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Abstract—Currently, Pedestrian Dead Reckoning (PDR) 

systems are becoming more attractive in market of indoor 

positioning. This is mainly due to the development of cheap and 

light Micro Electro-Mechanical Systems (MEMS) on smartphones 

and less requirement of additional infrastructures in indoor areas. 

However, it still faces the problem of drift accumulation and needs 

the support from external positioning systems. Vision-aided 

inertial navigation, as one possible solution to that problem, has 

become very popular in indoor localization with satisfied 

performance than individual PDR system. In the literature 

however, previous studies use fixed platform and the visual 

tracking uses feature-extraction-based methods. This paper 

instead contributes a distributed implementation of positioning 

system and uses deep learning for visual tracking. Meanwhile, as 

both inertial navigation and optical system can only provide 

relative positioning information, this paper contributes a method 

to integrate digital map with real geographical coordinates to 

supply absolute location. This hybrid system has been tested on 

two common operation systems of smartphones as iOS and 

Android, based on corresponded data collection apps respectively, 

in order to test the robustness of method. It also uses two different 

ways for calibration, by time synchronization of positions and 

heading calibration based on time steps. According to the results, 

localization information collected from both operation systems has 

been significantly improved after integrating with visual tracking 

data. 

Keywords—pedestrian dead reckoning; visual tracking; 

smartphone positioning; sensor fusion 

I.  INTRODUCTION 

Indoor positioning techniques and related navigation 
technologies are becoming more important as there is a high 
demand with urbanization [1]. One reason is due to the widely 
used outdoor positioning system, Global Positioning System 
(GPS), is problematic for indoor applications, caused by 
unavailability of Global Navigation Satellite System (GNSS) 
signals [1-4]. The other reason is Location Based Services 
(LBS) has been widely used by people around the world [5, 6] 
and are substantially affected by the popularization of smart 
devices [7]. Common indoor positioning techniques are can be 
divided into three categories as signal-based methods, dead 

reckoning, and device-free methods [8]. Although there is still 
no optimal solution which satisfies the requirements of 
accuracy, availability, continuity, and reliability when 
comparing to GPS for outdoor positioning  [9, 10], the latter 
two classes have the advantages of higher flexibility in 
operation and lower cost in infrastructure installation [11]. One 
the other head, the signal-based approaches need the pre-
installed beacons, which are more expensive, less flexible and 
easily affected by physical variations from environment and 
multipath effects [12-14]. Common sensors for dead reckoning 
and device-free approaches are MEMS-based Inertial 
Measurement Units (IMU) and Charged-Couple-Device (CCD) 
cameras, respectively. These two kinds of sensors have 
experienced great advancements in manufacturing with 
products in more compact, cheap, low energy consumption and 
precise format [8, 15-19]. In addition, with the ubiquity of IMU 
sensors in smartphones and surveillance cameras in public 
building areas, the possibility of applying these sensors in daily 
life is growing as well [11]. With a wide range of applications 
in indoor scenarios, it infers a promising future market for the 
technologies based on these two kind of sensors. 

PDR systems or Inertial Navigation Systems (INSs), are 
defined as dead reckoning based systems for pedestrians [16]. 
They can provide relative user positions, orientation and 
velocity in indoor area by using triad accelerometers and 
gyroscopes for step detection and heading estimation [20-25]. 
PDR-based methods can be divided into several categories 
depended on the implementation of IMU: foot-mounted [26, 
27], hand-held [17, 28], backpack [29-31], in-pocket [32] or 
head-mounted [27, 33, 34], and this study mainly focuses on 
hand-held ones on smartphones. This is because that 
smartphones have been integrated into ordinary and spaces of 
daily life [6], and Location-Based-Services (LBS) such as 
navigation and tracking, has been widely used by people around 
the world [5, 6]. Tiny sensors which are necessary for INSs, 
such as accelerometer, gyroscope, magnetometer, and 
gyroscope, have already been implemented in these smart 
devices. Moreover, they are affordable to the public as well as 
for infrastructure-less navigation [12]. Commonly used 
smartphones for PDR can be divided into two types as iPhone 
[13, 14, 35] and Android systems [12, 17, 36-40], and the latter 



one seems to be more popular in current researches. However, 
as the accuracy of IMU sensors can be compromised by bias 
drift with the accumulation of time period, especially for the 
inertial sensors on smartphones as they are less precise. This 
can cause problems on the long-term use of PDR for 
independent positioning, and thus external positioning 
information are needed for calibration and absolute localization 
[3, 16, 22, 41, 42]. There are two ways to solve this issue: 
configuration of system dynamics [43, 44] and compensation 
from other sensing system [3, 41].  

Meanwhile, the high accuracy of Optical Positioning 
Systems (OPS) has encouraged many pedestrian based 
applications, including indoor positioning [12, 45]. In addition, 
the introduction of optical systems can also enrich information 
during positioning process by object detection from visual data 
such as video, with highly accurate localization results [19, 45]. 
Conventional methods are depended on either optical flow or 
feature detection [41]. The former, although with higher 
accuracy, can be more computationally expensive and may 
require precise conditions of lighting and precise cameras. In 
addition, it assumes that between-frame motions are small and 
limited enough to be ignored [24], which might not be true in 
real-world applications and scenarios. Feature-based methods 
are more popular and simple approaches. They extract features 
from landmarks in images for positioning, and thanks to the 
ubiquity of indoor landmarks, they can provide solution in 
many indoor applications with relatively less computation 
power required [41]. However, the performance of OTS can be 
easily affected by occlusion in surrounding environment as the 
Line-of-Sight (LOS) between camera and targets are 
compulsory for OTS [27].  

 In order to compensate the drawbacks from the above 
mentioned two positioning systems, the integration of them can 
be a good answer. The OTS can be used to calibrate the drift 
accumulation with its higher accuracy, while the inertial 
systems can solve the incontinuity problem of OTS caused by 
occlusion in LOS as it can provide relatively accurate results in 
a short time. The fusion of these two systems is expected to 
keep the merits both two positioning systems, providing 
localization service with higher overall accuracy, continuity, 
accessibility and reliability [3, 24]. This kind of vision-aided 
inertial positioning systems has been widely used in many 
applications and researches, as it can provide three dimensional 
location information and orientation estimation for motion 
tracking. The typical applications are in robotics – such as 
Simultaneous Localization and Mapping (SLAM) – and  for 
unmanned vehicle system [23, 41]. The usual implementation 
of this system is to attach a monocular/stereo camera and IMU 
sensor on a fixed platform and the fusion of inertial and visual 
data is based on egomotion heading estimation, by slowing the 
sample rate of IMU data [44], or using Particle Filter (PF) [e.g. 
11, 43] or applying variants of Kalman Filter, such as Extended 
Kalman Filter (EKF) and Unscented Kalman Filter (UKF) [e.g. 
11, 18, 24, 27, 41]. Some of studies have tried to utilize the 
built-in cameras and IMU sensors in smartphones for indoor 
localization. They use built-in camera to film the ground for 
camera’s relative position and orientation estimation based on 
ground-plane feature matching, and IMU sensors for step 
detection and heading estimation [29, 30]. However, this kind 

of approach is not practical for commercial application as the 
video recording by camera is quite energy consuming and 
cannot support for a long time for indoor localization. Previous 
studies have also proved that the combination of floor plan as 
environmental constraints, supported by the application of PF, 
can help to improve the accuracy of indoor positioning [22, 29, 
30, 32, 42, 46-51]. This paper also takes this idea to constrain 
the positioning results but without using of PF. Instead, it is 
processed by georeferencing in order to provide absolute 
position information to the results.   

This paper proposes a hybrid system with a different set-up, 
which attaches inertial sensors and camera on independent 
platforms other than the same platform. The video data is taken 
from static and fixed camera and inertial data is taken from 
devices carried by users. Instead of installing additional 
sensors, it tries to utilize the current indoor infrastructures of 
surveillance systems in indoor area and inertial sensors on 
smartphones to provide user location, with the support of digital 
floor plan with georeference. In comparison with previous 
studies using landmark-based image matching for localization 
and camera orientation estimation, this paper uses deep-
learning-based object detection for pedestrian localization, with 
the prior information of camera location inside the building and 
digital floor plan. Then, the estimated 2D trajectories calculated 
from inertial and visual data are both pre-processed by 
coordinate transformation based on real geographical 
information provided by digitized floor plan. The visual data is 
then used to calibrate inertial positioning in visible area based 
on similar time steps. There are two ways of calibration being 
introduced in this paper as position replacement and heading 
correction. The final results acquired from these two methods 
are compared for a better solution based on the accuracy of 
tracking. In addition, this paper, other than previous studies 
only focus on one type of smartphone, the system is tested on 
both types of common smartphone systems for the robustness 
of the approach application and it also gives an answer about 
which kind of smartphone may have more precise IMU sensors 
based on the experiments in this study. 

II. SYSTEM ARCHITECTURE 

This paper uses a hybrid system which is consisted of one 
main positioning system as smartphone-based PDR and an 
aided system as camera-based visual tracking (Fig.1). During 
the operation, the smartphone-based PDR works continuously 
while the visual tracking system only provides positioning 
service in visible area. For data collection, an Android phone 
and an iPhone are simultaneous held by the user to collect 
accelerations and angular velocity during walking, which can 
later be used for relative positions and poses estimation (Section 
II A). The video recording is triggered at the same time. Once 
user enters the LOS area of camera, the positions can also be 
calculated by pedestrian detection with the support of depth 
information of each frame (Section II B) and the heading of user 
is determined by user positions in two consecutive frames. In 
order to acquire absolute locations, the corresponded digital 
floor plan with georeference in WGS 1984 is used as the 
reference map for the results of PDR and visual tracking before 
calibration (Section II C). This is beneficial to further 
development of seamless indoor-outdoor positioning transition 



by sharing same positioning coordinate. The visual positioning 
results are then used to calibrate the inertial positioning, based 
on similar time steps of PDR. The calibration methods can be 
divided into two ways which are described in Section II D and 
their inertial positioning results are compared on accuracy in 
order to provide an optimal solution in Section IV. This paper 
also compares the calibrated PDR results between two different 
types of smartphones to see whether this method is a potentially 
ubiquitous solution for both two types of mobile phones. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The architecture of vision-aided PDR system (The left part in red box 

is visual tracking and the right part in blue box is PDR system). 

A. Smartphone-Based PDR System 

The inertial positioning algorithm in this paper is developed 
based on previous studies using Step-and-Heading System 
(SHS), which uses 2D description of pedestrian strides as length 
and heading. Meanwhile, it also transform its coordinate 
from body frame to global frame [16, 36, 37, 52, 53].  

1) Step Detection 
The algorithm of step detection in this paper is depended on 

gait cycle detection, which identifies gait cycles by searching 
for repetitive data pattern. In this paper, it applies a threshold 
on pre-processed accelerations, based on the principle of 
stationary inertial sensor during stance and the corresponded 
threshold is then settled, in order to be recognized that activity 
and reported to the system [16, 54, 55]. The measured 
acceleration is first filtered by a low-pass filter [37] with 
frequency condition  depended on accelerometer sampling rate 
[17]. Then, a synthetic acceleration respect to time is taken in 
three axes (𝑎𝑥(𝑡), 𝑎𝑦(𝑡), and 𝑎𝑦(𝑡)) as described in formula (1). 

This is due to distribution of vertical signals, which mainly 
contribute to step peaks, may appear in all axes based on the 
current device’s altitude and orientation [35]. 

𝑎(𝑡) = √(𝑎𝑥(𝑡))
2

+  (𝑎𝑦(𝑡))
2

+  (𝑎𝑧(𝑡))
2

− 𝑔

where g is the earth’s gravity, which needs to be excluded from 
synthetic results. The synthetic accelerations are then processed 
by applying pre-settled threshold to classify heel-off, toe-off, 

heel-strike and stance phases of gait cycle. The next step is to 
apply zero-crossing approach for cyclic property detection [56]. 
The detected steps after acceleration processing by Android and 
iPhone are represented in Fig.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The processed synthetic accelerations and detected steps by Android 

(a) and iPhone (b). 

2) Step Length Estimation 
This paper estimates step length based on Weinberg’s 

algorithm as in (2), which uses a non-linear model with the 
value of maximum ( 𝑎𝑚𝑎𝑥(𝑖) ) and minimum ( 𝑎𝑚𝑖𝑛(𝑖) ) of 
synthetic accelerations of each step event [57]. 

𝑆𝐿𝑖 =  √𝑎𝑚𝑎𝑥(𝑖) − 𝑎𝑚𝑖𝑛(𝑖)4
∗ 𝑘 (𝑖 = 1,2, … , 𝑛)     (2) 

where 𝑆𝐿𝑖  is the step length of the 𝑖𝑡ℎ step and 𝑘 is an empirical 
value of penalty for estimation [37]. 

3) Heading Estimation 
The orientation of each step is determined by its 

corresponded angular velocity changes of body frame at time 𝑡 
and the heading of previous state. Before this step, it first needs 
to modify the angular velocity changes from body frame into 
global frame by applying a rotation matrix  𝑅(𝑡) . The 
transformation process from body frame to global frame is 
described in (3)-(6):  

𝑅𝑥(𝑡) =  (

1 0 0
0 cos(𝜙(𝑡)) − sin(𝜙(𝑡))

0 sin(𝜙(𝑡)) cos(𝜙(𝑡))
)                   (3) 

 

 

 
(a) 

 
(b) 



𝑅𝑦(𝑡) =  ( 
cos(𝜃(𝑡)) 0 sin(𝜃(𝑡)) 

0 1 0
− sin(𝜃(𝑡)) 0 cos(𝜃(𝑡))

 )                  (4) 

 

𝑅𝑧(𝑡) =  (
cos(𝜓(𝑡)) − sin(𝜓(𝑡)) 0

sin(𝜓(𝑡)) cos(𝜓(𝑡)) 0
0 0 1

 )                  (5) 

       

𝑅(𝑡) =   𝑅𝑧(𝑡)𝑅𝑦(𝑡)𝑅𝑥(𝑡)                         (6) 

where 𝑅𝑥(𝑡), 𝑅𝑦(𝑡), and 𝑅𝑧(𝑡) represents the sub rotation 

matrix in roll 𝜙(𝑡), pitch 𝜃(𝑡) and yaw 𝜓(𝑡) directions of body 
frame respectively, as a function of time 𝑡. The overall rotation 
matrix 𝑅(𝑡) is determined by the integration of these three 
components. The initial states of roll and pitch angle are 
determined by average changes of initial accelerations in same 
directions and the initial yaw will be zero as the starting point 
of heading. The related updating of 𝑅(𝑡)  to 𝑅(𝑡 +  ∆𝑡) is 
described in (7)-(8):  

𝑋 =   (

0 −𝜔𝑧
𝑡∆𝑡 𝜔𝑦

𝑡

𝜔𝑧
𝑡∆𝑡 0 −𝜔𝑥

𝑡 ∆𝑡

−𝜔𝑦
𝑡 ∆𝑡 𝜔𝑥

𝑡 ∆𝑡 0

)                       (7) 

𝑅(𝑡 + ∆𝑡) =  𝑅(𝑡) ∗ exp (𝑋)                        (8) 

where 𝑋 is the updating variable, based on angular velocity 
changes in three axis as 𝜔𝑥

𝑡 , 𝜔𝑦
𝑡  and  𝜔𝑧

𝑡  with sampling 

interval ∆𝑡. In this paper, as the smartphone is held stably in 
hand pointing to the walking direction, so the heading Ψ(𝑡) of 
each step is only related to the changes in yaw direction [17, 37] 
and can be calculated as:  

Ψ(𝑡) = arctan2(𝑅2,1(𝑡), 𝑅1,1(𝑡))                        (9) 

4) Position Estimation and Positioning Error 
The user position  𝑃𝑖 is then calculated by adding 

corresponded estimated step length 𝑆𝐿𝑖   to the previous 
location with estimated heading Ψ(𝑡):  

 𝑃𝑖 = [
𝑃𝐸𝑖

𝑃𝑁𝑖

] =  [
𝑃𝐸𝑖−1

+  𝑆𝐿𝑖 ∗  sin (Ψ(𝑡))

𝑃𝑁𝑖−1
+ 𝑆𝐿𝑖 ∗  cos (Ψ(𝑡)))

]               (10) 

where 𝑃𝐸𝑖
 and 𝑃𝑁𝑖

 represent the position in east and north 

direction [17, 37]. Before the calculation of position error, the 
estimated positions need to be transformed into real geographic 
system as the reference positions are measured in that way. The 
positioning error 𝐷𝑖 is then defined as distance between 
estimated position 𝑃𝑖  and reference position 𝑅𝑖: 

𝐷𝑖 =  ‖𝑃𝑖 − 𝑅𝑖‖                                (11) 

B. Pedestrian Detection Based Visual Tracking 

1) Deep-Learning Based Pedestrian Detection 
The conventional feature-extraction based pedestrian 

detection, the common methods are based on figure-ground 
segmentation of video data [58]. Many previous studies have 
utilized background subtraction for foreground detection to 
identify people in the images (e.g. [59, 60]). After detecting 
human in each image, the next step is to transform the human 
position in image space to other coordinate systems. For 
example, the research by National Central University of Taiwan 

applied a 2D Direct Linear Transform (DLT) to processed 
results to get the relationship between two coordinate system 
for later conversion from image coordinate to bird’s-eye view 
[60]. The study by Wuhan University integrated the results with 
depth image extracted from rendered background to get 3D 
coordinates and adjusted them into pre-established 3D networks 
[59].  

However, feature based methods require many manual 
selections of best features and they are limited to the extent of 
the applications and environments as their parameters need to 
be modified regularly, which is affected by the ambient. To 
overcome these problems, deep learning methods can reduce 
the manual work to improve the flexibility and ubiquity of 
solution. This paper uses Faster R-CNN for pedestrian detection 
(Fig.3), which is based on Regional Proposal Network (RPN) 
and Region-Based Convolutional Neural Networks (R-CNNs), 
and is one of the state-of-art methods for deep learning with 
higher accuracy. The RPN is used for predicting Bounding Box 
(BB) and classifying objectness, and a Fast R-CNN method is 
applied for object detection using the predicted BBs with a 
detector based on VGG-16 model [61].  

 

 

 

 

 

 

 

 

 

 
Fig. 3. The architecture of Faster R-CNN.  

 

 

 

 

 

 

 

Fig. 4. An example of extracted BB in frame (left) and entire user path (right).  

In this study, it uses pre-trained human detector of deep 
network based on data from MS COCO and PASCAL VOC 
2007 + 2012. After being processed by Faster R-CNN, the BBs 
are extracted from frames and corresponded frame numbers are 
also recorded for later acquisition of related time stamps. The 
middle points of bottom boundaries of BBs are then regarded 

 

 



as the lowest points of user or user’s mobility aid, and these 
points can be constructed into the entire user path (Fig.4). 
Although this study only uses one user, Faster R-CNN has the 
potential to handle multiple users for pedestrian detection. 
However, the overlapping of people in camera will be a big 
challenge at that time. Meanwhile, the relatively long filming 
distance in the beginning between targeted user and 
corresponded camera will also cause the problem of missing 
detection of user. 

2) Depth Information 

The distance  𝐷𝑖  between the user and the camera for 𝑖𝑡ℎ 
frame which is regarded as depth information, could be 
determined by a pinhole camera model [62] as in (12) with pixel 
height ℎ𝑖 , focal pixel length 𝑓 and real height 𝐻𝑝 of human. 𝑓 

is determined by camera resolution and field of view (FOV). 

                      
ℎ𝑖

𝑓
=  

𝐻𝑝

𝐷𝑖
 (𝑖 = 1,2, … , 𝑛)                        (12) 

C. Map Information Integration 

Before calibration, both results from smartphone-based 
PDR and camera-based visual tracking need to be transformed 
into same coordinate system provided by map information. In 
this paper, the georeferenced digital map is used as the 
reference for absolute positions with simplified semantic 
representations of indoor building information. It is digitized 
from floor plan with georeferencing processing, and geographic 
system used in this paper is WGS 1984 with prior building 
height information (9.5 m) for 3D positioning. The application 
of WGS 1984 makes the future development of transition 
between indoor and outdoor environment possible, as it is also 
the common Spatial Reference System (SRS) for GPS.  

D. Calibration of Smartphone-Based PDR 

According previous studies [12, 19, 45], visual positioning 
is relatively accurate than PDR in LOS area. Thus, its results 
can be used to calibrate the drift during using PDR-based 
positioning. This paper introduces two approaches for PDR 
calibration supported by visual tracking with map information. 
In Section IV, their results are compared based on the 
positioning error and a relative optimal solution is then selected. 

1) Position Replacement 
The first idea is to directly replace PDR positioning results 

by visual tracking results based on time synchronization. As 
both PDR and visual tracking results have recorded time 
stamps, their results with similar time stamps can then be 
matched together by replacing results from PDR positioning 
with vision-based tracking. The time stamps of PDR are 
deduced from detected step events and related time stamps from 
accelerometer readings, while that of videos are inferred from 
frame number and filming frequency. This method has the 
advantage of simple implementation and less computation cost.  

2) Heading Calibration 
In reality, however, the time stamps of two positioning 

systems cannot be perfectly matched, and a more realistic 
situation is that the time stamp of current detected step from 
PDR is between two successive detected positions from frames 
with similar time stamps. This leads to the development of 

second method for heading calibration. This method is more 
close to real time simulation as it replaces PDR’s heading of 
each step by the direction determined by two consecutive 
frames based on similar time steps. Then the calibrated 
headings are used with the previous estimated step lengths to 
re-calculate user positions. This method needs slightly difficult 
implementation and a little more computation power when 
dealing with large amount of data. 

III. EXPERIMENTAL SETUP 

In this study, the proposed system tested in an experimental 
site located on the 4th floor of Sir Peter Mansfield Building at 
University of Nottingham, Ningbo, China. The whole walking 
trajectory is 51.84m, where only a short part (8.82m) which is 
not visible by camera. This short part is tracked by only using 
smartphone-based PDR. The rest, which is a long corridor, 
could be used for testing the calibrated PDR (43.02m) by visual 
tracking results. The reference map is digitized from floor plan 
of experimental site by using ArcGIS 10.3, with simple 
semantic representations of indoor structures (Fig.5). The 
reference path is represented in a red line with red crosses, 
starting from the door of Room 443 and ends at the end of 
corridor beside Room 413. It will be later used for accuracy 
tests by comparing with the estimated position points.  

There are two types of smartphones are used for PDR 
measurements. The smartphone model selected for Android 
system is HUAWEI MT7-TL00, and that selected for iOS 
system is iPhone 7 Plus. The data collection app for the former 
is GetSensorData [37] and for the latter is MATLAB Mobile. 
The sampling frequency for two smartphones are all settled to 
be 100 Hz. During the experiment, both smartphones are held 
horizontally, pointing to heading direction. The smartphone-
based positioning method is already described in Section II A.   

For visual tracking system, the camera used for experiments 
is located on the ceiling in front of Room 416 and it starts 
filming simultaneously with the initialization of smartphone-
based PDR. The resolution of camera is 960×544, vertical FOV 
is 27°, and thus the pixel length for the camera is about 1.05×103 
per inch. The frame frequency is 16 frames per second. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5. The reference path (with 4F_floor, 4F_door, 4F_room, 4F_adpt and 
4F_con represent floor shape, doors, rooms, non-functional places and 

connections such as staircases and elevators).  

 



IV. RESULTS AND ANAYSIS 

The results can be divided into two parts as pre-calibration 
and post-calibration. In pre-calibration, it includes the results 
from visual tracking and smartphone-based PDR of two types 
of mobile phones. In post-calibration, it shows the results of two 
different calibration methods. In addition, it also compares the 
results between two types of phones to see whether this method 
can improve their accuracy to a similar level. 

A. Pre-Calibration 

1) Visual Tracking 

      After extracting the visual positioning points, the overall 

path in visible area is shown in Fig.6. In all, the overall visual 

path matches the reference path in visible area, however, it can 

be found that the positioning points are not evenly distributed. 

In the beginning, the positioning points are quite dense while in 

the ending stage, the positioning points start to be sparser. There 

are two reasons for this phenomenon. First, as mentioned 

previously in Section II B, the target is too far away to be 

detected by the camera, leading to mistakes in pedestrian 

detection. Second, as the depth information is calculated based 

on a pinhole model which mainly relies on the pixel height 

ℎ𝑖  changes in frames, it also affects the results when calculating 

the distance. In the initial stage, the changes of ℎ𝑖  are trivial, 

this leads to the dense distribution of positioning points, while 

in the ending part, the changes of ℎ𝑖  are becoming more 

significant and thus the distribution of positioning are more 

scattered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. The results of visual tracking. 

2) Smartphone-Based PDR 
The results of smartphone-based positioning are shown in 

Fig.7 and the accuracy is summarized in Table I. During the 
experiment, the user walked 83 steps. The Android phone 
detected 83 steps while the iPhone detected 84 steps. This may 
due to iPhone has more sensitive accelerometer and detects one 
more step in the end, which can also be viewed from Fig.2 as 
its acceleration changes are more significant than Android 
phone. This leads to the drift accumulation in step length 
estimation by iPhone. This unexpected However, iPhone seems 
to have a better gyroscope, which can be viewed after passing 
the corner as path estimated by iPhone has less tilt compared to 

Android system. In all, Android-based PDR seems to have 
better performance than iPhone-based PDR as Root Mean 
Square Error (RMSE) of Android-based positioning is 0.82m, 
and that for iPhone is 1.85m. Before calibration, the last step by 
iPhone detection needs to be removed as the reference path only 
has 83 steps. It will not affect the final calibration result as the 
whole length of the path estimated by iPhone is also much 
longer than the reference path when comparing Fig.5 and 
Fig.7b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The results of smartphone-based PDR by Android (a) and iOS (b). 

B. Post-Calibration 

1) Position Replacement 
The position-replacement method directly replaces the PDR 

results by vision-based tracking positions based on their similar 
time stamps as described in Section II D(1). The results for two 
smartphones are shown in Fig.8. Comparing to the results from 
pre-calibration, it provides a better solution for positioning than 
using single PDR tracking system as it takes the advantage of 
accurate positioning by visual tracking in LOS area. Moreover, 
as the ending positioning point of calibrated PDR is matched to 
that of reference path, it can provide a correct starting point for 

 

 
(a) 

 
(b) 



the following tracking if a second camera is introduced to the 
current system. The RMSEs for two smartphones reach a 
similar level, which are 0.73m (Android) and 0.75m (iOS) 
respectively, meaning this method is able to handle the 
positioning calibration regardless of the smartphone models. In 
addition, it is more effective on iPhone-based calibration as it 
improves its performance about 59% than 11% by Android 
system. However, as previously mentioned in Section IV A(1), 
visual tracking is affected by pinhole effect which has the 
problem of uneven distribution of step points, it also introduces 
the error to calibrated results by direct position replacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Calibrated results of smartphone-based PDR by position replacement 

by Android (a) and iOS (b). 

2) Heading Calibration 
As mentioned in Section II D(2), the time stamps for two 

positioning systems cannot be exactly same, this method is 
more close to reality as it corrects the heading information for 
position re-estimation. The calibrated positioning results are 
shown in Fig.9. Comparing to previous results by using the first 
method, this method is more accurate as the uneven distribution 
effect caused by pinhole model is removed by only calibrating 
the orientations but keeping original step lengths for position 
estimation. Meanwhile, it still takes the merits of previous 
position-replacing-based hybrid system. This leads to lower 

RMSEs as 0.51m (Android) and 0.56m (iOS), with 37.8% and 
69.7% improvement respectively than pre-calibrated results 
(Table I). Moreover, it also has the potential to be adjusted in 
online calibrations as the heading information acquired between 
two consecutive frames can be directly used in real time PDR 
heading calibrations for position estimation other than post 
processing. However, it has the problem that the ending point 
may not be perfectly matched with the ending point of reference 
path as there are still some errors in step-length estimation 
process.  

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
Fig. 9. Calibrated results of smartphone-based PDR by heading calibration by 

Android (a) and iOS (b). 

TABLE I.  RMSE OF TWO SMARTPHONE-BASED PDR BEFORE AND 

AFTER CALIBRATION 

 Device 

Mean Location Accuracy 

(RMSE) 
HUAWEI 

MT7-TL00 
iPhone 7 Plus 

Pre-Calibration 0.82 m 1.85 m 

Post-
Calibration 

Position 

Replacement 
0.73 m 0.75 m 

Improvement 10.9% 59.5% 

Heading 
Calibration 

0.51 m 0.56 m 

Improvement 37.8% 69.7% 

 
(a) 

 
(b) 

 
(a) 

 
(b) 



V. DISCUSSION AND FUTURE WORK 

In all, the hybrid system has higher accuracy than single 
PDR system, regardless of using either position-replacing based 
or heading-correction based calibration. The heading 
calibration based approach is more accurate in this study as it 
keeps estimated step length information. As this study uses a 
fixed 𝑘  for coefficient of step length estimation, it can be 
modified into a real-time value which is determined by the ratio 
between estimated distance and real distance. This may help to 
improve the accuracy of final positioning results as well. 
Meanwhile, the whole system can also be adjusted to an online 
mode in order to do calibration in real time instead of post 
processing in this paper. In addition, the results indicate that this 
design of hybrid system can handle both smartphone models by 
achieving similar level of accuracy after calibration. As both 
types of phones are common models in the market, it suggests 
that this system has the potential to become a ubiquitous 
solution for indoor positioning. In addition, as this system 
utilizes the existed indoor infrastructures and user devices, it 
can be a low cost solution as well as it needs no additional 
installations of sensors. However, a limitation of this system is 
that the surveillance cameras may not existed in indoor 
environment of some residential areas, the current solution is 
more suitable in public space with completed surveillance 
system.  

This paper also compares the positioning performances of 
two different smartphones as well. According RMSEs of 
experimental results in this paper, the Android system seems to 
provide slightly better positioning service before and after 
calibration. However, this does not mean that iPhone is not 
good for indoor positioning, as the final RMSEs after 
calibration between two phones are not significantly different. 
In addition, the gyroscope of iPhone seems to have better 
performance than that in Android, as the headings after turning 
detected by iPhone have a better match with the directions in 
reference path. As the generations of smartphones are updating 
in a fast speed, the quality of built-in sensors will be more 
precise in future, providing better services of indoor 
positioning.  

In the next step, this system will be developed into a more 
comprehensive one with the ability to track the entire 
movement of a single user in the building with multiple floors 
as this study only tests on a single floor. The smartphone-based 
PDR system will be further tested on staircase-walking with the 
support of a barometer for height detection, in order to 
automatically change to related floor plan. The visual tracking 
can also be updated into a multi-camera system, as this paper 
only uses one camera. As the whole building already has a 
complete surveillance system, the next step is to utilize these 
cameras to work cooperatively to calibrate the entire movement 
estimated by smartphone-based PDR. This needs to solve the 
problem of linking the ending point detected by the previous 
camera to the starting point detected by the following camera 
by calibrated PDR. With the smartphone-based PDR as the 
main component of system, this hybrid system can still work 
even under the situations when some of the cameras is down. 
The georeferenced floor plans of different floors in WGS 1984 
need to be prepared as well as a support of system for absolute 
positioning information. . After achieving tracking user’s entire 

movement in indoor environment, a future test is needed to 
check whether the transition between indoor and outdoor spaces 
is smooth and accurate as well. This will compare the accuracy 
of last point at the exit before entering the outdoor space 
estimated by this system and measured by GNSS signals. 

The tracking of multiple users is also an objective in future 
work. However, there are some difficulties required to be 
solved. First, the re-identification of a specific person between 
two successive cameras will be a great challenge and requires 
more computation power. The current idea is to see whether 
calibrated smartphone-based PDR can help to identify the same 
person by using the ending point of last camera and to estimate 
the starting point for the next camera. Second, even in the same 
camera, the distinguishing of different users may also be a 
problem if there is some overlapping parts between users during 
movement. This may cause some errors in calibrating 
smartphone-based PDR. To overcome this problem, the 
standardization of walking paths into a uniform network may 
be a possible solution.  

VI. CONCLUSION 

This paper contributes a design of a hybrid system for 
smartphone-based PDR aided by OPS with the support of 
digital map information in WGS 1984 on distributed platforms, 
in order to improve its indoor positioning performance. Both of 
the sub-systems can work independently with the support of 
digital map information and the accuracy of inertial system in 
visible area will be improved by additional visual tracking 
information. It is tested on two common smartphones to see 
whether it is a potential ubiquitous solution for different 
smartphones in market. This hypothesis has been proved in this 
experiment as the accuracy of calibrated results from both 
smartphones has been significantly improved and achieved 
similar levels. It also contributes two kinds of calibration 
algorithms as direct position replacement and heading 
calibration. The latter one is more accurate than the former one 
as it follows the mechanism of PDR with the maintenance of 
estimated step information. This system also has the potential 
to be a low-cost solution as it does not need additional 
installation of sensors but only utilizing available sensors from 
user and indoor environment. In future, it also can be developed 
into a more comprehensive system in order to track the entire 
indoor movements of user.  
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