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Abstract—Identifying the fluid type and predicting the amount
of each fluid in the fluid mixture within the well pipes are
important for oil and gas production energy industry and
borehole water supply. Therefore automating this process will
be very valuable for the oil industry because it maximises the
quality and quantity of extracted oil and reduces the cost.
The current study contributes to our knowledge by addressing
this important issue using machine learning algorithms. The
presented paper investigates the classification algorithms that
identify the fluid type in oil, water and gas pipes using acoustic
signals. The datasets analysed in this study are collected from
real oil, water and gas well pipes under the sea where there is
no controlled environment and data contains lots of noisy signals
due to unpredicted events under the sea. Data is recorded during
24 hours from Distributed Acoustic Sensors which is attached
alongside the 3500 m of three well pipes: oil, water and gas. The
acoustic dataset are in time-distance domain and are converted to
frequency-wave number domain using 2D fast Fourier transform.
The outcome of 2D fast Fourier transform is sampled and fed into
Artificial Neural Networks and Conventional Neural Networks
algorithms to classify each fluid type. Both algorithms are trained
on three datasets (oil, gas and water) and tested on another
dataset. The result of this study shows Artificial Neural Networks
and Conventional Neural Networks algorithms classify the fluid
type with the accuracy of 79.5% and 99.3% respectively when
applied on the test dataset.

Index Terms—Convolutional Neural Networks, Artificial Neu-
ral Networks, Fluid Flow Classification, Signal Processing, Dis-
tributed Acoustic Sensor

I. INTRODUCTION

The increase in the number of sensors used in daily life has
created great volumes of data which requires storage, heavy
computation and complex analysis to fully unlock the value in
data. Recent advances and novel concepts in machine leaning
algorithms have attracted substantial attention from industry,
government, academia and health organisations, leading to the
development of many novel applications to tackle the real
world phenomenons. Oil and gas is one of the industries
which has adapted the latest sensor technologies to automate
the monitoring of flow behaviour in pipelines with the aim
of improving the quality and quantity of extracted oil and
reducing the cost. Despite using the latest sensors, a number
of failures are still reported by oil and gas companies, such
as; unknown leakage in the well, miscommunication between
control room and Inflow Control Devices that are embedded in
the wells under the sea. One of the main reasons is the limited
studies that have been performed to analyse and interpret the
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data collected from the sensors. More specifically, there is
a need to design and develop an alternative method to gain
insight into the information extracted from the data. This
insight can be provided by implementing machine learning
algorithms and investigating its potential to tackle the current
problem.

Downbhole oil and gas pipe fluid flow classification is an
increasingly important area in the oil industry and is part of the
Downbhole Fluid Analysis (DFA) which provides well logging
and reservoir evaluation. Conventional DFA is performed by
measuring one or more properties of fluid such as pressure,
volume, density [1], Reynolds number and temperature [2] us-
ing corresponding sensors [3]. Identifying in-well flow regime
became an important component in monitoring the oil pipes
and it results in low cost intervention [4], optimising and
maximising the oil production [5].

In last decade, the optical fibre sensors have been success-
fully developed and applied for flow measurement [5], [6], [7].
Optical fibre sensors for flow analysis in wells can do a single
point measurement or multiple point measurements along the
well. Traditional optical fibre sensors provided a single point
measurement along the well [8], [9]. In the single point
measurement, before laying out the well under the ground
or sea, optical fibre is wrapped around and down the well
very tightly and closely such as 10 wraps. In other sections of
the well, optical fibre is wrapped slightly looser [10]. In this
method the measurement occurs only at one or two points and
there is no information available about the events occurring
along the rest of the well. Therefore, if there is any fault such
as a broken Inflow Control Valve (ICV) along the pipe, it
cannot be detected. Furthermore, there is no measurements of
the amount of gas or oil coming out of each ICV along the
pipe because the sensor just provides a measurement at one
point [11].

Recently we have seen a growing trend towards using
machine learning algorithms in a variety of industrial applica-
tions. Artificial Neural Networks (ANN) are amongst the first
types of machine learning algorithm that have been employed
to improve the precision of ultrasonic devices and also to
automate the process of fluid flow measurement in multi-
phase flow [12]. The combination of ANN and dual energy
fan-beam gamma-ray attenuation technique improved the ac-
curacy of oil, water and gas classification by approximately
5.68% using radial basis function for ANN training [13].



Identifying the pattern in gamma-ray pulse height distributions
was another approach that used ANNs [14]. Scientists trained
the parameters of ANNs with algorithms such as Levenberg-
Marquardt [15] to describe the details of two phase flow [16]
and to develop a new multiphase flow metering device for
real time multiphase flow classification [15]. This new device
is based on training the parameters in physical models of
multiphase fluid. In another study, 199 experimental data sets
fed into three-layer back-propagation neural networks and
achieved 97% accuracy in its prediction of flow regime [17].

Most studies in the field of multi-phase flow classification
have mainly focused on modifying the structure and parame-
ters of Artificial Neural Networks [18] to identify the pattern
of each flow regime and have not dealt with processing the big
data which is produced by their new developed sensors [15],
[19]. In addition, they mainly used data that is collected from
the flow loop in the laboratory environment.

In this study we analysed real data which contained a
lot of noise as a result of unpredicted event under the sea.
The unpredicted events have an impact on recorded audio
signal by Distributed Acoustic Sensors. Our data was collected
from Distributed Acoustic Sensors (DAS) and its application
is for monitoring fluid flow, based on the speed of sound
and Doppler shift measurements. Acoustic signals were pre-
processed before being fed into two classification algorithms,
ANN and CNN. Therefore, the purpose of this paper is to
identify and validate the potential of classic and modern
classification algorithms that predict the fluid type using real
world acoustic dataset. We compared our result with the
result of an experiment that used flow loop dataset in the
laboratory environment. It should be noted that the acoustic
datasets collected from the flow loop set up in the laboratory
[20] are less noisy because they are collected in a controlled
environment with low pressure. Our dataset is from real world
wells that are more than 1000 m long and contain noise from
the unpredicted events such as animals hitting the pipe and
slugs. Also, the pressure under the sea is higher than the
laboratory environment, which can effect the flow turbulence
in the wells and the back scattered signals from optical fibre.

The remainder of this paper is organised as follows: Sec-
tion I-A describes the dataset and how Distributed Acoustic
Sensor (DAS) collects acoustic data from well pipe. Section II
presents the pre-processing step, implementation of the Arti-
ficial Neural Network (ANN) and also describes the structure
and details of Convolutional Neural Network (CNN) algorithm
to classify oil, water and gas datasets. Section III discusses
the result of both the ANN and the CNN algorithms. The
conclusion section highlights the summary of finding.

A. Dataset

Distributed Acoustic sensor (DAS) made of an optoelec-
tronic unit and optical fibre cable. An optoelectronic unit is
located at the surface of the sea [21], [5]. This is an optical
fibre which is run down a well alongside a pipe carrying a fluid
and it is attached to that pipe at the points with a meter apart.
Then a laser pulse is sent down the optical fibre from the

optoelectronic unit. The light reflects from non-uniformities
in the glass from every point along the fibre and a small
amount of it is naturally scattered [22]. The optoelectronic
unit measure all the axial strain changes occurring through
the optical fibre. As the fluid mixture travels through the pipe
its motion is very turbulent and it generates a noisy sound.
This sound affects the light pulse so that when it is received
at the surface, the sound can be recorded from every depth as
if it was an array of thousands of microphones about a metre
apart all along the well pipe over a distance of thousands of
metres.

The acoustic datasets are collected from three different well
pipes; oil, gas well and water. The sensing fiber cable that
was around 3500 m long strapped to the production tubing
and data is collected with 10 kHz temporal frequency. The
optical fibre cables were permanently clamped and installed
along the production injection tubing pipe. The pipe acts like
an acoustic wave guide tending to guide sound waves up and
down the pipe. The sound is recorded continuously at every
meter and this results in a very large amount of data recorded
daily, typically 48 Terabytes. Table I provides the details of
each pipeline such as the length of the optical fibre for each
pipe. The Packer True Vertical Depth is the vertical distance
from a final depth to a point at the surface which is usually less
than the optical fibre length. The other parameters of the pipes
such as their diameter and pipe material are not considered in
this study nor the acoustic wave guide properties of the well
bore. In our analysis we do not use all the data and we just
considered the sample of datasets that are collected from the
sensors along 1000 m of pipe.
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g. 1. Sample of acoustic raw data in time-distance domain.

II. METHOD

Two approaches are implemented to classify oil, water and
gas well pipes, ANN and CNN. Acoustic dataset were pre-
processed before fed into ANN and CNN. Fig. 2 shows an
overview of ANN and CNN that are implemented in this study.



TABLE I
THE PROPERTIES OF OIL, GAS AND WATER WELLS

Well Type Packer True Vertical Depth (m) Length Optical (m)
Oil 2600 3000
Gas 2700 3500
Water 2400 3200
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Fig. 2. Overview diagram for classifying fluid flow regime in oil, gas and
water well pipes. Acoustic data are converted from time-domain to frequency-
wave number domain using 2D-FFT.

A. Pre-processing Acoustic Dataset

Two dimensional fast Fourier transform is defined by
F(k,w) (Eq. 1) where:

F(k,w)://f(x,t)e*%i(’”*wt) dxdt (1)

Where k and w represent the wave number and frequency
of the sample data respectively. In order to increase the
performance of the 2D FFT algorithm, we should transform
the height and width of an image to an integer power of
two [23]. Hence, a two dimensional fast Fourier transform is
applied with a moving window of 256 samples in distance and
16, 384 samples in time. 256 samples in distance are chosen
to maintain a good number of spatial frequency bins [24].
16,384 samples in time are chosen because of the sampling
rate in time is 10 kHz and 16,384 is the closest power
of 2 number which is not sampling lower than the Nyquist
frequency [25]. The result, F'(k,w), contains the V-shaped
lines, as the acoustic waves travel in both directions along
the fiber.

As seen in Fig. 4, the angle of V-shape in oil, gas and water
wells is clearly different because of unique property of each
fluid.

B. Articial Neural Network

The structure of the ANN contains 16 hidden layers with
the following input data: acoustic energy of oil, water and gas
dataset during 20, 000 s and within 1000 m. The data is divided
into three sets: 70% for training, 15% for testing and 15% for
validation. Levenberg-Marquardt (LM) is a preferred method
as suggested in literature [31]. The Levenberg-Marquardt is
designed to minimise the loss functions made up of a sum of
squared errors [31]. Cross entropy is implemented to prevent
over fitting. The number of hidden units is tested for training
the network and 60 hidden units result in the least validation
lost as shown in Table II.

Plot of Acoustic Energy

Fig. 3. A sample of V-shape image in oil dataset which obtained after applying
2D-FFT to time-distance acoustic data.

TABLE I
NUMBER OF HIDDEN UNITS IN ARTIFICIAL NEURAL NETWORK.

Number of Hidden Units  Validation Loss

20 0.9751
40 0.9151
60 0.8881
80 0.8937
100 0.9018

ANN takes three datasets and classifies them into oil, gas
or water category. Fig. 5 presents the outcome of ANN on
the training, testing and validation datasets. On the testing
dataset, 79.5% of the predictions were correct and 20.5%
were incorrect classifications. Fluid in water pipe is predicted
with the highest accuracy, 97.8%. Oil and gas fluid pipe are
classified with 84.0% and 66.9% accuracy accordingly as
shown in the testing confusion matrix (Fig. 5).

C. Convolutional Neural Network

One of the most successful types of Neural Network with
a great result in a variety of pattern recognition applications
is called Convolutional Neural Network (CNN) [26]. In the
network with CNN structure there are many copies of the same
neuron that develop a large neural network with the smaller
number of parameters. Therefore, the network does not need
to learn a large number of parameters and it uses one neuron in
many places. This will dramatically reduce the learning error
in CNN structure. In this implementation the Neural Network
Tool box from Matlab 2018b version library was used and its
architecture is shown in Fig. 7.

Convolutional Neural Network is fed with the pre-processed
data from three well pipes. In the pre-processing stage, data
is transformed from time-distance domain to frequency-wave
number domain using two dimensional Fast Fourier Transform
(2D-FFT) algorithm. 1000 sample of V-shape images from
each dataset (1000 samples from oil pipe, 1000 sample from
water pipe, 1000 samples from gas pipe) fed into the input
layer of the network. The Convolutional layer is formed by
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Fig. 4. A sample of the V-shape angle in each well pipe at different distance
along the pipeline.

neurons that might have parallel or multilayer architecture.
These neurons connect to the small regions of the input
images or their previous layer. These small areas are called
filters, whose size needs to be defined. For each region, a

Training Confusion Matrix

Validation Confusion Matrix

1 1

v 1]

n ]

e, L]

[u] (%) .

- -

= =

g 3 & 3

F) R

o o

1 2 3 1 2 3
Target Class Target Class
Test Confusion Matrix All Confusion Matrix
1

[ n

n wn

L =

[w] =]

4 i -

3 3

[-3 =}

-3 =

F) F)

Q =]

1 2 3 1 2 3
Target Class Target Class

Fig. 5. Classification result for oil, water and gas dataset. The first three
diagonal cells show the number and percentage of correct classifications by
the trained network. Class 1, 2 and 3 are corresponded to water, gas and
oil datasets. Overall, the ANN classifier predict the water type with higher
accuracy (97.2% in testing confusion matrix) than oil and gas well pipe.

basic calculation of a neural network is performed that is
a dot product of the input and the weights, and then add a
bias. An input image is convolved by scanning the filter both
horizontally and vertically along the image and repeating the
same calculation. In addition to the filter size, the step size
for moving the filter needs to be specified [27]. Each filter
uses the same set of weights and biases to scan the whole
input image. The outcome of the convolution creates a feature
map. Therefore, the number of filters determines the number
of feature maps in the convolution layer [28], [29]. Fig. 8
shows some features are extracted from Convolutinal layer of
the CNN network.

Rectified Linear Unit layer is also implemented where the
activation function is defined to performs a threshold operation
to each component of its input [30]. A max-pooling layer is
used to down sample the parameters in the network. Max-
pooling function takes an input from the activation function
and outputs the maximum values of the rectangular area in
its input. In the network with multiple convolutional layers,
a max-pooling layer is required between each of the two
Convolutional layers to reduce the number of parameters. All
features learned by the previous layers are combined in a fully
connected Layer to classify the input image. Therefore, the
number of outputs of this layer equals the number of classes
the images belongs to. In our dataset this number is set to
three (water, oil and gas). Classification layer is the last layer
of the network.
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Fig. 6. Comparing the area under the curve for water (class 1), oil (class
2) and gas (class 3) classification in ANN algorithm. The water classification
has the highest value which shows the best performance of the classifier on
this dataset.
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Fig. 7. Structure of Convolutional Neural Network. 1000 samples of each
dataset (oil, water and gas) are fed into CNN input layer.

III. RESULT

The Artificial Neural Network and Convolutional neural
Network algorithms were implemented successfully. Both al-
gorithms used Matlab software version 2018 and were trained
on CPU. We trained our algorithms on the dataset collected
from along 1000 m of the well pipe. The result is validated
by applying the classification algorithms on a test dataset
collected from sensors on a different part of the pipe (between
1500 m and 2000 m). The result of ANN are presented
in Fig. 5. As shown in the figure, the validation error is
17.8% (Fig. 5 top right matrix), 29 samples are correctly
classified as water (class 1), 116 cases are correctly classified
as gas which corresponds to 23.5% of all 493 samples. The
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Fig. 8. Features of oil, water and gas flow regime that are extracted by deeper
layers of CNN

TABLE III
RESULT OF CLASSIFICATION ALGORITHMS

Method Accuracy Time s
ANN Training 80.5% 0.02
ANN Testing 79.5% 0.001
CNN Training 100% 3135.30
CNN Testing 99.3% 0.01
Artificial Neural Network in Ref. [20] 100% Not reported

best validation performance belongs to water dataset and the
validation performance for the other two datasets, oil and gas,
are very similar. Convolutional Neural Networks classified the
data with higher accuracy, 99.3% on testing dataset, however
the training time is greater than ANN as summarised in Table.
I. The result of our classification algorithms are compared with
the result of ANN used in Ref. [20] as shown in Table III. It
should be noted that the dataset in Ref. [20] is collected from
the laboratory and is fed into ANN with 20 hidden units. Our
dataset are from real world wells which means, it contains
noise from the unpredicted events under the sea that effect
recorded sounds.

IV. CONCLUSION

The present study was designed to investigate and validate
the algorithms used for the classification of the fluid types oil,
water and gas datasets. Artificial Neural network and Convo-
lutional neural Network algorithms were implemented for this
purpose. The most obvious finding to emerge from this study
is that Convolutional neural Networks outperformed ANN to
classify our datasets with accuracy of 99.3%. However, the
training time for CNN is higher than ANN algorithm. The



implications of this analysis will greatly assist in automating
the fluid type prediction in the oil and gas pipe fluid mixture
in the industry. Most importantly, identifying in-well flow
regime is a key component in monitoring the oil pipes and
it results in low cost intervention, optimising and maximising
the oil production. All the analysis in this work is performed
off-line and one of the most important next steps for this
research will be implementing the existing algorithms on-
line by considering the latest hardware technologies such as
NVIDIA GPUs that are capable of improving the training time
and efficiency of CNN.
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