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Abstract. The aim of this chapter is to set out a process that researchers can fol-

low to design a robust quantitative research study of occupant behavior in build-
ings. Central to this approach is an emphasis on intellectual clarity around what is 
being measured and why. To help achieve this clarity, researchers are encouraged 
to literally draw these relationships out in the form of a concept map capturing the 
theoretical model of the cause and effect between occupant motivations and ener-
gy use. Having captured diagrammatically how the system is thought to work, the 
next step is to formulate research questions or hypotheses capturing the relation-
ship between variables in the theoretical model, and to start to augment the dia-
gram with the measurands (things that can actually be measured) that are good 
proxies for each concept. Once these are identified, the diagram can be further 
augmented with one or more methods of measuring each measurand. The chapter 
argues that it is necessary to carefully define concepts and their presumed relation-
ships, and to clearly state research questions and identify what the researcher in-
tends to measure before starting data collection. The chapter also explains the ide-
as of reliability, validity, and uncertainty, and why knowledge about them is 
essential for any researcher. 

 
1. Introduction 

The aim of this chapter is to set out a process that researchers can follow to de-
sign a robust quantitative research study on occupant behavior in buildings. The 
material is introductory, and is intended to provide an overarching framework for 
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thinking about the research design process. It is not sufficient in itself, but refers to 
other chapters in this book and to other more detailed sources of information on 
specific elements. Whilst this chapter is necessarily highly abridged and incom-
plete in many areas, it should steer the reader away from some of the main errors 
and misunderstandings to which the field as a whole is prone.  

It is important to note that this chapter takes a broadly quantitative social and 
physical realist approach to researching occupant influences on energy demand in 
buildings. This arises from this book’s origin—to improve the representation of 
building occupants within building energy simulation models, which are them-
selves quantitative and realist in their representation of the world. The aim is 
therefore to establish relationships (ideally causative ones) between the external 
environment, the building and its internal environment, occupant behavior, and 
building energy consumption. 

Taking a realist approach means that there are occupants’ actions that directly 
affect energy demand in buildings, and that these actions can be explained in part 
through the use of concepts that are independent of the researcher and the individ-
ual occupants themselves. Concepts are central to research design and will be dis-
cussed throughout this chapter. A concept can be thought of as an abstract idea 
that captures the central elements of what it refers to. Examples of concepts in-
clude temperature, comfort, glare, environmental attitudes, financial costs, etc. A 
realist approach takes the view that while these concepts can never be measured 
perfectly (i.e., without any error) they can be measured and used to—imperfectly 
and incompletely—predict occupant behavior. The chapter therefore does not take 
a solely social constructivist approach of saying that occupant influences on ener-
gy use in buildings are purely a construct of human social processes with no 
meaning or existence outside of the individual occupants engaged in them. It thus 
places this work more in the context of such academic disciplines as physics, psy-
chology, quantitative social science, and behavioral economics, and less in such 
academic disciplines as qualitative sociology, anthropology, and ethnography.  

Central to the approach taken here is an emphasis on intellectual clarity around 
what is being measured and why, and literally drawing this out in the form of a 
theoretical model of the cause and effect relationships between occupant motiva-
tions and energy use in the form of a concept map. Having captured diagrammati-
cally how the system is thought to work, the next step is to formulate research 
questions or hypotheses capturing the relationship between variables in the theo-
retical model, and to start to augment the diagram with the measurands (things 
that can actually be measured) that are good proxies for each concept. Once these 
are identified, the diagram can be further augmented with one or more methods of 
measuring each measurand. In research adopting a realist approach, be it qualita-
tive or quantitative, it is necessary to carefully define concepts and their presumed 
relationships, and to clearly state research questions and what the researcher in-
tends to measure before starting data collection. Some higher forms of analysis are 
only applicable to quantitative research approaches, such as quantifying reliability; 
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however, an awareness of the ideas of reliability, validity, and uncertainty is es-
sential for any researcher.  

This chapter is a synthesis of descriptions of the research and model building 
approaches used in both the physical and social sciences. Casti (1992) defined a 
mathematical model of a system as "...the specification of observables describing 
such a system and a characterization of the manner in which these observables are 
linked" (p. 2). This is a useful starting point for a discussion on the process of de-
signing a program of research to understand how occupant behavior influences 
energy demand in buildings. This definition has two key elements that relate to 
designing research: firstly, specifying what the measurement will be, the observa-
bles (how they are measured is the realm of research methods); and secondly, de-
termining if the variables are causally related (this is one of the functions of re-
search design). While Casti’s definition is a useful starting point, it is insufficient. 
Another essential element is theory. As noted by Ruttkamp (2002), “The only way 
in which we can have scientific contact with the world…is through actions involv-
ing selection, abstraction, and generalization, which are always executed within 
some theoretical framework or disciplinary matrix….” (p. 17). This third element, 
theory, allows making sense of the observables, and the relationships (links) be-
tween them, within an explanatory (i.e., theoretical) framework that permits trans-
ferring these insights between instances. These three elements, methods, research 
design, and theory, need to be brought together in order to design any program of 
research.  

 
2. Why do the research (research aims and ques-

tions) 
Determining a good research aim or research question is an essential and often 

neglected first step in the research process. Bouma (2000) distinguishes between 
when research aims are appropriate, and when research questions and/or hypothe-
ses are. Where research is exploratory or descriptive, then a research aim is appro-
priate. When research is more explanatory or seeking to establish causation, then 
research questions and hypotheses are appropriate. In the context of occupant be-
havior in buildings, both forms of research are common, although descriptive re-
search predominates. Unlike a research question, which specifies relationships be-
tween two or more concepts, a research aim describes a more general area of 
enquiry, and leaves open greater scope for exploratory data analysis through look-
ing for patterns between different elements of the data collected. It needs to be 
remembered, however, that such descriptive or exploratory work can only be used 
to describe correlations between the concepts measured. If establishment of causa-
tion is desired, subsequent, more experimentally based work needs to be conduct-
ed.  
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As Bouma (2000) notes, a good research question postulates relationships be-

tween two concepts and facilitates the process of designing a research study to an-
swer that question. Two separate aspects need to be addressed. The first aspect re-
lates to the things that are measured (for example, CO2 levels and window 
opening). These concepts need to be operationalized in ways that allow measuring 
them—for example, in the case of CO2 and window opening, using appropriate 
sensors or through observations. The second aspect relates to the nature of the re-
lationship between the concepts. The capacity to determine whether the relation-
ship is correlational or causal is determined by the choice of research design. This 
is discussed in detail below. 

A well-framed research question makes the construction of hypotheses far easi-
er. Hypotheses are appropriate in cases where a quantified measure of confidence 
in the answer is desired, and take the form of a statement (a declarative sentence) 
of what the researcher expects to happen.  

It is typical for one research question to give rise to many hypotheses, as hy-
potheses need to be sufficiently specific to be measurable without ambiguity. This 
usually takes the form of a measure of statistical confidence between the data 
gathered and the theoretical model of occupant behavior and energy outcomes be-
ing explored. In such hypotheses testing, it is usually a measure of the lack of fit 
between the measured data and the inverse of the hypotheses—the null hypothe-
sis—that is used. The null hypothesis is the embodiment of scientific skepticism; 
it assumes that there is no relationship between the things being measured, here 
CO2 levels and window opening, and only accepts that there is one if there is 
enough evidence to reject this conservative assumption. Many introductory text-
books have been written about statistical hypotheses testing and with this has 

Examples of research questions in the context of occupant 
behavior:  

“Do occupants open windows more frequently as CO2 lev-
els rise?” or “Do occupants tilt blinds when sun shines direct-
ly on their computer monitor?” 

Possible research questions and resulting hypotheses: A research question 
such as, “Do occupants open windows more frequently as CO2 levels rise?” 
may give rise to a range of hypotheses such as, “As CO2 levels rise (hypoth-
esized cause) occupants will open windows more frequently (hypothesized 
effect)”; “As CO2 levels rise occupants will open windows for longer periods 
of time”; and/or “As CO2 levels rise occupants will open windows wider”.  
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come a degree of standardization of key parameters, such as the levels of confi-
dence needed (frequently a p-value of 0.05, i.e., 95% confidence, is cited). Statis-
tical confidence is a measure of how confident one is that the study can correctly 
determine if an intervention failed to work. To be 95% confident means that there 
is only a one in twenty chance of a false positive finding, i.e., saying the interven-
tion worked when in fact it did not. This is also called a type I error. Statistical 
power is the converse of this. It is a measure of how confident one is that the study 
can correctly determine if an intervention worked. To have 80% statistical power 
means that there is only a one in five chance of a false negative finding, i.e., say-
ing the intervention did not work when in fact it did. This is also called a ‘type II’ 
error. In the energy in buildings area both of these are important. Neither incurring 
the costs of energy savings measures that are ineffective (type I error), nor dis-
carding interventions that work (type II error) would be a good outcome.  

For research on the influences of occupant behavior on energy demand in 
buildings it is important to realize that such high levels of statistical confidence 
may or may not be appropriate, and the reader is referred to the recent pro-
nouncements by the American Statistical Association (Wasserstein and Lazar 
2016) for a more rounded discussion of this topic.  

 

 
3. Identifying the concepts to measure and how 

they link together (theory) 
One of the most important elements in the process of identifying concepts to 

measure and how they link together is the drawing out of a theoretical model. This 
step should be undertaken both when doing more descriptive work based on ex-
ploratory data analysis and when seeking to understand cause and effect using re-
search questions and hypotheses. It should take the form of a diagram of concepts 
and links showing how they are related. There are many software packages in 
which such a theoretical model can be drawn, where one of the most useful is 
Cmap, a free, dedicated concept mapping software package (Novak and Cañas 

Example of the differing effect of statistical confidence: A 1:20 (5%) 
chance of having incorrectly counted occupants leaving a building in the 
event of a fire is inappropriately low (in a building of 100 occupants this 
could leave 5 trapped inside)—whereas requiring only a 1:20 (5%) chance of 
incorrectly identifying the number of people in a room for the purposes of 
estimating fresh air volumes is inappropriately high (only an approximate es-
timate of occupancy is needed to adjust fresh air volumes appropriately). In 
each case, the appropriate levels of statistical confidence and statistical pow-
er need to be assessed against the risks of making each type of error and the 
costs involved in reducing them.  
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2006). The advantage of using concept mapping software is that it allows the la-
beling of concepts, as well as links between concepts, thus creating a map of how 
different factors interact. This theoretical model can either be one that reflects a 
Theory (i.e., an established theory that is to be tested in a specific context like the 
Theory of Planned Behavior (Ajzen 1991)) or a theory (i.e., the researcher’s own 
mental model of how occupant behavior influences energy use in buildings).  

In constructing this map, it is important that as many causal steps as possible be 
included. For example, the model might link occupant thermal comfort to home 
energy demand. This could be as simple as: occupant (cold) thermal discomfort —
—(leads to)——> occupants turning up the thermostat ——(leads to)——> great-
er energy use. This is intuitively reasonable, but it makes a lot of assumptions: 
how occupants will respond to cold thermal discomfort (through adjusting the 
thermostat); the home (that changing temperatures at the thermostat changes the 
temperature where the occupant is); the thermostat (that it is connected and work-
ing); and the boiler and heating system (that it can deliver the heat output neces-
sary to raise the temperature where the occupant is). It is important that as many of 
these assumptions and causal links as possible be expanded in the theoretical 
model to allow the researchers to decide what to measure along the causal chain 
and to understand if they do not find a relationship between their primary varia-
bles of interest (say, thermal comfort and home energy use) that they are aware 
that the breakdown in the causal chain can be anywhere along it, and it is not just 
that occupants do not act as expected. 

Ideally, the model would go from occupant motivations through to energy use. 
This roots the model in psychological, social, or physiological drivers, and ex-
plains how these are translated through occupant behavior and interaction with (or 
in reaction to) elements of the building to changes in energy and power use. Such 
rooting of the causal model in occupant motivations helps in identifying potential 
points of intervention with occupants to change how they respond to (or interact 
with) the building, while the modelling of the building's response to this interac-
tion allows testing of whether the assumptions about the building controls and 
physics are as imagined. 

An example of such a theoretical model represented in the Cmap software is 
provided in Figure 3.1. This is based on the Theory of Planned Behaviorwhich is 
one of the most well-known and tested theories in psychology to understand the 
antecedents of behavior. It postulates that the attitude toward a behavior, subjec-
tive norms, and perceived behavioral control shape an individual's behavioral in-
tentions and, ultimately, their behavior. 
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Figure	3.1	Graphical	representation	of	the	Theory	of	Planned	Behavior.	Black	boxes	and	
links	represent	the	established	theory.	Blue	boxes	and	links	represent	measurable	
properties.	Red	boxes	and	links	represent	analytical	relationships	for	testing	validity.	

 
 

3.1. Concepts 

In both the physical and social sciences, concepts play the important role of be-
ing the thing that researchers are frequently trying to measure. In the area of occu-
pant influences on energy use in buildings, concepts range from social norms of 
behavior, through thermal/aural/visual comfort, to temperature/sound pressure 
levels/illuminance levels, to building management systems and heating, ventila-
tion, and air conditioning (HVAC) systems, and to energy, power and carbon 
emissions. It may seem alien to link together things as seemingly disparate and 
diffuse as social norms with things as apparently concrete as temperature and en-
ergy—but this is only because the latter have been reified (i.e., made concrete 
through an agreed process of measurement) and their methods of definition and 
measurement so widely accepted that it has been forgotten that they were once as 
ill-defined and vague.  

Put simply, concepts are those things researchers are usually trying to measure. 
They are not, however, usually the things that are actually measured because it is 
usually only possible to measure proxies to concepts. This is why concepts and 
variables are not the same thing. This will be discussed further in Section 6. The 
theoretical model should have concepts as its nodes, with such concepts connected 
by a series of links indicating the relationships between the concepts.  
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3.2. One to one relationships (links) 

In the theoretical model, links describe how it is thought that concepts influ-
ence each other. While not necessary, it is often useful to attach signs to these 
links indicating whether the relationship is thought to be positive (+), negative (-), 
or unknown/variable (?). Doing this makes constructing research questions and 
hypotheses simple, as they are then just verbal descriptions of the relationships be-
tween concepts in the model. In the example discussed above regarding window 
opening behavior, the theoretical model may have a link between CO2 levels and 
window opening. This could be translated into the research question, “Do occu-
pants open windows more frequently as CO2 levels rise?” If the theoretical model 
labeled the relationship with a +, this would give rise to the hypotheses: “As CO2 
levels rise (hypothesized cause) occupants will open windows more frequently 
(hypothesized effect)” and “As CO2 levels rise occupants will open windows wid-
er”. Thus, the sign on the link in the theoretical model indicates the expected rela-
tionship between the concepts.  

It is important to note that there can be many more links in a model than nodes 
(concepts), as each node can have links to many others. That said, it is important 
not to end up linking each node to every other node, as that conveys little infor-
mation—it merely says, “everything is connected to everything else”. Believing 
that each node should be connected to every other node can arise from two issues. 
Firstly, this can arise through including temporal relations (i.e., feedback loops) in 
the model. One variable can influence another in the short term, but the second 
variable can then influence the first, either directly, or indirectly, at a different 
timescale. It is often important to define the time scale of interest and exclude 
feedback processes that occur over longer or shorter periods. The second reason 
“everything is connected to everything else” models arise is because the concepts 
used are not defined precisely enough--this is a question of scope, and it may be 
that for the purposes of a study intermediary steps are out of scope.  

3.3. One to many relationships (hierarchies) 

Another major form of relationship to be aware of when constructing the theo-
retical model is hierarchies. This is where concepts have a natural nested structure. 
When studying occupants in buildings such hierarchies are rife—people within of-
fices, offices within premises, premises within buildings, buildings within compa-
nies, etc. Identification of these relationships is important, as it will influence the 
unit of analysis (the entity on which data are collected) and the definition of the 
target population (the group from which the sample is drawn), and will inform the 
sort of analysis run on the data. If, for instance, the assumption is that the actions 
of occupants are strongly shaped by the building they are in, then it would not 
make sense to draw a sample of 1,000 people from only four buildings and think 
they constitute a representative sample of the population. One thousand people is 
usually sufficient to be a statistically representative sample of a large population, 
but only where those people are independent and sampled at random from the 
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whole population. In this case the sample consists just of four occupant-building 
combinations. If assuming that buildings do not influence occupant actions then 
such a sample of 1,000 is fine, but if assuming that buildings strongly shape occu-
pant actions then the population should be of buildings, and a sample size of four 
buildings is very inadequate. This illustrates why having a representation of hier-
archy in the theoretical model matters for the research design. 

 
4. Units of analysis, populations, and scope 

Having established the theoretical model, the next step is to delineate the scope 
of its applicability. This will require a clear statement of population of interest, 
i.e., the population of units of analysis the theoretical model is supposed to repre-
sent. This is likely to be as constrained by the resources available for the study as 
by what the researcher would theoretically like to represent. The geographical 
scope of applicability, along with the temporal scope need to be defined, as well—
both will tell those using the study where and when the results are no longer appli-
cable. Finally, the required degree of precision needs to be decided, which will de-
termine the sampling strategy and the sample size required. Each of these concepts 
is discussed in turn in the sections that follow. 

4.1. Units of analysis 

The unit of analysis is the thing that data are collected about. In the context of 
occupant behavioral impacts on energy demand in buildings this can be quite a 
range of units: from companies, through campuses, to buildings, premises, floors, 
individual offices, down to individual occupants. For domestic buildings, the unit 
of analysis may be homes, rooms, or individual occupants. The challenge in this 
area is that there are strong hierarchical relationships between these levels, and so 
the behavior of the same individuals in different buildings may vary more than the 
behavior of different individuals in the same building. Where this is the case, then 
it is probably more appropriate to think of the building as being the unit of analy-
sis. 

4.2. Population of interest and scope 

 Where the building is the unit of analysis, then those characteristics of the 
building that shape occupants' influence on energy demand help define the popula-
tion of buildings that the findings of the study apply to. For example, if occupant 
behavior in naturally ventilated buildings with high thermal mass is studied, the 
population may be these buildings, and thus the sampling strategy needs to sample 
from a population of such buildings to generate generalizable results. The limits of 
where (geographical scope) and when (temporal scope) the findings would apply 
need to be defined. The geographical scope could be determined by external con-
ditions ranging from climate regions to the extent of external pollution (a factor 
influencing window opening behaviors). Hence, the findings may be restricted just 
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to naturally ventilated buildings in temperate climates with low levels of external 
pollution. There may also be temporal limitations, either seasonal (results only ap-
plying in spring, summer and autumn) or in terms of a specific longevity (results 
only applying for the next decade due to expected changes in technology or socie-
ty).  

4.3. Descriptive or inferential statistics 

The overwhelming majority of statistical work in the buildings field is classed 
as descriptive statistics. Descriptive statistics report on the statistical characteris-
tics of the data gathered. If the study is of 100 buildings, then descriptive statistics 
describe those 100 buildings. Examples are reports on frequencies (e.g., counting 
how many double-glazed windows are present) or correlations between variables 
(e.g., windows opened for longer when ambient temperatures increase). The 
common element being that the findings only relate to the units of analysis stud-
ied, and nothing can be said about whether the findings apply more generally. 

Inferential statistics, on the other hand, seek to make statements about things 
that have not been studied directly. Inferential statistics, also called inductive sta-
tistics, describe the statistical characteristics of similar unobserved buildings, such 
as the population from which the units of analysis (e.g., occupants/buildings) were 
drawn. To be able to say something about a population by studying a sample it is 
necessary to know how well the sample represents the population. This is the field 
of sampling and sample size calculations. Whilst not specific to experimental re-
search, sampling and sample size calculations are crucial in any experimental re-
search design.  

To recap, inferential statistics is the method to make inferences from the col-
lected data to more general conditions. It is what is commonly described when us-
ing statistical measures such as confidence intervals and p-values for research 
findings.  

Confidence intervals are a function of the sampling error (also known as 
“standard error”) and depend on the size of the sample—the bigger the sample 
the smaller the sampling error. Confidence intervals express the range of values 
within which the parameter of interest (e.g., the mean) of the population from 
which the sample is drawn can be said to fall, based on that same parameter in the 
sample (e.g., the sample mean). 

Modern statistical software has many advantages, but one of its disadvantages 
is that it will provide answers to questions without first testing whether the as-
sumptions on which those answers are based have been met.  

For example, before calculating and reporting confidence intervals for 
findings can be meaningful, specific assumptions must hold. These include 
that the standard deviation of the population is known (not just that of the 
sample); that each member of sample was randomly and independently se-
lected from the population; and that the sample is (or can be transformed to 
be) approximately normal. Where these assumptions do not hold, calculation 
of confidence intervals is still possible, but requires changing the default set-
tings in most statistical software. For example, if the standard deviation of the 
population cannot be determined from other published statistics and if the 
sample size is small, then the Student’s t- distribution can be used instead of 
the z-distribution. This widens the confidence intervals and helps account for 
the uncertainty arising from using the sample standard deviation rather than 
that of the population. In the context of built environment studies these as-
sumptions are frequently violated and non-standard approaches are needed. 
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It is important to remember that confidence intervals only represent one partic-

ular aspect—and frequently a fairly minor aspect—of the uncertainty that is inher-
ent in the research process. Issues such as instrument accuracy and precision (dis-
cussed above) are not captured in the calculation of confidence intervals. It is an 
unfortunate reflection on contemporary academia that to quantify is to reify; the 
capacity to quantify one element of uncertainty (sampling error) is somehow 
thought to make it more real than other forms of uncertainty which, while less 
easy to quantify, are no less real and frequently far more important. 

Determination of sample sizes for inferential statistics in a building occupancy 
study is challenging because of the hierarchical structure of the problem as dis-
cussed above. In order to understand this, a brief recap on some of the fundamen-
tal concepts of statistics is required. Inferential statistics, of which sample size cal-
culations are a part, is about making the statements about a population based on a 
measured subsample of that population. All calculations of sample sizes are predi-
cated on the assumption that there is a well-defined population, and that an unbi-
ased sample from that population can be selected through a random selection pro-
cess in which each member of the population has an equal probability of being 
selected into the sample. In practice, this is virtually impossible to do, and so 
judgment is called for in assessing the extent to which the way with which units of 
analysis were selected into the sample may bias the outcome.  

The aim of any research should be to match the underlying assumptions of the 
statistical methods used; thus, the researcher should seek to clearly define their 
population of interest, and, wherever possible, to draw members from that popula-
tion with equal probability. It is common to see comparisons of the descriptive sta-
tistics of a sample (i.e., reporting on house type, household size, income, other 
demographics) compared to those of a nationally representative survey, like a cen-
sus, with authors reporting that because the sample looks like the census (usually 
through visual comparison of histograms) that the sample is representative. While 
this provides some reassurance, it is not strictly speaking correct—particularly in 
energy in buildings work. Usually such demographic factors explain only a limited 
share of the observed variance between households’ energy consumption, and so 
some measure of demographic similarity does not necessarily translate into similar 
patterns of energy consumption. It is also worth noting that reporting values such 
as confidence intervals is also not meaningful or necessary when all members of 
the population are surveyed (i.e., in a census). 

The choice between descriptive and inferential statistics is an important one 
that will fundamentally shape the research and the conclusions that can be drawn. 
While most researchers would like their findings to apply more generally, the 
work involved in doing so is considerable and so the decision to do so should not 
be taken lightly. 
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4.4. Required precision 

Of particular importance in this context is defining the precision with which the 
outcome variables need to be known for the findings to be relevant to the substan-
tive problem being addressed. Precision, often called “reliability” in the social sci-
ences, is a measure of how much spread there would be in the data if exactly the 
same thing were to be measured with the same instrument many times. It is differ-
ent from accuracy, which is a measure of how well these measurements corre-
spond with the true value. Most instruments have some level of imprecision (say, 
± 1˚C on a thermistor), which puts a fundamental limit on how precisely a meas-
urement can be specified.  

Precision is important because most interventions in buildings will be subject to 
some form of cost benefit analysis, with the intervention implemented if it can be 
shown that the benefits outweigh the costs. In this context, it is important to know 
in advance the likely costs, thus providing a prior estimate of the size of the bene-
fits (energy savings, indoor air quality improvements, etc.) required for the inter-
vention to be deemed worthwhile.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similarly, it is important to determine the statistical confidence required of the 

findings. This will vary with context. If the objective is to publish in refereed 
journals, then 95% statistical confidence is frequently expected. If the objective is 
to decide between two alternate courses of action incurring similar costs, then sta-
tistical confidence greater than 50% (i.e., on the balance of probabilities) may be 
all that is required, depending on the balance of risks associated with false positive 
(type I) and false negative (type II) errors for each option.  

To recap, false positive (type I) errors occur where the intervention being 
trialed did not actually work, but the study concluded that it did. The risk here is 
of implementing an intervention that does not work, thus wasting time and money. 
The more worried one is about this, the higher the level of statistical confidence 
needed. False negative (type II) errors occur where the intervention being trialed 
actually did work, but the study concluded that it did not. The risk here is of 

Implications of precision: If the intervention is 
only expected to change, say, internal temperature 
by 1˚C, and temperature can only be measured to ± 
1˚C, then it is unlikely to detect an effect of the in-
tervention with that level of imprecision—a differ-
ent instrument would need to be used (e.g., one that 
measures temperature to ± 0.1˚C). 
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throwing out a good idea and missing out on potential improvements to the build-
ing. The more worried one is about this, the higher the level of statistical power 
needed.  

In general, the higher the precision with which the results need to be known, 
the more expensive the trial will be. High costs could arise from the need to meas-
ure things more precisely or the need to reduce the uncertainty in generalizing to 
the population of interest, which will require a larger sample of the chosen units of 
analysis. 

 
5. Sampling and sample size  

5.1. Sample frames 

As discussed above, each study should specify the population to which the 
findings are thought to apply. Once this is specified, then if generalization from a 
sample to a population (inferential statistics) is to be used, a sample frame is need-
ed from which to draw a sample. Factors identified in the theoretical model as in-
fluencing the outcome variable(s) of interest will need to be addressed (exempli-
fied or nullified) in the construction of a sample frame. The sample frame is 
(ideally) a list of all units of analysis in the population. In some cases, depending 
on the unit of analysis, this may be difficult to obtain. Where such a list (sample 
frame) is available, then the sample is drawn from this list using the sampling 
strategy. Where such a list is not available, less statistically correct methods will 
need to be used such as quota sampling—for example, choosing a certain number 
of buildings in each of a range of categories that the theoretical model says will be 
important. 

5.2. Sampling strategies 

There is a wide range of sampling strategies. These broadly divide into proba-
bility-based methods, which are needed for generalizing from the sample to the 
population, and non-probability sampling methods, which are often used for 
pragmatic and costs reasons. 

Of the probability-based methods, the “gold standard” is pure random sam-
pling. This is the ideal case, as every member of the population (as represented in 
the sample frame) has an equal probability of being included in the sample. It 
would amount to drawing the sample purely randomly from the sample frame, all 
chosen units consenting to being monitored and then monitoring them all with no 
missing data. It needs to be stressed that all inferential statistics are based on the 
assumption that the sample is drawn at random from the population and any devia-
tion from this is a compromise of this most basic assumption on which inferential 
statistics is based.  

Because pure random sampling is often both very difficult and very expensive, 
a range of alternative methods have been developed that are still statistically gen-
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eralizable. A full description of such methods is beyond the scope of this chapter; 
examples include systematic sampling (sampling every nth member of the sam-
pling frame, but starting at a random point between 1 and n, so each member has 
an equal probability of being sampled); stratified random (where a random sample 
is drawn from different strata of interest, e.g., low-, medium-, and high-rise build-
ings, or urban, sub-urban, and rural buildings, but with the proportions of the pop-
ulation reflected in the strata of the sample); and cluster sampling (where groups 
of co-located members of the population are selected, e.g., ten buildings in each of 
five cities).  

The best of non-probabilistic sampling methods is quota sampling, where a set 
of important criteria drawn from the theoretical model are identified and units of 
analysis selected on a first come first served basis until a quota is reached in each 
cell of the sample frame. For example, in a study of occupants and their adaptive 
responses to thermal comfort, Gauthier and Shipworth (2015) used a sample frame 
of age, weight and gender, and recruited people (her unit of analysis) to populate 
that frame.  

Second most robust is purposive sampling, in which population members are 
recruited based on certain characteristics considered useful to the study. This may 
vary from deliberate selection of extreme cases to get a sense of the breadth of 
possible responses; to heterogeneous sampling, i.e., taking a spread of participants 
to cover the whole range of possible responses; to homogenous sampling in which 
some forms of variance are deliberately excluded through selection of a sample; to 
critical case, or typical case sampling. Other, less robust forms of sampling in-
clude snowball (where participants recommend others they know to participate); 
self-selection (the widely used practice of allowing people to volunteer, or opt-in 
to a trial); and convenience (where trial participants are based on whoever is to 
hand—hence the proliferation of studies of people and buildings on university 
campuses!). Each of these methods carries significant “health warnings” to the ro-
bustness of the trial, with all three methods having the potential to introduce sig-
nificant biases into the results.  

5.3. Spatial sampling 

Spatial sampling varies from the geographic dispersal of research subjects with 
the population ranging from local to global, through to the spatial density of de-
ployment of sensors collecting environmental variables in an occupied space. In 
both cases, the required density of sampling depends on the rate of change of the 
variable of interest in space and on the sensitivity of the other variables in the the-
oretical model being used for the research design to changes in those variables. In 
many instances, existing standards or established models will provide guidance on 
such sensitivities. For example, thermal comfort, as represented in the predicted 
mean vote (PMV) model, is far more sensitive to changes in ambient temperature 
than it is to changes in relative humidity. Thus, even if both ambient temperature 
and relative humidity were to change at equal rates in the space, it would not be 
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necessary to sample relative humidity as frequently. Spatial sampling is conceptu-
ally similar to any other form of sampling (population or temporal), where the fac-
tors driving the size of the sample are the effect size the researcher is trying to 
measure (what magnitude of change is considered worthwhile detecting) and the 
variance in the space (how much different locations vary from each other). If 
measuring a variable that varies a great deal, or if the theoretical model is thought 
to be very sensitive to that variable, or if trying to detect a small change in the out-
come variable of interest of the model, then a larger sample is needed.  

Sample size calculators can be used to determine spatial sample sizes, but this 
is seldom done for a range of reasons. Firstly, spatial data are usually highly spa-
tially auto-correlated, i.e., the value of a variable in two adjacent points in space is 
likely to be pretty similar. Secondly, usually there is good prior knowledge of how 
a variable is likely to change in space both inside and outside buildings—
particularly environmental variables such as temperature and light levels. Thirdly, 
the units of analysis (people, buildings, etc.) are seldom randomly distributed 
within the geographic scope of the study. All of this, coupled with the expense and 
impracticality of monitoring a large number of physical locations, makes purpos-
ive sampling both more acceptable and more pragmatic. For most studies, the aim 
is to measure variables experienced by the unit of analysis; hence, environmental 
parameters are best measured where the units of analysis (e.g., people or build-
ings) are located. Doing this reduces the uncertainty that arises from having to es-
timate these values from data collected in another time and place. This is the basis 
of the so-called “right here right now” approach to gathering thermal comfort data. 
While sampling at the unit of analysis is ideal, there are often times when it is not 
practical, and instead sampling is done at fixed points in the environment. This 
could be by using secondary weather station data, or by monitoring values inside 
buildings at fixed heights and locations away from people.  
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5.4. Temporal sampling 

The principles of temporal sampling are similar to those of spatial sampling, 
except applied in the time dimension. Again, rate of change is the key determi-
nant, along with the sensitivity of the variables of interest to that change, and the 
response-time of the system. It may not be necessary to frequently sample a varia-
ble that changes rapidly, where it is acting on a system that changes slowly or 
where the outcome variables of interest in the theoretical model are comparatively 
insensitive to that variable. Conversely, if the variable changes rapidly, and the 
system and its outcome variable of interest is responsive to that change, then sam-
pling at high frequency may be required. 

As with spatial variability, temporal variability can be highly auto-correlated, 
i.e., values of a variable sampled closely in time can be very similar. For this rea-
son, temporal sampling rates will primarily be driven by the rate at which the vari-
able is thought to change. An additional element to add to the concept map of the 
theoretical model is an a priori estimate of the rate of change of each variable to be 
measured. This can be based on previous studies or preliminary fieldwork/pilot 
studies. The second factor that determines the sampling rate is the characteristic 
timescale of change of the system. Nicol (2012) argues that there is no point in 
taking comfort votes from people at intervals of less than half an hour because for 
practical purposes their comfort state does not change sufficiently between such 
intervals to warrant it. While this may or may not be true, if the objective of the 

Qualitative rules in determining a sensor strategy: firstly, it is important to 
estimate the accuracy and precision with which each variable needs to be 
known (see “required precision” above). Accuracy differs from precision in 
that it refers to any systemic bias in the readings. In physical monitoring an 
example would be a poorly calibrated sensor which is always reading above or 
below the “true” value. In psychology, it may arise from a psychological trait 
such as centrality bias (where people tend to avoid picking the end values of 
scales). A sensor located away from the unit of analysis may well record val-
ues that are consistently different from those at the unit of analysis. It is im-
portant to think through how large a difference is tolerable before the findings 
are no longer fit for purpose. Secondly, as discussed above, it is important to 
consider how much imprecision is acceptable. The greater the imprecision in 
the measurements, the less likely it is to find statistically significant results. 
Imprecision clouds data with noise, making the signal harder to detect. If try-
ing to find a small signal (for instance, a weak influence of occupant behavior 
on energy use in buildings), then as much precision as possible is needed in 
the measurements. The final issue to consider is under-specification of the 
measurand. This is addressed in Section 6.2. 
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study and the theoretical model are consistent with this, then there would be little 
point measuring data at higher temporal frequencies unless assessing this claim 
was part of the objectives of the study.  

While such rules of thumb can be used to determine regular temporal sampling 
rates for most studies, there are instances where different temporal sampling strat-
egies are appropriate. This becomes particularly apparent in wireless sensor net-
works where minimizing energy use by sensors can be critical. Here, more sophis-
ticated sampling rates can be used such as variance-based sampling. Such 
approaches vary the rate of sampling in proportion to the rate of change of the var-
iable of interest. When the variable is static or changing slowly, then sampling can 
be quite infrequent. When the variable is changing rapidly, then the sensor can in-
crease the rate of collecting and transmitting data to capture the additional infor-
mation when it is useful. These sampling strategies are currently under develop-
ment in computer science—those considering using them would need to liaise 
with their sensor developers to implement such strategies (see also Chapter 4). It is 
also necessary to determine the thresholds at which the sampling rates should 
change; this is frequently expressed as a change in the variable relative to the his-
torical observed range of variance for each variable.  

Other bases for determining sampling rates include matching or replicating 
other studies in the field to ensure comparability, sampling as frequently as bat-
tery/memory/financial constraints will allow (a conservative strategy given it is 
always possible to down-sample to lower frequencies, if desired), and adaptive de-
signs in which sampling is initially high, but is reduced after preliminary data 
analysis if the rate is in excess of requirements. 

5.5. Sample size calculations 

One of the most frequently asked—and unfortunately most difficult to an-
swer—questions in research design is, “How large should my sample be?”. This is 
important, because if no relationship (descriptive design) or causation (experi-
mental design) is found, it could be for a range of reasons. Firstly, there could 
simply be no effect; secondly, it could be because variables were not measured 
precisely enough; and thirdly, it could be because the study was underpowered. 
An underpowered study is one in which too few participants have been tested to 
detect an effect with the desired level of statistical confidence and power.  

Hence, in order to determine an adequate sample size, sample size estimations 
are essential. In the following sections, methods for calculating sample sizes will 
be discussed, as will concepts such as confidence intervals, p-values, types of sta-
tistical errors, and statistical power. Calculation of sample sizes is a significant re-
search area in its own right, and one addressed extensively in the quantitative so-
cial sciences and psychology fields. For the purposes of this chapter, the focus is 
on two of the main areas for which sample sizes are calculated: internal validity 
and inferential statistics.  
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Internal validity refers to the extent to which the findings from the study can be 
correctly attributed to the interventions being experimentally tested. While it is not 
exclusively the case, people gathering data through surveys are frequently more 
concerned about questions of inferential statistics, while people conducting exper-
iments are frequently more concerned about questions of internal validity. As the-
se are all complicated topics in their own right, the reader is referred to standard 
texts in the field such as (Groves et al. 2004). 

5.6. External validity 

External validity is the assessment of the extent to which the findings from the 
sample can be considered to apply to similar, but not identical, units of analysis. 
These units of analysis can be considered as forming a range of similar but distinct 
populations that the findings can be said to hold for. These should not be confused 
with the general population (say all people or buildings in the country). These 
populations of similar units of analysis are defined by how closely the units of 
analysis are to those in the study. For example, a study of the thermal comfort of 
sixth grade school children may involve a sample of 200 students in ten schools. 
External validity arguments could be made that the same findings would hold for 
other students (e.g., the grades above or below) in those schools, or that they may 
even hold for students in other (similar) schools. Such arguments ultimately rest 
on qualitative arguments and citations of other studies’ findings to support such 
claims. Citing confidence intervals and p-values for other (related) populations is 
inappropriate, as the argument for the external validity of these findings to these 
other groups is ultimately not a statistical one.  

In this context, the above discussion about hierarchies, inferential statistics, ex-
ternal validity, units of analysis, and sample frames needs to be borne in mind. 
The sample frame needs to represent the population of the units of analysis, 
whether occupants in a building or buildings in sector of the building stock. Once 
having found or developed such a sample frame, a random subsample can be 
drawn of the size needed to achieve a certain level of statistical confidence (see 
note below on calculation of sample sizes). It is important to remember here that 
“random” is a well-defined term, and a suitable random number generator should 
be used to draw the sample. Then, the members of the chosen sample should be 
approached and recruited into the study. If not enough units of analysis (e.g., peo-
ple or buildings) are willing to participate, it is not acceptable to simply draw 
more potential participants from the sample frame, as this simply serves to drive 
up the nonresponse rate (as discussed below). Whilst it is tempting to conduct 
“opt-in” trials, where volunteers are sought to participate in the project, this im-
mediately violates the underlying assumption that each member of the population 
has an equal probability of being part of the trial, for by definition those who 
choose to participate are different from those who do not. The correct approach is 
to attempt to recruit all of those drawn at random from the sample frame, and then 
carefully note the percentage of those who accept to those who do not. This per-
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centage, known as the response rate, needs to be as high as possible in order to 
minimize nonresponse bias. If only one in 10 people asked agrees to participate, 
then by definition 9/10 people have chosen not to—thus again violating the under-
lying assumption that the sample represents the population. There is a considera-
ble literature in the quantitative social sciences about how to maximize participa-
tion rates in surveys and experiments. Amongst the best works in this area are 
those by Dillman, for example, “The Tailored Design Method” (2000). Whilst the-
se methods are primarily designed for use in social surveys, they are also in many 
cases equally applicable to the recruitment of participants into field studies in 
buildings. 

There are many situations where the above approach of using sample frames, 
random samples, and avoidance of self-selected samples is either unworkable or 
(arguably) unnecessary. Where the study is of something that self-selection is un-
likely to influence, then it can be argued that any sample of sufficient size, random 
or non-random, can be generalized from. Where use of non-random samples is un-
avoidable, then the researcher is left balancing different forms of uncertainty. Us-
ing or increasing trial participant numbers through use of self-selection, snowball-
ing, or other non-random methods increases precision by increasing sample sizes; 
however, it does not increase accuracy. Addressing this means either acknowledg-
ing that the findings only pertain to, say, building occupants who volunteered to 
participate, or arguing that the causal mechanisms at play are independent of the 
act of volunteering to participate. For example, where non-randomly sampled par-
ticipants are then random allocated to experimental groups, conclusions can be ro-
bustly drawn about the outcome of the experiment on the participants—but these 
findings can only be inferred to apply to people likely to volunteer for such exper-
iments. 

Whilst there are instances in which the aim is to generalize from a sample to a 
population of people within an individual building, frequently the goal is also to 
try and generalize across a particular class of building within the building stock. 
As discussed above, this is enormously challenging, particularly in the non-
domestic buildings area. The best global example of such a non-domestic building 
survey is the long-running Commercial Buildings Energy Consumption Survey 
(CBECS) in the USA. Although constructing such a survey may seem like an im-
possible task, it is important to note that if the theoretical model states that build-
ings shape users’ responses to them, then it is very important to include a repre-
sentative sample of such buildings in the study. Failure to do so means that no 
sensible statistical claims about the generalizability of the findings can be made. 
Effectively, the study is a conglomeration of case studies rather than a survey. It is 
for this reason that most of the reported confidence intervals from studies in this 
field do not make statistical sense, as they do not define the population to which 
they are claiming statistical generalizability—and if they do, they do not have a 
sufficiently large and representative sample drawn from that population to support 
such claims. It is important in this context not to disregard studies that fall short of 
the statistical requirements for generalizability. For logistical reasons, few studies 
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in the buildings field achieve such requirements and, as mentioned above, sam-
pling uncertainties are only a small proportion of the uncertainty in reported find-
ings irrespective of sample sizes.  

This covers some, but not all, of the range of issues identified in Figure 3.2 on 
threats to the validity of inferential statistical findings. A detailed description of 
the measures undertaken to address each of these threats is beyond the scope of 
these guidelines and is covered in standard undergraduate texts on social survey 
design, for example (Sarantakos 2012). 

 

 
Figure	3.2	Threats	to	the	validity	of	inferential	statistical	findings.	

5.7. An illustrative example of sample size calculations 

An example of how to calculate sample sizes for a trial is provided that is 
loosely based on the British energywise project. Very simplified calculation 
methods are presented here for the purposes of exposition. 

 
Project Summary: Energywise assesses how much electricity fuel poor cus-

tomers in Great Britain will save if provided with a smart meter and some energy-
saving appliances. The project uses a randomized control design. The unit of anal-
ysis is the home (house + household). 

Sample size calculation for establishing inferential statistical validity. 
Aim: To ensure that the findings observed in the sample will hold in the wider 

population with a given degree of statistical confidence. 
Step 1: Determining the population size 
This was set at 260,000 based on the estimate of the number of customers on 

the Priority Services Register (a proxy for fuel-poverty) in the UK Power Net-
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works' distribution zones. While an underestimate of the number of fuel poor in 
Great Britain, for populations over 20,000 estimated sample sizes change little.  

 
Step 2: Calculating the sample size 
For sample size statistics for inferential statistical validity the following equa-

tion was used (PSU 2014). 
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Where: Inputs: 
n = sample size required  
N = population size N = 260,000 (see above)  
P = variance in population P = 0.5. Assuming 50% of participants 

save more than 6% and 50% less. 
A = precision  A = 5% 
Z = confidence level Z = 1.6449 for 90% 
R = Estimated Response rate Adjusted after calculation 

This produces a value of n of 271 survey participants required in the trial. 
 

5.8. Internal validity 

Internal validity is a key concern in experimental research designs, such as ran-
domized control trials. A key mechanism for ensuring internal validity is the pro-
vision of intervention and control groups that are initially statistically identical, 
differing only in the application of the intervention to the intervention group. One 
key test of internal validity is the test of the likelihood that observed differences 
between the intervention and control groups are statistically significant, and at 
what level of statistical confidence. 

The capacity to statistically distinguish between the intervention and control 
groups is only one of the issues to be considered with respect to internal validity. 
Sarantakos (2012) provides a good overview of the range of issues known as 
“threats to internal validity” that must also be considered when designing such tri-
als, as well as descriptions of the measures that have to be undertaken to address 
such issues. 

To illustrate the process of calculating sample sizes for internal validity an ex-
ample is again provided based on the British energywise project. 

Step 1: Determining the level of statistical confidence and power needed 
for internal validity on the trial 

The consortium members were asked: 
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“Are you more worried about: 
a) mistakenly accepting an intervention that doesn’t work because the evidence 

wasn’t strong enough? or 
b) mistakenly rejecting an intervention that does work because the evidence 

wasn’t strong enough?"  
The first of these relates to false positive (type I) errors, and the second to false 

negative (type II) errors.  
To properly assess these, a risks-based approach to costs and benefits is need-

ed, i.e., the probability of the error needs to be multiplied by the magnitude of the 
consequences expressed in human or monetary terms. This is an area where the 
judgment of the researcher is called for.  

In the energywise project the following approach was adopted 
“Tell me, in percentage terms, how sure you want to be that an intervention ac-

tually delivers the energy savings we measure?” 
A) On the balance of probabilities (i.e., 50-65% confident) 
B) Pretty confident (i.e., 65-80% confident) 
C) Beyond reasonable doubt (80-95% confident) 
D) Almost certain (>95% confident) 
 
“Tell me, in percentage terms how sure you want to be that we don’t mistaken-

ly reject an intervention that actually does work?” 
A) On the balance of probabilities (i.e., 50-65% confident) 
B) Pretty confident (i.e., 65-80% confident) 
C) Beyond reasonable doubt (80-95% confident) 
D) Almost certain (>95% confident) 
The consensus amongst the project partners, on both the risk of false positives 

and false negatives, was that the group wanted to be “pretty confident” which was 
translated into a statistical confidence of 0.25 and a level of statistical power of 
0.75. 

It is difficult to overstate the importance of conducting this often overlooked 
step in sample size calculations. In many cases in energy use in buildings, occu-
pant behavioral energy savings are only one element of the operational decision to 
install a given technology. They are frequently a “nice to have” benefit of, for in-
stance, upgrading a building control system, or making a decision that incurs 
comparatively little additional cost. In this context, requiring 95% confidence of a 
trial is operationally inappropriate because the risks of failure are small (although, 
for academic publication purposes, it may be necessary). 

Step 2: Determining the effect size 
For the energywise project, data on effect size was taken from the Energy De-

mand Research Project: Final Analysis report published by the UK energy regula-
tor Ofgem (Raw and Ross 2011). This study, known as the EDRP, was the most 
up-to-date study on the effect size of smart meters available in Britain at the time. 
The following quote shows how uncertain the potential savings may be: “In the 
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case of electricity consumption… a full range of 0-11% (energy savings) for some 
periods and customer groups" (p.4).  

In light of this, and because of the nature and extent of the intervention in the 
energywise trial, an energy saving of about 6% from the intervention group was 
used.  

Step 3: Determining the mean and standard deviation of electricity con-
sumption 

The inputs of the mean and standard deviation were taken from government 
statistics, specifically the “Review of typical domestic consumption values” con-
sultation document (Villalobos 2013). 

The standard distribution of domestic electricity users in the UK was used (UK 
Profile class 1 electricity consumption). This provided the following values: 

- Arithmetic mean: approximately 3,200 kWh/annum 
No figure for standard deviation was provided, and so an estimate was made 

based on the inter-quartile range as follows: 
- Average inter-quartile: (1,200+1,600)/2=1,400 kWh/annum 
- The ratio of interquartile range to standard deviation range is 34%/25%=1.36  
- Estimate of standard deviation is therefore ~1.36*1,400=1,900 kWh 
This, however, was for an average home, and needed to be adjusted for fuel-

poor homes which were the subject of the study, as data on the mean and standard 
deviation is not available for this subpopulation. An adjustment was made based 
on the following logic: fuel poor customers are a subpopulation of all UK Electric-
ity Profile Class 1 customers. They will, however, have a lower mean and a nar-
rower standard deviation, as they are a more homogeneous group living in smaller 
homes. It was thus estimated that energywise trial participants would have a mean 
electricity consumption of 3,000 kWh and a standard deviation of around 1,500 
kWh. Note that these adjustments were merely educated guesses, as no further in-
formation was available on which to base these corrections. 

Step 4: Sample size calculation for establishing internal validity 
These sample size calculations were done using the G*Power 3.1.7 sample size 

calculation software as reported in Faul (2009; 2007). 
The analysis presented here uses the simplest test possible: a one-tailed t-test 

comparison of the difference between two independent means (two groups) using 
the input parameters above. Figure 3.3 shows how sample size scales with the de-
gree of statistical power desired. The value of 0.75 used in the calculation above 
corresponds to the estimated sample size of 506 on the graph. 
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Figure	3.3	Effect	of	varying	statistical	power	on	the	estimated	sample	size.		
 
Note that this is a very rough initial estimation of the sample size needed to dis-

tinguish a 6% effect size between two equally sized groups with a statistical con-
fidence of 0.25 and a statistical power of 0.75. 

The sample size calculation for internal validity generates an estimated inter-
vention group and control group size of 253 each, i.e., 506 in total. The sample 
size calculation for external validity generates an estimate of 271 in total. The test 
for internal validity is the larger of the two, and is therefore the factor determining 
sample size. In addition to this, an allowance for the estimated number of partici-
pants leaving the trial (“dropouts”) needs to be made and added to the sample size.  

5.9. Dropouts and response rates 

There are two adjustments that need to be made to the sample size calculation 
in order to determine the number of participants that need to be recruited. These 
are the expected dropout rate and the expected response rate. 

The sample size calculation is based on the number of participants needed to 
conduct the analysis of the data at the end of the study. However, dropouts are 
likely, and hence the initial sample needs to be increased by the expected number 
of dropouts. In shorter term experimental work, such as a week-long survey of oc-
cupant behavior in an office building, comparatively few people may drop out of 
the study. In contrast, however, if conducting a year or multi-year study of occu-
pant behavior in homes, 30 to 50% of participants may either move house, or 
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choose to leave the study. The number of dropouts will be a function of the re-
spondent burden (i.e., the inconvenience that participants have to put up with) and 
the duration of the study. The higher the respondent burden and the longer the 
study, the greater the likelihood of dropouts. When estimating the number of 
dropouts, the most useful method is to look to similar studies and make adjust-
ments based on what expectation of the respondent burden and duration from the 
dropout rates reported in those. The calculated sample size should be increased by 
the expected dropout rate. In the example used above, the sample size of 506 
would be increased by 30% to reach the number of people to account for later 
dropouts (in this case to 723).  

The estimate of the likely response rate, (i.e., the ratio of who was invited to 
participate to the number that accepted that invitation) will vary depending on the 
method used to recruit participants. It is worth noting that expectations around 
what is an acceptable response rate vary from field to field. In the quantitative so-
cial sciences, particularly at the level of national statistics, statisticians will fre-
quently start to become concerned when response rates drop below around 70%. 
In contrast to this, it is not uncommon in building occupancy studies for response 
rates either to be unknown, or to be substantially below 10%. The critical issue 
here is that any reduction below 100% represents a certain degree of self-selection 
of the sample.  

 
6. How to measure concepts (Methods) 

Having looked at research questions, established the theoretical model, and de-
termined the boundaries of the applicability of the study, the next step is to deter-
mine how to measure the concepts in the theoretical model. This is the realm of 
research methods. Other chapters in this book talk in detail about different specific 
research methods and these should be referred to as appropriate. This section is 
going to focus on issues of clearly defining what is being measured and ways of 
trying to quantify some of the uncertainty in the measurements. 

6.1. Concepts and constructs 

In research on occupants in buildings, relevant concepts include temperature, 
comfort, glare, productivity, and adaptive response. These are used to construct a 
theoretical model of how occupants respond to their physical environments. 

It is useful to draw a distinction between concepts and constructs. Markus 
(2008) distinguishes between concepts, which he defines as the reification of all 
actual or potential instances of a set of experiences in the real world, and con-
structs, which are the instances of these in a specific population. Within a popula-
tion, concepts and constructs are the same thing; however, the distinction becomes 
particularly important in international comparative work where concepts transfer 
between populations and constructs may not. 
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The benefit of such a distinction is that the area of occupant behavior in build-
ings is a highly international one in which researchers may frequently attempt to 
measure the same concepts, acknowledging that how those concepts are construct-
ed and operationalized will necessarily need to take into account differences in 
climate and culture.  

6.2. Operationalizing constructs into measurands 

Operationalizing constructs is the process of determining how best to measure 
them. Sometimes they can be measured directly with a single instrument, for ex-
ample, air temperature. Frequently, however, it is necessary to combine outputs 
from a range of instruments to measure the construct of interest. When multiple 
instruments are needed to measure a construct the term latent variables or hidden 
variables are frequently used to describe them. 

Trochim (2006) captures this in one of his diagrams, reproduced in Figure 3.4.  
 

 
Figure	3.4	Theory	->	observation	relationship	(after	Trochim	2006).	

In Figure 3.4, the theoretical model is represented in the top half of the dia-
gram, while the translation of this into a concrete program of research is repre-
sented underneath. The aim of operationalization is to translate the theoretical 
model into measurable things as validly and as reliably as possible. Over time and 
multiple research programs, elements in the observation box will inform and 
change the theory box. In any individual research study, the observations of the 
research program reflect the theoretical model being evaluated. 
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Implicit in the construction of the theoretical model as advocated above is the 
need to clearly specify the study's outcome variable of interest. This must be done 
before the onset of the experiment to avoid “fishing” for significant effects after 
the experiments. How the outcome variable will be measured needs to be defined 
in detail. This will need to be done in the context of the research aim or question 
the study is designed to answer.  

One of the key uncertainties that arises in the operationalization of constructs is 
what is called “underspecification of the measurand”.  

 
 
 
 
 
 
 
 
Underspecification of the measurand is the failure to specify exactly what it is 

that should be measured. For example, external temperature with respect to a 
building is often not specified exactly. External temperature can vary considerably 
around the envelope, and thus any measurement of the concept of external tem-
perature is subject to considerable error as each researcher will operationalize the 
concept differently. If specified more precisely—say, external ambient tempera-
ture measured within a Stevenson screen at 1.5 meters above ground level one me-
ter away from the building envelope at each compass point with the arithmetic 
mean value taken—there would be far less (but still some) leeway to measure dif-
ferently. Underspecification of the measurand is not a problem of measuring; it is 
a problem of operationalizing concepts—and leads to uncertainty in comparing the 
results of different studies and in replicating studies 

6.3. Latent variables 

Latent variables—also known as “hidden variables” or “hypothetical con-
structs”—are variables that cannot be measured directly. Some authors distinguish 
between the terms, using the term “hidden variable” as something that physically 
exists and could therefore in principle be measured directly, but for cost or other 
reasons may not be, and “hypothetical variables” as those that do not physically 
exist, but are useful explanatory tools, for example, attitudes or inflation.  

 
 
 
 
 
 
 

The term “measurand” is used in the field of metrology 
(the science of measurement) and is defined by the Interna-
tional Bureau of Points and Measures (Joint Committee for 
Guides in Metrology (JCGM) 2008a) as “quantity intended to 
be measured”—in this case, the construct. 

Latent variables are common in all fields of research 
including in building occupancy studies. They vary 
from things like the volume of a room (which is con-
structed from a series of individual linear measure-
ments and knowledge of geometry), to operative tem-
perature (which requires measuring both air and radiant 
temperature), to psychological variables such as envi-
ronmental attitudes or perceived control, which are 
usually measured through a set of questions. 
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The construct of interest is, for practical or other reasons, not directly observa-

ble and must be measured by combining the outputs from multiple individual in-
struments. In psychology there is a considerable methodological literature about 
how scales (i.e., sets of questions) should be developed and a considerable body of 
statistical science behind their evaluation.  

6.4. Instruments 

Various aspects of instrument selection, development, and placement will be 
discussed in detail in other chapters, particularly Chapter 4 through Chapter 8. 
One general point that should be made is that, conceptually, social research meth-
ods (participant observation, social surveys, interviews, focus groups) are also in-
struments in that they are designed to measure specific things that are subject to 
the same forms of uncertainties (imprecision, inaccuracy, etc.) as their physical 
counterparts. Thinking of physical, physiological, psychological, and social in-
struments in the same way is useful in supporting cross-disciplinary collaboration 
and establishment of a common vocabulary of measurement in this highly inter-
disciplinary and socio-technical area of study. 

6.5. Quantifying uncertainty 

The International Bureau of Points and Measures emphasizes the fact that any 
quantitative measure consists of three components. The first part consists of some 
multiplication of the number of base units (for example, a home might use 2,000 
kWh of electricity per annum). The second part stipulates an error margin around 
that value (e.g., ± 100 kWh per annum). The third part stipulates the probability 
that the “true” value lies within that error margin (e.g., 0.9). Any quantitative as-
sessment that fails to clearly identify each of these three elements for each meas-
urement is incomplete and makes the result difficult to interpret. This ideal is one 
that is frequently hard to achieve in practice, but the ideas that it entails are im-
portant for researchers to understand. In particular, the third component is a re-
minder that instruments never perfectly capture the true value that is intended to 
be measured (i.e., the measurand). Accepting that all measurements are approxi-
mate and never perfect has two consequences. Firstly, that it is necessary to esti-
mate the degree of precision required in order for findings to be useful. This is a 
function of the purpose of the study and can be established before any considera-
tions of methods is undertaken. Secondly, that it is necessary to decide whether 
the measurements taken and models used allow making statements that fall within 
this required degree of precision. Without the quantification of the uncertainties 
surrounding the study answers it cannot be judged whether the measurements and 
models are suitable for any given purpose.  
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7. How to measure relationships (Research de-
sign) 

Once having identified concepts, turned them into constructs, and operational-
ized them into things that can be measured, the challenge remains of determining 
the nature of the relationship between the concepts in the research question. There 
are essentially three types of relationships that could exist between the concepts 
measured: there could be a causal relationship, the concepts could be correlated, 
or they could be entirely independent. It is the role of research design to determine 
the nature of the relationship between the concepts. Research design is the process 
of devising a process that directly satisfies a brief, in this case, the research ques-
tion or research aim.  

Broadly speaking there are two forms of research design: descriptive (or corre-
lational) research designs, and experimental (or causative) research designs.  

It is important to note that both descriptive and experimental research designs 
use the same research methods. For example, a sensing campaign supported by 
occupant surveys can support analysis that is either descriptive of the relationships 
between the variables or shows causal relationships between variables. In order to 
establish causation, all other possible explanatory factors (all confounding varia-
bles) need to be eliminated implying that nothing else could have caused this ob-
served relationship. This is conventionally and best done using experimental de-
signs1. Such designs look to isolate the effect of one variable on another by 
holding all others constant in a controlled environment. This is a powerful and 
                                                             

1 There are some methods of analysis that some analysts argue can establish 
causation outside of an experimental context. Lead amongst these is Judea Pearl 
and his application of statistical graphical modelling methods such as Bayesian 
networks (Pearl 2000). This is both a highly advanced field of statistical analysis, 
and a hotly contested topic that is beyond the scope of this book. 

Uncertainty quantification is a complicated and specialist field that is 
beyond the scope of this book. An excellent introductory reference on in-
strument error and error propagation in the physical sciences is Taylor 
(1997) and an authoritative guideline on error propagation using Monte 
Carlo analysis is provided by the Joint Committee for Guides in Metrology 
(JCGM) (2008b). Interestingly, in the area of instrument validity and relia-
bility, the social sciences have developed better frameworks for assessment, 
e.g., the Multi-Trait Multi-Method (MTMM) approach (Campbell and 
Fiske 1959).   
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valuable approach, but not without limitations. The primary critique of such meth-
ods is their potential lack of ecological validity, i.e., that the findings from such 
studies do not reflect “real world” conditions and so what is observed in the lab or 
experimental field trial may not be observed in uncontrolled conditions. The more 
naturalistic the environment is in which the occupant experiences the experiment, 
the greater the ecological validity (see also Chapter 7). However, a more natural-
istic setting makes control of confounding variables more difficult.  

While it may seem intuitive that two variables are causally related, it is all too 
often the case that they are linked through a third variable which causes them to 
vary simultaneously.  

 

 
A concept map illustrating some of the key concepts in both descriptive (corre-

lational) and experimental (causative) research designs is provided in Figure 3.5.  

A good example of confounding variables is the relationship between CO2 levels 
and thermal comfort in a room. As occupants come into a room CO2 levels will rise 
alongside temperature. If the relationship between CO2 and thermal comfort is meas-
ured, it would show that they are highly correlated. There are also valid metabolic ar-
guments as to why CO2 may change metabolic rate and cognitive function and conse-
quently impact on thermal sensation. In standard field monitoring conditions, it is very 
difficult to disentangle the rise in CO2 with the associated rise in temperature, and thus 
to determine whether it is the CO2, the temperature rising, or both that is impacting on 
people’s thermal sensation. Therefore, standard monitoring field studies are not a good 
research design to try and answer this particular research question. Here the experi-
mental precision of laboratory conditions is preferable, allowing independent variation 
of CO2 levels from temperature levels in order to isolate the effect of one variable 
from the other. 



31 

 

 
Figure	2.5	Concept	map	illustrating	some	of	the	key	concepts	in	both	descriptive	(correla-
tional)	and	experimental	(causative)	research	designs.	

 

7.1. Descriptive (correlational) designs 

Descriptive (correlational) research designs are the mainstay of studies into the 
impact of the occupant behavior on building energy demand. This would classical-
ly take the form of gathering data through installed sensors, virtual sensors, or data 
gathered for other purposes (frequently termed ‘administrative’ data), potentially 
augmented with some occupant surveys delivered either on paper or electronically 
through smart-phones or computers. The data would then be analyzed for correla-
tions between the variables. Such a study design allows to understand relation-
ships in the data, but not to say that a change in one observable causes a change in 
the other. There are times when this seems counterintuitive. This is usually where 
the theoretical model or mental model feels like the only possible explanation for 
an observation. For example, it is tempting to interpret window opening behavior 
as always being related to regulating the thermal or indoor air quality environment 
within the building, particularly where this is the purpose of the study. However, 
alternative reasons can also explain why occupants may be opening windows—for 
example, out of habit, or in a residential setting to talk with people outside, or to 
listen to the birds in the garden. The sun coming out would correlate both to a rise 
in internal temperature and to increased bird activity in the garden. It is very easy 
when interpreting data from an energy perspective to mislabel a correlation (here 
between internal temperature and window opening behavior) as causative. Draw-
ing conclusions of causation in instances where other potential mechanisms have 
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not been controlled for can easily lead to wrong conclusions. There are a wide 
range of descriptive research designs which are covered in detail in many text-
books (e.g., Bryman (2015); Saunders (2015)). Three of the main types of design 
are covered briefly here. 

7.2. Case studies 

 One of the most widely used designs in the research on occupants in buildings 
is the case study. As the name suggests, a case study focuses on one individual in-
stance (say, an individual building, campus, or community) and applies multiple 
methods to understand the workings of that particular case. Case studies offer no 
capacity for generalization because they are a sample of one. An excellent refer-
ence on the use of case study research is Yin (2013). 

Some argue that if the case is in some senses archetypal, then lessons learned 
can be translated to similar cases. This is intuitively reasonable, but scientifically 
indefensible, as studying one case can say nothing about whether other similar 
cases work in the same way. It is tempting to assume that if other cases share simi-
lar characteristics and those characteristics are found to be explanatory of the be-
havior of the individual case, then the results must surely apply more broadly. 
This assumption only holds, however, under a certain theoretical or mental model 
of those factors which are important across the set of similar cases—an assump-
tion that seldom holds true in practice. 

Case studies are enormously powerful for identifying factors the commonality 
of which can then be explored using more sample-based research designs. One 
approach which seeks to span the gap between individual case studies, and a popu-
lation-based sample, is the Qualitative Comparative Analysis method developed 
by Ragin (1987). This approach has now developed into a suite of methods which 
seek to systematically draw out commonalities between a small set of case studies. 
The approach is widely used in international comparative analysis and frequently 
is based on numbers of case studies ranging from 10 to 50.  

7.3. Cross-sectional design 

A cross-sectional design is one that gathers data at a particular point in time 
from a range of units of analysis (occupants, buildings, etc.). A one-off social sur-
vey is a classic example of the approach. When correctly designed, such ap-
proaches can support generalizations from the sample to the population. The de-
sign and construction of social surveys is covered in Chapter 8. 

Cross-sectional designs can either be conducted once or at multiple points in 
time, thus creating a repeat cross-sectional research design. Repeat cross-sectional 
design does not measure the same people at each point in time, but rather gener-
ates a new representative sample from the population each time the survey is con-
ducted. This distinguishes them from longitudinal surveys in which the same peo-
ple are measured repeatedly through time. Repeat cross-sectional designs have the 
advantage that it is easier to draw a cleaner representative sample at each time 
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point, than it is to try and maintain a panel of the same participants through time. 
If the aim of the research is to understand changes at the population level, then re-
peat cross-sectional designs are most appropriate. 

Classic introductory texts on social survey designs include: Sarantakos (2012), 
which covers nearly all aspects of social research to a good undergraduate level of 
understanding, and Foddy (1993), which is excellent for details on survey and in-
terview questions. 

7.4. Longitudinal surveys 

Longitudinal surveys are ones that measure the same units of analysis through 
multiple points in time. There are many different kinds of longitudinal surveys, in-
cluding panel surveys, where “panel” is the name given to the sample of units of 
analysis (people, buildings, etc.) being drawn to represent the population and then 
followed through time with repeated surveys; and cohort studies, where a group of 
units of analysis sharing a common characteristic (say, a sample of buildings of a 
certain type built in the same year) are followed through their lifetime. Again, fur-
ther details on such designs are provided in Chapter 8. 

7.5. Causative (experimental) designs 

An experiment is a procedure to test a hypothesis. The main difference between 
experimental research and other types of research is the aim of establishing causal-
ity, i.e., insight into cause-and-effect relationships, by testing what happens to an 
outcome variable if a specific factor is manipulated. The outcome variable is usu-
ally called the “dependent variable”. The independent variable, also called the 
“treatment or the intervention”, is under direct control of the researcher and is 
used for creating experimental conditions.  

 
Extraneous variables are factors not of interest to the researcher, but that need 

to be controlled for as they can also impact on the dependent variable and their ef-
fect can be confounded with the effect of the independent variable (hence they are 
also called “confounding factors”). The age and type of computer might be con-

An example to illustrate the experimental approach and its vari-
ables: It might be interesting to know whether a pop-up window 
displayed on the screen at the end of the working day with a 
prompt to turn off the computer before leaving leads to a higher 
number of turned off computers (intervention group) than when 
providing no such prompt (control group).  

The dependent variable would be the number of computers 
turned off at the end of the day, monitored over specific time peri-
od (e.g., two weeks) and averaged over that period. The pop-up 
window constitutes the independent variable. 
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founding variables in that people with old computers that take a long time to boot-
up, or that do not permit being shut down with programs still open, make it less 
likely that someone will shut a computer down. Random assignment of partici-
pants to groups is one method of eliminating the effect of extraneous variables. If 
the sample is large enough, one would expect the same distribution of the extrane-
ous variable in the group receiving the intervention and the one not, e.g., the same 
number of older computers, in both groups. However, in relatively small groups, 
randomization might not work. Where this is the case, another method is to con-
trol for the effect of those variables in the analysis of the data. By including them 
as variables in the statistical analysis the effect of the intervention can be tested 
while holding the extraneous variable constant. This allows the effect of the extra-
neous variable to be analyzed and accounted for. Extraneous variables are more of 
a problem when they are not obvious and when randomization cannot be relied on 
to ensure an equal distribution across all groups, e.g., because the sample is too 
small.  

Random assignment is a critical feature of experimental work; it ensures that 
the groups are the same in important characteristics and that differences in the 
outcome measures are attributable to the intervention and not differences between 
the groups per se. The energywise trial example given above is an example of one 
of the most common (and best forms of) randomized experimental design: a ran-
domized design comparing control and intervention group in a post-test.  

Pre-tests can be used in experimental studies. In the example given, the number 
of computers turned off before the intervention might be counted to establish a 
baseline. Since this could easily be done after all employees have left in the even-
ing there would not be any concern that, in doing so, employees’ attention would 
be drawn to the need to switch off computers and hence influence the trial’s out-
come. This is, however, a concern in other settings where, by including a pre-test, 
a topic is made salient to trial participants (e.g., making them more aware of ener-
gy use), and thus the pre-test could impact on the post-test. Pre-tests are also asso-
ciated with higher costs, time, and effort, and hence are not necessarily advisable. 
However, they can be useful in other respects: in the example, a pre-test might re-
veal that all computers are switched off anyway, and hence, that there is no point 
in running the study!  

Two other forms of experiment exist. The first is the quasi-experiment. It has 
the same elements as a true experiment, but lacks the crucial aspect of randomiza-
tion, i.e., participants are not randomly assigned to conditions. Instead, assignment 
to conditions is via self-selection. This poses a serious problem because the as-
sumption that groups are equal no longer holds, and hence there might be con-
founding variables. While the extent to which groups differ on certain easily 
measured variables (age, gender, income, etc.) can be assessed, it is quite plausible 
that there remain confounding variables which are hard to assess because they are 
difficult to measure. Ultimately, it is not known what made participants decide to 
choose one intervention over another, or to be in the control group. Despite this 
significant disadvantage, quasi-experiments are common in applied settings be-
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cause they avoid a lot of the logistics of establishing a true experiment, or allow 
analysis of things that would be impossible or unethical to conduct experiments 
on. For an excellent example of a quasi-experimental design see the recent thermal 
comfort study by Luo (2016). 

The third main type of experiment is the natural experiment, where a naturally 
occurring condition is contrasted with a comparison condition. Here the cause 
cannot be manipulated, i.e., the independent variable is not set by the researcher. 
For example, an earthquake might destroy several high-rise buildings in one city, 
and so a study might test if inhabitants of that city are less likely to buy flats in 
high-rise buildings over the next two years than inhabitants of a city of a similar 
size (and ideally, similar in other characteristics such as wealth, presence of indus-
try, etc.) that was not affected by an earthquake. The big advantage of natural ex-
periments is that they allow the study of the effect of phenomena that otherwise 
could not be studied; however, groups are not necessarily equal (or even similar), 
were not randomly assigned, and there might be a wide range of confounding var-
iables.  

 
8. Pre-analysis plans 

One of the key points that Wasserstein (2016) notes on behalf of the American 
Statistical Association in their article on good practice in the use of tests of statis-
tical significance is that, "Proper inference requires full reporting and transparen-
cy." They emphasize that  

Conducting multiple analyses of the data and reporting only those with cer-
tain p-values (typically those passing a significance threshold) renders the 
reported p-values essentially uninterpretable. Cherry-picking promising 
findings, also known by such terms as data dredging, significance chasing, 
significance questing, selective inference and “p-hacking,” leads to a spuri-
ous excess of statistically significant results in the published literature and 
should be vigorously avoided. ...Whenever a researcher chooses what to 
present based on statistical results, valid interpretation of those results is 
severely compromised if the reader is not informed of the choice and its ba-
sis. (p.10) 
This is mirrored in an article by Simmons et al. (2011) article in which they ar-

gue that researchers have a lot of degrees of freedom to make decisions during the 
data collection and analysis that distort the research process and artificially inflate 
the probability that they will find positive results. To combat this, Taubman 
(2010) and many others have argued for development and publication of a data 
analysis plan prior to conducting the research, also called a “pre-analysis plan” 
(PAB). They note, "by planning and disclosing the hypotheses to be tested and 
specifications to be used in advance of seeing the data, the plan should avoid (or at 
least minimize) issues of data mining and specification searching.” (p.3).  
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Such analysis plans should be prepared in advance of the study and, in the ideal 

case (and as required by some journals), published online to ensure full accounta-
bility of analysis and so editors can check that no additional analysis has been 
conducted to “massage” the data to achieve desired outcomes. 

The other issue which analysis plans serve to improve is statistical conclusion 
validity. Statistical conclusion validity refers to the extent to which statistics are 
used properly and appropriate conclusions drawn from analysis. It relies on other 
forms of validity that extend to the choice of analysis methods, with a particular 
emphasis on whether the underlying assumptions of these analysis methods (fre-
quently normality of distributions) hold in the case of the analysis conducted (see 
(Sackett et al. 2007)). 

As with many aspects of best practice in research design, production and publi-
cation of such analysis plans is often not done in building occupancy research. 
This risks leading to high levels of cherry picking of favorable findings by running 
multiple analyses and publishing only those “of interest” (i.e., frequently those 

 

An analysis plan will usually include the following sections: 
• Overview of the study (including: aim; research/experimental de-

sign; outcome measure; sample)  
• Ethical considerations (including in experimental research ethical 

aspects arising from things like withholding intervention from one 
group, negative effects of an intervention, and privacy aspects).  

• Statement of hypotheses to be tested (including: expected average 
effects; causal chain of process and mechanisms; heterogeneous ef-
fects on sub-groups) 

• Estimating equations to be used (including: stating the spatial and 
temporal sampling frequency to be used; estimating average treat-
ment effects; estimating treatment effects using interaction terms; 
what predicts the outcome variable of interest) 

• Testing for balance if experimental design is used (including: ran-
domization/balance checks) 

• Procedures for addressing missing or low quality data, covariate 
imbalance and questions with Limited Variation (including: item 
non-response; covariate imbalance; questions with limited varia-
tion) 

• Variable construction (including how each variable is to be con-
structed from the raw data) 
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with positive relationships between variables). Such skewing of the research pro-
cess makes both interpretation and replication of findings difficult or impossible 
and undermines the quality of work in the field. It should be stressed that perform-
ing exploratory data analysis by conducting tests not outlined in the original anal-
ysis plan is an entirely acceptable form of scientific practice—however, it is one 
that should only be used to generate hypotheses for testing in future well-designed 
studies in which such forms of analysis are written into original analysis plan. 

 
9. Conclusions 

Research design is an essential, but often misunderstood and overlooked com-
ponent of the research process. This chapter lays out a systematic approach to re-
search design centered on the construction of a concept map diagrammatically 
representing the theoretical cause-effect model that the research is seeking to test. 
Making this explicit through concept mapping requires representing the concepts 
being explored as nodes, and the relationships between those concepts as links. 
Once the theoretical model is mapped out, then research questions are easily artic-
ulated as the relationships between the concepts in the model. Hypotheses can be 
drawn from the research questions that the research can be designed to test. This 
approach also provides a framework for the writing of pre-analysis plans, which 
help researchers clearly articulate their proposed methods of analysis prior to col-
lecting their data, thus helping to guard against malpractice, such as searching for 
statistically significant relationships between variables that were not the original 
intent of the study. 

Occupant behavior in buildings research must be fit for purpose. To be fit for 
purpose, the purpose must be known and the findings of the research must fall 
within acceptable margins of error for that purpose. Therefore, to be useful, re-
search must not only produce findings, but also quantify the uncertainty in those 
findings to show they lie within the acceptable margins of error for that purpose. 
To achieve this requires both quantifying uncertainty, but more importantly de-
signing-out enough uncertainty to fall within required error margins. The proce-
dures outlined in this chapter address both these elements. Accepting that things 
cannot be measured perfectly, mapping the theoretical model, choosing an appro-
priate research design, and selecting and applying appropriate methods all help in 
reducing uncertainty.  
The procedures outlined in this chapter constitute best practice in research design 
and may seem intimidating to many new and established researchers in this field. 
Indeed, many of these methods represent the cutting edge of best practice in re-
search in the more pure-science fields such as the social sciences, psychology, 
physics, and metrology. Studying the actions and influences of occupants on ener-
gy use in buildings is a theoretically and scientifically challenging task as scientif-
ically demanding as any in the pure sciences. It is all too easy for the influences of 
occupants to become lost in a sea of confounding influences on energy demand, 
ranging from the impact of the weather, through the performance of the building 
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fabric, to the behavior energy producing and consuming technologies and their 
control systems and the complex temporal interdependencies of all of these. To 
disentangle these influences and isolate the influence of occupants requires theo-
retical clarity and rigorously designed and conducted research in order to establish 
the foundations and significant findings of the field.  
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