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Blood glucose control, e.g. in diabetes mellitus or severe illness, requires strict adherence to a

protocol of food, insulin-administration and exercise personalized to each patient. An artificial

pancreas  for  automated  treatment  could  boost  quality  of  glucose  control  and  patients´

independence. The components required for an artificial pancreas are (1) continuous glucose

monitoring (CGM), (2) smart controllers and (3) insulin pumps delivering the optimal amount

of  insulin.  In  recent  years,  medical  devices  for  CGM  and  insulin  administration  have

undergone rapid progression and  are now commercially available.  Yet, clinically available

devices  still  require  regular  patient  or  care-givers  attention  as  they  operate  in  open-loop

control  with frequent  user  intervention.  Dosage-calculating  algorithms are  currently  being

studied in intensive care patients ,  for short  overnight control to supplement  conventional

insulin  delivery  ,  and for  short  periods  where  patients  rest  and follow a  prescribed food

regime . Fully-automated algorithms that can respond to the varying activity levels seen in

outpatients, with unpredictable and unreported food intake, and which provide the necessary

personalized control for individuals is currently beyond the state-of-the-art. Here we review

and discuss reinforcement learning algorithms, controlling insulin in a closed-loop to provide

individual insulin dosing regimens that are reactive to the immediate needs of the patient.

Introduction 
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Maintaining normoglycemia is one of the major challenges in the treatment of patients with

diabetes mellitus.  As a key performance indicator, an average plasma glucose concentration

of  glycosylated  hemoglobin  (HbA1C)  values  <  7%  was  recommended  by  the  American

Diabetes Association  and has been shown to reduce the development  and progression of

microvascular  and  cardiovascular  complications  by  76%  . Conversely,  treatment  of

hyperglycemia  with  insulin  may  lead  to  hypoglycemia  that,  in  turn,  may  contribute  to

clinically relevant complications. This implies that calculation of precise insulin dosages is

critical, must be individually adapted, and should be reactive to the patient's glucose level.

Worldwide, more than 371 million people have to manage their diabetes  with both constant

glucose monitoring and insulin dosing that affect their quality of life. This has led to intensive

research concerning the development of an artificial pancreas since the 1970s .  Such a system

is  composed  of  three  components:  1.  continuous  glucose  monitoring  (CGM)  using  an

implanted sensor, 2. an insulin pump delivering insulin, and 3. an algorithm calculating the

correct dose of insulin to be applied. Since the development of the first artificial pancreas

system, major improvements have been made, but the system still needs development before

it  can be routinely used in  clinical  practice.  To date,  one of  the major  limitations  of  the

successful use of automated dosing in clinical, as well as outpatient settings, is the demand for

a flexible  algorithm that  adapts  the artificial  pancreas  to  the special  needs of each single

patient.  In  this  article,  we  briefly  describe  the  major  challenges  for  development  of  an

artificial  pancreas system and discuss the application of machine learning algorithms as a

potential approach to increase the flexibility of the system. 

Control strategies for insulin delivery 
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In standard diabetes treatment, the patient receives a subcutaneous injection of slow-acting

insulin  to  provide  the  basal  insulin  requirement.  Additional  insulin  doses  of  rapid-acting

insulin are calculated based on the patient’s knowledge of a meal size, the patients experience,

the insulin sensitivity and actual blood glucose levels measured indirectly, for example by a

subcutaneous CGM system. Insulin boluses are preferably delivered by an insulin pump to

avoid repeated injections. In the literature, this model of calculating an insulin dosage based

on blood glucose levels and external (meal) information has been called open-loop control .

Despite the advantages of the intended avoidance of hyper- and hypoglycemic excursions by

use of an artificial pancreas system, any open-loop insulin control mechanism requires the

patient to live a more or less predictable lifestyle.  In contrast,  closed-loop control models

include the benefit to finally  reduce the patients’ need to plan each day with regard to their

illness, thereby improving quality of life (for review about open- and closed-looop models

please refer to Kumareswaran et al. 2012 ). Closed-loop models can be further distinguished

as either fully closed-loop models and hybrid models. 

In a fully closed-loop model, decisions for insulin dosing are exclusively based on parameters

measured in the patient’s  body, e.g.  blood glucose levels   without knowledge of external

information  like  food  or  exercise.  In  brief,  changes  in  blood  glucose  levels  would  be

measured  and,  based  on  these  changes,  the  respective  insulin  dosage  calculated  and

applicated.  Administration  of  insulin  then  affects  the  blood  glucose  level.  Based  on  this

feedback from the blood glucose level, the required level of insulin is again calculated and the

next dose may be adjusted (figure 1). Such a system is reactive, meaning no anticipation and

preemptive dosing based on experience or external information is possible.  A second major

challenge  for  fully  closed-loop  models  is  to  accommodate  situations  in  which  the  blood

glucose level  changes  rapidly,  such as after  meals  or exercise.  The human brain receives

preliminary  information  even  before  spontaneous  situations,  for  example  thinking  “I’m
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buying an ice-cream” before that meal is taken in, which is missing in a closed-loop artificial

pancreas system. The conventional assumption is that the real pancreas works in a closed-loop

system without this knowledge as well. However, recent work suggests that there’s a tighter

link between brain and pancreatic function . 

1. Hybrid models using both closed-loop control and external information, e.g. of meal

size  (figure  1),  have  therefore  been  proposed.  These  hybrid  models  reflect  the

proposed hypothalamic-pancreatic-relationship by including preliminary information

about  a  future  meal  intake  and  might  therefore  be  closer  to  the  real  pancreas.

However, thinking “I’m buying an ice-cream” does not inform the pancreas about the

exact composition of the meal; it may merely prepare the pancreas to respond to food

intake.  An  artificial  pancreas  is  different  from  its  biological  counterpart  and  its

response time is mainly determined by the diffusion rate of injected insulin, therefore

we propose investigating whether the hybrid model might, in future, be replaced by a

fully closed-loop model to reduce the required frequency of user interventions.  In a

recent study, Weinzimer and coworkers  compared fully closed-loop control with their

hybrid or  extended closed-loop control,  in  which an additional  premeal  bolus  was

used.  The  hybrid  model  reduced  hyperglycemia  after  meals  without  inducing

hypoglycemia , and the same result was seen in a similar model tested by another

group in hospital settings . In both studies, patients were already in excellent glycemic

control, and thus hypoglycemia was neither observed with the hybrid, nor the fully

closed-loop control model . However, these hybrid models still need to be tested for

control of potentially hypoglycemic conditions. 

Despite  the good performance of hybrid closed-loop model  with external  information,  the

overall  aim is  to  develop  a  fully  closed-loop model  to  obviate  the  scheduled  lifestyle  of

diabetes patients in regard of meals and exercise. One way to achieve this is to develop an
6



algorithm that automatically detects meals by checking the blood glucose curve and either

advises the patient or the automated insulin pump to apply an insulin bolus. A first attempt to

develop an analytic model that,  at least partially,  anticipates fluctuations in glycemia,  was

performed by development of algorithms for meal detection or meal size estimation . When

compared  in  silico to  closed-loop  control  without  information  on  meals,  the  meal  size

estimation algorithm improved the time spent in normoglycaemic range and even reduced the

HbA1C  from 7.15 % (treatment  without algorithm) to 6.43% (treatment  with algorithm) in

adolescents and from 6.69 % to 6.23 % in adults . However, long term studies  should be

performed in various settings to detect  whether  the addition of complexity to the glucose

control  system  is  worth  the  effort.   Furthermore,  meal  detection  is  only  one  of  many

challenges for closed-loop systems of insulin delivery control. 

Components of an artificial pancreas

Independent of the control model used, the components of an artificial pancreas system all

bear their own challenges. These are either derived from technical aspects or based on the

physiology of glucose regulation and have to be kept  in mind during the development  of

control algorithms for insulin dose calculation. 

Continuous glucose monitoring 

Measuring the blood glucose level provides the minimal requirement for calculation of the

insulin dose. Patients with type 1 diabetes are recommended to check their blood glucose

levels at least three times a day . More frequent glucose measurements allow for the overall

trend of the blood glucose level to be estimated, as opposed to isolated measurements with no
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information on whether blood glucose levels are increasing or decreasing. As finger pricking

can  be  painful,  a  less  invasive  method  enabling  the  patient  to  perform  more  frequent

measurements is highly desirable. More frequent glucose measurements allow for the overall

trend of the blood glucose level to be estimated, as opposed to isolated measurements with no

information on whether blood glucose levels are increasing or decreasing .

Among various CGM sensors (for review on CGM sensors please refer to Vaddiraju et al.

2012 ), subcutaneously implantable sensors are most comfortable for the patient. Due to an

evaluation roadmap for CGM sensors presented by the Clinical  and Laboratory Standards

Institute , the most important challenges for CGM devices to date relate to the accuracy of the

measurement, as well as to the real-time assessment.

The accuracy  of  subcutaneous  glucose  measurement  devices  has  been subject  of  a  long-

lasting debate. In such devices, the sensor detects glucose in the interstitial fluid during its

diffusion between the capillary and the target cell . Under steady-state conditions, interstitial

glucose levels have been shown to be similar, but not precisely equal to, venous blood glucose

levels in healthy individuals or animals . Rapid changes in blood glucose concentrations have

been reported to affect the accuracy of the interstitial glucose sensing, namely causing the

sensor  to  report  glucose levels  below their  actual  values  .  Implanted  intravenous  glucose

sensors,  which would provide similar  comfort,  as well  as faster and more accurate  blood

glucose measurements,  are  currently  under  investigation  .  However,  to  date  subcutaneous

measurement is still preferred due to lower risk of thrombosis and intravascular infection.

Real-time  assessment  of  subcutaneous  glucose  measurement  devices  describes  the  lag

between measurement of the glucose level by the sensor and the time at which the blood level

insulin, delivered in response, reaches its maximum. A large delay reduces the ability of the

system  to  respond  to  glucose  levels  in  real-time  and  therefore  its  flexibility.  Figure  2
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summarizes  the  sequence  of  events,  from a  change  in  blood  glucose  in  the  body  to  the

maximum effect of the insulin administered in response . First,  changes in blood glucose

levels  are  mirrored  by  the  interstitial  blood  glucose  levels  after  a  5  –  10  min  delay  .

Measurement  of  those  interstitial  glucose  levels  is  commonly  performed  either  by

electrochemical sensors  or microdialysis techniques , which both take another 3 – 12 min .

Next, the digital filtering of the glucose measurement can take another 1 – 2 minutes, and is

required to compensate for background noise. At this point, the algorithm will take some time

to calculate the correct dose, but it is expected to be comparatively rapid. Finally, after insulin

application,  there  is  a  delay  before  insulin  becomes  fully  active  in  the  blood.  The  latter

depends  on  the  type  of  insulin  analog  used,  the  total  insulin  dose  and  the  individual

pharmacokinetic parameters of the patient. Taken together, this can introduce a time delay

between changes  in  blood glucose and insulin  effect  of  up to  1 hour,  which any dosage

calculation will have to accommodate. 

Insulin administration 

Since the first studies on insulin treatment of patients with diabetes , which have led to the

Nobel  prize for Frederick Banting and Charles Best,  insulin delivery devices  have seen a

number of development phases that have improved their performance and ease of use. For

example,  the  time delay  between application  of  insulin  and the maximum plasma insulin

concentration mentioned above have already been shortened by the availability of rapid-acting

insulins. Furthermore, other administration routes also bear the potential to decrease the time

until the maximum effect of insulin occurs.

Intravenous insulin application, which would enable the fastest insulin effect, exhibits certain

limitations due to catheter complications . Intraperitoneal insulin is difficult to administer ,
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and the availability of intraperitoneal insulin devices is currently limited.  Inhalation might

provide  a  novel  application  route  for  insulin,  and  suitable  medical  devices  have  been

approved by the Food and Drug Administration in 2008 . But the bioavailability of inhaled

insulin is less than in a subcutaneous application and is extremely variable in smokers or

patients  with  a  cold  .  Pharmaceuticals  for  oral  delivery  of  insulin  are  currently  under

development  but are far from routine clinical use.

Wide availability and ease of management are the major advantages of subcutaneous insulin

administration . This currently makes the subcutaneous application route the most appropriate

for routine injections and thus also for an artificial pancreas.  When CGM is also performed

subcutaneously,  the system is  commonly  referred to  as subcutaneous-subcutaneous (sc-sc)

systems. 

Existing algorithms

The development of algorithms for closed-loop calculation of insulin dosage is intensively

investigated. The major candidates for such algorithms proposed in recent years use model

predictive control (MPC ) or the proportional integrative derivate (PID ) methods . Current

MPC systems require a model (typically a dynamical systems model) that can predict future

glucose levels given known values for current glucose, insulin delivery and food intake. Such

control  then  calculates  the  appropriate  insulin  infusion  rate  by  minimizing  the  difference

between  the  model-predicted  glucose  concentration  and  the  target  glucose  level  over  a

prediction time-window  The duration of this time-window is chosen as the time in which the

bulk of the effect is seen from the insulin or insulin analogue used. In the MPC literature,

there is no reported way to balance the rapidity of a return to normoglycaemia against the

amount of insulin delivered. PID systems consist of three components: the proportional (in
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case of diabetes the difference between the actual glucose level and the desired glucose level

– the error), the integral (accumulation of past errors over time) and the derivative (the rate of

change of these errors) . In short, the PID algorithm estimates the required control (in case of

diabetes the required delivery of insulin) based on a weighted sum of PID terms, in order to

minimize these errors and so bring the system to the desired glucose level . Thus, the PID

algorithm  is  rather  reactive  and  lacks  theoretical  validation,  whereas  MPC  algorithms

represent a more proactive approach but require a good model of the dynamics.  

To date,  there is  only one closed-loop algorithm commercially  available,  i.e.  the B.Braun

Space GlucoseControl (B. Braun, Melsungen, Germany). This algorithm is based on model

predictive control  and is provided for use in insulin treatment  of critically  ill  patients in

intensive  care  units  (ICU).  Such  patients  often  develop  peripheral  insulin  resistance  and

relative  insulin  deficiency  with  resulting  hyperglycemia  .  Among  others,  this  endocrine

paradigm leads  to  increased  gluconeogenesis  from the body’s stores  and reduced glucose

uptake  and utilization.  The former  notion  that  resulting  hyperglycemia  would  redistribute

glucose towards organs that rely on glucose as fuel and, consecutively, improve the chance to

survive was disapproved by evidence . Indeed, dysregulations of glycemia are associated with

a negative outcome. However, bringing glucose back to normoglycemia in the critically ill by

insulin infusion has shown to be a double-edged sword, since hypoglycemia and fluctuations

of glycemia offset beneficial effects of glucose control when the target range is set too low .

Therefore, critical care societies recommend controlling glycemia below 145 or 180 mg/dl,

respectively . Glycemic control by the one commercial algorithm initially required an hourly

measurement  of  glucose  ,  but  recent  adaptation  of  the  algorithm  has  derestricted  this

constraint . This algorithm is currently only used for critically ill patients and is applicable in

the special setting of intensive care only. Though integrated closed-loop glucose control is

very promising in clinical settings , algorithms for home patients might raise the concern of
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missing control by human sense. This can be overcome by including an optional user-check of

the insulin dosage values calculated by the algorithm, for example by providing the algorithm

as a  smartphone application  as  recently  reported  by  Cobelli  and coworkers  .  Despite  the

potential  inclusion  of  a  user-check,  further  improvements  of  the  flexibility  of  an  insulin

calculating algorithm for independent outpatient use are highly desirable. 

 

Possibilities to improve accuracy and flexibility of algorithms for artificial pancreas 

In order to develop an algorithm appropriate for an outpatient’s artificial pancreas, a number

of issues still need to be addressed including the response to meals, exercise, stress and sleep.

To adequately deal with these situations, the algorithm either has to be explicitly developed to

identify  and  respond  to  each  situation  separately,  or  its  overall  flexibility  will  have  to

improve,  i.e.  by  more  closely  mimicking  the  physiological  function  of  a  working human

pancreas.  The former approach is  not  promising,  and so in  the following section we will

discuss the potential for improving the flexibility of such an algorithm. 

 

Use of additional diagnostic indicators 

Glucose homeostasis is maintained by various parameters including glucagon, epinephrine,

insulin and others . Some of these parameters may be useful indicators of food intake or stress

levels for closed-loop control systems, obviating the need for external information. Incretins,

for example, could be a useful indicator of food intake. Upon ingestion of a meal, incretins
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such as the glucagon-like peptide 1 (GLP-1) and gastric inhibitory peptide (GIP) promote the

first phase secretion of insulin in proportion of the glucose content of the meal . Measurement

of active GLP-1 after meals could therefore indicate that glucose levels will soon be elevated

and insulin dosing could be administered earlier, in anticipation of this. Unfortunately, GLP-1

is degraded by the dipeptidyl peptidase IV after approximately 2 min , making it difficult to

detect. Present assays available for GLP-1 detection would have to be refined before routine

measurement of GLP-1 could be used in this way. 

After measuring a parameter like glucose or in the future GLP-1, the relationship between the

parameter and the appropriate insulin dose response will have to be found. The first, original

“minimal model” of the insulin-glucose relationship was based on mathematical models of

glucose and insulin kinetics only , subsuming the regulatory roles of many organ systems in

these  two  compartments.  Instead,  current  research  uses  models  of  physiologically  based

pharmacokinetics-pharmacodynamics.  In  these  models,  each  organ  system is  treated  as  a

separate compartment . For example, the mixed meal model of Roy and Parker displays the

absorption of the major compartments of a meal from the gut . These models are currently

used for simulation of diabetes and evaluating algorithms in silico. However, they can also be

used to predict the pharmacodynamic response to hypothetical dosing strategies, and may,

therefore, be incorporated into a future algorithm. 

Use of alternative or additional drugs regulating glucose homeostasis

Mimicking  the  physiological  insulin  pharmacokinetics  in  diabetes  treatment  is  very

demanding, especially for a dosage calculating algorithm. In a healthy pancreatic beta-cell, an

increased blood glucose level and therefore the stimulation of the beta-cell by glucose induces

a biphasic insulin release . Due to the increment in plasma glucose levels, a rapid peak of
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insulin secretion is followed by a slowly increasing second phase of insulin secretion . The

peak phase of insulin secretion is due to pre-formed insulin stored in mature vesicles and is

thought to suppress the hepatic glucose output .  The second phase requires new synthesis of

proteins and increases slowly until the cell is adapted or the glucose stimulation ends. This

biphasic profile of insulin secretion presents the researchers with the need of implicating the

pharmacokinetics of different analogs of insulin into the calculations of the control algorithm.

The time delay between application of insulin and the maximum plasma insulin concentration

mentioned above have already been shortened by the availability of rapid-acting insulins (for

review on insulin analogs  see .  However,  the fact  that  minimizing this  time delay would

markedly help to ensure normoglycaemia in closed-loop models  of artificial  pancreas has

raised the request for ultra-rapid-acting insulins. To achieve such a biphasic profile of insulin

secretion, computational scientists need to include the pharmacokinetics of different analogs

of insulin into the calculations of the control algorithm. 

Another key player in glucose homeostasis is glucagon. Its role has been included in recent

dynamic models and inclusion of such models in the artificial pancreas would more closely

mimic the physiological pancreas reactions and thereby increase the flexibility and accuracy

of the system. In a healthy pancreas, glucagon counters the effects of insulin, thus leading to

elevation of blood glucose levels. Recently developed artificial pancreas systems apply pumps

capable of both insulin and glucagon application . Two independent research groups reported

glucagon  treatment  to  prevent  and  to  reverse  hypoglycemia  in  bihormonal  closed-loop

systems .  Minimizing glucagon dosage in  two studies avoided side effects  like nausea or

gastrointestinal discomfort , though long term studies remain to be conducted. Thus, glucagon

treatment represents a promising option and should be considered in future development of

control algorithms for artificial pancreas. 
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In addition, recent research has focused on the usability of new drugs regulating the glucose

homeostasis.  Amylin,  for  example,  is  a  peptide  hormone  co-secreted  with  insulin  by  the

pancreatic  beta  cells  which  has  similar  functions  to  insulin  .  Application  of  amylin  was

successfully tested in clinical trials  and even in closed-loop systems of combined insulin and

amylin delivery . In addition, the peptide GLP-1 could not only be measured for prediction of

the  correct  insulin  dose  but  may  also  be  administered  in  addition  to  insulin  .  However,

exenatide, the first FDA approved GLP-1 agonist, is still assigned with a safety alert  and

could therefore not yet be recommended for routine use. 

All  these  modifications  mentioned  might  increase  the  flexibility  of  the  artificial  pancreas

systems, but may also increase the complexity of the algorithms used. This issue might be

addressed  by  using  learning  algorithms,  which  allow  for  dosing  control  to  be  flexibly

optimized with respect to the biological system.  

Use of adaptive algorithms

The complexity of insulin delivery and the demanding goal of maintaining normoglycemia

necessitate a complex, adaptive and flexible algorithm, which may be achieved with the use

of machine learning techniques as shown in some approaches . Appropriate machine learning

algorithms are able to analyze training data, recognize complex patterns and on the basis of

such patterns apply the knowledge to other data to predict their behavior . The principle of a

learning algorithm is depicted in figure 3.

There are three general differences between traditional PID and MPC algorithms used for

diabetes  so  far  and  machine  learning  approaches  .  First,  machine  learning  is  based  on

recognition of patterns instead of implication of defined hypotheses. It improves the accuracy
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of the system, because it includes initially unidentified variables that might be overlooked by

the  traditional  hypothesis  based  systems  .  A  second  advantage  of  machine  learning

approaches  is  that  they  consider  interactions  between  variables  instead  of  minimizing  or

ignoring them as traditional models do . This might result in more complex models, but the

challenges resulting from glucose homeostasis mentioned above justify their use for diabetes

treatment. Third, machine learning approaches imply the risk of developing a model which

can perform perfectly on the training data without generalizing well to unseen data (called

over-fitting) . It is therefore important to correct for over-fitting by using cross-validation  and

regularization techniques . 

The first attempt towards including machine learning algorithms into diabetes care was the

use of supervised learning with artificial  neural network (ANN) classification for diabetes

treatment  .  ANNs  algorithms  infer  a  function  minimizing  the  error  between  calculated

parameters and desired parameters with the help of supervised / labeled training data. Of note,

in supervised learning, the labeling of data needs to be performed by an expert, which is time

consuming and is prone to human error. In terms of blood glucose level prediction and insulin

regimen recommendations, ANNs work well in short-term predictions  even in closed-loop

systems .  However,  they have not  yet  been tested for  long-term predictions  of  the blood

glucose level. Supervised learning systems, such as that used by Robertson and colleagues,

need good training data which include the desired response . These data can be expensive

and/or time-consuming to collect, they assume that good responses are known, and in general

only  lead  to  reliable  predictions  for  situations  similar  to  those  in  the  training  data  .

Furthermore, glucose control in diabetes patients is an on-going task requiring regular control

responses.  The static  input-output nature of supervised learning ignores this  and therefore

errors might propagate.
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Reinforcement learning algorithms – learning to maintain normoglycemia?

Another potential approach to shape diabetes treatment is the use of reinforcement learning

(RL) algorithms. RL is a branch of machine learning, concerned with how an agent chooses

actions to control a system. It is suited to problems including sequences of decisions along a

time-line. Additionally, it can be used when decisions depend on the observed state, where

effects may be remote in time from actions that induce them, and where there is some notion

of preferred state(s) for the system. This is true for the artificial pancreas system, as there is a

need to continuously observe the patients  glucose level  and determine  the ideal  time and

amount for insulin delivery.  Moreover, RL can be performed directly on real data, or it can

interact  with a  dynamical  system represented  by  a  mathematical  model  and in  general  it

makes only very modest assumptions about this system . A broad classification of the types of

control  algorithms in terms of performance (glucose control,  amount  of delivered insulin,

reaction time of the system) or personalization is shown in figure 4.  

The principle of RL is based on the interaction between a decision-making and self-learning

agent and its environment. At each time point, the  agent chooses an  action to modify the

environment. The environment changes its state and sends this information and a numerical

reward according to the previous action back to the agent. Mapping of a particular state to a

certain action is called policy of the algorithm and defines the behavior of the agent at each

time step . The goal of RL is to learn an optimal policy and thus maximize the amount of

reward it  receives over time . To achieve that goal, the agent should not only choose the

action which brings the most reward in one run (exploitation), it should also consider other

possibilities to increase the overall reward (exploration).  A balancing between exploitation

and exploration is needed to generalize from experience. The agent need to explore unusual
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states  in  the  system  by  occasionally  choosing  unpromising  actions  during  the  learning

procedure, in order to choose good actions for even these rare states during normal operation.

The procedure of a RL algorithm for diabetes is depicted in figure 5. 

In  comparison  to  other  traditional  control  strategies,  RL  does  not  require  a  detailed

description of the environment in terms of a well-represented model  or labeled training data

as in supervised learning strategies. After a learning procedure, the agent develops a policy

and thus a control strategy from experience to predict certain situations and rewards without a

necessary  mathematical  specification  of  the  environment.  Another  advantage  of  RL

algorithms is that they are uniquely suited to systems with inherent time delays  as these are

present due to the subcutaneous glucose measurements and insulin injections. RL can also be

used with large or even infinite state sets, which makes that approach useful for the different

glycemic levels that occur during continuous glucose measuring. 

Two potential  criticisms  of  conventional  RL methods  are  relevant  to  the  case  of  insulin

delivery control:  The learned control is  black-box, meaning it cannot be readily reused or

generalized from, and they are not very efficient in terms of data. The efficacy issue arises,

because conventional RL algorithms do not build explicit models of the environment, and are

therefore sometimes referred to as model-free RL. To address this, we recommend the use of

one or both of the following techniques: model-based or data-efficient RL. Model-based RL

builds a dynamical model of the control problem through experience and uses this model to

train an on-board model-free RL algorithm, e.g. Dyna-Q . Here, we define a model-based

reinforcement learning algorithm as one that maintains a system model,

which is updated on-line – e.g. from real data as it is observed, and which

optimizes a reinforcement  learner using this  model.  This  model  can be

either entirely constructed from empirical data, or can use prior knowledge
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to  constrain  the  family  of  models  considered.  For  our  insulin  delivery

system,  a  model-based  reinforcement  learner  could  therefore  defne  a

priori a  dynamical  system  structure  where  blood-glucose  depends  on

insulin and beta-cells in a specifed way, but use real data to update the

parameters of that model. Data-efficient  RL algorithms focus on making the  most

efficient use of experience gained so far, e.g. fitted-Q . The latter approach has been proposed

for use in clinical domains , and recent work, which combines this with a model-based RL

approach, has shown remarkable data-efficiency in robotics tasks 

To date, RL algorithms have been proposed for the treatment of epilepsy , renal anaemia  or

the control of anesthesia . In the case of renal anaemia, the RL algorithm was informed by an

MPC, showing that these two approaches do not necessarily exclude each other but can be

used in parallel.  When used in closed-loop control of anesthesia  in silico, a RL algorithm

outperforms a PID control algorithm by less overshoot of the depth of hypnosis and faster

achievement of steady state . Thus, use of the RL algorithm in this closed-loop control setting

resulted in tighter control, a principle that could be administrable for patients with diabetes.

An initial  study on using a  RL algorithm to control  an artificial  pancreas,  reported good

performance in controlling hyperglycemia  in silico . In this study, the  state was defined as

different glycemic ranges, action was defined as insulin infusion and reward was set equal to

the difference of the glucose concentration from its target value . In silico application of the

algorithm led to correction of hyperglycemia to normoglycemia. However, given the criticism

on RL mentioned above it is important to point out that this research used model-free RL in

an off-line manner on a fixed model with fixed parameters, which is distinct from a model-

based reinforcement learner that updates its model on-line. There is no description of how to

verify the accuracy of the model or how to adapt the controller to individual patients, although

the authors do acknowledge that these are research issues. Furthermore, the tests included in
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silico patients only and no in vivo studies were performed. The same is true for more recent

work using an actor-critic reinforcement learning algorithm, which shows promising results in

adults and children  in silico,  which still has to be verified in a clinical trial. Moreover, the

authors  do  not  discuss  how  the  early  exploratory  phase  of  the  algorithm  can  be  safely

achieved in vivo . Thus, only a first proof of principle for the usability of RL algorithms in

diabetes has been successfully performed. It would be worth comparing such RL algorithms

to other algorithms in a larger setting in future studies and to further exploit their full potential

in terms of flexible reactions on changes in the blood glucose levels of diabetes patients. 

Expert commentary

Algorithms  for  closed-loop  models  of  insulin  treatment  have  to  deal  with  demanding

challenges  due  to  the  complex  physiology  of  glucose  homeostasis  as  well  as  technical

limitations  of  the  components  of  an  artificial  pancreas.  The  flexible  reactivity  especially

required for outpatients suggests the use of data-driven machine learning algorithms. Among

those, RL algorithms exhibit a great potential to deal with the time delay produced by the

CGM system. In view of the available evidence, it can be summarized that RL algorithms

provide  a  very  promising  approach  for  flexibly  and  independently  maintaining

normoglycemia in artificial pancreas systems. To date, the vast majority of papers reporting

the  development  of  algorithms  demonstrate  control  in  limited  scenarios  in  silico,  e.g.  an

insulin spike after a single meal. We assert that stochastic models are essential to assess the

reliability and stability of an algorithm for periods containing multiple meal events, whereas

future  in vivo studies of closed-loop algorithms are required to reliably assess performance

and personalization. 
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Five-year view

In the future, minimization of the time delay between changes in the glucose level and the full

effect  of  insulin  as  well  as  maximization  of  the  accuracy  of  the  subcutaneous  glucose

measuring devices will  be the subject of studies on the components of artificial  pancreas.

Ultra-rapid acting insulins are under development as well as substances like GLP-1 or amylin,

increasing  the  flexibility  of  glucose  regulation.  However,  the  more  other  substances  for

regulation  of  blood  glucose  come up,  the  more  individual  and  flexible  becomes  glucose

control - and the more complex. This increases the need for smart, personalized algorithms

calculating insulin delivery in the future and might amongst others be achieved by the use of

reinforcement learning algorithms. 

Key issues

 Maintaining  normoglycemia  is  crucial  in  patients  with  diabetes  mellitus  or  severe

illness and is usually achieved by administration of insulin. 

 An artificial pancreas system for closed-loop insulin delivery consists of a continuous

glucose monitoring device, an algorithm calculating the correct amount of insulin and

a pump delivering insulin. 

 Current challenges for calculation of the correct dose include technical issues most

notably with regard to the time delay between changes in the glucose level and the

maximum effect of insulin. 

 Upcoming substances for glucose regulation like glucagon or amylin increase both the

flexibility and the complexity of the system. 
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 The individualized treatment regimes and the complex glucose regulating parameters

elevate the need for smart, flexible algorithms calculating the insulin dose. 

 Algorithms  used  in  the  past  were  initially  based  on  Model  Predictive  Control  or

Proportional Integral Derivative Control. 

 Machine learning algorithms and especially reinforcement learning algorithms provide

the advantages to learn the individual glucose pattern of a diabetic patient in spite of

a time delay and to handle complex and external information to provide adaptive drug

delivery after a learning procedure.

 For machine learning approaches, care must be taken to acquire appropriate data for

the learning phase whereby the data should be representative, sufficient and optimally

noise-reduced.

 To  maximise  the  effectiveness  of  data  driven  approaches,  cross-validation  and

regularization  techniques  should be used and an extensive  testing phase has to  be

performed. 

Acknowledgements/Author contributions

M.B. wrote the manuscript. L.D., K.R., A.T., B.E., M.W. and A.F. reviewed and edited the

manuscript.  Martin  Westphal,  Arn  Tellmann,  Katrin  Reichel  and  Melanie  Bothe  are

employees  of  Fresenius  Kabi  Deutschland  GmbH.  Fresenius  Kabi  Deutschland  GmbH

distributes pumps for insulin delivery. All authors declare having no relationship with other

companies that make products relevant to the paper and have no conflict of interest with the

present work.

22



Figures

23



Figure 1: Closed-loop control model for insulin delivery with (hybrid model, dotted line) and

without external information. In the latter case, the algorithm reacts directly on the changes in

glucose levels evoked by meals or exercise without getting external information. 
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Figure 2: Components of the time delay between blood glucose level and maximum blood

insulin level leading to a lag time of approximately 1h. 
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Figure 3: Principle of a learning algorithm. Comparison of the calculated output parameter

with the desired output parameter leads to learning of the algorithm. 
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Figure 4: Schematic overview of commonly used types of algorithms for glucose control as

well as machine learning and reinforcement learning algorithms. The references are to be seen

as examples without valuation and the list is not intended to be exhaustive. MB RL = Model-

Based  Reinforcement  Learning;  MF  RL  =  Model-Free  Reinforcement  Learning;  ML  =

Machine Learning; MPC = Model Predictive Control; PID = Proportional Integral Derivative

Control; RL = Reinforcement Learning;
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Figure 5: Reinforcement  learning algorithms for diabetes.  Changes in the state lead to an

action of the agent, which changes the environment. The agent receives a numerical reward

from the environment, which together with the next status will influence the next action. 
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