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Abstract

In this thesis we propose a new class of non-stationary time series models and a

quasi-likelihood inference method that is computationally efficient and consistent

for that class of processes. A standard class of non-stationary processes is that of

locally-stationary processes, where a smooth time-varying spectral representation

extends the spectral representation of stationary time series. This allows us to apply

stationary estimation methods when analysing slowly-varying non-stationary pro-

cesses. However, stationary inference methods may lead to large biases for more

rapidly-varying non-stationary processes. We present a class of such processes

based on the framework of modulated processes. A modulated process is formed by

pointwise multiplying a stationary process, called the latent process, by a sequence,

called the modulation sequence. Our interest lies in estimating a parametric model

for the latent stationary process from observing the modulated process in parallel

with the modulation sequence. Very often exact likelihood is not computationally

viable when analysing large time series datasets. The Whittle likelihood is a stan-

dard quasi-likelihood for stationary time series. Our inference method adapts this

function by specifying the expected periodogram of the modulated process for a

given parameter vector of the latent time series model, and then fits this quantity to

the sample periodogram. We prove that this approach conserves the computational

efficiency and convergence rate of the Whittle likelihood under increasing sample

size. Finally, our real-data application is concerned with the study of ocean surface

currents. We analyse bivariate non-stationary velocities obtained from instruments

following the ocean surface currents, and infer key physical quantities from this

dataset. Our simulations show the benefit of our modelling and estimation method.
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Chapter 1

Introduction

Many phenomena observed over time can be modelled as stochastic processes, that

is to say families of random variables indexed by time. Common real-world phe-

nomena described as stochastic processes range from applications in econometrics,

to applications in seismology and oceanography. The need for non-deterministic

models may come from an actual belief that an observed phenomenon is “purely”

random. Equally one may have a deterministic model for the observed phenomenon

but may not be able to directly measure all inputs at play. Stochastic modelling is a

way to account for the uncertainty resulting from this indetermination.

Inference from time series requires to posit a model for the generating pro-

cess. The two most common modelling assumptions in time series analysis are

Gaussianity and stationarity. Gaussianity of a process implies that its distribution is

fully described by its first and second-order moments. Gaussian processes naturally

arise in many observed phenomena, for instance as the combination of indepen-

dent effects, according to the central limit theorem. A stochastic process is weakly

stationary if its first and second-order moments are finite and shift-invariant over

time. This allows us to reduce the degrees of freedom and makes averaging over

time meaningful. Another key point to the assumption of stationarity is the asso-

ciated spectral representation theorem, where any stationary stochastic process can

be represented as a sum of complex exponentials with uncorrelated random am-

plitudes and phases. The variances of these amplitudes define an energy spectrum,

characterizing the distribution of energy (or variance) over frequencies, which is the
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Fourier transform of the autocovariance function.

Real-world processes are, however, non-stationary in their vast majority. A

commonly observed departure from stationarity is a non-constant expectation over

time. A trend can be defined as a smooth variation over time while seasonality

refers to periodic patterns in the expectation. Second-order moments may as well

vary over time, which will be the focus of this thesis. Defining models of non-

stationary stochastic processes with time-varying covariance structures is difficult

in practice. Firstly, the models’ autocovariance matrices must satisfy some spe-

cific structure, as they must be non-negative definite. Secondly, even the class of

all Gaussian processes with time-varying covariances is too large as it allows for

covariance structures where no meaningful averaging from a single realization is

permitted. A useful non-stationary time series model is one where the informa-

tion in the covariance structure is somehow redundant. One approach is to model

a covariance structure that varies with time but which contains repeated patterns.

For instance, cyclostationary processes, equally called periodically-correlated pro-

cesses, are such that their autocovariance functions are periodic (Gladyshev, 1963).

Another class of processes constructed on the idea of repeated patterns is that of

asymptotically stationary processes (Parzen, 1961, Dunsmuir and Robinson, 1981c,

Toloi and Morettin, 1989), where it is required that the sample autocovariance se-

quence converges in a probabilistic way to a fixed function of the lags. Alterna-

tively, a class of non-stationary processes can be constructed by specifying a bi-

spectral representation of the autocovariance function. The class of harmonizable

processes introduced by Loève (1945) considers autocovariance functions that can

be expanded on a basis of separable exponential functions. A contrasting approach

to define a non-stationary process with a redundant covariance structure is to assume

that the time-variation of the covariance structure is “smooth” in some way, such

that local averages can be carried out in a meaningful way. In that sense, the con-

tributions of Priestley (1988) and Dahlhaus (1996) on defining stochastic processes

with time-varying spectral densities have been key to the field. The framework

of infill asymptotics, where the time-variation is made slower and slower, offers a
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meaningful tool to compare statistics applied to these processes. We review the sta-

tionarity assumption in Chapter 2 as well as the classes of non-stationary processes

cited above. Note that other general classes of non-stationary processes have been

established, such as the Karhunen class or the Cramér class (Rao, 1985), but we do

not focus on these approaches in this thesis, as it is usually quite difficult in practice

to specify a model within those classes for real-world problems.

Real-world observations also tend to come as multivariate processes, adding

to the challenge of defining models with valid covariance matrices. One simple

method to define valid classes of multivariate non-stationary processes is via the

framework of modulated processes, first introduced by (Parzen, 1963). A modu-

lated process is obtained by multiplying pointwise a stationary process. The class

of modulated processes was also considered by Priestley (1988), who required the

modulation to be a smooth function, such that a time-varying spectrum can be de-

fined. Parzen (1963) however considered the case where the modulation function

is observed, but no smoothness assumptions are made. In particular, an application

to periodically missing data was presented, where the modulation function takes

the values zero for missing and one for observed. Not any form of modulation

will lead to a stochastic process that may be inferred from a single realization. If

the modulation function is periodic, then the modulated process is obviously cyclo-

stationary. A more general assumption in the literature is that the modulation makes

the modulated process asymptotically stationary. This requires that the sample au-

tocovariance function of the modulation sequence converges to a non-zero value at

all lags. However, this requirement is still too stringent for some practical applica-

tions. In Chapter 3 we review modulated processes and we propose a larger class

of modulated processes, called modulated processes with a significant correlation

contribution, where instead it is required that the sample autocovariance of the mod-

ulation sequence be asymptotically bounded below for certain lags that characterize

the parametric model of the stationary latent process.

Parametric point inference within a parameter set can give some in-

sight on the generating mechanism at work behind an observed time se-
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ries. For instance, in our real-world application, our stochastic model is

adapted from a deterministic model from oceanography, whose parameters

can be interpreted in a meaningful way. The ubiquitous large data sets met

in practice require fast estimation methods. The Global Drifter Program

(http://www.aoml.noaa.gov/phod/dac/index.php) considered in our ap-

plication to oceanography involves more than ten thousand drifters sending posi-

tional coordinates on a regular basis, with an average 1.4 hour interval since 2005,

resulting in a data set with millions of points (Elipot et al., 2016). One solution

to this computational burden is to use approximations of the likelihood function,

commonly termed as quasi-likelihoods or pseudo-likelihoods (McCullagh, 1983).

One such common approximation for stationary stochastic processes is the Whittle

likelihood (Whittle, 1953). The Fourier transforms at Fourier frequencies of a sta-

tionary time series are known to be asymptotically independently distributed, with

variances given by the spectral density. Thus the Gaussian maximum likelihood es-

timate is approximated by computing the periodogram of the time series and fitting

it to the spectral density function. In Chapter 4 we review some inference methods

for stationary processes, such as the method of moments, the maximum likelihood,

the Whittle likelihood, and more generally for locally-stationary processes.

In Chapter 5 we consider a quasi-likelihood estimation method for modulated

processes with a significant correlation contribution. The quasi-likelihood we intro-

duce is based on an adaptation of the Whittle likelihood, involving the periodogram

of the time series, and its theoretical expectation under the distribution specified by

a vector of parameters at which we evaluate the quasi-likelihood. We establish the

consistency of our quasi-likelihood estimator in Chapter 6, and show that it con-

verges with rate OP

(
N−1/2

)
for a length-N time series.

We present various simulation studies in Chapter 7, including for missing

data. In Chapter 8 we present a real-world application of our model and infer-

ence method, where we analyse the velocities of ocean surface drifting instruments

from the Global Drifter Program. Some further simulation studies are included to

show the adequacy of our method with the oceanographic model. In Chapter 9 we



15

present our conclusions and ideas for future work.

At the beginning of each chapter, we clearly state which section contains re-

viewed material versus new material. All proofs in the main body of the thesis are

by the author, other proofs being left in the appendix. The work presented in this

thesis is published in Guillaumin et al. (2017) and also contributed to Sykulski et al.

(2016a).



Chapter 2

Stationarity and other time series

models

In this chapter we formally define stochastic processes on the set of integers, and

observations from stochastic processes, which are called time series. A common

practical approach to defining a stochastic process usually consists in specifying

finite joint distributions. In Section 2.1 we review the Kolmogorov extension theo-

rem which provides mild conditions under which this methodology defines a valid

stochastic process. The basics of time series analysis usually reduces to describing

first and second-order moments, assuming they are finite. In the case of a Gaussian

process, those moments completely specify the stochastic process. We first consider

the analysis of first-order moments in Section 2.2, where we study the common no-

tions of trend and seasonality. We then consider the analysis of second-order mo-

ments in Section 2.3 and study the standard stationarity assumption and the notion

of a spectrum associated with a stationary time series. Following this we present dif-

ferent classes of non-stationary time series. The classes of asymptotically stationary

time series and periodically correlated time series can be viewed as extending the

concept of stationarity, in the sense that averaging still makes sense and allows for

consistent estimators within the framework of increasing sample size asymptotics.

Hence in Section 2.4 we present these two classes in a section called “almost sta-

tionary stochastic processes”. We then review the class of harmonizable processes

in Section 2.5, and we conclude this chapter with the class of locally-stationary pro-
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cesses in Section 2.6, which are based on time-varying spectral representations. All

the material presented in this chapter is reviewed material.

2.1 Stochastic processes
We start with the formal definition of a stochastic process and quickly review the

inherent issue of existence given specified joint distributions, which is solved by the

Kolmogorov extension theorem.

Definition 1 (Stochastic process). Let T be a set. A stochastic process indexed by

T is a family of random variables {Xt : t ∈ T} from a probability space (Ω,A ,P)

onto a measurable space (E,E ). Here Ω is any non-empty set, A is a σ -field on Ω

(i.e. a class of subsets of Ω containing Ω, and closed under countable unions and

the complementary operation), and P is a probability on (Ω,A ), that is to say a

measure with total measure P(Ω) one. E is a non-empty set and E is a σ -field on

E.

In time series analysis, we consider the case T = R for continuous-time pro-

cesses and T = Z or T = N for discrete-time processes, which implies that the

set T possesses a natural ordering. Note that this choice for discrete-time pro-

cesses implies that we only consider regularly sampled processes, and that we take

the sampling step to be one without loss of generality. We usually consider the

case where the stochastic process takes values in E = Rd (real-valued process) or

E = Cd (complex-valued process), for some positive integer d. Complex-valued

variables and time series will be reviewed in Section 3.5.1, and we will justify their

use to analyse certain classes of bivariate real-valued time series. In this chapter, we

consider a real-valued stochastic process {Xt}, where we use the notation of Defini-

tion 1. A realization of the so-defined process {Xt} is given by {Xt(ω) : t ∈ T} for

a particular value of ω ∈Ω. Equivalently the term path is commonly used in the lit-

erature. For continuous-time processes, continuity of the paths, which corresponds

to P({ω : (t→ Xt(ω)) is continuous}) = 1, is called almost sure continuity.

The question of defining a valid stochastic process arises quickly. A simple
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example of a stochastic process would be,

Xt = Acos(2π f t +φ), ∀t ∈ Z, (2.1)

where f and φ are fixed, and A is a random variable on some probability space

(Ω,A ,P) with a uniform distribution over [−1,1]. In that case, for every t ∈ Z,

we can easily see that (2.1) amounts to setting Xt(ω) = A(ω)cos(2π f t +φ),∀ω ∈

Ω,∀t ∈ Z. In more complicated situations finding a proper probability space

(Ω,A ,P) to define a stochastic process may not be obvious at all. The Kol-

mogorov extension theorem, of which we give a version for time series below,

solves this issue by ensuring that, under some mild conditions on specifying the

joint distributions of finite sub-samples of the process, there exists a corresponding

stochastic process on some probability space.

Theorem 1 (Kolmogorov extension theorem). Let T =R or T =Z. For any integer

n≥ 1, for any times t1, . . . , tn ∈ T , let Ft1,...,tn(x1, . . . ,xn) be a cumulative distribution

function. Assume the following two natural requirements are met,

• for all integer n≥ 1, for all t1, . . . , tn ∈ T , and for all x1, . . . ,xn ∈R, given any

permutation π(·) of the set {1, . . . ,n},

Fπ(t1),...,π(tn)(xπ(t1), . . . ,xπ(t2)) = Ft1,...,tn(x1, . . . ,xn),

• for all integers n≥ 1, m≥ 1, for all t1, . . . , tn+m ∈ T , and for all x1, . . . ,xn ∈R,

Ft1,...,tn(x1, . . . ,xn) = lim
y1→∞,...,ym→∞

Ft1,...,tn,tn+1,...,tn+m(x1, . . . ,xn,y1, . . . ,ym).

If these conditions hold there exists a probability space (Ω,A ,P) and a stochastic

process {Xt : t ∈ T} on that probability space such that the joint cumulative distri-

bution functions of the finite sub-samples Xt1, . . . ,Xtn are given by Ft1,...,tn(x1, . . . ,xn).

Therefore one can define a valid stochastic process only by specifying the joint

probabilities of any finite sub-sample from that process. For instance, a white noise
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process Wt with parameter σ is a process made of uncorrelated random variables

with mean zero and variance σ2. If we assume all Wt have a standard normal dis-

tribution function and denote Φ(x) the corresponding cumulative distribution func-

tion, then for any integer n ≥ 1, and any t1, . . . , tn ∈ T , and for any x1, . . . ,xn ∈ R,

we define the following joint cumulative distribution functions,

Ft1,...,tn(x1, . . . ,xn) =
n

∏
k=1

Φ(xk),

and the consistency conditions of Theorem 1 are easily verified based on that defi-

nition. This proves the existence of the discrete-time standard Gaussian white noise

process. In practice, many models are based on a white noise process, like autore-

gressive and moving average models (Brockwell and Davis, 1991). Additionally,

the Kolmogorov extension theorem shows that we can define entirely a Gaussian

process by only specifying its expectations and its finite covariances, since in the

Gaussian case those determine entirely the cumulative distribution functions. In this

thesis we only consider Gaussian processes, unless stated otherwise. Additionally,

we shall only consider discrete-time processes, i.e. the case T = Z or T =N, unless

stated otherwise.

2.2 Description of first-order moments
The most basic description of a discrete time series {Xt : t ∈ N} is given by its

first-order moments, that is to say its expectations µt = E{Xt}. Consider a length-

N sample from that process, denoted X0, . . . ,XN−1. Different assumptions can be

made as concerns these expectations. If the expectations are constant over time, say

µ , and if the variances var{Xt} are bounded, according to the central limit theorem

one can simply estimate µ by averaging, µ̂ = 1
N ∑

N−1
t=0 Xt . In practice however, most

time series do not satisfy this assumption. As an example, we retrieved the number

of Google search requests (www.trends.google.com) for the term Machine learning

in France from Jul 2012 to Jul 2017. Those are shown in Fig 2.1. It appears that the

observations tend to increase in a polynomial, or maybe in an exponential way. The

term used for such behaviour is usually that of trend. Another frequently observed
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Figure 2.1: Number of Google searches for the term “Machine learning” in France
from July 2012 to July 2017. The observations are scaled from 0 to 100
where 100 corresponds to the maximal peak attained (undisclosed). Source:
https://trends.google.fr/.
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Figure 2.2: Number of Google searches for the term “Coat” in France from July 2012
to July 2017. The observations are scaled from 0 to 100 where
100 corresponds to the maximal peak attained (undisclosed). Source:
https://trends.google.fr/.

behaviour is that of seasonality. Consider the example of Fig 2.2, which shows

the number of Google search requests for the term coat in France from Jul 2012

to Jul 2017. Not surprisingly, this time series will be strongly related to weather

conditions, explaining the yearly pattern that we can observe. In this thesis we

do not focus on the problem of estimation of first-order moments, and assume all

throughout this thesis that the processes have mean zero, unless stated otherwise.
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2.3 Description of second-order moments
A more advanced description of a time series, once a model has been posited for

the first-order moments, is to specify the second-order moments. Again some as-

sumptions are required so that some form of averaging, and therefore estimation,

is possible. In this section we first recall the definition of a stationary process and

the corresponding spectral representation. We then consider two cases where the

assumption of stationarity is relaxed: asymptotically stationary time series and pe-

riodically stationary time series. In both cases, the assumptions are such that con-

sistent estimators can still be obtained under the asymptotic framework of increas-

ing sample size. We then consider the class of locally-stationary time series that

was introduced by Priestley (1988) and were given a proper asymptotic framework

by Dahlhaus (1997).

2.3.1 Stationary processes

A key feature of stationarity is that is allows for estimation to performed by averag-

ing over time. There are two main definitions for stationarity. The first one, which

we define below, is very restrictive and difficult to verify in practice.

Definition 2 (Strictly-stationary processes). Let {Xt : t ∈ Z} be a discrete time

stochastic process. For any n ≥ 1 and any set of n time indices t1, . . . , tn, we

denote by Ft1,...,tn(x1, . . . ,xn) the cumulative distribution function of the vector

[Xt1, . . . ,Xtn]
T . The process {Xt} is strictly-stationary if, for any τ ∈ Z, we have

the equality,

Ft1,...,tn(x1, . . . ,xn) = Ft1+τ,...,tn+τ(x1, . . . ,xn), ∀x1, . . . ,xn ∈ R.

This definition is a very strong requirement. For that reason the concept of

weak-stationarity, which we define below, is much more common in the time series

literature, and we shall refer to it simply as “stationarity” since we will not make

any use of Definition 2 in this thesis.

Definition 3 (Weakly-stationary processes). Let {Xt : t ∈ N} be a discrete time se-

ries. The process {Xt} is said to be (weakly-)stationary if,
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• its means E{Xt} are all finite and equal to a constant independent from t, say

µX ,

• its second-order joint moments are all finite and there exists a sequence

{cX(τ) : τ ∈ Z} such that,

E{(Xt−µX)(Xt+τ −µX)}= cX(τ).

Stationarity therefore requires that first-order moments be independent from

time, and second-order joint moments be only a function of the lag τ . Note

that strictly-stationary processes are not always weakly-stationary, as a strictly-

stationary process does not necessarily have finite second-order moments. Weakly-

stationary processes are of course not strongly-stationary in general, except in some

specific cases such as that of Gaussian processes where the two definitions are

equivalent.

The quantity {cX(τ)} that appears in the definition of a weakly-stationary pro-

cess is called the autocovariance function of the process. A natural question that

arises is, what sequences are valid autocovariance functions? It is clear that not

all sequences are, since we must have that cX(0) ≥ cX(τ),∀τ ∈ Z according to the

Cauchy-Schwarz inequality. This also means that if we define the autocorrelation

function as γX(τ) = cX(τ)/cX(0),τ ∈ Z, it must be bounded in absolute value by

one. To investigate more precisely the characterization of autocovariance sequences

we need the following definition.

Definition 4 (Non-negative definite sequence). Let (ai)i∈Z be a sequence indexed

by the set of natural integers. It is said to be non-negative definite if for any n ≥ 1

the following condition is satisfied,

n

∑
i, j=1

ai− jλiλ j ≥ 0, ∀λ1, . . . ,λn ∈ R.

It is symmetric if ai = a−i,∀i ∈ Z.

The following lemma states that autocovariance sequences are exactly sym-
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metric non-negative definite sequences.

Lemma 1 (Characterization of autocovariance sequences). Let (ai)i∈Z be a se-

quence indexed by the set of natural integers. The sequence (ai)i∈Z is the autoco-

variance function of a stationary discrete-time process if and only if it is symmetric

and non-negative definite.

Proof. See Appendix A.1.

The property of Lemma 1 is key in specifying valid models for stationary time

series and in time series inference, where a desirable property of the estimated au-

tocovariance of a stationary discrete time series is that it is non-negative definite.

In particular, this will be an important consideration in specifying valid parametric

models for stationary autocovariance functions. Moreover this property leads to the

definition of the spectrum of a stationary time series, which is the topic of the next

section.

2.3.2 Spectral distribution function and spectral representation

In this section we recall the definition of a spectrum for a stationary time series,

which decomposes the variance of a stationary process across frequencies. We then

review a fundamental result of stationary time series analysis, where a stationary

stochastic process can be represented as a sum of sinusoids with random and uncor-

related amplitudes and phases.

The idea behind the spectrum of a stationary process is a one-to-one transfor-

mation between the set of autocovariance functions of stationary processes and the

set of distribution functions defined on [−π,π].

Proposition 1 (Spectral distribution function of a stationary process). Let {Xt :

t ∈ Z} be a stationary process with autocovariance function cX(τ). There exists

a distribution function F : [−π,π)→ R (distribution function here meaning non-

decreasing, with value 0 at −π and bounded) such that,

cX(τ) =
∫

π

−π

eiωτdF(ω).
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Here the integral is a Lebesgue-Stieltjes integral. In the case where the function

F(ω) admits a derivative everywhere, denoted f (ω), we have,

cX(τ) =
∫

π

−π

f (ω)eiωτdω.

The function F(ω) always exists and is called the spectral distribution function of

the process. When it exists, the function f (ω) is called the spectral density function

of the process, and is then related to the autocovariance function by,

f (ω) =
1

2π

∞

∑
τ=−∞

cX(τ)e−iωτ , (2.2)

i.e. f (ω) is the Fourier series with coefficients cX(τ),τ ∈ Z.

Proof. See Appendix A.2.

The spectral distribution function describes how the variance (energy in the

signal-processing literature) of a stationary process spreads across frequencies. It

can be easier or more relevant to study the spectrum rather than the autocovari-

ance function. The following lemma gives a general case where a spectral density

function is well defined.

Lemma 2 (Spectral density for processes with short memory). Let {Xt : t ∈ Z} be

a stationary process with autocovariance sequence cX(τ). Assume that the autoco-

variance sequence is absolutely summable, that is to say ∑
∞
τ=−∞ |cX(τ)|< ∞. Then

the process admits a spectral density function f (ω) = 1
2π ∑

∞
τ=−∞ cX(τ)e−iωτ .

Proof. See Appendix A.3.

As a simple example, the process {Wt : t ∈ Z} is called a white noise process

if it is stationary and its autocovariance function satisfies cW (0) > 0 and cW (τ) =

0,τ > 0. Its spectral density is constant and equal to f (ω) = cW (0)/(2π).

Similarly to the spectral distribution function as an equivalent of the autoco-

variance function, there exists an equivalent representation of a stationary stochastic

process as a sum of sinusoids with uncorrelated random amplitudes, which we now

define.
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Proposition 2 (Spectral representation theorem). Let {Xt : t ∈ Z} be a stationary

process with mean zero and with spectral distribution function F(ω). There exists a

stochastic process with orthogonal increments ψ(ω) defined on [−π,π] such that,

Xt =m.s

∫
π

−π

eiωtdψ(ω), (2.3)

where =m.s means that the equality is to be understood in the mean square sense.

Moreover, F(ω) is the distribution function of ψ(ω), and in particular,

E
{
[ψ(ω2)−ψ(ω1)]

2
}
= |F(ω2)−F(ω1)| .

This property is very often summed-up in the literature by the following approximate

notation,

E{|dψ(ω)|2}= dF(ω), (2.4)

or E{|dψ(ω)|2}= f (ω)dω if the spectral density function exists.

Note that for the process {Xt} to be real-valued we must have ψ(−ω) =

ψ(ω)∗, where the symbol ∗ denotes complex-conjugation. The fact that equal-

ity (2.3) holds in terms of mean square error means that for any t ∈ Z we have,

var
{

Xt−
∫

π

−π

eiωtdψ(ω)

}
= 0. (2.5)

In the case where the spectral distribution function admits a discontinuity at ω0 ∈

(−π,π], it is possible to write (Brockwell and Davis, 1991),

Xt =
∫
(−π,π)\ω0

eiωtdψ(ω)+
[
ψ(ω0)−ψ(ω−0 )

]
eiω0t ,

where var
{

ψ(ω0)−ψ(ω−0 )
}
= F(ω0)−F(ω−0 ). Therefore discontinuities in the

spectral distribution function account for the deterministic part of the process. Note

that if the process {Xt} is real-valued and its spectral distribution function admits a

discontinuity at ω0 then it must also admit a discontinuity at −ω0.
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2.4 Almost stationary stochastic processes
Stationary processes present the advantage of a non-evolving first and second-order

structure, making averaging possible and therefore allowing for a wide range of es-

timation methods, such as the method of moments or likelihood inference methods,

which we shall review in Chapter 4. In this section we consider two classes of time

series models where averaging remains feasible, despite relaxing the assumption of

stationarity. For that reason we call this section “almost stationary stochastic pro-

cesses”. The first class of models we present here is that of asymptotically stationary

processes (Parzen, 1961), for which it is not required that second-order moments be

constant over time but instead the assumption is that the sample autocovariance se-

quence converges in some probabilistic way. The second class of models is that

of periodically correlated processes (Gladyshev, 1963, Hurd and Miamee, 2007),

where the assumption is that the autocovariance function is periodic.

2.4.1 Asymptotic stationarity

Asymptotically stationary time series were introduced by Parzen (1961) to account

for the fact that despite the autocovariance of a stochastic process may not satisfy the

assumption of stationarity, the sample autocovariance sequence may still converge

in some probabilistic way.

Definition 5 (Asymptotically stationary process). Let {Xt} be a discrete-time ran-

dom process. We say that {Xt} is an asymptotically stationary process if there exists

a fixed positive function {γ(τ) : τ ∈ N} such that for all τ ∈ N,

lim
N→∞

E

{
1
N

N−τ−1

∑
t=0

XtXt+τ

}
= γ(τ). (2.6)

A particularly enticing subclass of asymptotically stationary processes is that

of asymptotically stationary modulated processes which we review in Section 3.2.

2.4.2 Periodically correlated time series

A stationary process is one where the first and second-order structure are invari-

ant under shifts. The class of periodically correlated time series (Gladyshev, 1963,
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Gardner et al., 2006, Hurd and Miamee, 2007) extends that of stationary time se-

ries by allowing for the second-order structure to be time-invariant under shifts of

multiples of a given length denoted d. With this assumption all features of the co-

variance structure can still be observed infinitely many times and averaging is still

feasible. We give a formal definition of periodically correlated (equivalently called

cyclostationary) processes below.

Definition 6 (Cyclostationary process). Let {Xt : t ∈ Z} be a discrete-time process.

This is said to be a periodically correlated process, or a cyclostationary process, if

there exists T ∈ N, T > 1, such that,

1. E{Xt}= E{Xt+T}, ∀t ∈ Z,

2. cov{Xt ,Xt+τ}= cov{Xt+T ,Xt+T+τ}, ∀t,τ ∈ Z.

Cyclostationary processes naturally occur in many instances in the real-world.

In econometrics, the periodicity in the first and second-order moments is generated

by the natural latent seasonalities of the processes.

2.5 Harmonizable processes
A large class of non-stationary processes is obtained by allowing for correlation

between increments of the process ψ(ω) in the spectral representation (2.3). This

corresponds to the class of harmonizable processes (Loève, 1945).

Definition 7 (Harmonizable process). Let {Xt} be a stochastic process with mean

zero. The process {Xt} is called harmonizable if there exists a complex-valued

stochastic random measure of bounded variation ψ(dω) over ([−π,π],B([−π,π])),

not necessarily orthogonally scattered, such that,

Xt =
∫

π

−π

eiωt
ψ(dω).

There exists a scalar measure F(dω1,dω2) such that, for all Borel sets A,B ∈

B([−π,π]), we have,

cov{ψ(A),ψ(B)}= F(A,B).
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If the measure F(dω1,dω2) admits a density f (ω1,ω2), then it is called the bi-

spectral density function. F(dω1,dω2) is called the bi-spectral distribution func-

tion, and ψ the bi-spectral random distribution function.

The covariance function of the harmonizable process {Xt} of Definition 7 is

given by,

cov{Xs,Xt}=
∫

π

−π

∫
π

−π

ei(ω1t−ω2s)F(dω1,dω2).

Periodically correlated processes, presented in Section 2.4.2, are an example

of harmonizable processes, where the bi-spectral distribution F(dω1,dω2) is con-

centrated on lines parallel to the identity (Hurd and Miamee, 2007).

2.6 Locally stationary processes
Except for some specific cases, defining a valid class of non-stationary autocovari-

ance functions is a complicated problem. This is because the covariance matrix of

any sub-sample must be non-negative definite, as a generalization of Lemma 1 for

stationary processes. Another approach is to allow for some variation in the spectral

representation of a stationary process given in (2.3). We recall that a stationary pro-

cess {Xt : t ∈Z} with mean zero can be represented in the following way, according

to the spectral representation theorem,

Xt =
∫

π

−π

eiωtdψ(ω),

where ψ is a stochastic process with orthogonal increments and such that ψ(−ω) =

ψ(ω)∗ as Xt is real-valued. Based on this, one way to define a non-stationary pro-

cess with mean zero consists in specifying (Priestley, 1965, Dahlhaus, 1997, Mélard

and Herteleer-De Schutter, 1989, Grenier, 1983),

Xt =
∫

π

−π

A(t,ω)eiωtdψ(ω), (2.7)

where ψ(ω) is a stochastic process on [−π,π) with orthogonal increments and

spectral distribution function F(ω), and where A(t,ω) is a function from Z×
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[−π,π] to C. This class of processes contains that of stationary processes with

a spectral density function f (ω), as we can then choose A(t,ω) = f (ω). The auto-

covariance function of the process specified by (2.7) is given by, for any time t ∈ Z

and lag τ ∈ Z,

E{XtXt+τ} = E
{(∫

π

−π

A(t,ω)eiωtdψ(ω)

)∗(∫ π

−π

A(t + τ,ω)eiω(t+τ)dψ(ω)

)}
=

∫
π

−π

A(t,ω)∗A(t + τ,ω)eiωτdF(ω),

according to the properties of integration with respect to a stochastic process with

orthogonal increments. Equation (2.7) always define a valid autocovariance form as

we have, for any positive integer n ∈ N, any t1, . . . , tn ∈ Z, any λ1, . . . ,λn ∈ C,

n

∑
i=1

n

∑
j=1

λ
∗
i λ jcov{Xti,Xt j} =

n

∑
i=1

n

∑
j=1

λ
∗
i λ j

∫
π

−π

A(ti,ω)∗A(t j,ω)eiω(t j−ti)dF(ω)

=
∫

π

−π

n

∑
i=1

n

∑
j=1

λ
∗
i λ jA(ti,ω)∗A(t j,ω)eiω(t j−ti)dF(ω)

=
∫

π

−π

∣∣∣∣∣ n

∑
i=1

λiA(ti,ω)eiωti

∣∣∣∣∣
2

dF(ω)≥ 0.

The non-negativeness of that last quantity results from the fact that F is non-

decreasing. It implies that equation (2.7) always defines a valid stochastic process,

in the sense that the resulting process has a valid, i.e. non-negative definite, auto-

covariance function. A stationary process has a single representation in the form

of equation (2.3) up to a multiplicative constant. However, the representation (2.7)

may not be unique, and we may need some constraints so that one can interpret the

quantity A(t,ω) as the spectral component of the process Xt at frequency ω and

time t. Priestley (1965) introduces the notion of oscillatory functions, in the sense

that t → A(t,ω) is required to have a Fourier transform with a maximal absolute

value at frequency zero, so that t → A(t,ω)eiω can be interpreted as an oscillatory

function with frequency ω , and A(t,ω) can be interpreted as the envelope. With

such a definition, a time-varying spectral distribution function Ft(ω) with respect to



2.6. Locally stationary processes 30

F(ω) can be defined by,

dFt(ω) = |A(t,ω)|2dF(ω).

Different normalization constraints can be posited for the functions A(t,ω), but

independently of those choices we get,

var{Xt}=
∫

π

−π

dFt(ω),

which provides us with some understanding of the frequency content of the process

Xt at time t.

Building on this idea, Dahlhaus (1997) introduced the class of locally station-

ary processes, providing with a meaningful asymptotic framework. This is accom-

plished by defining a triangular array of processes according to,

Xt,T =
∫

π

−π

At,T (ω)eiωtdψ(ω), T ∈ N, t = 0, . . . ,T. (2.8)

Such a process is called locally stationary if,

1. ψ(ω) is a stochastic process with orthogonal increments such that ψ(−ω) =

ψ(ω)∗, and with spectral distribution function Fψ(ω) = ω +C (where C is

any real-valued constant), i.e. such that E{|ψ(ω2)−ψ(ω1)|2}= |ω2−ω1|.

2. There exists a function A(u,ω) from [0,1]× [−π,π] to C, which is continuous

in u, and a positive constant K such that,

∣∣∣At,T (ω)−A
( t

T
,ω
)∣∣∣≤ K

T
, ∀T ∈ N, t = 0, . . . ,T.

The distinction between At,T (ω) and A(u,ω) is required so that this defini-

tion can account for autoregressive models with time-varying parameters for in-

stance (Dahlhaus, 1996). Such models are defined by,

p

∑
j=0

φ j(t/T )Xt− j,T = σ(t/T )εt,T , (2.9)
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with φ0(u) = 1 and the functions φ j(u) are assumed continuous.

The process defined by (2.8) is such that the quantity f (u,ω) = |A(u,ω)|2 is

uniquely defined as the limit, for T going to infinity, of the Wigner-Ville spectrum,

fT (u,ω) =
1

2π

∞

∑
τ=−∞

cov{XbuTc−τ/2,T ,XbuTc+τ/2,T}e−iωτ . (2.10)

This as such allows to define a unique evolving spectral density f (u,ω)= |A(u,ω)|2

associated with the non-stationary process {Xt}. The asymptotic framework corre-

sponding to T going to infinity is called infill asymptotics (Dahlhaus, 1997) and

does not correspond to the increasing sample size framework usually considered

in stationary time series analysis. However it allows to derive asymptotic quanti-

ties, such as the asymptotic Kullback-Leibler information divergence between two

locally stationary processes, which will depend on the respective evolving spectral

densities. More precisely, assume Gaussianity, and let f1(u,λ ) and f2(u,λ ) be two

time-varying spectral densities. Denote f 1, f 2 the respective probability density

functions of samples X1,T , . . . ,XT,T . We then have, up to a constant,

lim
T→∞

1
T

E f 1

{
log

f 1(X1,T , . . . ,XT,T )

f 2(X1,T , . . . ,XT,T )

}
=
∫ 1

0

∫
π

−π

{
log f2(u,λ )+

f1(u,λ )
f2(u,λ )

}
dλdu.

In Section 4.4 we will review some parametric inference methods for locally sta-

tionary processes. The general idea behind those methods is to estimate the time-

varying spectral density and minimize the approximate Kullback-Leibler informa-

tion divergence between this estimate and a parametric form of the time-varying

spectral density. The minimization is conducted within a parametric family of time-

varying spectral densities that constitutes the model, and which needs not contain

the true time-varying spectral density.



Chapter 3

Modulated stochastic processes

In Chapter 2 we considered numerous ways of departing from the assumption of sta-

tionarity. This is necessary to account for a wide range of real-world time series that

cannot realistically be modelled as realizations of stationary stochastic processes.

The class of locally-stationary processes introduced by Dahlhaus (1996) provides

tools to understand the impact of fitting a stationary model to a non-stationary

stochastic process that possesses a smooth time-varying spectral representation. Lo-

cal Fourier transforms can be used to estimate a local spectrum (Dahlhaus, 1997).

We shall quickly revisit this topic later in Section 4.4 with regards to parameter

inference. The limitations of the locally-stationary framework however, is that in

general we do not acquire more information about the behaviour of the process at

present as we observe more points in the future. To hope for such, we need to im-

pose on the model that part of the information repeats itself over time an infinite

number of times. This is the idea behind cyclostationary processes, for example,

as introduced in Section 2.4.2. Another way to construct a non-stationary stochas-

tic process where part of the information is repeated over time is modulation. A

modulated stochastic process is a stationary stochastic process multiplied point-

wise by a continuous function (for time-continuous processes) or a sequence (for

discrete-time processes). We will see that conditions on the modulating sequence

will determine how much information about the latent stationary process is kept af-

ter modulation. In this chapter we first recall the formal definition of a modulated

process in Section 3.1 and review the class of asymptotically stationary modulated
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processes (Parzen, 1963) in Section 3.2. We then present our extended class of

modulated processes with a significant correlation contribution in Section 3.3. In

Section 3.4 we consider the application of modulated processes to the problem of

missing data in the analysis of stationary processes, and show the use of our class

of modulated processes with a significant correlation contribution to study larger

classes of such problems than has been done in the past literature of modulated

processes. We then propose an extension of modulation to a class of bivariate pro-

cesses in Section 3.5, where the definition of significant correlation contribution is

easily extended from scalar processes to bivariate processes. In this same section we

introduce a bivariate non-stationary autoregressive model, show that it belongs to

our class of bivariate modulated processes, and give sufficient conditions ensuring

significant correlation contribution. In Chapter 8 we shall use this non-stationary

model to study the velocity time series of drifting instruments which follow the

ocean surface currents. In this chapter, Sections 3.1 and 3.2 constitute reviewed

material. Section 3.3 is novel. Section 3.4 constitutes mostly revised material, ex-

cept for the comments about significant correlation contribution for the scheme of

(k, l)-periodically missing observations, and Example 3 of that section. Sections 3.5

and 3.6 are novel.

3.1 Modulated processes
Modulation is a natural and simple method of producing a non-stationary pro-

cess (Parzen, 1963). A univariate Gaussian modulated process is defined as follows.

Definition 8 (Gaussian modulated process). Let {Xt : t ∈ N} be a Gaussian, real-

valued, zero-mean stationary process. Let {gt : t ∈ N} be a given bounded real-

valued deterministic sequence. Then a modulated process is defined pointwise as

one taking the form

X̃t = gtXt (3.1)

at all time points t ∈ N.

Herein we treat {gt} as a known deterministic signal, unless stated otherwise.

In our setting the process {Xt}, which is referred to as the latent process, is modelled
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through a finite set of parameters θ ∈ Θ ⊂ Rd , where d is a positive integer and Θ

is the parameter space. Usually our object of interest is θ , the particular values

of parameters that generated the observed realization. For example, if the latent

process is an autoregressive process of order p ≥ 1, we then have d = p+ 1 if the

mean is known (p autoregressive parameters and the variance of the innovations).

We denote the autocovariance function of the stationary zero-mean process {Xt} by

cX(τ), or cX(τ;θ) when we want to make the dependence on θ explicit. Its Fourier

transform, the spectral density, is denoted SX(ω) or SX(ω;θ), respectively.

The modulation of the latent process Xt is a convenient mechanism to account

for a wide range of non-stationary processes. In particular this mechanism has been

widely used as a modelling tool for missing data problems in time series, where

gt is assigned values 0 or 1 when respectively missing or observing a data point in

time (Jones, 1962).

To understand when we can recover the parameters controlling the latent pro-

cess Xt from observing X̃t , we need to put further conditions in place on gt . The

time series X̃t/gt cannot always be formed as gt may be zero for some time indices,

corresponding to missing observations. Another reason is that we may not directly

observe X̃t , but instead we may observe an aggregated process X̃t +Zt , where Zt is

a stationary process (or more generally another modulated process, see Section 3.6)

independent from X̃t , thus preventing us from recovering the stationary latent pro-

cess Xt by division. The latter situation occurs for instance in our real-data applica-

tion to oceanography presented in Section 8. We discuss briefly the addition of two

modulated processes in Section 3.6.

We assume that X̃t satisfies (3.1) for a Gaussian, real-valued, zero-mean sta-

tionary Xt with absolutely summable autocovariance sequence. Then E{X̃t} =

gtE{Xt}= 0 and the time-varying autocovariance sequence is given by,

cX̃(t, t + τ;θ) = E
{

X̃t X̃t+τ

}
= gtgt+τcX(τ;θ).

Given a single length-N realization X̃0, · · · , X̃N−1, we start by computing the usual
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method of moments estimator according to,

ĉ(N)

X̃
(τ) =

1
N

N−τ−1

∑
t=0

X̃t X̃t+τ , (3.2)

for τ = 0,1, ...,N−1, such that τ is within the range of time offsets that is permissi-

ble given the length-N sample. Equation (3.2) is the biased sample autocovariance

sequence of the modulated time series, which we define even though the process is

non-stationary, as this object will become pivotal in our estimation procedure. The

expectation of this object, which we denote c(N)

X̃
(τ;θ) or simply c(N)

X̃
(τ), takes the

following form,

c(N)

X̃
(τ) = E{ĉ(N)

X̃
(τ)}= E

{
1
N

N−τ−1

∑
t=0

X̃t X̃t+τ

}
(3.3)

= cX(τ)
1
N

N−τ−1

∑
t=0

gtgt+τ = c(N)
g (τ) · cX(τ),

where we have introduced the (deterministic) sample autocovariance of the modu-

lating sequence,

c(N)
g (τ) =

1
N

N−τ−1

∑
t=0

gtgt+τ . (3.4)

In the specific case where the modulating sequence {gt} is constant and equal to

unity everywhere, which would correspond to observing the latent stationary pro-

cess directly, we recover the expectation of the biased sample autocovariance for

stationary time series, (1− τ/N)cX(τ), for τ = 0, · · · ,N − 1. More generally, a

standard assumption is to say that the modulated process X̃t is an asymptotically

stationary process (Parzen, 1961, 1963), which arises if for all lags τ , the quantity

c(N)
g (τ) in (3.4) converges as N tends to infinity. This is the subject of the following

section.

3.2 Asymptotically stationary modulated processes

The class of asymptotically stationary modulated processes is due to Parzen (1961)

and corresponds to modulated processes which satisfy the definition of asymptotic
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stationarity as given in Section 2.4.1. More precisely, with the notations of the for-

mer section, {X̃t} is an asymptotically stationary modulated process if there exists

a fixed function {γg(τ) : τ ∈ N} such that for all τ ∈ N,

lim
N→∞

c(N)
g (τ) = γg(τ), (3.5)

where c(N)
g (τ) is defined by (3.4). Indeed we then note that c(N)

X̃
(τ)→ γg(τ)cX(τ)

as N −→ ∞, so we could estimate cX(τ) by defining,

ĉ(N)
X (τ) =

ĉ(N)

X̃
(τ)

γg(τ)
, (3.6)

assuming γg(τ) 6= 0 for all τ ∈ N, and is known. It is shown in Parzen (1963)

that (3.6) is a consistent estimator of the autocovariance sequence cX(τ) of the latent

stationary process under mild conditions. Further results are found in Dunsmuir and

Robinson (1981a).

An example of a non-stationary but asymptotically stationary process is given

by Parzen (1963), where a stationary process is observed according to a (k, l)-

periodically missing data pattern, such that the first k values are observed, the next

l values are missed, the next k values are observed, and so on, where k and l are two

strictly positive integers.

The key feature in Definition 5 is that we average the time-varying autoco-

variance sequence cX̃(t, t + τ) = E
{

X̃t X̃t+τ

}
across a time period N to produce an

average autocovariance across the time period, written as c(N)

X̃
(τ). If this converges

(in N) to a function of τ , then by observing the modulated process over a suitably

long time interval we can recover the second-order properties of the stationary latent

process.

3.3 Significant correlation contribution
We now wish to explore a more general assumption than that of asymptotic station-

arity for modulated processes. Specifically, we seek a larger class of models where

consistent inference is still achievable. This will be smaller than the full class of
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models for gt , as using a trivial example, if gt ≡ 0 always then we would not be

able to infer properties of the generating mechanism of Xt . For consistent infer-

ence we propose the following class of modulated processes, which forms the key

contribution of Guillaumin et al. (2017).

Definition 9 (Modulated process with a significant correlation contribution). As-

sume that X̃t is specified by (3.1). We say that X̃t is a modulated process with a

significant correlation contribution if there exists a finite subset of non-negative lags

Γ⊂ N such that,

1. The mapping θ 7→ {cX(τ;θ) : τ ∈ Γ} is one-to-one (injective).

2. For all lags τ ∈ Γ,

liminf
N→∞

|c(N)
g (τ)|> 0, (3.7)

where liminf
N→∞

is the limit inferior.

Because of the symmetry of autocovariance sequences we do not need to con-

sider τ < 0 in this definition. Point 1 of Definition 9 means that for any two distinct

parameter vectors θ ,θ ′ ∈ Θ, there exists at least one lag τ in the finite set Γ such

that cX(τ;θ) 6= cX(τ;θ
′). It is therefore an assumption about the latent process

model. The quantity |c(N)
g (τ)| is bounded above since the modulating sequence is

assumed to be bounded above. Therefore the limit inferior in (3.7) is always finite.

We observe that, for τ ∈ Γ, (3.7) is equivalent to,

∃ατ > 0, ∃Nτ ∈ N, ∀N ∈ N, N ≥ Nτ ⇒ |c(N)
g (τ)| ≥ ατ , (3.8)

which we interpret as the fact that the sequence {|c(N)
g (τ) : N ∈ N}| is bounded

below by a positive constant for N large enough. For further understanding of Point

1 in Definition 9 we provide the following two simple examples.

1. Let the latent process {Xt} be an autoregressive process of order p, denoted

AR(p), with known mean zero and unknown innovation variance, and with

parameter set Θ ⊂ Rp+1. If the parameter set Θ is chosen appropriately, i.e.
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such that the roots of the characteristic equation all lie outside the unit cir-

cle so that the process is causal, the Yule-Walker equations (Brockwell and

Davis, 1991) show that θ 7→ {cX(τ;θ) : τ ∈ Γ}, where Γ = {0, · · · , p}, is a

one-to-one mapping. Similarly if {Xt} is a moving average process of or-

der q, denoted MA(q), with known mean an unknown innovation variance

and if the parameter set Θ is chosen appropriately (Dzhaparidze and Yaglom,

1983), then the mapping θ 7→ {cX(τ;θ) : τ ∈ Γ}, where Γ = {0, · · · ,q}, is

one-to-one.

2. Let the latent process {Xt} be the MA(2) process defined by,

Xt = σ (εt +θ2εt−2) ,

where the innovations εt are i.i.d. and have a standard normal distribution

and σ > 0. The parameters of the model are (θ2,σ), and the parameter set

Θ =R×R\{0} ensures that the mapping θ 7→ {cX(τ;θ) : τ ∈ Γ}, where Γ =

{0,2}, is one-to-one. Note that observing lag-1 is not required here as we

have assumed θ1 = 0 in the model.

The definition of a significant correlation contribution constrains how much

“energy” adds up for any fixed lag τ ∈ Γ. We see directly from (3.3) that if we

assume a significant correlation contribution, the expectation of the estimated au-

tocovariance of X̃t does not vanish with the length of the observation N, at least

for lags in Γ. This allows for consistent estimation of the parameter θ as we will

prove in Section 6. As a trivial counterexample, assume for instance that c(N)
g (τ)

goes to zero when N goes to infinity. Then ĉ(N)

X̃
(τ) in (3.2) goes to zero as well,

independently of the parameter vector θ , resulting either in infeasible estimation or

requiring a change of estimation approach.

Our class of modulated processes extends the concept of modulated processes

with a significant correlation contribution. Specifically, for the class of asymptot-

ically stationary modulated processes it is required that c(N)
g (τ) converges to the

non-zero quantity Rg(τ) as N grows, which is a stronger requirement than (3.7)
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where we only require an asymptotic positive lower bound rather than convergence.

In this thesis we will also consider two situations that will require an extended

definition of significant correlation contribution. In Section 3.6 we will consider

a linear combination of modulated processes, and in Section 5.4 we will consider

situations where the modulation sequence is not observed. These two additional

contributions will require the following definition.

Definition 10 (Asymptotic injectivity). For all N ∈ N, let h(N) : Θ 7→ R be a se-

quence of functions, from Θ⊂ Rd to Rm, where d and m are positive integers. The

sequence h(N)(·) is said to be asymptotically injective if, for all distinct θ ,θ ′ ∈Θ,

liminf
N→∞

‖h(N)(θ)−h(N)(θ ′)‖> 0,

where ‖ · ‖ represents any norm on Rm.

3.4 Missing observations
A compelling use of modulated processes is to account for missing observations in

stationary time series. Let {Xt : t ∈ N} be a stationary Gaussian process. For each

time point t ∈ N, we set (Parzen, 1963),

gt =

 0 if Xt is missing

1 if Xt is observed
. (3.9)

The process X̃t = gtXt is formed at all time points t ∈ N, forming a Gaussian mod-

ulated process in the sense of Definition 8.

An example where the missing observation pattern is deterministic and leads

to an asymptotically stationary modulated process is the case of (k, l)-periodically

missing data treated by Jones (1962) and Parzen (1963). This corresponds to ob-

serving the k first values, missing the l next values, observing the k next values,

and so on. Note that Parzen (1963) requires k > l for non-parametric estimation of

the spectral density of Xt based on (3.6). Our model of modulated processes with

significant correlation contribution allows for k ≤ l, as long as we observe the lags
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in the set Γ used in Definition 9. A generalization of the (k, l)-periodically miss-

ing data scheme was introduced by Clinger and Ness (1976) with an application to

oceanography.

Missing observations can also occur according to a random mechanism. This

can be modelled by a random modulation sequence taking values zero and one

(Scheinok, 1965, Bloomfield, 1970), when the random mechanism according to

which missing points occur is independent from the observed process, which we

shall assume. Conditioning on the observed modulation function, we then return to

the deterministic modulating sequence described in this thesis. Most works, to our

knowledge, have assumed some sort of stationarity for the random modulation se-

quence, i.e. that the sample autocovariance of the modulation sequence converges

almost surely to a non-zero value at all lags (Dunsmuir and Robinson, 1981b,c).

Some authors do not require such an assumption but have treated only specific

models, usually autoregressive models (Jones, 1980, Broersen et al., 2004). The

definition of a modulated process with a significant correlation contribution in such

a situation needs to be understood in a probabilistic fashion, i.e. we require that

Property 2 of Definition 9 be satisfied with probability one. Indeed, if one sees the

general random experiment as a two-step experiment, where first the random mod-

ulating sequence {gt} is generated and observed and then a stationary process {Xt}

is modulated by this modulating sequence to produce {X̃t}, then with probability

one the modulating sequence {gt} in the first step makes {X̃t} a modulated process

with a significant correlation contribution. Such a situation may be described by

saying that {X̃t} is a modulated process with an almost surely significant correla-

tion contribution. We shall now give a few examples of cases satisfying the stated

conditions.

1. Let Xt be an AR(p) Gaussian process with mean zero. If we set Γ =

{0, · · · , p}, and if the missing data occurs deterministically according to a

(k, l)-periodic pattern, k ≥ p is a sufficient condition for the resulting mod-

ulated process to have a significant correlation contribution. This is because

we are able to observe an infinite number of time the lags in Γ. We do not



3.5. Extension to bivariate modulated processes 41

require any additional condition on l.

2. Let Xt be an AR(p) process, and consider the missing data scheme treated by

Scheinok (1965), where the random mechanism is a sequence of Bernoulli

i.i.d. trials with identical probability of success (to be understood as observa-

tion here) 0 < p≤ 1. According to the strong central limit theorem, for all lag

τ ∈N, c(N)
g (τ) converges a.s. to p2 > 0 and therefore liminf

N→∞

∣∣∣c(N)
g (τ)

∣∣∣> 0 a.s.

Therefore the observed process is a modulated process with an almost surely

significant correlation contribution.

3. Consider the random mechanism where the sequence {gt} is generated ac-

cording to

gt ∼B(pt), (3.10)

where B(p) represents the Bernoulli distribution with parameter p, and

where we set

pt = P +Ap cos(ωpt) , (3.11)

with 0 < P < 1, 0 ≤ Ap < min(P,1−P) (which ensures 0 < P −

Ap ≤ pt ≤ 1,∀t ∈ N), and ωp ∈ [−π,π]. The Bernoulli parameters pt as

given by (3.11) will oscillate around their mean value P . This leads to

liminf
N→∞

∣∣∣c(N)
g (τ)

∣∣∣> 0 a.s., using the fact that pt is bounded below by P−Ap >

0.

In section 7.1.2 we will provide a simulation study based on the third example. This

is novel in comparison of previously studied missing observation schemes as we do

not make an assumption of stationarity for the process gt , as is for instance required

by Dunsmuir and Robinson (1981a).

3.5 Extension to bivariate modulated processes
In this section we review complex-valued stochastic processes, and in particular the

class of proper complex-valued processes. We introduce a class of non-stationary

bivariate modulated processes in Section 3.5.2, and then consider a bivariate AR(1)

stochastic process model which can be modelled via this class in Section 3.5.3.
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3.5.1 Complex-valued time series

Up to this point we have only treated the case of real-valued stochastic processes,

that is to say processes taking values in the set of real numbers. In this section,

we review the basics of complex-valued time series analysis (Schreier and Scharf,

2010). We will use complex-valued time series analysis methods to analyse bivari-

ate oceanographic time series in Section 8.4.

Firstly, we consider two complex-valued random variables Z1 and Z2 from

some probability space (Ω,A ,P) to C, and denote Z j = X j + iYj, j = 1,2 where

X j and Yj are real-valued random variables, and i denotes the element of C that

satisfies i2 = −1. The expectations of the two random variables Z1 and Z2 are

simply defined by,

E{Z j}= E{X j}+ iE{Yj}, j = 1,2.

The covariance structure of those two complex-valued random variables possesses

four degrees of freedom, and is equivalently represented by the two complex-valued

quantities,

cZ1,Z2 = E{Z∗1Z2}, rZ1,Z2 = E{Z1Z2},

assuming zero-mean for both variables and recalling that ∗ denotes the conjugation

operator. The quantity cZ1,Z2 is the covariance of the two complex-valued random

variables Z1 and Z2. The quantity rZ1,Z2 is called the relation or complementary co-

variance. To better understand those two quantities, observe that cZ1,Z2 is rotation-

invariant. This means that the quantity cZ1,Z2 is unchanged if Z1 and Z2 are rotated

by the same angle, i.e. ceiφ Z1,eiφ Z2
= cZ1,Z2,∀φ ∈ [−π,π). On the contrary, rZ1,Z2 is

not rotation-invariant.

As a simple example let Z = ρeiφ , where ρ is a non-negative real-valued ran-

dom variable, and φ is a real-valued random variable taking values in [−π,π). As-

sume that φ has a uniform distribution over [−π,π), and is independent from ρ . It is

not difficult to show that in that case rZ,Z = 0 and cZ,Z = E{ρ2}. A complex-valued

random variable Z with relation rZ,Z equal to zero is called proper. We are now in

position to extend the definition of stationarity to complex-valued processes, which
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is the subject of the following definition.

Definition 11 (Stationary complex-valued stochastic process). Let {Zt : t ∈ Z} be

a complex-valued stochastic process, and denote Xt and Yt its real and imaginary

parts respectively. The process {Zt} is called stationary if there exists two sequences

cZ(τ) and rZ(τ) such that, for all t,τ ∈ Z,

cZt ,Zt+τ
= cZ(τ), rZt ,Zt+τ

= rZ(τ).

The sequences cZ(τ) and rZ(τ) appearing in Definition 11 are respectively

called the autocovariance and relation (or complementary autocovariance) se-

quences of the process. If the relation sequence is zero everywhere, the process is

said to be proper (Schreier and Scharf, 2010). Proper processes are common in the

signal processing literature and in applications, and the complex-valued framework

presented above offers a compact representation of such processes as compared to

bivariate representations. Finally, note that complex-valued processes, unlike real-

valued, no longer have a spectrum that needs to satisfy Hermitian symmetry, and

if the series represents motion in the plane, the positive and negative frequencies

represent anti-clockwise and clockwise rotations respectively.

3.5.2 A class of bivariate modulated processes

It is common in practical applications to observe more than one time series at

any time, and to analyse a set together. Often the series in the set are related via

phase-shifts and other small temporal inhomogeneities, see e.g. Allen and Robert-

son (1996), Rünstler (2004), Allefeld et al. (2009), Lilly and Olhede (2012). Bi-

variate non-stationary processes can be challenging to model, as they may not be

representable in the same non-stationary oscillatory family (Tong, 1973, 1974). To

explore the nature of multivariate modulation, we shall investigate the representa-

tion of bivariate processes. For ease of exposition we shall represent such series

using complex-valued time series, see Walker (1993). We shall continue to assume

that the latent process, now denoted Zt for complex-valued processes, is Gaussian

and zero-mean, leaving only the second-order structure to be modelled. Follow-
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ing the classical modelling framework (Miller, 1969) for complex-valued processes

we shall assume that the relation sequence takes the value zero for all lags. The

complex-valued process is therefore proper, which is equivalent to the isotropy of

the corresponding bivariate real-valued process. The assumption of propriety has

the consequence of directly extending equation (3.1) to the complex-valued case

from the real-valued case. Specifically, let Zt be a complex-valued Gaussian proper

zero-mean process, a complex-valued modulated process is defined as one taking

the form,

Z̃t = gtZt , (3.12)

at all times t ∈N, where gt = ρteiφt is a bounded modulation sequence. We note that

for complex-valued time series the modulation sequence is complex-valued. With

this definition, the modulation series gt accomplishes a time-dependent rescaling or

expansion/dilation, from ρt , together with a time-dependent rotation, from eiφt .

The autocovariance of the complex-valued modulated process Z̃t at times t1

and t2 is given by the conveniently simple form,

cZ̃(t1, t2;θ) = E
{

Z̃∗t1Z̃t2 ;θ

}
= g∗t1gt2cZ(t2− t1;θ) = ρt1ρt2ei(φt2−φt1)cZ(t2− t1;θ),

and cZ̃(t1, t2;θ) fully characterizes the process. Note that this quantity is not only

a function of the lag t2− t1 as the process is no longer stationary. Similarly to the

univariate case cf. (3.4), let N be any positive integer, we define for τ = 0, · · · ,N−1,

c(N)
g (τ) =

1
N

N−τ−1

∑
t=0

g∗t gt+τ . (3.13)

Note that when gt is real-valued (3.13) and (3.4) are the same. We also extend

the notion of a significant correlation contribution for complex-valued modulated

processes, which naturally mimics Definition 9.

A univariate real-valued modulated process is stationary if and only if the mod-

ulating sequence is a constant. A necessary and sufficient condition on the modu-

lating sequence for the complex-valued modulated process (3.12) to be stationary is
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more complicated to obtain, and is determined in the following proposition.

Proposition 3 (Stationary bivariate modulated processes). Let Z̃t be the complex-

valued modulated process defined in (3.12). First, assume the latent process {Zt} is

a white noise process. Then the modulated process {Z̃t} is stationary if and only if

the modulating sequence gt = ρteiφt is of constant modulus, i.e. ρt = a≥ 0. In such

case the modulated process is a white noise process with variance a2E{|Z0|2}.

More generally, assume the stationary latent process {Zt} is not a white noise

process, and let µ = gcd{τ 6= 0∈N : |cZ(τ;θ)|> 0} where gcd denotes the greatest

common divisor. Then the modulated process is stationary if and only if {gt} is zero

everywhere or if there exists two constants a > 0 and γ ∈ [−π,π) such that for all

t ∈ N, letting r = t mod µ be the remainder of t divided by µ ,

ρt = a

φt = φr + γ

⌊
t
µ

⌋
mod 2π,

where
⌊

t
µ

⌋
denotes the floor of t

µ
and mod 2π indicates that the equality is true

up to an additive multiple of 2π . In this case the spectral density of the modulated

process {Z̃t} is

SZ̃(ω) = a2SZ

(
ω− γ

µ

)
.

Proof. We distinguish the case where {Zt} is a white noise process (the covariance

is zero everywhere except for lag zero) from the case where {Zt} is not a white

noise process.

1. Assume {Zt} is a white noise process.

→ Assume {Z̃t} is a stationary process. Being stationary, it has a constant

variance and therefore the modulating sequence must have a constant

modulus.

← Conversely, if {gt} has a constant modulus {Z̃t} is stationary and is a

white noise process.
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2. Assume {Zt} is not a white noise process. The set {τ ∈ N∗ : |cZ(τ;θ)| > 0}

is therefore not empty (where N∗ denotes the set of positive integers), so

µ = gcd{τ ∈ N∗ : |cZ(τ;θ)|> 0} is well defined.

→ Assume {Z̃t} is stationary. Then it must have a constant variance, so

there must exists a real number a≥ 0 such that ρt = a ∀t ∈ N. Leaving

aside the trivial case in which {gt} is zero everywhere, let t1, t2 be two

natural integers. We have,

cZ̃(t1, t2;θ) = g∗t1gt2cZ(t2− t1;θ) = a2ei(φt2−φt1)cZ(t2− t1;θ).

If cZ(t2− t1;θ) 6= 0 then

ei(φt2−φt1) =
cZ̃(s, t;θ)

a2cZ(t2− t1;θ)
,

which leads to

φt2−φt1 = arg
{

cZ̃(t1, t2;θ)

a2cZ(t2− t1;θ)

}
mod 2π,

where the equality is true up to a multiple of 2π , which we indicate by

the use of the notation mod 2π . Since {Z̃t} is assumed stationary, there

exists a function ζ , defined on {τ ∈ N : cZ(τ;θ) 6= 0}, such that

arg
{

cZ̃(t1, t2;θ)

a2cZ(t2− t1;θ)

}
= ζ (t2− t1) mod 2π, ∀t1, t2 ∈ N.

Therefore

φt2−φt1 = ζ (t2− t1) mod 2π.

Now let t ∈N be any natural integer and write t = µq+ r where 0≤ r <

µ and q ∈ N are uniquely defined as the remainder and quotient of the

Euclidean division of t by µ .

φt =
q−1

∑
k=0

(φr+(k+1)µ −φr+kµ)+φr
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=
q−1

∑
k=0

ζ (µ)+φr mod 2π

= qζ (µ)+φr mod 2π.

Letting γ = ζ (µ) we obtain,

φt = γ

⌊
t
µ

⌋
+φt mod µ mod 2π.

← Conversely assume there exists two constants γ ∈R and a≥ 0 such that

for all t ∈ N,

ρt =a,

φt =φt mod µ + γ

⌊
t
µ

⌋
mod 2π.

Let t,τ be two natural integers. We have:

cZ̃(t, t + τ;θ) = g∗t gt+τcZ(τ;θ) = a2ei(φt+τ−φt)cZ(τ;θ).

If cZ(τ;θ) = 0 then cZ̃ = (t, t+τ;θ) = 0 which does not depend on t but

only on τ . Otherwise, τ is a multiple of µ by definition of µ . Therefore

there exists an integer q such that τ = qµ , and (t+τ) mod µ = t mod µ .

Finally,

φt+τ −φt = φ(t+τ) mod µ + γ

⌊
t + τ

µ

⌋
−φt mod µ − γ

⌊
t
µ

⌋
mod 2π

= γ

⌊
t
µ
+q
⌋
− γ

⌊
t
µ

⌋
mod 2π

= γ

(⌊
t
µ

⌋
+q−

⌊
t
µ

⌋)
mod 2π

= γq mod 2π,

where we have used the fact that
⌊

t
µ
+q
⌋
=
⌊

t
µ

⌋
+q as q is an integer.

Again the obtained quantity does not depend on t. Therefore cZ̃(t, t +
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τ;θ) does not depend on t but only on the lag τ . This proves that {Z̃t} is

stationary with autocovariance sequence cZ̃(τ;θ) = a2eiγ τ

µ cZ(τ). As for

the spectral density of the resulting stationary modulated process {Z̃t}

we have,

SZ̃(ω;θ) =
1

2π

∞

∑
τ=−∞

cZ̃(τ;θ)e−iωτ

=
1

2π

∞

∑
τ=−∞

a2cZ(τ;θ)e−i(ωτ−γ
τ

µ
)

=
1

2π

∞

∑
τ=−∞

a2cZ(τ;θ)e−i(ω− γ

µ
)τ

=
a2

2π

∞

∑
τ=−∞

cZ(τ;θ)e−i(ω− γ

µ
)τ = a2SZ

(
ω− γ

µ

)
.

This concludes the proof. Note that for a real-valued process this shift would be

impossible as the spectral density has to retain symmetry. As both Zt and Z̃t are

complex-valued, this is not a concern.

The value of µ in Proposition 3 depends on the location of zeros in the covari-

ance sequence of the latent process. In particular, if |cZ(1;θ)|> 0 then µ = 1 and Z̃t

is stationary only if there exists a constant γ ∈R such that for all t ∈N, φt = φ0+γt

mod 2π . If |cZ(2;θ)|> 0 but |cZ(τ;θ)|= 0 for all τ ∈ N,τ 6= 0,2, then µ = 2 (this

can occur with a second-order moving average process for instance). In that case the

modulated process Z̃t is stationary if and only if there exists a constant γ ∈ [−π,π)

such that for all t ∈N, φt = φ0+γ
t
2 mod 2π if t is even, or φt = φ1+γ

t−1
2 mod 2π

if t is odd.

3.5.3 A time-varying bivariate autoregressive process

We now introduce the specific non-stationary bivariate autoregressive model that

will be used in our real-world data application. We consider the discrete-time

complex-valued process {Z̃t : t ∈ N}, defined by

Z̃t = reiβt Z̃t−1 + εt , t ≥ 1, 0≤ r < 1, βt ∈ R, (3.14)

Z̃0 ∼ NC

(
0,

σ2

1− r2

)
, σ > 0,
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εt ∼ NC
(
0,σ2) ,

where NC
(
0,σ2) denotes the complex-valued normal distribution with mean 0 and

variance σ2, and with i.i.d. real and imaginary parts. Note that the real and imagi-

nary parts of εt then each have variance σ2/2. Here 0≤ r < 1 is commonly known

as either the autoregressive or the damping parameter, ensuring the mean-reversion

of the process. By mean-reversion we mean that, given any time t ∈ N, we have

limτ→∞ E
{

Z̃t+τ |Z̃t

}
= 0, i.e. irrespective of the size of the perturbation εt at time

t, the process is expected to return to its mean. This is seen from the following

inductive relationship,

Z̃t+τ = rτei∑
τ
j=1 βt+ j Z̃t +

τ

∑
j=1

rτ− jei∑
τ
k= j+1 βkεt+ j, τ ≥ 0,

which leads to

E
{

Z̃t+τ |Z̃t
}
= rτei∑

τ
j=1 βt+ j Z̃t ,

which goes to zero exponentially as τ goes to infinity, since 0≤ r < 1. A damping

parameter r close to 1 will lead to a slowly-decaying autocorrelation sequence. A

value of r close to 0 will lead to a process with very short memory, with the limiting

behaviour of a white noise process as r→ 0, and that of a random walk as r→ 1.

The parameter βt is a known, dimensionless time-varying frequency, which we shall

take within the interval [−π,π) without loss of generality.

The process (3.14) is a non-stationary version of the complex-valued first-order

autoregressive process (Sykulski et al., 2016b) introduced by Le Breton (1988),

and also a discrete-time analogue of the complex-valued Ornstein-Ulhenbeck (OU)

process (Arató et al., 1962) with time-varying oscillation frequency. We now prove

in Proposition 4 that the model defined in (3.14) belongs to our class of bivariate

modulated processes.

Proposition 4 (Modulated process representation). Let {Z̃t} be the process defined

in (3.14). There exists a unit-magnitude complex-valued modulating sequence gt ,

and a stationary complex-valued proper process {Zt} such that {Z̃t} is the modula-
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tion of {Zt} by the non-random sequence {gt}. More explicitly, we have Z̃t = gtZt ,

for all t ∈ N, where,

gt = ei∑
t
u=1 βu, (3.15)

Zt = rZt−1 + ε
′
t , t ≥ 1,

and Z0 = Z̃0. The process ε ′t is a Gaussian white noise process with the same prop-

erties (zero-mean, variance σ2 and independence of real and imaginary parts) as

those of εt . Defined as such, the latent complex-valued process Zt is stationary and

proper.

Proof. Let us define the complex-valued stochastic process {Zt} according to

Zt = e−i∑
t
u=1 βuZ̃t , t = 0,1,2, · · · .

By applying the definition of the process {Z̃t} one can determine the following

relationship, for all t ≥ 1,

Zt = e−i∑
t
u=1 βuZ̃t

= e−iβt e−i∑
t−1
u=1 βuZ̃t

= e−iβt e−i∑
t−1
u=1 βu(reiβt Z̃t−1 + εt)

= re−i∑
t−1
u=1 βuZ̃t−1 + ε

′
t ,

and finally Zt = rZt−1 + ε ′t , t ≥ 1, where ε ′t = e−i∑
t
u=1 βuεt ,∀t ∈ N has the same

distribution as εt , as we have assumed that the complex-valued white noise process

εt has variance σ2 and independent real and imaginary parts. Therefore the process

Zt is a first-order complex-valued autoregressive process with constant stationary

parameters. It is stationary if and only if var{Z0}= σ2

1−r2 . Since Z0 = Z̃0, it follows

that var{Z0}= var{Z̃0}. Since var{Z̃0}= σ2

1−r2 , the process {Zt} is stationary. The

fact that the process {Zt} is proper stems from the fact that the innovations {εt}

as well as the random variable Z̃0 are proper, as using the following relation, Zt =

rtZ0 +∑
t
j=1 rt− jε ′j, we obtain for all t,τ ∈ N, E{ZtZt+τ} = 0. This shows how the
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proposed process is generated by the stated mechanism of modulation as claimed in

the proposition.

The stationary latent process Zt defined in (3.15) is a stationary complex-

valued first-order autoregressive process, and is Gaussian. Its autocovariance se-

quence is given by,

cZ(τ) =
σ2

1− r2 r|τ|, τ ∈ Z.

It is easy to verify that the mapping (r,σ) 7→ (cZ(0),cZ(1)) is a one-to-one mapping.

In the following proposition, we stipulate a sufficient condition on the frequencies

βt so that the process defined in (3.14) satisfies our assumption of significant corre-

lation contribution, when represented as a modulated process as defined in Proposi-

tion 4.

Proposition 5 (Significant correlation). Let Z̃t be the process defined by (3.14).

Assume that there exists Ξ ∈ [−π,π) and 0 ≤ κ < π

2 such that for all t ∈ N,

|βt−Ξ| ≤ κ . Then Z̃t is a modulated process with significant correlation contri-

bution.

Proof. Let Γ = {0,1}. We show that conditions 1 and 2 given in Definition 9 are

verified.

1. The function (r,σ) 7→ {cZ [τ;(r,σ)] : τ ∈ Γ} is one-to-one.

2. According to Proposition 4, there exists a stationary proper complex-valued

process Zt such that Z̃t = gtZt , where gt = ei∑
t
u=1 βu , i.e Z̃t is a modulated

process. The autocovariance sequence of the process Zt is given by

cZ(τ) =
σ2

1− r2 r|τ|,τ ∈ Z,

and we observe that the function (r,σ) 7→ (cX(0),cX(1)) is one-to-one. Let L

be the largest positive (i.e. greater than or equal to 1) integer such that κ ≤ π

2L .

This is well defined as we have assumed 0≤ κ < π

2 . Fix an integer lag value
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0≤ τ ≤ L. We have∣∣∣∣∣ 1
N

N−1−τ

∑
t=0

g∗t gt+τ

∣∣∣∣∣ =

∣∣∣∣∣ 1
N

N−1−τ

∑
t=0

ei∑
t+τ

u=t+1 βu

∣∣∣∣∣ =
∣∣∣∣∣ 1
N

N−1−τ

∑
t=0

ei∑
t+τ

u=t+1(Ξ+βu−Ξ)

∣∣∣∣∣
=

∣∣∣∣∣ 1
N

eiτΞ
N−1−τ

∑
t=0

ei∑
t+τ

u=t+1(βu−Ξ)

∣∣∣∣∣
≥ 1

N

∣∣∣∣∣ℜ
{

N−1−τ

∑
t=0

ei∑
t+τ

u=t+1(βu−Ξ)

}∣∣∣∣∣
=

1
N

∣∣∣∣∣N−1−τ

∑
t=0

cos

{
t+τ

∑
u=t+1

(βu−Ξ)

}∣∣∣∣∣ .
Using the triangle inequality it follows

∣∣∑t+τ

u=t+1 βu−Ξ
∣∣ ≤ ∑

t+τ

u=t+1 |βu−Ξ| ≤

τκ . With the fact that τκ < π

2 by assumption, and that the cosine function is

decreasing on the interval [0, π

2 ] we obtain

∣∣∣∣∣ 1
N

N−1−τ

∑
t=0

g∗t gt+τ

∣∣∣∣∣≥ 1
N

N−1−τ

∑
t=0

cos(τκ) = (1− τ

N
)cos(τκ)

N→∞→ cos(τκ)> 0,

as 0≤ τβ < τ
π

2L ≤
π

2 . The quantity c(N)
g (τ) is bounded below by a non-zero

value as N goes to infinity, so that liminf
N→∞

∣∣∣c(N)
g (τ)

∣∣∣> 0. It is true in particular

for τ ∈ Γ, as L≥ 1.

This shows that the process Z̃t is a modulated process with a significant correlation

contribution.

Hence the complex-valued autoregressive process defined by (3.14) belongs to

the class of processes with a significant correlation contribution.

3.6 Linear combinations of modulated processes
The pointwise addition of two modulated processes is not a modulated process it-

self except under some particular conditions, for instance if two modulated pro-

cesses have the same latent stationary process or if two modulated processes have

the same modulation sequence. We can however extend the definition of significant

correlation to the sum of two modulated processes (and more generally to any finite
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linear combination of modulated processes). This is the subject of the following

definition.

Definition 12 (Significant correlation contribution for a linear combination of mod-

ulated processes). Let {X̃1,t}, . . . ,{X̃p,t} be a family of p ≥ 1 modulated processes

with {X1,t}, . . . ,{Xp,t} as their respective latent processes, and {g1,t}, . . . ,{gp,t} as

their respective known modulation sequences. Let λ1, . . . ,λp ∈ Rp be a family of

real numbers. Assume that the latent processes are independent. Define the process

Zt = ∑
p
i=1 λiX̃i,t . The process {Zt} is not a modulated process in the general case.

We say that {Zt} has a significant correlation contribution if it satisfies both of the

following,

1. Each process {X̃i,t} is a modulated process with a significant correlation con-

tribution. We denote Γi the set of lags that determine the parameter vector

θ i ∈Θi in the definition of significant correlation.

2. There exists Γ ⊃ ∪p
i=1Γi such that the map (denoting τ1, . . . ,τm the elements

of Γ), Θ1× . . .×Θp −→ Rm

θ1, . . . ,θp −→
[
∑

p
i=1 λ 2

i c(N)
Xi

(τ1;θ i), . . . ,∑
p
i=1 λ 2

i c(N)
Xi

(τm;θ i)
]

is asymptotically injective, as defined in Definition 10.

The expected autocovariance sequence of the linear combination of modulated

processes is shown to be, with the assumption of independence of the latent pro-

cesses,

cZ(τ) = E{ĉX(τ)}=
p

∑
i=1

λ
2
i cXi(τ;θ i)c

(N)
gi (τ), τ ∈ N. (3.16)

We give a simple example of a linear combination of modulated processes

with a significant correlation contribution. Let {X1,t} be a white-noise process with

variance σ2
1 and let {X2,t} be an AR(1) process with autoregressive parameter r and

innovation variance σ2
2 . Let {g1,t} and {g2,t} be two modulation sequences such

that the processes X̃1,t = g1,tX1,t and X̃2,t = g2,tX2,t are modulated processes with a
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significant correlation contribution. Let λ1,λ2 be two known positive real-numbers,

and define,

Zt = λ1X̃1,t +λ2X̃2,t . (3.17)

It can easily be verified that such a process satisfies the assumption of significant

correlation contribution given above. We note the importance in the above definition

to allow for Γ be larger than ∪p
i=1Γi. Indeed, for any positive-definite γ0,γ1, there

exists an infinite number of combinations of the parameters σ1,r,σ2 such that the

autocovariance of the process X̃1,t + X̃2,t has autocovariance γ0 and γ1 at lags zero

and one, such that Γ = {0,1} would be too small a set to determine uniquely the

set of parameters of the latent processes. However, we can verify that taking Γ =

{0,1,2} is enough. In Section 7.2, we simulate the process (3.17) and estimate its

parameters by generalizing the inference method that will be described in Chapter 5.

3.7 Summary
The definition of significant correlation contribution allows us to relax the con-

straints on the modulation sequence which are necessary for asymptotically consis-

tent estimation, in comparison to past literature. More precisely, in Chapter 5, we

propose a computationally efficient estimation procedure for this class of processes.

We prove the consistency of that procedure in Chapter 6. In terms of applications,

we simulate and estimate modulated processes with a significant correlation con-

tribution in Chapter 7, and the processes considered in our real-world application

will be shown to belong to our class of processes making use of Proposition 5 in

Section 8.2.2.



Chapter 4

Inference for stationary and locally

stationary processes

The inference of stochastic processes from observed time series is key to under-

standing the underlying generating mechanisms behind many observed phenom-

ena. In Chapter 8 we will present a stochastic process representation of velocity

time series obtained from drifting instruments designed to follow the ocean surface

currents. The stochastic modelling proposed is a parametric model adapted from a

deterministic model from oceanography. The parameters of our stochastic model

therefore have a physical interpretation and are worth investigating. In this chapter

we review some inference methods for stationary and locally stationary processes.

We review estimation of the mean, autocovariance sequence and spectral density

of a stationary process. We then review some parametric estimation methods. The

method of moments fits the parametric model whose first and second order moments

equal those estimated from the sample. Very often this method, albeit consistent, is

not optimal in terms of efficiency. Maximum likelihood estimators consist in max-

imizing the likelihood function. In some situations, these estimators are asymptot-

ically equivalent to least square estimators, which are obtained by minimizing the

sum of squares of errors from the one-step optimal linear predictor, weighted by

the inverse of the variances of those predictors. For Gaussian processes the exact

likelihood can be derived from the parametric mean and covariance matrix. More

generally, it is common to compute and maximize the Gaussian likelihood for linear
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processes even if they are not assumed to be Gaussian (Hannan, 1973). However,

approximations to the likelihood are often required when the time series length N

is large. This is because the exact Gaussian likelihood usually requires inverting

large covariance matrices and computing their determinant. This can be achieved

in order O(N2) elementary operations for a regularly sampled stationary process, in

which case the covariance matrix is Toeplitz (Jain, 1979), but will usually be even

higher order for irregularly sampled or non-stationary processes. Approximations to

the exact likelihood are referred to as quasi-likelihoods in this thesis (Wedderburn,

1974, McCullagh, 1983), although other authors use the term pseudo-likelihood.

One such commonly favoured quasi-likelihood in time series analysis is the Whittle

likelihood (Whittle, 1953), which has a computation cost of order O(N logN) and

has been shown to be asymptotically equivalent to the Gaussian likelihood (Dzha-

paridze and Yaglom, 1983). Finally, we review how the Whittle likelihood can be

extended to locally-stationary time series (Dahlhaus, 1997), and discuss succinctly

another approach for the Gaussian scenario. Throughout this chapter, we consider

X = X0, . . . ,XN−1 a length-N sample from a stationary Gaussian process with mean

zero (unless stated otherwise), {Xt}. We shall denote ΩN the set of Fourier frequen-

cies 2π

N ·
(
−dN

2 e+1, · · · ,−1,0,1, · · · ,bN
2 c
)

in the rest of this thesis. All the material

presented in this chapter is reviewed material.

4.1 Estimation of the mean, autocovariance se-

quence, and spectral density
We first review non-parametric estimators of the mean and autocovariance sequence

of a stationary process. We then review the periodogram, a commonly used estima-

tor of the spectral density defined in (2.2). We review the common assumptions that

are needed for the mean and autocovariance sequence estimators to be consistent,

and their asymptotic distributions. However, we will see that the variance of the pe-

riodogram does not decrease to zero. Finally, we review the use of such estimators

in method of moments, a parametric estimation procedure where we fit the model

that corresponds to the estimated mean and autocovariance.
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4.1.1 Estimation of the mean

In this section we do not assume that the mean of the process {Xt} is zero. We first

recall the weak law of large numbers for i.i.d. random variables.

Theorem 2 (Weak law of large numbers for i.i.d. random variables). Let {Xt : t ∈N}

be a family of i.i.d. random variables with mean µ . According to the weak law of

large numbers, we have that,

1
N

N−1

∑
i=0

Xt
p−→ µ, (N −→ ∞).

In the situation of a stochastic process, the random variables are not indepen-

dent in the general case and therefore the above does not apply. A law of large

numbers is therefore required for such kind of data. This is provided in the next

theorem for stationary stochastic process, with some assumption on the autocovari-

ance of the process. More specifically, it is required that the correlation between

variables decreases to zero when the time lag goes to infinity.

Theorem 3 (Weak-law of large numbers for stationary time series). Let {Xt : t ∈

N} be a stationary stochastic process. Assume that its autocovariance function,

denoted cX(τ), converges to zero as τ goes to infinity. Then,

1
N

N−1

∑
i=0

Xt
p→ µ.

Moreover, if the series ∑τ∈Z |cX(τ)| converges, we have,

Nvar

{
1
N

N−1

∑
i=0

Xt

}
−→ ∑

τ∈Z
cX(τ).

Proof. See Appendix A.4.

For Gaussian linear processes, under mild conditions, the sample mean is nor-

mally distributed (Brockwell and Davis, 1991), allowing for establishing confidence

intervals for the true mean value of the process.
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4.1.2 Estimation of the autocovariance sequence

With the assumption of stationarity, the autocovariance function of a stochastic pro-

cess can be estimated from a single realization. As we assume zero mean, an unbi-

ased natural estimator would be (Guyon, 1982),

ĉu
X(τ) =

1
N−|τ|

N−|τ|−1

∑
t=0

XtXt+|τ|, τ = 0, . . . ,N−1.

However, several reasons (Percival and Walden, 1993) have drawn many statisti-

cians to replace the multiplicative factor 1
N−|τ| by 1

N , leading to the following biased

sample autocovariance estimator,

ĉX(τ) =
1
N

N−|τ|−1

∑
t=0

XtXt+|τ|, τ = 0, . . . ,N−1.

One first reason to prefer the above biased estimator is that the unbiased estima-

tor has a very large variance for lags close to the sample size. The other reason

would be that the biased estimator satisfies the property of being non-negative def-

inite, which is a basic characterization of autocovariance sequences. Because of

these considerations, we shall only use the biased sample autocovariance estimator,

which we will simply refer to as the autocovariance estimator or sample autoco-

variance. The asymptotic distribution of the sample autocovariance sequence can

be determined for particular time series models, allowing for confidence intervals

and goodness of fit tests (Brockwell and Davis, 1991). Note also that the sample

autocovariance sequence can be computed in order O (N logN) computations via a

Fast Fourier Transform.

4.1.3 The periodogram

Recall that the spectral density of a stationary process {Xt} with absolutely

summable autocovariance sequence cX(τ) is given by,

SX(ω) =
1

2π

∞

∑
τ=−∞

cX(τ)e−iωτ .
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The squared modulus of the Fourier transform of the time series X, known as the

periodogram, is a common statistic in stationary time series analysis (Percival and

Walden, 1993), and is given by

Ŝ(N)
X (ω) =

1
N

∣∣∣∣∣N−1

∑
t=0

Xte−iωt

∣∣∣∣∣
2

, ω ∈ R. (4.1)

It is easily seen that we have,

Ŝ(N)
X (ω) =

N−1

∑
τ=−(N−1)

ĉX(τ)e−iωτ . (4.2)

Note that this quantity is 2π-periodic, i.e. Ŝ(N)
X (ω +2π) = Ŝ(N)

X (ω), ω ∈R. In prac-

tice we compute the periodogram only for Fourier frequencies via a Fast Fourier

Transform. The periodogram is an asymptotically unbiased estimator of the spectral

density of the stationary process {Xt}, i.e. limN→∞ E{Ŝ(N)
X (ω);θ} = 2πSX(ω;θ)

for all ω ∈ [−π,π) (Brockwell and Davis, 1991). However the variance of the pe-

riodogram does not decrease to zero as the sample size increases. The asymptotic

distribution of the periodogram at a Fourier frequency ω is shown to be exponen-

tially distributed with mean 2πSX(ω;θ). A consistent nonparametric estimator of

a smooth spectral density SX(ω;θ) of the process {Xt} is obtained by smoothing

the periodogram across frequencies (Percival and Walden, 1993, p. 235–253), as

long as SX(ω;θ) is continuous. More precisely, we form the following estimator,

for some odd integer m,

Ŝ(N),m
X (ω) =

1
m

m−1

∑
j=−(m−1)

Ŝ(N)
X

(
ω +

2 jπ
N

)
. (4.3)

If m goes to infinity while satisfying m = o(N), and under some mild conditions on

{Xt}, uniform mean square convergence of (4.3) to the true spectral density SX(ω)

follows.
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4.1.4 Method of moments

The method of moments is a parametric inference method which consists in equat-

ing the time series sample moments with theoretical moments from a parametric

class of models (Van der Vaart, 1998). Applied to inference for a stationary time

series {Xt}, if for the estimated autocovariance sequence {ĉX(τ) : τ = 0, . . . ,N−1},

there exists a unique parameter vector θ within the parameter set Θ such that

ĉX(τ) = cX(τ;θ),∀τ = 0, . . . ,N−1, then the moment estimator is given by θ .

We consider the use of method of moments for the class of auto-regressive

models. Let {Xt} be a causal AR(p) process,

Φ(B)Xt = εt , εt ∼N (0,σ2), (4.4)

where Φ(z) = 1−Φ1z−Φ2z2− . . .−Φpzp, Φp 6= 0 and Φ(z) 6= 0 for |z| ≤ 1, so that

the process {Xt} is causal. Multiplying each side of (4.4) by Xt− j for j = 0, . . . , p,

and taking expectations, we obtain the p+1 Yule-Walker equations, given by,

ΓpΦ
′

= γp
′
,

cX(0)− γpΦ
′

= σ
2,

where Γp is the p× p covariance matrix with elements cX(i− j), i, j = 1, . . . , p,

Φ = (Φ1, . . . ,Φp), and γp = (cX(1), . . . ,cX(p)). Note that the covariance between

Xt and εt is found to be σ2 since, writing the causal representation of the process

Xt =
∞

∑
j=0

ψ jεt− j,

we obtain E{Xtεt} = ψ0σ2, by continuity of the linear product and using the fact

that the solution to (4.4) can be shown to be mean-square convergent (Brockwell

and Davis, 1991). It is also easy to verify that ψ0 = 1 given the fact that for |z| ≤

1,ψ(z) = 1/φ(z).

The method of moments here consists in writing the Yule-Walker equations

where the theoretical autocovariances cX(τ;Φ) are replaced with the estimated au-
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tocovariances ĉX(τ), i.e. we solve,

Γ̂pΦ̂
′
= γ̂p

′
.

The existence and uniqueness of the solution Φ̂ is ensured as long as ĉX(0) is posi-

tive, since in that case it can be shown that the matrix Γ̂p is non-singular. Therefore,

Φ̂
′
is uniquely given by,

Φ̂
′
= Γ̂

−1
p γ̂p

′
.

The method of moments can be achieved in linear complexity as it only requires the

estimation of the variance and autocovariance for the p first lags, followed by the

inversion of a p× p matrix. The method of moments is often less efficient than other

estimators such as Maximum Likelihood Estimators (MLE), which are discussed in

the next section. However, the method of moments is consistent under some very

mild conditions and can serve as a preliminary estimation procedure. Also note

that for the class of AR processes, it has the same asymptotic efficiency as MLE

estimators (Brockwell and Davis, 1991, page 240).

4.2 Maximum likelihood for time series
Maximum Likelihood Estimators are obtained by maximizing the likelihood func-

tion. The likelihood function is defined over the set of parameter vectors Θ, and

maps each parameter vector θ ∈ Θ to the probability (or probability density for

continuous distributions) of the observed sample under the probability distribution

specified by θ . More formally, if a finite sample X0, . . . ,XN−1 follows a joint distri-

bution given by pX(x1, . . . ,xn;θ), then the likelihood function is defined by,

L(θ) = pX(X0, . . . ,XN−1;θ).

The log-likelihood function is simply defined as l(θ) = logL(θ), and the MLE is

obtained by maximizing the likelihood, or equivalently the log-likelihood,

θ̂ MLE = argmax
θ∈Θ

{l(θ)} .
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Finding the global maximum of the log-likelihood can be achieved via using opti-

mization procedures or analytically in special cases. However, it is often essential

that such procedures are initialized with good starting values, to avoid convergence

to local maxima. Another reason for requiring good initial starting values of the

optimization procedure is the heavy computational cost of exact likelihood. Com-

putation of the exact likelihood for a stationary Gaussian process can be achieved

with order O(N2) operations using the innovations algorithm (Brockwell and Davis,

1991). More generally, the Gaussian likelihood may be computed for a stationary

linear time series, with a O(N2) complexity if the sampling is regular, making use

of the Toeplitz structure of the covariance matrix (Jain, 1979). To further reduce

computational times, it is common to make use of likelihood approximations, com-

monly termed as quasi-likelihoods. This is the topic of the next section of this

chapter.

4.3 Quasi-likelihood for stationary time series

Large data sets have become ubiquitous due to the rise of automatic high-frequency

measurements and storage capacities. Despite the growth of computational power

and the development of parallel-computing, it is common that computing the ex-

act Gaussian likelihood becomes too expensive in terms of computational time.

One way to reduce the computational time is to use likelihood approximations,

commonly termed as quasi-likelihoods or pseudo-likelihoods. In the theory of sta-

tionary stochastic processes, one well-studied such approximation to the Gaussian

likelihood is the Whittle likelihood (Whittle, 1953), which can be computed in

O(N logN) elementary operations.

We now describe the Whittle likelihood for stationary stochastic processes.

Let {Xt} be a stationary stochastic process with mean zero and with autocovariance

sequence cX(τ) which we assume to be absolutely summable. The corresponding

spectral density is denoted SX(ω) = 1
2π ∑

∞
τ=−∞ cX(τ)e−iωτ . The finite symmetric

Toeplitz autocovariance matrix ΓN = {cX(i− j)}i, j=0,...,N−1, which appears in the

Gaussian likelihood, can be approximated by the circulant N×N symmetric matrix
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with first row given by (Grenander and Szegö, 2001),

2π

N

N−1

∑
k=0

SX

(
2kπ

N

)
ei 2kπ

N τ , τ = 0, . . . ,N−1.

The corresponding quasi-likelihood is then given by,

lW (θ) = ∑
ω∈ΩN

{
logSX(ω;θ)+

ŜX(ω)

SX(ω;θ)

}
, (4.5)

where ŜX(ω) is the periodogram of the time series, which can be computed in

O(N logN) elementary operations using the Fast Fourier Transform algorithm,

making the computation of the Whittle likelihood O(N logN) itself, an improve-

ment compared to the O(N2) necessary for the computation of the exact likelihood

in general. The Whittle likelihood estimator is the parameter vector that minimizes

the quantity lW (θ) over the parameter set Θ. Its distribution converges in law to that

of the Gaussian likelihood estimator for stationary linear stochastic processes (Han-

nan, 1973) under increasing sample size.

The counter-part to the computational ease from using the Whittle likelihood as

compared to the Gaussian likelihood is a finite-sample bias and possibly variance

inflation. The bias can be explained by the fact that the periodogram itself is a

biased estimator of the spectral density, except in the case of white noise processes.

Truncated time series result in blurring or leakage, in the sense that we are not able

to estimate the spectral density at one specific frequency but rather a local average

of the spectral density (Thomson, 1982). More precisely, the expectation of the

periodogram is (Bloomfield, 2000),

E
{

ŜX(ω)
}
=
∫

π

−π

SX(ω−λ )F (N)(λ )dλ , (4.6)

where the Féjer kernel F (N)(λ ) is the Fourier transform of the triangle kernel 1−

|τ|/N, τ =−(N−1), . . . ,N−1, which satisfies for λ ∈ [−π,π],



4.4. Inference for locally-stationary time series 64

F (N)(λ ) =


sin2(Nλ

2 )
N sin2( λ

2 )
∀λ ∈ R\ΩN

N if λ = 0,

0 ∀λ ∈ΩN \{0}

. (4.7)

The impact of leakage increases with high dynamic range and curvature of the spec-

tral density (Prieto et al., 2007), and disappears for white noise, in which case the

spectral density is constant. For white noise the spectrum has no dynamic range or

curvature. Additionally, when sampling from a continuous-time process, a common

issue is the aliasing effect, where any frequency above the Nyquist frequency can-

not be estimated, and folds back into the estimated spectrum. The bias of the peri-

odogram can be corrected partly by tapering (Thomson, 1982, Percival and Walden,

1993), which consists in replacing the periodogram by,

Ŝ(t)X (ω) =
1
N

∣∣∣∣∣N−1

∑
t=0

htXte−iωt

∣∣∣∣∣
2

, ω ∈ R, (4.8)

for some appropriate choice of {ht} admitting a Finite Fourier transform concen-

trated around zero (Dahlhaus, 1988). An alternative method to reduce the bias of

the Whittle estimate is to forward model the expectation of the periodogram and

therefore account for both aliasing and leakage. In Section 5.2 we review a quasi-

likelihood estimate for stationary time series based on this idea (Sykulski et al.,

2016a), and where the spectral density SX(ω) in (4.5) is replaced by the finite-

sample parametric expected periodogram.

4.4 Inference for locally-stationary time series

In this section we review the problem of inference for locally-stationary stochas-

tic processes, which were reviewed in Section 2.6. Keeping with the notation of

that section for locally-stationary processes, we recall that the time-varying spectral

density in the rescaled time u∈ [0,1] is defined as f (u,λ ) = |A(u,λ )|2. We consider

the problem of inferring a parametric form of the time-varying spectral density, i.e.

we consider a family of time-varying spectral densities fθ (u,λ ) indexed by some
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parameter θ ∈ Θ. Accounting for model misspecification, we do not assume that

there always exists a parameter value θ ∈Θ such that f (u,λ ) = fθ (u,λ ). However,

we have seen in Section 2.6 that the asymptotic Kullback-Leibler distance between

the true probability density function and the probability density function associated

with the spectral density fθ (u,λ ) is given by, under the assumption of Gaussianity,

L (θ) =
∫ 1

0

∫
π

−π

{
fθ (u,λ )+

f (u,λ )
fθ (u,λ )

}
dλdu.

Therefore estimation in that situation can be viewed as the problem of finding the

value θ0 that minimizes the asymptotic Kullback-Leibler information divergence

L (θ). It is shown by Dahlhaus (1997) that we can obtain a consistent estimator of

θ 0 by minimizing the function,

LT (θ) =
M−1

∑
j=0

∫
π

−π

{
log fθ (u j,λ )+

IN(u j,λ )

fθ (u j,λ )
dλ

}
, (4.9)

where IN(u,λ ) is a local tapered periodogram, defined by,

IN(u,λ ) =
1

HN

∣∣∣∣∣N−1

∑
k=0

h
(

k
N

)
XbTuc−N/2+k,T exp(−iλk)

∣∣∣∣∣
2

,

and the points u j (or equivalently t j = Tu j) in (4.9) are obtained by translation,

according to,

t j = N/2+S j, j = 0, . . . ,M−1.

The taper h(·) is a continuous function on [0,1], and the quantity HN is defined by,

HN =
N−1

∑
k=0

h
(

k
N

)2

.

The asymptotic consistency is established upon conditions on N, T and S. As one

would expect, the size of the local periodograms, given by N, must increase, but at

a slower rate than T , so that asymptotically the periodogram behaves as for station-

ary processes with increasing sample size. More precisely, Dahlhaus (1997) estab-
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lishes consistency under the condition T 1/4 << N << T 1/2/ logT while T → ∞,

and S = N or S/N → 0. The framework of infill asymptotics, which corresponds

to T going to infinity, also allows us to understand the consequences of fitting a

stationary model to a non-stationary time series. In our real-world data application

of Chapter 8, we consider a situation where the non-stationarity is so strong within

a time window that stationary model estimates are badly biased. Choosing smaller

time windows may then reduce the bias due to the non-stationarity, at the expense of

a large variance due to the small sample size. We will show how the non-stationary

process considered in Chapter 8 can be modelled as a modulated process with a

significant correlation contribution, and how the inference methods developed in

Chapter 5 allows us to bypass this bias-variance trade-off.

4.5 Another approach to Gaussian likelihood ap-

proximation

In this section we briefly review another approach to approximating the Gaussian

likelihood. Let {Xt} be a stationary Gaussian process with autocovariance sequence

cX(τ;θ), where θ ∈Θ is a vector of Rp. Let X be a length-N sample from this pro-

cess, and denote CX(θ) the corresponding autocovariance matrix. The minimiza-

tion of the likelihood function is (almost) equivalent to solving the score equations,

which take the following form in the Gaussian case,

0 = Tr
{(

CX(θ)
−1X(CX(θ)

−1X)T −CX(θ)
−1) ∂CX

∂θ j
(θ)

}
j = 1, . . . , p. (4.10)

For large N, the right hand side of the above equation is intractable. Anitescu et al.

(2012) propose a matrix-free approach to (4.10), where only matrix-vector compu-

tations are necessary. Key to their methodology is the use of the Hutchison estimator

to estimate the trace, where for any matrix A,

Tr A = E
{

UT AU
}
, (4.11)
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with U a random vector with independent components taking values 1 and −1 with

equal probability. The reason for choosing this distribution rather than the Gaussian

distribution for the random vector U is due to the smaller variance of the obtained

estimator. The expectation in (4.11) can be approximated by a sample average

approximation, which simply consists in generating a finite number m of random

vectors U and averaging,

Tr A≈
m

∑
j=1

UT AU .

We then replace (4.10) by the following stochastic system of equations,

0 =
m

∑
j=1

{
UT

j
(
CX(θ)

−1X(CX(θ)
−1X)T −CX(θ)

−1) ∂CX

∂θ j
(θ)U j

}
j = 1, . . . , p.

The stochastic solution θ
∗ to these equations can be shown to converge normally in

probability to the true parameter vector.



Chapter 5

Inference for modulated processes

In this chapter we treat the problem of inference for non-stationary modulated pro-

cesses. We focus on the study of scalar modulated processes, but extending the

theory to our class of bivariate modulated processes from Section 3.5 is straightfor-

ward using complex-valued representations. We consider {Xt} a stationary stochas-

tic process, modulated by a sequence {gt}. The modulated process is obtained

through pointwise multiplication, X̃t = gtXt , as described in Definition 8. Inference

for modulated processes means inference about the model posited for the latent

stationary process. Dividing the observed modulated process by the observed mod-

ulation sequence is not considered as a viable solution in the most general case, as

gt may take the value zero for some time points, and generally we may observe the

aggregation of the modulated process with another process. We seek to derive an

estimation method that is consistent in the framework of increasing sample size.

This is made possible despite the non-stationarity of the observed processes, as we

model the non-stationarity via modulation which ensures the growth of information

in time if the modulation sequence satisfies certain sufficient conditions which we

studied in Sections 3.2 and 3.3.

The problem of inference for modulated processes has been treated mostly

under the assumption of asymptotically stationary modulated processes. This con-

strains the modulation sequence {gt} to be such that its sample autocovariance se-

quence converges for all lags to a non-zero value. The autocovariance sequence of

the latent process Xt can then be estimated by dividing the sample autocovariance
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sequence of the modulated processes by this non-zero limit at all lags, as proposed

by Parzen (1963), see (3.6). These second-order moment estimates can then be used

in method of moments estimators or in Gaussian likelihood methods. Spectral esti-

mates can be constructed for the latent process simply by Fourier transforming their

estimated autocovariance sequence. However the non-negative definiteness of the

estimated autocovariance sequence of the latent process is no longer ensured, due

to the division operation in their definition. Thus the resulting spectral estimates

may be negative at some frequencies. Parametric inference in contrast ensures the

validity of the fitted model. We present a parametric estimation method based on

an adaptation of the Whittle likelihood. In Chapter 6 we will prove the consistency

of this method for the class of modulated processes with a significant correlation

contribution, which extends that of asymptotically stationary modulated processes.

This chapter starts with a short review of sampling properties of modulated pro-

cesses in Section 5.1, with a focus on the properties of the periodogram. We then

review an adaptation of the Whittle likelihood for stationary time series in Sec-

tion 5.2, based on the finite sample expectation of the periodogram. In Section 5.3

we present an extension of this idea for the estimation of modulated processes. In

Section 5.4 we consider the situation where the modulation sequence is not ob-

served, as opposed to the general case considered in this thesis, but admits a para-

metric form. Assuming the parameters of the modulation sequence can be inferred

from observing the modulated process, we adapt the inference procedure presented

in Section 5.3 to this situation. In this chapter, Section 5.1 constitutes reviewed

material, except for Proposition 8. Section 5.2 is novel and is published in Sykulski

et al. (2016a). Sections 5.3 and 5.4 are novel and published in Guillaumin et al.

(2017), and also relate to developments of Dunsmuir and Robinson (1981b), who

treated the problem of parametric spectral estimation of asymptotically stationary

modulated processes.
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5.1 Sampling properties of modulated processes

In this section we shall review and study some distributional properties of the peri-

odogram of a modulated stochastic process. Dunsmuir and Robinson (1981a) used

the periodogram as the basis for designing quasi-likelihood methods for asymptot-

ically stationary modulated time series, with an emphasis on treating the problem

of missing data. Similarly, in Section 5.3 we will use the results of this section

to formulate a quasi-likelihood using the periodogram, for our class of modulated

processes with significant correlation contribution.

We denote X̃ = {X̃t : t = 0, · · · ,N − 1} as a single realization of a length-N

sample of a modulated process {X̃t} defined in Definition 8. The unobserved sample

of the latent stationary process is denoted X = {Xt : t = 0, · · · ,N−1} accordingly.

The stationary latent process is modelled by a parameter vector θ ∈ Θ. For the

modulated process {X̃t}, the latent time series {Xt} is not observed, so we instead

compute the periodogram of the modulated (and observed) process itself, Ŝ(N)

X̃
(ω),

and we define the expected periodogram to be

S(N)

X̃
(ω;θ) = E

{
Ŝ(N)

X̃
(ω); θ

}
, ω ∈ R.

Note that this quantity is also 2π-periodic. It is necessary to understand how mod-

ulation in the time domain will affect the expected periodogram. Proposition 6

gives more insight on how S(N)

X̃
(ω;θ) relates to the modulating sequence gt and the

spectral density SX(ω;θ) of the latent stationary process {Xt}.

Proposition 6 (Expectation of the periodogram of a modulated time series). The

expectation of the periodogram of the modulated time series takes the form

S(N)

X̃
(ω;θ) = 2π

∫
π

−π

SX(ω−λ ;θ)S(N)
g (λ )dλ , ∀ω ∈ R, (5.1)

which is a periodic convolution. Here S(N)
g (λ ) is the squared value of the Fourier



5.1. Sampling properties of modulated processes 71

Transform of the finite sequence {gt}t=0,··· ,N−1 i.e.

S(N)
g (λ ) =

1
2πN

∣∣∣∣∣N−1

∑
t=0

gte−iλ t

∣∣∣∣∣
2

,

defined for λ ∈ R and which is 2π-periodic.

Proof. The proof for this proposition, which is a well-known result, can be found

in Dunsmuir and Robinson (1981a, p. 562).

When gt is unity everywhere, which corresponds to observing the stationary

latent process directly, the quantity 2πS(N)
g (λ ) is the usual Féjer kernel as defined

by (4.7), and which behaves asymptotically (as N tends to infinity) as a Dirac delta-

function centred at zero. This explains why the periodogram is, asymptotically, an

unbiased estimator of the spectral density of a stationary process up to a multiplica-

tive factor of 2π (Brockwell and Davis, 1991).

When gt is such that the modulated process is asymptotically stationary,

Dunsmuir and Robinson (1981b) approximate 1
2π ∑

∞
τ=−∞ γ(τ)eiωτ , where γ(τ) =

γg(τ)cX(τ) using the notation of (3.5), for ω at Fourier frequencies by,

S̃(D)

X̃
(ω;θ) =

(2π)2

N ∑
λ∈ΩN

SX(ω−λ ;θ)S(N)
g (λ ). (5.2)

When {gt} is such that the modulated process X̃t has a significant correlation

contribution, we derive the exact value of S(N)

X̃
(ω;θ) by using the theoretical auto-

covariances of the latent model, in a similar fashion as in Sykulski et al. (2016a) for

stationary processes. This is the result of Proposition 7, which follows.

Proposition 7 (Computation of the expected periodogram). Let ω ∈ R. We have

S(N)

X̃
(ω;θ) = 2R

{
N−1

∑
τ=0

c(N)

X̃
(τ;θ)e−iωτ

}
− c(N)

X̃
(0;θ), (5.3)

where c(N)

X̃
(τ;θ) is defined in (3.3). By defining c(N)

X̃
(−τ;θ) = c(N)

X̃
(τ;θ) for τ =
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1, · · · ,N−1 we can (equivalently) express this relationship as

S(N)

X̃
(ω;θ) =

N−1

∑
τ=−(N−1)

c(N)

X̃
(τ;θ)e−iωτ ,

Proof. See Appendix A.5.

Therefore the expectation of the periodogram of X̃ is the discrete Fourier trans-

form of the expected sample autocovariance sequence. This is true even though we

have not assumed stationarity; it is simply a consequence of the relation between

the formal definitions of (3.3) and (4.1). Note that calculating the Fourier trans-

form of the sequence c(N)

X̃
(τ;θ) will always give a real-valued positive S(N)

X̃
(ω;θ)

for θ ∈ Θ, as the latter is defined as the expectation of the squared modulus of the

Fourier transform of the process.

Proposition 7 can be used to compute the expected periodogram of an asymp-

totically stationary modulated process. In such cases, the difference between (5.2)

and (5.3) is that (5.2) is a finite approximation of (5.1), whereas (5.3) is exact. To

justify the use of the expected periodogram in the setting of modulated processes,

we investigate the dependence of the expectation of the periodogram on the parame-

ter of the latent process under the assumption of significant correlation contribution.

Proposition 8 (Identifiability of the expected periodogram). If the modulated

process has a significant correlation contribution, the expected periodogram is

a one-to-one (i.e. injective) mapping from the parameter set Θ to the set of

non-negative continuous functions on [−π,π], for a large enough sample size.

More specifically, for two distinct parameter vectors θ and θ
′, the expected pe-

riodograms S(N)

X̃
(ω;θ) and S(N)

X̃
(ω; θ̃) cannot be equal for all Fourier frequencies

2π

N

(
−dN

2 e+1, · · · ,−1,0,1, · · · ,bN
2 c
)
.

Proof. Let θ , θ̃ ∈ Θ be distinct parameter vectors and let N be a positive integer.

Let Γ be as given by Definition 9. By the assumption of significant correlation

contribution, the finite sequences {cX(τ;θ) : τ ∈ Γ} and {cX(τ; θ̃) : τ ∈ Γ} are not

equal. Since c(N)

X̃
(τ;θ) = c(N)

g (τ)cX(τ;θ) for τ ∈ Γ, and according to (3.8), for

N large enough (and independently from the chosen parameter vectors θ and θ̃ )
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the sequences {c(N)

X̃
(τ;θ) : τ ∈ Γ} and {c(N)

X̃
(τ; θ̃) : τ ∈ Γ} are not equal. Hence

for N large enough the sequences {c(N)

X̃
(τ;θ) : τ = −(N − 1), · · · ,N − 1)} and

{c(N)

X̃
(τ; θ̃) : τ = −(N− 1), · · · ,N− 1)} are not equal. Their finite Fourier trans-

forms {S(N)

X̃
(ω;θ) : ω ∈ΩN} and {S(N)

X̃
(ω; θ̃) : ω ∈ΩN}, are by the bijective nature

of the Fourier transform, not equal either.

This means that for two distinct parameters vectors θ , θ̃ ∈ Θ, we will have

two distinct expected periodograms. This is a necessary condition for an estimation

procedure based on the expected periodogram. We will propose such an estima-

tion procedure in Section 5.3, and derive its consistency and convergence rate in

Chapter 3.

5.2 Finite sample bias elimination for stationary

stochastic processes

In this section we review a modification of the Whittle likelihood proposed

by Sykulski et al. (2016a) intended to reduce its bias for finite samples. We dis-

cussed a first approach in Section 4.3 which consists in tapering the time series

sample, to reduce the effect of the convolution (4.6). Another approach is to

model the outcome of the convolution itself. We consider a length-N realization

X0, . . . ,XN−1 from a stochastic stationary Gaussian process modelled by a param-

eter vector θ ∈ Θ. The idea is to replace in (4.5) the spectral density by the finite

sample expectation of the periodogram. The expected periodogram from a station-

ary time series is known to be the convolution of the spectral density with the Féjer

kernel. It can be computed using Proposition 7 by setting gt = 1 for t = 0, . . . ,N−1,

which leads to,

S(N)

X̃
(ω;θ) =

N−1

∑
τ=−(N−1)

(
1− |τ|

N

)
cX(τ;θ)e−iωτ . (5.4)
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The modified version of the Whittle likelihood is called de-biased Whittle likeli-

hood, taking the form of:

`M(θ) =
1
N ∑

ω∈ΩN

logS(N)

X̃
(ω;θ)+

Ŝ(N)

X̃
(ω)

S(N)

X̃
(ω;θ)

 . (5.5)

In Chapter 6 we prove the consistency of the estimator obtained by minimiz-

ing `M(θ) for a class of stationary Gaussian processes that satisfy some mild as-

sumptions. We will also review the asymptotic O(N−
1
2 ) convergence rate of this

method. Sykulski et al. (2016a) also noted that tapering can be used to further re-

move bias from this form of estimates.

As a remark, a third option exists to reduce the bias of the Whittle estimate,

namely, we can divide ĉX(τ) by N−|τ|
N and Fourier transform to obtain an unbiased

estimate of the spectral density (Guyon, 1982). However we lose the non-negative

semi-definiteness of the estimated autocovariance sequence and increase its vari-

ance and mean square error for large lags, as noted by Dahlhaus and Künsch (1987).

5.3 Estimation of modulated processes

In Chapter 3 we have explored a class of univariate and bivariate modulated pro-

cesses. The next stage is to describe their efficient inference. In this section we de-

scribe how the parameters of the latent model for {Xt} can be inferred from observ-

ing a single realization of the modulated process {X̃t}. Most authors have focused

on the problem of estimating modulated processes under the assumption of asymp-

totic stationarity as defined in Definition 5 (Parzen, 1963, Dunsmuir and Robin-

son, 1981a,c, Toloi and Morettin, 1989). Although non-parametric estimates have

been the key concern in most of the relevant literature, there have been instances

where parametric estimation has been considered, see for instance Dunsmuir and

Robinson (1981c). Parametric estimation ensures that the estimated autocovariance

sequence is non-negative definite, as opposed to using non-parametric estimates of

the form given in (3.6). Parametric estimation is also preferable when the true model

is known, as it uses the observed degrees of freedom more efficiently. Herein we
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consider the problem of parametric estimation for our class of modulated processes

with a significant correlation contribution, which, we recall, is a generalization of

asymptotically stationary modulated processes. We propose an adaptation of the

Whittle likelihood (Whittle, 1953), based on the expected periodogram.

We wish to infer the parameter vector θ of the latent univariate stationary pro-

cess {Xt} within the parameter set Θ, based on the sample X̃ = X̃0, · · · , X̃N−1 and

the known modulating sequence {gt : t = 0, · · · ,N − 1}. Because it has been as-

sumed that the latent process is a zero-mean Gaussian process, the same is true for

the modulated process. The vector X̃ is multivariate Gaussian with an N×N au-

tocovariance matrix CX̃(θ) =
{

cX̃(t1, t2;θ)
}

t1,t2=0,··· ,N−1, where the components of

this matrix are given by cX̃(t1, t2;θ) = gt1gt2cX(t2− t1;θ). However, the parameter

vector θ of the latent process {Xt} can be uniquely determined from the modu-

lated process {X̃t} only if θ →
{

cX̃(t1, t2;θ) : t1, t2 ∈ N
}

is injective, i.e. there is no

θ
′ ∈ Θ such that θ 6= θ

′ and cX̃(t1, t2;θ) = cX̃(t1, t2;θ ′) ∀t1, t2 ∈ N. This necessary

condition is clearly achieved under the assumption of a modulated process with sig-

nificant correlation contribution. The negative of the exact time-domain Gaussian

log-likelihood is proportional to

`G(θ) =
1
N

log
∣∣CX̃(θ)

∣∣+ 1
N

X̃TCX̃(θ)
−1X̃, (5.6)

where
∣∣CX̃(θ)

∣∣ denotes the determinant of CX̃(θ). Note that one may need to re-

move from X̃ points where gt is zero, to ensure that the determinant of the covari-

ance matrix is non-zero, and since those observations carry no information about θ .

We minimize `G to obtain the time-domain MLE, i.e.

θ̂
(N)
G = argmin

θ∈Θ
`G(θ).

Due to the drawbacks of exact likelihood which we described in Chapter 4, we

propose a computationally efficient estimation method for the parameters of the

latent model based on the periodogram of the modulated time series. In Section 4.3

we reviewed the Whittle likelihood for stationary time series. In Section 5.2 we
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reviewed how the bias from this method can be partly suppressed by replacing the

spectral density by the expectation of the periodogram. We now further use this

idea, and present a similar quasi-likelihood for the class of modulated processes

with significant correlation contribution in the following definition.

Definition 13 (Spectral maximum quasi-likelihood estimator for univariate modu-

lated processes). Let {X̃t} be a modulated process with significant correlation con-

tribution and let X̃ be its length-N sample. We define the following quasi-likelihood:

`M(θ) =
1
N ∑

ω∈ΩN

logS(N)

X̃
(ω;θ)+

Ŝ(N)

X̃
(ω)

S(N)

X̃
(ω;θ)

 , (5.7)

where S(N)

X̃
(ω) is defined in Section 5.1 as the expectation of the periodogram of the

modulated time series, and is computed using Proposition 7. The corresponding

estimator of the parameter vector θ is obtained by a minimization procedure over

the parameter set,

θ̂
(N)
M = argmin

θ∈Θ
`M(θ). (5.8)

The sequence {c(N)
g (τ) : τ = 0, · · · ,N−1} defined in (3.4) is necessary in the

computation of the expected periodogram. It requires O(N logN) computations as it

can be computed as the biased sample autocovariance sequence of g0, · · · ,gN−1 via

a Fast Fourier Transform. This initial step is carried out independently of inferring

the parameter of interest θ . Then any computation of {S(N)

X̃
(ω;θ) : ω ∈ ΩN} for

any value of the parameter vector θ will require O(N logN) computations. Indeed

we can compute {c(N)

X̃
(τ;θ) : τ = 0, · · · ,N− 1} in O(N) computations using (3.3)

and the precomputed {c(N)
g (τ) : τ = 0, · · · ,N−1}. Then the quantity {S(N)

X̃
(ω;θ) :

ω ∈ ΩN} is then computed via a fast Fourier transform (see Proposition 7). The

reason for separating the initial step of computing {c(N)
g (τ) : τ = 0, · · · ,N−1} from

the rest of the computation is that it is carried out independently of the parameter

value and stored, and therefore outside any call to a minimization procedure over

the parameter set Θ involving the expected periodogram.

In the trivial case of a modulation sequence equal to unity everywhere, then
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the quasi-likelihood of Definition 13 does not exactly equal the Whittle likelihood

of (4.5). This is because the spectral density SX(ω) would be replaced by the ex-

pected periodogram S(N)

X̃
(ω), which is the convolution of the true spectral density

with the Fejér kernel (see (5.2)). For stationary time series, this type of estimator

was investigated in Sykulski et al. (2016a), and was found to significantly reduce

bias in parameter estimation as compared with standard Whittle estimation, as dis-

cussed in Section 5.2. For modulated processes that are asymptotically stationary,

this signifies the difference between using (5.2) and the quantity defined by Propo-

sition 7 to fit the periodogram.

The same estimator to (13) can be used for the complex-valued proper time

series Z̃t considered in Section 3.5, i.e. we define our estimator,

θ̂
(N)
M = argmin

θ∈Θ
`M(θ), (5.9)

with the objective function given by,

`M(θ) =
1
N ∑

ω∈ΩN

logS(N)

Z̃
(ω;θ)+

Ŝ(N)

Z̃
(ω)

S(N)

Z̃
(ω;θ)

, (5.10)

The comments on computational aspects hold for the complex-valued case as well.

In Chapter 6, we will prove consistency of the frequency-domain estimator (5.7)

and its optimal O(N−1/2) convergence rate.

5.4 Unobserved modulation sequence
Most contributions to the literature on modulated processes have focused on the

situation where the modulation sequence is observed (Jones, 1962, Parzen, 1963,

Scheinok, 1965, Toloi and Morettin, 1989, Jiang and Hui, 2004), and in particular

to applications to missing observations. However in practice it may happen that the

modulation function is known only up to a parametric form. This situation has been

considered for instance by Dunsmuir and Robinson (1981b) where it is assumed

that the modulation sequence admits a parametric spectral representation.

Similarly, in this section we consider the situation where the modulation admits
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a parametric representation determined by a parameter θg ∈Θg. We denote {gt(θg)}

the parametric modulation sequence. We assume we only observe the modulated

process. If a consistent estimator of the parameter vector θg is available, say θ̂g, we

estimate the latent process model parameters by computing c(N)
ĝ (τ) according to,

c(N)
ĝ (τ) =

1
N

N−τ−1

∑
t=0

gt(θ̂g)gt+τ(θ̂g),

and we then minimize the quasi-likelihood (5.7) where the deterministic cg(τ) is

replaced by the estimated c(N)
ĝ (τ) in the computation of S(N)

X (ω;θ).

When estimating the parameters of the modulation sequence directly from the

modulated time series is a difficult problem, we may incorporate these parameters

in the quasi-likelihood minimization procedure. More precisely, a natural estimator

for θ and θ g would be,

(θ̂ , θ̂g) = argmin`M(θ ,θ g), (5.11)

where,

`M(θ ,θ g) =
1
N ∑

ω∈ΩN

logS(N)

X̃
(ω;θ ,θ g)+

Ŝ(N)

X̃
(ω)

S(N)

X̃
(ω;θ ,θ g)

 ,

and

S(N)

X̃
(ω;θ ,θ g) =

N−1

∑
τ=−(N−1)

c(N)

X̃
(τ;θ ,θ g)e−iωτ ,

with,

c(N)

X̃
(τ;θ ,θ g) = c(N)

g (τ;θ g)cX(τ;θ),

and with

c(N)
g (τ;θ g) =

1
N

N−τ−1

∑
t=0

gt(θ g)gt+|τ|(θ g).

Note that this estimation procedure requires that there exists Γ a subset of N such

that [θ g,θ ] 7→ [c(N)

X̃
(τ;θ g,θ) : τ ∈ Γ] be asymptotically injective, see Definition 10.

We now consider two examples of parametric forms of the modulation sequence
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where each estimation methods described above are applicable, respectively.

1. Periodic modulation. Let T be a positive integer strictly greater than one,

and define

gt = αt mod T +Aηt ,

where {ηt} is a standard normal white noise process independent of the latent

stationary process, A ≥ 0 is a fixed unknown constant, and α0, . . . ,αT−1 are

unknown constants. The modulation sequence {gt} is periodic with period T

up to the white noise process {ηt} but is assumed completely unknown. This

can be seen as an extension of the periodically missing data scheme consid-

ered earlier in Section 3.4, Example 1. Note that this model is identifiable

only if we impose some normalization constraint on the α0, . . . ,αT−1, such

as,
T−1

∑
k=0

α
2
k = 1, (5.12)

so that the expected sample variance of the modulated process equals the vari-

ance of the latent process. A natural estimator of the parameters α0, . . . ,αT−1

of the modulation sequence, assuming the period T is know, is given by,

α̂
(N)
k =

√√√√ ∑
bN/Tc
i=0 X̃2

k+iT

∑
T
l=0 ∑

bN/Tc
i=0 X̃2

l+iT

, k = 0, . . . ,T −1. (5.13)

Indeed the numerator and denominator will respectively converge in proba-

bility to αk
√

varXt and
√

varXt , because of the constraint (5.12), because of

the stationarity of the T sub-samples and the properties of the sample vari-

ance. We do not estimate the value of A as it does not impact the quantity

c(N)

X̃
(τ;θ ,θ g).

2. Linearly increasing frequency. Let γ ∈ [−π,π] and ∆ > 0. Define,

βt = γ +∆
2t− (N−1)

2(N−1)
, (5.14)
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and

gt = ei∑
t
u=1 βu.

It is a matter of calculus to verify that we the modulation sequence is then

given by,

c(N)
g (τ) =

sin
[

∆τ

2(N−1)(N− τ)
]

N sin
[

∆τ

2(N−1)

] e
{

i(γτ+ ∆τ

2(N−1)

}
, τ ∈ N,

which can directly be used (with computational complexity O(N)) to com-

pute the expected periodogram, although a Fast Fourier Transform will still

be required.

In Section 7.3.1 we present simulations based on the models of both examples

described above.



Chapter 6

Asymptotic theory

Previous work by Dunsmuir and Robinson (1981b) established the consistency of a

quasi-likelihood estimator based on (5.2) under the assumption of asymptotic sta-

tionarity as reviewed in Definition 3.2. In this chapter we study the asymptotic

behaviour of the quasi-likelihood estimator for modulated processes that we intro-

duced in Chapter 5. The class of processes for which we prove consistency is that

of modulated processes with a significant correlation contribution, which extends

the results of Dunsmuir and Robinson (1981b). We demonstrate that the frequency

domain estimator θ̂
(N)
M from (5.8), which for simplicity we denote θ̂

(N)
in this chap-

ter, is a consistent estimator of the latent process parameter vector in the case of a

univariate modulated process with a significant correlation contribution. This re-

sult is stated in Theorem 4. Extension to the class of bivariate modulated processes

introduced in Section 3.5 follows directly. We then show that the estimator θ̂
(N)

converges with the classical rate of O(N−
1
2 ), where N is the sample size of the

time series. This is the result of Theorem 5. The work is this chapter is novel and

published in Guillaumin et al. (2017).

6.1 Assumptions and lemmas
To establish consistency, we shall view lM(θ), the quasi-likelihood introduced in

Section 5.3, as a random function defined over the parameter set Θ. We shall go

through the usual following steps (Taniguchi, 1979) to determine the properties of

θ̂
(N)

,
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1. Prove that the expectation of the quasi-likelihood lM(θ), as a function, ad-

mits a unique minimum which is the true parameter vector, for large enough

sample sizes. This is the result of Lemma 5.

2. Prove that the variance of the quasi-likelihood function decreases uniformly

towards zero over the parameter set Θ. This is a consequence of Lemma 7.

3. Use the two above results to prove that the minimum of the quasi-likelihood

behaves “similarly” to the minimum of the expectation of the likelihood func-

tion and therefore converges in probability to the true parameter vector. This

is the result of Theorem 4.

These steps are standard, however result 1 is not sufficient to guarantee our result,

as the expectation of the quasi-likelihood function does not converges to a fixed

function. For that reason we will need an additional result, given by Lemma 6.

To guarantee consistency we require the standard Whittle assumptions to be

satisfied:

1. The parameter set Θ ⊂ Rd is compact with a non-null interior, and the true

parameter θ lies in the interior of Θ.

2. For all θ ∈ Θ, we have ∑τ∈N |cX(τ;θ)| < ∞ (short memory). The spectral

densities are continuous with respect to both variables ω,θ , and bounded

below and above by two positive constants.

3. The spectral densities are continuously differentiable with respect to both

variables ω and θ . By continuity on a compact set the derivatives with re-

spect to ω are bounded above, independently of θ .

4. The process X̃t is a modulated process with a significant correlation contribu-

tion. We recall that this implies the existence of a finite subset Γ ⊂ N such

that the mapping θ 7→ {cX(τ) : τ ∈ Γ} is one-to-one. We also assume that the

modulating sequence {gt} is bounded above in absolute value by some finite

constant gmax > 0.
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We start with the following two lemmas which yield uniform bounds of the expected

periodogram and its derivative.

Lemma 3 (Boundedness of the expected periodogram). For all θ ∈ Θ and N ∈ N,

the expected periodogram S(N)

X̃
(ω;θ) is bounded below (by a positive real number)

and above independently of N and θ . We denote these bounds SX̃ ,min and SX̃ ,max

respectively.

Proof. We denote SX ,max = maxθ ,ω SX(ω;θ) and SX ,min = minθ ,ω SX(ω;θ).

1. We first show the existence of the upper bound. According to Proposition

6 the expected periodogram can be expressed, for ω ∈ [−π,π], θ ∈ Θ and

N ∈ N, by

S(N)

X̃
(ω;θ) = 2π

∫
π

−π

SX(ω−λ ;θ)S(N)
g (λ )dλ .

Therefore,

S(N)

X̃
(ω;θ)≤ 2πSX ,max

∫
π

−π

S(N)
g (λ )dλ = SX ,max

1
N

N−1

∑
t=0
|gt |2,

by Parseval equality, and finally,

S(N)

X̃
(ω;θ)≤ g2

maxSX ,max,

and this by assumption is finite.

2. Similarly, we show the existence of a lower bound. According to the assump-

tion of a modulated process with a significant correlation contribution, there

exists a non-negative integer τ ∈ Γ and a positive real number ατ such that

for N large enough, c(N)
g (τ)≥ ατ . Then,

S(N)

X̃
(ω;θ) ≥ 2πSX ,min

∫
π

−π

S(N)
g (λ )dλ = SX ,min

1
N

N−1

∑
t=0
|gt |2

≥ SX ,min
1
N

√√√√N−τ−1

∑
t=0
|gt |2

√
N−1

∑
t=τ

|gt |2
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≥ SX ,min
1
N

∣∣∣∣∣N−τ−1

∑
t=0

g∗t gt+τ

∣∣∣∣∣ ,
by Cauchy-Schwartz inequality. Hence we get for N large enough

S(N)

X̃
(ω;θ)≥ ατSX ,min > 0. This proves the stated result.

Lemma 4 (Boundedness of the derivative of the expected periodogram). The

derivative of the expected periodogram with respect to ω exists and is bounded

in absolute value independently of θ and N.

Proof. We have for all ω ∈ [−π,π], θ ∈ Θ and N ∈ N that the form of S(N)

X̃
(ω;θ)

is given by

S(N)

X̃
(ω;θ) = 2π

∫
π

−π

SX(ω−λ ;θ)S(N)
g (λ )dλ .

We obtain (where the change of order of differentiation and integration is a conse-

quence of the differentiability of the functions ω → SX(ω;θ) and the fact that the

spectral densities are bounded above),∣∣∣∣∣∣∂S(N)

X̃
∂ω

(ω;θ)

∣∣∣∣∣∣ = 2π

∣∣∣∣∫ π

−π

∂SX

∂ω
(ω−λ ;θ)S(N)

g (λ )dλ

∣∣∣∣
≤ 2π max

ω,θ

{∣∣∣∣∂SX

∂ω
(ω;θ)

∣∣∣∣}∫ π

−π

S(N)
g (λ )dλ

≤ g2
max max

ω,θ

{∣∣∣∣∂SX

∂ω
(ω;θ)

∣∣∣∣} ,

which concludes the proof.

In analogue to Taniguchi (1979) for stationary processes, we introduce the

following quantity,

D(N) (γ, f ) =
1
N ∑

ω∈ΩN

logS(N)

X̃
(ω;γ)+

f (ω)

S(N)

X̃
(ω;γ)

 ,

for all positive integer N, γ ∈Θ and non-negative real-valued function f defined on
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ΩN . We also define

T (N)( f ) = argmin
γ∈Θ

D(N) (γ, f ) .

This minimum for fixed f and N is well defined since the set Θ is compact and since

the function γ 7→ D(N) (γ, f ) is continuous. However in cases where the minimum

is reached not uniquely but at multiple parameter values, T (N)( f ) will denote any

of these values, chosen arbitrarily. Note that, by the definition of our frequency

domain estimator, we have θ̂
(N)

= T (N)
(

Ŝ(N)

X̃
(·)
)

. We derive three lemmas that

will be required in proving Theorem 4 which establishes consistency.

Lemma 5. We have, for N large enough, T (N)(S(N)

X̃
(·;θ)) = θ , uniquely.

Proof. We will use repeatedly the fact that the function x→ x− logx, defined on the

set of positive real numbers, admits a global minimum for x = 1 where it takes value

1. It is an increasing function on (1,∞) and decreasing on (0,1). This is easily seen

by studying the derivative. Now let N be a natural integer. We have for all γ ∈Θ

D(γ,S(N)

X̃
(ω;θ)) =

1
N ∑

ω∈ΩN

logS(N)

X̃
(ω;γ)+

S(N)

X̃
(ω;θ)

S(N)

X̃
(ω;γ)



=
1
N ∑

ω∈ΩN


logS(N)

X̃
(ω;θ)+

≥1︷ ︸︸ ︷
S(N)

X̃
(ω;θ)

S(N)

X̃
(ω;γ)

− log

S(N)

X̃
(ω;θ)

S(N)

X̃
(ω;γ)




≥ 1
N ∑

ω∈ΩN

{
logS(N)

X̃
(ω;θ)+1

}
,

where we have an equality if and only if S(N)

X̃
(ω;θ) = S(N)

X̃
(ω;γ) for all ω ∈ ΩN ,

which for N large enough is equivalent to γ = θ according to Proposition 8.

This shows that for all N large enough, the function γ → D
(

γ,S(N)

X̃
(·;θ)

)
reaches a global minimum at the true parameter vector θ . However because

S(N)

X̃
(·;θ) is changing with N and is not expected to converge to a given function,

we need the following stronger result.
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Lemma 6. If {γN}N∈N ∈ ΘN is a sequence of parameter vectors such that

D
(

γN ,S
(N)

X̃
(·;θ)

)
−D

(
θ ,S(N)

X̃
(·;θ)

)
converges to zero when N goes to infinity,

then γN converges to θ .

Proof. We prove this in three steps.

1. We have for a positive integer N,

D
(

γN ,S
(N)

X̃
(·;θ)

)
− D

(
θ ,S(N)

X̃
(·;θ)

)
(6.1)

=
1
N ∑

ω∈ΩN

 S(N)

X̃
(ω;θ)

S(N)

X̃
(ω;γN)

− log
S(N)

X̃
(ω;θ)

S(N)

X̃
(ω;γN)

−1

 .

Assume this converges to zero as N goes to infinity. For any non-negative

integer τ smaller than N we can write,

c(N)

X̃
(τ;γN)− c(N)

X̃
(τ;θ) =

1
2π

∫
π

−π

(
S(N)

X̃
(ω;γN)−S(N)

X̃
(ω;θ)

)
eiωτdω,

so we have the following bound,

∣∣∣c(N)

X̃
(τ;γN)− c(N)

X̃
(τ;θ)

∣∣∣≤ 1
2π

∫
π

−π

∣∣∣S(N)

X̃
(ω;γN)−S(N)

X̃
(ω;θ)

∣∣∣dω. (6.2)

2. Now we assume, with the intent to arrive at a contradiction, that this quantity

does not converge to zero. Then there exists an increasing function φ(N),

defined on the set of non-negative integers and taking values in the set of

non-negative integers and ε > 0 such that

∣∣∣c(φ(N))

X̃
(τ;γφ(N))− c(φ(N))

X̃
(τ;θ)

∣∣∣≥ ε, ∀N ∈ N. (6.3)

Fix N ∈ N. Denote M the upper bound (independent of N) of the integrand

in (6.2) using lemma 3. Let Bφ(N) ⊂ [−π,π] be the inverse image of [ε/2,∞)

by the function ω 7→
∣∣∣S(φ(N))

X̃
(ω;γφ(N))−S(φ(N))

X̃
(ω;θ)

∣∣∣. Let λφ(N) be the
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Lebesgue measure of the Borel set Bφ(N). We have,

ε ≤ 1
2π

∫
π

−π

∣∣∣S(φ(N))

X̃
(ω;γφ(N))−S(φ(N))

X̃
(ω;θ)

∣∣∣dω ≤
λφ(N)

2π
M+

2π−λφ(N)

2π

ε

2
,

and therefore

λφ(N) ≥
πε

M− ε

2
. (6.4)

Since Bφ(N) is defined such that,

∣∣∣S(φ(N))

X̃
(ω;γφ(N))−S(φ(N))

X̃
(ω;θ)

∣∣∣≥ ε

2
, ∀ω ∈ Bφ(N), (6.5)

it follows that, dividing each side of (6.5) by S(φ(N))

X̃
(ω;γφ(N)),∣∣∣∣∣∣ S(φ(N))

X̃
(ω;θ)

S(φ(N))

X̃
(ω;γφ(N))

−1

∣∣∣∣∣∣≥ ε

2S(φ(N))

X̃
(ω;γφ(N))

≥ ε

2SX̃ ,max
, ∀ω ∈ Bφ(N).

We therefore have that for all ω ∈Bφ(N),
∣∣∣S(φ(N))

X̃
(ω;θ)/S(φ(N))

X̃
(ω;γφ(N))−1

∣∣∣
is bounded below by cε , where c = 1/(2SX̃ ,max) is a positive constant inde-

pendent of N. Denote

b : x→ x− logx−1,x > 0,

b
(φ(N)) : ω 7→ b

 S(φ(N))

X̃
(ω;θ)

S(φ(N))

X̃
(ω;γφ(N))

 , ω ∈ [−π,π].

For all ω ∈ Bφ(N), b
(φ(N))

(ω) is bounded below by d = min(b(1+ cε),b(1−

cε)) (where d > 0 is a constant that depends on ε but not on N) because of

the properties of the function b(x) which we recalled at the beginning of the

proof of lemma 5. The function b(x) has a bounded derivative on any interval

of the form [a1,a2] where 0 < a1 < a2 < ∞. Since

SX̃ ,max

SX̃ ,min
≥

S(φ(N))

X̃
(ω;θ)

S(φ(N))

X̃
(ω;γφ(N))

≥
SX̃ ,min

SX̃ ,max
> 0,
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and using Lemma 3 and Lemma 4, the function b
(φ(N))

(ω) has a bounded

derivative. We denote the corresponding bound lmax, which is independent of

N.

Recalling that λφ(N) is the measure of Bφ(N), there exist T = bNλφ(N)

4π
c increas-

ing elements ν1, · · · ,νT ∈ Bφ(N) such that νi+1− νi ≥ 4π

N , i = 1, · · · ,T − 1.

Then there exist T −1 Fourier frequencies ν ′1, · · · ,ν ′T−1, such that νi < ν ′i <

νi+1. Then we have,∣∣∣∣∣T−1

∑
i=1

b
(φ(N))

(ν ′i )−b
(φ(N))

(νi)

∣∣∣∣∣ ≤ T−1

∑
i=1

∣∣∣b(φ(N))
(ν ′i )−b

(φ(N))
(νi)
∣∣∣

≤
T−1

∑
i=1

(ν ′i −νi)lmax ≤ 2πlmax,

which implies

T−1

∑
i=1

b
(φ(N))

(ν ′i ) ≥
T−1

∑
i=1

b
(φ(N))

(νi)−2πlmax

≥ (T −1)d−2πlmax.

Because T is of order N, we conclude that (6.1) cannot converge to zero. We

arrive at a contradiction.¸

By this contradiction we obtain that for all integer τ , c(N)

X̃
(τ;γN)− c(N)

X̃
(τ;θ)

converges to zero when N goes to infinity.

3. In particular for τ ∈ Γ, if we denote ατ = liminf
N→∞

∣∣∣c(N)
g (τ)

∣∣∣> 0, we have for N

large enough,

∣∣∣c(N)

X̃
(τ;γN)− c(N)

X̃
(τ;θ)

∣∣∣ =
∣∣∣c(N)

g (τ)(cX(τ;γN)− cX(τ;θ))
∣∣∣

≥ ατ |cX(τ;γN)− cX(τ;θ)| ,

so that (with the assumption of significant correlation contribution)

|cX(τ;γN)− cX(τ;θ)| converges to zero as N tends to infinity. Because of the

compacity of Θ, and using the fact that the function θ 7→ {cX(τ) : τ ∈ Γ} is
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one-to-one and continuous, this yields the stated lemma.

This concludes the proof.

We now show that the functions D
(

γ,S(N)

X̃
(·;θ)

)
and D

(
γ, Ŝ(N)

X̃
(·)
)

, defined

on Θ, behave asymptotically in the same way. For this, we first need the following

lemma where we bound the asymptotic variance of some linear functionals of the

periodogram.

Lemma 7. Let
{

a(N)(ω) : ω ∈ [−π,π)
}

N∈N
be a family of real-valued functions,

uniformly bounded by a positive real number. Then it follows,

var

{
1
N ∑

ω∈ΩN

a(N)(ω)Ŝ(N)

X̃
(ω)

}
= O

(
1
N

)
. (6.6)

Proof. Let amax be a finite positive constant such that |a(N)(ω)| ≤ amax,∀ω ∈

[−π,π),∀N ∈ N. We start by looking at the covariance matrix of the Fourier trans-

form. We shall denote the Fourier transform, for a fixed positive integer N,

J(N)

X̃
(ω) =

1√
N

N−1

∑
t=0

X̃te−iωt =
1√
N

N−1

∑
t=0

gtXte−iωt , ω ∈ΩN .

Since the expectation of the latent process is assumed to be zero, the same holds for

the Fourier transform by the linearity of the Fourier transform. As gt is deterministic

and from the linear equation above we see that the covariance matrix elements can

be expressed in the following way:

cov
{

J(N)

X̃
(ω),J(N)

X̃
(ω ′)

}
=

1
N

(
G(N)

ω

)H
C(N)

X (θ)G(N)
ω ′ , ω,ω ′ ∈ΩN , (6.7)

where subscript H denotes the Hermitian transpose, C(N)
X (θ) denotes the finite the-

oretical autocovariance matrix of the latent process (i.e. with elements cX(i− j;θ),

i, j = 0, · · · ,N−1), and G(N)
ω is the vector [gteiωt : t = 0, · · · ,N−1]T . Using Isserlis’

theorem (Isserlis, 1918) and the assumption of Gaussianity of the latent process

(which in turns implies the Gaussianity of the Fourier transform of the modulated

process), the covariances of the periodogram are related to the covariances of the
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Fourier transform according to the simple following relation

cov
{

Ŝ(N)

X̃
(ω), Ŝ(N)

X̃
(ω ′)

}
=
∣∣∣cov

{
J(N)

X̃
(ω),J(N)

X̃
(ω ′)

}∣∣∣2 . (6.8)

This can be written as

cov
{

Ŝ(N)

X̃
(ω), Ŝ(N)

X̃
(ω ′)

}
=

1
N2

(
G(N)

ω

)H
C(N)

X (θ)G(N)
ω ′

[(
G(N)

ω

)H
C(N)

X (θ)G(N)
ω ′

]H

=
1

N2

(
G(N)

ω

)H
C(N)

X (θ)G(N)
ω ′ G(N)

ω ′
H

C(N)
X (θ)

H
G(N)

ω .

We then have

var

{
1
N ∑

ω∈ΩN

a(N)(ω)Ŝ(N)

X̃
(ω)

}
=

1
N2 ∑

ω∈ΩN

∑
ω ′∈ΩN

a(N)(ω)a(N)(ω ′)
1

N2

(
G(N)

ω

)H
C(N)

X (θ)G(N)
ω ′ G(N)

ω ′
H

C(N)
X (θ)

H
G(N)

ω

≤ a2
max
N4 ∑

ω∈ΩN

∑
ω ′∈ΩN

(
G(N)

ω

)H
C(N)

X (θ)G(N)
ω ′ G(N)

ω ′
H

C(N)
X (θ)

H
G(N)

ω

=
a2

max
N4 ∑

ω∈ΩN

(
G(N)

ω

)H
C(N)

X (θ) ∑
ω ′∈ΩN

{
G(N)

ω ′ G(N)
ω ′

H
}

C(N)
X (θ)

H
G(N)

ω ,

where the first inequality is legitimate as the covariances of the periodogram are

positive real-valued numbers (see (6.8)), and where the last equality is obtained

after factorizing. Now we use the fact that

∑
ω ′∈ΩN

{
G(N)

ω ′ G(N)
ω ′

H
}
= Ndiag(g2

0, · · · ,g2
N−1). (6.9)

Indeed, the (t1, t2)-th term of the left hand side of (6.9) is given by

∑
ω ′∈ΩN

gt1gt2eiω ′(t1−t2) =
N−1

∑
k=0

gt1gt2e
i2kπ(t1−t2)

N = gt1gt2

N−1

∑
k=0

e
i2kπ(t1−t2)

N , (6.10)

where we recognize the finite sum of the geometric sequence of term e
i2π(t1−t2)

N ,
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which is N if t1 = t2, and otherwise,

N−1

∑
k=0

e
i2kπ(t1−t2)

N =
N−1

∑
k=0

(
e

i2π(t1−t2)
N

)k

=
1−
(

e
i2π(t1−t2)

N

)N

1− e
i2π(t1−t2)

N

= 0. (6.11)

Therefore

var

{
1
N ∑

ω∈ΩN

a(ω)Ŝ(N)

X̃
(ω)

}
≤ a2

max
N3 ∑

ω∈ΩN

(
G(N)

ω

)H
C(N)

X (θ)ΓgC(N)
X (θ)HG(N)

ω ,

where Γg = diag(g2
0, · · · ,g2

N−1) is the diagonal matrix with elements g2
0, . . . ,g

2
N−1.

Thus,

var

{
1
N ∑

ω∈ΩN

a(ω)Ŝ(N)

X̃
(ω)

}
≤ a2

maxg2
max

N3 ∑
ω∈ΩN

(
G(N)

ω

)H
C(N)

X (θ)C(N)
X (θ)

H
G(N)

ω .

Therefore we now have

var

{
1
N ∑

ω∈ΩN

a(ω)Ŝ(N)

X̃
(ω)

}
≤ a2

maxg2
max

N3 ∑
ω∈ΩN

∥∥∥∥C(N)
X (θ)

H
G(N)

ω

∥∥∥∥2

2
, (6.12)

where ‖ ·‖2 denotes the Euclidean norm on CN . For all U ∈CN , the matrix C(N)
X (θ)

is Hermitian, so it can be written PDPH where D is a diagonal matrix and where P

is unitary, so that,

∥∥∥C(N)
X (θ)U

∥∥∥
2
≤ ‖U‖2 max

η∈sp
(

C(N)
X (θ)

) |η |, (6.13)

where sp
(

C(N)
X (θ)

)
is the set of eigenvalues of C(N)

X (θ). Furthermore we have from

Horn and Johnson (1985, p. 394) that, recalling that the spectral density SX(ω;θ)

is assumed to be continuous in ω ,

max
η∈sp

(
C(N)

X (θ)
) |η |= max

U∈Cn

{
UHC(N)

X (θ)U
UHU

}
≤ SX ,max. (6.14)
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Combining (6.12)-(6.14) and replacing U by G(N)
ω ,

var

{
1
N ∑

ω∈ΩN

a(ω)Ŝ(N)

X̃
(ω)

}
≤
(
SX ,max amax g2

max
)2

N
, (6.15)

as
∥∥∥G(N)

ω

∥∥∥
2
≤ gmax

√
N. Remembering that S(N)

X̃
(ω;θ) = E

{
Ŝ(N)

X̃
(ω);θ

}
, we thus

have

∑
ω∈ΩN

a(N)(ω)Ŝ(N)

X̃
(ω) = ∑

ω∈ΩN

a(N)(ω)S(N)

X̃
(ω;θ)+OP

(
1√
N

)
.

6.2 Consistency and convergence rate
We are now able to state a consistency theorem for our estimator θ̂

(N)
.

Theorem 4 (Consistency of the frequency domain estimator). We have θ̂
(N) P−→ θ

in probability.

Proof. The proof is based on Taniguchi (1979). Denote, for any γ ∈Θ, h
(N)

(γ;θ) =

D
(

γ,S(N)

X̃
(ω;θ)

)
and ĥ(N)(γ) = D

(
γ, Ŝ(N)

X̃
(ω)
)

. We have,

h
(N)

(γ;θ)− ĥ(N)(γ) =
1
N ∑

ω∈ΩN

logS(N)

X̃
(ω;γ)+

S(N)

X̃
(ω;θ)

S(N)

X̃
(ω;γ)

−

logS(N)

X̃
(ω;γ)+

Ŝ(N)

X̃
(ω)

S(N)

X̃
(ω;γ)


=

1
N ∑

ω∈ΩN

S(N)

X̃
(ω;θ)− Ŝ(N)

X̃
(ω)

S(N)

X̃
(ω;γ)

.

We have shown in Lemma 3 that S(N)

X̃
(ω;γ) is bounded below in both variables ω

and γ by a positive real number, independently of N. Therefore, making use of

Lemma 7 we have

sup
γ∈Θ

∣∣∣h(N)
(γ;θ)− ĥ(N)(γ)

∣∣∣ P−→ 0, (N→ ∞), (6.16)
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where the letter P indicates that the convergence is in probability, as the difference

is of stochastic order O
(

N−
1
2

)
. In particular (6.16) implies that

∣∣∣∣min
γ

h
(N)

(γ;θ)−min
γ

ĥ(N)(γ)

∣∣∣∣≤ sup
γ∈Θ

∣∣∣h(N)
(γ;θ)− ĥ(N)(γ)

∣∣∣ P−→ 0

i.e.

∣∣∣h(N)
(

T (N)(S(N)

X̃
(ω;θ));θ

)
− ĥ(N)

(
T (N)(Ŝ(N)

X̃
(ω))

)∣∣∣ P−→ 0. (6.17)

Relation (6.16) also implies that

∣∣∣h(N)
(

T (N)(Ŝ(N)

X̃
(ω));θ

)
− ĥ(N)

(
T (N)(Ŝ(N)

X̃
(ω))

)∣∣∣ P−→ 0, (6.18)

so that using the triangle inequality with (6.17) and (6.18) we get,

∣∣∣h(N)
(

T (N)(Ŝ(N)

X̃
(ω));θ

)
−h

(N)
(

T (N)(S(N)

X̃
(ω;θ));θ

)∣∣∣ P−→ 0.

We then obtain the stated theorem making use of Lemma 6.

We now study the convergence rate of our frequency domain estimator. For

this we first need the following two lemmas. Although the Hessian matrix of the

likelihood is not expected to converge for modulated processes with a significant

correlation contribution, we can show that its norm is bounded below by a positive

real number. For this we need to strengthen the assumption of significant correla-

tion contribution. Assuming that the spectral densities of the latent process are twice

continuously differentiable with respect to θ , we assume that the Jacobian determi-

nant of the mapping θ 7→ [cX(τ;θ) : τ ∈ Γ]T taken at the true parameter value θ ,

i.e. the determinant of the matrix with elements ∂cX (τi;θ)
∂θ j

(with Γ = {τ1,τ2, · · · ,τd}

here), exists and is non-zero.

Lemma 8. Let U1, · · · ,Ud a family of vectors of Rd with rank d. Let α1, · · · ,αd

be positive real numbers. There exists a positive constant C > 0 such that for all
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V ∈ Rd ,
d

∑
i=1

α
2
i
(
UT

i V
)2 ≥C‖V‖2

2 ,

where ‖ · ‖2 denotes the Euclidean norm on RN .

Proof. We first show that the proposition is true for all vectors in C ={
V ∈ Rd : ‖V‖2 = 1

}
, which is compact. The function S : V 7→ ∑

d
i=1 α2

i
(
UT

i V
)2

is continuous, so the image of C by S is compact. Since S takes non-negative

values, the image of C by S either contains zero or there exists a constant C > 0

such that it is bounded below by C. The image of C by S cannot contain zero,

as otherwise there would be a vector of Rd with norm 1 whose scalar product with

vectors Ui, i = 1, · · · ,d is zero, which is impossible as we have assumed that the

family U1, · · · ,Ud has rank d. Therefore there exists a constant C > 0 such that,

d

∑
i=1

α
2
i
(
UT

i V
)2 ≥C, ∀V ∈ C .

Now in general, if V is any non-zero vector in Rd , we have, using the result we have

derived for vectors of C ,

d

∑
i=1

α
2
i
(
UT

i V
)2

= ‖V‖2
2

d

∑
i=1

α
2
i

(
UT

i
V
‖V‖2

)2

≥ ‖V‖2
2C.

If V = 0 the result is obvious. This concludes the proof in the general case.

Lemma 9. We have, for i = 1, . . . ,d,

∂ lM
∂θi

(θ) = OP

(
1√
N

)
.

The Hessian matrix of the function lM(θ) satisfies

H(θ) = I (θ)+OP

(
1√
N

)
,

where the matrix norm of I (θ) is bounded below by a positive value, independently
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of N.

Proof. 1. Direct calculations give that the score function takes the form, for

i = 1, · · · ,d,

∂ lM
∂θi

(θ) =
1
N ∑

ω∈ΩN


∂S(N)

X̃
∂θi

(ω;θ)(
S(N)

X̃
(ω;θ)

)2

(
S(N)

X̃
(ω;θ)− Ŝ(N)

X̃
(ω)
) .

Since by definition S(N)

X̃
(ω;θ) = E

{
Ŝ(N)

X̃
(ω);θ

}
, the expectation of the score

function at the true parameter vector is zero. Applying Lemma 7, and the fact

that
∂S(N)

X̃
∂θi

(ω;θ)(
S(N)

X̃
(ω;θ)

)2 is bounded above in absolute value independently of N (as a

direct consequence of Lemma 3 and Lemma 4), we get the stated result.

2. Again by direct calculation we obtain the following Hessian matrix:

∂ 2l(N)
M

∂θi∂θ j
(θ) =

1
N ∑

ω∈ΩN




∂ 2S(N)

X̃
∂θi∂θ j

(ω;θ)
(

S(N)

X̃
(ω;θ)

)2

(
S(N)

X̃
(ω;θ)

)4

− 2
S(N)

X̃
(ω;θ)

∂S(N)

X̃
∂θi

(ω;θ)
∂S(N)

X̃
∂θ j

(ω;θ)(
S(N)

X̃
(ω;θ)

)4



×
(

S(N)

X̃
(ω;θ)− Ŝ(N)

X̃
(ω)
)
+

∂S(N)

X̃
∂θi

(ω;θ)
∂S(N)

X̃
∂θ j

(ω;θ)(
S(N)

X̃
(ω;θ)

)2

 .

The expectation of the Hessian matrix is therefore

I (N)(θ) = E

{
∂ 2l(N)

M

∂θ∂θ
T (ω;θ)

}
=

1
N ∑

ω∈ΩN

∂S(N)

X̃
∂θ

(ω;θ)
∂S(N)

X̃
∂θ

T (ω;θ)(
S(N)

X̃
(ω;θ)

)2 ,

where we use the notation
∂S(N)

X̃
∂θ

T (ω;θ) to denote the transpose of the gradient

vector
∂S(N)

X̃
∂θ

(ω;θ). For any of the ω ∈ ΩN (to which corresponds a term in
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the above sum), and for any vector U ∈ Rd ,

UT
∂S(N)

X̃
∂θ

(ω;θ)
∂S(N)

X̃

∂θ
T (ω;θ)U =

∣∣∣∣∣∣∂S(N)

X̃

∂θ
T (ω;θ)U

∣∣∣∣∣∣
2

≥ 0,

so that the matrix I (N)(θ) is non-negative definite as a sum of non-negative

definite matrices. Now to show that the matrix I (θ) is positive definite, let

U = [u1, · · · ,ud]
T ∈ Rd non-zero. We have

UT I (N)(θ) U =
1
N ∑

ω∈ΩN

1(
S(N)

X̃
(ω;θ)

)2 UT ∂S(N)

X̃
∂θ

(ω;θ)
∂S(N)

X̃

∂θ
T (ω;θ)U

=
1
N ∑

ω∈ΩN

1(
S(N)

X̃
(ω;θ)

)2

∣∣∣∣∣∣∂S(N)

X̃

∂θ
T (ω;θ)U

∣∣∣∣∣∣
2

=
1
N ∑

ω∈ΩN

1(
S(N)

X̃
(ω;θ)

)2

 d

∑
i=1

∂S(N)

X̃
∂θi

(ω;θ)ui

2

≥ 1

N
(

supω∈ΩN
S(N)

X̃
(ω;θ)

)2 ∑
ω∈ΩN

 d

∑
i=1

∂S(N)

X̃
∂θi

(ω;θ)ui

2

.

Seeing
{

1√
N ∑

d
i=1 ui

∂S(N)

X̃
∂θi

(ω;θ)

}
ω∈ΩN

⇔
{

∑
d
i=1 ui

∂c(N)

X̃
∂θi

(τ;θ)

}
τ=−(N−1),··· ,N−1

as a finite Fourier pair and applying Parseval’s equality we obtain that,

UT I (N)(θ) U ≥
∑

N−1
τ=−(N−1)

(
∑

d
i=1 ui

∂c(N)

X̃
∂θi

(τ;θ)

)2

(
supω∈ΩN

S(N)

X̃
(ω;θ)

)2

=
∑

N−1
τ=−(N−1)

(
∑

d
i=1 uic

(N)
g (τ)∂cX

∂θi
(τ;θ)

)2
,(

supω∈ΩN
S(N)

X̃
(ω;θ)

)2

by definition of c(N)

X̃
(τ;θ) and noting that c(N)

g (τ) does not depend on θ .
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Therefore,

UT I (N)(θ) U≥ 1(
supω∈ΩN

S(N)

X̃
(ω;θ)

)2 ∑
τ∈Γ

(
d

∑
i=1

uic
(N)
g (τ)

∂cX

∂θi
(τ;θ)

)2

,

as long as N is larger than the greater integer value in Γ. Denote ατ =

liminf
N→∞

∣∣∣c(N)
g (τ)

∣∣∣> 0 for τ ∈ Γ, we obtain that for N large enough (see (3.8)),

UT I (N)(θ) U ≥
∑τ∈Γ c(N)

g (τ)2
(

∑
d
i=1 ui

∂cX
∂θi

(τ;θ)
)2

(
supω∈ΩN

S(N)

X̃
(ω;θ)

)2

≥
∑τ∈Γ α2

τ

(
∑

d
i=1 ui

∂cX
∂θi

(τ;θ)
)2

(
supω∈ΩN

S(N)

X̃
(ω;θ)

)2 .

Now according to the assumption of significant correlation contribution, the

mapping θ 7→ [cX(τ) : τ ∈ Γ]T is one-to-one, so its Jacobian taken at the true

parameter vector θ is non-zero. Therefore the family ∂cX
∂θ

(τ;θ) : τ ∈ Γ has

rank d and we can apply Lemma 8, i.e. we can conclude that there exists a

positive constant C > 0 such that,

UT I (N)(θ) U≥C‖U‖2
2 .

This implies that the norm of the expected Hessian matrix is bounded below

by a positive real-number. Similarly to the gradient, using Lemma 7, we

obtain the stated result for the Hessian.

This concludes the proof.

Theorem 5 (Convergence rate). We have θ̂
(N)

= θ +OP

(
1√
N

)
.

Proof. We have, by Taylor expansion with Lagrange form of the remainder term,

∇lM(θ̂
(N)

) = 0 = ∇lM(θ)+H(θ̃)(θ̂
(N)−θ),
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where θ̃ lies between θ̂
(N)

and θ . Therefore,

θ̂
(N)−θ =−H(θ̃)−1

∇lM(θ).

We have shown that θ̂
(N)

converges in probability to θ . By continuity of the Hes-

sian, and using the results of Lemma 9, we obtain

θ̂
(N)−θ =−

[
I (θ)+OP

(
1√
N

)
+oP(1)

]−1

OP

(
1√
N

)
= OP

(
1√
N

)
.

This concludes the proof.



Chapter 7

Simulation studies

In this chapter we present simulation results that show the usefulness of our class

of modulated processes with a significant correlation contribution, and that of the

inference procedure described in Chapter 5. In Section 7.1 we first consider some

applications to the study of missing observations in stationary stochastic processes.

We then consider another application in Section 7.2 where the observed process is a

sum of two modulated processes, and the modulation sequences are known. In Sec-

tion 7.3 we consider two situations where the modulation sequence is known up to a

parametric form, but unobserved, according to the models described in Section 5.4.

The material in this chapter is novel.

7.1 Missing observations
Authors who have treated the topic of modulated stochastic processes have mainly

focused on applying this framework to the analysis of time series with missing ob-

servations. We reviewed in Section 3.4 how missing observations in a time series

{Xt} can be taken into account by viewing the observed time series as the realization

of a modulated process where the latent process is the stationary process of interest,

and the modulation sequence is taking values one and zero, depending on whether

a point is observed or missed, respectively. In Section 3.4, we showed how the

class of modulated processes with a significant correlation contribution applies to

missing observations and extends the class of asymptotically stationary modulated

stochastic processes, allowing for more sophisticated schemes of missing observa-
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tions. In this section we present results from simulations in that context, for dif-

ferent schemes of missing data. In Section 7.1.1, we consider an application to the

classical problem of periodically missing observations, studied by Parzen (1963).

In Section 7.1.2 we consider an application to a randomly missing data scheme.

The latter is designed such that the resulting observed process does not fit in the

class of asymptotically stationary modulated stochastic processes but is however a

modulated stochastic process with a significant correlation contribution.

7.1.1 Periodically missing observations

Let {Xt} be a stationary process, modelled by a parameter vector θ belonging to

a compact parameter set Θ. Define the modulating sequence gt to take value one

if the value of the process is observed at time t, and 0 if it is missed, as in (3.9).

In this section we focus on the case of periodically missing observations studied

by Parzen (1963), where gt is defined to take value one for k consecutive times and

value zero for l consecutive times, where k and l are two positive integers. Parzen

(1963) showed that the modulated process defined by X̃t = gtXt is asymptotically

stationary as long as k > l, and gave an explicit formulation to the limiting sequence

γ(τ) defined in (2.6) that depends on k and l. We consider the situation where the

stationary process Xt is a causal AR(2) process defined by the difference equation

Xt−0.9Xt−1 +0.1Xt−2 = εt , t ∈ Z. (7.1)

where {εt} is a white noise process with variance unity. The autocovariance func-

tion cX(τ) of the process defined by equation (7.1) can be obtained numerically for

lags 0,1, . . . ,N−1 in a recursive way by solving the Yule-Walker equations for lags

zero, one and two, and then using the following recursive relation,

cX(τ +2) = 0.9cX(τ +1)−0.1cX(τ), τ ≥ 1.

We simulate a periodically missing pattern as described above with k = 5 and with

various values for l, ranging from zero to six. For all (k, l) combinations the modu-

lated process satisfies the conditions of having a significant correlation contribution,
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with Γ = {0,1,2}. Additionally, we observe that we are able to achieve estimation

in the situation where l > k due to the parametric model for the stationary pro-

cess and our definition of significant correlation contribution. For each (k, l) (l = 0

corresponding to observing the whole time series) we simulate 5,000 independent

time series, with sizes ranging from 256 to 2,048. We aggregate the obtained esti-

mates and provide RMSEs in Figure 7.1. We note that irrespective of the value of

l, the RMSEs seem to decrease to zero as the sample size increases, even for l > k.

Naturally, it seems that the RMSEs increase with the value of l, with the notable

exception of l = 1 which performs worse than l = 2 and l = 3 for all three param-

eters. This is surprising, but may be a consequence of the shape of the expected

periodogram.
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Figure 7.1: Root Mean Square Errors of estimates of the stationary AR(2) process de-
fined by Xt −φ1Xt−1−φ2Xt−2 = εt , where φ1 = 0.9, φ2 = −0.1, and εt is i.i.d.
N (0,σ2), where σ = 1. The observed process is subject to a (k, l)-periodic
missing data pattern, which corresponds to observing k points, missing l, ob-
serving k, and so on. We fix k = 5 and let l varies from 0 to 6. To observe the
improvement with the sample size, we consider sample sizes 256, 512, 1,024
and 2,048. For each combination of the simulation parameters, the RMSE is
obtained by aggregating the estimates from 5,000 independently generated time
series.
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7.1.2 Randomly missing observations

In this section we show that the estimator defined in Definition 13, Section 5.3, can

be used for the random missing data scheme 3 of Section 3.4. We simulate a real-

valued first-order autoregressive process with parameters 0≤ a< 1 and σ according

to

Xt = aXt−1 + εt , t ≥ 1, (7.2)

where X0 ∼N
[
0,σ2/(1−a2)

]
, and {εt} is a Gaussian white noise process with

mean zero and variance σ2. The process {Xt} is the latent process of interest. To

account for the missing data, we generate a modulated time series X̃t = gtXt and

assume we only observe the time series {X̃t}, from which we estimate the parame-

ters of the process {Xt}. The sequence {gt} takes its values in the set {0,1} and is

generated according to

gt ∼B(pt), (7.3)

where B(p) represents the Bernoulli distribution with parameter p, and where we

set

pt =
1
2
+

1
4

cos
(

2π

10
t
)
. (7.4)

The observed modulating sequence {gt}, made of zeros and ones, is clearly non-

stationary as it does not admit a constant expectation in t. Therefore a spectral rep-

resentation of the second-order structure of the random modulating sequence {gt},

as required in Dunsmuir and Robinson (1981b), does not exist, and the modulated

process is not asymptotically stationary. We simulate and estimate such a model

for different sample sizes ranging from N = 128 to N = 16384. For each value of

N, we independently simulate 2,000 time series and for each time series we esti-

mate {a,σ}. The outcomes of our simulation study are reported in Table 7.1. The

bias, variance and mean square error rapidly decrease with increasing N, while the

computational time only increases gradually with N such that the methods are still

computationally efficient for long time series.
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Table 7.1: Performance of the estimator defined by (5.7) for the missing data problem defined in (7.2)–(7.4). The unknown parameters are set as
a = 0.8, and σ = 1. The results are averaged over 2,000 independently generated time series for each sample size N. The average CPU times
for the optimization are given in seconds, as performed on a 3.60Ghz Intel i7-4790 processor (4 cores).

Sample size 128 512 1024 2048 4096 8192 16384
Estimate of parameter a

Bias -2.08e-02 -4.81e-03 -3.09e-04 -4.17e-04 -2.73e-04 -4.94e-04 -1.52e-04
Variance 1.07e-02 2.71e-03 1.28e-03 6.31e-04 3.09e-04 1.44e-04 7.10e-05
MSE 1.12e-02 2.73e-03 1.28e-03 6.31e-04 3.09e-04 1.44e-04 7.10e-05

Estimate of parameter σ

Bias -1.71e-02 -5.49e-03 -6.89e-03 -2.79e-03 -1.31e-03 2.29e-04 -1.74e-04
Variance 3.37e-02 8.76e-03 4.17e-03 1.94e-03 9.80e-04 4.15e-04 2.27e-04
MSE 3.40e-02 8.79e-03 4.22e-03 1.95e-03 9.81e-04 4.15e-04 2.27e-04

Computational time
Average CPU time (s) 7.82e-03 1.63e-02 2.77e-02 2.40e-02 3.99e-02 6.81e-02 1.22e-01
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7.2 Linear combination of modulated processes
In this section we present some simulations of the process described by the example

model of Section 3.6, and estimate its parameters by fitting the parametric expected

periodogram to the observed periodogram. More precisely, the process {X1,t} is a

Gaussian white noise process with variance σ2
1 , and the process {X2,t} is an AR(1)

process with regression parameter r and innovation variance σ2
2 . Both processes are

modulated, with respective modulation sequences chosen as follows, g1,t = Dγ1,∆1(g1,t−1 +A1ε1,t)

g2,t = Dγ2,∆2(g2,t−1 +A2ε2,t)
t ≥ 1,

where the constants A1 = A2 = 0.2,γ1 = 10,∆1 = 5,γ2 = 30,∆2 = 15 are fixed and

where D is the function defined by,

Dγ,∆(x) = min [max(x,γ−∆),γ +∆] , (7.5)

so that the modulation sequences are both bounded random walks. They are initial-

ized according to,  g1,0 = Dγ1,∆1(γ1 +A1ε1,t)

g2,0 = Dγ1,∆2(γ2 +A2ε2,t)
. (7.6)

The observed process is given by,

Z̃t = a1X̃1,t +a2X̃2,t ,

with a1 = 2 and a2 = 1 fixed and known. We also assume that we observe the

modulation sequences g1,t and g2,t . Note that we cannot however retrieve X1,t or

X2,t from observing Z̃t in parallel with g1,t and g2,t .

We generated 10,000 time series, each of length 8,192, based on this stochastic

process model, and estimated the parameters σ1, r and σ2, which were fixed to 1,

0.9 and 2 respectively. The quasi-likelihood used here is that from (5.7), where the

expected periodogram is obtained by applying (5.3), where the expected modulation

sequence is obtained from (3.16).
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The initializations were started with the parameter vector [2 0.5 1]T . We

present histograms of estimates of σ1, r and σ2 in Figure 7.2. We note that es-

timates seem somewhat normally distributed, and among the 10,000 repeats the

minimization of the likelihood always converged to a point near the true parameter

vector except for two samples. We also plot a 3D color map of one sample likeli-

hood function with parameter σ1 fixed to its true value around the true parameter

vector in Figure 7.3. We note that the likelihood function for that time series does

not seem to have any local minima other than the global minimum, at least within

the range of values considered in the plot, despite the observed process being an

aggregation of two modulated processes.

7.3 Unobserved modulation sequence
In this section we present estimations in the situation where the modulation se-

quence is only known up to a parametric form, as described in Section 5.4.

7.3.1 Unobserved periodic modulation with white noise

In this section we present a simulation based on the model described in Example 1

of Section 5.4. The latent process considered is an AR(1) process with regression

parameter r and innovation variance σ2. The modulation sequence is given by,

gt = αt mod T +Aηt , (7.7)

where we fix T = 4, α0 = 3,α1 = 4,α2 = 12,α3 = 8, and where {ηt} is a standard

normal white noise process independent of the latent process. We consider a range

of values for the parameters r and A, while σ is fixed to 1. For each combination

of (A,r), we simulate 2000 time series, and aggregate estimates. The inference

method uses (5.13) to estimate α0, . . . ,αT−1 and (5.7) subsequently, as described

in Section 5.4. We present the bias, variance, and RMSE of r̂ in Figure 7.4. We

observe that the RMSE increases with small values of r (corresponding to a smaller

peak of the spectral density) and large values of A (corresponding to more noisy

estimates of the periodic pattern of the modulation sequence). We note that we
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Figure 7.2: Histogram of estimates of the parameters σ1 = 1, r = 0.9 and σ2 = 2 of the
processes {X1,t} and {X2,t}, from observing Zt = 2g1,tX1,t + g2,tX2,t and the
modulation sequences {g1,t} and {g2,t}, which are generated according to the
random walks defined in (7.6).

Figure 7.3: Contour plots of the likelihood function for one simulated sample from the
model of Section 7.2, with the parameter σ1 fixed to its true value, 1. (a) 100
levels of the likelihood function, with a constant step from the minimum value
to the maximal value; (b) 100 levels of the likelihood function with unequal
steps.

.
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may get more accurate estimates by implementing an EM procedure, with the two

following steps repeated until convergence:

1. E-step. Given the current estimates of r,σ , α0, . . . ,αT−1, derive the condi-

tional variances at each time point. Update the estimates α0, . . . ,αT−1 using

the ratio of the sample variances by the mean conditional variances (subsam-

pling according to the value of T as in (5.13).

2. M-step. Maximize the quasi-likelihood function using the new estimates of

α0, . . . ,αT−1, and update r,σ .
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Figure 7.4: Biases, variances and RMSEs of the estimate of the parameter r, for values of r ranging from 0.5 to 0.9 with a step of 0.1, and values of A
ranging from 0 to 2 with a step of 0.2.

.
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7.3.2 Linearly increasing frequency

In this section we simulate the complex-valued process defined by (3.14) with

the frequency parameter βt having the parametric form described in Example 2

of Section 5.4. In this problem we have to estimate {γ,∆} from βt as well as

{r,σ} from Zt . We perform a Monte Carlo simulation with a fixed sample size

of N = 512, where we simulate 5,000 independent time series each with parame-

ters set to r = 0.9, σ = 10, γ = 0.8, and ∆ = 2π

3 . We report the biases, variances

and MSEs with the stationary and non-stationary methods in Table 7.2. The non-

stationary estimator used is (5.11). As the simulated stochastic process (3.14) is

Markovian, it is also possible to implement exact maximum likelihood in O(N) el-

ementary operations for this specific problem, and we report these values in the table

also for comparison. Our non-stationary inference method performs relatively close

to that of exact maximum likelihood, despite the challenge of having to estimate pa-

rameters of the modulating sequence, as well as the latent process. The stationary

method performs poorly, as with previous examples, as stationary modelling is not

appropriate for such rapidly-varying oscillatory structure.

Table 7.2: Performance of estimators with the stationary and non-stationary methods for
the model of (3.14) with βt evolving according to (5.14). The parameters are set
as r = 0.9, σ = 10, γ = 0.8, and ∆ = 2π/3. The results are averaged over 5,000
independently generated time series for each sample size N. N/A stands for Not
Applicable.

Estimated parameter r σ γ ∆

Exact likelihood
Bias -1.32e-03 2.11e-02 2.12e-03 -3.61e-03
Variance 1.87e-04 5.21e-02 2.37e-04 2.83e-03
MSE 1.88e-04 5.26e-02 2.42e-04 2.85e-03

Stationary frequency domain likelihood
Bias -1.54e-01 5.21e+00 2.59e-03 N/A
Variance 5.51e-04 8.69e-01 9.46e-03 N/A
MSE 2.42e-02 2.80e+01 9.47e-03 N/A

Non-stationary frequency domain likelihood
Bias -1.71e-03 6.82e-03 1.14e-03 -3.71e-02
Variance 2.40e-04 1.53e-01 2.08e-03 1.64e-02
MSE 2.43e-04 1.53e-01 2.08e-03 1.78e-02



Chapter 8

Inference for oceanographic time

series

In this chapter we analyse real-world bivariate velocity data from instruments nav-

igating the oceans in order to model ocean surface currents around the Earth. In

particular we focus on the equatorial regions, a region less well understood in the

literature due to modelling difficulties (Early, 2012). In Section 8.1 we describe

succinctly the importance of modelling ocean surface currents and the challenge

we address with our models and inference method. In Section 8.2 we describe the

Global Drifter Program (GDP), which maintains and develops a massive database of

ocean surface measurements from instruments called drifters. Then we present our

modelling of velocities obtained from the drifters. Specifically we model jointly

the latitudinal and longitudinal velocities as the aggregation of two independent

complex-valued processes as discussed by Sykulski et al. (2016c). Here we improve

the model of this reference by allowing one of the processes in the model to become

strongly non-stationary. Specifically we use the complex-valued AR(1) process

defined by (3.14) and do not approximate βt by a constant, as in Sykulski et al.

(2016c). This motivates us to use the parametric inference method introduced in

Section 5. To investigate this estimator and compare with alternative approaches, in

particular stationary modelling and estimation methods, we present two simulation

studies in Section 8.3, the first one being based on a dynamical model of the ocean

surface currents with white noise input accounting for the wind forcing, and the sec-
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ond one being a simulation of the model from Section 3.5.3. Finally, we infer phys-

ical quantities that describe the ocean surface currents for selected drifters from the

GDP subject to a strong modulation. All data and code used here are available for

download at www.ucl.ac.uk/statistics/research/spg/software

and all results in this chapter are exactly reproducible by using this code. All the

material in this chapter, except for the stationary model described in Section 8.2.1

which was introduced in Sykulski et al. (2016c), is novel and was published in Guil-

laumin et al. (2017).

8.1 Oceanography background
Studying the ocean currents is essential to understanding their impact on climate.

For instance, the relatively warm temperature in the UK, given its latitude, are in

part the result of warm waters being brought to the UK by the Gulf Stream from

more southern latitudes. Understanding ocean currents is also essential to be able

to model oil spills or to recover objects lost at sea (Biastoch et al., 2017). One

main pattern of the ocean currents, in terms of relative contribution to the kinetic

energy of a particle of water at the surface of the oceans (Ferrari and Wunsch, 2009),

is the inertial effect (Early, 2012). This effect is caused by what is commonly

known among physicists as the Coriolis force. More precisely, as the observer is in

a rotating frame, the studied particle is subject to a force whose amplitude depends

on the rate of rotation, and whose direction is orthogonal to the velocity vector in

the rotating frame. In oceanography the Coriolis effect results in oscillations called

inertial oscillations, whose frequencies f directly depend on the rotating rate of the

Earth Ω and the latitude ζ through the relation (Early, 2012),

f = 2Ωsinζ . (8.1)

The rotation rate of the Earth Ω is computed as 2π/T where T = 86,164.1s is one

sidereal day in seconds. A sidereal day corresponds to the time it takes for the Earth

to complete one rotation around its own axis. One of the main interests in modelling

the velocities of the ocean currents is to understand the impact of the wind forcing
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and the corresponding damping time scale (Elipot et al., 2010). This requires to

correctly distinguish the contribution to the kinetic energy coming from the general

background, which can be modelled by a bi-dimensional Matérn process (Sykulski

et al., 2016c), and that coming from the inertial effect.

In most areas of the oceans, the Lagrangian velocities of a surface particle can

reasonably be modelled as locally-stationary, allowing us to apply stationary estima-

tion methods over rolling and overlapping temporal windows. However, the study

of areas with strong latitudinal mean flows is complicated by fast-varying Coriolis

frequencies, causing the inertial oscillations to display highly non-stationary struc-

tures. The usual trade-off in this situation usually consists in a choice between

small temporal windows to limit the variations in the generating mechanism, at the

expense of increased variances of estimates, and large temporal windows, with the

risk of highly-biased estimates due to the stationary approximation. We shall ad-

dress this challenge using the class of bivariate modulated processes introduced in

Section 3.5.3, and the estimators presented in Section 5.3.

8.2 The Global Drifter Program

The GDP database (www.aoml.noaa.gov/phod/dac) is a collection of measurements

obtained from buoys known as surface drifters, which drift freely with ocean cur-

rents and regularly communicate measurements to passing satellites at unequally

spaced time intervals averaging 1.4hrs. The data is then interpolated onto a regular

temporal grid using for example the approach of Elipot et al. (2016). The mea-

surements include position, and often sea surface temperature. Since 2005, over

11,000 drifters have been deployed, with approximately 70 million position record-

ings obtained. The surface positions are differentiated to obtain bivariate velocity

time series, represented as complex-valued time series Zt = Xt + iYt where Xt is the

longitudinal velocity and Yt is the latitudinal velocity (Sykulski et al., 2016c). The

analysis of this data is crucial to our understanding of ocean circulation (Lumpkin

and Pazos, 2007), which is known to play a primary role in determining the global

climate system, see e.g. Andrews et al. (2012). Furthermore, GDP data are used to



8.2. The Global Drifter Program 113

Figure 8.1: (a) The trajectories of the 200 drifters from the Global Drifter Program, anal-
ysed in Section 8.4, that exhibit the greatest change in Coriolis frequency ( f )
across 60 inertial cycles, as described in that section; (b) a segment of data of
the latitudinal positions over time from Drifter ID#43594; and (c) a segment
of data of the latitudinal velocities from this drifter in cm/s. This figure is pro-
duced using the jLab toolbox (Lilly, 2016).

understand the dispersion characteristics of the ocean, which are critical in correctly

modelling oil spills (Abascal et al., 2010) and more generally assist in developing

theoretical understanding of ocean fluid dynamics (Griffa et al., 2007), which is

necessary for global climate modelling.

In Fig. 8.1(a), we display the trajectories of 200 drifters which either traverse

or are near the equator (latitudes between ±20 degrees), interpolated onto a 2 hour

grid from raw position observations available at the GDP web site. We focus on

a single drifter trajectory, drifter ID#43594, in panels (b) and (c), displaying both

its latitudinal position and velocity respectively, the latter of which is obtained by

differencing the positions. It appears that the velocity time series is strongly non-

stationary, as it has oscillations which appear to change in frequency over time. This

occurs because the drifters are changing latitude—and the Coriolis frequency, de-

noted f , is equal to twice the rotation rate of the Earth (Ω) multiplied by the sine of

the latitude (ζ ), as per (8.1). Note that the Coriolis frequency f is a signed quantity,

implying that oscillations occur in opposite rotational clockwise/anti-clockwise di-

rections from one hemisphere to the other. The Coriolis frequency is positive in the

Northern hemisphere whereas the oscillations occur in the mathematical negative
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sense. Therefore we define the inertial frequency,

ω
{ f} =− f

2πK
, (8.2)

as the negative of the Coriolis frequency f divided by 2πK, where K = 86,400.002s

is one solar day in seconds, so that ω{ f} is in cycles per day.

8.2.1 Stochastic modelling

The stochastic modelling of Lagrangian trajectories was investigated in Sykulski

et al. (2016c), where the term “Lagrangian” is used because the moving object

making the observations (i.e. the drifter) is the frame of reference, as opposed

to fixed-point measurements known as Eulerian observations. In that paper, the

Lagrangian velocity time series was modelled as a stationary Gaussian complex-

valued time series, with the following 6-parameter power spectral density

S(ω) =
A2

(ω−ω{ f})2 +λ 2
+

B2

(ω2 +h2)
α , ω ∈ R, (8.3)

A > 0, λ > 0, h > 0, B > 0, α >
1
2
,

where ω is given in cycles per day.

The first component of (8.3) is the spectral density of a complex-valued

Ornstein-Uhlenbeck (OU) process (Arató et al., 1962), and is used to describe the

effect of inertial oscillations at frequency ω{ f}. Denoting Z̃OU(t) the OU com-

ponent, where Z̃OU(t) is complex-valued, these oscillations are described by the

following stochastic differential equation (SDE),

dZ̃OU(t) = (−λ + i2πω
{ f})Z̃OU(t)dt +AdW (t), (8.4)

where t is expressed in days and W (t) is a complex-valued Brownian process with

independent real and imaginary parts. The damping parameter λ > 0 ensures that

the OU process is mean-reverting. The corresponding continuous complex-valued
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autocovariance is given by

s(τ) =
A2

2λ
exp
{
−λ |τ|+ i2πω

{ f}
τ

}
,

and the sampled process (Arató et al., 1999) Z̃OU,t = Z̃OU(t∆), where we recall that

∆= 1/12 day is the sampling rate corresponding to the 2hr grid, is a complex-valued

AR(1),

Z̃OU,t = rei2πω{ f}∆Z̃OU,t−1 + εt . (8.5)

Here {εt} is a Gaussian complex-valued white noise process with variance σ2 and

independent real and imaginary parts. The autocovariance sequence of the station-

ary sampled process is given by,

cZ̃OU
(τ) =

σ2

1− r2 rτei2πτ∆ω{ f}
. (8.6)

The transformation between the parameters of the complex-valued OU and the

complex-valued AR(1) are given by,

σ
2 =

A2(1− e−λ∆)

2λ∆
, r = e−λ∆. (8.7)

The second component of (8.3) is the spectral density of a stationary proper

Matérn process (Gneiting et al., 2010), denoted ZM(t), and is used to describe two-

dimensional background turbulence, see Lilly et al. (2017). Although the parameter

ω{ f} is varying as the drifter changes latitude, this parameter is fixed to its mean

value in each trajectory segment in Sykulski et al. (2016c). This leaves five remain-

ing parameters to estimate, {A,λ ,B,h,α}, in different regions of the ocean.

The model of (8.3) is stationary—slowly-varying non-stationarity in the data

is accounted for by windowing the data into segments of approximately 60 inertial

periods, and treating the process as locally-stationary within each window. The

estimated parameters can then be aggregated spatially to quantify the heterogeneity

of ocean dynamics. This method works well on relatively quiescent and stationary

regions of the ocean; however this method cannot account for the rapidly-varying
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non-stationarity evident in Fig. 8.1, and leads to model misfit and biased parameter

estimates, as we shall now investigate in detail.

8.2.2 Modulated time series modelling and estimation

We now apply the methodological contributions of this thesis to improve the model

of (8.3) for highly non-stationary time series, such as those observed in Fig. 8.1(a).

We do this by accounting for changes in the inertial frequency, ω{ f}, within each

window of observation, by using the framework of modulated processes. We denote

ω{ f}(t) the continuous time-varying inertial frequency and ω
{ f}
t = ω{ f}(t∆) the

inertial frequency value at each observed time step, t = 0, · · · ,N− 1. The adapted

version of the SDE (8.4) is then given by,

dZ̃OU(t) =
(
−λ + i2πω

{ f}(t)
)

Z̃OU(t)dt +AdW (t). (8.8)

In analogue to the proof of Proposition 4 it is shown that the sampled process

Z̃OU,t = Z̃OU(t∆) satisfies,

Z̃OU,t = rei2π
∫

∆t
∆(t−1) ω{ f}(u)duZ̃OU,t−1 + εt .

As the inertial frequency is only observed at sampled points, we approximate the

term
∫

∆t
∆(t−1)ω{ f}(u)du by ∆ω

{ f}
t . Specifically, we use the model of (3.14) for

complex-valued time series, i.e.

Z̃OU,t = rei2π∆ω
{ f}
t Z̃OU,t−1 + εt , t ≥ 1, (8.9)

where εt has the same properties as in (8.5) and the transformation between the

parameters {A,λ ,ω{ f}
t } of the non-stationary complex-valued OU process (8.8)

and the parameters {σ ,r,ω{ f}
t } of the non-stationary complex-valued AR(1) pro-

cess (8.9) are given by (8.7).

The required methodology has been developed in Section 3.5 for bivariate (or

complex-valued) time series. We only perform the modulation on the complex

OU component in (8.3); the Matérn component for the turbulent background is
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unchanged and is considered to be stationary in the window, as it is not in general

affected by changes in ω{ f}. However the two components are observed in aggrega-

tion, and for this reason we cannot simply demodulate the observed non-stationary

signal to recover a stationary signal. Instead, to jointly estimate the parameters

{A,λ ,B,h,α}, we first compute the modulating sequence associated with (8.9), gt ,

using (3.15) from Proposition 4 and accounting for the temporal sample rate ∆,

gt = ei∑
t
u=1 2π∆ω

{ f}
u , (8.10)

for t = 0, · · · ,N − 1. Then we obtain the expected periodogram of the OU com-

ponent, by computing cg(τ) according to (3.13), then c(N)

Z̃OU
(τ), where we use the

autocovariance of a stationary complex-valued OU process

cZOU(τ;r,σ) =
σ2

1− r2 rτ ,

and finally Fourier transforming c(N)

Z̃OU
(τ) according to (5.3). Next, we compute

the expected periodogram of the stationary Matérn as outlined in Sykulski et al.

(2016c). Note that this can also be computed from the autocovariance of a Matérn,

which we denote cZM(τ), using (5.3), and by setting gt = 1 for all t, from which

the modulation kernel (3.4) is simply the triangle kernel 1− |τ|/N. Finally, we

additively combine the expected periodograms, i.e.

S(N)
(ω;θ) =

N−1

∑
τ=−(N−1)

[
cg(τ)cZOU(τ)+

(
1− |τ|

N

)
cZM(τ)

]
e−i2πωτ∆,

for ω ∈ [− 1
2∆
, 1

2∆
], and then minimize the objective function, given in (5.10), to

obtain parameter estimates for {A,λ ,B,h,α}.

Note that the modulation of a complex-valued AR(1) process by (8.10) will

not lead to an asymptotically stationary process, as in general we cannot expect

the quantities c(N)
g (τ) to converge. However, we can see from Fig. 8.1(a) that the

drifters of our dataset have latitudes comprised between ±20 degrees. Therefore

the terms 2π∆ω
{ f}
t in (8.9) are comprised between±0.3591 radians (recalling (8.1)
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and (8.2)), so that the conditions of Proposition 5 are verified. Hence the sampled

inertial component is a modulated process with a significant correlation contribu-

tion, which motivates the use of our estimator (5.9). Note that significant correla-

tion contribution is achieved here because of both the latitudes of the drifters and

the sampling rate used.

The assumption of Gaussianity is reasonable for modelling the veloc-

ity of instruments from the GDP as is discussed in Section 2.4 of LaCasce

(2008) and references therein. To further inspect this, we tested the hy-

pothesis of Gaussianity for the specific equatorial drifter velocity dataset that

is the subject of our study. The code for this test is available online at

www.ucl.ac.uk/statistics/research/spg/software/modulated. Be-

cause the time series values are correlated in time, it would be incorrect to apply a

Gaussianity test to all the velocities, as such tests typically require the samples to

be independent (Paparoditis and Politis, 2012). Therefore we perform our tests on

the differenced process (i.e. the accelerations, noting that if the accelerations are

Gaussian then the velocities are Gaussian too), where correlation will decay more

quickly in time. Furthermore, to account for any remaining correlations we sub-

sample the differenced time series. To choose a relevant sampling step we selected

a decorrelation length common to all our velocity time series based on an analysis

inspired by Paparoditis and Politis (2012). We averaged the biased sample autocor-

relation sequences and selected the first lag from which the averaged autocorrelation

sequence is within the 95% confidence interval obtained under the hypothesis of

zero correlation. The sub-samples are tested via a Kolmogorov-Smirnov test with

size 5%. We obtain a rejection rate of 6.5% for the overall dataset (including both

longitudinal and latitudinal velocities), which is broadly consistent with a type I

error rate of 5%. This shows that the assumption of Gaussianity is reasonable.

8.3 Simulation studies

In this section, before we analyse real data from the GDP, we use simulated time se-

ries to test our proposed modelling and inference method. In Section 8.3.1 we sim-
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ulate velocity time series according to a dynamical model for inertial oscillations,

with simulated white noise input accounting for the wind forcing. We generate

time series for a range of realistic latitudinal velocities, and show the necessity of

accounting for the changing latitudes and Coriolis frequencies to correctly estimate

the damping time scale of the inertial oscillations, as compared to a model assuming

a constant Coriolis frequency. In Section 8.3.2 we simulate time series according to

the bivariate modulated process described in Section 3.5.3 and where we take the

time-varying frequency βt of (3.14) to be generated according to a bounded random

walk. We generate time series for a range of sample sizes, showing the decrease in

the root mean squares errors as the time series become larger.

8.3.1 Testing with a dynamical model

We first test the accuracy of the non-stationary modelling and parameter estimation

for drifters by analysing output in a controlled setting using a dynamical model for

inertial oscillations. The model propagates particles on an ocean surface forced by

winds—simulated white noise in our simulations—with a fixed damping parame-

ter, similarly to the damped-slab model of Pollard and Millard (1970), but uses the

correct spherical dynamics for the Earth from Early (2012), so that the oscillations

occur at the correct Coriolis frequency given the particle’s latitude and so that the

model remains valid at the equator. The damping timescale parameter is fixed glob-

ally a priori in the model and the goal is to see if it can be accurately estimated

using parametric time series models.

The numerical model is constructed such that the particle can also be given a

linear mean flow, denoted U + iV . If this mean flow has a significant vertical com-

ponent V , then the particle will cross different latitudes and the frequency of inertial

oscillations will significantly change over a single analysis window. We display par-

ticle trajectories from the dynamical model in Fig. 8.2, with various realistic mean

flow values, where the spherical dynamics can clearly be seen for larger latitudinal

mean flow values. We observe that the particles subject to small mean flows dis-

play stationary oscillation patterns, whereas for the particles with a large latitudinal

mean flow, the oscillation frequency appears to diminish as the particle approaches
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Figure 8.2: Trajectories of 9 particles from the dynamical model of Pollard and Millard
(1970) with the correct spherical dynamics of the Earth as described in Early
(2012) and with the damping timescale set to 4 days. All particle trajectories are
started at 35◦ N and 40◦ W with increasing latitudinal mean flow from V = 0.1
to V = 0.9 m/s going from left to right (U is set to zero for this example). The
drifters are offset in longitude by 0.02 degrees for representation.

latitude zero. A more complete description of the numerical model is available in

the online code.

To explore the performance of the estimation of damping timescales, we as-

sess the performance of the parameter estimates of our non-stationary model, by

performing a Monte Carlo study based on the dynamical model described in the pre-

vious paragraph. We generate 100 trajectories, each of length 60 days and sampled

every 2 hours, for a given damping timescale (1/λ ) and latitudinal mean flow (V ).

We estimate the damping parameter using the stationary and non-stationary meth-

ods, and average the estimated damping timescales 1/λ over the 100 time series.

We note that this model has no background turbulence, and so we set B = 0 in (8.3)

such that there is no Matérn component present. We then repeat this analysis over a

range of realistic values for 1/λ and V . The average estimates of 1/λ are reported in

Fig. 8.3. The stationary method breaks down for large mean flows and long damp-

ing timescales, with large overestimates of λ , confirming our observations from the

real-data analysis. The non-stationary method performs well across the entire range

of values. We note that long damping timescales are generally harder to estimate,

as λ becomes close to zero and is estimated over relatively fewer frequencies. We

have not reported mean square errors, but we found the parameter biases to be the
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Figure 8.3: Mean estimates of the damping timsescale 1/λ with (a) the stationary
model (8.3) and (b) the non-stationary model of Section 8.2.2, applied to 100
realizations of the dynamical model described in Section 8.3.1. The experi-
ment is performed over a grid of latitudinal mean flow values V from 0 to 0.9
cm/s, and over a range of true damping timescales 1/λ from 1 to 8 days. The
estimated damping timescale values, averaged over 100 repeat experiments, is
written in each cell and shaded according to the colorbar.

main contribution to the errors, so it follows that the non-stationary method remains

strongly preferable.

8.3.2 Testing with Stochastic Model Output

In this section we test with purely stochastic output, which allows us to extensively

compare biases, errors and computational times of the stationary and non-stationary

methods in a much larger Monte Carlo study. We continue using the bivariate model

of (3.14) which is suitable for inertial oscillations, except this time we change βt

according to a stochastic process. Specifically, we set as our generative mechanism

for the frequencies βt ,

β0 = Dγ,∆(γ +Aεt) (8.11)

βt = Dγ,∆(βt−1 +Aεt), (8.12)

where γ ∈ [−π,π), ∆> 0, A> 0 and {εt} is a standard normal white noise, and D(·)

is the function defined by (7.5). We recall that this choice of Dγ,∆(x) constrains βt

in the interval [γ −∆,γ +∆]. This way the frequencies βt are generated according

to a bounded random walk, i.e. a random walk which is constrained to stay within

a fixed bounded interval. According to Proposition 5, if ∆ is smaller than π/2, then
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this ensures that the modulated process belongs to the class of modulated processes

with a significant correlation contribution, and our estimator (5.10) is consistent.

In our simulations we have set γ = π/2, ∆ = 1, A = 1/20. We simulate for

a range of sample sizes ranging from N = 128 to N = 4096. For each sample

size N, we independently simulate 2000 time series and estimate {r,σ} for each

series to report ensemble-averaged biases, errors, and computational times. The

results are reported in Table 8.1. The bias and Mean Square Error (MSE) of the

estimated parameters with the stationary method (with βt replaced by its average

value) are seen to increase with increasing sample size. This is because the random

walk of βt increases the range of βt with larger N, such that the non-stationarity of

the time series is increasing. Conversely, the non-stationary method accounts for

these rapidly changing modulating frequencies, and the bias and MSE of parameter

estimates rapidly decrease with increasing N. The average CPU time of the non-

stationary model fitting is of the same order as that of the CPU time of the stationary

model fitting, as the method is still O(N logN) in computational efficiency.
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Table 8.1: Performance of estimators with the stationary and non-stationary methods for the model of (3.14) with βt evolving according to the bounded
random walk described by (8.11). The parameters are set as r = 0.8, σ = 1, γ = π/2, ∆ = 1, and A = 1/20. The results are averaged over
2,000 independently generated time series for each sample size N. The average CPU times for the optimization are given in seconds, as
performed on a 3.60Ghz Intel i7-4790MQ processor (4 cores).

Sample size (N) 128 256 512 1024 2048 4096
Stationary frequency domain likelihood

Bias (r) -2.33e-02 -3.27e-02 -4.81e-02 -6.97e-02 -9.32e-02 -1.12e-01
Variance (r) 1.80e-03 1.04e-03 1.13e-03 1.54e-03 1.40e-03 8.27e-04
MSE (r) 2.34e-03 2.11e-03 3.44e-03 6.40e-03 1.01e-02 1.33e-02
Bias (σ ) 3.73e-02 6.16e-02 9.28e-02 1.34e-01 1.75e-01 2.07e-01
Variance (σ ) 3.72e-03 2.87e-03 3.33e-03 4.44e-03 3.98e-03 2.16e-03
MSE (σ ) 5.11e-03 6.67e-03 1.19e-02 2.24e-02 3.46e-02 4.49e-02
Average CPU time (sec) 8.26e-03 1.21e-02 1.46e-02 2.19e-02 3.68e-02 6.44e-02

non-stationary frequency domain likelihood
Bias (r) -4.08e-03 -1.95e-03 -1.37e-03 -2.51e-04 -2.28e-04 1.10e-04
Variance (r) 1.64e-03 7.52e-04 3.98e-04 2.07e-04 1.07e-04 5.30e-05
MSE (r) 1.65e-03 7.56e-04 4.00e-04 2.07e-04 1.07e-04 5.30e-05
Bias (σ ) -4.00e-03 -2.87e-03 -1.48e-03 -1.12e-03 -7.77e-04 -6.15e-04
Variance (σ ) 2.56e-03 1.29e-03 6.57e-04 3.55-e04 2.03e-04 1.08e-04
MSE (σ ) 2.58e-03 1.29e-03 6.59e-04 3.57e-04 2.03e-04 1.08e-04
Average CPU time(sec) 9.03e-03 1.14e-02 1.36e-02 2.01e-02 3.33e-02 6.21e-02



8.4. Inference for equatorial drifters 124

8.4 Inference for equatorial drifters

In this section we apply the methods that we have developed in this thesis to the

analysis of drifters trajectories from the Global Drifter Program. We focus on drifter

trajectories with strong relative changes in the Coriolis frequency. To do so, the

entire drifter dataset is split into segments of 60 inertial periods in length, account-

ing for the variation of the inertial period along drifter trajectories, and with 50%

overlap between segments. The standard deviation of the inertial frequency along

each data segment is taken, and the 200 segments exhibiting the largest ratio of

the standard deviation of the inertial frequency, to the magnitude of its mean value

along the segment, are identified for use in this study. These trajectories exhibit

the largest fractional changes in the inertial frequency, and as shown in Fig. 8.1(a),

are all located in the vicinity of the equatorial region where the inertial frequency

vanishes. We compare the likelihood estimates and parametric fits for the station-

ary model (8.3), with those for the non-stationary version of this model described

in the previous subsection. In particular, the damping timescale 1/λ is of primary

interest in oceanography (Elipot et al., 2010). In Fig. 8.5, we display the Whittle

likelihood fits of each model to segments of data from drifter IDs #79243, #54656

and #71845, all of which are among the trajectory segments displayed in the left-

hand panel of Fig. 8.1. We also include model fits to a 60-inertial period window

of drifter ID#44312, which is investigated in detail in Sykulski et al. (2016c), as

this South Pacific drifter is from a more quiescent region of the ocean, and does

not exhibit significant changes in ω{ f}. For the South Pacific drifter in Fig. 8.5(d),

both fits are almost equivalent (and hence are overlaid), capturing the sharp peak in

inertial oscillations at approx 1.2 cycles per day. For the three equatorial drifters,

the stationary model (8.3) has been fit using (5.10) with the inertial frequency set to

the average of ω
{ f}
t across the window. The stationary model is a relatively poor fit

to the observed time series spectra. The non-stationary modulated model, which in-

corporates changes in ω{ f}, is a better fit, capturing the spreading of inertial energy

between the maximum and minimum values of ω
{ f}
t .

In this analysis, we have excluded frequencies higher than 0.8 cycles per day
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from all the likelihood fits to the equatorial drifters (the Nyquist is 6 cycles per day

for this 2-hourly data), to ignore contamination from tidal energy occurring at 1

cycle per day or higher, which is not part of our stochastic model. Furthermore, we

also only fit to the side of the spectrum dominated by inertial oscillations, as the

model is not always seen to be a good fit on the other side of the spectrum. The

modelling and inference approach is therefore semi-parametric (Robinson, 1995).

The significance of the misfit of the stationary model is that parameters of the

model may be under- or over-estimated as the model attempts to compensate for

the misfit. For example, the damping parameter of the inertial oscillations, λ , will

likely be overestimated in the stationary model, as it is used to try to capture the

spread of energy around ω{ f}, which is in fact mostly caused by the changing value

of ω{ f}, rather than a true high value of λ .

To investigate this further, we perform the analysis with all 200 drifters shown

in Fig. 8.1. In Fig. 8.4(a), we show a scatter plot of the estimates of 1/λ , known

as the damping timescale, as estimated by both models. In general, the damping

timescales are larger with the non-stationary model (consistent with a smaller λ ),

where the median value is 3.42 days, rather than 1.3 days with the stationary model.

Previous estimates of the damping timescale in the literature have not included data

from the equatorial region, so while direct comparisons are not possible, the former

estimates are found to be more consistent with previous estimates at higher latitudes

where values of around 3 days are reported in Elipot et al. (2010), and values ranging

from 2 to 10 days are reported in Watanabe and Hibiya (2002).

The non-stationary model does not require more parameters to be fitted than

the stationary model; both have 5 unknown parameters. Therefore there is no need

to penalize the non-stationary model using model choice or likelihood ratio tests.

Even though the models are not nested, comparing the likelihood of the two ap-

proaches can be informative. We can directly compare the negative quasi-likelihood

value of each model using (5.7) with the stationary model (denoted `S(θ̂ S)) and the

non-stationary model (denoted `NS(θ̂ NS)). A histogram of the difference between

the likelihoods for the 200 drifters is shown in Fig. 8.4(b), where positive values
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Figure 8.4: Subplot (a) is a scatter plot of the damping timescale 1/λ as estimated by
the stationary and non-stationary models, for each of the 200 trajectories dis-
played in Fig. 8.1; Subplot (b) is a histogram of the difference between the
log-likelihoods of the non-stationary and stationary models for the same 200
trajectories.

indicate that the likelihood of the non-stationary model is higher. Overall, the non-

stationary model has a smaller negative likelihood in 146 out of the 200 trajectories

and is therefore seen to be the better model in general.

There are other regions of the global oceans, in addition to the equator, where

the non-stationary methods of this thesis may significantly improve parameter esti-

mates of drifter time series. These include drifters which follow currents that tra-

verse across different latitudes, such as the Gulf Stream or the Kuroshio. Analysis

of such data is an important avenue of future investigation.
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Figure 8.5: Fitted expected periodogram using either the stationary model (black) or the
non-stationary model (red) to the periodogram (blue) for segments of data from
drifter IDs (a) #79243, (b) #54656, (c) #71845 and (d) #44312. The solid black
vertical line is the average inertial frequency, and the dashed vertical black lines
are the minimum and maximum observed inertial frequency over the observed
time window. The models are fit in the frequency range of 0 to 0.8 cycles per
day in (a)–(c), and from 0 to 1.5 cycles per day in (d) as this drifter is at a higher
latitude of 37◦ S where inertial oscillations occur at a frequency of about 1.2
cycles per day. The fitted models are shown in solid lines within the frequency
range, and in dashed lines outside the frequency range.



Chapter 9

Future work and conclusions

Non-stationary time series occur in many real-data applications, and hence have

attracted the attention of a large amount of the time series literature in recent

decades. The first difficulty in defining non-stationary models is to ensure their

validity in terms of the resulting covariance matrices. This issue is exacerbated

in multi-dimensional time series. The second difficulty is that, when defining a

non-stationary stochastic processes model, one has to choose a way in which the

information will repeat itself despite the non-stationarity, so that averaging makes

sense when trying to estimate parameters or obtain summary statistics. Finally, the

computational burden of the maximum likelihood is well-known for the analysis of

many stationary time series, and is obviously not expected to disappear in the case

of non-stationary time series. One approach is the use of likelihood approxima-

tions called quasi-likelihoods. Deriving such approximations and establishing their

consistency is usually an additional difficulty for non-stationary time series.

In this thesis we have proposed a class of non-stationary processes based on

the framework of modulated processes (Parzen, 1963). The framework of modula-

tion makes a lot of the problems described in the above paragraph easier. Firstly,

modulation, and more generally defining a process pointwise as ft(Xt) where ft(·)

are functions indexed by time and {Xt} is a stochastic process, ensures the validity

of the so-defined process, and in the simple case of modulation the covariance of

the modulated process can easily be derived from the covariance of the latent pro-

cess. In this thesis we also introduced a class of non-stationary bivariate modulated
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processes, where the modulation can efficiently account for frequency modulation.

Secondly, the way the information repeats itself in the observed modulated process

can be expressed in terms of the relation between the modulation sequence and the

latent stationary process. A simple possible assumption is that the sample autoco-

variances of the modulation sequence converge to a non-zero limit, leading to an

asymptotically stationary modulated process (Parzen, 1963, Dunsmuir and Robin-

son, 1981c, Toloi and Morettin, 1989). The central contribution of this thesis is

to extend this idea to allow for more general forms of the modulation sequence, by

introducing the class of modulated processes with a significant correlation contribu-

tion, where we require that the sample autocovariance sequence of the modulation

sequence be asymptotically bounded below, at least for a set of lags that entirely de-

termine the parameter within its range of possible values. Finally, we introduced a

quasi-likelihood in the frequency domain, which is based on the Whittle likelihood

for stationary processes and we conserve the O(N logN) computational order. We

proved its consistency as well as its rate of convergence under mild assumptions on

the latent process and the modulation sequence.

From a broader point of view, a key contribution of this thesis is to show how

parametric modelling may permit forward modelling of statistics from time series

samples. While most methods in time series spectral analysis intend to limit the

bias of estimators, we have directly modelled the expectation of such an estimator,

and made use of the parametric modelling to transform the estimation problem in

an inverse problem. We note that Fuentes (2007) proposed a similar method to

estimate the parameters of irregularly sampled random fields.

As a direct extension of the work presented in this thesis, in future work we

may consider establishing the asymptotic distribution of the quasi-likelihood es-

timator introduced, in order to be able to provide confidence intervals. Another

challenging possible extension is to consider the estimation of a latent parametric

model when the modulation sequence is not observed and does not admit a paramet-

ric form, in contrast to the problem we considered in Section 5.4. This cannot be

achieved for any modulation sequence and will require some assumptions, such as
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smoothness assumptions. We note the difference with locally-stationary processes,

as we may still be able to achieve consistent estimates of the latent model parameter

under increasing sample size.

Concerning our real-data application, future work will consist in establishing

a global map of the world oceans showing the variations of key physical quantities

such as the damping timescale which we analysed in Section 8.4. This will pose

several challenges, such as extending our methods to replicated modulated time

series, and choosing an optimal window length that may depend on the variations

of the Coriolis frequencies and possibly on the estimated parameter (in which case

the estimation would go through several estimations).

The Whittle likelihood can be applied more generally to the study of random

fields (Whittle, 1954), that is to say stochastic processes on a multidimensional

space, for instance R2, rather than on the time line. Although one may think that

results from time series analysis can be extended to random fields directly, there are

two issues which require more consideration. Firstly, the main difficulty in going

from dimension 1 to dimension d > 1 is referred to as edge effects (Dahlhaus and

Künsch, 1987). This refers to the fact that the bias of the periodogram decreases

with rate N−1/d where N is the total sample size, making small sample effects of

time series even more cumbersome in the analysis of random fields. Secondly, the

restrictions on covariance functions are stronger. More specifically, if {Xs : s ∈

D} is a homogeneous (or stationary) random field on D ∈ Rd , and if H ⊂ D is a

subset with dimension d− 1, the autocovariance function of the process {Xs : s ∈

H} clearly belongs to the set of stationary autocovariance functions of processes

on Rd−1, but the reciprocal is not true (Yaglom, 1987). In particular, the set of

autocovariance functions from lines of random fields on R2 is a strict subset of

non-negative definite functions. Similarly to this thesis work, we can easily define

a non-stationary random field via modulation. Eliminating the bias of the Whittle

likelihood by replacing the spectral densities by the finite sample expectations of the

periodogram may be even more valuable than in dimension 1, due to edge effects.

Moreover, calculation techniques for the expected periodogram can be extended to
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random fields, including applications to non-rectangular regular grids, which is of

great interest to practitioners as spatial data very often come from non-rectangular

shapes. This provides with an enticing possible extension of the work presented in

this thesis.



Appendix A

Proofs

The proofs in this appendix are standard. All the proofs in the main body of this

thesis are by the author.

A.1 Proof of Lemma 1

Proof. Let {Xt : t ∈Z} be a stationary process, with autocovariance function cX(τ).

Let n≥ 1 and λ1, . . . ,λn ∈ R. We have that,

var

{
n

∑
i=1

λiXi

}
=

n

∑
i, j=1

λiλ jcX(i− j),

which is always non-negative from basic properties of the variance. Moreover, for

any given τ ∈ Z, cX(−τ) = E{X0X−τ} = E{X−τX0} = cX(τ), so that the autoco-

variance function of the process Xt is symmetric. Respectively, it can be shown that

for any symmetric non-negative definite sequence, there exists a stochastic process

whose autocovariance function is identical to that given sequence. This part of the

proof can be found for example in Brockwell and Davis (1991).

A.2 Proof of Proposition 1

Proof. Since |cX(τ)e−iωτ | ≤ cX(τ), the trigonometric series ∑τ∈Z cX(τ)e−iωτ con-

verges normally. Therefore we can invert integration and summation, and in partic-
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ular, for any natural integer k,

∫
π

−π

∞

∑
τ=−∞

cX(τ)e−iωτeiωkdω =
∞

∑
τ=−∞

∫
π

−π

cX(τ)e−iω(τ−k) = cX(k).

This concludes the proof, as it shows that cX(τ) =
∫

π

−π
f (ω)e−iωτ ,∀τ ∈ Z.

A.3 Proof of Lemma 2

Proof. The result is a direct consequence of the fact that the autocovariance function

is non-negative definite (see Lemma 1), and from Herglotz’s theorem on spectral

representations of this class of functions. Equation (2.2) is a known result from

Fourier theory.

A.4 Proof of Theorem 3

Proof. 1. Assume limτ→∞cX(τ) = 0. Then we have,

var

{
1
N

N−1

∑
t=0

Xt

}
=

1
N2 ∑

i, j=1,...,N
cov{Xi,X j}

=
1
N ∑
|τ|=0,··· ,N−1

(
1− τ

N

)
cX(τ)

≤ 1
N ∑
|τ|=0,··· ,N−1

|cX(τ)|.

The last quantity converges to zero, since the average of a convergent se-

quence converges to the limit of that sequence. Therefore, and since it is

unbiased, the sample mean converges in mean square, and thus in probability,

to µ .

2. Assume that ∑τ∈Z |cX(τ)| converges. We then have,

var

{
1
N

N−1

∑
t=0

Xt

}
=

1
N ∑
|τ|=0,··· ,N−1

(
1− τ

N

)
cX(τ).
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Let fn(x) =
(

1− b|x|cn

)
cX(b|x|c)1[0,n](|x|) and f (x) = cX(b|x|c), we have,

1
N ∑
|τ|=0,··· ,N−1

(
1− τ

N

)
cX(τ) =

∫
∞

−∞

fn(x)dx,

and fn(x)→ f (x) and | fn(x)|< | f (x)|with f (x) integrable. By the dominated

convergence theorem we obtain,

∑
|τ|=0,··· ,N−1

(
1− τ

N

)
cX(τ)→ ∑

τ∈Z
cX(τ),

leading to the stated result.

A.5 Proof of Proposition 7
Proof. The proof, which is standard (Brockwell and Davis, 1991, page 334), fol-

lows directly from (4.1) and (3.3) in a few lines of algebra after aggregating along

the diagonal of the covariance matrix.
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U. Grenander and G. Szegö. Toeplitz forms and their applications. University of

California Press, 2001.

Y. Grenier. Time-dependent ARMA modeling of nonstationary signals. IEEE

Transactions on Acoustics, speech, and signal processing, 31(4):899–911, 1983.

A. Griffa, A. D. Kirwan, A. J. Mariano, T. Özgökmen, and T. Rossby. Lagrangian
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