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Abstract 

This paper reviews the neurocognitive mechanisms underlying prosocial 

development in childhood. I begin by arguing that most prosociality is costly. 

This cost needs to be regulated for prosocial behavior to occur. The precise 

regulatory mechanisms depend on the type of prosocial behavior and include 

behavioral control in the case of sharing and emotion regulation in the case of 

helping. I review evidence that these regulatory mechanisms are subserved by 

prefrontal cortical circuitry, which depending on the mechanism interacts with 

different brain regions coding for self- and other-related affect to produce 

prosocial behavior. I conclude that the maturation of prefrontal cortical circuitry 

drives the development of both sharing and helping in childhood through 

supporting the emergence of relevant regulatory mechanisms.  
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Introduction 

Prosocial behavior can take multiple forms, such as sharing resources (i.e. food 

or money), helping, or comforting others in distress. These forms of prosociality 

have been documented already in infancy [1], suggesting early and deep-seated 

ontogenetic roots [2]. While much attention has been dedicated to 

understanding the origins of prosociality, less research has been conducted on 

how these behaviors develop throughout childhood and into adulthood. This 

paper reviews studies on the neurocognitive mechanisms of prosocial 

development, specifically sharing and helping, during middle and older 

childhood1. 

 

I argue that most types of prosocial behavior, and certainly sharing and helping 

carry a cost. Sharing resources means less for oneself and helping another 

requires time and physical or psychological effort. At the very least prosocial 

behavior implies opportunity costs with regards to both resource and recipient. 

Studies have shown that children are aware of these costs since, their prosocial 

behavior is modulated by both the potentially incurred cost [3, 4] and the value 

of the resource [5]. I propose that the development of prosociality can be viewed 

through a value-based decision-making framework [6], whereby the potential 

costs of prosociality are weighed up against the possible benefits derived from 

being prosocial, both in the short- and the long-term. I argue that for decisions to 

be swayed in favour of prosociality, the costs of being prosocial need to be 

regulated. These regulatory processes undergo protracted developmental 

                                                        
1 The literature on neural correlates of comforting in children and adults is 
virtually non-existent.  



 4 

change due to the maturation of the underlying neural circuitry. This paper 

reviews studies showing that distinct forms of prosociality demand distinct 

regulatory processes. Thus, sharing needs behavioral control and helping 

requires emotion regulating. These regulatory processes draw on distinct neural 

mechanisms, which might also explain the observed lack of positive relationships 

between the two types of prosociality in development [1, 7].  

 

The neurocognitive mechanisms of sharing 

Sharing valuable resources can be observed in toddlers as young as 15 months 

[8]. At this age sensitivity towards equal distributions and fairness norms also 

emerges [9, 10]. Around 3 years, children state that sharing equally is the norm 

and from then on, they increasingly follow such sharing norms with their actual 

behavior [11]. Complying with social norms constitutes a long-term goal, which 

conflicts with the more immediate satisfaction of reward maximization [12]. I 

argue that resolving such conflict in favour of sharing according to the norm 

requires behavioral control. There is by now increasing evidence that behavioral 

control is positively correlated to sharing in both preschoolers [13, 14] and 

school children [11, 15] using a variety of measures of behavioral inhibition (i.e. 

day-night task, questionnaire measures). More recently, these correlative 

findings have been extended to show that explicit experimental manipulations of 

behavioral control impact sharing directly. Thus, in one study, it was shown that 

children aged 6-9 years shared less after having engaged in a behavioral motor 

control task compared to sharing after a speeded reaction time task [16]. In 

another study children aged 6-9 years shared more after having listened to 

stories priming behavioral control compared to stories that did not [17]. In sum, 
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there is a sizeable body of literature suggesting that behavioral control aids 

sharing in accordance with the prevailing social norms during middle childhood.  

 

In adults, it has been shown that social norm compliance relies on lateral 

prefrontal cortical brain regions [18, 19]. Activity in left and right dorsolateral 

prefrontal cortex (DLPFC, see Figure 1A) was positively correlated with sharing 

under threat of punishment [18], while disrupting activity in right DLPFC 

reduced such sharing [19]. It has been argued that the top-down modulation 

from DLPFC of subjective value-signals in the ventromedial prefrontal cortex 

(VMPFC, see Figure 1B) is key for both implementing and complying with social 

norms [20]. Lateral prefrontal cortical areas are among the brain regions 

undergoing the most protracted age-related loss of grey matter volume 

throughout childhood and adolescence [21]. Further, linear age-related increases 

in structural connectivity are among the most delayed in white matter bordering 

prefrontal cortex [22], which in turn impacts the extent of functional 

connectivity [23]. Lateral portions of the prefrontal cortex are involved in 

actively maintaining task goals, biasing attention and implementing behaviors 

[24]. The maturation of lateral PFC also underpins the development of these 

functions in children [25, 26], which make it a suitable candidate region 

supporting the emergence of behavioral control mediated social norm 

compliance.  

 

A recent study showed that social norm compliant sharing in children increased 

between the ages of 6-13 years and this correlated directly with an independent 

measure of behavioral motor control [27]. Simultaneously recorded brain 
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activity showed that this age-related increase in social norm compliance 

correlated positively with activity in the left DLPFC. Further, the age-dependent 

increase in activity in this region mediated the developmental increase in 

behavioral motor control, which in turn predicted the increase in social norm 

compliance throughout childhood. While connectivity analyses were not 

conducted in this study, it is likely that such decisions to share are supported by 

increased functional coupling between DLPFC and brain areas that compute the 

value of decisions, such as the ventromedial prefrontal cortex (VMPFC). Such a 

mechanism has been shown to support decisions in favour of long-term goals in 

similar scenarios in both adults [20, 28, 29] as well as during middle childhood 

[30]. This interpretation is buttressed by findings from a recent study measuring 

event-related potentials (ERPs), which show an increase of regulatory processes 

in bringing about sharing during childhood [31]. Thus, in older children the P3, a 

component reflecting behavioral control mechanisms predicted equal sharing of 

resources, whereas in younger children this was predicted by the EPN, an early 

component reflecting affective evaluation.  

 

In sum, the development of behavioral control, supported by the maturation of 

function and connectivity of prefrontal cortical circuitry can account for the 

observed changes in sharing during middle and late childhood. Such a 

mechanism helps to shift decisions away from the immediate desires of reward 

maximization to complying to social norms of equal sharing.  
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The neurocognitive mechanisms of helping 

Studies on the ontogeny of prosociality have largely focused on helping, showing 

that this emerges as early as 14 months [32]. Helping others also implies costs in 

terms of time, effort and opportunities. Two key motivations have been argued 

to underlie helping. A selfish desire to reduce one’s own distress, also known as 

personal distress; and an altruistic desire to reduce the other’s distress, also 

known as empathic concern [33, 34]. Whereas personal distress leads to helping 

only when there is no other recourse of stopping one’s own distress (i.e. fleeing 

the situation), empathic concern leads to helping across a range of situations. 

Especially in children, only indicators of empathic concern were shown to 

predict helping [for a review see 34]. It has been argued that empathic concern 

arises out of the interplay of an emotional response to the need of another and a 

sufficiently strong regulation of this emotional response [34]. Thus, the literature 

on the development of helping during childhood suggests that those children 

both high in emotional responding and emotion regulation are the ones most 

likely to help [35]. Support for this comes from studies using parental 

questionnaires, parent and teacher ratings as well as psychophysiological 

indicators suggesting that empathic concern is a good predictor of helping 

behavior in childhood.  

 

In adults it has been shown that observing the painful or unpleasant experience 

of another person activates circuitry that is also recruited when undergoing this 

experience oneself [36, 37]. This circuitry comprises the bilateral anterior insula 

and medial/anterior cingulate cortex [see Figure 1; 38]. Activity in the anterior 

insula was shown to correlate positively with empathic concern ratings [36] and 
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activity of this region when watching others in pain was positively related to 

helping behavior, albeit only to in-group members [39]. It has been argued that 

the anterior insula performs value computations related to prosocial behavior 

[40]. More recently, it was shown that especially connectivity between the 

anterior cingulate cortex (ACC) and the anterior insula was positively related to 

prosocial behavior following an empathy induction [41]. The ACC has been 

implicated in top-down regulation and control of negative emotions and 

processing of emotional conflict [42] and in this case might function as affective 

regulation mechanism to produce empathic concern in turn leading to prosocial 

behavior.  

 

Several studies on the neurocognitive development of empathic concern and 

helping have been performed in children. These studies show that children aged 

7-12 years activate anterior insula as well as anterior midcingulate when 

observing the pain of another [43]. Similar activation patterns could be already 

seen from 4 years of age [44]. A study testing 7-40 year old participants showed 

that activity in the amygdala in response to seeing others’ pain decreased with 

age, while activity in lateral prefrontal cortex increased, suggesting a potential 

decrease in distress-related and an increase in emotion regulation related brain 

functions [45]. A recent longitudinal study in children from 10 to 13 years of age 

showed that empathic concern at age 10 predicted activation of lateral 

prefrontal regions, namely the inferior frontal gyrus (IFG), which in turn was 

linked to helping [46]. Importantly, the IFG activation overlapped with 

coordinates typically found for cognitively effortful processing. Unpublished data 

from our lab also shows that age-related changes in empathically driven helping 
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were strongly linked to increased connectivity between the right anterior insula 

and lateral and medial prefrontal cortical areas [47].  

 

In sum, the neurocognitive mechanisms of helping during childhood comprise 

affective responding to the emotional state of another, as coded in the anterior 

insula, in combination with regulatory mechanisms of the experienced affect, 

instantiated in prefrontal cortical brain regions.  

 

Summary 

This review summarizes the recent literature on the neurocognitive mechanisms 

that support the development of prosocial behavior in childhood. The review 

draws on a value-based decision-making framework of social behavior [6] and 

combines this with developmental neuroscience to examine the regulatory 

mechanisms that predispose children towards prosocial actions in spite of 

associated costs. One key finding is that neurocognitive mechanisms differ 

depending on the prosocial behavior in question. Whereas sharing requires 

behavioral control, helping needs the regulation of emotions in response to 

another’s distress. These distinct mechanisms draw on distinct neural circuitry, 

which in turn could explain why different types of prosocial behavior correlate 

so poorly during development [1].  

 

One important feature of prosocial behavior is that it is vastly context-

dependent. From around 5 years, children discriminate who they share with 

based on group membership, familiarity, similarity, their partner’s willingness to 

share, their partner’s needs and reputation concerns [for a review see 48]. A 
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value-based decision-making framework of prosociality allows ample room for 

the influence of such contextual variables, since these will affect the value of 

prosocial behavior depending on the goals of the benefactor.  

 

The present review applies to situations in which prosociality is costly. I contend 

that even though some experimental settings manage to eliminate the costs of 

prosocial behavior, the vast majority of real-life situations imply a cost to 

prosocial behavior. In spite of such costs it has been argued that prosocial 

behavior does not require any active regulation, but rather occurs effortlessly 

and automatically [49]. While the idea that prosociality occurs automatically and 

without any regulation remains contentious [50] the evidence at least during 

childhood speaks against this. With developmental changes in neurocognitive 

architecture, it is likely that the mechanisms supporting prosociality change with 

age, which should preclude definite inferences made from one age group to 

another.  

 

There is strong evidence that the maturation of prefrontal cortically mediated 

regulation supports the development of prosocial behavior during childhood. A 

value-based framework provides a mechanistic account of developmental 

change in prosocial behavior. Such a framework can simultaneously account for 

maturational changes in observable behavior and accommodate for the effect of 

contextual variables likely to influence the computation of costs and benefits 

associated with the various available social.  
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Figure 1. Overview of brain regions involved in prosocial behavior during 
childhood A. Lateral slice showing anterior insula (red) and dorsolateral 
prefrontal cortex (purple). B. Medial slice showing anterior cingulate (red) and 
ventromedial prefrontal cortex (blue).  
 


