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Movement disorders are a prominent and common feature in many autoantibody-associated neurological diseases, a group of
potentially treatable conditions that can mimic infectious, metabolic or neurodegenerative disease. Certain movement disorders are
likely to associate with certain autoantibodies; for example, the characteristic dyskinesias, chorea and dystonia associated with
NMDAR antibodies, stiff person spectrum disorders with GAD, glycine receptor, amphiphysin or DPPX antibodies, specific
paroxysmal dystonias with LGI1 antibodies, and cerebellar ataxia with various anti-neuronal antibodies. There are also less-
recognized movement disorder presentations of antibody-related disease, and a considerable overlap between the clinical pheno-
types and the associated antibody spectra. In this review, we first describe the antibodies associated with each syndrome, highlight
distinctive clinical or radiological ‘red flags’, and suggest a syndromic approach based on the predominant movement disorder
presentation, age, and associated features. We then examine the underlying immunopathophysiology, which may guide treatment
decisions in these neuroimmunological disorders, and highlight the exceptional interface between neuronal antibodies and neuro-
degeneration, such as the tauopathy associated with IgLONS antibodies. Moreover, we elaborate the emerging pathophysiological
parallels between genetic movement disorders and immunological conditions, with proteins being either affected by mutations or
targeted by autoantibodies. Hereditary hyperekplexia, for example, is caused by mutations of the alpha subunit of the glycine
receptor leading to an infantile-onset disorder with exaggerated startle and stiffness, whereas antibodies targeting glycine receptors
can induce acquired hyperekplexia. The spectrum of such immunological and genetic analogies also includes cerebellar ataxias and
some encephalopathies. Lastly, we discuss how these pathophysiological considerations could reflect on possible future directions
regarding antigen-specific immunotherapies or targeting the pathophysiological cascades downstream of the antibody effects.
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Abbreviations: OMS = opsoclonus-myoclonus syndrome; PANDAS = paediatric autoimmune neuropsychiatric disorders asso-
ciated with streptococcal infections; RBD = REM sleep behaviour disorder; SPSD = stiff person spectrum disorders

Introduction

Neuroimmunology is a rapidly evolving field, fuelled by the
discovery of new autoantibodies and syndromes (Lancaster
and Dalmau, 2012; Irani et al., 2014). Movement disorders
are a prominent and common feature in many autoanti-
body-mediated neurological diseases, with an expanding
spectrum of autoantibodies, but there is a need to establish
a phenomenological approach to guide categorization and
diagnosis in clinical practice. Although these disorders were
generally considered rare and precise prevalences are un-
known, it has emerged that, for example, NMDAR anti-
bodies are the most frequent single cause of encephalitis
under the age of 30 years (Gable et al., 2012).

These disorders can be encountered by general neurolo-
gists or movement disorders specialists alike and it is im-
perative not to miss these potentially treatable disorders,
which can also be an alert to an occult neoplasia. An
early diagnosis is important for the prognosis, yet many
patients are misdiagnosed, or diagnosed late (Irani et al.,
2013; Titulaer et al., 2013). With adequate treatment (im-
munosuppression or immunomodulation, tumour treatment
as appropriate), many patients show a good recovery, al-
though lasting deficits may occur (McKeon et al., 2013;
Titulaer et al., 2013; Balint et al., 2014a). Often, prolonged
and aggressive immunotherapies are required, which carry
a risk of serious adverse effects (e.g. toxicity, infections)
and significant expenditure to health systems. Hence,
rapid recognition and improved therapies are urgently
required.

In this review, we outline the spectrum of movement dis-
orders related to neuronal autoantibodies, highlight useful
pointers to these conditions, and present a syndromic ap-
proach to guide antibody testing. We also discuss the
underlying pathophysiological mechanisms, the emerging
parallels to genetic movement disorders, the interface be-
tween neuroimmunology and neurodegeneration, and con-
clude on future therapeutic perspectives.

The clinical spectrum of
movement disorders and
neuronal antibodies

In movement disorders, the recognition of a characteristic
clinical presentation, its phenomenological categorization,
and syndromic associations guide the diagnostic work-up.
In genetic movement disorders, for example, the plethora of
new genes has prompted a phenotype-oriented algorithmic
approach (Stamelou et al., 2013; Balint and Bhatia, 20135).

A syndromic approach in this context has been to define
movement disorders as either ‘isolated’, when occurring
alone, or as ‘combined’ when there are associated features
(Balint and Bhatia, 2015; Edwards et al., 2016). This
allows one to narrow down the differential diagnosis of a
particular syndrome, and is necessary because one gene can
cause different phenotypes and one phenotype may be
caused by different genes.

The situation is similar in the growing number of neur-
onal autoantibody-associated diseases, where movement
disorder may occur in isolation, or, more frequently, com-
bined with other signs, ranging from gross encephalopathy
with altered consciousness to more subtle findings like a
neuropathy.

We propose an approach for immune-mediated disorders
related to neuronal, glial, or ganglioside antibodies, based
on the main movement disorder presentations and the con-
cept of isolated versus combined presentations. First, we
discuss the phenotypes and point out red flags for the dif-
ferential diagnosis in order to distinguish them from degen-
erative, genetic or infectious diseases. Table 1 provides a
summary and a reference for clinical practice to guide anti-
body testing: it allows one to select an antibody panel
based on a movement disorder phenotype, age of onset,
and the presence or absence of other neurological signs.
Table 2 lists the antibodies together with their associated
clinical spectra, and, where appropriate, tumour associ-
ation. It also indicates relative frequencies, to allow assess-
ments of relative pretest probabilities. The section
‘Approach to antibody testing’ highlights some consider-
ations related to test methodology.

Chorea and dyskinesias

Chorea is characterized by brief, irregular, purposeless
movements that unpredictably flit from one body part to
another (Edwards et al., 2016). Chorea occurs as the sole
or main feature of various conditions, which may broadly
be divided into inherited (most commonly Huntington’s
disease), and acquired causes, including autoimmune
chorea. Sydenham’s chorea and chorea in antiphospholipid
syndrome or systemic lupus erythematosus are prime ex-
amples of the latter, but autoimmune chorea and dyskin-
esias also occur with a number of neuronal antibodies in
children and adults (Table 1).

Distinct dyskinesias, which affect mainly the mouth and
the limbs and persist in states of decreased responsiveness,
are characteristic for the encephalitis associated with
NMDAR antibodies (Dalmau et al., 2008; Titulaer et al.,
2013). Of note, a similar picture with a prodromal phase
with fever and headache, and evolution to neuropsychiatric
disturbance with subsequent dysautonomia, mild orofacial
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Table | From syndrome to serology: different movement disorder presentations with the main associated neuronal,

glial and ganglioside antibodies

Antibody target Onset Features

Childhood Adulthood Isolated Combined

Clinical details

Chorea and dyskinesia
CV2/CRMP5 + +

Hu + +

CASPR2 + + +
LGII +

NMDAR + + + +

Neurexin-3a + +

GABAAR + + + +

D2R + +
IgLONS + +

Dystonia

CV2/CRMP5

Ma2

NMDAR T+ T+ T

GABAAR + + +

D2R + +
Myoclonus
LGl + +

CASPR2 +
DPPX + + +
Neurexin-3a T i

Ri

Ma2

Zic4

Hu

Yo
CV2/CRMP5
VGCC

GAD

GQIB
NMDAR
GABAAR
DPPX
GABAgR
GlyR
Parkinsonism
D2R
NMDAR
LGII

+ + + + 4+
+ + + + + + + + + + + F o+ o+
+ + + + + + + + + + + + +

+ +

Typically combined with cognitive decline, neuropathy, optic neuritis, mye-
litis; MRI: often FLAIR hyperintensities (white matter, basal ganglia,
temporomesial)

Typically combined with gastrointestinal pseudoobstruction, sensorineuro-
nal hearing loss; MRI: often FLAIR hyperintensities (white matter, basal
ganglia, temporomesial)

Chorea preceding or combined with behavioural changes

Chorea preceding or combined with cognitive impairment and encephalo-
pathy; typically in (later) adulthood

Chorea or characteristic orofacial and limb dyskinesias; truly isolated pre-
sentations are rare, mostly combined with ataxia (in children), neurop-
sychiatric symptoms, epilepsy, or other signs of encephalopathy

Mild orofacial dyskinesia combined with encephalopathy with epilepsy,
altered consciousness, memory deficits, psychomotor agitation

Chorea as part of an encephalopathic syndrome with epilepsy, behavioural
or cognitive problems or reduced consciousness, can be combined with
ataxia or dystonia; MRI: frequent T,-weighted hyperintensities

As part of encephalitis in children, or in ‘Sydenham’s chorea’

Combined with prominent sleep behaviour disorder and bulbar symptoms;
possible additional features: cognitive decline, ataxia, dysautonomia, cen-
tral hypoventilation, oculomotor disturbance

Combined with other signs of encephalopathy

Combined with other signs of encephalopathy

Combined with other signs of encephalopathy (e.g. behavioural changes,
epilepsy); rarely, hemidystonia or dystonia of neck and larynx as the
most prominent symptom in children and young adults

Dystonia as part of an encephalopathic syndrome with epilepsy, beha-
vioural or cognitive problems or reduced consciousness, can be com-
bined with ataxia or chorea; MRI: frequent T,-weighted hyperintensities

Combined with other signs of encephalopathy in children

Combined with other signs of encephalopathy, important mimic of
Creutzfeldt-Jakob disease

Myoclonus affecting stance and gait, mainly in elderly males, combined with
neuropsychiatric, cognitive or neuropathic symptoms

Combined in a multifocal encephalopathy, red flag: gastrointestinal symp-
toms (particularly diarrhoea)

Combined with other signs of encephalopathy, resembling encephalitis with
NMDAR antibodies

Adult paraneoplastic OMS?

Adult paraneoplastic OMS*

Adult paraneoplastic OMS*

Adult paraneoplastic OMS*

Adult paraneoplastic OMS?

Adult paraneoplastic OMS*

Adult paraneoplastic OMS*

OMS® without underlying malignancy
OMS?® without underlying malignancy
OMS? without underlying malignancy
OMS? without underlying malignancy
OMS?® without underlying malignancy
Paediatric and adult cases of OMS
Myoclonus typically as part of — combined SPSD, rarely in OMS?

Vary rare: combined with other signs of encephalopathy, in children
Combined with other signs of encephalopathy
Combined with other signs of encephalopathy
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Table | Continued

Antibody target Onset Features Clinical details

Childhood Adulthood Isolated Combined

CRMP5 & i Combined with other signs of encephalopathy
Ri + + Combined with other signs of encephalopathy
DPPX + + Combined with other signs of encephalopathy
Ma2 & i Subacute parkinsonism / PSP phenotype with supranuclear gaze palsy (ver-

tical > horizontal) and constant eye closure resembling apraxia of lid
opening, combined with additional signs of limbic, diencephalic or brain-
stem encephalitis, myelopathy or radiculoplexopathy; red flags: hypotha-
lamic-pituitary endocrine dysfunction, weight gain, prominent sleep
disorders; MRI: T, hyperintensities of pons, midbrain, thalamus, basal
ganglia, cerebellar peduncles, hypothalamus, amygdala, or temporal

lobe; sometimes only atrophy or no abnormalities
IgLONS + + Combined with prominent sleep behaviour disorder and bulbar symptoms;

possible additional features: gait instability and supranuclear gaze palsy
(PSP phenotype); other oculomotor disturbance, cognitive decline, dys-
autonomia, central

Ataxia

GAD i < T T Isolated or combined with SPSD, focal epilepsy, limbic encephalitis; often
preceding episodes of brainstem or cerebellar dysfunction; often organ-
specific autoimmunity (diabetes, thyroiditis, vitiligo, pernicious anaemia)

CASPR2 + + + Isolated ataxia or combined with encephalopathy with seizures and cogni-
tive impairment

DPPX + + + Combined with encephalopathy; red flag: gastrointestinal symptoms (parti-
cularly diarrhoea)

NMDAR > w i Combined with other signs of encephalopathy; ataxia is more frequent in
children

IgLONS + + Combined with prominent sleep behaviour disorder and bulbar symptoms;
possible other features: chorea, cognitive decline, dysautonomia, central
hypoventilation, oculomotor disturbance

VGCC + + + Paraneoplastic cerebellar degeneration (mostly lung cancer), isolated or
combined with Lambert-Eaton syndrome or limbic encephalitis

Yo/CDR2 + + + Paraneoplastic cerebellar degeneration (gynaecological tumours), isolated
or combined e.g. with brainstem encephalitis, neuropathy

Hu/ANNA-1 & s i Paraneoplastic cerebellar degeneration (mostly lung cancer) combined with
limbic or brainstem encephalitis, myelitis or neuropathy

Ri/ANNA-2 + + + Paraneoplastic cerebellar degeneration combined with limbic or brainstem
encephalitis, myelitis,

PCA2 + + + Paraneoplastic cerebellar degeneration combined with limbic or brainstem
encephalitis, myelitis, neuropathy, Lambert-Eaton Syndrome

ANNA3 + + + Paraneoplastic cerebellar degeneration combined with limbic or brainstem
encephalitis, myelitis, neuropathy

Zic4 + + + Paraneoplastic cerebellar degeneration (mostly lung cancer), mostly iso-
lated, very rarely combined with Lambert-Eaton myasthenic syndrome

Soxl| + + + Paraneoplastic cerebellar degeneration, isolated or combined with brain-
stem encephalitis neuropathy, Lambert-Eaton syndrome

DNER + + + Isolated ataxia or combined with encephalopathy or neuropathy

mGIuR| & s i Isolated or combined with dysgeusia, memory or attention deficits, psy-
chiatric problems

GABAgR + + + Isolated or combined with brainstem encephalitis or in encephalitis with
opsoclonus, chorea and seizures

GQlb + + + Miller-Fisher syndrome with ophthalmoplegia, mydriasis and areflexia

GFAP + + + Combined in meningoencephalomyelitis (or limited forms) with encephalopa-
thy with epilepsy, cognitive or psychiatric problems, myelopathy (longitudinal
or transversal); red flags: meningeal symptoms (headache, photophobia,
neck stiffness), optic disk oedema, myelopathy; MRI: frequently character-
istic radial linear periventricular or cerebellar gadolinium enhancement

Ca/ARHGAP26 + + + Rare; isolated or combined with hyperekplexia or cognitive decline

Homer-3 + + + Rare; isolated or combined with encephalopathy

ITPRI + + Rare; clinical data scarce

CARP VIII + + Rare; rapidly progressive paraneoplastic cerebellar ataxia

PKC-y + + Rare; two patients with paraneoplastic cerebellar ataxia

GluR-52 + + + Rare; isolated or combined with encephalopathy

Nb/AP3B2 + Rare; combined with pyramidal involvement

ATPIA3 + + Rare; combined with vertical gaze palsy, spastic tetraparesis, deterioration

of visual acuity

(continued)
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Table | Continued

Antibody target Onset Features Clinical details

Childhood Adulthood Isolated Combined

Stiff person spectrum disorders

GAD + + + + Isolated or combined SPSD e.g. with ataxia, epilepsy, oculomotor distur-
bance, dysautonomia, pyramidal signs, sensory symptoms or encephalo-
pathy; often associated with organ-specific autoimmunity, e.g. diabetes
type |, vitiligo, thyroiditis, pernicious anaemia

GlyR + + + + Isolated or combined SPSD e.g. oculomotor disturbance, bulbar symptoms,
dysautonomia, pyramidal signs, sensory symptoms, encephalopathy
Amphiphysin + + + Isolated or combined with with sensory ganglionopathy, myelopathy
Paraneoplastic SPSD with breast or small cell lung cancer
GABAAR + + + + Isolated or combined with epilepsy; partly co-occurring with — GAD
antibodies
DPPX + + + Combined SPSD with prominent hyperekplexia and myoclonus, cerebellar

ataxia, dysautonomia, pyramidal signs, sensory symptoms, cognitive pro-
blems; red flags: prolonged diarrhoea, other gastrointestinal symptoms

Gephyrin + + Single case, combined SPSD with dysarthria and dysphagia

GlyT2 + + + Preliminary report of two cases, patients were also positive for — GAD
antibodies

GABARAP + + + All reported patients were also positive for — GAD antibodies

Ri T & Combined SPSD as part of brainstem encephalitis

Paroxysmal dyskinesias

LGII + + + Characteristic FBDS, isolated or combined with other signs of limbic ence-
phalitis; red flags: hyponatraemia, bradycardia as neurocardiac prodrome

NMDAR Paroxysmal dystonic posturing preceding encephalitis

AQP4 + + + + Painful tonic spasms in neuromyelitis optica, often combined with sensory,

motor, visual or sphincter disturbance

+

Neuromyotonia and myokymia

CASPR2 + + + Main cause of immune-mediated peripheral nerve hyperexcitability, either in
isolation or combined with pain, neuropathy or as part of Morvan syndrome

LGII + + + Rarely in CASPR2 antibody-negative cases

Tics

D2R + + Very rare; reported in 4/44 children with Tourette’s syndrome, relevance
in clinical practice still to be established

Tremor

MAG + + In chronic inflammatory demyelinating neuropathy

LGII + As part of more widespread involvement in encephalitis

CASPR2 As part of more widespread involvement in encephalitis

DPPX + + As part of more widespread involvement in encephalitis

NMDAR + + As part of more widespread involvement in encephalitis

Yo + + Holmes tremor in cerebellar ataxia

GFAP s T & Combined in meningoencephalomyelitis (or limited forms) with encephalo-
pathy with epilepsy, cognitive or psychiatric problems, myelopathy (long-
itudinal or transversal), or ataxia; red flags: meningeal symptoms
(headache, photophobia, neck stiffness), optic disk oedema, myelopathy;
MRI: frequently characteristic radial linear periventricular or cerebellar
gadolinium enhancement

Sleep movement disorders

NMDAR + + + Status dissociatus and agrypnia excitata in encephalopathic syndrome

CASPR2 T & Status dissociatus and agrypnia excitata in Morvan syndrome

GABAgR + + Agrypnia excitata in encephalopathic syndrome

Ma2 + + RBD in characteristic — parkinsonism syndrome

LGII + + RBD in limbic encephalitis

DPPX + + Periodic limb movements of sleep

IgLONS + + RBD and non-RBD and parasomnias

We suggest a phenomenological approach that takes into account the main movement disorder presentation, age (childhood versus adulthood) and the occurrence of other
symptoms. ‘Isolated’ refers to where the respective movement disorder is the only symptom, whereas ‘combined’ denotes additional signs. For example, in SPSD, stiffness, spasms
and hyperekplexia are considered as the core features and would be expected in ‘isolated’ forms. Additional signs like ataxia or epilepsy would be indicated as ‘combined’. Such
designations may warrant revision in the future as the spectrum keeps expanding. The right column provides more details about the clinical or radiological phenotype.

This table is aimed as a reference and includes all antibodies for the sake of completeness. However, some antibodies are more frequent than others. Please refer to Table 2 for
relative frequency of antibodies in clinical practice.

Frequently no antibody found, and antibodies not syndrome-specific.

ANNA /2 = anti-neuronal nuclear autoantibody 1/2; CARP VIII = carbonic anhydrase-related protein VIIl; CASPR2 = contactin associated protein 2; CRMP5 = collapsin response
mediator protein 5; DPPX = dipeptidyl peptidase-like protein 6; D2R = dopamine 2 receptor; FBDS = faciobrachial dystonic seizures; GABAAR and GABAgR = y-aminobutyric acid
type A and type B receptors; GAD = glutamic acid decarboxylase; GluR-32 = glutamate receptor delta 2; GlyR = glycine receptor; GlyT2 = glycine transporter 2; GQIb = ganglioside
QIb; IgLONS = IgLON family member 5; mGIuR | = metabotropic glumatate receptor type |; NMDAR = N-methyl-p-aspartate receptor; PKC-y = protein kinase C gamma;

Sox| = Sry-like high mobility group box protein I; SPSD = stiff person spectrum disorders; VGCC = voltage gated calcium channel; Zic4 = Zic family member 4.
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Neuronal antibodies and movement disorders

dyskinesias, decreased consciousness, and seizures can
occur also with the newly discovered neurexin-3a antibo-
dies (Gresa-Arribas et al., 2016). NMDAR-antibody en-
cephalitis typically manifests in an age-dependent manner:
adults tend to present with neuropsychiatric disturbance
and behavioural problems initially, while in children, epi-
lepsy and movement disorders, such as chorea, are more
prominent. Children with NMDAR-antibody encephalitis
may be misdiagnosed as having Sydenham’s chorea, par-
ticularly in early stages of the disease, as both disorders
feature a subacute onset and prominent behavioural/neuro-
psychiatric disturbances (Hacohen et al., 2014; Udani et al.,
2016). Overall, isolated movement disorder presentations
are, however, extremely rare in NMDAR-antibody-related
encephalitis, and typically, the presence of seizures, dysau-
tonomia, or ataxia should alert the neurologist to request
testing for NMDAR antibodies (Titulaer et al, 2013).
Another red flag is preceding herpes simplex virus enceph-
alitis (HSVE). HSVE can trigger CNS autoimmunity, and
the well-recognized choreic, ballistic or athetoid relapses
that sometimes follow HSVE by 2-6 weeks are associated
with  NMDAR antibodies (Armangue et al, 2014a).
Furthermore, chorea is seen also with antibodies against
the striatal dopamine receptor 2 (D2R antibodies). D2R
antibodies have only been reported in children, either
with basal ganglia encephalitis, Sydenham’s chorea or in
choreoathetoid relapses after HSVE (Dale et al., 2012;
Mohammad et al., 2014b). They are very rare in routine
clinical testing (personal experience, Irani, Vincent and
Waters).

Later in adulthood, paraneoplastic chorea comes into the
differential diagnosis. It occurs mainly in association with
CRMPS or Hu antibodies, typically combined with other
neurological signs, and features on MRI characteristic fluid-
attenuated inversion recovery (FLAIR) hyperintensities in
the white matter, basal ganglia, and medial temporal
lobes (Vigliani et al., 2011). Sometimes, however, these
red flags are lacking and paraneoplastic chorea may resem-
ble Huntington’s disease, including caudate atrophy on
MRI (Vigliani et al., 2011).

Finally, LGI1 or CASPR2 antibodies can also cause iso-
lated or combined chorea/hemichorea, with or without
neuropsychiatric symptoms, but typically without any
underlying malignancy (Tofaris et al., 2012; O’Toole
et al., 2013). Akin to the patients with NMDAR antibo-
dies, over time these patients often develop a more typical
encephalopathy with multiple clinical features.

Dystonia

Dystonia (sustained or intermittent muscle contractions
causing abnormal movements or postures) is the only sign
in primary/isolated dystonias, but associated with other
symptoms in a variety of conditions such as heredodegen-
erative, metabolic, infectious, and autoimmune disorders
(Edwards et al., 2016). Antibody-related dystonia does
not mimic primary dystonia, which follows a characteristic
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pattern in its anatomical distribution and age at onset
(Edwards et al., 2016). For example, young-onset primary
dystonia features typically limb onset with subsquent gen-
eralization. In contrast, there are a few reports of children
and young adults, who harboured NMDAR antibodies and
had hemidystonia or craniocervical dystonia as the most
prominent feature (Rubio-Agusti et al., 2011; Mohammad
et al., 2014a). More often, antibody-related dystonia is one
symptom in an encephalopathic syndrome associated with
various antibodies (Table 1) (Dalmau et al., 2004; Dale
et al., 2012). Thus, autoimmune encephalitis, particularly
in children, comes into the differential diagnosis of ence-
phalopathies with dystonia, such as mitochondrial or neu-
rometabolic disease, and potentially treatable disorders like
biotin-responsive dystonia or DOPA synthesis pathway dis-
orders (Edwards et al., 2016). Of note, patients with
NMDAR-antibodies often have oculogyric crises akin to
children with dopamine-synthesis disorders. In adults,
jaw-closing dystonia with recurrent episodes of laryngos-
pasm is an important syndrome and pathognomonic for
paraneoplastic brainstem encephalitis with Ri antibodies
(Pittock et al., 2010). The symptoms can be severe
enough to impair nutrition or require prophylactic trache-
ostomy. The MRI may be unrevealing in some cases, or
display T, hyperintensities mainly in the pons and temporal
lobes (Pittock et al., 2010). An important differential diag-
nosis is ‘lockjaw’, resembling tetanus, as seen in stiff person
spectrum disorders (SPSD) with glycine receptor antibodies
(Doppler et al., 2016).

Myoclonus

Myoclonus (very brief, shock-like jerks) can be a feature of
many underlying aetiologies. Subacute-onset of myoclonus
with encephalopathy will invoke a wide differential diagno-
sis including metabolic (e.g. renal, liver failure), toxic (e.g.
lead, lithium) and infectious (e.g. prion disease, Whipple’s
disease) processes, and autoimmune encephalitis. However,
isolated myoclonus is rarely seen with neuronal autoanti-
bodies (McKeon et al., 2007). Myoclonus is a striking fea-
ture in patients with encephalitis with DPPX antibodies,
who often have prodromal, prolonged diarrhoea with
weight loss and other signs of dysautonomia (Boronat
et al., 2013; Tobin et al., 2014). More frequently, however,
myoclonus has been reported in LGI1- and CASPR2-
antibody-associated encephalitis, an important mimic of
Creutzfeldt-Jakob disease (CJD) (Geschwind et al., 2008;
Tan et al., 2008). The MRI with FLAIR/diffusion-weighted
imaging hyperintensities of the basal ganglia and the cor-
tical ribbon sign as seen in CJD can also be present in some
patients with LGI1 antibodies, and in both conditions, the
basic CSF parameters are often normal (Geschwind et al.,
2008; Vitali et al., 2011). Red flags pointing towards LGI1
antibodies are seizures, including faciobrachial-dystonic
seizures (see below, may themselves account for many de-
scriptions of myoclonus), episodic bradycardia, and serum
hyponatremia (Naasan et al., 2014).
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Predominant myoclonus of the legs, affecting stance and
gait, is an emerging phenotype associated with CASPR2
antibodies and may have been noted in previous reports,
which lacked antibody subtyping (Hegde et al, 2011;
Krogias et al., 2013; Govert et al., 2016). The patients
were middle-aged or elderly males, with additional neuro-
pathic pain, fasciculations or cognitive impairment, who
responded promptly to immunotherapy.

Myoclonus is a major feature in progressive encephalo-
myelitis with rigidity and myoclonus (see below), and one
of the defining characteristic of opsoclonus-myoclonus syn-
drome (OMS). Neuronal antibodies are identified only in
approximately a third of patients with OMS (Armangue
et al., 2016) and their variety (Table 1) and lack of syn-
drome-specificity indicate that they are probably only an
epiphenomenon of a wider autoimmune process, which
may be postinfectious (e.g. seroconversion of HIV) (Klaas
et al., 2012), or paraneoplastic. In children, OMS is fre-
quently associated with neuroblastoma and typically pre-
sents in the first 3 years of life. In adolescents, there is a
subgroup of patients with additional brainstem signs, who
have ovarian teratomas (without NMDAR antibodies), and
who respond well to immunotherapy (Armangue et al.,
2014b). Older age and encephalopathy associate with para-
neoplastic OMS (cancer of lung and breast prevailing) with
a poorer outcome (Armangue et al., 2016).

Myoclonus can also be a feature of ‘steroid responsive
encephalopathy with thyroid antibodies’ (SREAT) and
gluten sensitivity-related neurological disease (Edwards
et al., 2016). The associated thyroid, gliadin or tissue trans-
glutaminase antibodies indicate an autoimmune predispos-
ition but are unlikely to themselves cause the neurological
manifestation, as they do not target the extracellular domain
of neuronal proteins. However, GABAAR antibodies charac-
terize an encephalitis with prominent epilepsy, cortical and
subcortical hyperintensities on T,-weighted MRI, and a
strong association with thyroid autoimmunity: thus, some
of these patients were likely previously termed SREAT
(Petit-Pedrol et al., 2014). Indeed, other SREAT cases have
co-existent neuronal surface antibodies and likely will benefit
from more careful future classifications (Tuzun et al., 2011).
Similarly, neuronal antibodies co-occurring in gluten-related
disease with myoclonus and ataxia may account for some of
the associated neurological manifestations (McKeon et al.,
2014; Petit-Pedrol et al., 2014).

Paroxysmal dyskinesias

The primary paroxysmal dyskinesias are a group of rare,
genetically determined inherited disorders typified by brief
self-limiting attacks of involuntary movements (Edwards
et al., 2016). There is frequently a positive family history
of autosomal dominant inheritance, and, most importantly,
they all manifest early in life, typically in adolescence.
Three phenotypes are defined by the duration of attacks
and particular triggers: paroxysmal kinesigenic (attacks
lasting seconds to minutes, precipitated by sudden
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movement; mostly caused by PRRT2 mutations), non-kine-
sigenic (attacks lasting minutes to hours, triggered by alco-
hol, coffee or fatigue; mostly caused by myofibrillogenesis
regulator 1 mutations), and exercise-induced dyskinesias
(gradual onset of dystonia after prolonged exercise;
mostly caused by SLC2A1 mutations).

By contrast, the prototypical antibody-associated parox-
ysmal dyskinesias are faciobrachial dystonic seizures
(FBDS) and usually manifest late in life (median around
66 years, range 28-92) (Irani et al., 2011, 2013). Their
phenotype is distinctive, with brief (typically <3s), and
frequent episodes (up to several hundred per day) of stereo-
typical dystonic posturing (Supplementary Video 1). These
mainly involve face, arm or leg, or combinations of these,
and usually involve one side at a time, although the af-
fected side might alternate in an individual. FBDS occur
spontaneously or may be triggered by high emotions, audi-
tory stimuli or movement (Irani et al., 2011, 2013).
A longer duration, simultaneous bilateral involvement,
and FBDS as a cause of drop attacks are other recognized
clinical manifestations (Irani et al., 2011, 2013). FBDS are
consistently associated with LGI1 antibodies. In the pri-
mary paroxysmal dyskinesias, there has been historical
debate as to whether they represent a movement disorder
or epilepsy, and similar arguments can be applied to FBDS.
Signs indicative of an epilepsy include prominent automa-
tisms, sensory aura, and post-ictal fear and speech arrest,
but only few patients show clear ictal epileptiform dis-
charges on EEG (Irani et al, 2011). On the other hand,
~40% of patients’ MRIs show basal ganglia hyperintensi-
ties on Ti- or T,-weighted sequences (Irani et al., 2013;
Flanagan et al., 2015). FBDS appear to respond preferen-
tially to immunotherapy, and it is hypothesized that timely
treatment prevents the development of cognitive impair-
ment associated with limbic encephalitis (Irani et al., 2013).

Brief dystonic episodes without EEG correlate and par-
oxysmal exercise-induced foot weakness were also reported
in single cases with NMDAR antibodies (Xia and Dubeau,
2011; Labate et al., 2013). Prominent pain is not a feature
of primary paroxysmal dyskinesias, but typical for the tonic
spasms associated with demyelinating disease, and interest-
ingly these occur more commonly with AQP4 antibodies
than in multiple sclerosis (Kim et al., 2012).

Parkinsonism

Parkinsonism, defined by bradykinesia, is of course the
hallmark feature of idiopathic Parkinson’s disease, which
often also shows unilateral onset and persistent asymmetry,
rest tremor (typically ‘pill-rolling’), and an excellent re-
sponse to L-DOPA. In contrast, ‘atypical parkinsonism’ is
defined by features not in keeping with idiopathic
Parkinson’s disease and typically by a poor response to L-
DOPA. It has various aetiologies, mostly neurodegenerative
diseases including progressive supranuclear palsy (PSP),
corticobasal degeneration, or multisystem atrophy, and,
less frequently, infectious (flavivirus, HIV, Whipple’s
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disease, prion disease), toxic or metabolic causes.
Paraneoplastic parkinsonism is another rare, but important
differential diagnosis and has been described in association
with CRMPS, Ri, and Ma2-antibodies (Yu et al., 2001;
Pittock et al., 2003; Dalmau et al., 2004). A rapidly pro-
gressive, disabling disease course is a red flag, but not
always present (Yap et al, 2017). Parkinsonism with
Ma2 antibodies has a characteristic PSP-like phenotype
with supranuclear gaze palsy (vertical > horizontal) and
eye closure resembling apraxia of lid opening (Dalmau
et al., 2004). Distinctive features are hypothalamic-pituitary
dysfunction, weight gain, and prominent sleep disorders
including excessive daytime sleepiness, rapid eye movement
(REM) sleep behaviour disorder (RBD), and narcolepsy-
cataplexy (Dalmau et al., 2004; Compta et al., 2007).
Ma2 antibodies associate with limbic, diencephalic and
brainstem encephalitis, myelopathy and radiculoplexopa-
thy, thus providing further clinical signs that are suggestive
of this entity (Dalmau et al., 2004). The typical MRI pat-
tern of Ma2-antibody encephalitis are thalamic and hypo-
thalamic T, hyperintensities, whereas basal ganglia
involvement is more often seen with CRMPS antibodies
(Dalmau et al., 2004). Paraneoplastic parkinsonism can
also manifest as corticobasal syndrome, sometimes without
an identifiable antibody but with striking hyperintensities
on T,-weighted MRI (McKeon et al., 2009). However,
non-paraneoplastic encephalitides also can manifest with
parkinsonism: indeed, patients with LGI1, DPPX and
GAD antibodies have been misdiagnosed with Parkinson’s
disease, PSP or multisystem atrophy (Pittock et al., 2006;
Tobin et al., 2014; Kurtis et al., 2015). In children with
acquired parkinsonism, the work-up should also include
testing for NMDAR and D2R antibodies (Dale et al.,
2012; Mohammad et al., 2014a).

Cerebellar ataxia

Idiopathic or paraneoplastic autoimmunity is an important
aetiology of ataxia, where age, tempo of disease progres-
sion, and associated signs dictate the differential diagnosis.
The most frequently identified autoimmune ataxia is asso-
ciated with GAD antibodies and is often accompanied by
other autoimmune disorders (diabetes, thyroid disease, per-
nicious anaemia, vitiligo) (Arino et al., 2014). It can present
with a slowly progressive course or subacutely, with either
isolated cerebellar signs or additional signs such as pyram-
idal tract involvement or features of stiff person syndrome.
Often, there is up- or downbeat nystagmus. Episodes of
brainstem or cerebellar dysfunction are a red flag, as they
precede the chronic course in one-third of patients, and
enter the differential diagnosis of episodic ataxia type 2
(Arino et al., 2014).

A similar phenotype, with early vertigo or ataxia epi-
sodes and concomitant autoimmunity, can also be seen in
ataxia with coeliac disease or gluten-related ataxia, often
with additional pyramidal signs or neuropathy. The patho-
physiology and the role of neuronal autoantibodies in this
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entity are unclear (McKeon et al., 2014), but DPPX anti-
bodies would clearly come into the differential diagnosis of
ataxia and prolonged diarrhoea (Boronat et al., 2013;
Balint et al., 2014a; Tobin et al., 2014).

A subacute onset of ataxia with progression over weeks
to months and severe disability is often seen with paraneo-
plastic cerebellar degeneration (PCD). PCD associates with
almost all of the classical onconeuronal antibodies (Table
1) (Shams’ili et al, 2003). A pure cerebellar syndrome
occurs classically in females with gynaecological tumours
and Yo antibodies, or in males with Hodgkin lymphoma
and DNER antibodies (Shams’ili et al., 2003; de Graaff
et al., 2012). Further neurological signs in addition to the
ataxia (Table 2) are, however, frequent, and may guide a
syndromic diagnosis: for example, ataxia and proximal
muscle weakness is seen in Lambert Eaton myasthenic syn-
drome with VGCC antibodies, typically with lung cancer.

Combined phenotypes of cerebellar ataxia with encephal-
opathy and/or brainstem dysfunction are also seen with sev-
eral of the newer antibodies, e.g. against GABAgR, CASPR2
and GFAP (Becker er al., 2012; Jarius et al., 2013; Balint
et al., 2014a; Fang et al., 2016; Flanagan et al., 2017).
Ataxia occurs also in NMDAR-antibody encephalitis in chil-
dren, but only rarely in adults (Titulaer et al., 2013).
Neuropathy, areflexia and ophthalmoplegia are the charac-
teristic accompaniments of cerebellar-like ataxia in Miller-
Fisher syndrome with GQ1b antibodies (Yuki et al., 1993).
Lastly, a group of rarer autoantibodies, which target proteins
also affected by mutations in genetic ataxias, are discussed
below (‘Pathophysiology and genetic parallels’ section).

Stiff person spectrum disorders and
acquired hyperekplexia

SPSD are characterized by the core symptoms of fluctuating
muscle stiffness with superimposed spasms, and an exag-
gerated startle response (hyperekplexia). The manifestations
include classical stiff person syndrome, stiff limb syndrome,
and variants combined with additional neurological symp-
toms (stiff person plus) or with a potentially fatal disease
course in progressive encephalomyelitis with rigidity and
myoclonus (PERM). Acquired hyperekplexia also enters
this spectrum of disorders. In practice, SPSDs are still
often misdiagnosed and symptoms mistaken for psycho-
genic, dystonic posturing, or related to parkinsonism
(Balint et al., 2014b). Nevertheless, stiffness and spasms
can cause significant morbidity with falls, fractures, or
even death due to respiratory failure.

The most frequent antibodies remain those against GAD
and the glycine receptor (GlyR), and less frequently, amphi-
physin (Balint et al., 2015; Martinez-Hernandez et al.,
2016). The antibody spectrum associated with SPSD has
expanded with recent reports of DPPX, GABAsR and
GlyT2 antibodies, but further work is needed to elucidate
each of their roles in SPSD (Balint and Bhatia, 2016).
Overall, it is difficult to predict the antibody specificity
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based on clinical grounds, as there is significant overlap
between the various antibodies with regard phenotype
and disease course. However, patients with GAD antibo-
dies often also have cerebellar ataxia and, less frequently,
temporal lobe epilepsy (Balint and Bhatia, 2016; Martinez-
Hernandez et al., 2016). Myelopathy and sensory neur-
opathy, in association with SPSD strongly indicate a para-
neoplastic  syndrome with amphiphysin  antibodies
(Murinson and Guarnaccia, 2008).

GlyR antibodies associate with prominent brainstem in-
volvement including oculomotor or bulbar disturbance,
myoclonus and hyperekplexia, and often sensory and auto-
nomic symptoms (Martinez-Hernandez et al., 2016).
Patients with DPPX antibodies tend to have trunk stiffness,
prominent cerebellar ataxia and striking hyperekplexia, to-
gether with various degrees of dysautonomia, somatosen-
sory disturbances, and cognitive decline (Balint et al.,
2014a). Gastrointestinal hyper- or hypomobility and
marked weight loss are strong indicators of DPPX antibo-
dies (Tobin et al., 2014).

Tics

Tics are rapid, brief, stereotyped movements or vocaliza-
tions. Eye blinking, shoulder shrugging, grimacing, sniffing
or grunting are examples of ‘simple motor or vocal tics’,
whereas ‘complex tics’ designate sequences of stereotyped
movements, or words or phrases (Edwards et al., 2016).
Typically, tics wax and wane, and are (temporarily) sup-
pressible, but patients will describe an inner rising tension
or anxiety to allow the tics to emerge (premonitory urge).
Tics mostly occur as primary disorders during childhood,
without associated neurological features. They are also seen
as part of the spectrum of paediatric autoimmune neuro-
psychiatric disorders associated with streptococcal infec-
tions (PANDAS). Although it has been speculated that
neuronal antibodies may play a role in PANDAS, reprodu-
cible evidence for this is lacking. So far, one group has
found D2R antibodies in 4 of 44 children with Tourette’s
syndrome but not in PANDAS (Dale ez al., 2012). Other
reports of D2R antibodies in PANDAS are based on meth-
ods that are less suitable to detect potentially pathogenic
antibodies against native neuronal surface antigens
(Morris-Berry et al., 2013). Overall, it appears that D2R
antibodies are very rare and not mandatory for the routine
diagnostic work-up of tic disorders.

Tremor

Tremor is defined as a rhythmic, oscillatory movement,
usually due to alternate activation of agonist and antagon-
ist muscles (Edwards et al., 2016). Tremor has not been
described as an isolated manifestation in antibody-mediated
disorders, but can be part of a wider encephalopathic pic-
ture in association with LGI1/CASPR2, NMDAR and
DPPX antibodies (Tan et al., 2008; Boronat et al., 2013;
Mohammad et al., 20144, b; Tobin et al., 2014) Similarly,

B. Balint et al.

tremor is often part of the presentation of meningoencepha-
lomyelitis (or limited forms) with GFAP antibodies, fre-
quently featuring a characteristic MRI with radial linear
periventricular or cerebellar gadolinium enhancement
(Fang et al., 2016; Flanagan et al., 2017).

Intention and action tremor or titubation can occur as
part of an antibody-related cerebellar syndrome, and
Holmes tremor has been described in patients with cerebel-
lar degeneration and Yo antibodies (Peterson et al., 1992).
Although Holmes tremor is classically associated with
Wilson’s disease and with midbrain lesions, the salient cere-
bellar ataxia and the atrophy on imaging would argue
against such differential diagnoses. Although beyond the
scope of this review, tremor may be prominent in chronic
inflammatory demyelinating neuropathies, such as those
with antibodies against myelin-associated glycoprotein
(Edwards et al., 2016).

Peripheral nerve hyperexcitability:
neuromyotonia and myokymia

Peripheral nerve hyperexcitability comprises a spectrum of
disorders, such as neuromyotonia, myokymia, or fascicula-
tions, characterized by spontaneous muscle activity and
hyperexcitability of motor nerves (Edwards et al., 2016).
They are included in this review as they may be confused
with movement disorders and are therefore worth keeping in
mind in the differential diagnosis. CASPR2 antibodies asso-
ciate with peripheral nerve hyperexcitability either in isolated
neuromyotonia (Isaac’s syndrome) or as part of Morvan’s
fibrillary chorea; neuropathic pain is less well recognized but
may also be responsive to immunotherapies (Irani et al.,
2010, 2012; Klein et al., 2012). LGI1 antibodies are infre-
quently identified in patients with peripheral nerve hyperex-
citability (Irani et al., 2010; Klein et al., 2013).

Sleep behaviour disorders

RBD is classically seen in a-synuclein-related parkinsonian
conditions, and may precede the motor symptoms. The
mechanisms of RBD itself remain unclear, but it seems to
be caused by dysfunction of certain brainstem structures
like the subceruleus and magnocellularis nuclei and their
connections, including the amygdala (Iranzo et al., 2016).
This may explain RBD as a feature of Ma2 encephalitis,
which affects limbic, diencephalic and brainstem structures,
or in LGI1-antibody-associated limbic encephalitis (Iranzo
et al., 2006; Compta et al., 2007; Irani et al., 2010). Both
RBD and non-RBD can be seen in IgLONS-antibody linked
neurodegeneration (see below) (Sabater et al., 2014). Status
dissociatus (breakdown of the boundaries of the different
states of being, which are wakefulness, REM sleep, and
non-REM sleep, with motor hyperactivity), and agrypnia
excitata (insomnia, motor and autonomic hyperactivation)
are a hallmark feature of Morvan syndrome (with CASPR2
antibodies, and less commonly, LGI1 antibodies), but can
also be present in encephalitis with NMDAR antibodies or
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GABARR antibodies (Frisullo et al., 2007; Provini et al.,
2011; Stamelou et al., 2012; Abgrall et al., 2015).
Finally, a variety of sleep disorders including periodic
limb movement and ambiguous sleep are observed with
DPPX antibodies (Tobin et al., 2014)

Approach to antibody testing

Suspicion of an autoantibody-associated disorder may
arise because of rapid syndrome evolution, the detailed
clinical characteristics, a propensity to autoimmunity in
the patient or their family, or a history of a neoplastic
process. Further clues may come from inflammatory CSF
or MRI findings in the absence of infection. However,
autoantibodies may be present even without evidence of
inflammation.

When testing for neuronal autoantibodies, we suggest
panels based on the predominant movement disorder pres-
entation, age of onset, and the presence or absence of other
neurological signs as listed in Table 1. Relative frequencies
of autoantibodies as well as further clinical details and pos-
sible tumour associations are found in Table 2.

Various assays are used to detect antibodies, with differ-
ent advantages and shortcomings (Fig. 1). Screening pro-
cedures  include indirect  immunofluorescence  or
immunohistochemistry, based on slices of rodent brain
tissue and western blot, where separated denatured proteins
are detected. Often, these require confirmation in more spe-
cific test systems like cell-based assays, which overexpress
the antigen of interest. The in vivo situation, however, is
only mimicked by cell-based assays using live cells; in con-
trast, cell-based assays applying permeabilized or fixed cells
may also detect antibodies that are directed against intra-
cellular antigens or non-pathogenic epitopes modified by
fixation. Currently, practice varies significantly between
laboratories, partly as costs play an inevitable role.
Ideally, multi-laboratory assay comparisons are required

Screening methods
Involve exposition of intracellular or denatured antigens
May therefore also detect non-pathogenic antibodies
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to understand the relative merits of these tests in different
hands.

Similarly, the specimen used may play a role. Some anti-
bodies are primarily detected in the serum, as for example
AQP4 antibodies (Jarius et al., 2010), whereas other anti-
bodies may be positive in CSF only, as for example GlyR
or NMDAR antibodies (Carvajal-Gonzalez et al., 2014;
Gresa-Arribas et al., 2014). This may be due to the lower
background interference of CSF compared to serum or due
to a predominance of intrathecal antibody synthesis in
some disorders. Overall, sensitivity and specificity are high-
est when both serum and CSF are tested.

Pathophysiological consid-
erations and the emerging
overlap with genetic and
degenerative movement
disorders

Pathophysiological considerations
and genetic parallels

Neuronal autoantibodies are neither perfectly specific bio-
markers (Box 1) nor necessarily pathogenic, and the exact
pathomechanisms leading to specific movement disorder
presentations are largely unknown. However, they may
be categorized into three groups based on the location of
their antigen and its accessibility in vivo, and their pre-
sumed pathogenic relevance (Fig. 2) (Lancaster and
Dalmau, 2012). Evidence for pathogenic relevance comes
from observations such as tight correlations between serum
or CSF antibody titres and the disease course, pathological
studies, and from i vitro or in vivo experiments. Likewise,

Specific test
Detects pathogenic
antibodies

Western blot
Test antigen: separated
proteins blotted on a

membrane

Immunhistochemistry
Test antigen: slices of
rodent/ primate brain
tissue

Radioimmuno assay
Test antigen: solubilized
mammalian brain

Cell-based assay
Test antigen: expressed by
transfected HEK cells

membranes

Figure | The different test systems for antibody detection. HEK = human embryonic kidney cell.
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Box | Antibodies as biomarkers: current problems and future directions

Current problems

Possible solutions

Antibodies as diagnostic biomarkers are not entirely specific

Rarely, low positive antibody titres can occur where the primary aeti-
ology is not autoimmune. For example, GlyR antibodies were detected
in Creutzfeldt-Jakob disease or genetic dystonia (Angus-Leppan et dl,
2013; Carvajal-Gonzalez et al., 2014); NMDAR antibodies in serum or
CSF of patients with Creutzfeld-Jakob disease (Fujita et al, 2012;
Mackay et al, 2012); or MELAS syndrome (Finke et al, 2012); and
GABAAR-antibodies in genetically proven Huntington’s disease
(Pettingill et al., 2015). Similarly, neuronal antibodies without any clinical
correlate have been found in healthy controls (Meinck et al, 2001;
Dahm et dl,, 2014).

These findings highlight that antibody test results need to be interpreted
with caution and clinical judgement.

Methodological issues of antibody testing might be overcome by standar-
dized tests and by international multicentre trials to establish the assays
with the highest sensitivity and specificity.

Diagnostic specificity can be increased e.g. by taking antibody titres into
consideration, and by testing serum and CSF, and calculating intrathecal
synthesis (particularly for GAD antibodies).

It remains to be investigated if these antibodies could exert pathogenic
effects in addition to the primary pathology.

The controversial role of IgA and IgM antibodies

Pathogenic relevance was hitherto assigned only to antibodies of IgG
subclass. NMDAR-antibodies of IgA-subtype were detected in patients
with slow cognitive impairment in absence of inflammatory signs in MRI
or CSE Some patients responded to immunotherapy (Pruss et al.,
2012b).

There is emerging evidence of downregulation of NMDA receptors also by
IgA and IgM antibodies in neuronal cell cultures (Pruss et al, 2012a, b).
However, their role remains controversial (Lancaster et al, 2015) and
further studies are warranted to determine if such patients should receive
immunomodifying treatment.

A need for predictive biomarkers to better guide therapeutic decisions

Antibody titres and clinical course correlate only in some (typically
neuronal surface) antibodies. The correlation with serum antibody
titres will possibly be poorer in diseases with predominant intrathecal
synthesis (e.g. NMDAR, DPPX antibodies) than in disorders where the
antibody is mainly generated in the serum (e.g. LGII antibodies).

In NMDAR-antibody encephalitis, the B-cell-attracting chemokine CXCLI3
correlated with treatment responses and relapses (Leypoldt et al., 2015).
Another avenue to explore is FDG-PET imaging, which can show abnorm-
alities even when the MRI is normal, and which often correspond to the
clinical course (Kunze et al., 2014).

Commonly used treatment approaches are mainly empirical or based on expert opinions

There is a lack of evidence-based guidelines, mainly due to the relative
rarity of these diseases.

Joint forces like international multicentre studies and registries with closely
characterized patients would be desirable to investigate systematically the
best treatment rationale.

MELAS = mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes.

phenotypic overlaps with pharmacological modulation or
genetic disruption of the antigen can support autoantibody
pathogenicity. In the following section, we will discuss the
pathogenic role of some of the most relevant neuronal
autoantibodies with a focus on parallels between genetic
and autoimmune conditions, and the existing evidence for
antibody-pathogenicity (Table 3).

Neuronal surface antibodies

Antibodies against neuronal surface proteins might exert
various effects upon binding, including complement acti-
vation and inflammatory cytotoxicity, antigenic modula-
tion leading to receptor loss by internalization, or receptor
blockade (Jain and Balice-Gordon, 2016). NMDAR anti-
bodies are neuronal surface antibodies with in vitro and
in vivo data supporting pathogenicity. NMDAR is an
ionotropic glutamate receptor widely expressed in the
brain and pivotal for long-term synaptic plasticity
(Standaert et al., 1994). In vitro and in vivo experiments
have shown that NMDAR antibodies target the NR1 sub-
unit of the receptor, causing receptor internalization by
cross-linking and thereby a reduction of surface
NMDAR density (Moscato et al., 2014; Planaguma

et al., 2015). Upon removal of the antibodies, the receptor
internalization is reversible, and residual deficits may be
the result of glutamate excitotoxicity (Manto et al., 2010).
The distinct movement disorder associated with NMDAR
antibodies, chorea and dyskinesias persisting in states of
reduced consciousness, is also seen with ‘dissociative’ an-
aesthetics. Interestingly, these are NMDAR antagonists
like ketamine or phencyclidine (Stamelou et al., 2012).
Furthermore, a genetic phenocopy of NMDAR-antibody
encephalitis with mixed hyperkinetic movement disorders
(chorea, dystonia, stereotypies, dystonia, oculogyric
crises), seizures, and sleep cycle dysregulation is seen
with mutations of GRINI1, the gene encoding the NR1
subunit of the NMDAR (Lemke et al., 2016).

SPSD have also a genetic analogue in hereditary hyper-
ekplexia, with which they share the clinical hallmark fea-
tures of stiffness, spasms and exaggerated startle. Indeed,
this clinical parallel inspired the discovery of GlyR antibo-
dies and antibodies against the glycine transporter 2
(encoded by SLC6AS) (Hutchinson et al., 2008; Balint
et al., 2015). GlyR antibodies specifically target the a1 gly-
cine receptor subunit expressed on brainstem and spinal
cord neurons, and both activate complement and cause re-
ceptor internalization via lysosomal pathways in wvitro
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Antibodies
against neuronal surface
antigens

Considered pathogenic as
they target proteins that are
accessible in vivo and,
typically, play an important
role in synaptic transmission,
plasticity or excitability

Antibodies
against intracellular
synaptic antigens

Controversial role in
pathogenesis (see text); their
antigen could be transiently
accessible during synaptic
vesicle fusion and uptake
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Antibodies
against intracellular
cytoplasmic/nuclear

antigens

Considered markers of
paraneoplastic syndromes with
poor prognosis and treatment
response, in which autoimmunity is
mainly effected by cytotoxic
T cells; the antigens are deemed to
be inaccessible in vivo

Examples: Examples: Examples:
Caspr2, DPPX, D2R, GAD, Hu, Yo, Ri
GABAAR, GABAGR, GlyR, LGI1, Amphiphysin CRMP5/CV2,
NMDAR Zic4, Ma2
| % %
Autoimmunity
antibody-mediated z - J0 @ &
o g :
J0 ’ oL oL ) . Autoimmunity

J

/0 © [€Tcell-mediated O
] . e W

Tumour association

Figure 2 The three groups of neuronal antibodies and their pathogenic roles, examples, treatment responses and tumour
associations. AMPAR = a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CASPR2 = contactin associated protein like 2;

D2R = dopamine 2 receptor; DPPX = dipeptidyl peptidase like protein 6; GABAAR and GABAgR = gamma aminobutyric acid type A and type B
receptors; GlyR = glycine receptor; LGII = leucine rich glioma inactivated protein |; NMDAR = N-methyl-p-aspartate receptor.

(Carvajal-Gonzalez et al., 2014). The latter effect would be
compatible with the clinical signs of decreased glycinergic
neurotransmission and a loss of brainstem and spinal
inhibition.

In contrast, the presumed pathophysiological mechanisms
of DPPX antibodies, which also associate with SPSD, relate
to increased CNS hyperexcitability mediated by downregu-
lation of DPPX and K,4.2 in neuronal membranes as
shown in vitro (Piepgras et al., 2015). The antigen is
widely expressed in the CNS and on the myenteric
plexus, which matches the typically multifocal, combined
presentations and chronic diarrhoea as hallmark features
in DPPX-antibody-related disease.

Existing evidence for the pathogenic relevance of other
neuronal surface antibodies and comparison with their re-
spective genetic counterparts is summarized in Table 3.

Antibodies against intracellular
synaptic antigens

GAD antibodies also target a protein of inhibitory syn-
apses, but their role in disease pathophysiology is more
controversial. The antigenic target, glutamic acid
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decarboxylase-65 (GADG6S), is the cytoplasmic, rate-limit-
ing enzyme in the synthesis of GABA, a major inhibitory
neurotransmitter in the CNS. GAD antibodies are the most
frequent antibody in SPSD and cerebellar ataxia, but they
also associate with temporal lobe epilepsy, limbic enceph-
alitis, and type 1 diabetes (Gresa-Arribas er al., 2015).
Although a difference between epitopes associated with
type 1 diabetes and SPSD/cerebellar ataxia was suggested,
epitope mapping did not consistently reveal relevant differ-
ences between the antibodies pertinent to such different
neurological phenotypes (Manto et al., 2011; Fouka
et al., 2015; Gresa-Arribas et al., 2015). The GAD anti-
body titres usually do not correlate with the clinical course,
and the response to immunotherapy is highly variable.
These observations have questioned their pathogenicity.
Some studies have identified co-occurring, potentially
pathogenic neuronal surface antibodies in patients with
GAD antibodies, but it is questionable if this is sufficient
to explain the varied neurological manifestations (Chang
et al., 2013; Petit-Pedrol et al., 2014; Gresa-Arribas et al.,
2015). Pathological findings from patients with SPSD or
encephalitis with GAD antibodies substantiate a T-cell in-
volvement, and suggest that GAD-antibody-related disease
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represents an intermediate between neuronal surface anti-
bodies and those directed against cytoplasmic/nuclear anti-
gens (Witherick et al., 2011; Bien et al., 2012). Whereas
in vitro experiments yielded contradictory evidence regard-
ing the possible internalization of GAD-antibodies (Hampe
et al., 2013; Gresa-Arribas et al., 2015), transfer experi-
ments in rodents were able reproduce some evidence of
pathogenicity (Geis et al., 2011).

Similar transfer experiments of purified IgG have shed a
new light on amphiphysin antibodies. The antigen has a
pivotal role for clathrin-mediated endocytosis, a mechanism
to compensate for the fast exocytosis of neurotransmitters
by recycling synaptic vesicles, which is particularly import-
ant in GABAergic interneurons. Amphiphysin-IgG reduced
presynaptic GABAergic inhibition, leading to stiffness and
spasms in rodents (Sommer et al., 2005; Geis et al., 2010).
Neurons internalized the antibodies and reduced the pre-
synaptic vesicle pool (Werner et al., 2016). Further studies
will have to elucidate if the transient presentation of the
‘surface-moonlighting” synaptic antigens during endocytosis
suffices to generate pathology (Irani, 2016).

Antibodies against intracellular
cytoplasmic/nuclear antigens

Autoantibodies against intracellular antigens are not con-
sidered pathogenic, as their target is inaccessible in vivo.
Existing evidence suggests that autoreactive T cells are
mediating the disease process, characterized by lymphocytic
infiltration and damage of neuronal structures (Lancaster
and Dalmau, 2012). This group of antibodies includes
those against nuclear or nucleolar antigens, like Hu or
Ma, which have a diffuse expression in the CNS and vari-
ous associated syndromes.

A subgroup of these antibodies, however, target cytoplas-
mic antigens and specifically associate with cerebellar
ataxia with Purkinje cell degeneration. Indeed, these condi-
tions have genetic counterparts involving a functional net-
work of calcium homeostasis and signalling in Purkinje
cells, and therefore demonstrate molecular parallels be-
tween genetic conditions and autoantibodies considered as
non-pathogenic (Table 3 and Fig. 3). Although IgG uptake
by Purkinje cells has been reported (Hill et al., 2009;
Greenlee et al., 2010), further experiments substantiating
a possible pathophysiological role of these antibodies are
lacking.

Similarly, antibodies against transglutaminase 6 (TG6),
which is inter alia expressed in the cytoplasm of Purkinje
cells, have a genetic counterpart in SCA35 (Wang et al.,
2010). TG6 antibodies have been described in patients with
gluten sensitivity, but their sensitivity, specificity and diag-
nostic utility as well as their pathophysiological role remain
very controversial (Hadjivassiliou et al., 2008; Boscolo
et al., 2010; Lindfors et al., 2011; Hadjivassiliou et al.,
2013; McKeon et al., 2014; Stenberg et al., 2014).

B. Balint et al.

The role of neuronal antibodies in
neurodegeneration: player, bystander
or biomarker?

The recent discovery of neuronal surface antibodies against
IgLONS in defining a novel tauopathy has more closely
apposed the boundaries between neurodegeneration and
neuroimmunology (Sabater et al., 2014).

The IgLONS-antibody-linked tauopathy is characterized
by prominent sleep movement disorders, first and foremost
by a non-REM sleep parasomnia with simple or finalistic
movements, resembling daytime activities such as eating,
drinking or manipulating objects. Other sleep abnormalities
included RBD, and periodic limb movements of sleep.

Breathing difficulties like sleep apnoea or stridor, leading
to respiratory insufficiency and often severe enough to re-
quire a tracheostomy, appear to be another hallmark fea-
ture of this disease. Bulbar symptoms, namely dysarthria,
dysphagia and vocal cord paresis, are common findings.
Patients may be disabled by a progressive and disabling
gait instability with postural reflex loss, which together
with a vertical supranuclear gaze palsy give rise to a PSP-
like presentation (Gaig et al., 2017; Hoglinger et al., 2017).
The range of abnormal eye movements extends however to
horizontal gaze paresis, saccadic intrusions, and nystagmus
(Sabater et al., 2014; Gelpi et al., 2016). On the other
hand, ocular or appendicular cerebellar signs, nocturnal
stridor and dysautonomia including orthostatic hypoten-
sion, can resemble multiple system atrophy. Possible signs
of dysautonomia comprise also urinary symptoms, episodic
intense transpiration, cardiac arrhythmias and central
hypoventilation. The phenotypic spectrum is indeed
broad, and includes also a Huntington’s disease lookalike
with chorea, myoclonus and cognitive decline.

Disease onset ranged between 48-77 years, and disease
duration spanned from 2 months to 12 years. The causes of
death were respiratory failure or sudden death during sleep
or wakefulness. Notably, brain pathology showed an ab-
sence of inflammatory infiltrates but widespread accumula-
tion of hyperphosphorylated three and four repeat tau
aggregates in neurons, and neuronal loss predominantly
in the hypothalamus and the brainstem tegmentum
(Sabater et al., 2014; Gelpi et al., 2016). There was a
cranio-caudal gradient of severity until the upper cervical
cord. These findings suggest neurodegeneration as the pri-
mary disease mechanism, which would fit with the observed
absence of a significant response to immunotherapy.
However, all genotyped patients had HLA-DQB1*0501
and HLA-DRB1*1001 alleles, suggesting a genetic suscepti-
bility for autoimmunity (Sabater et al., 2014, 2016).

How can these seemingly contradictory and puzzling
findings be reconciled? Little is known about the physio-
logical function of IgLONS, a cell adhesion molecule on the
neuronal surface. It belongs to the immunoglobulin super-
family and functions in neuronal path-finding and synaptic
formation during brain development (Sanz et al., 2015).
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Ca* release
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Figure 3 Proteins of the calcium homeostasis and signalling network in Purkinje cells: parallels of genetic cerebellar ataxias
and antibody-related autoimmunity. Upon parallel fibre stimulation, glutamate is released and binds to mGlurl, a G-protein-coupled surface
receptor highly expressed at the perisynaptic site of Purkinje cells and involved in mediation of slow excitatory potentials and long-term
depression. Its intracellular domain in turn interacts with Homer-3, which is a scaffolding protein relevant for mGlurl clustering, and which
crosslinks mGIuR | with ITPRI in the smooth endoplasmic reticulum. Upon glutamate binding, mGIuR| activates of phospholipase C, an enzyme
that cleaves phosphatidylinositol 4,5-bisphosphate in the plasma membrane to produce diacylglycerol and inositol trisphosphate (IP3). IP3 binds to
ITPRI and thereby induces calcium release from the endoplasmatic reticulum, which in turn activates protein kinase C y (PKCy) that desensitizes
mGluR| by phosphorylation and induces internalization of AMPA receptors (AMPAR). GIuRd2 is a key binding partner for mGIuR| and PKCy,
relevant for synaptic mGluR| signalling and also involved in AMPAR trafficking. Similarly, activation of climbing fibres opens voltage gated calcium
channels (VGCC) which mediate calcium influx and contribute to the signalling cascade, which results in reduction of AMPAR sensitivity at the
synapse. Proteins that are targets of antibodies associated with cerebellar ataxia are in single-lined boxes, proteins that are also affected by
mutations in genetic ataxias (Table 3) are highlighted in double-lined boxes, and existing evidence with regards to their pathogenic role is discussed
in Table 3. AMPAR = a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CARP VIl = carbonic anhydrase VIII; ER = endoplasmic

reticulum; GluRd2 = glutamate receptor delta 2; PKCg = protein kinase C gamma.

The IgLONS antibodies target the extracellular domain of
the protein and are predominantly of the IgG4 subtype,
which is assigned anti-inflammatory properties. To a
lesser extent, patient sera contained co-existent IgG1 anti-
bodies, which caused internalization of IgLONS in neur-
onal cultures (Sabater et al., 2016). This effect was not
seen with IgG4-subtype antibodies. Thus, the role of the
IgLONS antibodies is still unclear. Perhaps antibody-
mediated downregulation of IgLONS could disrupt its
interaction with the internal cytoskeletal network and
induce tau accumulation and hyperphoshphorylation, leading
to neurodegeneration, which at the time of manifestation
may no longer be amenable to immunotherapy (Gelpi
et al., 2016). On the other hand, the tau accumulation
may indirectly lead to neuronal autoimmunity in susceptible
individuals, and have broader implications as a paradigm for
the role of inflammation in neurodegeneration.

Conclusions and future
directives

The ever-expanding, partly overlapping, spectrum of anti-
bodies in movement disorders, and knowledge about the

clinical phenotypes is key to identify patients who may
benefit from therapy. Current challenges (Box 1) relate to
the use of antibodies as biomarkers. Presently, treatment
approaches of immuno-suppression or -modulation are em-
pirical or based on expert consensus, as there is a lack of
randomized controlled trials and available evidence is lim-
ited to a few observational studies (Graus et al., 2016). The
underlying immunopathophysiology can inform treatment
decisions and prognosis (Fig. 2). In disorders where neur-
onal surface antibodies are the main players, overall re-
sponse to immunotherapy is usually good, albeit varied.
For example, usually, patients with LGI1 antibodies show
an exquisite response to corticosteroids, whereas approxi-
mately half of the patients with NMDAR antibodies re-
spond insufficiently to ‘first line’ immunotherapy
(corticosteroids, plasma exchange, intravenous immuno-
globulins) (Irani et al., 2013; Titulaer et al., 2013), which
may be partly related to extra- versus intrathecal antibody
synthesis. Regarding intracellular synaptic antibodies, there
has been one placebo-controlled cross-over trial showing
beneficial effects of intravenous immunoglobulin in patients
with stiff person syndrome and GAD antibodies (Dalakas
et al., 2001) but, overall, treatment response in GAD-anti-
body-related disease is mixed and unpredictable (Arino
et al., 2014; Martinez-Hernandez et al., 2016).
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Figure 4 Potential future treatment approaches with antigen-specific immunotherapy.

The main drawback of the present immunotherapies is
that they are potentially toxic: they widely suppress the
immune system and lead to a higher risk of infections, pos-
sibly with fatal outcomes. A future, improved treatment
option may be more tailored, antigen-specific immunother-
apy (Fig. 4). In primarily antibody-mediated disease, tar-
geted blocking of the patients’ autoantibodies with small
molecules could attenuate the effect of the autoantibodies.
Another possibility is engineering a non-pathogenic, mono-
clonal antibody that binds to the same target and competi-
tively displaces the autoantibodies, thereby preventing
cytotoxicity. Persuasive precedents exist in neuromyelitis
optica caused by AQP4 autoantibodies, where the antiviral
agent arbidol can serve as such a small blocking molecule,
or ‘aquaporumab’ as a competitive and protective antibody
(Verkman et al., 2013).

In T-cell-mediated disease, this may involve expanding
the antigen-specific regulatory networks, in particularly
regulatory T cells (Clemente-Casares et al., 2016).
Autoimmune disease-relevant peptides can induce antigen-
specific regulatory T cells and reverse autoimmune inflam-
mation, as shown in mice humanized with lymphocytes
from type 1 diabetes and treated with nanoparticles
coated with human GAD65 (Clemente-Casares et al.,
2016).

A different approach is to target the pathophysiological
cascades downstream from the antibody-antigen inter-
action. A molecular understanding, which has been de-
veloped through genetic diseases over the past decades,
could now be used to think about new therapeutic
approaches for antibody-related disease. Such a molecular,
pathway-specific approach seems feasible in NMDAR-anti-
body encephalitis: NMDAR antibodies disrupt the inter-
action between NMDAR and ephrin-B2 receptor, which

eventually leads to displacement of NMDAR to extra-
synaptic sites before they are internalized. Ephrin-B2 is
the ligand of the ephrin-B2 receptor, which stabilizes and
retains NMDAR at the synapse. Administration of ephrin-
B2 counteracts this loss of extrasynaptic and synaptic
NMDAR both in vitro and in vivo in the NMDAR-anti-
body transfer mouse model (Mikasova et al., 2012;
Planaguma et al., 2016). Notably, aberrant NMDAR traf-
ficking is also pivotal in the pathophysiology of
Huntington’s disease (Daggett and Yang, 2013), and re-
agents that regulate human ephrin-like receptors are
under investigation for treatment of Huntington’s disease
(Ramakrishnan, 2003). Clinical practice offers another
paradigm of a similar treatment approach in genetic and
autoimmune neurology where 4-aminopyridine has proved
beneficial in two disorders affecting P/Q type voltage-de-
pendent calcium channels: episodic ataxia type 2 due to
P/Q calcium channel gene mutations and Lambert-Eaton
syndrome due to P/Q calcium channel autoantibodies
(Strupp et al., 2011). There are a number of antibodies
associated with cerebellar ataxia that target proteins,
which are functionally relevant parts of a calcium signalling
network in Purkinje cells, and also affected by mutations
causing genetic ataxias (Table 3 and Fig. 3). Thus, an
interdisciplinary approach with focus on similar patho-
physiological pathways in immunological, genetic or degen-
erative disorders will cross-fertilize our endeavours to better
understand and treat neurological diseases.
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