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Abstract  1 

Fetal growth restriction and related placental pathologies such as pre-eclampsia, 2 

stillbirth and placental abruption are believed to arise in early pregnancy when 3 

inadequate remodelling of the maternal spiral arteries leads to persistent high-4 

resistance and low-flow uteroplacental circulation. The consequent placental 5 

ischaemia, re-perfusion injury and oxidative stress are associated with an imbalance 6 

in angiogenic/anti-angiogenic factors. Many interventions have centred on prevention 7 

and/or treatment of preeclampsia with results pertaining to fetal growth restriction 8 

and small for gestational age pregnancy often included as secondary outcomes 9 

because of the common pathophysiology. This renders the study findings less 10 

reliable for determining clinical significance. 11 

For prevention of fetal growth restriction, recent large study level meta-analysis and 12 

individual patient data meta-analysis confirm that aspirin modestly reduces small for 13 

gestational age pregnancy in women at high risk (relative risk 0.90, 95%CI: 0.81-14 

1.00) and that a dose of ≥100mg should be recommended, and to start at or before 15 

16 weeks of gestation. These findings support national clinical practice guidelines. In 16 

vitro and in vivo studies suggest that low molecular weight heparin may prevent fetal 17 

growth restriction, however, evidence from randomised control trials is inconsistent. 18 

Meta-analysis of multi-centre trial data does not demonstrate any positive 19 

preventative effect of low molecular weight heparin on a primary composite outcome 20 

of placenta-mediated complications including fetal growth restriction; 18% vs 18%, 21 

absolute risk difference 0.6%, 95%CI: 10.4-9.2); use of low molecular weight heparin 22 

for the prevention of fetal growth restriction should remain in the research setting.  23 

There are even fewer treatment options once fetal growth restriction is diagnosed. At 24 

present the only management option if the risk of hypoxia, acidosis and intrauterine 25 
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death is high is iatrogenic preterm birth, with the use of peri-partum maternal 1 

administration of magnesium sulphate for neuroprotection and corticosteroids for 2 

fetal lung maturity, to prevent adverse neonatal outcomes. 3 

The pipeline of potential therapies employ different strategies, many aiming to 4 

increase fetal growth by improving poor placentation and uterine blood flow. 5 

Phosphodiesterase type-5 inhibitors that potentiate nitric oxide availability such as 6 

sildenafil citrate have been extensively researched both in preclinical and clinical 7 

studies; results from the STRIDER consortium of randomised control clinical trials 8 

are keenly awaited. Targeting the uteroplacental circulation with novel therapeutics is 9 

another approach; the most advanced being maternal VEGF gene therapy which is 10 

being translated into the clinic via the EVERREST consortium. Other targeting 11 

approaches include nanoparticles and microRNAs to deliver drugs locally to the 12 

uterine arterial endothelium or trophoblast. In vitro and in vivo studies and animal 13 

models have demonstrated effects of nitric oxide donors, dietary nitrate, hydrogen 14 

sulphide donors, statins and proton pump inhibitors on maternal blood pressure, 15 

utero-placental resistance indices and angiogenic/anti-angiogenic factors. Data from 16 

human pregnancies, and in particular, pregnancies with fetal growth restriction 17 

remains very limited. Early research into melatonin, creatine and N-acetyl cysteine 18 

supplementation in pregnancy suggests they may have potential as neuro and 19 

cardio-protective agents in fetal growth restriction. 20 

 21 

Keywords: Fetal growth restriction, FGR, intrauterine growth restriction, IUGR, small 22 

for gestational age, SGA, preeclampsia, low molecular weight heparin, aspirin, 23 

sildenafil, VEGF gene therapy, pravastatin, nitric oxide donor, esomeprazole, 24 

melatonin, creatine, N-acetylcysteine. 25 
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Introduction 1 

Fetal growth restriction (FGR) describes a group of conditions in which a fetus fails 2 

to reach its full growth potential. FGR is difficult to define and measure and so small 3 

for gestational age (SGA), defined by birthweight percentile, is often used as the 4 

most reliable surrogate marker. FGR and SGA may be caused by fetal issues such 5 

as chromosomal anomalies, genetic syndromes and fetal infection; maternal 6 

disease; environmental toxins including cigarette smoking; and the most common 7 

cause, utero-placental insufficiency. This article will focus on preventative and 8 

treatment options for FGR due to utero-placental insufficiency.  9 

During early pregnancy trophoblast invasion of the maternal spiral arteries remodels 10 

and disrupts their smooth muscle layer creating a low-resistance and high-flow utero-11 

placental circulation capable of efficient gaseous and nutrient exchange for optimal 12 

fetal growth.1 Inadequate or abnormal trophoblast invasion results in incomplete 13 

remodelling of the spiral arteries and persistence of a high-resistance and low-flow 14 

circulation.2, 3 It is hypothesized that this results in a sequence of events including 15 

reduced placental perfusion, placental ischaemia and re-perfusion injury4, oxidative 16 

stress,5 an imbalance in angiogenic factors 6-8; vascular endothelial growth factor 17 

(VEGF) and placental growth factor (PlGF), with anti-angiogenic factors; soluble fms-18 

like tyrosine kinase 1 (sFlt-1) and soluble endoglin and an increased frequency of 19 

atherosis in the placental bed.9 Clinically these events present as the placenta-20 

mediated complications of pregnancy; FGR, preeclampsia, placental abruption and 21 

late pregnancy loss. Placental bed biopsies in pregnancies affected by FGR and pre-22 

eclampsia confirm that there is a major defect in myometrial spiral artery remodeling 23 

that is linked to these clinical parameters.10-12 24 
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The on-going adverse in utero environment associated with FGR ultimately may lead 1 

to hypoxic damage and stillbirth. With no proven therapeutic interventions available 2 

planned early birth must be considered and offered once a fetus reaches a viable 3 

gestational age and size. However, preterm birth then adds further morbidity and 4 

mortality risk to an already compromised neonate. There is an urgent need to identify 5 

early in pregnancy, those women at most risk of developing FGR to investigate and 6 

offer preventative therapies. Once FGR is diagnosed other strategies will be required 7 

to improve fetal growth and wellbeing, which may allow iatrogenic delivery to be 8 

delayed and/or to ameliorate the harm of the hypoxic intrauterine environment.  9 

 10 

Prevention of FGR 11 

Aspirin and other anti-platelet agents 12 

The release sFlt-1 and soluble endoglin6, 7 into the maternal circulation cause 13 

endothelial dysfunction, a feature of the placenta-mediated complications of 14 

pregnancy and in particular preeclampsia, and an imbalance in vasoactive factors 15 

such as endothelin13, nitric oxide14 and prostacyclin15, resulting in reduced 16 

vasodilatation and increased vasoconstriction. Aspirin has a number of effects at the 17 

vascular level that may prevent FGR (Figure 1). For many years it was understood 18 

that aspirin suppresses the production of prostaglandins and thromboxanes through 19 

its irreversible inactivation of the cyclooxygenase enzyme.  Thromboxane is a 20 

powerful vasoconstrictor and pro-thrombotic antiplatelet agent. Low-dose, long-term 21 

aspirin use irreversibly blocks the formation of thromboxane A2 in platelets, inhibiting 22 

platelet aggregation. More recently, novel cytoprotective and antioxidant 23 

mechanisms of aspirin have been observed that are independent of cyclooxygenase 24 
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inhibition. Aspirin acetylates endothelial nitric oxide synthase leading to nitric oxide 1 

release from vascular endothelium.16  In addition aspirin increases the activity of 2 

heme oxygenase-1 in endothelial cells to catabolize heme which leads to a reduction 3 

in oxidative stress, injury and inflammation.17 4 

Most aspirin studies have centred on preeclampsia as a primary outcome measure 5 

with FGR included as a secondary outcome only. The volume and quality of 6 

evidence however does allow meaningful interpretation and implementation of 7 

findings. 8 

This year there was simultaneous publication of systematic reviews based on study 9 

level meta-analysis18 and individual patient data meta-analysis19 of randomised trials 10 

of aspirin and other antiplatelet agents that included 20 909 and 32 217 women 11 

respectively. Both analyses supported pre-existing evidence that aspirin provides a 12 

modest risk reduction for FGR and SGA (<5th or <10th percentile) at birth; individual 13 

patient data  analysis relative risk 0.90, 95% CI 0.81-1.00.19 The difference in the 14 

conclusions of these meta-analyses arose from assessment of gestational age at 15 

initiation of therapy, before or after 16 weeks (Table 1). The individual patient data  16 

meta-analysis found that low-dose aspirin and other antiplatelet agents had a 17 

consistent effect on preeclampsia regardless of whether treatment was started 18 

before or after 16 weeks gestation.19 Data specific to FGR supports earlier initiation 19 

of therapy where possible. In the study level meta-analysis there was a dose-20 

response relationship for SGA when treatment was initiated ≤16 weeks, favouring a 21 

dose of 100-150mg.18  22 

Studies demonstrating circadian effects of aspirin on plasma renin activity20 and 23 

urinary excretion of cortisol, dopamine and norepinephrine21 as well as clinical trials 24 

that show a circadian effect of aspirin to treat pre-hypertension22 and mild 25 
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hypertension23 in non-pregnant adults suggest timing of daily dosing should be 1 

considered, particularly with reference to the prevention of preeclampsia. Two small 2 

randomised trials in pregnancy have found that evening but not morning 3 

administration of aspirin is associated with a reduction in ambulatory blood 4 

pressure24, 25 and in one of these trials a reduction in the incidence of preeclampsia 5 

and FGR was also seen.24 The circadian mechanism of action in the prevention of 6 

FGR seems less clear. However, if recommending daily aspirin therapy it seems 7 

prudent to recommend evening dosing. 8 

Most national and international guidelines recommend 100-150mg aspirin dose to 9 

prevent FGR and SGA pregnancy in women at ‘high risk’.26 However, patient 10 

selection and accurate identification of those at most risk of FGR is not clear as, like 11 

most studies of therapies for the prevention of placenta-mediated complications of 12 

pregnancy, prediction studies have been more focussed on preeclampsia rather than 13 

FGR. This is highlighted by a recent large multicentre randomised trial of aspirin to 14 

prevent preterm preeclampsia. The Aspirin for evidence-based preeclampsia 15 

prevention (ASPRE) trial used a complex algorithm including maternal factors, mean 16 

arterial pressure, uterine artery Doppler pulsatility index, and maternal serum 17 

biomarkers (maternal serum pregnancy-associated plasma protein A and placental 18 

growth factor) to identify women at high risk. Although aspirin use was associated 19 

with a reduction in preterm preeclampsia, rates of SGA <10th, <5th or <3rd percentile 20 

were unchanged27 suggesting alternative prediction models are required before 21 

being able to truly assess the effect of aspirin on those at highest risk. 22 

 23 

Heparin and Low Molecular Weight Heparin 24 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9 
 

Unfractionated heparin and low molecular weight heparin (LMWH) are commonly 1 

used in pregnancy for thrombo-prophylaxis and the treatment of venous 2 

thromboembolism. More recently LMWH is preferred to unfractionated heparin and 3 

appears safe and effective for these indications.28 Unfractionated heparin and LMWH 4 

do not cross the placenta29 and thus pose little direct risk to the fetus. Initial interest 5 

in heparins to prevent placental pathology centred on their anticoagulant properties 6 

and presumed ability to prevent placental thrombosis and subsequent infarction 7 

leading to miscarriage. In vitro and in vivo data suggest heparins have a variety of 8 

other biological properties including anti-inflammatory30, complement inhibition31 and 9 

anti-tumour32 actions as well as being pro-angiogenic33-37 (Figure 1). These 10 

additional effects may positively influence trophoblast development and invasion 11 

making them potential candidates for the prevention of placenta-mediated 12 

complications of pregnancy including FGR. 13 

 14 

Preclinical studies of unfractionated heparin and LMWH on angiogenesis 15 

In vitro studies using placental villous explants found that both unfractionated 16 

heparin and LMWH promote angiogenesis.33, 34, 36 The mechanism of action is 17 

unclear, but enhanced expression of matrix metalloproteinases may be 18 

contributory.38 However, there are inconsistencies in in vitro study results with some 19 

demonstrating suppression of trophoblast invasion39 particularly when heparin is 20 

used at therapeutic levels.40 Further caution is raised by the finding of elevated sFlt-1 21 

concentration and impaired VEGF signalling in endothelial cells when placental villi 22 

are exposed to LMWH at therapeutic doses,41 although this was most significant in 23 

healthy early and term pregnancy placentae but not in placentae from pregnancies 24 

with preeclampsia and/or FGR. 25 
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 1 

Clinical studies of LMWH 2 

In vivo use of LMWH appears to have a more positive effect on markers of 3 

angiogenesis. When used in pregnancy for anticoagulation, serum PlGF 4 

concentration is increased and there is a lower sFlt-1/PlGF ratio compared with 5 

gestation matched controls37 and in a small randomised trial of women at high risk of 6 

preeclampsia plasma levels of PlGF were elevated one and three hours after LWMH 7 

administration, not seen in women at similar risk receiving placebo.35 8 

The effect of heparin therapy on utero-placental circulation is less clear. In a small 9 

open label study of women with gestational hypertension, treatment with LMWH 10 

reduced uterine artery resistance index.42 However, more sustained use of LMWH in 11 

a randomised control trial of LMWH and aspirin versus aspirin alone found no 12 

differences in uterine artery Doppler resistance index at 22-24 weeks or in umbilical 13 

artery Doppler pulsatility index at 22-24 weeks and later gestational ages.43 14 

As early evidence suggested a relatively strong association between inherited 15 

thrombophilias and preeclampsia and FGR, initial randomized trials of heparin 16 

focused specifically on populations of women with or without thrombophilia.44-46 More 17 

recent evidence from prospective cohort studies suggests any association of 18 

thrombophilia and placenta-mediated complications, if present, is only weak47 and so 19 

more recent trials have included women regardless of thrombophilia status. Many 20 

trials have diverse inclusion criteria identifying women not only at high risk of FGR 21 

and preeclampsia but also earlier pregnancy complications such as recurrent 22 

miscarriage and non-placenta related conditions such as venous thromboembolism. 23 
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Results of early randomized trials were encouraging and suggested that heparin 1 

could reduce the risk of preeclampsia and FGR.45,44 But a  positive effect of LMWH 2 

was not been seen consistently across all published trials 44-46, 48-52 possibly reflecting 3 

the heterogeneity of the populations being examined, the type of LMWH being used, 4 

prolonged trial recruitment phases 44, 46 and early trial discontinuations.45, 48 5 

A study level meta-analysis of six trials (848 women) demonstrated LMWH (included 6 

trials used enoxaparin, dalteparin and nadroparin) was associated with a reduction in 7 

a composite outcome (preeclampsia, birthweight <10th percentile, placental abruption 8 

or pregnancy loss >20 weeks) 18.7% vs 42.9% (relative risk 0.52, 95%CI 0.32–0.86) 9 

with similar risk reductions for a number of secondary outcomes including SGA <10th 10 

percentile and <5th percentile.53 However, there were high levels of heterogeneity 11 

across trials and trials of higher-quality suggested no treatment effect. The same 12 

authors have subsequently completed an individual patient data meta-analysis 13 

including five trials from the study level meta-analysis and three additional trials (963 14 

women).54 Again a composite primary outcome (early-onset or severe preeclampsia, 15 

SGA < 5th percentile, placental abruption, and late pregnancy loss after 20 16 

weeks).was used but with no difference seen between those treated and those 17 

untreated, 14% vs 22% (relative risk 0.64, 95%CI 0.36-1.11). Reviewing all trials 18 

data LMWH therapy was associated with a reduction in SGA <10th percentile and 19 

<5th percentile but not <3rd percentile. However, trial quality also impacted on these 20 

results with heterogeneity seen between single-centre and multicentre trials; there 21 

was no effect of LMWH seen when only considering data from multicentre trials 22 

(Table 2). In subgroup analysis, including only women with a history of a SGA infant, 23 

LWMH was not associated with any reduction in the composite primary outcome. 24 

These meta-analyses did not include sub-group analysis by type of LMWH used but 25 
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a further study level meta-analysis including fewer participants (403 women in five 1 

heterogeneous trials) has compared dalteparin and enoxaparin use. Both types of 2 

LMWH were associated with a reduction in preeclampsia but only dalteparin was 3 

effective in reducing the incidence of FGR.55  4 

Since the publication of the 2016 individual patient data meta-analysis54 two further 5 

multicentre trials have been published. The Heparin-Preeclampsia (HEPEPE)49 and 6 

Enoxaparin for Preeclampsia and Intrauterine Growth Restriction (EPPI)52 trials 7 

included only women at high risk of placenta-mediated pregnancy complications, 8 

with or without inherited thrombophilia. The EPPI trial included a higher proportion of 9 

women with a prior history of a SGA infant than most other trials.52 Both trials 10 

reported no difference in rates of composite primary outcomes (maternal death, 11 

perinatal death, preeclampsia, placental abruption and/or SGA < 10th percentile in 12 

the HEPEPE trial and preeclampsia and/or SGA <5th percentile in the EPPI trial).or 13 

of any secondary outcomes specific to fetal growth. These recent trials add 14 

significant participant numbers (n=406) and show consistent results with the 15 

conclusion of the published individual patient data meta-analysis, that LMWH does 16 

not reduce the risk of recurrent placenta-mediated pregnancy complications in at-risk 17 

women. If LMWH therapy is protective for the recurrence of placenta-mediated 18 

pregnancy complications, then the effect is likely to be modest and, if present, 19 

possibly confined to certain subgroups only or specific types of LMWH. Currently 20 

LMWH therapy for the prevention of FGR should be limited to the research setting. 21 

Before any future trials are undertaken further research is required to accurately 22 

phenotype women deemed to be at the highest risk to better identify those who may 23 

benefit from treatment. 24 

 25 
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Treatment of FGR 1 

Phosphodiesterase type-5 inhibitors  2 

Phosphodiesterase type-5 inhibitors block the phosphodiesterase enzyme 3 

preventing the inactivation of the intracellular second messenger cyclic guanosine 4 

monophosphate within vascular smooth muscle cells which potentiates the action of 5 

nitric oxide leading to vasodilatation. Maternal spiral arteries that have not 6 

undertaken complete remodelling early in pregnancy have intact or partially intact 7 

muscular layers and so potentially remain responsive to nitric oxide and amenable to 8 

vasodilatation. The majority of work investigating phosphodiesterase type-5 inhibitors 9 

and FGR has used sildenafil but more recently other agents, including the longer 10 

acting tadalafil, have been studied. 11 

Preclinical studies 12 

In vitro studies show that when compared to healthy control vessels, myometrial 13 

small arteries from pregnancies affected by FGR have increased vasoconstriction 14 

and reduced vasorelaxation; pre-incubation with sildenafil ameliorates this 15 

difference.56 Work in animal models predominantly support the theory of improved 16 

fetal growth with maternal sildenafil use, however, interestingly raises some 17 

questions over the mechanism of action. In the catechol-O-methyl transferase 18 

(COMT-/-) knockout mouse model of preeclampsia and FGR57, sildenafil in maternal 19 

drinking water in late pregnancy normalises pup growth measures and abnormal 20 

umbilical artery Doppler flow indices when compared to untreated COMT-/- 21 

controls.58  However, this beneficial effect on feto-placental blood flow and fetal 22 

growth was not associated with increased uterine artery blood flow. Sildenafil use 23 

also increased pup weight in an alternative mouse model of FGR that has a normal 24 

https://en.wikipedia.org/wiki/Cyclic_guanosine_monophosphate
https://en.wikipedia.org/wiki/Cyclic_guanosine_monophosphate
https://en.wikipedia.org/wiki/Tadalafil
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vascular phenotype.59 Alterations in placental weight may be an alternative to 1 

vasodilatation as the mechanism of action, a theory that is further supported by 2 

studies in ovine models of FGR. In maternal nutrient restricted FGR sheep 3 

pregnancy, sildenafil increased fetal growth and amnio acid availability. In addition, 4 

when FGR was created in sheep using uterine artery embolization, sildenafil 5 

improved placental and lamb weight and ameliorated the increased umbilical artery 6 

resistance but with no effect on maternal myometrial vessel resistance.60 Not all 7 

preclinical studies however have demonstrated positive effects of sildenafil treatment 8 

on FGR with some animal models showing no effect and others showing negative 9 

and potentially harmful effects.61, 62 10 

 11 

Clinical studies 12 

Several case reports and a small randomised trial of sildenafil to selectively reduce 13 

pulmonary vascular resistance in pregnant women with pulmonary arterial 14 

hypertension demonstrate improved maternal cardiorespiratory performance and 15 

echocardiography status with better neonatal outcomes.63-66 It also appears to be a 16 

useful adjunctive therapy for persistent pulmonary hypertension of the newborn.67, 68 17 

Use in pregnancy and the early neonatal period for these indications have not raised 18 

safety concerns. 19 

Two small randomised trials have studied sildenafil treatment of preeclampsia in 20 

which 30-60% of participants had co-existing FGR.69, 70 Both trials demonstrated 21 

positive effects on maternal blood pressure and in one trial sildenafil was associated 22 

with an increase in mean prolongation of pregnancy (14.4 days vs 10.4 days, 23 

p=0.008). No differences were seen in measures of fetal growth but compared to 24 
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placebo, uterine and umbilical artery Doppler pulsatility index was reduced 24 hours 1 

after commencing sildenafil.70 2 

More specific to FGR pregnancies, a single dose randomised placebo controlled trial 3 

showed that two hours after ingestion of 50mg sildenafil there was reduced 4 

resistance in the umbilical artery and increased resistance in the fetal middle 5 

cerebral artery, showing it can influence the feto-placental circulation.71  To date, 6 

more prolonged use of sildenafil to treat FGR has only been reported in case 7 

reports72, 73 and a small case-control study.74 In this open study, 10 women with 8 

early-onset FGR received 25mg TDS sildenafil and were compared to 17 matched 9 

untreated control women. A higher proportion of women taking sildenafil had an 10 

increased post-eligibility fetal abdominal circumference growth velocity (90% vs 41%, 11 

odds ratio 12.9, 95% CI 1.3-126) with a tendency towards improved survival and 12 

intact survival to hospital discharge. However, it should be noted that the sildenafil 13 

treated group were eligible for the study an average of 10 days later and delivered 14 

an average of nine days after those untreated, delivering at a time (<28 weeks) when 15 

gestational age is likely to be the most significant predictor of outcome. 16 

These limited human pregnancy studies to date have not raised specific concerns of 17 

maternal and/or fetal side effects. However, sildenafil does have a side effect profile 18 

including most commonly headache, flushing, dyspepsia, nasal congestion and 19 

impaired vision and blurred vision.75 Fetal effects are less well known. Sildenafil is 20 

likely to cross the placenta and so effects, in particular, on pulmonary vasculature 21 

and cerebral blood flow71 must be considered. In addition some animal studies 22 

suggest a detrimental rather positive effect on uterine blood flow and fetal 23 

wellbeing61 and although any delay in delivery is hoped to improve long–term 24 

outcome, on-going exposure to a hostile in-utero environment has potential to cause 25 

http://en.wikipedia.org/wiki/Headache
http://en.wikipedia.org/wiki/Flushing_(physiology)
http://en.wikipedia.org/wiki/Dyspepsia
http://en.wikipedia.org/wiki/Nasal_congestion
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greater harm than that caused by preterm delivery. The results of randomised trials 1 

of sildenafil and other phosphodiesterase type-5 inhibitors are keenly awaited. The 2 

international Sildenafil Therapy In Dismal Prognosis Early-Onset Intrauterine Growth 3 

Restriction (STRIDER) Consortium includes five placebo-controlled randomised trials 4 

in the United Kingdom76, New Zealand and Australia77, the Netherlands78, Canada79 5 

and Ireland.80 These trials have been conceived and designed through international 6 

collaboration and include women with early onset-FGR. Although independently 7 

funded and executed, shared data management systems and outcomes will allow 8 

assessment in prospectively planned systematic reviews including individual patient 9 

data meta-analyses.81 Trials in the United Kingdom and New Zealand and Australia 10 

have completed participant recruitment and results are expected soon. Both these 11 

trials have childhood outcome studies underway to asses surviving children at the 12 

age of 2-3 years and provide important data on longer-term neurological and cardio-13 

metabolic outcomes.  14 

 15 

Maternal VEGF Gene Therapy 16 

An alternative approach to treating FGR is to increase the levels of VEGF in the 17 

maternal uterine arteries, thus improving local vasodilatation and angiogenesis 18 

(Figure 1).  This can be achieved with an adenoviral (Ad) gene therapy vector, either 19 

injected into the uterine arteries or applied to the outside of the vessels, which 20 

produces short-term VEGF expression (Ad.VEGF). This technique, called 21 

therapeutic angiogenesis has been trialled extensively for coronary artery ischaemia 22 

and is now reaching phase 3 trials.82 Studies in large and small FGR animal models 23 

have confirmed the efficacy of this approach for improving fetal growth before birth. 24 

In normal sheep pregnancy, injection of Ad.VEGF (1 × 1011 particles), compared with 25 
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injection of a control non-vasoactive vector, increased uterine artery volume blood 1 

flow within 7 days of injection,  and long term, this increase in flow persisted for at 2 

least 4 weeks until the end of gestation.83-85 The mechanism is mediated via short 3 

term VEGF expression detectable in the perivascular adventitia of the treated 4 

vessels. This is associated with increased endothelial nitric oxide synthase 5 

expression, which results in reduces vascular constriction. Long term there is 6 

vascular remodelling with a reduced intima to media ratio, increased endothelial cell 7 

proliferation in the perivascular adventitia of injected vessels, and reduced uterine 8 

artery contractile response. Importantly, there was no evidence of vector spread or 9 

expression in fetal tissues and no effect of the vector on maternal or fetal 10 

haemodynamic measures. In FGR sheep and guinea pig models, fetal growth 11 

velocity is increased, and fewer fetuses are affected by severe FGR at birth.86-89 12 

There appears to be amelioration of the “brain sparing effect” in FGR fetuses of 13 

treated pregnancies, with a lower brain to liver weight ratio by ultrasound 14 

measurement and at birth. Offspring born after treated FGR pregnancies have higher 15 

postnatal lean tissue mass, a faster growth rate and improved cardiovascular 16 

phenotype. In the clinical context, vector delivery into the uterine arteries could be 17 

achieved through interventional radiology, which is used as a prophylactic measure 18 

before delivery in women at high risk of postpartum haemorrhage.90 While this is 19 

more invasive than administering oral medication, it has the potential advantage of 20 

targeting vasoactive changes to the maternal uteroplacental circulation.  21 

The EVERREST (doEs Vascular endothelial growth factor gene therapy safEly 22 

impRove outcome in seveRe Early-onset fetal growth reSTriction) Project, which 23 

started in 2013, aims to carry out a phase I/IIa clinical trial to assess the safety and 24 

efficacy of maternal uterine artery Ad.VEGF gene therapy for severe early-onset 25 
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FGR.91 The project, funded by the European Union, involves a multinational, 1 

multidisciplinary consortium, including experts in bioethics, fetal medicine, fetal 2 

therapy, obstetrics, and neonatology. A bioethical study found no absolute ethical, 3 

regulatory or legal objections to the use of maternal gene therapy in pregnancy, with 4 

patients welcoming the development of new drugs for this untreatable disease.92 The 5 

consortium is performing a prospective observational study of pregnancies with 6 

severe early onset FGR to define their trial inclusion criteria, which is likely to recruit 7 

those women who are most at risk of an intrauterine death or neonatal death 8 

between 22 and 27 weeks of gestation. 93 9 

 10 

 11 

Nanotechnology and other uteroplacental targeting strategies to treat FGR 12 

There are a number of other novel strategies emerging that could target drugs or 13 

particles to the uteroplacental circulation and/or the trophoblast with the aim of 14 

improving uterine blood flow, placental function or both. Tumor-homing peptide 15 

sequences CGKRK and iRGD bind selectively to the placental surface of humans 16 

and mice and do not interfere with normal development. By coating nanoparticles 17 

with these sequences, cargoes of proteins such as insulin-like growth factor 2 can be 18 

delivered specifically to the placenta.94 Insulin-like growth factors promote placental 19 

cell proliferation and survival, and facilitate the placental uptake of glucose and 20 

amino acids.  In the placenta-specific insulin-like growth factor 2 knockout mouse 21 

model of late-onset FGR95 such nanoparticle insulin-like growth factor 2 treatment 22 

improved fetal weight.96 Recently a novel nitric oxide donor (SE175) encapsulated 23 

into targeted liposomes has been delivered systemically to the endothelial nitric 24 

oxide synthase knockout (eNOS-/-) mouse which exhibits impaired uteroplacental 25 
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blood flow and FGR97 leading to increased fetal weight and mean spiral artery 1 

diameter, and decreased placental weight, indicative of improved placental 2 

efficiency.98 3 

Another approach has used mitochondria-targeted antioxidant MitoQ bound to 4 

nanoparticles, to localise and prevent oxidative stress in the placenta.99 Finally, 5 

targeted micro-RNA treatment to the placenta may enhance intrinsic placental 6 

growth signaling. miR-145 and miR675 have previously been identified as negative 7 

regulators of placental growth. When applied to human first trimester trophoblast 8 

explants, conjugates of the placental homing placental homing peptide CCGKRK 9 

with these peptide-microRNAs enhanced cytotrophoblast proliferation.100 These 10 

approaches will need careful study from a safety and efficacy perspective but they 11 

look promising for a targeted FGR treatment. 12 

 13 

Potential drug therapies for FGR 14 

Investigation of new drug therapies remains at the preclinical or very early clinical 15 

phases and has focussed on treatment of preeclampsia rather than FGR. Statins are 16 

lipid lowering medications with anti-inflammatory, antioxidant and angiogenic 17 

properties (Figure 1). Within small animal models of preeclampsia pravastatin 18 

reduces levels of sFlt-1 and maternal hypertension and increases VEGF and fetal 19 

weight.101, 102 In a single non-randomised study including 21 women with 20 

antiphospholipid syndrome and treated with aspirin and LMWH the addition of 21 

pravastatin in 11 women after the onset of preeclampsia and/or FGR, appeared to 22 

delay delivery and improve pregnancy outcomes compared with 10 women who did 23 

not receive pravastatin103. In the Statins to Ameliorate early onset Pre-eclampsia 24 

(STAMP) randomised trial which completed recruitment in 2014 104; birthweight is 25 
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included as a secondary outcome but results are still awaited. A further multicentre 1 

pilot study in the United States is expected to completed recruitment at the end of 2 

2018 with rate of SGA included as a secondary outcome.105 3 

Nitric oxide relaxes vascular smooth muscle cells resulting in vasodilatation (Figure 4 

1).  In women with preeclampsia short term treatment with a nitric oxide donor, 5 

isosorbide dinitrate, reduces maternal blood pressure106, 107 and lowers resistance in 6 

umbilical artery107, 108 and uterine artery107 Doppler waveforms. No randomised trials 7 

of nitric oxide donors have included long term therapy or been sufficiently powered to 8 

assess any effect on pregnancy outcomes.  9 

Hydrogen sulphide, like nitric oxide, is a gas that produces vasodilatation by acting 10 

on smooth muscle cell adenosine triphosphate-sensitive potassium channels, while 11 

its angiogenic effects appear to be mediated by VEGF and the VEGF receptor 2 12 

(Figure 1).109 In a sFlt-1 induced hypertensive, proteinuric rat model sodium 13 

hydrosulfide treatment resulted in elevated VEGF levels and reduced sFlt-1 levels.110 14 

Further work is now needed to investigate the therapeutic potential of hydrogen 15 

sulphide  donors in poor placentation. 16 

 17 

Repurposing drugs for FGR, proton pump inhibitors 18 

As the development of new drugs or the testing of unused drugs for treatment of 19 

FGR pregnancy is difficult and costly, repurposing of existing drugs that have a 20 

known safety profile in pregnancy is an exciting area. Proton pump inhibitors such as 21 

esomeprazole have long term safety data about treatment of gastric reflux in 22 

pregnancy. In vitro studies show proton pump inhibitors decrease sFlt-1, soluble 23 

endoglin and improve markers of endothelial dysfunction (Figure 1),111 while 24 
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esomeprazole reduces blood pressure in a pre-eclampsia transgenic mouse model 1 

that overexpresses sFlt-1.111 The randomised control Preeclampsia Intervention with 2 

Esomeprazole (PIE) trial will assess esomeprazole to treat early-onset preeclampsia, 3 

however, limited secondary neonatal outcomes do not include measures of fetal 4 

growth.112 5 

 6 

Preventing the adverse outcomes of FGR 7 

Amelioration of the adverse effects of FGR before delivery is an important 8 

therapeutic option.  When the risks of hypoxia, acidosis and intrauterine death are 9 

deemed high and the fetus is considered to have reached a viable gestational age 10 

and size, iatrogenic preterm birth should be offered. Timely antenatal administration 11 

of corticosteroids for fetal lung maturation113-115 and magnesium sulphate for 12 

neuroprotection113, 116 is required to prepare for birth with careful consideration of the 13 

most appropriate mode of delivery.117 FGR is associated with long term 14 

neurodevelopmental and cardiac impairment, likely due to oxidative stress.118-122 15 

Interventions are now being developed to ameliorate this antenatal insult. 16 

 17 

Melatonin 18 

Melatonin, an endogenous lipid soluble hormone produced by the pineal gland, 19 

exerts its powerful antioxidant effect directly by scavenging reactive oxygen species 20 

and indirectly by increasing expression of antioxidant enzymes such as glutathione 21 

peroxidase and glutathione reductase. Melatonin crosses the placenta123 and the 22 

fetal blood brain barrier124 and hence has potential to protect the developing fetal 23 

brain and heart from damage by oxidative stress. 24 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 
 

In an ovine model of FGR maternal administration of melatonin protects against 1 

cardiac infarct and coronary artery stiffness, cerebral white- and grey-matter injury, 2 

abnormal cerebrovascular development with improvement in some early neurological 3 

outcomes in the offspring. A safety study of melatonin in six women with early-onset 4 

FGR (4mg BD for duration of pregnancy) found no fetal125-127 or maternal safety 5 

concerns. Cord blood levels of melatonin were higher and placental 6 

malondialdehyde concentrations, a marker of oxidative stress, were lower in the 7 

melatonin treated group compared to control untreated women.126 Trials of efficacy 8 

to support melatonin as a neuro- and cardio-protective agent 128 are awaited. A 9 

single on-going study in women at risk of imminent preterm delivery (not specific to 10 

FGR)129 may provide additional information.  11 

 12 

Creatine 13 

Creatine is a naturally produced amino acid derivative that facilitates recycling of 14 

adenosine triphosphate and is essential for cellular energy production. As creatine 15 

can cross the placenta, maternal supplementation may increase fetal intracellular 16 

creatine and prolong cellular energy homeostasis during hypoxia, potentially 17 

providing protection for the brain and other organs in FGR pregnancies.  18 

Maternal dietary creatine supplementation in a spiny mouse model with late 19 

gestation hypoxic injury increases neonatal survival after birth hypoxia and prevents 20 

hypoxic damage to the brain, kidney and skeletal muscle.130-132 Studies in larger 21 

animal models with more prolonged hypoxic injury are on-going. Low maternal 22 

serum and urine creatine levels have been associated with poor fetal growth133, but 23 

https://en.wikipedia.org/wiki/Adenosine_triphosphate
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no randomised trials of maternal dietary creatine supplementation in humans have 1 

been undertaken.134 2 

 3 

N-acetylcysteine 4 

N-acetylcysteine scavenges reactive oxygen species and forms the antioxidant 5 

glutathione, thereby counteracting oxidative stress and increasing the bioavailability 6 

of nitric oxide.135 Studies in a rat model of pre-eclampsia and FGR found that N-7 

acetylcysteine alleviated a rise in maternal blood pressure and increased pup brain 8 

weight.136 In a guinea pig model of maternal chronic hypoxia, administration of N-9 

acetylcysteine did not affect pup weight but did ameliorate oxidative stress 10 

responses to hypoxia in the fetal liver.137 However a small double-blind randomised 11 

controlled trial found that oral N-acetylcysteine did not stabilise the process of 12 

established severe preeclampsia, or improve neonatal outcome.
138 Further studies 13 

are needed to investigate whether N-acetylcysteine may prevent fetal complications 14 

of FGR. 15 

 16 

Implications for practice  17 

Currently clinicians have limited ability to enhance placentation and prevent FGR, 18 

partly due to the paucity of proven therapeutic options but also our inability to 19 

accurately identify those at highest risk.  A 100-150mg evening dose of aspirin 20 

commenced prior to 16 weeks gestation provides a modest risk reduction in women 21 

at risk using conventional obstetric history based risk factors. 22 

There are no proven treatments of FGR that will improve fetal growth or outcome 23 

once it is diagnosed. The only intervention clinicians can offer is iatrogenic preterm 24 
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birth with timely administration of maternal corticosteroids and magnesium sulphate 1 

to improve neonatal outcome after early preterm birth. Several potential new 2 

therapies are on the horizon but many of these are being primarily investigated for 3 

preeclampsia therapy with FGR as a secondary outcome only. It is important that 4 

clinicians wait for the results of appropriately designed and powered randomised 5 

control trials specific to FGR which include information on meaningful longer-term 6 

outcomes before extrapolating positive preclinical and early clinical study findings 7 

into clinical practice.  8 

  9 
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Glossary 1 

Ad.: Adenovirus 2 

COMT: catechol-O-methyl transferase  3 

eNOS: endothelial nitric oxide synthase knockout  4 

FGR: fetal growth restriction 5 

IPD: individual patient data 6 

SGA: small for gestational age 7 

sFlt-1: soluble fms-like tyrosine kinase 1  8 

PlGF: Placental Growth Factor 9 

VEGF: Vascular Endothelial Growth Factor  10 
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Tables  1 

Table 1. Effect of gestational age at initiation of aspirin therapy for prevention of 2 

FGR or SGA at birth.  3 

 Relative Risk 95% CI 

Study level meta-analysis 53 (FGR) 

 ≤16 weeks 0.56 0.44-0.70 

 >16 weeks 0.95 0.86-1.05 

IPD meta-analysis  54 (SGA) 

 <16 weeks 0.76 0.61-0.94 

 ≥16 weeks 0.95 0.84-1.08 

 4 

Study level meta-analysis 53 used FGR as outcome to assess fetal size, defined as 5 

birthweight <10th or <5th percentile for gestational age or similar definition 6 

IPD meta-analysis 54 used SGA as outcome to assess fetal size; SGA at birth was as 7 

defined by individual triallists, including centile charts and cut-off point used 8 

FGR – fetal growth restriction 9 

SGA – small for gestational age 10 

IPD – individual patient data  11 

 12 

  13 
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Table 2. Primary and fetal growth outcomes from individual patient data meta-1 

analysis of LMWH trials for the prevention of recurrence of placenta-mediated 2 

pregnancy complications. 3 

 All trials Multicentre trials Single-centre trials 

 LMWH  No 

LMWH 

  

Absolute 

difference 

(95%CI), p 

value  

LMWH  No 

LMWH 

 

Absolute 

difference 

(95%CI), p 

value  

LMWH  No 

LMWH 

 

Absolute 

difference 

(95%CI) p 

value  

Primary 

composite 

outcome† 

62/444 

(14%) 

95/433 

(22%) 

-8.0% (-

17.3 to 

1.4) 

p=0.09 

47/263 

(18%) 

47/255 

(18%) 

-0.6% (-

10.4 to 9.2) 

p=0.91 

15/181 

(8%) 

48/178 

(27%) 

-18.7% (-21.6 

to -15.7) 

p<0.0001 

SGA <10th 

percentile 

61/444 

(14%) 

94/429 

(22%) 

-8.2% (-

5.4 to -0.1) 

p=0.009 

47/263 

(18%) 

53/251 

(21%) 

-3.2% (-9.6 

to 3.1) 

p=0.32 

14/181 

(8%) 

41/178 

(23%) 

-15.3% (-19.1 

to -11.5) 

p<0.0001 

SGA <5th 

percentile 

27/443 

(6%) 

38/429 

(9%) 

-2.8% (-

5.4 to -0.1) 

p=0.042 

22/262 

(8%) 

23/251 

(9%) 

-0.8% (-3.7 

to 0.2) 

p=0.61 

5/181 

(3%) 

15/178 

(8%) 

-5.7% (-6.1 to 

-5.2)  

p<0.0001 

SGA <3rd 

percentile 

13/443 

(3%) 

12/249 

(3%) 

0.1% (-1.9 

to 2.2) 

p=0.89 

13/262 

(5%) 

9/251 

(4%) 

1.4% (-1.3 

to 4.1) 

p=0.32 

0/181 3/178 

(2%) 

* 

Data extracted from Rodger et al 2016 54 4 

Data expressed as number (percentage)  5 

LMWH - low molecular weight heparin 6 

SGA - small for gestational age  7 
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†Primary composite outcome includes early-onset or severe preeclampsia, or SGA <5th 1 

percentile or placental abruption, or pregnancy loss ≥20 weeks gestation. 2 

*Expected counts less than five and so no formal testing performed. 3 
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Table 3. Summary of progress of experimental treatments for fetal growth restriction. 1 

Experimental 

Treatment  

Method of 

Administration  

Potential  

Mechanisms of 

Action 

Current Stage of 

Investigation 

Phosphodiesterase 

type-5 inhibitors 

Oral  Selective vascular 

smooth muscle 

relaxation and 

vasodilatation 

Phase II/III clinical 

trials 

Maternal VEGF 

Gene Therapy 

Injected into 

uterine arteries or 

applied to outside 

of vessels 

Local 

vasodilatation and 

angiogenesis 

Phase I/IIa clinical 

trial 

Nanoparticles Intravenous 

injection 

Uterine blood flow, 

placental function 

Preclinical  

microRNAs Intravenous 

injection 

Uterine blood flow, 

placental function 

Preclinical  

Statins Oral Anti-inflammatory, 

antioxidant and 

angiogenesis 

Phase II/III clinical 

trials (for 

preeclampsia only) 

Nitric oxide donors Oral  Selective vascular 

smooth muscle 

relaxation and 

vasodilatation 

Phase II non-

randomised (for 

preeclampsia only) 
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Hydrogen sulphide Oral Selective vascular 

smooth muscle 

relaxation and 

vasodilatation 

Preclinical 

Proton pump 

inhibitors 

Oral Angiogenesis Phase II/III clinical 

trials (for 

preeclampsia only) 

Melatonin  Oral Antioxidant Phase II non-

randomised 

Creatine  Oral  Cellular energy 

homeostasis 

Preclinical 

N-acetylcysteine Oral Selective vascular 

smooth muscle 

relaxation and 

vasodilatation 

Phase II 

randomised (for 

preeclampsia only) 
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Figure 1 Sites of action at vascular smooth muscle and endothelium of the 1 

interventions under investigation to treat FGR. TX-A2, thromboxane A2; sFlt-1, 2 

soluble fms-like tyrosine kinase 1; VEGF, vascular endothelial growth factor; NOS, 3 

nitric oxide synthase; NO, nitric oxide; HO-1, heme oxygenase-1; sGC, soluble 4 

guanylate cyclase; GTP, guanosine-5′-triphosphate; cGMP, cyclic guanosine 5 

monophosphate; 5′ GMP, guanosine monophosphate; PDE5, phosphodiesterase 6 

type 5 inhibitor. 7 
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