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Abstract

Background: The advent of modern high-throughput genetics continually broadens the gap between the rising
volume of sequencing data, and the tools required to process them. The need to pinpoint a small subset of functionally
important variants has now shifted towards identifying the critical differences between normal variants and disease-
causing ones. The ever-increasing reliance on cloud-based services for sequence analysis and the non-transparent
methods they utilize has prompted the need for more in-situ services that can provide a safer and more accessible
environment to process patient data, especially in circumstances where continuous internet usage is limited.

Results: To address these issues, we herein propose our standalone Open-source Variant Analysis Sequencing (OVAS)
pipeline; consisting of three key stages of processing that pertain to the separate modes of annotation, filtering, and
interpretation. Core annotation performs variant-mapping to gene-isoforms at the exon/intron level, append functional
data pertaining the type of variant mutation, and determine hetero/homozygosity. An extensive inheritance-modelling
module in conjunction with 11 other filtering components can be used in sequence ranging from single quality
control to multi-file penetrance model specifics such as X-linked recessive or mosaicism. Depending on the type of
interpretation required, additional annotation is performed to identify organ specificity through gene expression and
protein domains. In the course of this paper we analysed an autosomal recessive case study. OVAS made effective use
of the filtering modules to recapitulate the results of the study by identifying the prescribed compound-heterozygous
disease pattern from exome-capture sequence input samples.

Conclusion: OVAS is an offline open-source modular-driven analysis environment designed to annotate and extract
useful variants from Variant Call Format (VCF) files, and process them under an inheritance context through a
top-down filtering schema of swappable modules, run entirely off a live bootable medium and accessed locally
through a web-browser.
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Background
The technological evolution of sequencing platforms has
progressed rapidly since the completion of the Human
Genome project via Sanger sequencing methods [14, 20].
Modern high-throughput sequencing (HTS) approaches
post-Sanger era have superseded this standard, allow-
ing for a greater number of variants to be sequenced
across the whole genome by employing powerful mass
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fragmentation/amplification approaches upon a target
sequence [2, 16].
The raw sequence FASTQ reads produced by these HTS

platforms are aligned to a specific version of the NCBI
reference sequence and collated into a Binary Alignment
Map (BAM)where variants of interest can then be individ-
ually “called” to form a Variant Call Format (VCF) file of
novel or known variants conforming to a specific variant
database (dbSNP) [5, 17].
BAM and VCF data are orthogonally related, with the

former storing horizontal stretches of FASTA sequence
reads aligned unevenly on top of one another forming
“pile ups”, and the latter taking vertical cross-sections of
these pileups at specific loci to form a variant call.
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The VCF specification was designed for the 1000
Genomes project to produce a robust format that could
house the many samples often sequenced under the same
batch, but has since been adopted by projects such as
UK10K, dbSNP, NHLBI Exome Project, amongst others.
The format is flexible with annotations, where additional
fields can be outlined in the header and adhered to in the
body of the data. Each line of the VCF body describes
a single variant; physical position paired with a refer-
ence allele (as ascribed by a reference genome consistent
across the entire VCF file) and alternate alleles that appear
within samples. Major and minor alleles are specific only
to the sample population but their frequencies can be
pre-computed and appended to a variant line as addi-
tional information to then be utilized in small population
analyses such as inheritance modelling [5].
Variant analysis suites all work under the same princi-

ple; filtering variants under a user-specified set of criteria
against the various variant annotations present in the VCF
in order to produce a subset informative to the pheno-
type. Stringent filtering measures will produce a smaller
set with the drawback of missing key causative variants,
and more optimistic filtering measures will produce too
many false positives. The effectiveness of an analysis rests
primarily upon the accuracy of the variant annotations
which can attribute to as much as 15% of false negatives
[22], as well as the frequency of false negatives that are
discarded due to overly-stringent quality filtering. A com-
mon approach to addressing both issues is through learn-
ing algorithms that can be trained to favour individual
variants over others with the caveat of producing results
via ‘black-box’ methods that may create some disparity
between the user and their data [18].
A more transparent approach is to expand the scope

of the filtering beyond the variant/gene-level and explore
variants under a larger trait-penetrance context.
Mendelian traits conform to the four classical modes on

inheritance of autosomal/X-linked, dominant/recessive
penetrance. Dominant disorders result from the inher-
itance of a single mutant allele which is manifested in
each subsequent generation with a 50% chance of likeli-
hood in offspring from a single affected parent. Recessive
traits require the inheritance of two mutant alleles on
opposing strands in order to block any functioning copies
of the causative gene. Parents are typically carriers with
affected offspring. These disorders are at times a result of
consanguineous marriages, where a single mutant allele
manifests on both alleles due to the multiple paths of
descent it can undertake [10]. In the case of X-linked
recessive inheritance, males with a single mutant copy are
hemizygous and must express the phenotype.
For non-Mendelian disorders, we also consider the spe-

cial case of mosaicism; where de novo mutations pro-
duce two or more populations of cells that result in

segregated sets of genotypes within the same individ-
ual. Mosaic genotypes can be revealed stochastically by
measuring alternate allele frequencies against expected
values [1].
Here we outline our Open-source Variant Analysis Suite

(OVAS) that makes use of these inheritance modelling
scenarios with the aim to vastly reduce the number of false
positives.

Implementation
The core ideology behind OVAS was to preserve the
VCF specification at each step of the analysis, and this
is catered to extensively within the pipeline where each
module inputs and outputs VCF file(s) in order to facili-
tate the chaining of subsequent pipeline modules down-
stream. This allows for full analysis transparency, where
results can be extracted at any stage of an ongoing
analysis.
Module ordering is flexible in this regard, with the

exception of the primary annotation modules which are
required to run prior to any filtering in order to pro-
duce an effective analysis of the variants. Pre-existing gene
and function annotations within input data are ignored
unless generated by a previous run of the OVAS pipeline,
supplanting foreign annotations with the pipeline’s own
if required. This is to ensure unambiguous results stem-
ming from external annotations using unknown sources
that may result in erroneous output variants.
OVAS annotates variants using data from trusted pub-

lic domain databases such as RefGene, dbSNP, UniProt,
and many others through the UCSC Genome Browser’s
MySQL back-end portal [11]. The explicitly open nature
of pipeline also prompts a predilection towards open-
source or scripted languages and frameworks, which fur-
ther serve to uphold the confidence between the end-user
and their data.
Core pipeline functionality is managed through back-

end shell scripts which serve to chain subsequent pipeline
modules as shown in Fig. 1. The modular-centric design
and development enables each pipeline module to be run
as a standalone script without the need for an overarching
framework. It also allows for the pipeline to be initi-
ated manually for the more commandline-oriented users,
where input VCF files can be placed into a new folder on
the desktop along with a pedigree file and an appropriate
configuration file (see manual in software repository), and
executed via the starting script.
However, OVAS was designed to cater towards all

users, and is accessed primarily through a graphical user-
interface within a web browser which facilitates in the
VCF file placement and configuration process through file
selection dialogues and configurable forms to generate
run profiles, as well a means to manage and view ongoing
analyses as shown in Fig. 2.
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Fig. 1 Overall structure of the OVAS pipeline: VCF files as referenced
by a pedigree file are fed into the pipeline and are processed in turn
by the core annotation, optional filtering, trait penetrance modelling,
and additional annotation modules

OVAS is split into three separable parts, with each
component encapsulated by the next; the processing back-
end, the web-interface front-end, and the live operating

system. Instructions to acquire and set up each as distinct
items are provided in the software repository, but OVAS
is bundled principally as an all-encompassing standalone
bootable ISO image that can be deployed onto a DVD or
USB.

Pipeline overview
OVAS is composed of five main stages of processing fol-
lowed by a generated report detailing the findings of the
analysis.

Pre-processing
All VCF files immediately undergo initial preparation
upon file submission from the web interface, where a
background shell script renames the files to better emulate
their pedigree counterparts, and asserts that all variants
are in correct order following a chromosome:position
sorting scheme.

Core annotation
The annotation stages of the pipeline then affix the vari-
ants with the relevant metadata to aid in the filtering
process against user-specified criterion throughout the
rest of the pipeline.
First, a gene context is appended to the variants

specific to a level of detail preferred by the user.
This includes, but is not limited to; exons, introns,
(donor/acceptor) splice sites, (5’/3’) UTR, and (default
500bp) upstream/downstream promoters. Wholly inter-
genic regions are discarded by default, which often
results in a vast majority of initial variants being fil-
tered out (approximately 90% for whole-genome sequence
data).
Ensuing functional changes and the resulting muta-

tion types (synonymous, missense, nonsense, etc) are also
annotated to the variant by performing cDNA lookups
of the variant against reference genome FASTA data and
determining the subsequent changes at the codon and
amino-acid level for all sense and anti-sense gene tran-
scripts.
The VCF specification generally denotes a single vari-

ant per line and OVAS vehemently upholds this policy
when a variant bisects multiple gene transcripts. This
is notably different from UCSC’s Variant Annotator [8],
which despite taking in VCF input, does not preserve the
format and reports multiple bisecting sites upon adjacent
lines. For a given variant, OVAS ensures that each gene
context and correlating functional change are stored in-
line as separate associative arrays that are indexed to the
same gene transcript.
Finally, heterozygosity and homozygosity are assigned to

the variant based on nucleotide base count alone, address-
ing a confidence issue in the zygosity assignment provided
by pre-processed variants.
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Fig. 2Web-interface displaying an ongoing analysis. The left sidebar shows the user-set configurations, and the central-right box displays the
pedigrees used in the analysis stacked above a real-time progress box. Once complete, a summary will automatically open in a new browser tab.
Here, 4 individuals’ data from 3 families were analysed, with pipeline settings configured in the left side-bar; case VCF files auto selected, core
modules running on default settings, optional modules configured to use linkage data, call quality filtering (> 20), rare variant filtering (<1%),
non-synonymous mutations requested, and an autosomal recessive inheritance filtering model applied in conjunction with gene-level variant
filtering

Filtering
Once fully annotated, variants are then subject to the con-
ventional filtration modules that act upon the standard
positional and INFO fields provided by VCF data against
regions/thresholds set by the user. Specifically; Physical
Location Filter, Novel Variation Filter, Read Depth Filter,
and Call Quality Filter.
OVAS provides a Mutation Type Filter which acts

upon the functional annotations provided by OVAS to
keep/discard any variation of missense, nonsense, and
synonymous mutations. It also provides an Alternate
Allele Frequency module which screens for rarity by

comparing alternate allele frequencies against the refer-
ence genome via dbSNP (version 147).
Variants are also filtered over multiple VCF files, with

the Same Variant Filter discarding variants not shared
across all cases, and the Same Gene Filter discarding those
that do not reside within the same gene context shared
across all cases. Both modules are used extensively in the
inheritance filters.

Inheritance filtering
This section performs trait penetrance modelling for dif-
ferently affected individuals following sibling-sibling, and
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sibling-parent relations. For all detected parent-offspring
trios, variants undergo context-based filtering depending
on the penetrance-model specified:

Autosomal dominant The phenotype is caused by
a single mutant autosomal allele, and affected indi-
viduals must have affected parents, mapping any
{HOM,HET} �→{HET,HOM} under complete penetrance.
Under a de novo context all common affected variants
are filtered against unaffected controls, otherwise variant
commonality is kept within sibling groups.

Autosomal recessive The phenotype is caused by a loss
of function stemming from both copies of an autoso-
mal gene, at times from the result of consanguineous
breeding. Two paths of transmission are considered from
parent�→offspring depending on whether the affected off-
spring variant is compound-heterozygous (C-HET) or
homozygous (HOM). Under the assumption that parents
are carriers:

1. HOM, Both parents transmit a single HET variant
which manifests as a single HOM variant in the
offspring, i.e. {HET/HET} �→HOM.

2. C-HET, Parents are carriers for different HET
variants across a common gene, which compound in
offspring as multiple HET variants within said gene.
If HET1 and HET2 are distinct variants within the
same gene from different parents, then this can be
represented under a gene context as {HET1/HET2}
�→ {HET1+HET2} mapping to produce a C-HET
gene.

Siblings are then filtered for common variants existing
within affecteds siblings only, discarding those that are
homozygous in unaffected controls.

X-linked dominant
As with autosomal dominant but with themutant allele on
the X-chromosome.

X-linked recessive
As with autosomal recessive but with mutations occurring
on the X-chromosome. Males with a single mutant copy
are hemizygous and are treated as homozygous, exempt-
ing them from compound heterozygosity checking.

Mosaicism
Mosaic inheritance is treated as a special case, where
allele frequencies are pre-calculated for each variant and
then filtered against user-set thresholds conforming to
expected mosaic frequency ranges (typically between
10–35%).

Extended annotation
The last processing stage of pipeline constitutes a small set
of potentially causative variants that successfully passed

through the main filtering stages and require finer anno-
tation and analysis that was too costly to perform for all
variants at the start. Here, gene transcripts are assigned
RefSeq IDs to better distinguish them against external
sources(Isoform Context), variants falling within known
protein domains provided by UniProt are further func-
tionally annotated (Protein Context), and tissue-specific
data from the Encode GNF Atlas2 database are used to
filter for/against genes falling within user-specified gene
expression thresholds (Gene Expression).

Web report
All remaining variants across all output VCF files are then
consolidated into an interactive HTML table which sum-
marizes variants under sortable and filterable columns of
chromosome, position, rsID, gene, gene context, cDNA
and protein change, functional change, and heterozy-
gous/homozygous occurrence in cases and controls (see
Fig. 3).
This provides a good overview of potentially causative

variants, especially in recessive disease models where
compound-heterozygosity can occur.

Results
Here we describe the case study results for two autosomal
recessive and one X-linked dominant disease models.

First case study
Three families presented with hyperinsulinemic hypo-
glycemia and congenital polycystic kidney disease
(HIPKD), a rare newly discovered disorder following an
autosomal recessive model. Whole-genome linkage anal-
ysis in conjunction with haplotype reconstruction hinted
towards a compound-heterozygous disease pattern in all
cases within a significant locus on chromosome 16 [3].
Exome-capture sequencing of all cases revealed a pro-

moter mutation paired with either a missense or splice site
mutation. To recapitulate the results of this study within
OVAS, all four cases were inserted into the pipeline of
which two were siblings, permitting the use of variant-
level filtering. Pedigree overviews as well as runtime set-
tings conforming to those in the supplemental material of
the preceding paper are displayed in the analysis interface
(Fig. 2).
Each VCF file comprised of approximately 250,000 vari-

ants (SNPs and InDels) and were profiled against a gene
map at the first annotation step (Adding Genes) comprised
of exons, donor/acceptor essential splice sites (5 bp), and
upstream/downstream promoter regions (500 bp). Refer-
ence genes as well as their isoforms were also retained in
the analysis.
The prior linkage analysis [3] hinted at a small region of

interest (16p13.3-16p13.2 spanning 2.93 Mbp) populated
by 11 genes and 40 isoforms, and applying this locus via
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Fig. 3 The summary tab contains a comprehensive report of potential causative variants discovered in the analysis. The report is interactive and can
perform dynamic filtering and sorting upon any data field. Columns containing adjacent data in the rows above or below are merged for
conciseness. Toggling the column headers sorts the data in that field in ascending/descending order, and the search bar can be used to isolate
variants of interest such as those which cause missense mutations, or variants existing in promoter regions. Gene isoforms can be filtered in or out
by using the “ISO” or “REF” keyword, respectively. Pedigrees can be quickly viewed by hovering over the Show Pedigrees button above the Cases and
Controls column headers, each of which display the presence and zygosity of the variant in sample individuals, with striped colouring for
heterozygous and solid colouring for homozygous. Presented are the same 4 individuals from Fig. 2, showing compound-heterozygous mutations
in PMM2. Note, the promoter mutation is located within a bidirectional promoter region (i.e. PMM2/TMEM186)

the Physical Location Filter resulted in 99.9% of variants
being filtered out.
The Core Annotation stage accounted for the vast

majority (> 80%) of the exome-sequenced variants being
filtered out in both scenarios, intersecting variants against
the gene map (declared previously) in order to remove
those that were entirely intergenic or (non-regulatory)
intronic. This resulted in approximately 34,700 annotated
variants ready for the subsequent filtering modules.
The subsequent application of the the Physical Link-

age Filter reduced the number of variants to less than
25 in each case file (Fig. 4). The Call Quality Filter with
a threshold of > 20 was applied in accordance to the
filtering criterion in the original study, resulting in a
25.7% reduction. The rarity of the phenotype prompted
a search for variants not very prevalent in the popula-
tion, thus the Alternate Allele Frequency Filter (AAF) was
applied with a threshold of < 1%, leaving no more than
10 variants in each case file. The Autosomal Recessive

Inheritance Filter (AR) then performed identical variant
level matching between the two affected siblings, screened
against homozygous mutations, and followed compound-
heterozygous checking upon all files to produce an over-
lapping AR gene list.
Truncating under this provided just 4 variants in

each file (5 unique in total), and applying the final
Mutation Type Filter to remove any synonymous
mutations resulted in just 2 variants in each file
(3 unique in total) that successfully produced a char-
acteristic compound-heterozygous AR inheritance pat-
tern in PMM2; c.-167G>T promoter variant in all,
c.422G>A missense mutation in three of the cases,
and a c.255+1G>A splice site mutation present in one
case (Fig. 3).

Second case study
A single family displaying a phenotype under an X-linked
dominant inheritance model. Whole-exome sequencing

Fig. 4 The progression of variants filtered at each subsequent annotation or filtering stage for each of the 4 case VCFs under initial positional
filtering. Input and Core Annotation are mandatory steps. Average variant reduction percentages in-between stages are displayed, and average
module runtimes are displayed in seconds
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was performed upon 8 individuals (7 affected, 1 unaf-
fected) with almost 290,000 variants in each VCF file.
As before, the first annotation step filtered out the

majority of variants, with an 89.3% reduction due
to variants being wholly intergenic/intronic. Significant
linkage analysis outlined a narrow region of interest
upon chromosome X, which coupled with the Physical
Location Filter reduced the initial set to just 351 variants
(Additional file 1: Figure S1 (top)). A cascade of filters
targeting novel non-synonymous mutations under an
X-linked dominant scenario (common across affecteds)
resulted in a single causative missense variant.

Third case study
Four siblings were presented from a consanguineous mar-
riage with a nephrotic syndrome segregating in an autoso-
mal recessive fashion. Exome-sequencing was performed
on each sibling with an initial targeted set of approx-
imately 70,000 variants. Core annotation accounted
for a 65.9% reduction in total variants, and a mis-
sense/nonsense Mutation Type Filter reduced the initial
set to under 11,000 variants (Additional file 1: Figure S2
(bottom)). Due to the rarity of phenotype, the AAF mod-
ule was utilized to filter for any variants with a frequency
less than 0.01 within dbSNP (version 142), vastly reducing
the number to a cluster of 878 variants.
Applying the autosomal recessive inheritance module

with same variant filtering resulted in just 15 variants
common across affecteds only, of which 2 were homozy-
gous in different genes. Additional gene expression anno-
tation was prioritized; with one variant conforming to a
standard house-keeping gene expression profile, and the
other being the more likely disease-causing variant due to
it displaying a strong organ specific expression.

Discussion
Depending upon the total input variants as well as the
number and ordering of modules used, an average initial
analysis using any number of modules (excluding alternate
allele filtering) for VCF files containing 300,000 variants
each, will attribute a total of 2 min per VCF.
There are several limiting steps however, with the

largest bottleneck occurring at initial gene annotation
stage, whichmust prime all input variants for downstream
filtering through the use of a gene (or exon) map that is
dependent upon user parameters. Gene maps for a variety
of user parameters already exist as static files in the live
environment, but not all use-cases are covered and a new
gene map must be generated for custom configurations
which can take up to 1 h to retrieve depending on internet
speed and proximity to the closest UCSC MySQL mirror.
In the case of general gene map use-cases, the Adding

Genes annotation step still requires 200 times more pro-
cessing time than most other modules, and was the sole

reason that all annotationmodules were re-written in C++
to benefit from a significant performance increase that
reduced the module’s processing time from an initial time
of 10 min to under 3 min (Table 1).
The rest of the annotation modules are comparatively

much faster, with the functional annotations experiencing
mild latency related to disk read speeds when performing
repeated byte-offset lookup upon FASTA files. The initial
sorting of the variants upon file upload is valuable in this
regard due to the higher tendency of adjacent variants to
share the same disk cluster and reap paging benefits.
Across subsequent pipeline runs, processing is not

repeated for the same data; each module checks whether
an input VCF file has already been processed by the
current pipeline configuration, and repeatedly iterates
through the module ordering until the last processed
input set is reached where it can resume processing.

Case performance
The case analysis completed its run in 10.2 min, with sub-
sequent re-runs upon pre-annotated data completing in
under 1 min.
It is not without doubt that the order of filter-

ing modules is important to the analysis, with the

Table 1 Average single-core runtimes of VCF files containing
50,000 variants passing individually through all filters with timings
for each Annotation, Filtering, and Extended annotation modules

Pipeline stage Module name Runtime (seconds)

Adding genes 125

Annotation Adding function 28.7

Adding Zygosity 0.81

Filtering Physical location filter 1.02

Read depth filter 1.26

Call quality filter 0.93

AAF filter 143

Mutation type filter 1.08

Novel variant filter 1.12

Same gene filter 22.5

Same variant filter 26.1

AD inheritance 0.83

Trait penetrance model AR inheritance 1.22

XD inheritance 0.74

XR inheritance 1.39

Mosaicism 0.94

Extended annotation Isoform context 2.28

Protein context 4.10

Gene expression 145

Trait Penetrance module timings are based on three VCFs consisting of a
parent-offspring trio. Tests were run on a 2GHz dual-core processor with 4 GB RAM
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Physical Location Filter decreasing the runtime of sub-
sequent modules. However this decrease is sub-linear in
complexity as shown in Table 1, which displays average
individual timings for each module against moderately
populated VCF files, showing that runtimes are compara-
ble with the case analysis with the exception of the AAF
module.
The AAFmodule created an noticeable lag of an average

of 7.27 s per file in our study. This is owing to the mod-
ule being subject to some delay in loading pre-computed
dbSNP allele frequencies into memory, and due to mem-
ory and processing constraints, it must incur this cost
for each new chromosome encountered which can create
considerable latency in the earlier (larger) chromosomes.
The analysis escaped this penalty somewhat by only hav-
ing to load a single relatively small chromosome into
memory.

Transparency and deployment
The portability of OVAS grants a significant advantage
over present-day web-based pipelines by keeping all anal-
yses securely in situ, which is greatly beneficial to regions
of the world without consistent or active internet in addi-
tion to researchers handling personal or private data. The
need for accessible offline tools is most present in Africa,
where bioinformatical infrastructure and resources are
limited [4].
Cloud-based pipelines provide processing power with-

out incurring the hardware cost, but the progression
of large whole-genome sequencing data coupled with
restricted internet speeds hinder the uptake of these ser-
vices somewhat as slow transfer speeds ultimately dictate
service viability; a factor that is further confounded by
the net neutrality debate [13]. Cloud-based analyses also
require input data to be uploaded to an external server
in order to perform processing, and data ownership after
upload is not always retained especially in the case where
the work was performed within the cloud [19]. Further,
many cloud-services employ non-transparent proprietary
methods to reduce the number of false-positives and false-
negatives. A common approach is to make use of an
internal database or learning algorithm that favours some
variants over others based on previous analyses (or a sim-
ilar training set) [18], resulting in informative variants
produced by unquantifiable “black-box” means, creating
disparity between the end-user and their analysis.
Transparent filtering methods are likelier to instil

greater confidence in the data with the added benefit of
customization to better tailor a filter to an analysis in the
case of open-source implementations, as with the case of
OVAS.
OVAS is bundled within a lightweight Arch Linux envi-

ronment that contains the pipeline and the web server,
static files, and a minimal desktop environment. This

is in direct contrast to the more familiar virtualization
container platforms such as Docker or Vagrant which pro-
vide snapshots of an existing OS, and then must then
be run off a virtualization layer that uses more hardware
resources during input/output operations than if the OS
was run natively [6]. Where virtualization strategies per-
mit wider avenues of deployment, OVAS is specialized
to be deployed on bootable mediums and is heavily opti-
mized in this respect in terms of storage and runtime effi-
ciencies which allow it to be run more readily upon more
limited hardware by culling any resource-consuming mid-
dleware.
Initial development considered the use of pre-existing

implicit convention frameworks such as Snakemake [12],
but a predilection towards coding-flexibility and process-
ing efficiency (especially with respect to extensive use of
standard system input/ouput streams) meant that a more
unix-driven pipeline framework was required. OVAS uses
an over-arching shell-script framework that adheres to
good-practice dependency and re-entrancy concepts [15],
by managing file dependencies between adjacent modules
and by permitting resumeable workflows such that a VCF
file will not undergo the same annotation module twice if
it has already been processed under the same inputs.

Comparison to other Bioinformatic utilities
Pabinger et al. [18] surveys over 200 open-source bioin-
formatic tools, workflows, pipelines, and annotationmod-
ules.Workflows and pipelines are similar in function, with
the former being a more general-processing framework to
aid in the construction of custom pipelines for different
data types.
Thirteen pipelines and 9 workflows are compared, of

which only 5 cater for VCF files. Most offer command-
line access, andmost perform variant annotation either by
using ANNOVAR [21] for providing a gene and functional
context, or annotating metrics based on SNP or sequence
analysis (see Additional file 1: Table S1). However, OVAS
is the only open-source pipeline that caters for inheri-
tance contexts, and is also the only pipeline with both a
commandline and web-interface that is aimed more are
bioinformaticians than programmers.
A further 32 distinct variant annotation modules are

also compared; 10 which can take VCF files as input
but only 4 of which output annotated VCF files (see
Additional file 1: Table S2). Other annotators either focus
more on upstream genomic formats (FASTA / BAM) or
they produce report summaries of the variants; most likely
to escape the potential pitfall of the same variant inter-
sectingmultiple sites (such as isoforms). OVAS overcomes
this limitation by enclosing multiple sites and their related
annotations as sideways associative arrays, and treating
each site as a single entity when performing filtering later
on in the pipeline.
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Conclusions
The self-contained environment provided by OVAS
allows researchers to tailor all aspects of their analysis and
retain control of their data sets at any phase of process-
ing bymeans of the transparent open-source modules that
comprise the pipeline.
The live environment, paired with the web front-end,

provides the additional advantage of abstracting the end-
user from the underlying platform specifics by streamlin-
ing the input and configuration process, as well as logging
active progress descriptions for the current stage of pro-
cessing, and lastly providing a malleable final report upon
all remaining variants discovered complete with dynamic
filtering capabilities. The entirety of all uploaded variants
are processed first at the gene annotation stage, placing
significant strain at the initial stage of the pipeline that is
only managed through the use of employing C++ bina-
ries to overcome the performance bottleneck that would
otherwise exist with Python/Bash scripts.
The annotation step is crucial, especially for whole-

genome sequence data where the vast majority of the
variants would be deemed wholly intergenic and would be
filtered out as uninformative to the analysis. More com-
mon exome-sequencing data typically observe less of a
reduction at a much faster processing rate due to the
smaller number of total variants, but at the impediment
of missing regulatory elements due to lack of coverage.
Modules downstream of the annotation stage run trivially,
and due to the pipeline’s resume feature which prevents
OVAS from processing the same data twice, many subse-
quent analyses with different module configurations can
be run in quick succession after the initial annotation step
is complete.
The main inheritance modelling feature provides a

unique type of filtering that is not present in any other
pipeline, and has a very significant impact in analyses with
trios.
OVAS is future-secure due to the inclusion of the

background scripts that generated the static data being
packaged with the live environment. Updates to the
human genome reference, variant databases, and FASTA
sequences can be retrieved on demand for platforms with
active internet connections. Changes will preserve across
successive boots for non-volatile storage mediums such as
USB sticks, ideal in deployment scenarios with infrequent
or absent internet access. The annotation components will
additionally be merged into the Bioconda [7] bioinfor-
matic software distribution for the benefit of the wider
bioinformatic community.
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