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Astrocytes modulate brainstem respiratory
rhythm-generating circuits and determine exercise
capacity
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Astrocytes are implicated in modulation of neuronal excitability and synaptic function, but it

remains unknown if these glial cells can directly control activities of motor circuits to influ-

ence complex behaviors in vivo. This study focused on the vital respiratory rhythm-

generating circuits of the preBötzinger complex (preBötC) and determined how compromised

function of local astrocytes affects breathing in conscious experimental animals (rats).

Vesicular release mechanisms in astrocytes were disrupted by virally driven expression of

either the dominant-negative SNARE protein or light chain of tetanus toxin. We show that

blockade of vesicular release in preBötC astrocytes reduces the resting breathing rate and

frequency of periodic sighs, decreases rhythm variability, impairs respiratory responses to

hypoxia and hypercapnia, and dramatically reduces the exercise capacity. These findings

indicate that astrocytes modulate the activity of CNS circuits generating the respiratory

rhythm, critically contribute to adaptive respiratory responses in conditions of increased

metabolic demand and determine the exercise capacity.
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Astrocytes have been proposed to modulate neuronal
excitability, synaptic transmission, and plasticity1,2. Phy-
siology of these electrically non-excitable cells of the brain

is governed by intracellular Ca2+, with increases in [Ca2+]i trig-
gering release of signaling molecules or “gliotransmitters” (such as
ATP/adenosine, D-serine, and others). Recent studies have sug-
gested that via release of gliotransmitters astrocytes may influence
activities of neural circuits controlling sleep, feeding, and che-
mosensing3–5, yet it remains unknown whether astrocytes can
directly modulate motor circuits and have an impact on complex
behaviors. In vitro experiments with rodent brainstem slices6–9

have suggested that astroglial mechanisms may play a certain role
in regulating the activities of neuronal networks producing motor
rhythms, including those within the preBötzinger complex
(preBötC)10 in the ventrolateral medulla that generates the
rhythm of breathing11. However, whether such modulation is
functionally important for rhythmic motor behavior has not been
determined. In this study, we accordingly focused on the preBötC
that produces a fundamental, clearly defined motor output, and
where local astrocytic modulation of neuronal excitability and/or
synaptic transmission would directly affect respiratory motor
behavior. We determined the effects of compromised preBötC
astroglial vesicular release mechanisms on breathing in conscious
adult rats at rest and in conditions of increased metabolic demand
requiring regulatory adjustments of respiratory motor activity,
including during exercise. We show that blockade of vesicular
release in preBötC astrocytes reduces the resting breathing rate
and frequency of periodic sighs, decreases rhythm variability,
impairs respiratory responses to hypoxia and hypercapnia, and
dramatically reduces the exercise capacity.

Results
Vesicular release mechanisms in preBötC astrocytes in adult
Sprague-Dawley male rats were disrupted by virally driven
expression of either the light chain of tetanus toxin (TeLC)12, or
the dominant-negative SNARE (dnSNARE) protein13 (Supple-
mentary Table 1) to block SNARE-dependent vesicular exocy-
tosis. Astrocyte-specific expression of TeLC or dnSNARE was
controlled by an enhanced GFAP promoter5 (Fig. 1a). The high
efficacy of TeLC expression in blocking vesicular release in
brainstem astrocytes has been demonstrated previously12. To
determine efficacy of our novel dnSNARE construct, we used
total internal reflection fluorescence microscopy (TIRF) to
monitor vesicular fusion events in cultured brainstem astrocytes
transduced to express dnSNARE or a control transgene (CatCh-
EGFP). In dnSNARE-expressing astrocytes, the number of jux-
tamembrane vesicles labeled with quinacrine was reduced by 67%
(p< 0.001; Fig. 1b). Facilitated vesicular fusion induced by the
Ca2+ ionophore ionomycin, or the oxygen scavenger sodium
dithionite, was effectively abolished in astrocytes expressing
dnSNARE (Fig. 1c–e; Supplementary Fig. 1).

In conscious rats, bilateral expression of dnSNARE or TeLC in
preBötC astrocytes (Fig. 1f; Supplementary Figs. 2 and 3) resulted
in a significant reduction in resting breathing frequency (ƒR) by
11% (94±2 vs. 106±5 min−1 in controls; n = 5, p = 0.016) and by
11% (92±2 vs. 103±3 min−1 in controls; n = 12, p = 0.011),
respectively (Fig. 1g, h). Since dnSNARE or TeLC expression in
astrocytes is likely to block exocytosis of several putative glio-
transmitters, we determined the possible contribution of ATP by
blocking ATP-mediated signaling within the preBötC by virally
driven expression of a potent ectonucleotidase — transmembrane
prostatic acid phosphatase (TMPAP). TMPAP expression is
highly effective in preventing ATP accumulation in astroglial
vesicular compartments and blocking extracellular ATP
actions14–16. We found that bilateral expression of TMPAP in the

preBötC (Supplementary Figs. 2 and 3) reduced resting ƒR by 12%
(98±3 vs. 111±4 min−1 in controls, n = 7, p = 0.017; Fig. 1i). These
results suggested that at rest, vesicular release of gliotransmitters
by preBötC astrocytes provides tonic excitatory drive to the
inspiratory rhythm-generating circuits.

We next assessed whether activation of preBötC astrocytes
influences breathing behavior. Release of gliotransmitters by
astrocytes may occur following activation of phospholipase C
(PLC)12. To facilitate PLC-mediated release of gliotransmitters,
we transduced preBötC astrocytes to express a Gq-coupled
Designer Receptor Exclusively Activated by Designer Drug
(DREADDGq)17 (see vector layout, Fig. 2a, f–h; Supplementary
Figs. 2 and 3). As expected, the DREADD ligand clozapine-N-
oxide (CNO) triggered robust increases in [Ca2+]i in brainstem
astrocytes expressing DREADDGq (Fig. 2b; Supplementary
Fig. 4). These responses were blocked by the PLC inhibitor
U73122 (Fig. 2c). However, a PLC activity assay revealed higher
resting (i.e., in the absence of CNO) levels of inositol phosphates
in cultured astrocytes expressing DREADDGq (Fig. 2d). More-
over, DREADDGq expression was also found to be associated with
a higher rate of spontaneous fusion of quinacrine-labeled vesicles
in cultured astrocytes (Fig. 2e), and facilitated release of ATP in
conditions when preBötC astrocytes were transduced to express
the transgene (in experiments on acute brainstem slices, Fig. 2i, j),
indicating that in the absence of an agonist, DREADDGq is
constitutively active at the level of expression achieved by the viral
vector used. We exploited this property of DREADDGq in order
to determine whether sustained activation of PLC in preBötC
astrocytes, associated with facilitated vesicular release of ATP, has
an impact on the inspiratory rhythm-generating circuits. Bilateral
expression of DREADDGq (n = 8) in preBötC astrocytes resulted
in 26% higher baseline ƒR (123±5 vs. 98±2 min−1 in controls, n =
14, p< 0.001; Fig. 2k). This effect was effectively abolished by the
ectonucleotidase activity of TMPAP. Co-expression of
DREADDGq and TMPAP in the preBötC was associated with a
significant reduction of the respiratory rate below the baseline (88
±3 min−1, n = 5, p = 0.030; Fig. 2k), an effect similar to that
observed in conditions of TMPAP expression alone (Fig. 1i).

Altered function of preBötC astrocytes also had a significant
impact on other features of resting inspiratory activity. Bilateral
expression of dnSNARE or TeLC in preBötC astrocytes was
associated with a significant reduction in the variability of the
respiratory rhythm (Fig. 3a). DREADDGq expression had an
opposite effect and increased respiratory variability (Fig. 3a).

The frequency of sighs, breaths with augmented inspiration,
generated periodically by the preBötC circuits18,19, was reduced
by 27% (p< 0.001) in rats expressing dnSNARE, by 25%
(p< 0.001) in rats expressing TeLC, and by 26% (p< 0.001) in
rats expressing TMPAP in the preBötC (Fig. 3b). Sigh frequency
was found to be significantly higher in rats transduced to express
DREADDGq in preBötC astrocytes (by 31%, n = 8, p< 0.001;
Fig. 3b). There is recent evidence that generation of sighs is
facilitated by the actions of bombesin-like peptides18 and inhib-
ited when astroglial function is compromised20, suggesting that
sigh generation may be modulated by signaling molecules
released by preBötC astrocytes in response to various stimuli,
including locally released bombesin-like peptides. Indeed, we
found that bombesin triggers robust [Ca2+]i responses in cultured
brainstem astrocytes (Supplementary Fig. 5). Blockade of vesi-
cular release mechanisms in preBötC astrocytes (dnSNARE
expression) significantly reduced the effect of bombesin on sigh
frequency in vivo (Supplementary Fig. 6), suggesting that the
actions of bombesin-like peptides on preBötC circuits18 are
potentially mediated by astrocytes. Together these results suggest
that vesicular release of gliotransmitter(s) by preBötC astrocytes
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Fig. 1 PreBötC astrocytes modulate the activity of the respiratory rhythm-generating circuits. a Schematic of AVV-sGFAP-dnSNARE-EGFP vector layout.
b Summary data illustrating a reduction in the number of juxtamembrane quinacrine-labeled vesicular compartments in cultured brainstem astrocytes
expressing dnSNARE. c Plots of TIRF intensity changes showing loss of quinacrine fluorescence from a proportion of labeled organelles in response to
application of the Ca2+ ionophore ionomycin (1 μM) in two individual cultured astrocytes transduced to express control transgene (black traces) or
dnSNARE (red traces). In cultures of astrocytes expressing dnSNARE, digitonin was applied at the end of the recording to permeabilize the membranes,
resulting in a rapid loss of quinacrine fluorescence. d Averaged temporal profile of ionomycin-induced vesicular fusion events detected in cultured
astrocytes expressing control transgene or dnSNARE. e Total number of ionomycin- and sodium dithionite-induced vesicular fusion events detected in
individual cultured astrocytes expressing control transgene or dnSNARE. In b, d, and e, numbers of individual tests performed in three different cultures
prepared from different animals are indicated. f Schematic drawings of the rat brain in parasagittal and coronal projections illustrating the location of the
preBötC. NAsc, semi-compact division of the nucleus ambiguus; XII, hypoglossal motor nucleus. Representative confocal image of dnSNARE-EGFP
expression in preBötC astrocytes is shown on the right (scale bar: 200 μm). High-magnification inset shows expression of dnSNARE-EGFP in GFAP-
positive preBötC astrocytes (inset scale bar: 50 μm). NAsc neurons are identified by choline acetyltransferase (ChAT) immunoreactivity. VS, ventral
surface of the brainstem. g, h Group data showing the effects of dnSNARE or TeLC expression in preBötC astrocytes on frequency distribution of all
respiratory-related events detected in 30-min assay (top) and resting respiratory frequency recorded during periods of calm wakefulness and/or quiet
sleep (ƒR, bottom) in conscious adult rats. In control animals preBötC astrocytes were transduced to express CatCh-EGFP. i Group data showing the effect
of TMPAP expression in preBötC region on frequency distribution of the respiratory-related events and resting fR in conscious rats. In g, h, and i, number of
animals in each experimental group is indicated in parentheses. p values—Mann–Whitney U rank test

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02723-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:370 |DOI: 10.1038/s41467-017-02723-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


modulates the variability of the respiratory rhythm and the
generation of sighs.

Since hypoxia induces release of ATP by astrocytes12,21 and
increases sigh frequency22,23, we next evaluated the effects of
dnSNARE or TeLC expression in preBötC astrocytes on

respiratory responses to systemic hypoxia (10% O2 in the inspired
air) as well as the effects of dnSNARE, TeLC, TMPAP, and
DREADDGq expression on sigh generation during hypoxia.
Expression of dnSNARE attenuated hypoxia-induced increases in
ƒR by 27% (159±10 vs. 217±7 min−1 in controls; Fig. 4a) and in
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minute ventilation by 34% (Fig. 4a). TeLC expression in preBötC
astrocytes had a similar effect (Supplementary Fig. 6). Disruption
of either astroglial vesicular release (dnSNARE or TeLC expres-
sion) or ATP-mediated signaling (TMPAP expression) reduced
the frequency of sighs during the hypoxic challenge by 34%
(n = 5, p< 0.001), 36% (n = 12, p< 0.001), and 44% (n = 7,
p< 0.001), respectively (Fig. 3b). DREADDGq expression in pre-
BötC astrocytes had an opposite effect and increased frequency of
sigh generation during hypoxia by 50% (n = 8, p = 0.003; Fig. 3b).

Brainstem astrocytes are sensitive to changes in PCO2/pH24–26

and we next found that preBötC astrocytes play an important role
in the development of respiratory response to elevated systemic
CO2 (hypercapnia). In conscious rats, bilateral expression of
dnSNARE or TeLC in preBötC astrocytes reduced the ƒR
responses to hypercapnia (6% inspired CO2) by 23% (141±6 vs.
182±3 min−1 in controls; n = 5, p = 0.008) and 20% (151±6 vs.
190±8 min−1 in controls; n = 9, p = 0.005), respectively (Fig. 4b),
concomitantly reducing minute ventilation (Fig. 4b).

We next hypothesized that astroglial control of breathing at the
level of the preBötC may become particularly important during
physical activity and exercise when increased oxygen demand
must be supported by an enhanced respiratory effort. Accord-
ingly, we determined whether blockade of astroglial vesicular
release mechanisms impairs the exercise capacity. Bilateral
expression of dnSNARE or TeLC in preBötC astrocytes resulted
in a marked reduction of exercise capacity by 57% (0.5±0.1 vs. 1.1
±0.2 kJ in controls; p = 0.016, n = 5) and 42% (0.7±0.1 vs. 1.2±0.1
kJ in controls; p< 0.001, n = 9), respectively (Fig. 5a, b). Cardi-
ovascular responses to exercise (increases in heart rate and sys-
temic arterial blood pressure) were not affected (Fig. 5c),
suggesting that the impaired exercise capacity is due to the
respiratory, not a cardiovascular, deficit.

Discussion
Central nervous system (CNS) neural circuits are intermingled
with astroglial networks, yet the experimental evidence for
astrocytes directly controlling the activities of functionally defined
motor circuits to affect behavior in vivo is lacking. This study
focused on the vital brainstem respiratory rhythm-generating
circuits of the preBötC and determined whether astrocytes can
modulate the activity of these circuits and, therefore, breathing in
conscious rats. Astrocytes are well known to provide neurons
with structural and metabolic support, but also have a distinct
signaling function, which is mediated via the release of glio-
transmitters2. Here molecular approaches designed to block or
stimulate astroglial vesicular release of gliotransmitters were used
to study the functional role of astroglial signaling in the control of
the respiratory activity originating at the level of the preBötC.

Expression of TeLC or dnSNARE protein in preBötC astrocytes
reduced the resting breathing rate and frequency of periodic
sighs, decreased rhythm variability, impaired respiratory
responses to hypoxia and hypercapnia, and dramatically reduced
the exercise capacity. TeLC is a proteolytic enzyme that cleaves
SNARE proteins required for vesicular fusion. In cultured
astrocytes, TeLC inhibits ATP and glutamate release27, blocks
Ca2+-dependent vesicular fusion12, and prevents the spread of
Ca2+ waves triggered by mechanical stimulation12—the effects
consistent with the inhibition of vesicular ATP release28. TIRF
imaging confirmed that dnSNARE expressed in astrocytes redu-
ces the number of juxtamembrane vesicles and effectively blocks
Ca2+-dependent vesicular fusion. These effects are in line with the
proposed mechanisms underlying the effect of dnSNARE on
exocytosis in astrocytes29.

Our initial design of the gain-of-function experiment with
DREADDGq involved targeting preBötC astrocytes to express this
receptor followed by documenting changes in respiratory activity
induced by administration of CNO. However, validation experi-
ments of our viral vector construct revealed that in the absence of
a ligand, astrocytes expressing DREADDGq exhibit a higher level
of PLC activity, higher rate of spontaneous vesicular fusion, and
facilitated tonic release of ATP. These results suggested that
DREADDGq is constitutively active when expressed in astrocytes,
an observation consistent with the properties of many hM3
receptor mutants originally described17. Since CNO appears to
have low affinity for DREADDs and its effects are largely
attributed to its conversion to clozapine30, which may interact
with astroglial serotonin receptors31, we focused on determining
the effects of the constitutive DREADDGq activity. In rats, sus-
tained activation of PLC-mediated signaling pathways in preBötC
astrocytes expressing DREADDGq was associated with higher
resting breathing rate, higher frequency of periodic sighs, and
increased rhythm variability. That this effect was blocked by co-
expression of the potent ectonucleotidase TMPAP suggested that
the stimulatory effect of DREADDGq expression in preBötC
astrocytes on breathing could be mediated by direct actions of
ATP and/or related purines on preBötC circuits or, alternatively,
autocrine effects of ATP on Ca2+ in preBötC astrocytes leading to
the release of other gliotransmitters2, neither possibility of which
we rule out here.

The role of preBötC astrocytes in the control of breathing
becomes especially important during physiological metabolic
challenges, such as systemic hypoxia and hypercapnia, where
enhanced respiratory effort is critical to maintain homeostasis.
Although expression of dnSNARE or TeLC in preBötC astrocytes
reduced resting respiratory rate, minute ventilation at normoxia/
eucapnia was similar to that in animals expressing control

Fig. 2 Activation of Gq-mediated signaling pathways in preBötC astrocytes facilitates the respiratory rhythm. a Schematic of AVV-sGFAP-DREADDGq-EGFP
vector layout. b CNO-induced [Ca2+]i responses in cultured astrocytes transduced to express DREADDGq. c The effect of CNO is blocked by the PLC
inhibitor U73122. d Summary data illustrating PLC activity in cultured brainstem astrocytes expressing DREADDGq and the effects of CNO on PLC activity
as assessed by measuring [3H]-inositol phosphate (InsP) production relative to the total inositol lipid pool in naive astrocytes and in astrocytes transduced
to express DREADDGq or CatCh. Higher resting InsP level in brainstem astrocytes expressing DREADDGq indicate constitutive activity of the receptor. e
Summary data illustrating the rate of spontaneous and CNO-induced fusion of quinacrine-labeled vesicular compartments in astrocytes transduced to
express CatCh or DREADDGq. DREADDGq expression in astrocytes is associated with a significantly higher rate of spontaneous vesicular fusion events. In d
and e, numbers of individual tests performed in three different cultures prepared from different animals are indicated. f–h Confocal images illustrating
DREADDGq-EGFP expression in a subset of preBötC astrocytes (scale bars: 100 μm). DREADDGq expression is limited to astrocytes as no neurons
(identified by NeuN immunoreactivity) expressed the transgene (see high-magnification inset images. Inset scale bars: 25 µm). i Representative example of
changes in ATP biosensor current after biosensor placement on the surface of the brainstem slice transduced to express CatCh and DREADDGq in
astrocytes residing in opposite preBötC areas. Asterisk (*) marks the movement deflection due to removing of the biosensor from the slice surface. j
Summary data illustrating facilitated tonic release of ATP in acute brainstem slices of adult rats transduced to express DREADDGq by the preBötC
astrocytes; k Group data showing the effect of DREADDGq expression in preBötC astrocytes on frequency distribution of all respiratory-related events and
resting ƒR in conscious rats. Number of animals in each experimental group is indicated in parentheses. p values—Mann–Whitney U rank test (d, e, k) or
Wilcoxon matched-pairs signed-rank test (j)
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transgene (due to small compensatory increases in tidal volume).
More marked differences in ventilation between the experimental
and control groups were observed during the hypoxic challenge,
indicating that preBötC astrocytes are critically important for the
development of the full-scale hypoxic ventilatory response. These
data are consistent with the proposed role of astrocytes as CNS
oxygen sensors12,21,32.

Respiratory rhythm-generating circuits are silent in the absence
of CO2 and require a certain level of CO2 to operate. The preBötC
has a neuronal H+/CO2-sensing mechanism33, however, our
results suggest that preBötC astrocytes contribute in a significant
manner to the development of the respiratory response to
hypercapnia. Our data support the “distributed central chemo-
sensitivity” hypothesis, which proposes that central respiratory
sensitivity to CO2 (the mechanism that adjusts breathing in
accordance with changes in brain parenchymal PCO2/pH) is
mediated by multiple central chemoreceptor sites (one being the
preBötC), with each site providing tonic excitation in eucapnia
and a fraction of the total response to systemic hypercapnia34.
Previous experimental studies suggested that the contribution of
the preBötC mechanism(s) to the overall respiratory response to
CO2 is ~20–25%34. Our experiments showed that ventilation
during eucapnia and hypercapnia is similarly reduced by ~20% in

conditions when vesicular release mechanisms in preBötC
astrocytes are blocked and hyperoxia is applied to reduce the
drive from the peripheral chemoreceptors (Fig. 4b). While cur-
rent models of central respiratory CO2 chemosensitivity are
focused on groups of pH-sensitive neurons residing elsewhere in
the brainstem35–37, our data suggest that CO2/pH chemosensi-
tivity of the preBötC is mediated by astrocytes.

Recently, astrocytes have been implicated in the brain
mechanisms that maintain endurance capacity38, although the
specific contribution of brainstem and especially preBötC astro-
glia and the potential underlying mechanisms of this involvement
were not addressed. We found that expression of dnSNARE or
TeLC in preBötC astrocytes is associated with a significant
reduction in exercise capacity. The exact mechanism underlying
the involvement of preBötC astrocytes in the development of the
respiratory response to exercise remain to be determined, but
these data imply that astrocytes intermingled with the preBötC
respiratory neural circuits ultimately determine the exercise
capacity.

In conclusion, the data obtained in the present study indicate
that astrocytes are able to modulate the activities of vital rhythmic
motor circuits with a significant impact on motor behavior
in vivo. We targeted astrocytes intermingled with the preBötC
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respiratory rhythm-generating circuits to express proteins that
block or facilitate vesicular release mechanisms. Our results
suggest that astroglial signaling involving exocytotic vesicular
release of gliotransmitters provides tonic excitation of preBötC
circuits that generate the inspiratory rhythm. The role of preBötC
astrocytes becomes especially important in conditions such as
systemic hypoxia, hypercapnia, and exercise, when homeostatic
adjustments of breathing are critical to support our physiological
and behavioral demands.

Methods
Animals. All animal experiments were performed in Sprague-Dawley rats (adult
males 250–270 g or neonates P2-P3 of either sex) in accordance with the European
Commission Directive 2010/63/EU (European Convention for the Protection of
Vertebrate Animals used for Experimental and Other Scientific Purposes), the UK
Home Office (Scientific Procedures) Act (1986), and the National Institutes of
Health Guide for the Care and Use of Laboratory Animals, with project approval
from the respective Institutional Animal Care and Use Committees. Animals were
housed in a temperature-controlled facility with a normal light-dark cycle (12 h:12
h, lights on at 0700 hours). Tap water and laboratory rodent chow were provided
ad libitum.

Molecular approaches to block astroglial signaling. To block vesicular release
mechanisms in preBötC astrocytes, we developed a novel adenoviral vector (AVV)
to drive the expression of dnSNARE protein13 under the control of an enhanced
GFAP promoter (Fig. 1a; Supplementary Table 1). Description of validation of the
transgene efficacy in blocking vesicular release mechanisms in astrocytes is
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provided above. PreBötC astrocytes were also targeted to express TeLC, which
blocks vesicular exocytosis via proteolytic degradation of SNARE proteins. Gen-
eration of the AVV to drive the expression of TeLC (Supplementary Table 1; AVV-
sGFAP-EGFP-skip-TeLC) in astrocytes and validation of the transgene efficacy in
blocking vesicular release and signaling between astrocytes were described in detail
previously12. To block ATP-mediated signaling we used a lentiviral vector (LVV)
to overexpress a potent ectonucleotidase TMPAP39. Expression of TMPAP was
driven under the control of an elongation factor 1α (EF1α) promoter (Supple-
mentary Table 1; LVV-Ef1α-TMPAP-EGFP). High efficacy of TMPAP enzymatic
activity in preventing vesicular ATP accumulation in astrocytes and blocking ATP-
mediated signaling between astrocytes was characterized in detail previously14,15.

Molecular approach to activate astrocytes. To stimulate Gq-coupled signaling
pathways we generated an AVV to express DREADDGq fused with enhanced green
fluorescent protein (EGFP) in astrocytes (Fig. 2a; Supplementary Table 1).
DREADDGq expressed in astrocytes was found to be constitutively active. This
constitutive activity of DREADDGq was lower compared to that triggered by the
application of the DREADD ligand CNO (Fig. 2d, e) and did not appear to be
detrimental to the cells expressing the transgene. Brainstem astrocytes transduced
to express DREADDGq looked normal upon histological examination (Fig. 2f–h)
and were able to mount unaltered [Ca2+]i responses to activation of purinoceptors
following application of ATP (Supplementary Fig. 4).

Control transgenes. Two control vectors were used: (1) an AVV to express cal-
cium translocating channelrhodopsin variant (CatCh) fused with EGFP (CatCh-
EGFP) under the control of the GFAP promoter (AVV-sGFAP-CatCh-EGFP); and
(2) a LVV to express EGFP under the control of EF1α promoter (despite the use of
the generic promoter, EGFP expression driven by LVVs is almost exclusively
confined to astroglia14) (Supplementary Table 1). The choice of CatCh-EGFP was
dictated by the need of having a transduced membrane-bound protein as an
appropriate control in the experiments where brainstem astrocytes were trans-
duced to express DREADDGq, which is also a membrane protein. Parts of both
CatCh and DREADDs are facing the extracellular space and (as foreign proteins)
may potentially trigger an immune response. Thus, expression of CatCh-EGFP is a
much harsher control than cytoplasmic expression of EGFP, which has hardly ever
been reported to cause any adverse cellular effects. Each experimental (dnSNARE,
TeLC, DREADDGq, or TMPAP) and control (CatCh-EGFP or EGFP) animal
groups were injected with the appropriate viral vector at the same time and the
experimental groups were compared to their own control groups (Figs. 1g–i
and 2k). These experiments were conducted over the course of 24 months and
some variations in the baseline respiratory frequency were observed (Supplemen-
tary Fig. 3f). However, these differences in resting respiratory activity between
animals from different control groups expressing CatCh-EGFP or EGFP in the
preBötC and naive (non-transduced) rats were not statistically significant (Sup-
plementary Fig. 3f). Since no significant variations across all the control groups
were observed when the frequency of respiratory sighs was analyzed, the sigh
frequency data obtained in eight representative control animals transduced to
express CatCh-EGFP and seven control animals transduced to express EGFP were
combined and used for the analysis and data presentation (Fig. 3b).

In vivo viral gene transfer. Adult male rats (250–270 g) were anesthetized with a
mixture of ketamine (60 mg kg−1, intramascular (i.m.)) and medetomidine (250 μg
kg−1, i.m.) and placed in a stereotaxic frame. The tooth bar was adjusted so that
bregma was positioned 5 mm below lambda. PreBötC areas were targeted bilat-
erally by advancing a pipette from the dorsal surface of the brainstem. Viral vectors
(see Supplementary Table 1 for viral titers) were delivered via a single micro-
injection (0.20–0.25 µl) per side using the following coordinates: 0.9 mm rostral; 2
mm lateral; and 2.7 mm ventral from the calamus scriptorium. After the micro-
injections, the wound was sutured and anesthesia was reversed with atipamezole (1
mg kg−1, i.m.). For postoperative analgesia, the animals received buprenorphine
(0.05 mg−1 kg−1 per day, subcutaneous) for 3 days. No complications were
observed after the surgery and the animals gained weight normally.

Cell culture. Primary astroglial cell cultures were prepared from the brainstem
tissue of rat pups (P2-P3) as described12,40. The animals were euthanized by iso-
flurane overdose, the brains were removed, and the ventral regions of the medulla
oblongata were dissected out. Ventral brainstem tissue cuts from two to three
animals were used for each cell culture preparation. After isolation, the cells were
plated on poly-d-lysine-coated glass coverslips and maintained at 37 °C in a
humidified atmosphere of 5% CO2 and 95% air. Viral vectors to drive the
expression of dnSNARE, DREADDGq, CatCh-EGFP or EGFP were added to the
incubation medium at the time of cell culture preparation at 5 × 108–5 × 1010

transducing units per ml. Experiments were performed after 7–10 days of
incubation.

TIRF microscopy. In cultured brainstem astrocytes, ATP-containing vesicular
compartments were visualized by quinacrine staining (5 µM, 15 min incubation at
37 °C). The acridine derivative quinacrine is a weak base that binds ATP with high
affinity and can be used to identify putative ATP-containing vesicles in living cells,

including astrocytes12,27,40. An Olympus TIRF microscope was used to monitor
fusion events12,40. Fluorescence was excited at 488 nm and collected at 500–530
nm. The imaging setup included a high-numerical-aperture (NA) oil-immersion
objective (×60, 1.65 NA), an inverted microscope (IX71; Olympus), and a cooled
charge-coupled-device camera (Hamamatsu). Images were analyzed using Olym-
pus Cell^tool software (Olympus). The experiments were performed at 37 °C.

Ca2+ imaging. The [Ca2+]i responses in individual cultured astrocytes were
visualized by recording changes in fluorescence of conventional Ca2+ indicators
Fura-2 (Molecular Probes), Fluo-4, or Rhod-2 (Thermo Fisher)5,12,24. Cells were
loaded with Fura-2 (5 µM; 40 min incubation; 37 °C), Fluo-4 (10 µM; 40 min
incubation; 37 °C), or Rhod-2 (10 µM; 40min incubation; 37 °C) with the addition
of pluronic F-127 (0.005%). After the incubation with the dye, cultures were
washed three times prior to the experiment. Changes in [Ca2+]i were monitored by
an inverted Olympus microscope with ×20 oil-immersion objective. Excitation
light provided by a Xenon arc lamp was passed sequentially through a mono-
chromator at 340, 380, and 490 nm (Cairn Research); emitted fluorescence was
measured at 515 nm (Fura-2) or 565 nm (Rhod-2). All the experiments were
performed at 37 °C.

PLC activity assay. Cultured naive astrocytes and astrocytes transduced to express
DREADDGq or CatCh were incubated for 18 h in M199 medium containing 10%
dialyzed fetal calf serum and 1 µCi ml−1 of [3H]-inositol (specific activity 18.5 Ci
mmol−1) (37 °C; 5% CO2, 95% O2). Immediately prior to the assay, the incubation
medium was replaced with Hanks’ balanced salt solution buffer. Lithium chloride
was then added to reach a final concentration of 10 mM and cultures were incu-
bated at 37 °C for an additional 30 min. To activate DREADDGq, CNO (5 µM,
Tocris Bioscience) was added for 20 min. Reactions were terminated by removal of
the medium and the addition of 500 μl of ice-cold methanol. [3H]-Inositol phos-
phate ([3H]-InsP) production was determined by adding the samples to 2 ml
Dowex columns pre-washed with a mixture of ammonium formate (2 M) and 0.1
M formic acid. Double-distilled water and a mixture of sodium tetraborate (5 mM)
and sodium formate (60 mM) were used to elute unbound [3H]-inositol and gly-
cosylphosphatidylinositol, respectively. Then, a mixture of ammonium formate (1
M) and formic acid (0.1 M) was added to the column to elute total [3H]-InsP into
scintillation vials. The 500 µl aliquots of the eluted samples were then transferred in
duplicates to liquid scintillation vials. Concentrations of [3H] in [3H]-InsP and
total [3H]-inositol lipids were detected using a Beckman LS 5801 scintillation
counter (4 min, [3H] DPM program). The results are presented as percentages of
radioactive InsP ([3H]-InsP) in the total inositol lipid pool (Fig. 2d).

Measurements of ATP release in acute brainstem slices. Adult rats were
transduced to express DREADDGq and CatCh in astrocytes of the left and right
preBötC regions. After 7 days following microinjections of viral vectors, the ani-
mals were humanely killed by isoflurane overdose and the brainstem was quickly
removed and placed in chilled (4–6 °C) artificial cerebrospinal fluid (aCSF; 124 mM
NaCl, 3 mM KCl, 2 mM CaCl2, 26 mM NaHCO3, 1.25 mM NaH2PO4, 1 mM
MgSO4, 10 mM D-glucose saturated with 95% O2/5% CO2, pH 7.4) with an
additional 9 mM Mg2+. The medulla was isolated and a horizontal 400 μm-thick
slice was cut parallel to the ventral medullary surface41,42. Recordings were made in
a flow chamber (3 ml min−1) at ~35 °C from the slices placed on an elevated grid to
permit access of aCSF from both sides of the slice.

The design and operation of the ATP biosensors (Sarissa Biomedical) were
described in detail previously41. To control for the release of nonspecific
electroactive interferents, a dual recording configuration of the ATP biosensor and
control (null) biosensor was used, as described41–43. A “null” biosensor (lacking
enzymes but otherwise identical) current was subtracted from the current recorded
by the ATP biosensor to give “net-ATP” readings, reporting release of ATP
(Fig. 2i). Both sensors were initially placed in the recording chamber having no
contact with the brainstem slice. Once a steady-state recording was achieved, the
sensors were laid flat bilaterally (ATP sensor was placed randomly on either left or
right side of the slice) in direct contact with the ventral surface of the slice in
equivalent positions overlaying the preBötC. The sensors were left in place to
achieve stable recordings of the ATP tone and then carefully lifted from the surface
of the slice to allow measurement of tonic ATP release (Fig. 2i). Without removing
the sensors from the recording chamber, their positions on the left (expressing
DREADDGq) and right (expressing CatCh) sides of the brainstem slice were
swapped to determine tonic ATP release from the opposite site (Fig. 2i). Sensors
were calibrated before and after every recording by application of ATP (10 μM)
(Fig. 2i). To convert changes in the biosensor current to changes in ATP
concentration, an average of sensor calibrations before and after the recording was
used.

Measurements of respiratory activity in conscious rats. Whole-body plethys-
mography was used to record respiratory activity in unrestrained conscious adult
rats44–46. Briefly, 5–7 days after the injections of viral vectors the rats were placed
in a Plexiglas recording chamber (1 l) that was flushed continuously with humi-
dified air (21% O2, 79% N2; temperature 22–24 °C), at a rate of 1.2 l min−1. In order
to take into the account circadian variations of the physiological parameters,
respiratory activity in all the animals was assessed at the same time of the day
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(between 1100 and 1500 hours). The animals were allowed to acclimatize to the
chamber environment for ~60 min followed by 30 min recording period of resting
respiratory activity. For the experiments involving hypoxic challenges, the O2

concentration in the inspired air was reduced to 10% (balanced with N2) for 10
min. In a separate series of experiments, hypercapnia was induced by stepwise
increases in CO2 concentration in the respiratory gas mixture to 3% and 6% in
hyperoxic environment (>50% O2, balanced with N2) to reduce the drive from the
peripheral chemoreceptors. Each CO2 concentration was maintained for 5 min.
Concentrations of O2 and CO2 in the plethysmography chamber were monitored
online using a fast-response O2/CO2 analyzer (ML206, AD Instruments). Data
were acquired using Power1401 interface and analyzed offline using Spike2 soft-
ware (CED).

Measurements of central respiratory drive in anesthetized rats. Adult rats
were transduced to express dnSNARE and CatCh by astrocytes of the left and right
preBötC regions, respectively. After 5–7 days following microinjections of viral
vectors, the animals were anesthetized (urethane, 1.5 g kg−1, intraperitoneal (i.p.))
and instrumented for blood pressure recording via femoral artery cannulation. The
depth of anesthesia was monitored by the stability of blood pressure and heart rate.
The trachea was cannulated low in the neck with a 12-gauge cannula to maintain
airway patency. Animals were then transferred to a stereotaxic frame and left to
breathe spontaneously. An occipital craniotomy was performed to expose the
dorsal aspect of the brainstem. Phrenic nerve activity (PNA) was recorded as an
indicator of central inspiratory drive. The PNA signal was amplified (20 000×),
filtered (500–1500 Hz), rectified, and smoothed (τ = 50 ms). Arterial blood gases
and pH were monitored regularly using a blood gas analyzer (Model 380, Siemens)
and maintained with the physiological ranges. Core body temperature was main-
tained at 37.0± 0.5 °C. Bombesin (250 μM; 50 nl) was microinjected over a period
of 10–15 s into the preBötC region using a single barreled micropipette (tip dia-
meter 10–15 μm). The PNA response to bombesin was followed until returning to
baseline (usually within 30 min) before a second microinjection was made into the
contralateral preBötC. Data were recorded using Power1401 interface and analyzed
offline using Spike2 software. At the end of the experiments, the animals were
humanely killed by an overdose of pentobarbitone sodium (200 mg kg−1,
intravenous).

Biotelemetry transmitter implantation. Systemic arterial blood pressure and heart
rate in exercising animals were recorded using biotelemtry. The rats were anesthe-
tized with ketamine (60mg kg−1, i.m.) and medetomidine (250 µg kg−1, i.m.), a
laparotomy was performed, and a telemetry pressure probe (model TA11PA-C40,
DSI) was implanted into the abdominal aorta. The abdominal muscle and skin layers
were successively sutured and anesthesia was reversed (atipamezole, 1 mg kg−1; i.m.).
For postoperative analgesia, the animals received carprofen (4mg kg−1 d−1; i.p.) for
2 days and and were allowed to recover for at least 7 days.

Exercise model. Exercise capacity of experimental rats was determined using a
single lane rodent treadmill (Harvard Apparatus) as described47. The animals were
selected on the basis of their exercise compliance and subjected to daily recruit-
ment/training sessions involving running speeds of 20–30 cm s−1 over a 5 min
period after 15 min of acclimatization to the treadmill environment. To determine
the exercise capacity, treadmill speed was raised from 25 cm s−1 in increments of 5
cm s−1 every 5 min until the humanely defined point of exhaustion. Experiments
were conducted by an investigator blinded to the nature of the experimental
groups. The distance covered by the animal was recorded and exercise capacity was
expressed as work done in Joules (kg m2 s-2).

Histology and immunohistochemistry. At the end of the experiments, the rats
were given an anesthetic overdose (pentobarbitone sodium, 200 mg kg−1, i.p.),
perfused transcardially with 4% paraformaldehyde in 0.1 M phosphate buffer (pH
7.4), and post-fixed in the same solution for 4–5 days at 4 °C. After cryoprotection
in 30% sucrose, serial transverse sections (30–40 μm) of the medulla oblongata
were cut using a freezing microtome. After antigen retrieval in 1% citrate buffer at
80 °C, free-floating tissue sections were incubated with chicken anti-GFP (1:250;
Aves Labs, Cat. GFP-1020), rabbit anti-GFAP (1:1000; DAKO, Cat. z-0334), mouse
anti-NeuN (1:1000; EMD Millipore, Cat. MAB377), and/or goat anti-ChAT anti-
body (1:200, EMD Millipore, Cat. AB144P) overnight at 4 °C. The sections were
subsequently incubated in specific secondary antibodies conjugated to the fluor-
escent probes (each 1:250; Life Science Technologies) for 1 h at room temperature.
Images were obtained with a confocal microscope (Zeiss LSM 510).

Data analysis. The respiratory cycle duration (TTOT) was measured for each
respiratory cycle after the animals had habituated to the plethysmography chamber
environment for at least 60 min. The average TTOT calculated for the periods of
calm wakefulness and/or quiet sleep recorded in a 30-min period following accli-
matization to the chamber environment was used to determine the resting
respiratory frequency (number of breaths per minute, ƒR). The frequency dis-
tribution of the instantaneous rate of all respiratory-related events (including
signing and sniffing) in the 30-min assay period was analyzed, plotted, and
reported as averages for each of the experimental groups. Poincaré plots of TTOT

for the nth cycle vs. TTOT for the nth+1 cycle were used to evaluate the temporal

dispersion of TTOT. Variability of TTOT was determined as described previously48.
Tidal volume (VT, normalized to the body weight) was determined by measuring
the pressure changes in the chamber. Calculated values of minute ventilation (VE =
ƒR × VT) were averaged and reported in arbitrary units. In addition to quantifying
ƒR, we also determined the frequency of sighs—augmented breaths that occur on
top of normal inspirations18,49. A sigh was defined as a high-amplitude, biphasic
augmented inspiratory breath (Supplementary Fig. 3) that started near the peak of
a normal inspiration and lasted for a period that exceeded the duration of the
previous inspiration49,50. Sighs were also recognizable by the lengthening of the
respiratory cycle (i.e., increase in TTOT) immediately after the sigh (Supplementary
Fig. 3). Sigh frequency was calculated (and verified manually) offline using Spike2
software as the frequency of augmented breaths with VT that was at least two times
larger than the mean VT and a TTOT that was >50% longer than the average TTOT
of the previous five cycles. In anesthetized rats, sigh was defined as a burst of
phrenic nerve discharge with an amplitude of >50% higher that the preceding
eupneic breath, followed by a brief period of apnea.

In box and whisker plots, the central black dot illustrates the mean, the central
line shows the median, the edges of the box define the upper and lower quartile
values, and whiskers show the minimum-maximum range of the data.

The data were compared using nonparametric Mann–Whitney U by ranks test,
Wilcoxon matched-pairs signed-rank test, Kruskal–Wallis analysis of variance by
ranks followed by Dunn’s post hoc test, as appropriate. Differences with p< 0.05
were considered to be significant.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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