
Epigenome-based cancer risk prediction: rationale, opportunities and challenges 

 

Author(s): Martin Widschwendter*,#, Allison Jones, Iona Evans, Daniel Reisel, Joakim 

Dillner, Karin Sundstrom, Ewout W. Steyerberg, Yvonne Vergouwe, Odette Wegwarth, Felix 

G. Rebitschek, Uwe Siebert, Gaby Sroczynski, Inez D. de Beaufort, Ineke Bolt, David Cibula, 

Michal Zikan, Line Bjørge, Nicoletta Colombo, Nadia Harbeck, Frank Dudbridge, Anne-Marie 

Tasse; Bartha M. Knoppers, Yann Joly, Andrew E. Teschendorff, Nora Pashayan.  

 

Author affiliations: 

Department of Women’s Cancer, Institute for Women’s Health, University College London, 

London, United Kingdom (MW, AJ, IE, DR, AET). 

Department of Applied Health Research, Institute of Epidemiology and Healthcare, University 

College London, United Kingdom (NP). 

Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (JD, KS). 

Karolinska University Laboratory, Karolinska University Hospital (JD). 

Center for Medical Decision Sciences, Department of Public Health, Erasmus MC, 

Rotterdam, The Netherlands (ES, YV). 

Department of Medical Statistics, LUMC, Leiden, The Netherlands (ES). 

Max Planck Institute for Human Development, Harding Center for Risk Literacy, Berlin, 

Germany (OW, FR). 

Institute of Public Health, Medical Decision Making and Health Technology Assessment, 

Department of Public Health, Health Services Research and HTA, UMIT-University for Health 

Sciences, Medical Informatics and Technology, Hall in Tirol, Austria (US, GS). 

Oncotyrol: Center for Personalized Medicine, Innsbruck, Austria (GS). 

Department of Medical Ethics and Philosophy of Medicine, Erasmus Medical Center, 

Rotterdam, The Netherlands (IDdB, IB). 

Department of Gynaecological Oncology, Charles University - First Faculty of Medicine, 

Prague, Czech Republic (DC, MZ). 

Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway 

and Centre for Cancer Biomarkers, Department of Clinical Science and, University of Bergen, 

Bergen (LB). 

European Institute of Oncology and University Milan-Bicocca, Milan, Italy (NC) 

Breast Center, Department of Gynaecology and Obstetrics, Ludwig-Maximilians Universität, 

University of Munich, Munich, Germany (NH). 

Department of Non-communicable Disease Epidemiology, London School of Hygiene and 

Tropical Medicine, London, United Kingdom (FD). 

Department of Health Sciences, University of Leicester, Leicester, United Kingdom (FD). 



Centre of Genomics and Policy, McGill University, Montreal, Canada (BMK, YJ). 

Public Population Project in Genomics and Society, McGill University and Genome Quebec 

Innovation Centre, Montreal, Canada (AMT). 

 

 

*on behalf of the FORECEE(4C) Consortium (www.forecee.eu). 

#Correspondence to MW (M.Widschwendter@ucl.ac.uk). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.forecee.eu/
mailto:M.Widschwendter@ucl.ac.uk


ABSTRACT (148 words) 

The incidence of cancer is continuing to rise and risk-tailored early diagnostic or primary 

prevention strategies are urgently required. Risk predictive tests should (i) integrate both 

genetic and non-genetic factors captured by an omics-technology that is biologically stable 

and technically reproducible, (ii) derive a score from easily accessible biological samples that 

act as surrogate for the organ in question and (iii) allow the efficacy of risk reducing measures 

to be monitored. Substantial evidence has accumulated suggesting that the epigenome and 

in particular DNA methylation (DNAme) based tests may meet these requirements. However, 

developing and implementing DNAme based risk predictive tests pose considerable 

challenges. Cell-type specificity of DNAme and cell-type heterogeneity in easily accessible 

surrogate cells requires novel methods to account for confounding issues. Engagement of 

the scientific community with healthcare professionals, policy makers and the public is 

required to address the organisational, ethical, legal, social and economic challenges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TEXT (6316 words) 

 

Introduction 

Cancer is a leading cause of mortality worldwide, accounting for 14.1 million new cases and 

8.2 million deaths in 20121. It has been estimated that global cancer burden will increase 

yearly to 20.3 million new cases and 13.2 million deaths by 2030 2. Environmental, 

behavioural and life style risk factors 3, genetic predisposition, and acquisition of random 

mutations can lead to cancer development 3-5. Prevention and early detection remain the key 

interventions to reduce global cancer burden.  

 

Almost all cancers occur against a background of individual risk factors including 

environmental, lifestyle, reproductive and heritable genetic factors. High penetrance genetic 

mutations are rare in the population and account for only a small proportion of cases. 

Nevertheless, most common cancers have a heritable component spread across thousands 

of common germline variants each conferring small risk increments6. Genome-wide 

association studies have revealed common variants that explain a small fraction of heritability 

(Table 1). The remainder of the heritability may eventually be found through ever larger 

association studies, but more immediately it may be effectuated through -omics intermediates 

(e.g. epigenomics) that have stronger, more direct effects on cancer occurrence 7. 

 

Considering the heterogeneity of risk in the population, tailoring preventive and early 

detection interventions to an individual’s risk level could improve the efficacy of population-

based programmes in prevention and early detection of cancer 8. In the prostate cancer 

setting, for example, targeting screening to men at higher than population average risk could 

reduce the proportion of men likely to be over-diagnosed and, consequently, over-treated 9,10. 

 

Currently, several biomarker tests and complementary statistical models have been 

developed to predict cancer risk (Table 2). With notable exceptions, such as a model based 

on HPV-DNA testing to predict a precursor of cervical cancer (CIN2+)11, most risk models 

include only epidemiological factors. The discriminative ability of these models in 

separating low from high risk subjects is modest, as expressed by the area under the 

Receiver Operating Characteristic curve (ROC AUC, a measure of discriminatory accuracy 

of a model and the probability that a test correctly identifies an individual who will develop 

the disease from a pair of whom one will be affected and one will remain unaffected; AUC 

values range from 0.5 which is a total lack of discrimination to 1.0 which is a perfect 

discrimination). In addition, current models do not typically differentiate in terms of 



prognosis, which is vital for tailored screening and primary prevention (i.e. early detection 

or prevention of those cancers which would otherwise lead to death). 

 

A predictive test should (i) integrate genetic and non-genetic factors captured by an 

omics-technology that is both biologically stable and technically reproducible (ii) derive a 

risk prediction score, using easily accessible tissues, that is relevant for cancer 

development or is able to capture risk-inducing factors and ideally (iii) has the added 

potential of enabling monitoring of the efficacy of potential risk reducing measures. 

The basis of this strategy is drawn from the discipline of cardiovascular medicine. Risk 

prediction and tailored chemoprevention for non-symptomatic individuals have been 

fundamental in the dramatic reduction in mortality from myocardial infarction and stroke 12. 

The cardiovascular community has accepted the principle that freedom from symptoms 

does not equate to a guarantee of health and the use of ‘surrogate end points’ was central 

to their success. Both blood pressure and cholesterol concentration can (i) be easily 

assessed by non-invasive measures, (ii) act as surrogates for an individual’s interaction 

with environmental factors (i.e. stress, nutrition, smoking, absence of physical exercise, 

etc.) and (iii) are key components of multivariable risk algorithms13. It is also well known 

that phenotypic variability between different populations takes place both at the genetic and 

epigenetic levels, indicating that epigenetic modification substantially contributes to natural 

human variation 14. Correspondingly, we propose a novel population-based screening 

methodology that relies upon epigenetics as a surrogate marker for risk prediction.  

We will discuss the potential of DNA methylation (DNAme) markers to predict the risk of 

developing specific cancers and highlight the importance of Epigenome-Wide Association 

Studies (EWAS). Since epigenetic changes are tissue specific one of the biggest challenges 

is to identify easily accessible surrogate cells and develop algorithms to assess cell 

heterogeneity. In addition, we will address the legal, ethical and economic challenges along 

with other aspects associated with the implementation of epigenetic tests into the clinical and 

public health arena.  

 

Epigenetics in cancer development: Epigenetic traits can be mitotically and also 

meiotically (i.e. transgenerationally) inherited, but unlike genetics they are not conferred by 

the sequence of bases defining the genetic code. Epigenetics is rather defined by a collective 

of dynamic processes that fine tune and regulate gene expression. As such epigenetics can 

be considered the ‘editor’ of the genome, affording our cells their identity and providing 

genomic plasticity, particularly at key time points in early development15, in the maintenance 

of adult select tissues and in response to lifetime environmental exposures. Three interacting 

components – DNA methylation (DNAme), histone modification and non-coding RNA – are 



integral to epigenetic regulation and function in a tissue specific manner. Methylation of the 

C5 position of cytosines within the CpG dinucleotide (DNAme) context is technically and 

biologically the most stable component of the epigenome and is modified both by inherent 

genetic components as well as all non-heritable factors which shape living organisms16. 

Nevertheless CpGs represent at best ~2% of the spatial genome and are notably 

concentrated within short stretches of DNA in gene promoters known as ‘CpG islands’. In 

cancer tissue hypermethylation of CpG islands against a background of global 

hypomethylation, both associated with skewed genetic expression, are hallmarks of 

epigenetic modulation witnessed across a multitude of cancer types.  

Over recent years it has become evident that epigenetic mis-programming constitutes a core 

component of cancer initiation and progression. A key involvement of epigenetic de-

regulation in cancer development has been the observation that DNA regions, that under 

normal conditions are specifically marked and transiently silenced by Polycomb-Group (PCG) 

proteins in stem cells, become methylated and completely silenced in cancer17-19. This led to 

the proposal of an ‘epigenetic stem cell model’ of cancer whereby cells acquiring DNA 

methylation at (Polycomb-Group Target (PCGT) genes become erroneously de-differentiated 

and subsequently prone to somatic mutations. Such targeted DNAme can be mediated by a 

specific non-coding RNA (e.g. HOTAIR20-22) that interacts with Polycomb Repressive 

Complex 2 (PRC2). HOTAIR links the PRC2 component EZH2 (Enhancer of zeste homolog 

2), a histone-lysine N-methyltransferase enzyme, to histone H3 in order to catalyse the 

addition of methyl groups to lysine 27 (H3K27) which eventually leads to DNAme in the 

corresponding region23-25 (Figure 1). There is ample proof demonstrating that PCGT 

methylation is a prerequisite for cells to transform into cancer cells23,24,26-28 and that PCGT 

methylation seems to accumulate in stem cells as a function of cell divisions which is strongly 

associated with cancer risk 29-31. The proportion to which epigenetic and genetic alterations 

contribute to cancer formation has not been assessed, but it has become clear that only stem 

cells (which are epigenetically determined) have the capacity to survive oncogene-induced 

substantial DNA damage32 (Figure 2A). Recent research demonstrates that epigenetic 

contribution to cancer progression is far more complex than originally appreciated. Studies 

have shown that PCGT methylation in cells other than those from which the cancer originates 

can influence cancer development. For example, HAND2, a gene located downstream of the 

progesterone pathway, is highly expressed during the luteal phase in the endometrial stroma 

and affects the attenuation of oestrogen-mediated paracrine proliferation signals from the 

stroma that target endometrial epithelial cells33. HAND2 methylation and silencing in the 

normal endometrial stroma leads to functional oestrogen dominance that results in complex 

atypical hyperplasia of the endometrium34 (Figure 2B) of which approximately 50% progress 

to a full blown cancer35. Observational evidence in other cancer entities support the view that 

https://en.wikipedia.org/wiki/Histone_methyltransferase
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Histone_H3
https://en.wikipedia.org/wiki/Methyl_groups
https://en.wikipedia.org/wiki/Lysine


epigenetic changes in the morphological normal stroma contribute to cancer initiation and 

progression36-40. Although not yet experimentally proven it is tempting to speculate that 

epigenetic alterations in cell-nonautonomous contributors to cancer development (e.g. 

immune cells and organs which provide endocrine signals) play important roles. Early 

evidence indicating that PCGT methylation (i.e. HOX gene family methylation in normal 

endometrium) is strongly associated with the presence of a cancer in an anatomically distant 

organ (i.e. ovarian cancer)41 provided preliminary proof of concept suggesting that DNAme 

analyses in more easily accessible cells could be used to predict the risk of developing 

cancer. 

Besides methylation at PCGT, there are a variety of other examples describing how 

epigenetic alterations contribute to cancer development. For instance, a large number of trait-

associated genetic variants have been shown to affect DNAme levels at different CpG sites 

including binding sites of a variety of transcription factors (such as NFKB1 and CTCF) which 

are known to be involved in cancer formation 7. The importance of this mechanism is further 

evidenced by the fact that those CpG sites which demonstrate aberrant DNAme in colorectal 

cancer are substantially enriched for those genetic variants which are discovered by genome-

wide association studies comparing individuals with and without colorectal cancer 42. The fact 

that methylated cytosines are substantially more prone to undergo spontaneous deamination 

43 and mutations at CpG sites are frequently observed in cancer 44,45 provides another 

example of how aberrant DNAme contributes to cancer development. 

 

 

Effects of cancer-predisposing factors on the epigenome: 

The epigenome, specifically DNAme, is shaped by both heritable and non-heritable factors 

which are also known to have a substantial impact on cancer development (Figure 1) and 

therefore hold great promise as an objective surrogate for these factors. 

 

Genome-Epigenome interaction: 

The mechanisms by which inherited common sequence variations lead to cancer are largely 

uncharted, but may become manifest through their impact on the epigenome in three different 

ways: 

o Cell autonomous impact - genetic variants impact directly on the epigenome: Allele-

specific methylation may be associated with methylation quantitative trait loci (meQTL), 

single nucleotide polymorphisms (SNPs) that associate with the methylation status of 

specific sites or entire regions7,46-48. To date, numerous meQTL have been discovered 

utilising novel tools49.  While efforts to relate meQTL to disease processes are still at 

an early stage, DNA methylation represents one plausible downstream effect of SNPs 



on disease that may be directly measured to achieve greater accuracy in risk 

modelling. This is supported by the finding that regions at previously reported and, as-

yet, unidentified cancer risk polymorphisms show aberrant DNA methylation 50. 

o Cell non-autonomous impact: High-penetrance germline mutations (e.g. BRCA 

mutations) modulate endocrine factors51-56 (e.g. higher oestrogen and progesterone 

production in the ovary) which then impact specifically on the epigenome of cells 

receptive to these signals, in the case of oestrogen, tubal or breast epithelial cells57. 

These changes are typically tissue type-dependent. 

o “Genetic environmental filter” impact: The activity of enzymes involved in the metabolism 

of exogenous substances is largely determined by inherited genetic polymorphisms and 

will determine, in part, the effect of environmental exposures on the epigenetic makeup 

as evidenced by, for example, CYP2A6 genotype and nicotine/cotinine clearances58 and 

the linear relationship between serum cotinine, a major metabolite of nicotine, and DNA 

methylation59. 

 

Transgenerational inheritance: 

The phenomenon of transmitting information from one generation to the next affecting the 

traits of offspring without altering the germline sequence of the nucleotides (i.e. 

epigenetically) has been repeatedly demonstrated60,61. For example, access to food 62 and 

exposure to smoking63 early in life have repeatedly been demonstrated to impact on future 

generation’s phenotypes. There is substantial evidence that DNAme of the POMC gene is 

transmitted via the paternal germline leading to an increased risk of developing obesity later 

in life64 and that parental diet can affect cholesterol and lipid metabolism in offsprings65. It is 

well established that body mass index (BMI) is strongly associated with human cancer risk66 

and obesity itself also seems to trigger epigenetic alterations 67.  

 

In-utero environment: 

Many women who were exposed in utero to diethylstilbestrol (DES), a synthetic non-steroidal 

oestrogen provided to their mothers, have a substantially elevated risk of cervical 

intraepithelial neoplasia, breast cancer and clear cell vaginal cancer decades later 68. DES 

upregulates HOTAIR 69 and leads to hypermethylation of HOXA10 70, a key gene involved in 

female genital tract development, in DES-exposed offspring. Together these findings suggest 

that DES’ carcinogenic potential is mediated via epigenetic mechanisms. Effects of foetal 

exposure to other endocrine-disrupting chemicals including Bisphenol A have demonstrated 

carcinogenic effects to varying degrees71 and are at least, in part, epigenetically transmitted72. 

 

Obesity: 



Obesity is thought to have a substantial and direct impact on the epigenome67. The epigenetic 

effects are reflected in a program for shared drivers for cancer progression in organs such 

as the endometrium73, liver74, breast75 and colon76, the very same organs at increased risk of 

developing cancer in obese individuals77. Obesity, is likely to cause chronic low-grade 

inflammation78, and potentially mediates its impact on DNA methylation via oxidative damage 

induced formation and re-localisation of epigenetic silencing complexes to stem cell PCGTs 

79. These processes are likely to differ among obese individuals with identical BMIs in 

accordance with their innate environmental response67. Habitual changes that lead to a 

reduction of obesity (i.e. caloric restriction) substantially slows the epigenetic clock80,81 with a 

resultant decrease in cancer risk82-84.  

 

Smoking: 

Exposure to cigarette smoke triggers striking epigenetic changes. Hypomethylation of genes 

involved in toxin response pathways such as AHRR, CYP1A1, and CYP1B185-89 has been 

observed across different tissues though most of the evidence comes from blood and buccal 

tissue. Since hypomethylation of these genes is not consistently observed in cancer85 these 

epigenetic changes may not be causally involved in cancer progression. Smoking-triggered 

hypermethylation of genes bivalently marked in human stem cells (i.e. PCGT genes) is 

predominantly observed in epithelial (e.g. buccal) cells85. A smoking index constructed using 

these hypermethylated sites is highly efficient in discriminating between normal and 

cancerous tissues85. 

 

Microbiome and virome impact on the host epigenome: 

Infections with certain bacteria or viruses have been identified as strong risk factors for 

specific human cancers90 and alterations in microbiota may contribute to human 

carcinogenesis91 . Mono- or polymicrobial factors can cause changes in the human host 

mediated through genetics, epithelial injury, immune system function and/or inflammation 

91. Microbiota have also been shown to affect oestrogen metabolism92. The microbiome 

appears to affect the epigenome through DNAme dependent pathways in the host93. For 

example, gut bacteria can provide epigenetically active metabolites essential for DNAme 

such as folate, butyrate and acetate, as well as enzymes and cofactors for epigenetic 

processes 92. 

 

Chronic inflammation: 

Some cancers develop due to chronic inflammatory insults94. Carcinogenesis associated with 

inflammatory bowel disease, reflux oesophagitis, pancreatitis or pelvic inflammatory disease 

converge at the level of the transcription factors nuclear factor-κB (NF-κB) and signal 



transducer and activator of transcription 3 (STAT3) which lead to epigenetic reprogramming 

in epithelial cells of the affected organ57,95-97. Again, the majority of genes affected by 

inflammation-mediated reprogramming are PCGT genes 98,99. 

 

Hormones and DNAme: 

Absolute levels of hormones, dynamics over time (e.g. throughout the menstrual cycle) as 

well as relative levels across various hormones (e.g. oestrogen/progesterone balance) 

contribute to the cancer risk of hormone sensitive organs52,53,100-103. Steroid hormones are key 

regulators of genes involved in epigenetic programming (AID104, DNMTs, EZH2, etc.). 

Dramatic changes in the systemic hormonal environment – as for example during the 

menopause – lead to substantial epigenetic changes, which are in part, cell type specific105. 

In addition, proxy indicators for endogenous prenatal testosterone exposure (i.e. the 

anogenital distance 106 or the ratio of digit length 107) are associated with prostate cancer risk, 

consistent with the view that androgens also leave an epigenetic imprint which, after several 

decades, lead to a specific phenotype.  

 

Age: 

Age contributes to the cancer risk of a given tissue/organ in two ways: a cell-intrinsic, tissue-

dependent, way that increases with the number of stem-cell divisions, and a cell-extrinsic 

way that increases in line with the cumulative exposure to environmental risk factors (e.g. 

smoking, obesity mediated inflammation, viral infections) 3,108-110. Both components increase 

with chronological age, and are intricately linked; cumulative exposure to cancer risk factors 

is thought to accelerate the stem-cell division rate of tissues 108. In addition, DNA methylomes 

at the two extremes of the human lifespan (i.e. new-borns and centenarians) are distinct in 

the same subset of cells 111. Like somatic mutations and copy number variations (CNVs), 

DNAme alterations gradually accumulate with chronological age 112-114 and with exposure to 

cancer risk factors independently of age 115. These factors are thought to reflect cell-intrinsic 

(e.g. stem-cell division) and cell-extrinsic (e.g. metabolically induced) factors contributing to 

the molecular damage of tissues. Thus, specific DNAme changes in the tissue of origin (or 

suitable surrogates), may be informative of cancer risk, as demonstrated in the context of 

cervical cancer116. Supporting this further, an epigenetic mitotic-like clock (“EpiTOC”) 29, 

which correlates with the cumulative number of stem-cell divisions in the tissue of origin, is 

universally accelerated in cancer tissues and pre-neoplastic lesions, again offering promise 

for cancer-risk prediction 29,116. In contrast, Horvath’s epigenetic clock, a tissue-independent 

non-mitotic clock which measures chronological age 117 29, appears to be less informative 

with respect to cancer risk 29,115. 

 



Current evidence from EWAS:  

There is substantial evidence for the existence of epigenetic field defects i.e. aberrant 

epigenetic signatures in normal tissue adjacent to the cancer57,118-121. Within EWAS a 

genome-wide set of quantifiable epigenetic marks (i.e. DNA methylation) in different 

individuals will be analysed with the aim of deriving associations between epigenetic variation 

and a particular identifiable phenotype/trait. Analogous to the genome-wide association 

studies (GWAS)122 we propose that a minimum of 100,000 CpGs per individual are analysed 

in order to apply the term “epigenome-wide”. When compared with GWAS, several additional 

challenges exist. Notwithstanding the correct choice of easy to access surrogate tissue, the 

modifiable character of epigenetic markers creates difficulties in discriminating between 

cause and consequence and must therefore be taken into account when considering the 

timing of the sample collection in relation to the manifestation of the disease. Unlike GWAS 

where variants at single nucleotide positions are associated with a specific trait, the basis of 

EWAS is to quantify methylation at CpGs across the genome in a given sample and rank 

these sites according to their different methylation levels between cases and controls. To 

date, both EWAS and studies looking at a predefined sets of CpGs have been performed.  

Two principal categories of epigenetic risk predictors exist. 

 Category 1 – DNAme markers of “extrinsic risk exposure”: These are DNAme markers 

that reflect exposure to specific exogenous carcinogens. The magnitude of the impact on 

DNAme reflects the individual response and acts as a surrogate marker for the 

development of cancer in an individual. For example, there is dose-dependency of 

methylation levels of CpGs in the AHRR or F2RL3 gene with smoking pack-years85,123 

which is a quantitative measure of active lifetime tobacco exposure. Demethylation at the 

AHRR or F2RL3 CpG site (1st versus 4th quartile) was associated with a 16- and 11- fold 

increased risk for lung cancer respectively even after adjusting for a variety of factors 

including current smoking status and duration124,125. These findings have been validated by 

independent studies based on different cohorts126. Importantly, the top ten smoking–

associated CpGs in blood surpassed the performance of the top ten lung-cancer-related 

CpGs in blood with regard to predicting lung cancer mortality127. So far there is no clear 

evidence that aberrant methylation of AHRR observed in the surrogate tissue (i.e. blood or 

buccal cells) of smokers who are predisposed to lung cancer development actually drives 

cancer development in the tissue at risk (i.e. lung epithelial cells); functional work on AHRR 

methylation in lung cell models will need to be carried out. 

A recent EWAS demonstrated that BMI is associated with substantial DNAme changes in 

blood samples and that these associations are mainly a consequence of obesity, not the 

cause of it67. Obese individuals in the top quartile of the methylation risk score had a 10-

fold increased risk of developing type 2 diabetes in the future compared with those in the 

https://en.wikipedia.org/wiki/DNA_methylation


lowest quartile 67. The observation that genes involved in oestrogen response (e.g. in p53 

and NF-kB pathways) were enriched amongst the obesity-associated genes implies that 

an obesity-associated DNAme signature is capable of predicting the incidence of obesity-

associated cancers, irrespective of the actual individual BMI at the time of assessment. 

Epigenetic age acceleration (i.e. the deviation of epigenetic age from the actual 

chronological age) assessed in peripheral blood was associated with cancer incidence82 

and mortality82,128 in general and, specifically, with postmenopausal breast84 or lung83 

cancer susceptibility. 

 

 Category 2 - DNAme markers of “intrinsic risk”: Most known DNAme markers predicting 

cancer risk have been discovered based on case control or population-based nested case 

control settings and have not as yet been linked to extrinsic risk factors.  

More than a decade ago, anecdotal reports129,130 provided initial evidence that DNA 

methylation of the mismatch repair gene MLH1 in normal cells is present in individuals with 

multiple cancers. Early reports indicated that loss of imprinting of IGF2 in lymphocytes is 

predictive of colorectal cancer risk131 but studies using DNAme in peripheral blood predating 

diagnosis could not confirm these findings132. 

The first large study (sample size larger than 1000 cases and controls) provided a direct link 

between DNAme of the oestrogen-receptor interacting ZNF217 gene, serum oestrogen 

receptor alpha bioactivity and breast cancer risk133. These data and the majority of data 

referenced in this section (apart from those referenced in Table 3) have been generated 

based on the analysis of biological material (i.e. surrogate tissue ) derived from prevalent (i.e. 

already existing) cases; this comes with several challenges as outlined in the following 

example: The first study analysing a larger number of CpGs - approximately 25,000 CpGs 

(i.e. Illumina’s 27k methylation array) - was conducted in blood from ovarian cancer patients 

and non-cancer control women134 and concluded that the timing of sample collection for 

DNAme analysis and adjustment for sample cell-type composition is essential for valid 

interpretation of results (see chapter “Tissue specificity of the epigenome” for more details). 

Another study using the same assay derived a DNAme signature from the peripheral blood 

of BRCA1 mutation carriers, which was significantly enriched for PCGT hypermethylation and 

predicted breast cancer incidence and death independently of family history or other known 

risk factors135. 

To date, only a very limited number of studies have acknowledged the tissue specificity of 

the DNA methylome. The majority of ovarian cancers are derived from cells arising from the 

Fallopian Tube, the latter of which shares the same developmental origin as the 

endometrium. DNAme of HOXA9, a gene essential for differentiation of the Fallopian Tube, 



is substantially increased in the normal endometrium of ovarian cancer patients, but not in 

the adjacent myometrium, the non-epithelial component of the uterus41. 

In the context of cervical cancer screening, the uterine cervix is one of the very few organs 

that allows for the assessment of normal cells years in advance of the onset of any 

cytological/histological changes. A DNAme signature derived from cytological normal 

samples which predate a diagnosis of cervical intraepithelial neoplasia grade 2 or 3 (CIN2+) 

by three years116 discriminated cytologically normal cells from CIN2+ smears with a ROC 

AUC of 0.69-0.87 and a normal uterine cervix from an invasive cervical cancer with a AUC of 

0.94136. 

Numerous additional studies (all carried out in whole blood samples or a subset of blood 

cells) have found evidence of different global137 or gene specific DNAme in samples collected 

from testicular137, ovarian138,139, colorectal140, breast141,142, head and neck143, melanoma144,145 

and renal146 cancer patients and cancer-free controls. 

An increasing number of studies have identified and/or validated DNAme markers with the 

help of population based cohorts predicting the development of breast147-150, bladder151,152 or 

hepatocellular cancer153,154. 

 

Cancer prevention:  

Unlike genetic markers, epigenetic markers are modifiable and not only potentially indicate 

the risk of developing a certain cancer disease but, importantly, can also be used in 

monitoring the response to preventive measures. A study of 1,092 healthy female volunteers 

showed that the methylation rate of CpGs, related to colorectal cancer, show a reduced rate 

of methylation in individuals exposed to cancer-preventive drugs such as acetylsalicylic acid 

or hormone replacement therapy, and an increased rate of methylation in smokers and in 

women with high BMI155. The observation that time since cessation of smoking is reflected in 

the epigenome of easily accessible organs not primarily at risk for smoke-induced 

cancers85,156,157 indicates that it may be feasible to monitor preventive strategies for 

inaccessible organs by means of DNAme in easy to access samples. Besides smoking, 

DNAme changes associated with obesity have also been shown to be similar between 

adipose and blood cells 67, further supporting this principle. Ongoing work will determine 

which easy to access surrogate tissue best reflects the epigenetic state in those organs at 

risk for which epigenetic field defects are likely drivers of carcinogenesis57,118 – this is a long-

term requirement for effectively monitoring cancer-preventive measures. 

 

Tissue specificity of the epigenome: 

Although the specific tissue from which the cancer arises would be the ideal target for the 

retrieval of cells with an epigenetic risk signature, apart from a few exceptions (e.g. cervical 



smear for cervical cancer), it is not typically feasible to access the tissue at risk directly as 

this would require invasive procedures (e.g. bronchial lavage, biopsies of the breast, liver, 

pancreas, prostate, colon or Fallopian Tube). We therefore propose that surrogate tissue – 

from blood (i.e. normal blood cells), buccal and cervical cells (and possibly cells from urine) 

- to be used for this purpose. To date, the vast majority of analyses have been undertaken in 

blood cells as these samples are readily available in various cohorts (Table 3).  

The fact that the tissues used in EWAS represent complex mixtures of many underlying cell-

types whereas DNA methylation is cell-type specific 158,159, poses a significant challenge to 

the analysis and interpretation of EWAS data 160, not encountered in GWAS. For instance, 

many cancer EWAS conducted in whole blood and peripheral blood have demonstrated that 

most DNAme changes between cancer cases and controls can be attributed to shifts in the 

granulocyte/monocyte to lymphocyte proportions, reflecting a specific and major immune-

response to the presence of cancer 143,152,161,162. In women with primary ovarian cancer or 

residual disease after chemotherapy, such shifts in DNAme provided highly accurate 

predictions of cancer-status (AUC>0.8) 162. However, when assessing ovarian cancer 

patients who had undergone chemotherapy and who did not have evidence of residual 

disease (ovarian cancer serum marker CA125 < 35 U/mL), DNAme profiles were largely 

indistinguishable from age-matched controls 162. While DNAme changes associated with 

such shifts in cell-type composition could be useful for general diagnostic purposes, they do 

not represent epigenetic alterations which may potentially drive carcinogenesis. Identifying 

the latter requires the inference of differentially methylated CpGs (DMCs) that are not driven 

by underlying changes in cell-type composition. To help address this challenge, efforts such 

as the IHEC 163 and BLUEPRINT 164 are underway generating reference DNAme profiles for 

all major human cell-types. These reference DNAme profiles, although derived from specific 

individuals (and thus potentially confounded by factors such as genotype and age), can be 

used in the deconvolution of bulk-tissue DNAme profiles 165, providing reasonably accurate 

estimates of underlying cell-type proportions in independent samples, as confirmed using 

matched FACS/MACS-based cell count data 166 (Figure 3). These cell-type fraction estimates 

can subsequently be used to adjust the DNAme data, allowing identification of DMCs that are 

not driven by changes in cell-type composition 165,166. Using this approach, a recent meta-

analysis of solid cancer EWAS conducted in blood, further confirmed that very few of the 

DMCs between cancers and controls remain after adjustment for cell-type composition 151. 

Although these residual DMCs were found to map to cancer-related pathways 151, their 

interpretation and relevance for the corresponding cancer-type is still unclear. It is likely that 

further progress will require the identification of DNAme changes in either the cell of origin of 

the cancer, or in surrogate tissue/cells that more closely represent the cell of origin in 

epithelial cancers. Ongoing work will demonstrate whether a combination of the epigenomes 



in several surrogate tissues [i.e. blood (capturing the contribution from the stroma/immune-

system), cervical and buccal cells (capturing the hormone dependent and independent risk 

factors, respectively)] might provide the best accuracy. 

 

Cell-free DNA in serum or plasma is currently used to monitor the efficacy of cancer treatment 

and identify therapy-resistant cancer clones. In this context, somatic genetic or epigenetic 

alterations which have accumulated in the cancer and are released into the liquid phase are 

analysed (i.e. “liquid biopsy”). This, by definition, is not useful for cancer-risk prediction as 

discussed in the context of this review. However, having said this, there is now some 

preliminary evidence that organ-specific DNAme patterns can be detected in cancer-free 

individuals 167,168. Whether this cell-free DNA in plasma/serum can be used to assess future 

cancer-risk for specific organs needs to be determined once sufficiently large population-

based cell-free DNA repositories (which are not massively contaminated with DNA released 

from blood cells) have become available and their donors followed up for a sufficient amount 

of time in order to identify those individuals who eventually developed a cancer. 

 

In summary, tissue specificity is a hallmark of the epigenome. The vast majority of EWAS 

studies have been performed based on peripheral blood cells. To date, not one study has 

analysed several surrogate tissues (i.e. blood cells and buccal) from the same individuals at 

the same time in order assess which surrogate tissue is best suited to predict future risk for 

a specific cancer entity. Thus far, it is also unclear whether epigenetic profiles in blood cells 

(i.e. the vast majority of EWAS were based on blood epigenomes) are (i) a surrogate of the 

epigenome in the tissue at risk or (ii) purely an indication of the epigenetic status of immune-

cells (and thereby reflective of their anti-neoplastic capacity) or a combination of (i) and (ii).  

 

Translational Challenges:  

The development of epigenome-based risk predictors in surrogate tissues face several 

significant challenges.  

 

Choice of DNAme analysis method: 

Box 1 describes the potential tools for discovering DNAme risk predictors and for clinical 

application of these markers. The choice of tool will depend on the size and costs of the study, 

the heterogeneity of the samples as well as whether quantitative assessment of single CpG 

methylation or DNAme patterns in a specific region is required. 

 

Choice of surrogate tissue: 



Although recent studies have indicated that cancer risk prediction may be possible using 

DNAme profiles obtained in blood 83,169, prediction accuracies are low, and require further 

validation and have an unclear mechanistic basis. In the context of women-specific cancers, 

cervical smears, representing hormone-responsive tissue, are a more promising alternative. 

Cervical smears may serve to identify relevant epigenetic cancer-risk biomarkers not only for 

cervical cancers but also for endometrial and ovarian (due to their common embryological 

origin) as well as breast (hormonally-triggered) cancers in prospective case/control settings 

nested within larger prospective clinical trials. Buccal cells (epithelial cells directly exposed 

to smoke-toxins) may be the best surrogate tissue for predicting lung cancer risk and a urine 

sample containing epithelial cells from the urethra (the prostate’s embryological origin) might 

be best suited for predicting prostate cancer risk.  

 

Analytical challenges 

The identification of DNAme alterations that may indicate cancer-risk is particularly 

challenging since the relevant comparison is between normal cells at risk and normal cells 

that are not. Such normal to normal tissue comparison is statistically challenging 116 owing to 

(i) technical confounders, (ii) biological confounders (e.g. cell-type heterogeneity), and (iii) 

the likely stochastic nature of DNAme changes preceding carcinogenesis.  

Although technical confounders (e.g. batch effects) are frequently observed in -omic datasets 

170, there are also many statistical algorithms that can successfully be used to adjust data for 

these confounders 171 172,173. Cervical smears, comprising various types of epithelial and 

immune cells, exhibit substantial variation in immune-cell fractions between unrelated 

women, making adjustment vital. Statistical methods, specifically designed for cell-type 

composition, have also been developed 165,174 and allow for the identification of DMCs not 

driven by changes in tissue composition (Figure 3). 

In the context of cancer risk prediction, an additional statistical challenge arises because 

differences between normal cells and normal cells at risk of neoplastic transformation are 

expected to be infrequent and stochastic, which means that standard algorithms based on 

selecting DMCs may fail 116. While cancer cells exhibit widespread changes in DNAme which 

are identifiable using DMC approaches and account for most of the variation in the data 17,118, 

precursor cancer cells exhibit a much more heterogeneous and stochastic pattern 116,175. This 

is possibly due to normal cells not having undergone neoplastic transformation and 

consequently not being selected for. A recent proof-of-principle study, conducted in the 

context of cervical cancer, confirmed the aforementioned116; it demonstrated that the DNAme 

patterns of normal cervical smears from women who developed a CIN2+ lesion three years 

after sample collection could only be distinguished from those of women who remained 

(pre)cancer-free and only if one adopts a radically different statistical feature selection 



paradigm which selects for CpGs with heterogeneous and stochastic patterns, the so called 

Differentially Variable CpGs (DVCs). Such DVCs manifest as outlier DNAme events that are 

only seen in a very small fraction of the women who later developed CIN2+. While DVCs 

appear to be stochastically distributed across independent individuals, the pattern is 

distinctively non-random across the genome of any individual, highlighting that there are 

specific regions of the genome that are more susceptible to inter-individual variation in 

DNAme, as previously observed116,176-178. Thus, as shown in the context of cervical 

carcinogenesis 116, risk prediction may be possible by measuring the accumulation of 

deviations in DNAme from the normal state across a well-defined set of DVC loci, an 

approach called EVORA (Epigenetic Variable Outliers for Risk prediction Analysis) 116,179. 

While the EVORA framework awaits further validation, independent strong evidence for its 

validity was obtained recently in the context of breast cancer, by comparing normal breast 

tissue from women to the normal breast tissue adjacent to breast cancers 175: EVORA could 

distinguish normal tissue from breast cancer patients from that of healthy women with an 

AUC of 0.84. 

 

Sample size: 

The search for epigenomic risk markers is often hampered by the analysis of relatively small 

sample sets, caused by high costs. Consequently, spurious associations between CpGs and 

cancer risk may be found, and true associations may be exaggerated. The ideal scenario of 

comprehensive data from a single large-scale, prospective cohort study may not be reached. 

The evidence-base for associations may be increased by also considering results from other 

prospective study designs that include only incident cases, matched to well-defined, 

population-based controls (Table 3). Such studies allow unbiased estimation of relative risks. 

Applying simulations for EWAS180 and calculations based on our data85,116,118,119,135 suggest 

that 300 cases and 300 controls are sufficient to discover differentially methylated CpGs. 

Validation studies with independent, population-based data are required to confirm any 

associations and to validate absolute risks that apply to the general population. 

 

Data storage and sharing:  

Adopted by the European Union in 2016 and coming into effect in 2018, the General Data 

Protection Regulation (GDPR)181 provides legal guidance for the management of privacy risks 

based on the data types (e.g. personal data, genetic data, data concerning health, biometric 

data or sensitive data), levels of identifiability (anonymous, pseudonymised or identifiable 

data) and data uses (e.g. clinical care, research). While anonymous data fall outside the 

purview of the GDPR, sharing of pseudonymised (e.g. coded) and identifiable data is strictly 

regulated. 



Therefore, in the context of the epigenetic risk prediction test, the main challenge for the 

scientific community would appear to be characterising the identifiability of epigenomic 

information. Does epigenomic information allow for the identification of a natural person, 

directly or indirectly? Should it be considered as ‘personal’, ‘sensitive’, ‘genetic’ or health-

related information? Such questions are key when addressing the specific issues raised by 

sharing epigenomic information.  

 

Challenges to implement epigenome-based risk predictors as a clinical tool: 

Combining genetic variants with environmental and lifestyle risk factors would improve risk 

stratification. The use of epigenetic changes captures the interaction of observed and 

unobserved risk factors at each individual’s cellular level182, while the assessment of these 

risk factors via questionnaires and retrospective self-reporting is of limited reliability and 

susceptible to, for example, recall bias183.  

 

The implementation of risk-tailored cancer prevention and early diagnostic programmes is a 

multi-step process and raises a number of challenges for policymakers and the public they 

serve (Figure 4). The organisational challenges to be addressed include providing equitable 

access to risk assessment and risk-tailored interventions, preparing and training the 

workforce, building an infrastructure for assessing the quality of tests and services, and 

developing IT platforms and data storage capacity. Using epigenome-based risk assessment 

poses additional organisational challenges due to the plasticity of the epigenome that 

requires repeated risk assessment over time and varying intervention recommendations 

according to risk levels. Based on the available data on smoking and methylation (i.e. DNAme 

changes as a function of accumulating pack-years and of time after cessation of 

smoking85,156) we speculate that an epigenetic risk predicting test will have to be repeated 

every 3-5 years in order to re-calculate the risk.  

 

Ethical issues: 

The epigenome acts as a surrogate readout for heritable and lifestyle factors, raising 

several issues: (i) Personal responsibility and healthy lifestyle; how much responsibility can 

be attributed to the individual and to what extent individuals can be held accountable for 

their health? (ii) Safeguarding autonomous decision-making; how to guarantee that 

individuals are making a voluntary and well-considered informed choice for or against a 

test comprising complex information about risks for different diseases with varying ages of 

onset. (iii) Risk profiles for one cancer might encapsulate information for other conditions. 

For example signatures for cervical or breast cancer might reflect the individual response 

to smoking and obesity and as such also indicate the risks for lung cancer124-126,156 or type 



2 diabetes67, respectively. This requires new informed consent paradigms (e.g. tiered, 

staged models)184, shared decision-making and novel patient decision tools185. 

 

Legal issues: 

The development of genomics and other -omics sciences, including epigenomics, has eroded 

the once clear boundary that existed between research and clinical care. This new 

‘’translational’’ space is conducive to improving healthcare but also raises legal issues due to 

the reversibility of epigenetic risk factors and the dynamic, sometimes transgenerational, 

nature of epigenetic data. Relevant legal issues include: (i) Consolidation of a cost-efficient 

pathway for regulatory approval of new epigenetic tests. (ii) Clarification of the limits of liability 

for researchers and clinicians (e.g. when returning research results or incidental findings, 

including epigenetic test results to the medical file, and updating patients on important 

changes in epigenetic material). (iii) Clarification of privacy and confidentiality rights of the 

patient vs. those of family members (e.g. siblings, children, etc.); and (iv) Promotion of 

equality while promoting the data sharing necessary for advancing epigenetic science186. 

 

Risk communication: 

To assess the risk of individuals requires informed consent and the provision and 

communication of evidence-based information in lay language. Some of the communication 

challenges associated with epigenome-based risk assessment are identical to already 

existing tests. Individuals need to be informed upfront (e.g. by fact boxes187) concerning their 

age-adjusted baseline risks, the benefit-harm-ratio of having or not having the test, and the 

modified benefit-harm ratios of current cancer screening approaches and prevention as a 

consequence of the test 188. Epigenetic screening, however, has additional layers of 

complexity; individuals need to be informed about the complex cancer-specific interplay of 

genes, environment, and behaviour and additionally that testing for epigenetic factors will 

reveal some of their past environmental exposures (i.e. smoking, alcohol, etc.). It will 

therefore be essential that the healthcare workforce is trained in interpretation 189-192 and 

communication of risk prediction test results. 

 

Decision analysis to evaluate the relationship between benefits and harms: 

Scientific evidence needs to demonstrate additional benefit for a new risk-tailored screening 

or prevention strategy, with an acceptable benefit-harm ratio and cost-effectiveness ratio 

when compared to current standards of care 193-195. Decision-analytic modelling is a useful 

quantitative approach for synthesising the best available scientific evidence such as 

epidemiologic parameters, test performance, prognosis, treatment effectiveness, quality of 

life, and economic data. It is also useful to evaluate the trade-off between benefits, harms, 



and costs of alternative interventional strategies 196-198. Decision-analytic models simulate the 

development of the disease, and the consequences of different screening/prevention 

strategies including specific medical pathways 197,199 (Figure 5).  

 

Adaptation of the currently established infrastructure: 

The leveraging of already existent screening programmes is a key opportunity for rapid 

real-life evaluation and roll-out of new tests. In most high-resource settings, the 

infrastructure for cancer screening programmes is already available and could be used for 

new -omic frontiers in prevention. Such programmes have the inherent potential to test new 

biomarkers through so-called randomised health services studies (RHS; 200). Once 

evaluated by a RHS design, new screening tests – if found to be superior to the old policy 

– could be immediately implemented since the programme has already been part of the 

testing phase. 

 

Conclusions and future directions: 

Epigenetic based risk models provide state-of-the-art opportunities for personalised medicine 

and risk-level-tailored interventions to improve human health through the reduction of cancer 

burden. Although several significant challenges have been identified and further research is 

required, such risk models are potentially feasible and, when available, would likely meet 

most criteria needed for effective risk prediction, i.e. the ability to:  

(i) encapsulate both genetic and non-genetic risk referring factors using a single -omics 

platform which is biologically stable and technically reproducible;  

(ii) derive a predictive score using easily accessible tissues which are relevant for cancer 

development or are able to capture risk-referring signals; 

(iii) be used to monitor the efficacy of risk reducing measures. 

Development and implementation of epigenomic-based cancer prevention and 

screening/early detection programmes requires international collaboration between 

multidisciplinary teams with expertise in -omics, bioinformatics, epidemiology, public health, 

economics, decision analysis, ethics, law, risk communication and engagement of the 

scientific community with healthcare professionals, policy makers, and the public. In order to 

develop epigenomic-based cancer prevention, multidisciplinary research through 

international consortia is needed to overcome the various scientific challenges.  
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TABLES:  

 

Table 1. Percentage of variance in liability for several common cancers 

Disease is assumed to arise from a liability threshold model, in which each individual has an 

unobserved, normally distributed liability that results in disease when it exceeds a threshold. 

Heritability; variance explained by heritable factors, estimated from twin or family studies. 

Known genes; variance explained by established risk genes including findings from genome-

wide association studies. Environmental, variance explained by environmental exposures.  

 

 Percentage of Variance (95% CI) 
Cancer Heritability Known genes Environmental 

 

    
Ovary6,201 22 (0-41) 1 (1-1) 78 (59-100) 

 
Endometrium6,202 24 (14-87) 0 (0-0) 76 (13-86) 

 
Lung6,201 26 (0-49) 2 (2-2) 74 (51-100) 

 
Breast6,201 27 (4-41) 8 (0-21) 73 (59-96) 

 
Cervical203,204 27 (26-29) 2 (0-5) 78 (71-74) 

 
Colorectal201,205 35 (10-48) 1a (1-1) 65 (52-90) 

 
Pancreas6,201 36 (0-53) 2 (2-2) 64 (47-100) 

 
Kidney6,202 38 (21-55) 3 (3-3) 62 (45-79) 

 
Prostate6,201 42 (29-50) 22 (0-93) 58 (50-71) 

 
Melanoma6,202 58 (43-73) 9 (9-9) 42 (57-27) 

 
a converted from recurrence risk to liability scale using formula given by Wray et al206 

 

http://www.eveappeal.org.uk/


 

 

 

 

 

 

 

 

 

 

 

Table 2. Examples of currently recognised and validated risk prediction models 

Cancer type 
and/or 
model 

Phase 
(development/ 
validation/impact 
assessment) 

Endpoint 
(any cancer 
/progressive 
cancer) 

Predictors included in the final 
model 

Discriminative 
ability 
(AUC) 

     
Breast207 
IBIS model 
 

Validation Any 
 

Age, BMI, age at menarche, age at 
first birth, age at menopause, no. of 
breast biopsies, atypical 
hyperplasia, lobular carcinoma in 
situ, family history of breast/ovarian 
cancer 

0.76a 

Ovarian208 
 

Validation 
 

Any 
 
 

Age, Oral contraceptive use, 
menopausal hormone therapy use, 
parity, family history of 
breast/ovarian cancer 

0.59a 

 

Cervical11 
 

Development  CIN1/CIN2+ High DNA-load of high-risk HPV, 
age, married status, smoking, age at 
sexual debut 

0.76 CIN1b,  
0.90 CIN2+b 

Prostate209 
ERSPC risk 
calculator 

Impact 
assessment 

Any Ultrasound volume, digital rectal 
exam, transrectal ultrasound, PSA 

0.76a 

Lung210 
PLCOM2012 

model 

Validation 
 

Any 
 

Age, race, education, BMI, COPD, 
personal history of cancer, family 
history of lung cancer, smoking 
status, smoking duration, smoking 
intensity, years since cessation 

0.69-0.79a 

Esophageal21

1 
Validation Any 

 
age, sex, smoking status, body 
mass index, highest level of 
education, frequency of use of acid 
suppressant medications  

0.61a 

Colorectal212 Validation Any 
 

Sigmoidoscopy results, 
colonoscopy results, history of 
polyps, relative with CRC, 
aspirin/nonsteroidal anti-
inflammatory drug use, smoking, 
vegetables, body mass index, 
leisure time activity (men only), 

0.61a 



 

a Performance at external validation 

b Performance at internal validation 

AUC, Area Under the ROC Curve. 

 

 

 

 

 

 

 

 

 

Table 3. Studies predicting risk for incident cancers using DNAme markers  

Only studies using population–based samples with incident cancers (i.e. volunteers cancer-

free at the time of sample collection) were used irrespective of how many CpGs were 

analysed.  

 

Cancer  Source 
of 
DNA 

Technique Markers Numbers Remarks 
 

Study Design 

       
Breast150 Blood Bisulfite 

pyrosequencing 
ATM 640 cases,  

741 controls 
top quintile  
OR 1.89 

Nested case-
control/case-
control 

Breast149 Blood Illumina  
27k array 

250 CpGs 298 cases,  
612 controls 

AUC 0.66 Nested case-
cohort 

Breast135 Blood Illumina 27k  
& 450k array 

1829 CpGs 210 cases,  
271 controls 

AUC 0.67 for 
fatal breast 
cancer 

Case-control 

Breast147 Blood Illumina  
450k array 

mean beta 
values 
across all 
CpGs  

420 cases,  
420 controls 

top quartile 
OR 0.42 

Nested case-
control 

Breast148 Blood Illumina  
450k array 

mean beta 
values 
across all 
CpGs  

358 cases,  
358 controls 

top quartile 
OR 0.34 and 
0.99 for 2 
studies 

Nested case-
control 

Breast84 Blood Illumina  
450k array 

353 CpG  
age 
signature 

451 cases,  
451 controls 

1 unit increase 
of epigenetic 
age 
acceleration 
leads to 4% 
increased 
breast cancer 
risk 

Nested case-
control 

leisure exercise time (women only), 
oestrogen status (women only) 



Lung83 Blood Illumina  
450k array 

353 CpG  
age 
signature 

43 cases,  
1986 controls 

1 unit increase 
of epigenetic 
age 
acceleration 
leads to 50% 
increased lung 
cancer risk 

Case-control 

Lung156 Blood Illumina  
450k array 

AHRR, 
F2RL3 

789 cases,  
789 controls 

AUC 0.76 
adjusted for 
smoking 

Nested case-
control/case-
control 

Lung213 Blood MassARRAY F2RL3 318 cases,  
4669 controls 

AUC 0.77 Cohort study 

Lung124 Blood Bisulfite 
pyrosequencing 

AHRR, 
F2RL3 

143 cases,  
453 controls 

bottom quartile 
OR 15.9 
(AHRR) and 
10.55 (F2RL3) 
adjusted for 
smoking and 
other factors 

Nested case-
control 

Lung125 Blood Real time PCR AHRR 352 cases,  
8859 controls 

bottom quintile 
HR 4.9  

Cohort study 

Cervical 
(pre-
invasive)116 

Cervical Illumina 27k 
array 

140 CpGs 77 incident 
CIN2+ cases 
and 77 
controls 

EVORA 
algorithm in 
normal 
cervical cells 
predicts future 
risk to develop 
CIN2+ 

Nested case-
control 

Liver154 Blood MethyLight, 
Bisulfite 
pyrosequencing 

Sat2,  
LINE-1 

305 cases,  
1254 controls 

logSat2 1 unit 
decrease 
adjusted OR 
1.77 

Nested case-
control  

Liver153 Blood Illumina  
450k array 

WNK2,  
TPO, 
MYT1L 

159 cases,  
312 controls 

OR (above vs 
below median) 
1.91 (WNK2), 
0.59 (TPO), 
0.50 (MYT1L) 

Nested case-
control  

Various82 Blood Illumina  
450k array 

71 CpG 
age 
signature 

132 cases, 
310 controls 
(2 samples 
from most 
volunteers) 

one year 
increase of 
epigenetic 
compared to 
chronological 
age leads to 
6% increased 
cancer and 
17% mortality 
risk 

Cohort study 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

BOX: 

 
Box 1| Potential methods for the assessment of the DNA methylome for risk 
predicting purposes 

 
The majority of technologies used to quantify DNA methylation rely on the principle of 
sodium bisulfite-induced deamination of unmethylated cytosine to uracil, followed by either 
microarray or sequencing as a read-out. 
 
For discovery (i.e. feature selection): 

 Whole Genome Bisulfite Sequencing (WGBS): A labour intensive method involving 
DNA fragmentation, ligation of adapters, purification of ligation products, bisulfite 
modification (BM), polymerase chain reaction (PCR), and sequencing. Theoretically, 
WGBS is able to capture all CpGs in the genome at single nucleotide resolution. 

 Reduced Representation Bisulfite Sequencing (RRBS): Sequencing method that 
enriches for CpG rich regions of the genome, by digesting genomic DNA with Msp1. 
RRBS covers 85% of CpG islands and 60% of promoters. Steps involve DNA digestion, 
end-repair, A-tailing, adapter ligation, fragment size selection, BM and sequencing. 

 Methylation Arrays: Arrays targeted to the methylated regions (CpG islands) of the 
genome. The Methylation EPIC BeadChip (Illumina5), covers 99% of RefSeq genes and 
95% of CpG islands and allows interrogation of >850,000 methylation sites. Arrays also 
rely on BM but is less labour-intensive than sequencing. 

 Affinity Enrichment methods: Based on the affinity purification of methylated DNA 
regions using either an antibody directed against 5-methylcytosine (MeDIP6) or against 
methyl-binding proteins (MethylCap7). Isolated methylated DNA can be assessed by 
PCR, microarray or sequencing. 

 
For clinical assays: 
Clinical assays require a targeted approach, allowing for the screening of large sample sets 
but only covering the regions of interest. This allows for a reduction in work-load and over-
all cost. 

 Custom Arrays: Specific regions of the genome can be studied with custom designed 
arrays. Various companies (Illumina, Agilent, Roche) offer custom array services for the  
creation of targeted assays.  



 Targeted Bisulfite Sequencing: Use of specifically designed primers and NGS 
technology for the  analysis of targeted genomic regions of interest. Cost per sample is 
reduced, but single nucleotide resolution is maintained.  

 Pyrosequencing: DNA sequencing based on the "sequencing by synthesis" principle. It 
relies on the detection of pyrophosphate release upon nucleotide incorporation. A light 
signal is generated that allows for quantitative methylation analysis. 

 Quantitative PCR: Amplification of BM-DNA with fluorescent primers that hybridise to 
predefined methylated regions, such as, in Methylight or digital PCR. 

 

 

 

 

 

 

 

 

FIGURES: 

 

 

 

Figure 1. Multicellular epigenetic risk predictor. Factors that trigger epigenetic mis-

programming in the inaccessible tissue at risk can be assessed in easily accessible surrogate 

tissue. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Examples illustrating how epigenetic alterations contribute to cancer 

development. (A) A general, epigenome-genome unifying concept of cancer formation: 

Accumulation of epigenetic alterations as a function of stem cell divisions may fix stem-ness, 

a state which is compatible with genotoxicity-induced DNA damage leading to cancer 

formation. (B) A specific example of epigenome-mediated cancer formation: Functional 

oestrogen dominance in epithelial cells due to epigenetic silencing of essential progesterone 

downstream gene HAND2 in the endometrial stromal cells lead to precancerous complex 

atypical hyperplasia. E, oestrogen; P, progesterone; FGF, fibroblast growth factor; ERK, 

extracellular signal regulated kinase  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The use of the epigenome in adjusting for sample heterogeneity. (A) Depiction 

of the potential cellular heterogeneity within a complex cervical smear sample. (B) Cell type 

specific DNAme signatures (x-axis) are used to predict the actual proportion of cell subtypes 

in a sample verified by FACS analysis (y-axis); the examples are given for granulocytes and 

CD4 lymphocytes in blood samples.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Organisational, ethical, legal and social issues (ELSI) to be considered when 

implementing epigenome-based risk predictors. ‘Key ELSI’ for risk-stratification based on 

the genome have already been identified by the COGS consortium214 and ‘Novel ELSI’ are 

additional issues for the Women’s cancer risk IDentification test (WID-test) specific to 

epigenome-based risk prediction tests.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Decision-analysis to evaluate the consequences of the DNA methylation 

(DNAme) test-based intervention strategies. 
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