donor placements with a range of donor densities,
where donor pairs are important [22,42,43]. This gives an
approximate description of the absorption of a randomly
doped crystal under the assumption that pairwise interactions

dominate (at least, in the low-energy regime where transitions
to other bound states dominate; our basis set is not designed
to describe bound-to-continuum transitions at higher energies).
For diluted systems the main peak is at the 1s → 2sp transition
energy (≈23 meV), while as the donor density increases (from
0.3 × 1017 to 1.7 × 1017 cm−3), the lower-energy ionic-state
excitations strengthen. For each density, we also show the mean
donor distance in the continuum limit (〈d〉 = 
( 4

3 )( 4πn
3 )−

1
3 ) on

the left-hand side of Figs. 2(d) and 2(h). In Figs. 2(e)–2(h),
we show the corresponding plots for triplet excited states
as for the singlet sector. Notice that for triplet states the
averaged oscillator strengths suggest that the atomic transition
is dominant; by contrast, the oscillator strengths of low-energy
triplet states at small separations are weak.

2. Three donors

Figures 3(a)–3(d) show the excitation energies of a line of
three uniformly distributed donors relative to the ground state
(2�+

u symmetry) for low-lying states with S = 1
2 (doublet) and

S = 3
2 (quartet), as a function of interdonor distance. Low-spin

(high-spin) states are plotted by solid (dashed) curves. In total,
there are 6 2�+

u , 6 2�+
g , 3 2�+

g , and 3 2�+
u doublet states, 3

4�+
u , 3 4�+

g , 2 4�+
g , and 1 4�+

u quartet states, converging to the
isolated donor n = 2 transitions in the limit of large separations

FIG. 3. Excitation energies of DA3 above the ground state as
a function of donor separation, computed using FCI methods, are
shown. States converging to an excited atom with n = 2 are shown
for different spatial symmetries: (a) �+

u , (b) �+
g , and (c) �+

u,g .
Full lines are doublet (low-spin) states, dashed lines (labeled in
order to clarify exchange splittings) are quartet (high-spin) states;
odd-parity (u) states are shown in red, even-parity (g) in blue. For
the � symmetries, the vertical arrows point to the ionic states with
first nearest-neighbor separation (right vertical arrows) and second
nearest-neighbor separation (left vertical arrows). (d) shows the
excitation energies of 4�+

u and 2�+
g states in the lowest manifold of

states that dissociate to isolate atoms in the ground state. All the quartet
states in (a)–(c) have been labeled for further energy comparison
(adopting the same color scheme as others).
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as shown in Figs. 3(a)–3(c), and the same numbers converging
to n = 3 (not shown, for clarity). Note that since the ground
state has odd parity, the optically allowed transitions are now to
even-parity states (blue curves). In addition, there is a manifold
of two low-lying excited states within the 1s subspace, one
2�+

g and one 4�+
u , which is the quartet ground state, as shown

in Fig. 3(d). At large separations, these two low-lying states
converge to spin excited states of the three-spin Heisenberg
chain. At smaller separations, they become single-particle
excitations into the two excited molecular orbitals formed by
linear combinations of the donor 1s orbitals.

We now find two different types of ionic states, indicated
by the vertical arrows in Figs. 3(a) and 3(b): one branch
(right-hand vertical arrow) splits off from the n = 2 transitions
at approximately d = 22 nm as in the two-donor case, and cor-
responds to an ionic state on first nearest neighbors. The other
is at a higher energy (left-hand vertical arrow) anticrossing
the n = 2 atomic transition at d ≈ 12 nm, splitting from the
n = 3 transitions (not shown) at approximately d = 25 nm,

FIG. 4. The exchange splittings between quartet and doublet
states in the excited-state manifolds for DA3 as a function of donor
spacing: (a)–(c) show splittings between states Q1–Q3 respectively
of 4�+

g symmetry (see Fig. 3) and states D4–D6 (excluding the ionic
states D1 to D3) of 2�+

g symmetry (all are excited states converging
to n = 2 excitations), while (d)–(f) show splittings between corre-
sponding states of 4�+

g and 2�+
u symmetries. These excitations can all

be accessed from the ground-state manifold with polarization along
the z direction. Energy differences between even-parity states are
in blue, even and odd states in red. (g)–(h) show similar splittings
between 4�+

g and 2�+
g states (produced by excitations along x and y

directions), while (i) shows splittings between 4�+
g and 2�+

u states;
the color scheme is as for polarization along z direction. The lowest
quartet-doublet splitting in the ground-state manifold is also plotted
in (a)–(i) for comparison (black curves). Quartet states are ordered
from low to high energy as labeled in Fig. 3 (similarly for the doublet
states).

and has the electron and hole located on second nearest
neighbors. These two types of ionic states anticross each other
at d ≈ 5 nm, where the anticrossing gap of the 2�+

g symmetry
is much larger than that of the 2�+

u .
Figure 3(c) shows the low-lying states of � symmetry

(all doubly orbitally degenerate, in the absence of spin-orbit
coupling); as for two donors, they all converge to the n =
2 energy at large separations, and significant interactions
between them on this scale are visible only below separations
approximately d ≈ 13 nm. Figures 4(a)–4(i) show the relevant
exchange splittings for excited states that can be accessed
by optically allowed transitions from linear combinations of
states in the 1s low-energy subspace (the 2�+

u ground state and
the low-lying 2�+

g and 4�+
u excitations). The relevant excited

states therefore include 2�+
g , 2�+

u , and 4�+
g (for polarization

along the z direction), and 2�+
g , 2�+

u , and 4�+
g (polarization

along x or y direction). Figures 4(a)–4(c) [Figs. 4(d)–4(f)]
show the splittings between 2�+

g (2�+
u ) states and Q1-Q3 of

the 4�+
g states (see also Fig. 3), respectively. Figures 4(g)–4(h)

[Fig. 4(i)] show the corresponding splittings for excitation
polarized along x or y direction, between 2�+

g (2�+
u ) and 4�+

g

states. As in the donor pair (Fig. 1), the exchange splittings
are much larger in the excited states than in the-ground state
manifold, indicating the potential of optical excitations to
control the exchange interaction, and hence implement spin-
based quantum gate operations.

In Figs. 5(a)–5(b), we show the broadened oscillator
strengths in the three-donor system (DA3) as a function of
donor separation and excitation energy, from the doublet
ground state 2�+

u in (a) and the quartet ground state 4�+
u

in (b). At a donor separation of ≈7 nm, the ionic states
dominate the doublet optical absorption (to a greater extent
than for two donors): the lowest charge-transfer transition is
the strongest, while the upper one shows signs of anticrossing
with the longer-range charge transfer state at approximately
d = 6 nm. At long range, the intradonor excitation dominates,
as in the two-donor case, though the charge-transfer state is
more visible than for two donors. The absorption is similar
to that of donor pair, the main differences being the splitting
of the n = 2 excitation at separations around 10 nm and
additional low-energy quartet excitations appearing at small
separations.

FIG. 5. The broadened oscillator strengths for the doublet and
quartet excited states of DA3 are shown in (a) and (b), respectively.
For doublet, the ionic states are dominant at the mid-range for donor
separation, whereas the atomic transitions are dominant for the long-
range. For quartet states, the atomic transitions are clearly important.
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FIG. 6. TDHF [(a) and (b)], TDDFT [(c) and (d)], and FCI [(e) and
(f)] calculations for the excited state energies and oscillator strengths
of a donor pair and three-donor array, as a function of donor separation,
are shown. In the TDHF calculations [(a) and (b)], we can see the ionic
excited state, whose energy is higher than that in the TDDFT [(c) and
(d)] and FCI [(e) and (f)] calculations when the donor separation is
larger than 7 nm. In addition, the transition after the crossover of
the 1s → 2sp is not as clear as the other two calculations. However,
TDHF calculations provide a qualitatively similar results to the other
two.

B. Longer arrays: TDHF and TDDFT calculations

1. Benchmarking for two and three donors

We first benchmarked the TDHF and TDDFT methods by
comparing the results with FCI calculations for a donor pair and
three-donor array; excitation energies and oscillator strengths
are plotted in Fig. 6, and a quantitative comparison of particular
transitions at selected donor separations is shown in Table II.
At d ≈ 5 nm, in the TDHF calculation, there is a jump for
the expectation value of Ŝ2 of the ground state from zero to
0.62, indicating a sudden localization of spin in the broken-
symmetry ground state; this leads to an abrupt change of the
excitation energies for the ionic states as shown in Fig. 6(a).
In contrast, in broken-symmetry TDDFT calculations,
〈Ŝ2〉 increases to 1 more smoothly.

The TDHF and TDDFT results generally agree qualitatively
with the FCI calculations, correctly capturing the substantial
contributions from the ionic states and producing the correct
long-distance limits (governed by intradonor n = 2 and 3 exci-
tations). There are some significant differences in the charge-
transfer excitations to ionic states: the excitation energies in
TDHF are higher than those in TDDFT or FCI by ∼2 meV
and cross the 1s → 2sp excitation at a smaller interdonor
separation, and the oscillator strengths beyond this crossover
are too weak to see in TDHF as compared with the other
two calculations. The other main qualitative discrepancy is the
failure of TDHF and TDDFT to capture the minimum in the
n = 2 excitation [Fig. 2(a)] as a function of separation. Table II
shows quantitative comparisons at three different separations:
one near the minimum in the charge-transfer band at 7 nm, one
in the region dominated by the charge transfer band at 15 nm,
and one in the long-distance regime dominated by intradonor
excitations at 25 nm. Quantitatively, TDDFT overestimates the
oscillator strengths for the n = 2 transitions at approximately
d = 7 nm, but underestimates them at larger separations,
whereas TDHF overestimates them for both small and large

TABLE II. Comparison of selected results for excitation energy
E and oscillator strength f of optical transitions from the low-spin
ground state, using FCI, TDHF, and TDDFT approaches for DA2
and DA3 at three different separations. The different transitions are
the intradonor 1s → 2sp transition and the charge-transfer (CT)
transition.

Donor array

DA2 DA3

d (nm) Transition method E (meV) f E (meV) f

7 CT FCI 17.59 0.44 16.50 0.54
TDHF 19.66 0.38 16.93 0.15

TDDFT 17.11 0.21 16.78 0.33
1s → 2sp FCI 24.08 0.00 21.88 0.01

TDHF 22.94 0.01 23.26 0.00
TDDFT 23.92 0.04 24.08 0.03

15 CT FCI 20.86 0.08 21.52 0.03
TDHF 22.47 0.18 22.30 0.28

TDDFT 20.99 0.03 21.08 0.03
1s → 2sp FCI 23.20 0.10 23.37 0.12

TDHF 23.20 0.07 23.26 0.07
TDDFT 23.98 0.07 24.00 0.08

25 1s → 2sp FCI 23.13 0.18 23.38 0.34
TDHF 23.20 0.26 23.17 0.40

TDDFT 24.34 0.13 24.24 0.19

separations. TDDFT and TDHF also both underestimate the
strength of the charge-transfer transition at short range, by
up to a factor of two; TDDFT underestimates it throughout,
while TDHF calculations overestimate the oscillator strength
at longer range.

2. Four to ten donors

Figures 7 and 8 show the optically accessible excitations
based on TDHF and TDDFT for states of uniform DA4–DA10
lines, showing the lowest projections of total spin (MS = 0
for even chains, MS = 1/2 for odd chains). They share a
number of qualitative features with one another and with the
shorter chains described previously. All have a band of strong
absorption at approximately 24 meV (the n = 2 intradonor
excitation), at an energy that is almost constant down to
d ≈ 8 nm, where it starts to rise sharply. The higher-lying
flat bands above approximately 28 meV are the excitations
to n = 3 and 4 states; for TDDFT, the n = 3 states are visibly
split by the incompleteness of the basis and (more importantly)
by the incomplete cancellation of self-interaction errors. This
splitting is not visible for the TDHF calculations. The band
of “ionic” states corresponding to excitation across the Mott-
Hubbard gap also features prominently in all the chains, as
it does in the cases of DA2 and DA3 described previously. In
both types of calculations, for separations 7 nm � d � 22 nm,
the states corresponding to nearest-neighbor charge transfer
excitation are approximately degenerate; below 7 nm, they start
to become split by hopping interactions between the donors,
similar to those that produce splittings between the �+

u and
�+

g components in the two-donor case [see Fig. 1(a)]. At still
smaller separations these excitations transform adiabatically
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FIG. 7. The broadened oscillator strengths as a function of ex-
citation energy and donor separation for arrays of different sizes
from DA4 up to DA6 as calculated in TDHF and TDDFT (in
separate columns) are shown in (a)–(f), respectively. Notice that they
share generic features: molecular transitions for short separations,
charge-transfer bands in the mid-range, and atomic transitions at large
separations. The lowest excitation energy falls to ≈10 meV (ionic
state, corresponding to a wave length of ≈60 μm) as the number of
donors increases.

into the single-particle excitations from the 1s bonding state
to the corresponding antibonding states; at large separations
(above 22 nm) they merge into the n = 2 orbital excitation,
although the details of the anticrossing observed in the two-
and three-donor CI results are not quantitatively reproduced
either from TDDFT or TDHF. The minimum excitation energy
for TDDFT (TDHF) in this ionic band drops to ≈10(11) meV
for long chains. A sequence of further charge-transfer exciton
bands with larger electron-hole separations is expected (as
suggested by the left arrow in Fig. 3(a) for DA3) but the
oscillator strengths for these are exponentially suppressed
because of the large charge separations and they are therefore
not visible in these plots.

There is also a band of excitations at lower energies, below
the Mott-Hubbard gap. At large separations these correspond
to the spin excitations of the Heisenberg spin chain; they have
very small charge character and correspondingly negligible
electric dipole matrix elements with the ground state, and hence
would be invisible on the color plots; TDHF and TDDFT
do not find them for the lowest spin sectors shown here. As
the separation drops (and the ratio t/U in the correspond-
ing effective Hubbard model rises) these excitations acquire
an increasing charge character and split as a result of the

FIG. 8. The broadened oscillator strengths as a function of exci-
tation energy and donor separation for arrays of different sizes from
DA7 up to DA10 as calculated in TDHF and TDDFT (in separate
columns) are shown in (a)–(h), respectively.

increasing interdonor hopping. Eventually, the highest-lying
members of this manifold are expected to merge with the
intersite exciton band at separations where the Mott gap closes.
The broken-symmetry ground state come forms above an
interdonor distance of ≈10 nm, which is consistent with that
predicted by CI calculations.

IV. CONCLUSION

We have computed the excitation energies and optical
response for one-dimensional donor arrays in silicon with up
to ten dopants within the spherical band approximation. We
include a full description of intra and interdonor correlation
through our CI calculations on small systems (two- and
three-donor arrays), and an approximate description of those
correlations through TDDFT calculations for larger systems
(from four- up to ten-donor arrays); we also give uncorrelated
TDHF results for reference. A comparison with the TDHF
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calculations has been made to illustrate the effects of electron
correlations; essential features such as ionic excited states are
captured by all methods, even though they cannot be well
described by single-particle molecular energy levels, but the
detailed description within TDHF does not fit the reference
CI calculations as well as TDDFT does and in particular the
crossing point of the ionic states and the 2sp excitation band
occurs at at smaller separations in TDHF.

The smallest optically accessible excitation energies within
the lowest spin configuration originate from the interdonor
ionic charge-transfer state, which becomes dominant at a donor
separation of ≈5 to 10 nm, corresponding to a donor density
≈3 × 1017 to 8 × 1018 cm−3. This donor density region can
be well described by a donor-pair model [43]. The donor-
separation range where the ionic states are important extends to
≈30 nm (corresponding to a donor density ≈3.7 × 1016 cm−3).
At longer range (>40 nm, corresponding to <1.6 ×
1016 cm−3), intradonor excitations dominate optical transi-
tions. In contrast, at small donor distances (typically smaller
than 5 nm), we have a molecular picture for the excitations.

The work presented here treats the molecular-type, charge-
transfer, and atomic excited states on the same footing. The
first two of these features have been seen in a previous study of
the excited states of the one-dimensional Hubbard model [44],
where the evolution of the optical spectra was studied and the
optical conductivity tuned by varying the ratio of U to t . In the
limit of small Mott gaps (U � t), a holon-antiholon field the-
ory was introduced to describe excitons, whereas for large Mott
gaps (U � t), double occupancy and hole states were used
(corresponding to the ionic states found in this paper). By com-
paring our results for finite arrays obtained in this paper with
those from an effective Hubbard model, one could determine
the range of donor separations where the effective model is
valid, as well as the best-fitting values of the model parameters.

We have also compared the triplet-singlet (and quartet-
doublet) energy splittings between a set of appropriate excited
states for DA2 (DA3). From our calculations, we can see that
the optimal donor distance for optically operating a multiqubit

quantum gate is between 10 and 20 nm, where the ground-state
exchange is below 0.02 meV but the excited-state exchange
is still considerable, as shown in Figs. 1 and 4. A typical
excited-state exchange interaction is ≈1 meV at d ≈ 10 nm,
leading to a quantum gate operation time of ≈10 ps, which
is much shorter than the typical excited-state relaxation time
(≈200 ps) of silicon donors. This result supports the realization
of the so-called “control-qubit” scheme [21].

Our results not only address the importance of correla-
tions between donor electrons by using state-of-the-art first-
principles tools, but also suggest a trend for the excited states
and excitation energies as the number of donors increases, lead-
ing to an understanding of the electronic structure of periodic
donor arrays. If further combined with CCC and MVE, this
type of calculations could provide a more complete picture of
the excited states of donor clusters in silicon. These two effects
will make the donor orbitals more confined, so we expect the
exchange interaction between the ground-state donor and the
excited one would be reduced, lowering the optimal distance
for quantum computing in the real silicon lattice and also
leading to greater sensitivity to donor placement [41]. The
donor-array axis direction in silicon is also expected to have a
significant effect on exchange interactions (as previously found
in the ground-state exchange [41]); this will be investigated in a
future publication. TDHF can be useful to include MVE in the
donor array calculations. Moreover, these calculations could
be useful to assess arrays of impurities in other host materials
such as gallium arsenide (GaAs) and germanium, by adjusting
the effective-mass parameters.
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